WO2015016235A1 - マイクロニードルアレイとマイクロニードルアレイ製造方法 - Google Patents

マイクロニードルアレイとマイクロニードルアレイ製造方法 Download PDF

Info

Publication number
WO2015016235A1
WO2015016235A1 PCT/JP2014/069983 JP2014069983W WO2015016235A1 WO 2015016235 A1 WO2015016235 A1 WO 2015016235A1 JP 2014069983 W JP2014069983 W JP 2014069983W WO 2015016235 A1 WO2015016235 A1 WO 2015016235A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
microneedle array
tip
substrate
array
Prior art date
Application number
PCT/JP2014/069983
Other languages
English (en)
French (fr)
Inventor
田丸 卓也
教幸 小粥
昭史 井上
茂 冨田
育彦 和田
Original Assignee
Asti株式会社
武田薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asti株式会社, 武田薬品工業株式会社 filed Critical Asti株式会社
Priority to EP14832762.0A priority Critical patent/EP3028735A4/en
Priority to JP2015529583A priority patent/JP6370296B2/ja
Priority to US14/908,394 priority patent/US10500386B2/en
Publication of WO2015016235A1 publication Critical patent/WO2015016235A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7544Injection needles, syringes

Definitions

  • the present invention relates to a microneedle array for administering a target substance such as a drug subcutaneously to prevent or treat various diseases, and a microneedle array manufacturing method for manufacturing such a microneedle array.
  • the present invention relates to a device that is not easily damaged at the time of puncture, and can be reliably punctured, and can be reliably administered with a desired amount of a target substance.
  • Patent Document 1 As conventional microneedle arrays, for example, those described in Patent Document 1 and Patent Document 2 are known.
  • the percutaneous absorption preparation holding sheet (microneedle array) described in Patent Document 1 is configured as shown in FIG. First, there is a support 1001, and a percutaneous absorption preparation (microneedle) 1003 having a substantially conical fine needle shape is fixed on the support 1001. This transdermally absorbable preparation 1003 is punctured into the skin.
  • Patent Document 1 also discloses a device for holding a transdermally absorbable preparation. This device for holding a percutaneously absorbable preparation is composed of a main body having a through-hole and a percutaneously absorbable preparation having a needle shape or the like held in the through-hole.
  • the percutaneous preparation (microneedle array) described in Patent Document 2 is configured as shown in FIG.
  • a support body 1005 there is a support body 1005, and a plurality of fine needles (microneedles) 1007 are fixed to the support body 1005.
  • the fine needle 1007 has a substantially conical shape, and includes a first portion 1009 on the distal end side (upper side in FIG. 34) and a second portion 1011 on the proximal end side (lower side in FIG. 34). ing.
  • the first portion 1009 is obtained by, for example, mixing a target substance such as a local anesthetic and water with a base made of a polymer substance that is soluble in the body and spinnable and then dried and solidified.
  • the second portion 1011 is also obtained by, for example, mixing and drying and solidifying a base made of a polymer substance that is soluble in the body and spinnable.
  • a microneedle preparation having a biodegradable substance containing a target substance at its tip using a metallic base has been developed (Non-patent Document 1).
  • various developments have been made on safe preparations capable of more reliably administering a desired amount of a target substance.
  • the conventional configuration has the following problems.
  • the strength is not sufficient because the separately manufactured percutaneous absorption preparation 1003 is fixed to the support 1001, and in particular, The strength of the fixed part was insufficient. Therefore, when trying to puncture the skin, depending on the method of puncture (when punctured obliquely with respect to the skin, etc.), the percutaneous absorption preparation 1003 breaks from the adhering portion and is damaged, and reliable puncture is impaired. There was a problem that. In addition, if the percutaneous absorption preparation 1003 is broken during puncture, there is a problem that a desired amount of the target substance cannot be administered.
  • the transdermal administration preparation is formed using a female mold, but when the completed transdermal administration preparation is released from the female mold, the fine needle 1007 is bent from the base or damaged.
  • the first portion 1009 containing a target substance such as a local anesthetic
  • the fine needle 1007 has a conical shape, and the cross-sectional area gradually increases from the distal end side toward the base side. When the depth exceeds a certain depth, there is a problem that it is difficult to puncture and it is easy to come out.
  • An object of the present invention is to provide a microneedle array that can be produced and a method for producing a microneedle array for producing such a microneedle array.
  • the microneedle array according to the aspect (1) of the present invention includes a substrate, a plurality of microneedle bases that are integrally projected and formed on the substrate, and a tip of the plurality of microneedle bases. And a microneedle tip portion having a microneedle that is soluble or biodegradable in vivo and that holds a target substance, and the microneedle base portion has a recess for entering the microneedle tip portion. A part of the microneedle tip is formed in the recess for entering the microneedle tip.
  • the microneedle array according to aspect (2) is characterized in that in the microneedle array according to aspect (1), the concave portion for entering the microneedle tip is a through hole or a groove.
  • the microneedle array according to aspect (3) is the microneedle array according to aspect (1) or aspect (2), wherein the microneedle tip is subcutaneously punctured and pulled out. It is characterized by being made to remain.
  • the microneedle array according to aspect (4) is the microneedle array according to any one of aspects (1) to (3), wherein the microneedle tip has a vertical portion. It is.
  • the microneedle array according to aspect (5) is characterized in that, in the microneedle array according to aspect (4), an uneven part is formed in a vertical part of the microneedle tip.
  • the microneedle array according to aspect (6) is the microneedle array according to any one of aspects (1) to (5), wherein the microneedle base and the microphone needle tip have a rectangular cross-sectional shape. It is characterized by that.
  • the microneedle array according to aspect (7) is the microneedle array according to any one of aspects (1) to (6), wherein a protrusion is formed on the microneedle tip side of the microneedle base. The microneedle tip is installed on the microneedle base so as to cover the protrusion.
  • the microneedle array according to aspect (8) is the microneedle array according to any one of aspects (1) to (7), wherein the substrate and the microneedle base are made of resin. It is.
  • a microneedle array according to aspect (9) is the microneedle array according to aspect (8), wherein the resin is a biocompatible resin.
  • the microneedle array according to aspect (10) is the microneedle array according to aspect (8), wherein the resin is a biodegradable resin.
  • a microneedle array according to aspect (11) is the microneedle array according to aspect (8), characterized in that the resin is an insoluble resin in vivo.
  • the microneedle array according to aspect (12) is characterized in that in the microneedle array according to any one of aspects (1) to (11), a return portion is formed at the microneedle tip. To do. Further, in the microneedle array manufacturing method according to the aspect (13), a female mold having a microneedle molding recess is prepared, and a plurality of microneedle bases each having a microneedle tip insertion recess are integrally formed on the substrate. The substrate is placed in the female mold so that the plurality of microneedle bases are fitted in the microneedle molding recesses, and the microneedle tip is configured in the microneedle molding recesses.
  • a molten or molten material containing the target substance is filled and a part of the filled material enters the recess for entering the microneedle tip, and after predetermined curing, the substrate is removed from the female mold.
  • a microneedle tip is installed at the tip of the plurality of microneedle bases of the substrate. It is characterized in that the microneedle arrays of the configuration is to be obtained.
  • a female mold having a microneedle molding recess is prepared, and a plurality of microneedle bases each having a microneedle tip recess are formed integrally on a substrate.
  • microneedle forming recess of the female mold filling the melted or melted material containing the target substance with the microneedle tip, and the plurality of microneedle bases to the microneedles.
  • the substrate is placed in the female mold so as to be fitted in the molding recess, so that a part of the filled material enters the recess for entering the microneedle tip, and after predetermined curing, the substrate is By separating from the female mold, a microneedle tip is installed at the tip of the plurality of microneedle bases of the substrate. It is characterized in that the microneedle arrays of the configuration is to be obtained.
  • a microneedle array manufacturing method is the microneedle array manufacturing method according to aspect (13) or aspect (14), wherein the microneedle base is placed in the microneedle molding recess under laminar flow. It is characterized by being fitted vertically.
  • the microneedle array manufacturing method according to aspect (16) is the microneedle array manufacturing method according to any of aspects (13) to (15), wherein the microneedle base portion is inserted into the microneedle molding recess. The size of the microneedle tip is controlled by adjusting the fitting amount.
  • the microneedle array manufacturing method according to the aspect (17) is the microneedle array manufacturing method according to any one of the aspects (13) to (16), wherein the microneedle tip portion is formed on the microneedle base.
  • the concave portion for use is a through hole or a groove.
  • the microneedle array manufacturing method according to the aspect (18) is the microneedle array manufacturing method according to any of the aspects (13) to (17), wherein the female mold is made of an elastomeric material. It is a feature.
  • the microneedle array manufacturing method according to the aspect (19) is the microneedle array manufacturing method according to any one of the aspects (13) to (18), in which the edge of the female mold for forming the microneedle is formed.
  • the microneedle array manufacturing method according to the aspect (20) is the microneedle array manufacturing method according to any one of the aspects (13) to (19), wherein the female mold and / or the substrate is used for forming the microneedle array. A passage that connects the recess and the outside is formed.
  • the substrate, the plurality of microneedle base portions integrally formed and projected on the substrate, and the tips of the plurality of microneedle base portions are respectively installed.
  • a microneedle tip portion having a microneedle that is soluble or biodegradable in vivo and that holds a target substance, and the microneedle base portion has a recess for entering the microneedle tip portion.
  • the microneedle tip part is formed so that a part of the microneedle tip part enters the concave part for entering the microneedle tip part.
  • the microneedle array according to aspect (2) in the microneedle array according to aspect (1), the recess for entering the microneedle tip is a through-hole or a groove, so that the above effect is ensured. Can do.
  • the microneedle array according to the aspect (3) in the microneedle array according to the aspect (1) or the aspect (2), the microneedle tip is subcutaneously inserted by puncturing and pulling out the plurality of microneedles.
  • the substrate can be removed immediately after puncturing, and it is not necessary to keep the substrate on the skin surface for a long time, thereby reducing the burden on the patient. it can.
  • the microneedle tip has a vertical part. A frictional force is generated between the tip of the microneedle and the skin via the skin, whereby the microneedle tip is more reliably left in the skin.
  • the microneedle array according to the aspect (5) in the microneedle array according to the aspect (4), since the concavo-convex part is formed in the vertical part of the microneedle tip part, the subcutaneous part of the microneedle tip part is formed. Residue inside is further ensured.
  • the microneedle array according to the aspect (6) in the microneedle array according to any one of the aspects (1) to (5), the microneedle base and the microphone needle tip are rectangular in cross-sectional shape. Therefore, when the microneedle is punctured into the skin, a frictional force is generated between the microneedle and the skin of the microneedle tip portion remaining in the skin.
  • a protrusion is formed on the microneedle tip side of the microneedle base.
  • the strength of the microneedle is increased compared to the case where the microneedle tip of the microneedle base is flat. Can do.
  • the substrate and the microneedle base are made of resin. Further, since it is a resin, it can be manufactured by various molding methods such as injection molding and hot emboss molding, and cost reduction and mass production are also possible. Further, according to the microneedle array according to the aspect (9), in the microneedle array according to the aspect (8), since the resin is a biocompatible resin, the danger to the human body can be extremely small.
  • the microneedle array according to the aspect (10) in the microneedle array according to the aspect (8), since the resin is a biodegradable resin, the danger to the human body can be extremely small. Further, according to the microneedle array according to aspect (11), in the microneedle array according to aspect (8), since the resin is an insoluble resin in the living body, the danger to the human body can be extremely small. Moreover, the strength of the microneedle can be increased. Further, according to the microneedle array according to the aspect (12), in the microneedle array according to any one of the aspects (1) to (11), the microneedle tip has a return portion, Residue of the tip of the microneedle in the skin is further ensured.
  • a female mold having a microneedle molding recess is prepared, and a plurality of microneedle bases each having a microneedle tip insertion recess are integrally formed on the substrate.
  • the substrate is placed in the female mold so that the plurality of microneedle bases are fitted in the microneedle molding recesses, and the microneedle tip is placed in the microneedle molding recesses.
  • the molten and melted material containing the target substance is filled and a part of the filled material enters the recess for entering the microneedle tip, and after predetermined curing, the substrate is the female mold.
  • microneedle array manufacturing method a female mold having a microneedle molding recess is prepared, and a plurality of microneedle bases each having a microneedle tip insertion recess are integrally formed on the substrate.
  • the microneedle molding recess of the female mold is prepared, and the microneedle tip is configured and filled with a dissolved or molten material containing the target substance, and the plurality of microneedle bases are connected to the microneedle.
  • the substrate is placed in the female mold so as to be fitted into the needle molding recess, and a part of the filled material enters the recess for entering the microneedle tip, and after predetermined curing, the substrate is By separating from the female mold, a microneedle tip is provided at the tip of the plurality of microneedle bases of the substrate.
  • microneedle array structure that location is obtained this case can also be part of the material is easily manufactured microneedle array in the state that has entered into the recess for enters microneedle tip portion.
  • the target substance in the dissolved or molten state has a high viscosity, it can be easily filled into the concave portion for forming the microneedle, and the amount of the material can be easily adjusted. is there.
  • the microneedle array manufacturing method according to the aspect (15) in the microneedle array manufacturing method according to the aspect (13) or the aspect (14), the microneedle base is placed in the recess for forming the microneedle under a laminar flow.
  • the microneedles can be manufactured in an aseptic state by preventing the entry of impurities and the like from the outside by fitting vertically with the flow. Further, according to the microneedle array manufacturing method according to the aspect (16), in the microneedle array manufacturing method according to any of the aspects (13) to (15), the microneedle base has the microneedle molding recess. By adjusting the amount of fitting, the size of the microneedle tip can be controlled, and the size of the microneedle tip, that is, the amount of the material and the target substance can be easily adjusted easily. it can.
  • tip part can also be escaped in the said through-hole or groove
  • the melted or molten material constituting the microneedle tip can be injected into the female mold using the through hole.
  • the female mold is made of an elastomeric material.
  • the gap between the microneedle molding recess and the microneedle base can be sealed, and leakage of the solution constituting the microneedle tip can be prevented.
  • the completed microneedle array can be easily released by the elastic force of the female mold.
  • the female mold made of an elastomeric material can be reduced in cost and mass-produced by casting, injection molding, or the like.
  • the edge of the concave portion for forming the microneedle of the female mold Since there is a convex portion, when the substrate and the female mold are fitted, there is a positional shift between the microneedle base of the substrate and the female microneedle molding concave portion.
  • the microneedle array manufacturing method according to the aspect (20) in the microneedle array manufacturing method according to any of the aspects (13) to (19), the microneedle molding is performed on the female mold and / or the substrate.
  • drying (curing) time can be shortened.
  • drying (curing) can be promoted by sending dry air into the microneedle molding recess through the groove.
  • FIG. 2 is a view showing a first embodiment of the present invention and a cross-sectional view taken along the line II-II in FIG.
  • FIG. 4 is a diagram showing a first embodiment of the present invention and is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5, showing the first embodiment of the present invention.
  • FIG. 7A is a diagram showing the first embodiment of the present invention, and FIG. 7A shows a state immediately before the microneedle array substrate is fitted to the female mold used for manufacturing the microneedle array according to the first embodiment.
  • FIG. 7B is a sectional view showing a state in which the substrate is fitted to the female mold, and FIG. 7C is a microneedle in the concave portion of the female mold through the through hole of the substrate.
  • FIG. 7D is a cross-sectional view showing a state in which the microneedle array completed after the lapse of a predetermined curing period is released from the female mold.
  • FIG. 8A is a diagram showing a first embodiment of the present invention, and FIG. 8A shows a state in which a material used for manufacturing a microneedle array according to the first embodiment is filled with a material for a microneedle tip.
  • FIG. 8B is a cross-sectional view showing a state immediately before fitting the substrate of the microneedle array to the female mold, and FIG. 8C shows a state of fitting the substrate to the female mold.
  • FIGS. 9A and 9B show a first embodiment of the present invention
  • FIG. 9A shows a state in which the microneedle array according to the first embodiment is punctured into the skin
  • FIG. 9B shows a puncture into the skin
  • FIG. 9C is a view showing a state in which an extrusion jig is inserted into the through-holes of the microneedle array
  • FIG. 9C shows the microneedle where the microneedle tip of the microneedle array is left subcutaneously by the extrusion jig.
  • FIG. 26 (a) is a diagram showing Example 1 of the present invention
  • FIG. 26 (a) shows a part of the substrate and describes the dimensions of each part
  • FIG. 26 (b) shows a part of the female mold and the dimensions of each part
  • FIG. 26 (c) is a diagram showing a part of a state in which the substrate is set on the female mold
  • FIG. 26 (d) is a diagram showing a part of the microneedle array and describing the dimensions of each part.
  • FIGS. 28A and 28B show a second embodiment of the present invention, in which FIG. 28A shows a part of a substrate and shows dimensions of each part, and FIG. 28B shows a part of a female mold and shows dimensions of each part.
  • FIG. 28 (c) is a view showing a part of the state where the substrate is set on the female mold
  • FIG. 28 (d) is a view showing a part of the microneedle array and describing dimensions of each part.
  • Example 3 of this invention and is an enlarged photograph which shows a part of microneedle array.
  • FIGS. 31A and 31B are diagrams showing Example 3 of the present invention, in which FIG. 31A is an enlarged photograph showing a state before the microneedle array is punctured into the silicone rubber sheet, and FIG. An enlarged photograph shown in FIG. 31C is an enlarged photograph showing a state in which the microneedle array is peeled from the silicone rubber and only the tip portion remains in the silicone rubber.
  • FIG. 32A is a diagram showing Example 3 of the present invention, FIG.
  • FIG. 32A is a diagram showing a part of a substrate and showing dimensions of each part
  • FIG. 32B is a diagram showing a part of a female mold and the dimensions of each part
  • FIG. 32 (c) is a view showing a state where a substrate is set on a female mold
  • FIG. 32 (d) is a view showing a part of a microneedle array and describing dimensions of each part. It is a figure which shows a prior art example, and is a perspective view which shows the conventional microneedle array. It is a figure which shows a prior art example, and is sectional drawing which expands and shows a part which shows a part of conventional microneedle array.
  • the microneedle array 1 includes a substrate 3 and a plurality of (9 in the case of the present embodiment) microneedles 5.
  • the “microneedle array” in the present invention includes the above-mentioned “microneedle array 1”, and will be described in this specification other than the shape of the “microneedle array 1” shown in FIG.
  • the microneedle array according to the second to ninth embodiments having various shapes and compositions is also included.
  • the substrate 3 has a configuration in which a plurality of (9 in the case of the present embodiment) microneedle bases 7 are projected and formed on the upper side in FIG. It is made. Further, as shown in FIG. 4, the substrate 3 is formed with through holes 9 as recesses for entering the microneedle tip portion for each microneedle base portion 7.
  • the through-hole 9 has a small-diameter portion 9a on the microneedle base 7 side (upper side in FIG. 4) and a large-diameter portion 9b on the anti-microneedle base 7 side (lower side in FIG. 4). .
  • the microneedle 5 includes the microneedle base 7 already described and a microneedle tip portion installed on the upper end surface (upper end surface in FIG. 2) of the microneedle base 7. 11.
  • the tip end side (upper side in FIG. 2) has a substantially conical shape, and the microneedle tip 11 has a small diameter from the bottom surface of the substantially conical portion toward the substrate 3 side.
  • the projecting portion 13 is projected and formed.
  • the microneedle tip 11 is formed on the upper end surface (upper surface in FIG. 2) of the microneedle base 7 in a state where the convex portion 13 enters the small diameter portion 9a of the through hole 9 of the microneedle base 7. is set up.
  • the state in which the convex portion 13 enters the small diameter portion 9a of the through hole 9 of the microneedle base portion 7 constitutes the microneedle tip portion 11 in the manufacturing process of the microneedle array 1 as will be described later.
  • the material 19 in the molten or molten state containing the target substance enters the through hole 9 and is realized.
  • the target substance means a drug or the like as described at the beginning. Dissolution means that the material containing the target substance is dissolved in another solvent, etc., and melting means that the material containing the target substance itself is dissolved without requiring a separate solvent. .
  • the microneedle base 7 of the microneedle 5 is projected and formed on the substrate 3 as described above, and is provided integrally with the substrate 3.
  • the microneedle tip 11 is obtained by solidifying a dissolved or molten material obtained by mixing a target substance to be administered by the microneedle array 1 with a biosoluble material or biodegradable material as a base. is there.
  • the substrate 3 and the microneedle base 7 are made of resin.
  • the substrate 3 and the microneedle base 7 are selected from a biodegradable resin, a biocompatible resin, and a bioinsoluble resin. Resins or mixtures thereof are used.
  • the substrate 3 and the microneedle base 7 are biodegradable resins such as polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, polydioxanone, or the like in consideration of safety to the human body.
  • it can be comprised from the polyglycolic acid which is excellent in intensity
  • the substrate 3 and the microneedle base 7 may be composed of in-vivo insoluble general-purpose resins such as polycarbonate, polyethylene terephthalate, and polystyrene from the viewpoint of strength and resistance to breakage.
  • the biocompatible resin include polypropylene, Teflon (registered trademark), and polyurethane, and examples thereof include single or a mixture thereof.
  • the size of the microneedle base 7 is about 50 to 800 ⁇ m, preferably about 100 to 500 ⁇ m, and more preferably about 100 to 500 ⁇ m in consideration of the ease of sticking and strength of the microneedle, ease of manufacture, and the like. 300 ⁇ m.
  • the height of the base portion 7 is preferably set so that the aspect ratio (height / diameter) is 5 or less, preferably 3 or less, more preferably 2 or less from the viewpoint of strength and manufacturing.
  • the number of the base portions 7 is appropriately set according to the required amount of drug of the microneedle array 1 to be finally formed, but is about 5 to 1000, preferably 10 to 800, per 1 cm 2. The number is preferably 100 to 500.
  • the size of the substrate 3 is 1 to 50 mm on a side in the case of a square, preferably about 5 to 30 mm on a side, more preferably about 10 to 20 mm. In the case of a circle, the diameter is preferably 1 to 50 mm. Handling is advantageous when it is preferably 5-30 mm, more preferably about 10-20 mm.
  • the through hole 9 may be drilled by laser processing or the like after the formation of the substrate 3 and the microneedle base 7, but is preferably formed simultaneously with the formation of the substrate 3 and the microneedle base 7. .
  • a mold (not shown) used for forming the substrate 3 and the microneedle base 7 corresponds to the through hole 9 in advance. A convex part etc. will be provided in a site
  • the base of the material of the microneedle tip 11 may be a water-soluble ultraviolet curable resin, a substance that is soluble in the living body, a substance that is not soluble in the living body, or these It may be a mixture.
  • other additives can be added.
  • in vivo soluble substances include saccharides such as chondroitin sulfate, hyaluronic acid, heparin, amylose, amylopectin, glycogen, cellulose, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate, dextrin, cyclodextrin, dextran, Dextran sulfate, alginic acid, agarose, chitosan, pectin, glucomannan, pullulan, sucrose, lactose, trehalose, maltose, etc.
  • saccharides such as chondroitin sulfate, hyaluronic acid, heparin, amylose, amylopectin, glycogen, cellulose, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate, dextrin, cyclodextrin, dextran, Dextran sulfate, alginic acid
  • polymers include polyvinylpyrrolidone, polyvinyl alcohol, carboxyvinyl polymer, poly Acrylic polymer, polyethylene oxide, etc. and their salts, or a mixture of two or more of these are applicable A.
  • chondroitin sulfate, hyaluronic acid, polyvinyl pyrrolidone and salts thereof, or a mixture of two or more thereof are applied.
  • substances that are not soluble in the living body include ethyl cellulose, methyl methacrylate / methacrylic acid copolymer, methyl acrylate / methacrylic acid copolymer, cellulose acetate phthalate, polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer and the like. These salts or a mixture of two or more of these are applicable.
  • polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer and the like and salts thereof, or a mixture of two or more thereof are applied.
  • vinyl pyrrolidone, styrene, styrene sulfonic acid, acrylic acid, methacrylic acid are used to excite polymerization by UV irradiation after filling with molecules having polymerization sites such as vinyl groups.
  • Acid, acrylamide, isopropylacrylamide, ethyleneimine, allylamine and the like and salts thereof, or a mixture of two or more thereof are used.
  • vinyl pyrrolidone, acrylic acid, methacrylic acid and the like and salts thereof, or a mixture of two or more thereof are used.
  • the diameter of the microneedle 5 is 50 to 800 ⁇ m, preferably about 100 to 500 ⁇ m, more preferably 100 to 300 ⁇ m.
  • the length of the microneedles 5 (vertical length in FIG. 2) is preferably about 200 to 1000 ⁇ m, more preferably 300 to 800 ⁇ m.
  • the length of the microneedle tip 11 is preferably half or less of the entire length.
  • the number of microneedles 5 is schematically shown and described as nine.
  • the number of the bases 7 has already been described.
  • the number is 5 to 1000, preferably about 10 to 800, and more preferably 100 to 500 per 1 cm 2 .
  • the scope of the present invention includes the case where the number of the microneedles 5 is one.
  • a quadrangle or a circle is suitable, but other shapes may be used as long as the object of the present invention can be achieved.
  • the size of the microneedle array 1 according to the first embodiment has already been described as the size of the substrate 3.
  • one side is about 1 to 50 mm, preferably about 5 to 30 mm, more preferably In the case of a circle, the diameter is about 1 to 50 mm, preferably about 5 to 30 mm, more preferably about 10 to 20 mm.
  • an adhesive layer for attaching to the skin on the surface of the substrate 3 of the microneedle array 1.
  • the pressure-sensitive adhesive acrylic pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, silicon-based pressure-sensitive adhesives, and the like can be considered, but among them, pressure-sensitive adhesives used in medical tapes such as acrylic-based pressure-sensitive adhesives or silicon-based pressure-sensitive adhesives are more preferable. It is a substance.
  • the thickness of the adhesive layer is, for example, 1 to 200 ⁇ m, preferably about 5 to 150 ⁇ m, and more preferably 10 to 100 ⁇ m.
  • the target substance in the first embodiment is repeated, a drug or the like is included.
  • the microneedle array 1 in the first embodiment can be sucked. It is applied for the purpose of treating and preventing animals (for example, humans, monkeys, sheep, horses, dogs, cats, rabbits, rats, mice, etc.) with drugs.
  • the method of using the microneedle array 1 can be applied to any place on the skin of the mammal, and is also used for sites having irregularities.
  • the dosage of the target substance by the microneedle array 1 varies depending on the degree of symptoms, age, sex, body weight, timing of administration, interval, type of active ingredient, etc., but the dosage as a pharmaceutically active ingredient is effective. What is necessary is just to select from the range used as quantity.
  • administration of the target substance by the microneedle array 1 may be performed once a day or divided into 2 to 3 times a day.
  • Applicable drugs include luteinizing hormone-releasing hormone analog, insulin, super fast acting insulin analog, long acting insulin analog, super long acting insulin analog, growth hormone, PEGylated human growth hormone analog, somatomedin C, natriuretic Hormones such as peptides, glucagon, follicle stimulating hormone, GLP-1 analog, parathyroid hormone analog, t-PA, glucocerebrosidase, ⁇ -galactosidase A, ⁇ -L-iduronidase, acid ⁇ -glucosidase, iduronic acid 2 sulfatase, Blood coagulation fibrinolysis such as human N-acetylgalactosamine-4-sulfatase, urate oxidase, DNA degrading enzyme, blood coagulation factor VIII, blood coagulation factor VII, blood coagulation factor IX, thrombomodulin Factors, serum proteins such as albumin, interferon ⁇ , interferon ⁇ ,
  • adjuvants generally used in the production of vaccine preparations are considered.
  • Adjuvants can include poorly water-soluble adjuvants, hydrophilic gel adjuvants or water-soluble adjuvants, and examples of poorly water-soluble adjuvants include retinimides such as retinoic acid, imiquimide, and Resquimod (R-848), 4-amino. - ⁇ , ⁇ , 2-dimethyl-1H-imidazo [4,5-c] quinolin-1-ethanol (R-842 (manufactured by 3M Pharmaceuticals, etc.); Journal of Leukocyte Biology (1995) 58: 365-37).
  • hydrophilic gel adjuvant examples include aluminum hydroxide and aluminum phosphate.
  • water-soluble adjuvant examples include ⁇ -defensin, ⁇ -defensin, cathelicidin, sodium alginate, poly [di (carbylatophenoxy) phosphazene], Quil A, polyethyleneimine and the like.
  • Preferred adjuvants are hydrophilic gel adjuvants and water-soluble adjuvants.
  • the hydrophilic gel adjuvant preferably, aluminum hydroxide and aluminum phosphate are used.
  • the microneedle array 1 is particularly useful when the target substance is a vaccine, and an amount of vaccine antigen necessary for treatment and prevention in that case is contained in the microneedle tip 11 of the microneedle array 1. be able to.
  • the target substance is a vaccine
  • the target disease and the amount required in that case are described in the biopharmaceutical standards published by the Ministry of Health, Labor and Welfare in Japan. It is described in the book.
  • the amount of drug to be administered is generally used because it cannot be uniformly defined by the purpose of vaccination (initial, booster vaccination, etc.), whether it is a mixed vaccine, age of the inoculated patient, manufacturer, virus strain, type, etc.
  • the amount of the drug that is used is described as an example, but application to the present invention is not limited to this described amount.
  • the amount of the drug includes (1) tetanus; 2.5 to 5 Lf, (2) diphtheria; 15 to 25 Lf, (3) hundred days cough; 4 units or more, (4) polio; type I 1.5 DU, Type II 50DU, Type III 50DU, (5) Haemophilus influenzae type b (Hib); 10 micrograms as polysaccharide, (6) Hepatitis B; 5-10 micrograms, (7) Hepatitis A; 0.5 micrograms , (8) Influenza HA; 30 micrograms or more of each strain, (9) Rabies; 107LD50 or more, (10) Japanese encephalitis; equivalent to or more than the reference product, (11) Weil's disease autumn darkness; 3 units or more, (12) Streptococcus pneumoniae Each type as a polysaccharide 1-25 micrograms, (13) human papillomavirus; each type 20-40 micrograms, (14) mumps; 5000 CCID 50 or more, (15) water 1000 PFU or more; (16)
  • microneedle array 1 may be used in combination with other preparations such as oral preparations and injections.
  • the microneedle array 1 according to the first embodiment is manufactured as follows.
  • a female die 15 as shown in FIGS. 5 and 6 is used.
  • a plurality of microneedle molding recesses 17 are formed in the female die 15.
  • the microneedle molding recess 17 has a shape corresponding to the shape of the microneedle 5 described above, and is composed of a cylindrical recess 17a and an inverted conical recess 17b.
  • the material of the female mold 15 is preferably an elastomer in terms of elasticity, and more preferably a thermoplastic elastomer, silicone rubber, or polyurethane rubber in terms of moldability.
  • the Shore hardness of the female mold 15 is preferably about A5 to A70, but more preferably A20 to A50.
  • the diameter of the concave portion 17 for forming the microneedle of the female die 15 is 50 to 800 ⁇ m, preferably about 100 to 500 ⁇ m, more preferably 100 to 300 ⁇ m.
  • the depth of the longest portion of the microneedle molding recess 17 is 300 to 1200 ⁇ m, preferably about 500 to 1000 ⁇ m, more preferably 400 to 800 ⁇ m.
  • the number of the microneedle molding recesses 17 is 5 to 1000 per 1 cm 2 , preferably about 10 to 800, and more preferably 100 to 500.
  • the thickness of the female die 15 is 0.3 to 10 mm, preferably about 0.5 to 5 mm, more preferably 0.5 to 2 mm.
  • the size of the female mold 15 is 5 to 50 mm square or diameter, preferably 5 to 30 mm square or diameter, more preferably 10 to 20 mm square or diameter.
  • the female mold 15 is preferably manufactured by injection molding or casting from the viewpoint of cost and mass productivity. Further, from the viewpoint of workability when the substrate 3 is fitted to the female mold 15, it is conceivable that the female mold 15 is made of a transparent material.
  • the dimension of the microneedle molding recess 17 (diameter of the cylindrical recess 17a) is set slightly smaller than the dimension (diameter) of the microneedle base 7. More specifically, the diameter of the cylindrical recess 17a of the microneedle molding recess 17 is about 1 to 100 ⁇ m, preferably about 5 to 80 ⁇ m, more preferably about 10 to 50 ⁇ m, than the diameter of the microneedle base 7. Make it smaller.
  • the present invention includes cases where the dimensions are the same.
  • the microneedle array 1 according to the first embodiment is manufactured in the following procedure. First, as shown in FIG. 7A, the female die 15 and the substrate 3 already described are prepared. Next, as shown in FIG. 7B, for example, by inserting the microneedle base 7 of the substrate 3 into the microneedle molding recess 17 of the female die 15 under a laminar flow, The female mold 15 is fitted perpendicularly to the laminar flow.
  • the material 19 constituting the microneedle tip 11 is injected into the microneedle molding recess 17 of the female die 15 through the through hole 9 of the substrate 3.
  • This material 19 is a biodegradable resin, a biocompatible resin, a bioinsoluble resin, a UV curable resin, and a biosoluble resin as a base as described above, or a mixture thereof.
  • the target substance is mixed into a dissolved or molten state.
  • a part of the injected material 19 remains in the through hole 9 of the substrate 3.
  • the material 19 is injected into the microneedle molding recess 17 by, for example, a dispenser, inkjet, potting, dispensing, syringe, or the like.
  • the microneedle base 7 or the female die 15 is provided with a small groove for injecting air or releasing air. It is conceivable to provide a part.
  • the material 19 is solidified to become the microneedle tip 11, and the microneedle array 1 having a plurality of microneedles 5 is configured. Thereafter, as shown in FIG. 7D, the completed microneedle array 1 is released from the female mold 15.
  • the release of the microneedle array 1 from the female die 15 is performed immediately after completion of the microneedle array 1 or immediately before using the microneedle array 1.
  • the female mold 15 after releasing the microneedle array 1 can be reused, but is preferably disposable from the viewpoint of safety in terms of hygiene. In particular, when the microneedle array 1 is released from the female mold 15 immediately before use, the female mold 15 is inevitably disposable.
  • the material 19 is injected in advance into the microneedle molding recess 17 of the female die 15.
  • the material 19 is injected into the microneedle molding recess 17 by, for example, a dispenser, ink jet, spray, potting, dispensing, syringe, printing, squeegee or the like.
  • the microneedle base portion 7 of the substrate 3 and the concave portion 17 for forming the microneedle of the female die 15 are perpendicular to the laminar flow.
  • the board 3 is fitted into the female mold 15 by being inserted into the female mold 15. At this time, a part of the material 19 enters the through hole 9 of the substrate 3.
  • the material 19 is solidified to become the microneedle tip 11, and the microneedle array 1 having a plurality of microneedles 5 is configured. Thereafter, the completed microneedle array 1 is released from the female die 15 as shown in FIG.
  • the individual microneedles 5 are punctured into the skin 21 to be punctured, as shown in FIG.
  • the microneedle tip 11 gradually melts and diffuses into the skin 21 due to moisture, heat, etc. in the skin 21.
  • the microneedle array 1 is left as it is until the microneedle tip 11 is completely melted and diffused in the skin 21 after puncturing. 3 may be separated from the skin 21 so that only the microneedle tip 11 remains in the skin 21. In this case, there is an advantage that the substrate 3 does not have to be attached to the surface of the skin 21 while the microneedle tip 11 melts and diffuses in the skin 21.
  • an extrusion jig 23 as shown in FIG. 9B is used. That is, as shown in FIG. 9B, when the extrusion jig 23 is inserted into the through hole 9 of the substrate 3 and the substrate 3 is separated from the skin 21, the microneedle tip 11 is moved. Try to extrude. As a result, the microneedle tip 11 remains in the skin 21.
  • the material of the extrusion jig 23 may be general-purpose plastic or metal. However, when disposable, it is preferable to use plastic that can be molded from the viewpoint of cost, and it is manufactured by injection molding with excellent mass productivity. Is more preferable.
  • a plurality of convex portions 25 corresponding to the through holes 9 of the substrate 3 are formed in the extrusion jig 23 as shown in FIGS. 9B and 9C.
  • the convex portion 25 urges the convex portion 13 of the microneedle tip portion 11 to push out the microneedle tip portion 11 from the inside of the through hole 9.
  • an extrusion jig such as the extrusion jig 23 is not used.
  • the operation of the microneedle array 1 according to the first embodiment that is, the puncture by the microneedle array 1 and the dissolution and diffusion of the target substance in the skin will be described.
  • the microneedle array 1 is punctured into the skin 21 as shown in FIG.
  • the microneedle tip 11 is gradually dissolved by moisture or heat in the skin 21 with the passage of time and diffused into the skin 21. In this way, the target substance contained in the microneedle tip 11 is administered into the skin 21.
  • the microneedle array 1 is left as it is after puncturing, and cases where the substrate 3 is separated from the skin 21 immediately after puncturing.
  • the microneedle array 1 is left as it is, a portion in the through-hole 9 in the microneedle tip 11 is surrounded by the microneedle base 7, so that the skin 21 side of the microneedle tip 11 is The target substance dissolves and diffuses more slowly than the above part.
  • the substrate 3 is separated from the skin 21, the microneedle tip 11 and the portion 13 that has entered the through hole 9 are also directly covered by the skin 21, so that the target substance can be obtained from both.
  • the target substance is dissolved and diffused faster than when the microneedle array 1 is left as it is.
  • the microneedle tip 11 is also detached from the skin 21 simply by separating the substrate 3 from the skin 21. In such a case, as shown in FIGS. 9B and 9C, the microneedle tip 11 is pushed out from the through-hole 9 of the substrate 3 using an extrusion jig 23, and the micro Only the needle tip 11 remains in the skin 21.
  • the microneedle 5 of the microneedle array 1 includes a microneedle base portion 7 formed integrally with the substrate 3 and a microneedle tip portion 11 installed on the microneedle base portion 7 and containing a target substance. Therefore, the strength of the microneedle 5 is ensured by the microneedle base 7 and reliable puncture and administration of the target substance can be performed. Further, since the diameter of the microneedle base 7 is the same in the length direction (vertical direction in FIG. 2), even when the skin 21 is deeply pierced, the puncture resistance does not increase and puncture can be performed easily.
  • the substrate 3 and the microneedle base 7 are made of a biodegradable or biocompatible material, even if the microneedle base 7 is damaged in the skin 21, there is a danger to the human body. The nature is extremely small. Moreover, even elderly people and children can be easily handled. Further, when the substrate 3 and the microneedle base 7 are made of insoluble resin in the living body, the microneedle base 7 does not melt in the body, and the danger to the human body is extremely small.
  • the substrate 3 is formed with a through hole 9 as a recess for entering the microneedle tip, and in the manufacturing process of the microneedle array 1, a dissolved or molten material constituting the microneedle tip 11.
  • the protrusion 13 of the microneedle tip 11 enters the through-hole 9 by 19 entering / remaining in the through-hole 9. For this reason, the microneedle tip 11 is securely installed on the microneedle base 7, and the microneedle tip 11 is reliably prevented from being accidentally detached from the microneedle base 7.
  • the target substance can be administered.
  • the microneedle array 1 may be left as it is, or the substrate 3 may be separated from the skin 21 immediately after puncturing.
  • the microneedle array 1 Since the part in the through-hole 9 in the tip part 11 is surrounded by the microneedle base part 7, it is dissolved and diffused more slowly than the part on the skin 21 side of the microneedle tip part 11, and the target substance is gradually added. Can be released.
  • the substrate 3 is separated from the skin 21, the microneedle tip 11 and the portion 13 that has entered the through hole 9 are also directly covered by the skin 21, so that the target substance can be obtained from both.
  • the target substance can be dissolved and diffused faster than when the microneedle array 1 is left as it is.
  • the convex portion 25 of the extrusion jig 23 is inserted into the through-hole 9, and the micro By extruding the needle tip 11, only the microneedle tip 11 can be reliably left in the skin 21.
  • the microneedle array 1 is manufactured using the female die 15 in which the microneedle molding recess 17 corresponding to the shape of the microneedle 5 is formed, the microneedle array having the microneedle 5 is used. 1 can be easily manufactured. Further, the fitting of the substrate 3 to the female die 15 can be performed under a laminar flow, and at that time, by supplying air from the direction orthogonal to the fitting direction of the substrate 3 to the female die 15, It is possible to prevent bacteria from entering the recess 17 for forming the microneedle, and as a result, the microneedle array 1 can be manufactured in a sterile state.
  • the microneedle array 1 is manufactured by first fitting the material 19 into the microneedle molding recess 17 and then fitting the substrate 3 into the female die 15, Since the material 19 is injected in the state where the substrate 3 is not fitted, the material 19 can be easily injected into the microneedle molding recess 17. In addition, it is easy to adjust the injection amount of the material 19.
  • the through hole 9 acts as an air vent, and the substrate 3 with respect to the female die 15.
  • the fitting can be easily performed.
  • the surplus material 19 can be released into the through hole 9.
  • the microneedle tip 11 since a part of the microneedle tip 11 enters the through hole 9, the microneedle tip 11 is engaged with the microneedle base 7, and the microneedle tip 11 is moved from the microneedle base 7. Problems such as inadvertent withdrawal can be prevented.
  • the material 19 is solidified, the water and solvent in the material 19 are efficiently evaporated and vaporized by the through holes 9 of the substrate 3. be able to.
  • the female mold 15 is made of an elastomer and the diameter of the concave portion 17 for forming the microneedle is set slightly smaller (about 10 to 50 ⁇ m) than the diameter of the microneedle base 7, the microneedle array The leakage of the material 19 can be prevented in the manufacture of 1.
  • the present invention includes cases where the dimensions are the same.
  • the completed microneedle array 1 can be easily released by the elastic force of the female die 15. Further, even if there is a slight shift in the arrangement of the microneedle base 7 of the substrate 3 and the microneedle molding recess 17 of the female die 15 due to the elastic deformation of the female die 15, the female die 15 has the substrate 3. Can be reliably fitted.
  • the microneedle array according to the second embodiment has the same configuration as the microneedle array 1 according to the first embodiment, but is manufactured using a female die 27 as shown in FIG. Is. The rest is the same as in the case of the first embodiment, and for convenience of explanation, the reference numerals of the microneedle array 1 and the like will be used as they are.
  • the female mold 27 has a microneedle molding recess 29 formed in the same manner as the female mold 15 according to the first embodiment.
  • convex portions 31 are formed at the upper edge portion in FIG. 10 of the microneedle molding concave portion 29, respectively.
  • the protrusion 31 is penetrated by the microneedle base 7 and brought into contact with the substrate 3 when the substrate 3 already described is fitted to the female die 27. Even when a displacement occurs between the microneedle base 7 of the substrate 3 and the microneedle molding recess 29 of the female die 27, the protrusion 31 is deformed to absorb the displacement, and the above The insertion of the microneedle base 7 of the substrate 3 into the microneedle forming recess 29 of the female die 27 is facilitated.
  • the convex portion 31 can be provided integrally when the female die 27 is manufactured by injection molding or the like.
  • a portion corresponding to the convex portion 31 is provided on a molding die (not shown).
  • the height of the convex portion 31 can be appropriately set according to the required length of the microneedle 5 and the amount of the target substance, but is 10 to 500 ⁇ m, preferably 30 to 300 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the outer diameter of the convex portion 31 is 200 to 1000 mm, preferably 300 to 1800 ⁇ m, more preferably 500 to 800 ⁇ m.
  • the length of the convex portion 31 in the vertical direction in FIG. 10 the length in which the microneedle base portion 7 of the substrate 3 is inserted into the microneedle molding concave portion 29 of the female die 27 is adjusted. can do. Thereby, the magnitude
  • the inner diameter of the convex portion 31 may be slightly larger than the diameter of the concave portion 29 for forming the microneedle. In this case, the upper part (upper side in FIG. 10) of the concave portion 29 for forming the microneedle becomes wider and the material 19 can be easily injected.
  • the present invention includes cases where the dimensions are the same.
  • the slit for air escape (a slit facing outward from the microneedle molding recess 29) or the like in the projection 31.
  • the curing period for drying the material 19 is further shortened. can do.
  • the slit is preferably formed integrally with a part of the surface of the convex portion 31 when the convex portion 31 is formed.
  • the slit size is preferably 0.01 to 50 ⁇ m, preferably 0.05 to 20 ⁇ m, more specifically about 0.1 to 5 ⁇ m, as long as air can escape.
  • the microneedle array 37 according to the third embodiment is composed of a substrate 39 and a plurality of microneedles 41 installed on the substrate 39.
  • the substrate 39 has substantially the same configuration as the substrate 3 of the microneedle array 1 according to the first embodiment, and a microneedle base portion 42 is integrally projected and formed.
  • the microneedle base portion 42 has substantially the same configuration as the microneedle base portion 7 in the first embodiment and has a substantially columnar shape, but a substantially conical protrusion 43 is projected and formed from the upper end surface thereof. ing.
  • the diameter of the bottom (the lower end in FIG.
  • the projection 43 is set smaller than the diameter of the substantially cylindrical portion of the microneedle base 42.
  • a microneedle tip 45 is provided on the upper end surface of the microneedle base 42 so as to cover the protrusion 43.
  • the microneedle tip 45 is formed with a recess 47 corresponding to the shape of the protrusion 43 and a protrusion 49 protruding from the center of the recess 47 and entering the through hole 9 of the microneedle base 42.
  • the length of the microneedle base 42 may be substantially the same as that of the microneedle base 7 according to the first embodiment, but the length of the protrusion 43 may be changed according to the length of the tip 45. it can. More specifically, the length of the protrusion 43 is 5 to 500 ⁇ m, preferably 10 to 300 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the same operation and effect as the microneedle array 1 according to the first embodiment can be obtained, and the projections 43 can be used to The strength can be further increased.
  • symbol was attached
  • the microneedle array 51 according to the fourth embodiment includes a substrate 53 and a plurality of microneedles 55 installed on the substrate 53.
  • the substrate 53 has substantially the same configuration as the substrate 3 of the microneedle array 1 according to the first embodiment, and a microneedle base 57 is integrally projected and formed.
  • the microneedle base 57 has a substantially cylindrical shape on the lower side in FIG. 12, but a substantially conical protrusion 58 on the upper side in FIG.
  • the diameter of the bottom (the lower end in FIG. 12) of the projection 58 is set to be equal to the diameter of the substantially cylindrical portion of the microneedle base 57.
  • the length of the cylindrical portion is about 100 to 1000 ⁇ m, preferably about 200 to 800 ⁇ m, more preferably about 300 to 500 ⁇ m.
  • a microneedle tip 59 is installed on the tip side of the microneedle base 57.
  • the tip end side (upper side in FIG. 12) of the microneedle tip portion 59 has a substantially conical shape like the microneedle tip portion 11 of the microneedle array 1 according to the first embodiment.
  • the base end side (lower side in FIG. 12) has a substantially cylindrical shape, and a vertical portion 60 is formed on the outer peripheral surface thereof.
  • the microneedle tip 59 has a recess 61 corresponding to the shape of the protrusion 58 of the microneedle base 57 and a protrusion protruding from the center of the recess 61 and entering the through hole 9 of the microneedle base 57. 63 is formed.
  • a substantially cylindrical vertical portion 60 is provided on the lower side of the microneedle tip 59 in FIG. 12, and when the microneedle 55 is punctured into the skin, the vertical portion 60 causes the microneedle to be punctured. Friction occurs between the tip 59 and the inside of the skin, and the microneedle tip 59 remains reliably in the skin. .
  • the substrate 53 is separated only after the microneedle array 51 is punctured. Only the microneedle tip portion 59 can be left. Of course, an extrusion jig 23 may be used.
  • the microneedle array 65 according to the fifth embodiment has substantially the same configuration as the microneedle array 51 according to the fourth embodiment, but is substantially cylindrical at the lower side of the microneedle tip 59 in FIG. An uneven portion 67 is formed on the outer peripheral side of the portion.
  • the same operation and effect as the microneedle array 51 according to the fourth embodiment can be achieved. Further, since the uneven portion 67 is provided in a substantially cylindrical portion on the lower side in FIG. 13 of the microneedle tip portion 59, when the microneedle 55 is punctured into the skin, the uneven portion 67 Friction between the microneedle tip portion 59 and the inside of the skin can be generated, and the microneedle tip portion 59 can be reliably left in the skin.
  • symbol is attached
  • the microneedle array 68 according to the sixth embodiment has substantially the same configuration as the microneedle array 51 according to the fourth embodiment, but the shape of the microneedle tip 59 is substantially conical.
  • the diameter of the bottom surface (the lower surface in FIG. 14) is set larger than the diameter of the microneedle base 57. Therefore, the bottom part (lower part in FIG. 14) of the microneedle tip is a return part 68a.
  • the same operation and effect as the microneedle array 51 according to the fourth embodiment can be achieved. Further, since the return portion 68a is formed in the microneedle tip portion 59, when the microneedle 55 is punctured into the skin, the return portion 68a of the microneedle tip portion 59 engages in the skin. The microneedle tip 59 remains reliably in the skin. Also in this case, as in the first embodiment, even if the microneedle tip portion 59 is not pushed out by the extrusion jig 23, the substrate 53 is separated only after the microneedle array 68 is punctured. It is possible to leave only the front part. Of course, an extrusion jig 23 may be used.
  • a problem in manufacturing the microneedle array 68 is that the shape of the microneedle tip 59 is a so-called “undercut shape”. However, for example, if a female mold made of elastomer is used, the female mold is an elastic body. Therefore, the microneedle array 68 can be easily released from the female mold, and the microneedle array 68 can be removed without any problem. Can be manufactured.
  • symbol is attached
  • the microneedle array 69 according to the seventh embodiment includes a substrate 71 and a plurality of microneedles 73 installed on the substrate 71.
  • the substrate 71 has substantially the same configuration as the substrate 3 of the microneedle array 1 according to the first embodiment, but a substantially quadrangular prism-shaped microneedle base 75 is integrally projected and formed.
  • the same operation and effect as the microneedle array 1 according to the first embodiment can be obtained. Further, since the microneedle tip 77 has a rectangular cross-sectional shape, a frictional force is generated between the microneedle 73 and the skin when the microneedle 73 is punctured into the skin, and the microneedle 73 remains reliably in the skin. .
  • the description is abbreviate
  • a substrate 79 as shown in FIG. 16 is used in the microneedle array according to the eighth embodiment.
  • the substrate 79 has a plurality of microneedle bases 81 protruding and formed.
  • On the outer peripheral side of the microneedle base 81 one or a plurality of (two in the case of the eighth embodiment) grooves 83 are formed as recesses for entering the microneedle tip.
  • a microneedle tip (not shown) is installed on the upper end side (upper side in FIG. 16) of the microneedle base 81.
  • the tip of the microneedle (not shown) has a substantially conical shape, for example, and a part thereof enters the groove 83.
  • a female die 85 shown in FIG. 17 is used.
  • the female die 85 is formed with a microneedle molding recess 87 and a groove 89 communicating with the microneedle molding recess 87.
  • the groove 89 extends to a region communicating with the outside when the substrate 79 is fitted to the female mold 85.
  • the microneedle array according to the eighth embodiment is manufactured by first injecting the material 19 into the microneedle molding recess 87 of the female mold 85 and then fitting the substrate 79 to the female mold 85. Is done. At this time, air in the microneedle molding recess 87 is released through the groove 83 of the microneedle base 81 and the groove 89 of the female die 85. In addition, a part of the material 19 enters the groove 83 of the microneedle base 81. As a result, when the completed microneedle array is viewed, a part of the microneedle tip (not shown) enters the groove 83. It will be in a state that is out.
  • the female die 91 shown in FIG. 18 is used for manufacturing the microneedle array according to the eighth embodiment.
  • the female die 91 is formed with a microneedle molding recess 93, a projection 95 formed above the microneedle molding recess 93, and an upper end surface (upper end surface in FIG. 18) of the projection 95.
  • the groove 97 communicating with the microneedle molding recess 93 is formed.
  • the convex portion 95 is the same as the convex portion 31 of the female die 27 in the second embodiment.
  • the microneedle array according to the eighth embodiment is manufactured by first injecting the material 19 into the microneedle molding recess 93 of the female die 91 and then fitting the substrate 79 to the female die 91.
  • the diameter of the grooves 83, 89, and 97 are such that air easily passes and the material 19 does not pass carelessly. good. Specifically, it is about 0.01 to 100 ⁇ m, preferably 0.05 to 50 ⁇ m, more preferably about 1 to 20 ⁇ m.
  • dry air is fed through the groove 89 or the groove 97 and the groove 83 to volatilize and remove moisture and solvent contained in the material of the microneedle tip. It is conceivable to promote drying.
  • the same operation and effect as the microneedle array 1 according to the first embodiment can be achieved.
  • the groove 83 is formed on the outer peripheral side of the microneedle base 81, when the substrate 79 is fitted to the female molds 85 and 91 when the microneedle array is manufactured, the groove 83 is vented.
  • the board 79 can be easily fitted to the female dies 85 and 91.
  • moisture, solvent, and the like contained in the material 19 of the microneedle tip can be volatilized and dried through the groove 83, and the material of the microneedle tip can be effectively solidified.
  • surplus material 19 can be released into the groove 83.
  • the microneedle array according to the present embodiment can be manufactured relatively easily.
  • the groove 89 is formed in the female mold 85 and the groove 97 is formed in the female mold 91, the moisture and solvent contained in the material 19 of the above-described air venting and microneedle tip at the time of manufacture are described. Can be effectively volatilized and dried.
  • the convex part 95 is formed in the said female type
  • the substrate 99 used in the microneedle array according to the ninth embodiment has substantially the same configuration as the substrate 79 of the microneedle array according to the eighth embodiment.
  • a through hole 101 is also formed which communicates with a groove 83 as a recess for entering the front part and penetrates to the back side (lower side in FIG. 19) of the substrate 99.
  • At least one through hole 101 is formed per one microneedle base 81.
  • a microneedle tip (not shown) is installed on the upper end side (upper side in FIG. 19) of the microneedle base 81.
  • the tip of the microneedle (not shown) has a substantially conical shape, for example, and a part thereof enters the groove 83. Note that among the components of the substrate 99, components that are the same as those of the substrate 79 in the eighth embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • a female mold 103 substantially the same as the female mold 85 in the eighth embodiment already described is used.
  • the female mold 103 is formed with a microneedle molding recess 105 and a groove 107 communicating with the microneedle molding recess 105.
  • the groove 107 is provided with an opening (not shown) that communicates with the outside when the substrate 99 is fitted to the female mold 103.
  • the microneedle array according to the ninth embodiment is manufactured by first injecting the material 19 into the microneedle molding recess 105 of the female mold 103 and then fitting the substrate 99 to the female mold 103. In this case, air in the microneedle molding recess 105 is allowed to escape through the groove 83 of the microneedle base 81, the groove 107 of the female mold 103, and the through hole 101 of the substrate 99.
  • the groove 83 is used. The air inside the microneedle molding recess 105 is allowed to escape through the groove 107.
  • any of the manufacturing methods described above dry air is fed through the through-hole 101, the groove 107, and the groove 83, so that moisture contained in the material 19 of the microneedle tip portion It is also conceivable to promote volatilization and drying of solvents and the like.
  • part of the material 19 enters the groove 83 of the microneedle base 81 and is not shown in the drawing. A part of the microneedle tip is in the groove 83.
  • the case where the female die 91 in the eighth embodiment already described is used may be considered.
  • the microneedle array according to the ninth embodiment is manufactured by first injecting a material (not shown) into the microneedle molding recess 93 of the female die 91 and then fitting the substrate 99 to the female die 91. In this case, air in the microneedle molding recess 93 is allowed to escape through the groove 83 of the microneedle base 81, the groove 97 of the protrusion 95, and the through hole 101 of the substrate 99. .
  • the substrate 99 is fitted into the female die 91 or the female die 91, and then the microneedle molding is performed through the through hole 101 of the substrate 99. It is also conceivable to manufacture the material 19 by injecting it into the recess 93. In this case, air in the microneedle molding recess 93 is allowed to escape through the groove 83 and the groove 97.
  • dry air is fed through the through-hole 101, the groove 97, and the groove 83, and moisture contained in the material 19 of the microneedle tip is It is conceivable to promote volatilization and drying of solvents and the like.
  • the same operation and effect as the microneedle array 1 according to the eighth embodiment can be achieved.
  • the through-hole 101 communicating with the groove 83 of the microneedle base 81 is also formed, when the substrate 79 is fitted to the female mold at the time of manufacturing the microneedle array, the groove 83 and the through-hole are formed. 101 serves as an air vent and the board 99 can be easily fitted to the female dies 91 and 103. The material 19 can also be injected into the microneedle molding recess 93 through the through hole 101.
  • moisture, solvent, and the like contained in the material 19 of the microneedle tip can be volatilized and dried through the through-hole 101, and the material 19 of the microneedle tip can be effectively solidified. Can do. Further, the surplus material 19 can be released not only into the groove 83 but also into the through hole 101.
  • the return portion 68a is formed in the microneedle tip portion 59, but in addition to this, the vertical portion as in the fourth embodiment is formed in the microneedle tip portion 59.
  • the microneedle tip 59 has a shape such that a substantially cylindrical portion is added to the lower side of the return portion 68a in FIG. 14, and the outer peripheral surface of the substantially cylindrical portion is the same as the vertical portion. Become. In this case, the addition of the vertical portion makes it easier to leave only the microneedle tip 59 in the skin. Further, since the substantially cylindrical portion is added, the amount of the microneedle tip 59 (target substance) can be increased without increasing the diameter of the microneedle 55.
  • one through hole 9 is formed in one microneedle base 7 in the substrate 3, but a plurality of through holes are formed in one microneedle base 7. You may make it form.
  • the material 19 can be injected from one through hole, and air can be vented from the other through holes.
  • two grooves 83 are formed in one microneedle base 81, and this groove 83 is formed in one microneedle base 81. It is also possible to form one or three or more.
  • the microneedle base 81 is provided with a protrusion as in the third embodiment.
  • the convex portion 31 is provided on the female die 27, but it may be provided on the substrate 3 side. In this case, a convex portion slightly lower than the base portion 7 is appropriately provided around the substrate 3 to adjust the fitting amount.
  • a small through hole for venting air may be provided in the female microneedle molding recess.
  • the female mold or the substrate itself may be formed of a material having high gas permeability. For example, porous polyethylene, a fluororesin, and polypropylene are mentioned. In this case, air can be easily released from the microneedle molding recess.
  • the convex portion 31 is separately provided on the upper side of the microneedle molding concave portion 29 of the female die 27.
  • the convex portion integrated with the female die 27 is formed. Is also possible.
  • the composition of the substrate and the microneedle tip part constituting the microneedle array is not limited to the first to ninth embodiments, and various cases are conceivable.
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • the microneedle array 1a produced from this Example 1 is as shown in the photograph of FIG.
  • the substrate 3 of the microneedle array 1a the one shown in the photograph of FIG. 23 was used.
  • PMMA Poly Methyl Meta acrylate: polymethyl methacrylate resin
  • the microneedle array 1a according to Example 1 is manufactured by the method shown in FIG. 8 using the female die 27 according to the second embodiment. Details will be described below.
  • a mold for forming the substrate 3 provided with the microneedle base 7 was prepared. In this mold, a hole corresponding to the microneedle base 7 is formed in a plate-like member. This hole was formed by precision drilling.
  • the substrate 3 was molded by a thermal nanoimprint molding method. That is, a PMMA sheet having a thickness of 1 mm was placed on the side where the hole of the mold was opened, and a pressure of 10 MPa was applied for 15 minutes under heating at 130 ° C. to mold the substrate 3. And the said board
  • a through hole 9 was formed in the substrate 3.
  • the formation of the through hole 9 was performed by a femtosecond laser.
  • the diameter of the through hole 9 was about 40 ⁇ m.
  • a female die 27 for forming the microneedles 5 on the tip side of the microneedle base 7 of the substrate 3 was produced.
  • the female mold 27 is as shown in the photograph of FIG. As described above, the female mold 27 has the microneedle molding recess 29 formed therein.
  • the cylindrical concave portion 17a of the microneedle molding concave portion 29 has a diameter of 238 ⁇ m and a length of 490 ⁇ m
  • the conical concave portion 17b has a bottom diameter of 238 ⁇ m, which is the same as the cylindrical concave portion 17a, and a depth of 307 ⁇ m.
  • the radius of the apex of the conical recess 17b was 4 ⁇ m or less.
  • the convex portion 31 of the female die 27 had a diameter of 600 ⁇ m and a height of 296 ⁇ m.
  • the female mold 27 is made of silicone rubber, and was produced by casting using a metal mold as follows.
  • the main material of SILPO 184 (Dow Corning) and the curing agent were mixed at a ratio of 10: 1, vacuum degassing was performed, and the material of the female mold 27 was produced. Next, this material was poured into the metal mold. Next, the material was cured by heating to 80 ° C. for 20 minutes. Then, the completed female die 27 was released from the metal die.
  • the microneedle tip 11 of the microneedle 5 was produced using the female die 27.
  • approximately 20 nl of an acrylic water-soluble UV curable resin TB3046 (Three bond, concentration 20%) as the material 19 was injected into the microneedle molding recess 29 of the female mold 27 using a general-purpose dispenser.
  • the photograph shown in FIG. 25 shows a state in which the female mold 27 and the substrate 3 are fitted without injecting the UV curable resin as the material 19 into the microneedle molding recess 29. In other words, it is shown that the center positions and fitting amounts of the individual microneedle molding recesses 29 and the microneedle base 7 are aligned.
  • the material 19 was cured by irradiation with ultraviolet rays (40 mW, 1 min). Thereafter, the microneedle array 1a was released from the female mold 27. As shown in FIG. 22, a microneedle tip 11 made of an ultraviolet curable resin is installed on the tip side of the microneedle base 7 of the microneedle array 1a.
  • the conical microneedle tip 11 had a bottom surface diameter of 263 ⁇ m and a height of 348 ⁇ m.
  • 5 ⁇ 5 25 microneedles 5 were formed in a square shape, and the pitch between the individual microneedles 5 was 1.0 mm.
  • FIG. 26A shows a part of the substrate 3
  • FIG. 26B shows a part of the female die 27
  • FIG. 26C shows a state in which the substrate 3 is fitted to the female die 27.
  • FIG. FIG. 26 (d) shows a part of the microneedle array 1a finally obtained.
  • the thickness of the substrate 3 is 300 ⁇ m
  • the diameter of the base 7 is 304 ⁇ m
  • the height of the base 7 is 507 ⁇ m.
  • the convex portion 31 of the female die 27 has an outer diameter of 600 ⁇ m and a height of 296 ⁇ m.
  • the inner diameter of the cylindrical recess 17a of the female die 27 is 238 ⁇ m. Further, the thickness of the female die 27 is 1500 ⁇ m, the distance from the lower end of the cylindrical concave portion 17a of the female die 27 to the tip of the inverted conical concave portion 17b is 307 ⁇ m, and the distance from the upper end of the convex portion 31 to the tip of the reverse conical concave portion 17b Is 797 ⁇ m.
  • the diameter of the microneedle tip 11 of the microneedle array 1a finally obtained is 263 ⁇ m, and the height of the microneedle tip 11 is 348 ⁇ m. *
  • Embodiment 2 of the present invention will be described with reference to FIGS.
  • the microneedle array 1b produced according to Example 2 is as shown in FIG.
  • the shape of the microneedle array 1b is the same as that of the microneedle array 1a of the first embodiment.
  • the microneedle array 1b is also manufactured by the method shown in FIG. 8 using the female die 27 according to the second embodiment. Details will be described below. First, a mold for forming the substrate 3 provided with the microneedle base 7 was prepared. This mold is the same as the mold for molding the substrate 3 in the first embodiment.
  • the substrate 3 was molded by a thermal nanoimprint molding method.
  • the substrate 3 is also the same as in Example 1, and the height of the microneedle base 7 formed on the substrate 3 (the size in the vertical direction in FIG. 23) is the same as in Example 1.
  • the diameter was 507 ⁇ m and the diameter was 304 ⁇ m.
  • a through hole 9 was formed in the substrate 3.
  • the through hole 9 was formed by a femtosecond laser as in the case of Example 1.
  • the diameter of the through hole 9 was about 40 ⁇ m as in the case of Example 1.
  • a female die 27 for forming the microneedles 5 on the tip side of the microneedle base portion 7 of the substrate 3 was produced in the same manner as in Example 1.
  • the female mold 27 has the same dimensions as the female mold 27 of the first embodiment.
  • the microneedle tip 11 of the microneedle 5 was produced using the female die 27.
  • a general-purpose dispenser approximately 30 nl of water-soluble polyvinylpyrrolidone (concentration 20%) as the material 19 was injected into the microneedle molding recess 29 of the female die 27.
  • the substrate 3 was fitted to the female mold 27.
  • the surface of the substrate 3 was in contact with the convex portion 31 of the female mold 27.
  • the female mold 27 and the substrate 3 are fitted in the same manner as in the first embodiment. That is, as shown in FIG. 25, the center positions and fitting amounts of the individual microneedle molding concave portions 29 and the microneedle base portions 7 are aligned by the convex portions 31.
  • the substrate 3, the female mold 27, and the material 19 were heated on a hot plate at 80 ° C. for 30 minutes to cure the material 19.
  • the microneedle array 1b was separated from the female die 27.
  • a microneedle tip 11 made of polyvinylpyrrolidone is installed on the tip side of the microneedle base 7 of the microneedle array 1b.
  • the diameter of the bottom surface of this conical tip was 286 ⁇ m and the height was 291 ⁇ m.
  • 5 ⁇ 5 25 microneedles 5 were formed in a square shape, and the pitch between the individual microneedles 5 was 1.0 mm. Note that the protrusions on both sides of the microneedle 5 on the substrate 3 in FIG. 27 are those in which the amount of material injection is not appropriate and the surplus material flows and hardens.
  • FIG. 28 shows the dimensions of each part of the substrate 3, the female die 27, and the finally obtained microneedle array 1b used in Example 2.
  • 28A shows a part of the substrate 3
  • FIG. 28B shows a part of the female die 27,
  • FIG. 28C shows a state in which the substrate 3 is fitted to the female die 27.
  • FIG. 28 (d) shows a part of the microneedle array 1a finally obtained.
  • the thickness of the substrate 3 is 300 ⁇ m
  • the diameter of the base 7 is 304 ⁇ m
  • the height of the base 7 is 507 ⁇ m.
  • the convex portion 31 of the female die 27 has an outer diameter of 600 ⁇ m and a height of 296 ⁇ m.
  • the inner diameter of the cylindrical recess 17a of the female die 27 is 238 ⁇ m.
  • the thickness of the female die 27 is 1500 ⁇ m, the distance from the lower end of the cylindrical concave portion 17a of the female die 27 to the tip of the inverted conical concave portion 17b is 307 ⁇ m, and the distance from the upper end of the convex portion 31 to the tip of the reverse conical concave portion 17b Is 797 ⁇ m.
  • the diameter of the microneedle tip 11 of the finally obtained microneedle array 1b is 286 ⁇ m, and the height of the microneedle tip 11 is 291 ⁇ m. *
  • Embodiment 3 of the present invention will be described with reference to FIGS.
  • the microneedle array 1c produced by Example 3 is as shown in FIG.
  • the microneedle array 1c according to the third embodiment is basically manufactured by the same method as that of the second embodiment. The only difference is that there is. Details will be described below.
  • the microneedle base 57 was molded by the thermal nanoimprint molding method as in Example 2.
  • the microneedle base 57 formed here was smaller in size than the microneedle base 7 of Example 2 shown in FIG. 27, the height was 408 ⁇ m, and the diameter was 186 ⁇ m.
  • the female die 27 for forming the microneedle 55 having a return shape on the tip side of the microneedle base 57 was manufactured.
  • This female die 27 is as shown in FIG.
  • the method for manufacturing the female mold 27 is the same as that of the second embodiment, but a metal mold having a return shape is used.
  • the depth of the entire microneedle molding recess 29 was 780 ⁇ m, and the diameter of the cylindrical recess 17a was 175 ⁇ m.
  • the diameter of the bottom surface of the conical recess 17b was larger than that of the cylindrical recess 17a and the microneedle base 57, and was 366 ⁇ m.
  • the convex portion 31 of the female die 27 had a width of 50 ⁇ m, a diameter (outside) of 694 ⁇ m, and a height of 55 ⁇ m.
  • a microneedle tip 59 was produced in the same manner as in Example 2. That is, first, approximately 25 nl of water-soluble polyvinylpyrrolidone (concentration 20%) was injected into the microneedle molding recess 29 of the female die 27 using a general-purpose dispenser.
  • the substrate 3 was fitted to the female mold 27. At this time, the surface of the substrate was in contact with the convex portion 31 of the female mold 27.
  • the photograph shown in FIG. 30 shows a state in which the female mold 27 and the substrate 3 are fitted to each other without injecting the water-soluble polyvinylpyrrolidone as the material 19 into the microneedle molding recess 29. Is.
  • the substrate 3, the female mold 27, and the material 19 were heated on a hot plate at 80 ° C. for 60 minutes to cure the material. Thereafter, the microneedle array 1c was separated from the female mold 27. As shown in FIG.
  • a microneedle tip portion 59 made of polyvinylpyrrolidone is installed on the distal end side of the microneedle base portion 57 of the microneedle array 1c.
  • the conical tip had a maximum diameter of 379 ⁇ m and a height of 496 ⁇ m. Further, at this time, due to the elasticity of the female die 27, the portion having a return shape was released from the female die 27 with almost no deformation.
  • FIG. 31A shows a state before puncturing, and a silicone rubber sheet 111 is installed on the upper side of the microneedle array 1c in the drawing.
  • FIG. 31B shows a state in which the microneedle array 1c is punctured vertically from the bottom toward the silicone rubber sheet 111.
  • the microneedle array 1c was smoothly punctured into the silicone rubber 111 without falling or deforming from the root.
  • FIG. shows that it was shown that it is possible to easily leave only the front part in the skin by the return shape.
  • FIG. 32 shows the dimensions of each part of the substrate 3, the female die 27, and the finally obtained microneedle array 1c used in Example 3.
  • 32A shows a part of the substrate 3
  • FIG. 32B shows a part of the female die 27,
  • FIG. 32C shows a state in which the substrate 3 is fitted to the female die 27.
  • FIG. FIG. 32 (d) shows a part of the microneedle array 1c finally obtained.
  • the thickness of the substrate 3 is 300 ⁇ m
  • the diameter of the base 7 is 186 ⁇ m
  • the height of the base 7 is 408 ⁇ m.
  • the convex portion 31 of the female die 27 has an outer diameter of 604 ⁇ m, a width of 50 ⁇ m, and a height of 55 ⁇ m.
  • the inner diameter of the cylindrical recess 7a of the female die 27 is 175 ⁇ m. Further, the thickness of the female die 27 is 1500 ⁇ m, the distance from the upper end of the cylindrical recess 7a of the female die 27 to the tip of the inverted conical recess 7b is 780 ⁇ m, and the distance from the upper end of the projection 31 to the tip of the inverted conical recess 17b Is 835 ⁇ m.
  • the diameter of the microneedle tip 11 of the finally obtained microneedle array 1c is 379 ⁇ m, and the height of the microneedle tip 11 is 496 ⁇ m.
  • the present invention relates to a microneedle array for administering a target substance such as a drug subcutaneously to prevent or treat various diseases, and a microneedle array manufacturing method for manufacturing such a microneedle array.
  • the microneedle array is suitable for use in transdermal administration of vaccines, for example, because it is difficult to break at times and can be reliably punctured and can be administered with a desired amount of a target substance.
  • Microneedle array 3 Substrate 5 Microneedle 7 Microneedle base 9 Through hole (recess for entering microneedle tip) DESCRIPTION OF SYMBOLS 11 Microneedle tip part 13 Convex part 15 Female type

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

穿刺時に破損しにくく、それにより確実に穿刺を行うことができるとともに、所望の量の目的物質を投与できるマイクロニードルアレイと、そのようなマイクロニードルアレイを製造するマイクロニードルアレイ製造方法を提供することを目的とし、そのため、基板と、上記基板に一体に突出・形成された複数のマイクロニードル基部と、上記複数のマイクロニードル基部の先にそれぞれ設置されることによりマイクロニードルを構成し生体内可溶性又は生分解性を備えているとともに目的物質を保持したマイクロニードル先部と、を具備し、上記マイクロニードル基部にはマイクロニードル先部入り込み用凹部が形成されており、上記マイクロニードル先部の一部は上記マイクロニードル先部入り込み用凹部に入り込んでいることを特徴とするもの。

Description

マイクロニードルアレイとマイクロニードルアレイ製造方法
 本発明は、皮下に薬物等の目的物質を投与して種々の疾患の予防や治療を行うためのマイクロニードルアレイと、そのようなマイクロニードルアレイを製造するマイクロニードルアレイ製造方法に係り、特に、穿刺時に破損し難く、それにより確実に穿刺を行うことができるとともに、所望の量の目的物質を確実に投与できるように工夫したものに関する。
 従来のマイクロニードルアレイとしては、例えば、特許文献1、特許文献2に記載されたものが知られている。
 特許文献1に記載された経皮吸収製剤保持シート(マイクロニードルアレイ)は、図33に示すような構成になっている。まず、支持体1001があり、この支持体1001上には、略円錐形状の微細な針状をなす経皮吸収製剤(マイクロニードル)1003が固着されている。この経皮吸収製剤1003が皮膚に穿刺されることになる。
 また、特許文献1には、経皮吸収製剤保持用具も開示されている。この経皮吸収製剤保持用具は、貫通孔を有する本体と、該貫通孔の中に保持された針状等の形状を有する経皮吸収製剤と、から構成されている。
 また、特許文献2に記載された経皮投与製剤(マイクロニードルアレイ)は、図34に示すような構成になっている。まず、支持体1005があり、この支持体1005には、複数の微細針(マイクロニードル)1007が固着されている。この微細針1007は、略円錐形状を成しており、先端側(図34中上側)の第1部分1009と、基端側(図34中下側)の第2部分1011と、から構成されている。上記第1部分1009は、例えば、体内溶解性かつ曳糸性の高分子物質からなる基剤に局所麻酔薬等の目的物質及び水を混合して乾燥・固化させたものである。また、上記第2部分1011も、例えば、体内溶解性かつ曳糸性の高分子物質からなる基剤と水を混合して乾燥・固化させたものである。
 一方、金属性の基部を用い、その先端に目的物質を含有する生分解性物質を有するマイクロニードル製剤の開発も行われている(非特許文献1)。
 その他、所望の量の目的物質をより確実に投与することができる安全な製剤の開発が様々行われている。
国際公開第06/080508号パンフレット 特開2013-32324号公報
Leonard Y. Chu,Mark R. Prausnitz著 "Separable arrowhead microneedles"(Journal of Controlled Release、2011、第149巻、第242頁~第249頁)
 上記従来の構成によると次のような問題があった。
 まず、特許文献1に記載された経皮吸収製剤保持シートの場合は、別途製造された経皮吸収製剤1003が支持体1001に固着された構成になっているので強度が十分ではなく、特に、固着部分の強度が不十分であった。そのため、皮膚に穿刺しようとすると、穿刺の仕方(皮膚に対して斜めに穿刺した場合等)によっては、経皮吸収製剤1003が固着部分から折れて破損してしまい、確実な穿刺が損なわれてしまうという問題があった。
 また、穿刺中に経皮吸収製剤1003が破損してしまうと、所望の量の目的物質を投与できないという問題もあった。
 また、特許文献2に記載された経皮投与製剤の場合も、別途製造された微細針1007の第2部分1011が支持体1005に固着されているため強度が十分でなく、皮膚に穿刺する際に根元から倒れてしまい、確実な穿刺が損なわれてしまうという問題があった。
 また、経皮投与製剤は雌型を用いて成形されるが、完成した経皮投与製剤を上記雌型から離型させる際に、上記微細針1007が根元から曲がったり、破損したりするという問題もあった。
 また、局所麻酔薬等の目的物質を含む第1部分1009についても同様であり、第2部分1011との間に境界があり強度が十分でないため、穿刺時に破損してしまい、それにより所望の量の目的物質を投与できないという問題もあった。
 また、特許文献1の経皮吸収製剤1003の場合も同じであるが、上記微細針1007は円錐形状をなしていて、先端側から基部側に向かって断面積が徐々に増大していくため、ある深さ以上になると穿刺し難くなるうえに抜け易くなるという問題もあった。
 本発明はこのような点に基づいてなされたもので、その目的とするところは、穿刺時に破損し難く、それにより確実に穿刺を行うことができるとともに、所望の量の目的物質を確実に投与できるマイクロニードルアレイと、そのようなマイクロニードルアレイを製造するマイクロニードルアレイ製造方法を提供することにある。
 上記目的を達成するべく本願発明の態様(1)によるマイクロニードルアレイは、基板と、上記基板に一体に突出・形成された複数のマイクロニードル基部と、上記複数のマイクロニードル基部の先にそれぞれ設置されることによりマイクロニードルを構成し生体内可溶性又は生分解性を備えているとともに目的物質を保持したマイクロニードル先部と、を具備し、上記マイクロニードル基部にはマイクロニードル先部入り込み用凹部が形成されており、上記マイクロニードル先部の一部は上記マイクロニードル先部入り込み用凹部に入り込んでいることを特徴とするものである。
 又、態様(2)によるマイクロニードルアレイは、態様(1)記載のマイクロニードルアレイにおいて、上記マイクロニードル先部入り込み用凹部は貫通孔又は溝であることを特徴とするものである。
 又、態様(3)によるマイクロニードルアレイは、態様(1)又は態様(2)記載のマイクロニードルアレイにおいて、上記複数のマイクロニードルを皮下に穿刺して引き抜くことにより上記マイクロニードル先部を皮下に残留させるように構成されていることを特徴とするものである。
 又、態様(4)によるマイクロニードルアレイは、態様(1)~態様(3)の何れかに記載のマイクロニードルアレイにおいて、上記マイクロニードル先部は垂直部を備えていることを特徴とするものである。
 又、態様(5)によるマイクロニードルアレイは、態様(4)記載のマイクロニードルアレイにおいて、上記マイクロニードル先部の垂直部には凹凸部が形成されていることを特徴とするものである。
 又、態様(6)によるマイクロニードルアレイは、態様(1)~態様(5)の何れかに記載のマイクロニードルアレイにおいて、上記マイクロニードル基部とマイクニードル先部は、その横断面形状が矩形を成していることを特徴とするものである。
 又、態様(7)によるマイクロニードルアレイは、態様(1)~態様(6)の何れかに記載のマイクロニードルアレイにおいて、上記マイクロニードル基部の上記マイクロニードル先部側には突起が形成されていて、上記マイクロニードル先部は上記突起を覆うように上記マイクロニードル基部に設置されていることを特徴とするものである。
 又、態様(8)によるマイクロニードルアレイは、態様(1)~態様(7)の何れかに記載のマイクロニードルアレイにおいて、上記基板と上記マイクロニードル基部は樹脂製であることを特徴とするものである。
 又、態様(9)によるマイクロニードルアレイは、態様(8)記載のマイクロニードルアレイにおいて、上記樹脂は生体適合性樹脂であることを特徴とするものである。
 又、態様(10)によるマイクロニードルアレイは、態様(8)記載のマイクロニードルアレイにおいて、上記樹脂は生分解性樹脂であることを特徴とするものである。
 又、態様(11)によるマイクロニードルアレイは、態様(8)記載のマイクロニードルアレイにおいて、上記樹脂は生体内非可溶性樹脂であることを特徴とするものである。
 又、態様(12)によるマイクロニードルアレイは、態様(1)~態様(11)の何れかに記載のマイクロニードルアレイにおいて、上記マイクロニードル先部には返し部が形成されていることを特徴とするものである。
 又、態様(13)によるマイクロニードルアレイ製造方法は、マイクロニードル成形用凹部を備えた雌型を用意するとともに基板にマイクロニードル先部入り込み用凹部が形成された複数のマイクロニードル基部を一体形成したものを用意し、上記複数のマイクロニードル基部を上記マイクロニードル成形用凹部内に嵌合させるように上記基板を上記雌型に設置し、上記マイクロニードル成形用凹部内に上記マイクロニードル先部を構成し目的物質を含んだ溶解又は溶融状態の材料を充填するとともにその充填された材料の一部が上記マイクロニードル先部入り込み用凹部内に入り込むようにし、所定の養生後上記基板を上記雌型から離型させることにより上記基板の複数のマイクロニードル基部の先にマイクロニードル先部をそれぞれ設置した構成のマイクロニードルアレイが得られるようにしたことを特徴とするものである。
 又、態様(14)によるマイクロニードルアレイ製造方法は、マイクロニードル成形用凹部を備えた雌型を用意するとともに基板にマイクロニードル先部入り込み用凹部が形成された複数のマイクロニードル基部を一体形成したものを用意し、上記雌型の上記マイクロニードル成形用凹部内に上記マイクロニードル先部を構成し目的物質を含んだ溶解又は溶融状態の材料を充填し、上記複数のマイクロニードル基部を上記マイクロニードル成形用凹部内に嵌合させるように上記基板を上記雌型に設置し上記充填された材料の一部が上記マイクロニードル先部入り込み用凹部内に入り込むようにし、所定の養生後上記基板を上記雌型から離型させることにより上記基板の複数のマイクロニードル基部の先にマイクロニードル先部をそれぞれ設置した構成のマイクロニードルアレイが得られるようにしたことを特徴とするものである。
 又、態様(15)によるマイクロニードルアレイ製造方法は、態様(13)又は態様(14)記載のマイクロニードルアレイ製造方法において、上記マイクロニードル基部を上記マイクロニードル成形用凹部にラミナーフロー下でラミナーフローと垂直に嵌合させるようにしたことを特徴とするものである。
 又、態様(16)によるマイクロニードルアレイ製造方法は、態様(13)~態様(15)の何れかに記載のマイクロニードルアレイ製造方法において、上記マイクロニードル基部の上記マイクロニードル成形用凹部内への嵌合量を調整することにより、上記マイクロニードル先部の大きさを制御するようにしたことを特徴とするものである。
 又、態様(17)によるマイクロニードルアレイ製造方法は、態様(13)~態様(16)の何れかに記載のマイクロニードルアレイ製造方法において、上記マイクロニードル基部に形成された上記マイクロニードル先部入り込み用凹部は貫通孔又は溝であることを特徴とするものである。
 又、態様(18)によるマイクロニードルアレイ製造方法は、態様(13)~態様(17)の何れかに記載のマイクロニードルアレイ製造方法において、上記雌型はエラストマー系材料から構成されていることを特徴とするものである。
 又、態様(19)によるマイクロニードルアレイ製造方法は、態様(13)~態様(18)の何れかに記載のマイクロニードルアレイ製造方法において、上記雌型の上記マイクロニードル成形用凹部の縁部には凸部が設けられていることを特徴とするものである。
 又、態様(20)によるマイクロニードルアレイ製造方法は、態様(13)~態様(19)の何れかに記載のマイクロニードルアレイ製造方法において、上記雌型及び又は上記基板には上記マイクロニードル成形用凹部と外部とを連絡する通路が形成されていることを特徴とするものである。
 以上述べたように本願発明の態様(1)によるマイクロニードルアレイによると、基板と、上記基板に一体に突出・形成された複数のマイクロニードル基部と、上記複数のマイクロニードル基部の先にそれぞれ設置されることによりマイクロニードルを構成し生体内可溶性又は生分解性を備えているとともに目的物質を保持したマイクロニードル先部と、を具備し、上記マイクロニードル基部にはマイクロニードル先部入り込み用凹部が形成されており、上記マイクロニードル先部の一部は上記マイクロニードル先部入り込み用凹部に入り込んでいる構成になっているため、上記マイクロニードル先部の不用意な脱落を防止するとともに、上記マイクロニードルの強度を高めて穿刺時の破損を防止して確実に穿刺することができ、それによって、所望の量の目的物質を確実に投与することができる。
 又、態様(2)によるマイクロニードルアレイによると、態様(1)記載のマイクロニードルアレイにおいて、上記マイクロニードル先部入り込み用凹部は貫通孔又は溝であるため、上記効果を確実なものとすることができる。
 又、態様(3)によるマイクロニードルアレイによると、態様(1)又は態様(2)記載のマイクロニードルアレイにおいて、上記複数のマイクロニードルを皮下に穿刺して引き抜くことにより上記マイクロニードル先部を皮下に残留させるように構成されているため、穿刺後すぐに上記基板を除去することができ、長時間、上記基板を皮膚表面に保持させておく必要がなく、患者への負担を軽減させることができる。
 又、態様(4)によるマイクロニードルアレイによると、態様(1)~態様(3)の何れかに記載のマイクロニードルアレイにおいて、上記マイクロニードル先部は垂直部を備えているため、その垂直部を介してマイクロニードル先部と皮膚との間に摩擦力が発生し、それによって、上記マイクロニードル先部の皮下内への残留がより確実なものとなる。
 又、態様(5)によるマイクロニードルアレイによると、態様(4)記載のマイクロニードルアレイにおいて、上記マイクロニードル先部の垂直部には凹凸部が形成されているため、上記マイクロニードル先部の皮下内への残留がさらに確実なものとなる。
 又、態様(6)によるマイクロニードルアレイによると、態様(1)~態様(5)の何れかに記載のマイクロニードルアレイにおいて、上記マイクロニードル基部とマイクニードル先部は、その横断面形状が矩形を成しているため、上記マイクロニードルが皮膚に穿刺された際皮膚との間に摩擦力を生じさせ、上記マイクロニードル先部の皮下内への残留がさらに確実なものとなる。
 又、態様(7)によるマイクロニードルアレイによると、態様(1)~態様(6)の何れかに記載のマイクロニードルアレイにおいて、上記マイクロニードル基部の上記マイクロニードル先部側には突起が形成されていて、上記マイクロニードル先部は上記突起を覆うように上記マイクロニードル基部に設置されているため、上記マイクロニードル基部の上記マイクロニードル先部側が平面であるものより上記マイクロニードルの強度を高めることができる。また、上記マイクロニードルの強度を高めることにより上記雌型からの離型が容易となる利点がある。
 又、態様(8)によるマイクロニードルアレイによると、態様(1)~態様(7)の何れかに記載のマイクロニードルアレイにおいて、上記基板と上記マイクロニードル基部は樹脂製であるため、上記マイクロニードルの強度をより高めることができ、また、樹脂であるため、射出成形やホットエンボス成形などの各種成形方法によって製造することができ、低コスト化や量産化も可能である。
 又、態様(9)によるマイクロニードルアレイによると、態様(8)記載のマイクロニードルアレイにおいて、上記樹脂は生体適合性樹脂であるため、人体に対する危険性を極めて小さなものとすることができる。
 又、態様(10)によるマイクロニードルアレイによると、態様(8)記載のマイクロニードルアレイにおいて、上記樹脂は生分解性樹脂であるため、人体に対する危険性を極めて小さなものとすることができる。
 又、態様(11)によるマイクロニードルアレイによると、態様(8)記載のマイクロニードルアレイにおいて、上記樹脂は生体内非可溶性樹脂であるため、人体に対する危険性を極めて小さなものとすることができ、またマイクロニードルの強度を高めることができる。
 又、態様(12)によるマイクロニードルアレイによると、態様(1)~態様(11)の何れかに記載のマイクロニードルアレイにおいて、上記マイクロニードル先部には返し部が形成されているため、上記マイクロニードル先部の皮下内への残留がさらに確実なものとなる。
 又、態様(13)によるマイクロニードルアレイ製造方法によると、マイクロニードル成形用凹部を備えた雌型を用意するとともに基板にマイクロニードル先部入り込み用凹部が形成された複数のマイクロニードル基部を一体形成したものを用意し、上記複数のマイクロニードル基部を上記マイクロニードル成形用凹部内に嵌合させるように上記基板を上記雌型に設置し、上記マイクロニードル成形用凹部内に上記マイクロニードル先部を構成し目的物質を含んだ溶解又は溶融状態の材料を充填するとともにその充填された材料の一部が上記マイクロニードル先部入り込み用凹部内に入り込むようにし、所定の養生後上記基板を上記雌型から離型させることにより上記基板の複数のマイクロニードル基部の先にマイクロニードル先部をそれぞれ設置した構成のマイクロニードルアレイが得られるため、材料の一部がマイクロニードル先部入り込み用凹部内に入り込んだ状態のマイクロニードルアレイを容易に製造することができる。また、その際、外部からの不純物等の混入を防止することができる。
 又、態様(14)によるマイクロニードルアレイ製造方法によると、マイクロニードル成形用凹部を備えた雌型を用意するとともに基板にマイクロニードル先部入り込み用凹部が形成された複数のマイクロニードル基部を一体形成したものを用意し、上記雌型の上記マイクロニードル成形用凹部内に上記マイクロニードル先部を構成し目的物質を含んだ溶解又は溶融状態の材料を充填し、上記複数のマイクロニードル基部を上記マイクロニードル成形用凹部内に嵌合させるように上記基板を上記雌型に設置し上記充填された材料の一部が上記マイクロニードル先部入り込み用凹部内に入り込むようにし、所定の養生後上記基板を上記雌型から離型させることにより上記基板の複数のマイクロニードル基部の先にマイクロニードル先部をそれぞれ設置した構成のマイクロニードルアレイが得られるため、この場合も、材料の一部がマイクロニードル先部入り込み用凹部内に入り込んだ状態のマイクロニードルアレイを容易に製造することができる。また、その際、上記溶解又は溶融状態の目的物質が高粘度の場合であっても、上記マイクロニードル成形用凹部内に容易に充填することができ、また、上記材料の量の調整も容易である。
 又、態様(15)によるマイクロニードルアレイ製造方法によると、態様(13)又は態様(14)記載のマイクロニードルアレイ製造方法において、上記マイクロニードル基部を上記マイクロニードル成形用凹部にラミナーフロー下でラミナーフローと垂直に嵌合させることになり、外部からの不純物等の混入を防止して、無菌状態にて上記マイクロニードルの製造を行うことができる。
 又、態様(16)によるマイクロニードルアレイ製造方法によると、態様(13)~態様(15)の何れかに記載のマイクロニードルアレイ製造方法において、上記マイクロニードル基部の上記マイクロニードル成形用凹部内への嵌合量を調整することにより、上記マイクロニードル先部の大きさを制御することになり、容易にマイクロニードル先部の大きさ、すなわち、材料ひいては目的物質の量を容易に調整することができる。
 又、態様(17)によるマイクロニードルアレイ製造方法によると、態様(13)~態様(16)の何れかに記載のマイクロニードルアレイ製造方法において、上記マイクロニードル基部に形成された上記マイクロニードル先部入り込み用凹部は貫通孔又は溝であるため、上記マイクロニードル先部を構成する溶液の固化を効率良く行うことができる。また、上記基板を上記雌型に嵌合させる際や雌型の内部にマイクロニードル先部を構成する溶解又は溶融状態の材料を注入する際、上記貫通孔や溝が空気抜きとして作用し、上記基板と上記雌型の嵌合や上記マイクロニードル先部を構成する溶解又は溶融状態の材料の注入を容易に行うことができる。また、余剰の上記マイクロニードル先部を構成する溶解又は溶融状態の材料を上記貫通孔や溝内部に逃がすこともできる。また、上記貫通孔を利用して、雌型の内部にマイクロニードル先部を構成する溶解又は溶融状態の材料を注入することもできる。
 又、態様(18)によるマイクロニードルアレイ製造方法によると、態様(13)~態様(17)の何れかに記載のマイクロニードルアレイ製造方法において、上記雌型はエラストマー系材料から構成されているため、マイクロニードル成形用凹部とマイクロニードル基部間を密閉することができ、上記マイクロニードル先部を構成する溶液の漏れを防止することができる。また、上記雌型の弾性力により完成したマイクロニードルアレイの離型が容易である。また、エラストマー系材料から構成される上記雌型は、注型や射出成形法等によって低コスト化や量産化も可能である。
 又、態様(19)によるマイクロニードルアレイ製造方法によると、態様(13)~態様(18)の何れかに記載のマイクロニードルアレイ製造方法において、上記雌型の上記マイクロニードル成形用凹部の縁部には凸部が設けられているため、上記基板と上記雌型とを嵌合させる際、上記基板のマイクロニードル基部と上記雌型のマイクロニードル成形用凹部との間に位置のずれがある場合でも、上記凸部が移動・変形することで上記位置のずれが吸収されるため、上記基板の全てのマイクロニードル基部を上記雌型の全てのマイクロニードル成形用凹部へ容易に挿入することができる。また、この凸部の大きさを調製することで、上記マイクロニードル基部が上記マイクロニードル成形用凹部内に挿入される深さを調製することができ、これにより、製造されるマイクロニードルアレイのマイクロニードル先部の大きさを調製することができる。
 又、態様(20)によるマイクロニードルアレイ製造方法によると、態様(13)~態様(19)の何れかに記載のマイクロニードルアレイ製造方法において、上記雌型及び又は上記基板には上記マイクロニードル成形用凹部と外部とを連絡する通路が形成されているため、上記溝を介して目的物質からの揮発成分が抜けやすくなり乾燥(養生)時間を短縮することができる。また、上記溝を介して上記マイクロニードル成形用凹部内に乾燥空気を送り込んで乾燥(養生)を促進させることもできる。
本発明の第1の実施の形態を示す図で、第1の実施の形態によるマイクロニードルアレイの斜視図である。 本発明の第1の実施の形態を示す図で、図1におけるII-II断面図である。 本発明の第1の実施の形態を示す図で、第1の実施の形態によるマイクロニードルアレイの基板の斜視図である。 本発明の第1の実施の形態を示す図で、図3におけるIV-IV断面図である。 本発明の第1の実施の形態を示す図で、第1の実施の形態によるマイクロニードルアレイの製造に用いる雌型の斜視図である。 本発明の第1の実施の形態を示す図で、図5におけるVI-VI断面図である。 本発明の第1の実施の形態を示す図で、図7(a)は第1の実施の形態によるマイクロニードルアレイの製造に用いる雌型にマイクロニードルアレイの基板を嵌合させる直前の状態を示す断面図、図7(b)は上記雌型に上記基板を嵌合させた状態を示す断面図、図7(c)は上記基板の貫通孔を介して上記雌型の凹部内にマイクロニードル先部の材料を充填させた状態を示す断面図、図7(d)は所定の養生期間経過後完成したマイクロニードルアレイを上記雌型から離型させた状態を示す断面図である。 本発明の第1の実施の形態を示す図で、図8(a)は第1の実施の形態によるマイクロニードルアレイの製造に用いる雌型にマイクロニードル先部の材料を充填させた状態を示す断面図、図8(b)は上記雌型にマイクロニードルアレイの基板を嵌合させる直前の状態を示す断面図、図8(c)は上記雌型に上記基板を嵌合させた状態を示す断面図、図8(d)は所定の養生期間経過後完成したマイクロニードルアレイを上記雌型から離型させた状態を示す断面図である。 本発明の第1の実施の形態を示す図で、図9(a)は第1の実施の形態によるマイクロニードルアレイを皮膚に穿刺した状態を示す図、図9(b)は皮膚に穿刺した上記マイクロニードルアレイの貫通孔に押出用治具を挿入した状態を示す図、図9(c)は上記押出用治具によって上記マイクロニードルアレイのマイクロニードル先部を皮下に残留させて上記マイクロニードルアレイの基板のみを皮膚から除去した状態を示す図である。 本発明の第2の実施の形態を示す図で、第2の実施の形態によるマイクロニードルアレイの製造に用いる雌型を示す断面図である。 本発明の第3の実施の形態を示す図で、第3の実施の形態によるマイクロニードルアレイを示す断面図である。 本発明の第4の実施の形態を示す図で、第4の実施の形態によるマイクロニードルアレイを示す断面図である。 本発明の第5の実施の形態を示す図で、第5の実施の形態によるマイクロニードルアレイを示す断面図である。 本発明の第6の実施の形態を示す図で、第6の実施の形態によるマイクロニードルアレイを示す断面図である。 本発明の第7の実施の形態を示す図で、第7の実施の形態によるマイクロニードルアレイを示す斜視図である。 本発明の第8の実施の形態を示す図で、第8の実施の形態によるマイクロニードルアレイの基板を示す斜視図である。 本発明の第8の実施の形態を示す図で、第8の実施の形態によるマイクロニードルアレイの製造の際、雌型に基板を嵌合させた状態を示す部分拡大断面図である。 本発明の第8の実施の形態を示す図で、第8の実施の形態によるマイクロニードルアレイの製造の際、雌型に基板を嵌合させた状態を示す部分拡大断面図である。 本発明の第9の実施の形態を示す図で、第9の実施の形態によるマイクロニードルアレイの基板を示す斜視図である。 本発明の第9の実施の形態を示す図で、第9の実施の形態によるマイクロニードルアレイの製造の際、雌型に基板を嵌合させた状態を示す部分拡大断面図である。 本発明の第9の実施の形態を示す図で、第9の実施の形態によるマイクロニードルアレイの製造の際、雌型に基板を嵌合させた状態を示す部分拡大断面図である。 本発明の実施例1を示す図で、マイクロニードルアレイの一部を示す拡大写真である。 本発明の実施例1を示す図で、マイクロニードルアレイの基板の一部を示す拡大写真である。 本発明の実施例1を示す図で、マイクロニードルアレイの製造に用いる雌型の一部の断面を示す拡大写真である。 本発明の実施例1を示す図で、マイクロニードルアレイの製造に用いる雌型にマイクロニードルアレイの基板を嵌合させた状態を示す拡大写真である。 本発明の実施例1を示す図で、図26(a)は基板の一部を示し各部の寸法を記載した図、図26(b)は雌型の一部を示し各部の寸法を記載した図、図26(c)は雌型に基板をセットした状態の一部を示す図、図26(d)はマイクロニードルアレイの一部を示し各部の寸法を記載した図である。 本発明の実施例2を示す図で、マイクロニードルアレイの一部を示す拡大写真である。 本発明の実施例2を示す図で、図28(a)は基板の一部を示し各部の寸法を記載した図、図28(b)は雌型の一部を示し各部の寸法を記載した図、図28(c)は雌型に基板をセットした状態の一部をに示す図、図28(d)はマイクロニードルアレイの一部を示し各部の寸法を記載した図である。 本発明の実施例3を示す図で、マイクロニードルアレイの一部を示す拡大写真である。 本発明の実施例3を示す図で、マイクロニードルアレイの製造に用いる雌型にマイクロニードルアレイの基板を嵌合させた状態の一部を示す拡大写真である。 本発明の実施例3を示す図で、図31(a)はマイクロニードルアレイをシリコーンゴムシートに穿刺する前の状態を示す拡大写真、図31(b)はシリコーンゴムに穿刺している状態を示す拡大写真、図31(c)はシリコーンゴムからマイクロニードルアレイを剥離し先部のみがシリコーンゴム内に残留した状態を示す拡大写真である。 本発明の実施例3を示す図で、図32(a)は基板の一部を示し各部の寸法を記載した図、図32(b)は雌型の一部を示し各部の寸法を記載した図、図32(c)は雌型に基板をセットした状態を示す図、図32(d)はマイクロニードルアレイの一部を示し各部の寸法を記載した図である。 従来例を示す図で、従来のマイクロニードルアレイを示す斜視図である。 従来例を示す図で、従来のマイクロニードルアレイの一部を示す部分的に拡大して示す断面図である。
発明の詳細な説明
 まず、図1乃至図9を参照して、本発明の第1の実施の形態について説明する。
 まず、第1の形態によるマイクロニードルアレイ1の構成について説明する。上記マイクロニードルアレイ1は、図1及び図2に示すように、基板3と複数(本実施の形態の場合は9個)のマイクロニードル5とから構成されている。
 なお、本発明における「マイクロニードルアレイ」とは、上記「マイクロニードルアレイ1」を含み、また、図1に示された「マイクロニードルアレイ1」の形状以外にも、本明細書にて説明する種々の形状や組成を有する第2から第9の実施の形態によるマイクロニードルアレイをも含む。
 上記基板3は、図3、図4に示すように、板状の部材に複数(本実施の形態の場合は9個)のマイクロニードル基部7が図4中上側に突出・形成された構成を成している。また、上記基板3には、図4に示すように、個々のマイクロニードル基部7毎に、マイクロニードル先部入り込み用凹部としての貫通孔9が形成されている。また、この貫通孔9のマイクロニードル基部7側(図4中上側)は小径部9aとなっているとともに、反マイクロニードル基部7側(図4中下側)は大径部9bとなっている。
 また、上記マイクロニードル5は、図1、図2に示すように、既に述べたマイクロニードル基部7と、このマイクロニードル基部7の上端面(図2中上側端面)に設置されたマイクロニードル先部11とから構成されている。
 上記マイクロニードル先部11は、図2に示すように、先端側(図2中上側)が略円錐形状を成しており、この略円錐形状の部分の底面から基板3側に向けて小径の凸部13が突出・形成された構成となっている。上記マイクロニードル先部11は、上記凸部13が上記マイクロニードル基部7の貫通孔9の小径部9a内に入り込んだ状態で、上記マイクロニードル基部7の上端面(図2中上側の面)に設置されている。
 また、上記凸部13が上記マイクロニードル基部7の貫通孔9の小径部9a内に入り込んだ状態は、後述するように、上記マイクロニードルアレイ1の製造過程において、上記マイクロニードル先部11を構成し目的物質を含んだ溶解又は溶融状態の材料19が上記貫通孔9内に入り込むことにより実現される。
 なお、目的物質とは、冒頭でも述べたように、薬物等を意味している。又、溶解とは目的物質を含んだ材料が別の溶剤等に溶けている状態を意味し、溶融とは目的物質を含んだ材料自身が別途溶剤等を要することなく溶けている状態を意味する。
 また、上記マイクロニードル5のマイクロニードル基部7は、既に述べたように、上記基板3上に突出・形成されたものであり、上記基板3と一体に設けられたものである。
 また、上記マイクロニードル先部11は、基剤としての生体内可溶性材料又は生分解性材料に上記マイクロニードルアレイ1によって投与される目的物質を混合した溶解又は溶融状態の材料を固化させたものである。
 また、上記基板3及び上記マイクロニードル基部7は樹脂製であり、この第1の実施の形態の場合は、生分解性樹脂、生体適合性樹脂、及び、生体内非可溶性の樹脂から選択される樹脂、またはこれらの混合物が用いられる。
 また、上記基板3及び上記マイクロニードル基部7は、人体への安全性を考慮すれば、ポリ乳酸、ポリグリコール酸、或いは、乳酸-グリコール酸共重合体、ポリジオキサノンなどの生分解性樹脂、又はこれらの混合物から構成されることが好ましく、より好ましくは、強度に優れるポリグリコール酸から構成することができる。また、上記基板3及び上記マイクロニードル基部7は、強度や破損し難いなどの点から、ポリカーボネート、ポリエチレンテレフタレート、ポリスチレン等の生体内非可溶性の汎用性樹脂から構成されることも考えられる。
 生体適合性樹脂としては、例えばポリプロピレンやテフロン(登録商標)、ポリウレタンなどがあり、それらの単独又は混合物が挙げられる。
 また、上記マイクロニードル基部7の大きさとしては、マイクロニードルの刺さりやすさや強度、製造しやすさ等を考慮すると、直径は50~800μm程度で、好ましくは100~500μm程度、より好ましくは100~300μmである。また、基部7の高さは、アスペクト比(高さ÷直径)が5以下、好ましくは3以下、より好ましくは2以下になるように設定することが強度、製造の点から好ましい。また、基部7の本数としては、最終的に形成されるマイクロニードルアレイ1の必要な薬剤量に応じて適宜設定されるが、1cmあたり5~1000本程度、好ましくは10~800本、より好ましくは100~500本である。
 また、基板3のサイズとしては、四角形の場合は、一辺1~50mm、好ましくは一辺約5~30mm、より好ましくは約10~20mm程度に、円形の場合は、好ましくは直径を1~50mm、好ましくは5~30mm、より好ましくは約10~20mmにすると、取り扱いが有利である。
 また、上記基板3及び上記マイクロニードル基部7は、コストや量産性の面から射出成形やホットエンボス、ナノインプリントなどの各種成形法によって製造するのが好ましい。
 また、上記貫通孔9は上記基板3及び上記マイクロニードル基部7の成形後にレーザー加工などで穿孔してもよいが、好ましくは上記基板3及び上記マイクロニードル基部7の成形と同時に形成するのがよい。上記基板3及び上記マイクロニードル基部7の成形と同時に上記貫通孔9を形成する場合、上記基板3及び上記マイクロニードル基部7の成形に用いる図示しない型には、予め、上記貫通孔9に対応する部位に、凸部などが設けられることになる。
 また、上記マイクロニードル先部11の材料の基剤としては、水溶性の紫外線硬化樹脂や生体内溶解性の物質であってもよく、生体内溶解性でない物質であってもよく、あるいはこれらの混合物であってもよい。さらにその他添加剤を加えることも可能である。生体内溶解性物質の例を挙げると、糖類としては、コンドロイチン硫酸、ヒアルロン酸、ヘパリン、アミロース、アミロペクチン、グリコーゲン、セルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート、デキストリン、シクロデキストリン、デキストラン、デキストラン硫酸、アルギン酸、アガロース、キトサン、ペクチン、グルコマンナン、プルラン、スクロース、ラクトース、トレハロース、マルトース等およびこれらの塩が適用可能であり、ポリマー類としては、ポリビニルピロリドン、ポリビニルアルコール、カルボキシビニルポリマー、ポリアクリル酸系ポリマー、ポリエチレンオキシド、等およびこれらの塩、またはこれらの2種以上の混合物が適用可能である。好ましくはコンドロイチン硫酸、ヒアルロン酸、ポリビニルピロリドンおよびこれらの塩、またはこれらの2種以上の混合物が適用される。
 生体内溶解性でない物質の例を挙げると、エチルセルロース、メチルメタクリレート・メタクリル酸共重合体、メチルアクリレート・メタクリル酸共重合体、セルロースアセテートフタレート、ポリ乳酸、ポリグリコール酸、乳酸-グリコール酸コポリマー等およびこれらの塩、またはこれらの2種以上の混合物が適用可能である。好ましくはポリ乳酸、ポリグリコール酸、乳酸-グリコール酸コポリマー等およびこれらの塩、またはこれらの2種以上の混合物が適用される。
 水溶性の紫外線硬化樹脂を用いる場合は、ビニル基などの重合部位を持った分子を充填後に紫外線照射で重合を励起させるため、具体的にはビニルピロリドン、スチレン、スチレンスルホン酸、アクリル酸、メタクリル酸、アクリルアミド、イソプロピルアクリルアミド、エチレンイミン、アリルアミン等およびこれらの塩、またはこれらの2種以上の混合物が用いられる。好ましくはビニルピロリドン、アクリル酸、メタクリル酸等およびこれらの塩、またはこれらの2種以上の混合物が用いられる。
 その他添加物としては、コラーゲン、ゼラチン、血清アルブミン、ポリグルタミン酸等およびこれらの塩、またはこれらの2種以上の混合物が適用可能である。
 また、概ね上記マイクロニードル5の直径は、50~800μm、好ましくは100~500μm程度、より好ましくは100~300μmである。マイクロニードル5の長さ(図2中上下方向長さ)は200~1000μm程度が好ましく、より好ましくは300~800μmである。強度の点からマイクロニードル先部11の長さは、全体の長さの半分以下が好ましい。
 なお、説明の都合上、マイクロニードル5の数を9個として模式的に示して説明しているが、実際には、多数のマイクロニードル5が設けられており、既に基部7の数として説明したが、例えば、1cmあたり5~1000本、好ましくは10~800本程度、より好ましくは100~500本である。
 但し、本願発明の範囲には、上記マイクロニードル5が1本の場合も含まれる。
 第1の実施の形態によるマイクロニードルアレイ1の形状としては、四角形や円形が適切であるが、本発明の目的を達成しうる限り、これ以外の形状であってもよい。
 第1の実施の形態によるマイクロニードルアレイ1の大きさとしては、既に基板3の大きさとして説明したが、例えば、四角形の場合は一辺を約1~50mm、好ましくは約5~30mm、より好ましくは約10~20mmに、円形の場合は直径を約1~50mm、好ましくは約5~30mm、より好ましくは約10~20mmにすると、取り扱いが有利である。
 また、マイクロニードルアレイ1の基板3の表面には、皮膚に貼付するための粘着層を設けることも考えられる。粘着剤としてはアクリル系粘着剤、ゴム系粘着剤、シリコン系粘着剤等が考えられるが、その中でもより好ましくはアクリル系粘着剤あるいはシリコン系粘着剤などの医療用テープに採用されている粘着性物質である。また、粘着層の厚さとしては、例えば、1~200μm、好ましくは5~150μm程度、より好ましくは10~100μmである。
 また、第1の実施の形態における目的物質には、繰り返しになるが、薬物等が含まれており、目的物質を薬物とすることで、第1の実施の形態におけるマイクロニードルアレイ1は、哺乳動物(例えば、ヒト、サル、ヒツジ、ウマ、イヌ、ネコ、ウサギ、ラット、マウスなど)の薬物による治療及び予防等を目的として適用される。
 上記マイクロニードルアレイ1の使用方法としては、上記哺乳動物の皮膚上のいずれの場所にも適用することができ、凹凸を有する部位にも使用される。
 上記マイクロニードルアレイ1による目的物質の投与量は、症状の程度、投与対象の年齢、性別、体重、投与の時期、間隔、有効成分の種類などによって異なるが、医薬活性成分としての投与量が有効量となる範囲から選択すればよい。また、上記マイクロニードルアレイ1による目的物質の投与は、1日1回または2~3回に分けて行われることも考えられる。
 適応可能な薬物としては、黄体形成ホルモン放出ホルモンアナログ、インスリン、超速効型インスリンアナログ、持効型インスリンアナログ、超持効型インスリンアナログ、成長ホルモン、PEG化ヒト成長ホルモンアナログ、ソマトメジンC、ナトリウム利尿ペプチド、グルカゴン、卵胞刺激ホルモン、GLP-1アナログ、副甲状腺ホルモンアナログなどのホルモン類、t‐PA、グルコセレブロシダーゼ、αガラクトシダーゼA、α‐L-イズロニダーゼ、酸性α‐グルコシダーゼ、イズロン酸2スルファターゼ、ヒトN‐アセチルガラクトサミン‐4‐スルファターゼ、尿酸オキシダーゼ、DNA分解酵素などの酵素類、血液凝固第VIII因子、血液凝固第VII因子、血液凝固第IX因子、トロンボモデュリンなどの血液凝固線溶系因子、アルブミンなどの血清タンパク質、インターフェロンα、インターフェロンβ、インターフェロンγ、PEG化インターフェロンαなどのインターフェロン類、エリスロポエチン、エリスロポエチンアナログ、PEG化エリスロポエチンなどのエリスロポエチン類、G‐CSF、G‐CSF誘導体、インターロイキン‐2、bFGFなどのサイトカイン類、マウス抗CD3抗体、ヒト化抗EGF受容体抗体、キメラ型抗CD20抗体、ヒト化抗RSウイルス抗体、キメラ型抗TNFα抗体、キメラ型抗CD25抗体、ヒト化抗IL6受容体抗体、カリケアマイシン結合ヒト化抗CD33抗体、ヒト化抗VEGF抗体、MX‐DTPA結合マウス抗CD20抗体、ヒト抗TNFα抗体、キメラ型抗EGFR抗体、ヒト化抗VEGF抗体フラグメント、ヒト化抗IgE抗体、ヒト抗補体C5抗体、ヒト抗EGFR抗体、ヒト抗IL12/IL23‐p40抗体、ヒト抗TNFα抗体、ヒト抗IL‐1β抗体、ヒト抗RANKL抗体、ヒト化抗CCR4抗体、PEG化ヒト化抗TNFα抗体Fabなどの抗体、可溶性TNF受容体Fc融合タンパク質、CTLA4‐改変Fc融合タンパク質、Fc‐TPORアゴニストペプチド融合タンパク質、VEGFR‐Fc融合タンパク質などの融合タンパク質、破傷風トキソイド、ジフテリアトキソイド、百日せきワクチン、不活化ポリオワクチン、生ポリオワクチン、ジフテリア破傷風混合トキソイド、百日せきジフテリア破傷風混合ワクチン、インフルエンザ菌b型(Hib)ワクチン、B型肝炎ワクチン、A型肝炎ワクチン、インフルエンザHAワクチン、狂犬病ワクチン、日本脳炎ワクチン、ワイル病秋やみ混合ワクチン、肺炎球菌ワクチン、ヒトパピローマウイルスワクチン、おたふくかぜワクチン、水痘ワクチン、風しんワクチン、麻しんワクチン、ロタウイルスワクチン、ノロウィルスワクチン、RSVワクチン、BCGワクチンなどのワクチン類、さらには、薬物の活性を補助する効果や免疫系調節効果を有する物質も本願発明の薬物に含まれ、例えば、一般にワクチン製剤を製造する場合に使用されるアジュバントなどが考えられる。アジュバントとしては、難水溶性アジュバント、親水性ゲルアジュバント又は水溶性アジュバントを挙げることができ、難水溶性アジュバントとしては、例えばレチノイン酸などのレチイミド、イミキミド、及びResquimod(R‐848)、4‐amino‐α,α,2‐dimethyl‐1H‐imidazo[4,5‐c]quinoline‐1‐ethanol(R‐842(3M Pharmaceuticals製等);Journal of Leukocyte Biology(1995) 58: 365‐372参照)、4‐amino‐α,α,2‐trimethyl‐1H‐imidazo[4,5‐c]quinoline‐1‐ethanol(S‐27609(3M Pharmaceuticals製等);Journal of Leukocyte Biology(1995) 58: 365~372参照)、及び4‐amino‐2‐ethoxymethyl‐α,α‐dimethyl‐1H‐imidazo[4,5‐c]quinoline‐1‐ethanol(S‐28463(3M Pharmaceuticals製等);Antivirul Research (1995) 28: 253~264参照)などのイミダゾキノリン類、Loxoribine、Bropirimine、オレイン酸、流動パラフィン、フロイント等がある。親水性ゲルアジュバントとしては、例えば、水酸化アルミニウム、リン酸アルミニウム等が挙げられる。水溶性アジュバントとしては、例えば、α‐ディフェンシン、β‐ディフェンシン、カテリシジン、アルギン酸ナトリウム、poly[di(carboxylatophenoxy)phosphazene]、Quil A、ポリエチレンイミン等が挙げられる。好ましいアジュバントとしては親水性ゲルアジュバントおよび水溶性アジュバントである。親水性ゲルアジュバントについて、好ましくは水酸化アルミニウム、リン酸アルミニウムが挙げられる。
 また、上記マイクロニードルアレイ1のうち、目的物質がワクチンの場合は特に有用であり、その場合の治療及び予防に必要な量のワクチン抗原を上記マイクロニードルアレイ1のマイクロニードル先部11に含有させることができる。
 目的物質がワクチンである場合の対象疾患とその場合に必要な量は、日本であれば厚生労働省より公示されている生物学的製剤基準に記載されており、日本国外では各国のそれに順ずる公定書などに記載されている。投与する薬物量は、ワクチン接種目的(初回、追加接種など)、混合ワクチンであるか否か、接種患者の年齢、製造業者、ウイルス株、型などによって一律には定義できないため、一般的に使用されている薬物量を一例として記載するが、本発明への適用はこの記載量に限るものではない。
 例えば、上記薬物量としては、(1)破傷風;2.5~5Lf、(2)ジフテリア;15~25Lf、(3)百日せき;4単位以上、(4)ポリオ;I型1.5DU、II型50DU、III型50DU、(5)インフルエンザ菌b型(Hib);多糖として10マイクログラム、(6)B型肝炎;5~10マイクログラム、(7)A型肝炎;0.5マイクログラム、(8)インフルエンザHA;各株30マイクログラム以上、(9)狂犬病;107LD50以上、(10)日本脳炎;参考品と同等以上、(11)ワイル病秋やみ;3単位以上、(12)肺炎球菌;多糖として各型1~25マイクログラム、(13)ヒトパピローマウイルス;各型20~40マイクログラム、(14)おたふくかぜ;5000CCID50以上、(15)水痘;1000PFU以上、(16)風しん;1000PFU以上、(17)麻しん;5000CCID50以上、(18)ロタウイルス;106CCID50以上、(19)ノロウィルス;5~150マイクログラム、(20)RSV;5~60マイクログラム、(21)BCG;12ミリグラムが挙げられる。
 第1の実施の形態によるマイクロニードルアレイ1は、前記薬物による治療及び予防等に有用であり、低毒性で安全な製剤である。
 また、上記マイクロニードルアレイ1は、他の製剤、例えば経口投与製剤や注射剤と併用することも考えられる。
 第1の実施の形態によるマイクロニードルアレイ1は、次のようにして、製造されるものである。
 上記マイクロニードルアレイ1の製造には、図5及び図6に示すような雌型15を用いる。この雌型15には、複数のマイクロニードル成形用凹部17が形成されている。このマイクロニードル成形用凹部17は、図6に示すように、既に述べたマイクロニードル5の形状に対応した形状となっており、円筒形凹部17aと逆円錐形凹部17bとから構成されている。
 また、第1の実施の形態の場合、上記雌型15の材質は、弾性の点でエラストマーが好ましく、成形性の点で熱可塑性エラストマーやシリコーンゴム、ポリウレタンゴムがより好ましい。また、上記雌型15のショア硬度は、A5~A70程度が好ましいが、A20~A50がより好ましい。
 上記雌型15のマイクロニードル成形用凹部17の直径は50~800μm、好ましくは100~500μm程度、より好ましくは100~300μmである。マイクロニードル成形用凹部17の最長部の深さは300~1200μm、好ましくは500~1000μm程度、より好ましくは400~800μmである。マイクロニードル成形用凹部17の数は1cmあたり5~1000、好ましくは10~800個程度が好ましく、より好ましくは100~500本である。上記雌型15の厚さは0.3~10mm、好ましくは0.5~5mm程度、より好ましくは0.5~2mmである。上記雌型15の大きさは5~50mm角又は直径、好ましくは5~30mm角又は直径、より好ましくは10~20mm角又は直径である。
 また、上記雌型15は、コストや量産性の点から射出成形や注型によって製造されるのが好ましい。
 また、上記雌型15に上記基板3を嵌合させる際の作業性から、上記雌型15を透明な材質により構成することも考えられる。
 また、上記マイクロニードル成形用凹部17の寸法(円筒形凹部17aの直径)は上記マイクロニードル基部7の寸法(直径)よりも若干小さめに設定されている。より具体的には、上記マイクロニードル成形用凹部17の円筒形凹部17aの直径を、上記マイクロニードル基部7の直径よりも1~100μm程度、好ましくは5~80μm程度、より好ましくは10~50μm程度小さくする。それによって、上記雌型15に上記基板3を嵌合させた際、マイクロニードル基部7と上記マイクロニードル成形用凹部17との間に隙間が発生することはなく、不用意な液漏れや、上記基板3の上記雌型15からの不用意な脱落を防止することができる。
 但し、当該寸法が同一の場合も本願発明に含む。
 第1の実施の形態によるマイクロニードルアレイ1の製造は、次のような手順で行う。
 まず、図7(a)に示すように、上記雌型15と、既に説明した基板3を用意する。
 次に、図7(b)に示すように、例えば、ラミナーフロー下で、上記基板3のマイクロニードル基部7を上記雌型15のマイクロニードル成形用凹部17に挿入することで、上記基板3と上記雌型15を上記ラミナーフローと垂直に嵌合させる。
 次に、図7(c)に示すように、上記雌型15のマイクロニードル成形用凹部17内に、上記基板3の貫通孔9を介して、マイクロニードル先部11を構成する材料19を注入する。この材料19は、前述したような基剤としての生分解性樹脂、生体適合性樹脂、生体内非可溶性樹脂、紫外線硬化樹脂、及び、生体内溶解性樹脂から選択される樹脂、またはこれらの混合物に目的物質を混合し、溶解又は溶融状態としたものである。このとき、注入された上記材料19の一部は、上記基板3の貫通孔9内に残留する。上記材料19の上記マイクロニードル成形用凹部17内への注入は、例えば、ディスペンサー、インクジェット、ポッティング、分注、シリンジ等によって行われる。また、上記マイクロニードル成形用凹部17内の空気によって上記材料19の注入が難しい場合には、真空中で注入を行うか、空気を逃がす小さい溝などを上記マイクロニードル基部7又は上記雌型15の一部に設けることが考えられる。
 所定の養生期間経過後、上記材料19は固化されてマイクロニードル先部11となり、複数のマイクロニードル5を備えたマイクロニードルアレイ1が構成される。
 その後、図7(d)に示すように、完成した上記マイクロニードルアレイ1を上記雌型15から離型させる。この上記マイクロニードルアレイ1の上記雌型15からの離型は、上記マイクロニードルアレイ1の完成直後、又は、上記マイクロニードルアレイ1を使用する直前に行われる。
 また、上記マイクロニードルアレイ1を離型させた後の上記雌型15は再利用することも可能であるが、衛生面等での安全性の点から好ましくは使い捨てがよい。特に、使用直前に上記マイクロニードルアレイ1を上記雌型15から離型させる場合には、上記雌型15は必然的に使い捨てとなる。
 また、別のマイクロニードルアレイ1の製造方法を図8を参照しながら説明する。
 まず、図8(a)に示すように、雌型15のマイクロニードル成形用凹部17内に、予め、材料19を注入しておく。この材料19の上記マイクロニードル成形用凹部17内への注入は、例えば、ディスペンサー、インクジェット、スプレー、ポッティング、分注、シリンジ、印刷、スキージ等によって行われる。
 次に、図8(b)、図8(c)に示すように、ラミナーフロー下で、ラミナーフローと垂直に、上記基板3のマイクロニードル基部7を上記雌型15のマイクロニードル成形用凹部17に挿入することで、上記雌型15に上記基板3を嵌合させる。このとき、上記基板3の貫通孔9内に材料19の一部が浸入する。
 所定の養生期間経過後、上記材料19は固化されてマイクロニードル先部11となり、複数のマイクロニードル5を備えたマイクロニードルアレイ1が構成される。
 その後、図8(d)に示すように、完成した上記マイクロニードルアレイ1を上記雌型15から離型させる。
 上記マイクロニードルアレイ1が使用される際には、図9(a)に示すように、個々のマイクロニードル5が穿刺対象である皮膚21に穿刺される。やがて、時間の経過とともに、上記皮膚21内の水分や熱などによって、マイクロニードル先部11が徐々に上記皮膚21内に溶けて拡散していく。
 また、穿刺後に上記マイクロニードル先部11が全て上記皮膚21内に溶けて拡散していくまで、上記マイクロニードルアレイ1をそのまま放置する場合も考えられるが、穿刺直後に上記マイクロニードルアレイ1の基板3を上記皮膚21から離間させ、上記マイクロニードル先部11のみが上記皮膚21内に残留されるようにする場合も考えられる。この場合は、上記マイクロニードル先部11が上記皮膚21内に溶けて拡散していく間、上記基板3を上記皮膚21表面に貼り付けておかなくてもよいという利点がある。
 しかし、単に上記マイクロニードルアレイ1の基板3を上記皮膚21から離間させるのみでは、上記マイクロニードル先部11も上記基板3とともに上記皮膚21内から離脱してしまうことが懸念される。
 そこで、本実施の形態においては、図9(b)に示すような押出用治具23を用いる。すなわち、図9(b)に示すように、上記押出用治具23を上記基板3の貫通孔9内に挿入して、上記基板3を上記皮膚21から離間させる際にマイクロニードル先部11を押し出すようにする。これにより、上記皮膚21内には、上記マイクロニードル先部11が残留される。
 押出用治具23の材質としては、汎用的なプラスチックや金属などが考えらえるが使い捨てを前提とした場合、コストの点から成形が可能なプラスチックが好ましく、量産性に優れる射出成形により製造するのがより好ましい。
 上記押出用治具23には、図9(b)、図9(c)に示すように、上記基板3の貫通孔9に対応する複数の凸部25が形成されている。この凸部25により、上記マイクロニードル先部11の凸部13を付勢し、上記マイクロニードル先部11を上記貫通孔9内から押し出すようにする。
 また、このほかにも、上記押出用治具23のような押出用治具を使用しない場合も考えられる。例えば、上記貫通孔9から圧縮空気を送り込むことで、空気圧によって上記マイクロニードル先部11を上記貫通孔9内から押し出すことも考えられる。
 以上の構成を基に、第1の実施の形態によるマイクロニードルアレイ1の作用、すなわち、上記マイクロニードルアレイ1による穿刺と、皮膚内での目的物質の溶解及び拡散について説明する。
 まず、上記マイクロニードルアレイ1は、図9(a)に示すように、皮膚21に穿刺される。このとき、マイクロニードル先部11は時間の経過とともに上記皮膚21内の水分や熱などによって徐々に溶解し、上記皮膚21内に拡散される。このようにして、上記マイクロニードル先部11に含まれる目的物質が上記皮膚21内に投与される。
 また、穿刺後、上記マイクロニードルアレイ1をそのまま放置する場合と、穿刺した直後に基板3を上記皮膚21から離間させる場合がある。
 上記マイクロニードルアレイ1をそのまま放置した場合は、上記マイクロニードル先部11の内、貫通孔9内の部分はマイクロニードル基部7に囲まれているため、上記マイクロニードル先部11の上記皮膚21側の部分に比べて、目的物質はゆっくり溶解、及び、拡散される。
 一方、上記基板3を上記皮膚21から離間させた場合は、マイクロニードル先部11と上記貫通孔9の中に入っていた部分13も上記皮膚21に直接覆われるため、その両方から目的物質が溶解、及び拡散することとなり、上記マイクロニードルアレイ1をそのまま放置する場合に比べると、目的物質がより早く溶解、及び、拡散される。
 また、単に上記基板3を上記皮膚21から離間させようとするのみでは、上記マイクロニードル先部11も共に上記皮膚21の外へと離脱してしまうことが考えられる。このような場合は、図9(b)、図9(c)に示すように、押出用治具23を用いて上記マイクロニードル先部11を基板3の貫通孔9内から押し出して、上記マイクロニードル先部11のみが上記皮膚21内に残留されるようにする。
 以上、本実施の形態によると、次のような効果を奏することができる。
 上記マイクロニードルアレイ1のマイクロニードル5は、基板3と一体に形成されたマイクロニードル基部7と、このマイクロニードル基部7に設置され目的物質が含まれるマイクロニードル先部11とから構成されている。そのため、上記マイクロニードル基部7によって、上記マイクロニードル5の強度が確保され、確実な穿刺と目的物質の投与を行うことができる。
 また、マイクロニードル基部7の直径が長さ方向(図2中上下方向)に同一であるために、皮膚21に深く刺した場合でも穿刺抵抗が大きくならず、穿刺が容易に行える。
 また、上記基板3及びマイクロニードル基部7が生分解性又は生体適合性材料から構成されている場合は、万一、上記マイクロニードル基部7が上記皮膚21内で破損したとしても、人体への危険性が極めて小さい。また、高齢者や小児であっても、容易に扱うことができる。
 また、上記基板3及びマイクロニードル基部7が生体内非可溶性の樹脂から構成した場合は、上記マイクロニードル基部7が体内で溶け出すことがなく、人体への危険性がきわめて小さなものとなる。
 また、上記基板3にはマイクロニードル先部入り込み用凹部としての貫通孔9が形成されており、上記マイクロニードルアレイ1の製造過程において、上記マイクロニードル先部11を構成する溶解又は溶融状態の材料19が上記貫通孔9内に浸入/残留することにより、上記マイクロニードル先部11の凸部13が上記貫通孔9内に入り込んだ構成となっている。そのため、上記マイクロニードル先部11を上記マイクロニードル基部7に確実に設置し、上記マイクロニードル先部11の上記マイクロニードル基部7からの不用意な脱落を確実に防止することにより、確実な穿刺と目的物質の投与を行うことができる。
 また、穿刺後、上記マイクロニードルアレイ1をそのまま放置する場合と、穿刺した直後に基板3を上記皮膚21から離間させる場合があるが、上記マイクロニードルアレイ1をそのまま放置した場合は、上記マイクロニードル先部11の内、貫通孔9内の部分はマイクロニードル基部7に囲まれているため、上記マイクロニードル先部11の上記皮膚21側の部分に比べてゆっくり溶解・拡散され、目的物質を徐々に放出させることができる。
 一方、上記基板3を上記皮膚21から離間させた場合は、マイクロニードル先部11と上記貫通孔9の中に入っていた部分13も上記皮膚21に直接覆われるため、その両方から目的物質が溶解、及び拡散することとなり、上記マイクロニードルアレイ1をそのまま放置する場合に比べると、上記目的物質をより早く溶解、及び、拡散させることができる。
 また、上記マイクロニードルアレイ1を皮膚21に対して穿刺した直後に上記基板3を上記皮膚21から離間させる際、押出用治具23の凸部25を上記貫通孔9内に挿入し、上記マイクロニードル先部11を押し出すことによって、上記マイクロニードル先部11のみを確実に皮膚21内に残留させることができる。
 また、上記マイクロニードルアレイ1の製造は、上記マイクロニードル5の形状に対応したマイクロニードル成形用凹部17が形成された雌型15を用いて行われるため、上記マイクロニードル5を有する上記マイクロニードルアレイ1を容易に製造することができる。
 また、基板3の雌型15への嵌合はラミナーフロー下で行うことができ、その際、エアーを基板3の雌型15への嵌合方向に対して直行する方向から供給することで、マイクロニードル成形用凹部17内に菌が入り込むことを防止することができ、結局、上記マイクロニードルアレイ1を無菌状態で製造することができる。
 また、先に上記材料19を上記マイクロニードル成形用凹部17内へ注入した後、上記雌型15に上記基板3を嵌合させて上記マイクロニードルアレイ1を製造した場合は、上記雌型15に基板3が嵌合されていない状態で上記材料19の注入作業を行うため、上記材料19の上記マイクロニードル成形用凹部17内への注入作業が容易である。また、上記材料19の注入量の調整も行いやすい。
 また、上記雌型15を用いたマイクロニードルアレイ1の製造において、上記基板3を上記雌型15に嵌合させる際、上記貫通孔9が空気抜きとして作用し、上記基板3の上記雌型15に対する嵌合を容易に行うことができる。また、余剰の材料19を上記貫通孔9内に逃がすこともできる。この場合、マイクロニードル先部11の一部が上記貫通孔9内に入り込むため、上記マイクロニードル先部11がマイクロニードル基部7に係合され、上記マイクロニードル先部11が上記マイクロニードル基部7から不用意に離脱するような不具合を防止することができる。
 また、上記雌型15を用いたマイクロニードルアレイ1の製造において、上記材料19を固化させる際、上記基板3の貫通孔9によって、上記材料19中の水分や溶剤の蒸発・気化を効率よく行うことができる。
 また、上記雌型15は、エラストマーから成るとともに上記マイクロニードル成形用凹部17の直径は上記マイクロニードル基部7の直径よりも若干小さめ(10~50μm程度小さく)に設定されているため、マイクロニードルアレイ1の製造において上記材料19の漏れを防ぐことができる。
 但し、当該寸法が同一の場合も本願発明に含む。 また、上記雌型15の弾性力により完成したマイクロニードルアレイ1の離型が容易である。
 さらに、上記雌型15の弾性変形によって、基板3のマイクロニードル基部7と上記雌型15のマイクロニードル成形用凹部17との配置に若干のずれがあっても、上記雌型15に上記基板3を確実に嵌合させることができる。
 以下、本願の別の実施の形態について説明するが、記載していない事項(例えば、材料、大きさ、目的物質、作用、効果)については、全て前記第1の実施の形態の記載と同意義である。
 次に、図10を参照して、本発明の第2の実施の形態を説明する。
 この第2の実施の形態によるマイクロニードルアレイは、前記第1の実施の形態によるマイクロニードルアレイ1と同様の構成を成すものであるが、図10に示すような雌型27を用いて製造されるものである。
 なお、それ以外は前記第1の実施の形態の場合と同じであり、説明の都合上、マイクロニードルアレイ1等の符号についてはそのまま使用して説明する。
 上記雌型27は、前記第1の実施の形態による雌型15と同様に、マイクロニードル成形用凹部29が形成されている。
 また、図10に示すように、上記マイクロニードル成形用凹部29の図10中上端縁部には、それぞれ凸部31が形成されている。この凸部31は、上記雌型27に既に述べた基板3を嵌合させた際、マイクロニードル基部7によって貫通されるとともに、上記基板3に当接される。基板3のマイクロニードル基部7と雌型27のマイクロニードル成形用凹部29との間に配置のずれが生じた場合でも、上記凸部31が変形することで、上記配置のずれを吸収し、上記基板3のマイクロニードル基部7の上記雌型27のマイクロニードル成形用凹部29への挿入が容易になる。ここで凸部31は雌型27を射出成形等により製造する際に、一体に設けることができる。この場合、図示しない成形用型には凸部31に相当する部位を設けることになる。凸部31の高さは、必要なマイクロニードル5の長さや目的物質の量に応じて適宜設定できるが、10~500μm、好ましくは30~300μm、より好ましくは50~200μmである。凸部31の外直径は、200~1000mm、好ましくは300~1800μm、より好ましくは500~800μmである。
 また、上記凸部31の図10中上下方向の長さを調製することで、上記基板3のマイクロニードル基部7が上記雌型27のマイクロニードル成形用凹部29内に挿入される長さを調整することができる。これにより、製造されるマイクロニードルアレイ1のマイクロニードル先部11の大きさを容易に調整することができる。また、上記凸部31の内直径を上記マイクロニードル成形用凹部29の直径より若干大きくしても良い。この場合には、上記マイクロニードル成形用凹部29の上部(図10中上側)が広くなり、上記材料19を注入し易くなる。
 但し、当該寸法が同一の場合も本願発明に含む。 
 また、上記基板3と上記雌型27とが嵌合された状態では、上記凸部31によって上記凸部31周辺に空間ができる。そのため、空気や目的物質の揮発成分が抜けやすくなり材料19の乾燥のための養生期間が短縮できる。また、上記凸部31に空気逃げ用のスリット(マイクロニードル成形用凹部29から外向きのスリット)などを設けることも考えられ、この場合は、上記材料19の乾燥のための養生期間をさらに短縮することができる。ここでスリットは凸部31を成形する際に凸部31の表面の一部に一体で形成するのが好ましい。スリットサイズとしては空気が抜ければよいので幅が0.01~50μm、好ましくは0.05~20μm、より具体的には0.1~5μm程度が好ましい。
 次に、図11を参照して、本発明の第3の実施の形態を説明する。
 この第3の実施の形態によるマイクロニードルアレイ37は、基板39と、この基板39上に設置された複数のマイクロニードル41とから構成されている。上記基板39は、前記第1の実施の形態によるマイクロニードルアレイ1の基板3とほぼ同様の構成であり、マイクロニードル基部42が一体に突出・形成されている。このマイクロニードル基部42は、前記第1の実施の形態におけるマイクロニードル基部7と略同様の構成で、略円柱形状となっているが、その上端面から略円錐形状の突起43が突出・形成されている。この突起43の底部(図11中下端部)の直径は、上記マイクロニードル基部42の略円柱形状の部分の直径よりも小さく設定されている。また、マイクロニードル基部42の上端面には、上記突起43を覆うようにして、マイクロニードル先部45が設置されている。このマイクロニードル先部45には、上記突起43の形状に対応した凹部47と、この凹部47の中央から突出され上記マイクロニードル基部42の貫通孔9内に入り込む凸部49が形成されている。マイクロニードル基部42の長さについては、前記第1の実施の形態によるマイクロニードル基部7とほぼ同様の長さでよいが、突起43の長さを先部45の長さに応じて変えることもできる。より具体的には突起43の長さは、5~500μm、好ましくは10~300μm、より好ましくは50~200μmである。
 この第3の実施の形態によるマイクロニードルアレイ37によれば、前記第1の実施の形態によるマイクロニードルアレイ1と同様の作用・効果を奏することができるほか、上記突起43により上記マイクロニードル41の強度を更に高めることができる。
 なお、上記基板39について、前記第1の実施の形態によるマイクロニードルアレイ1の基板3と共通する構成要素については同じ符号を付しその説明を省略した。
 次に、図12を参照して、本発明の第4の実施の形態を説明する。
 この第4の実施の形態によるマイクロニードルアレイ51は、基板53と、この基板53上に設置された複数のマイクロニードル55とから構成されている。上記基板53は、前記第1の実施の形態によるマイクロニードルアレイ1の基板3とほぼ同様の構成であり、マイクロニードル基部57が一体に突出・形成されている。このマイクロニードル基部57は、図12中下側は略円柱形状であるが、図12中上側が略円錐形状の突起58となっている。この突起58の底部(図12中下端部)の直径は、上記マイクロニードル基部57の略円柱形状の部分の直径と等しくなるよう設定されている。ここで円柱部の長さは、100~1000μm、好ましくは200~800μm、より好ましくは300~500μm程度である。
 また、上記マイクロニードル基部57の先端側にはマイクロニードル先部59が設置されている。このマイクロニードル先部59は、その先端側(図12中上側)が、前記第1の実施の形態によるマイクロニードルアレイ1のマイクロニードル先部11と同様に略円錐形状を成しているが、基端側(図12中下側)が略円柱形状となっており、その外周面に垂直部60が形成されている。また、上記マイクロニードル先部59には、上記マイクロニードル基部57の突起58の形状に対応した凹部61と、この凹部61の中央から突出され上記マイクロニードル基部57の貫通孔9内に入り込む凸部63が形成されている。
 この第4の実施の形態によるマイクロニードルアレイ51によれば、前記第3の実施の形態によるマイクロニードルアレイ1と同様の作用・効果を奏することができる。また、マイクロニードル先部59の図12中下側に略円柱形状の垂直部60が設けられており、上記マイクロニードル55が皮膚に穿刺された場合には、この垂直部60によって、上記マイクロニードル先部59と上記皮膚内部との摩擦を生じさせ、上記マイクロニードル先部59が上記皮膚内に確実に残留することになる。。
 この場合、前記第1の実施の形態のように、押出用治具23で上記マイクロニードル先部59を押し出さなくても、上記マイクロニードルアレイ51の穿刺後に基板53を離間させるだけで上記皮膚内に上記マイクロニードル先部59のみを残留させることができる。勿論、押出用冶具23を使用してもよい。
 なお、上記基板53について、前記第1の実施の形態によるマイクロニードルアレイ1の基板3と共通する構成要素については同じ符号を付しその説明を省略した。
 次に、図13を参照して、本発明の第5の実施の形態を説明する。
 この第5の実施の形態によるマイクロニードルアレイ65は、前記第4の実施の形態によるマイクロニードルアレイ51と略同様の構成であるが、マイクロニードル先部59の図13中下側の略円柱形状部分の外周側に、凹凸部67が形成されている。
 この第5の実施の形態によるマイクロニードルアレイ65によれば、前記第4の実施の形態によるマイクロニードルアレイ51と同様の作用・効果を奏することができる。また、マイクロニードル先部59の図13中下側に略円柱形状の部位に凹凸部67が設けられているため、上記マイクロニードル55が皮膚に穿刺された場合には、上記凹凸部67によって上記マイクロニードル先部59と上記皮膚内部との摩擦を生じさせ、上記マイクロニードル先部59が上記皮膚内により確実に残留されるようにすることができる。
 なお、上記マイクロニードルアレイ65について、前記第4の実施の形態によるマイクロニードルアレイ51と共通する構成要素については同じ符号を付しその説明を省略する。
 次に、図14を参照して、本発明の第6の実施の形態を説明する。
 この第6の実施の形態によるマイクロニードルアレイ68は、前記第4の実施の形態によるマイクロニードルアレイ51と略同様の構成であるが、マイクロニードル先部59の形状が略円錐状となっており、その底面(図14中下側の面)の直径がマイクロニードル基部57の直径よりも大きく設定されている。そのため、上記マイクロニードル先部の底部(図14中下側部分)が返し部68aとなっている。
 この第6の実施の形態によるマイクロニードルアレイ68によれば、前記第4の実施の形態によるマイクロニードルアレイ51と同様の作用・効果を奏することができる。また、マイクロニードル先部59には返し部68aが形成されているため、上記マイクロニードル55が皮膚に穿刺された場合には、上記マイクロニードル先部59の返し部68aが皮膚内に係合し、上記マイクロニードル先部59が上記皮膚内に確実に残留することになる。
 この場合も、第1の実施の形態のように、押出用治具23で上記マイクロニードル先部59を押し出さなくても、上記マイクロニードルアレイ68の穿刺後に基板53を離間させるだけで上記皮膚内に先部のみを残留させることができる。勿論、押出用冶具23を使用してもよい。
 また、上記マイクロニードルアレイ68の製造時における問題点として、上記マイクロニードル先部59の形状がいわゆる「アンダーカット形状」となっていることが挙げられる。しかし、例えば、エラストマーから成る雌型を用いれば、上記雌型が弾性体であるため、上記雌型から上記マイクロニードルアレイ68を容易に離型させることができ、問題なく上記マイクロニードルアレイ68を製造することができる。
 なお、上記マイクロニードルアレイ68について、前記第4の実施の形態によるマイクロニードルアレイ51と共通する構成要素については同じ符号を付しその説明を省略する。
 次に、図15を参照して、本発明の第7の実施の形態を説明する。
 第7の実施の形態によるマイクロニードルアレイ69は、基板71と、この基板71上に設置された複数のマイクロニードル73とから構成されている。上記基板71は、前記第1の実施の形態によるマイクロニードルアレイ1の基板3とほぼ同様の構成であるが、略四角柱形状のマイクロニードル基部75が一体に突出・形成されている。また、上記マイクロニードル基部75の先端側には、略四角錐形状、すなわち、横断面形状が矩形(四角形)であるマイクロニードル先部77が設置されている。
 この第7の実施の形態によるマイクロニードルアレイ69によれば、前記第1の実施の形態によるマイクロニードルアレイ1と同様の作用・効果を奏することができる。また、上記マイクロニードル先部77は横断面形状が矩形であるため、上記マイクロニードル73が皮膚に穿刺された際皮膚との間に摩擦力を生じさせ、皮膚内に確実に残留することになる。
 なお、上記基板71について、前記第1の実施の形態によるマイクロニードルアレイ1の基板3と共通する構成要素については、その説明を省略する。
 次に、図16乃至図18を参照して、本発明の第8の実施の形態を説明する。
 この第8の実施の形態によるマイクロニードルアレイには、図16に示すような基板79が用いられている。この基板79には、複数のマイクロニードル基部81が突出・形成されている。このマイクロニードル基部81の外周側には、マイクロニードル先部入り込み用凹部としての1つ又は複数(第8の実施の形態の場合は2つ)の溝83が形成されている。そして、上記マイクロニードル基部81の上端側(図16中上側)には、図示しないマイクロニードル先部が設置される。この図示しないマイクロニードル先部は、例えば、略円錐形状であり、その一部は上記溝83内に入り込んだ状態となる。
 この第8の実施の形態によるマイクロニードルアレイの製造には、図17に示す雌型85が使用される。この雌型85にはマイクロニードル成形用凹部87と、このマイクロニードル成形用凹部87に連通した溝89が形成されている。この溝89は、上記雌型85に上記基板79が嵌合された際に外部と連通する領域まで延長されている。
 この第8の実施の形態によるマイクロニードルアレイは、まず、上記雌型85のマイクロニードル成形用凹部87内に材料19を注入し、その後、上記雌型85に基板79を嵌合させる方法によって製造される。このとき、上記マイクロニードル基部81の溝83と上記雌型85の溝89を介して、上記マイクロニードル成形用凹部87内の空気を逃がすようにしている。また、上記材料19の一部が上記マイクロニードル基部81の溝83内に入り込み、その結果、完成したマイクロニードルアレイをみると、上記図示しないマイクロニードル先部の一部が上記溝83内に入り込んでいる状態となる。
 また、第8の実施の形態によるマイクロニードルアレイの製造に、図18に示す雌型91を使用する場合も考えられる。この雌型91にはマイクロニードル成形用凹部93と、このマイクロニードル成形用凹部93の上側に形成された凸部95と、この凸部95の上端面(図18中上側の端面)に形成され上記マイクロニードル成形用凹部93に連通された上記溝97が形成されている。上記凸部95は、前記第2の実施の形態における雌型27の凸部31と同様のものである。
 この第8の実施の形態によるマイクロニードルアレイは、まず、上記雌型91のマイクロニードル成形用凹部93内に材料19を注入し、その後、上記雌型91に基板79を嵌合させる方法で製造される。このとき、上記マイクロニードル基部81の溝83と上記凸部95の溝97を介して、上記マイクロニードル成形用凹部87内の空気を逃がすようにしている。
 この場合も、上記材料19の一部が上記マイクロニードル基部81の溝83内に入り込み、その結果、完成したマイクロニードルアレイをみると、上記図示しないマイクロニードル先部の一部が上記溝83内に入り込んでいる状態となる。
 上記溝83、89、97の直径(円弧状に設ける場合)、幅/深さ(長方形/正方形で設ける場合)としては、空気は通り易く、材料19は不用意に通らない程度の大きさが良い。具体的には、0.01~100μm、好ましくは0.05~50μm、より好ましくは1~20μm程度である。
 また、前記何れの製造方法の場合も、上記溝89又は上記溝97、及び、上記溝83を介して、乾燥空気を送り込み、上記マイクロニードル先部の材料に含まれる水分や溶剤等の揮発・乾燥を促進することが考えられる。
 この第8の実施の形態によるマイクロニードルアレイによれば、前記第1の実施の形態によるマイクロニードルアレイ1と同様の作用・効果を奏することができる。また、上記マイクロニードル基部81の外周側には溝83が形成されているため、上記マイクロニードルアレイの製造時に、上記雌型85、91に基板79を嵌合させる際、上記溝83が空気抜きの役割を果たし、上記雌型85、91への基板79の嵌合を容易に行うことができる。また、上記溝83を介して上記マイクロニードル先部の材料19に含まれる水分や溶剤等を揮発・乾燥させることができ、上記マイクロニードル先部の材料の固化を効果的に行うことができる。また、上記溝83内部に、余剰の材料19を逃がすこともできる。また、上記基板79に微細な貫通孔を設けないため、本実施の形態によるマイクロニードルアレイはその製造が比較的容易となる。
 また、雌型85には溝89が形成されており、雌型91には溝97が形成されているため、前述した製造時における空気抜きや上記マイクロニードル先部の材料19に含まれる水分や溶剤等の揮発・乾燥を効果的に行うことができる。
 また、上記雌型91には、凸部95が形成されているため、上記凸部95周辺に空間が設けられ、前述した製造時における上記マイクロニードル先部の材料19に含まれる水分や溶剤等の揮発・乾燥を効果的に行うことができる。
 次に、図19乃至図21を参照して、本発明の第9の実施の形態を説明する。この第9の実施の形態によるマイクロニードルアレイに用いられる基板99は、前記第8の実施の形態におけるマイクロニードルアレイの基板79とほぼ同様の構成であるが、図19に示すように、マイクロニードル先部入り込み用凹部としての溝83と連通され上記基板99の裏側(図19中下側)まで貫通された貫通孔101も形成されている。上記貫通孔101は、1つの上記マイクロニードル基部81あたり少なくとも1つ形成されている。
 そして、上記マイクロニードル基部81の上端側(図19中上側)には、図示しないマイクロニードル先部が設置される。この図示しないマイクロニードル先部は、例えば、略円錐形状であり、その一部は上記溝83内に入り込んだ状態となる。
 なお、上記基板99の構成要素のうち、前記第8の実施の形態における基板79と共通する構成要素については同一の符号を付し、その説明を省略する。
 この第9の実施の形態によるマイクロニードルアレイの製造には、図20に示すように、既に述べた第8の実施の形態における雌型85と略同様の雌型103が使用される。この雌型103にはマイクロニードル成形用凹部105と、このマイクロニードル成形用凹部105に連通した溝107が形成されている。この溝107には、上記雌型103に上記基板99が嵌合された際に外部と連通する図示しない開口部が設けられている。
 この第9の実施の形態によるマイクロニードルアレイを、まず、上記雌型103のマイクロニードル成形用凹部105内に材料19を注入し、その後、上記雌型103に基板99を嵌合させる方法で製造する場合、上記マイクロニードル基部81の溝83と上記雌型103の溝107、及び、上記基板99の貫通孔101を介して、上記マイクロニードル成形用凹部105内の空気を逃がすようにしている。
 また、先に、上記雌型103に基板99を嵌合させ、その後、貫通孔101を介して、上記雌型103のマイクロニードル成形用凹部105内に材料19を注入する場合は、上記溝83及び溝107を介して、上記マイクロニードル成形用凹部105内の空気を逃がすようにしている。
 また、前述した何れの製造方法を行う場合においても、上記貫通孔101、上記溝107、及び、上記溝83を介して、乾燥空気を送り込み、上記マイクロニードル先部の材料19に含まれる水分や溶剤等の揮発・乾燥を促進することも考えられる。
 また、前述した何れの製造方法を行う場合においても、前記第8の実施の形態の場合と同じように、上記材料19の一部が上記マイクロニードル基部81の溝83内に入り込み、上記図示しないマイクロニードル先部の一部が上記溝83内に入り込んでいる状態となる。
 また、第9の実施の形態によるマイクロニードルアレイの製造に、図21に示すように、既に述べた第8の実施の形態における雌型91を使用する場合も考えられる。
 第9の実施の形態によるマイクロニードルアレイを、まず、上記雌型91のマイクロニードル成形用凹部93内に図示しない材料を注入し、その後、上記雌型91に基板99を嵌合させる方法で製造する場合は、上記マイクロニードル基部81の溝83と上記凸部95の溝97、及び、上記基板99の貫通孔101を介して、上記マイクロニードル成形用凹部93内の空気を逃がすようにしている。
 また、第9の実施の形態によるマイクロニードルアレイは、まず、上記雌型91又は上記雌型91に基板99を嵌合させ、その後、上記基板99の貫通孔101を介して上記マイクロニードル成形用凹部93内に材料19を注入する方法で製造することも考えられる。この場合、上記溝83及び溝97を介して、上記マイクロニードル成形用凹部93内の空気を逃がすようにしている。
 また、前述した何れの製造方法を行う場合においても、上記貫通孔101や上記溝97、及び、上記溝83を介して、乾燥空気を送り込み、上記マイクロニードル先部の材料19に含まれる水分や溶剤等の揮発・乾燥を促進することが考えられる。
 この第9の実施の形態によるマイクロニードルアレイによれば、前記第8の実施の形態によるマイクロニードルアレイ1と同様の作用・効果を奏することができる。また、上記マイクロニードル基部81の溝83に連通する貫通孔101も形成されているため、上記マイクロニードルアレイの製造時に、上記雌型に基板79を嵌合させる際、上記溝83と上記貫通孔101が空気抜きの役割を果たし、雌型91、103への基板99の嵌合を容易に行うことができる。また、上記貫通孔101を介してマイクロニードル成形用凹部93内に材料19を注入することもできる。
 また、上記貫通孔101を介しても上記マイクロニードル先部の材料19に含まれる水分や溶剤等を揮発・乾燥させることができ、上記マイクロニードル先部の材料19の固化を効果的に行うことができる。また、上記溝83だけでなく上記貫通孔101内部にも余剰の材料19を逃がすことができる。
 なお、本発明は、前記第1乃至第9の実施の形態に限定されるものではなく、又、各々を組み合わせることも可能である。
 例えば、第6の実施の形態においては、マイクロニードル先部59に返し部68aを形成したが、これに加え、上記マイクロニードル先部59に、第4の実施の形態のような垂直部を形成することが考えられる。すなわち、上記マイクロニードル先部59は、上記返し部68aの図14中下側に、略円筒形状の部分が追加されたような形状となり、この略円筒形状の部分の外周面が上記垂直部となる。この場合、上記垂直部の追加により、更に、上記マイクロニードル先部59のみを皮膚内に残留させ易くなる。また、上記略円筒形状の部分が追加されるため、上記マイクロニードル55の直径を大きくすることなく上記マイクロニードル先部59(目的物質)の量を増加させることができる。
 また、例えば、前記第1の実施の形態においては、基板3には、1つのマイクロニードル基部7に1つの貫通孔9が形成されていたが、1つのマイクロニードル基部7に複数の貫通孔を形成するようにしてもよい。この場合、マイクロニードルアレイ1の製造時に、1つの貫通孔から材料19を注入し、その他の貫通孔から空気抜きを行うことが可能となる。
 また、前記第8の実施の形態や第9の実施の形態においては、1つのマイクロニードル基部81に2つの溝83が形成されているが、この溝83を1つの上記マイクロニードル基部81に1つ又は3つ以上形成することも考えられる。
 また、前記第8の実施の形態や第9の実施の形態において、マイクロニードル基部81に、前記第3の実施の形態のような突起を設けることも考えられる。
 また、前記第2の実施の形態においては、雌型27に凸部31を設けるようにしたが、基板3側に設けるようにししてもよい。この場合には、基板3の周囲に基部7より若干低い凸部を適宜設けて、嵌合量を調整する。
 また、雌型のマイクロニードル成形用凹部に空気抜き用の小さな貫通孔を設けてもよい。このような場合は、マイクロニードルアレイ製造時において、上記マイクロニードル成形用凹部からの空気抜きが容易となる。また、雌型又は基板自体をガス透過性の高い材料で形成してもよい。例えば、多孔質ポリエチレン、フッ素樹脂、ポリプロピレンが挙げられる。この場合は、上記マイクロニードル成形用凹部からの空気抜きが容易になる。
 また、前記第2の実施の形態においては、雌型27のマイクロニードル成形用凹部29の上側に別体で凸部31を設置したが、上記雌型27とは一体の凸部を形成する場合も考えられる。また、マイクロニードルアレイを構成する基板やマイクロニードル先部の組成についても、前記第1乃至第9の実施の形態に限定されず、様々な場合が考えられる。
 次に、図22乃至図26を参照して、本発明の実施例1について説明する。 この実施例1より作製したマイクロニードルアレイ1aは、図22の写真に示すようなものである。また、上記マイクロニードルアレイ1aの基板3としては、図23の写真に示すものを用いた。この基板3の材料としてはPMMA(Poly Methyl Meta Acrylate:ポリメチルメタアクリレート樹脂)を使用した。
 この実施例1によるマイクロニードルアレイ1aは、前記第2の実施の形態による雌型27を使用して、図8に示すような方法で製造されたものである。
 以下、詳細に説明する。
 まず、マイクロニードル基部7が設けられた上記基板3を成形するための型を作製した。この型は、板状の部材に上記マイクロニードル基部7に対応する穴が形成されたものである。この穴は精密ドリル加工により形成した。
 次に、上記基板3を熱ナノインプリント成形法により成形した。すなわち、厚さ1mmのPMMAシートを上記型の穴が開口されている側に重ね合わせ、130℃の加熱下で10MPaの圧力を15分間印加し、上記基板3を成形した。そして、PMMAのガラス転移温度(約109℃)以下に冷却した後に成形された上記基板3を離型した。
 また、上記基板3に形成されたマイクロニードル基部7の高さ(図23中上下方向の大きさ)は507μm、直径は304μmであった。
 次に、上記基板3に貫通孔9を形成した。この貫通孔9の形成は、フェムト秒レーザーにより行われた。上記貫通孔9の直径はおよそ40μm程度であった。
 次に、上記基板3のマイクロニードル基部7の先端側にマイクロニードル5を成形するための雌型27を作製した。この雌型27は、図24の写真に示すようなものである。上記雌型27には、既に述べたように、マイクロニードル成形用凹部29が形成されている。このマイクロニードル成形用凹部29の円筒形凹部17aは直径が238μmで長さは490μmであり、円錐形凹部17bは底面の直径が円筒形凹部17aと同じ238μmで深さは307μmであった。また、円錐形凹部17bの頂点の半径は4μm以下であった。また、雌型27の凸部31は直径が600μm、高さが296μmであった。
 雌型27はシリコーンゴム製であり、次のように、金属型を用いた注型によって作製した。SILPOT184(Dow Corning)の主剤と硬化剤を10対1の割合で混合して、真空脱泡を行い、上記雌型27の材料を作製した。次に、この材料を上記金属型内に流し込んだ。次に、20分間80℃に加熱し、上記材料を硬化させた。そして、完成した上記雌型27を上記金属型から離型させた。
 次に、上記雌型27を用いて、マイクロニードル5のマイクロニードル先部11の作製を行った。まず、上記雌型27のマイクロニードル成形用凹部29内に汎用のディスペンサーを用いて材料19としてのアクリル系水溶性紫外線硬化樹脂TB3046(Three bond、濃度が20%)をおよそ20nl注入した。
 次に、上記雌型27に基板3を嵌合させた。このとき、基板3の表面が上記雌型27の凸部31に当接するようにした。
 なお、図25に示す写真は、上記マイクロニードル成形用凹部29内に上記材料19としての紫外線硬化樹脂は注入せずに、上記雌型27と基板3とが嵌合した状態を表したものであり、個々の上記マイクロニードル成形用凹部29と上記マイクロニードル基部7の中心位置や嵌合量がそろっていることが示されている。
 次に、紫外線を照射(40mW、1min)して、上記材料19を硬化させた。その後、上記雌型27からマイクロニードルアレイ1aを離型させた。図22に示すように、このマイクロニードルアレイ1aのマイクロニードル基部7の先端側には紫外線硬化樹脂製のマイクロニードル先部11が設置されている。この円錐型のマイクロニードル先部11の底面の直径は263μm、高さは348μmであった。この実施例1による上記マイクロニードルアレイ1aの場合、正方形状に、5×5=25本のマイクロニードル5が形成されており、個々の上記マイクロニードル5間のピッチは1.0mmであった。
 実施例1で使用した基板3、雌型27、最終的に得られたマイクロニードルアレイ1aの各部の寸法を図26に整理して示す。図26(a)は基板3の一部を示す図、図26(b)は雌型27の一部を示す図、図26(c)は基板3を雌型27に嵌合させた状態の一部を示す図で、図26(d)は最終的に得られたマイクロニードルアレイ1aの一部を示す図である。まず、基板3の厚みは300μm、基部7の直径は304μm、基部7の高さは507μmである。又、雌型27の凸部31の外直径が600μm、高さが296μmである。又、雌型27の円筒形状凹部17aの内直径が238μmである。又、雌型27の厚みが1500μm、雌型27の円筒形状凹部17aの下端から逆円錐形状凹部17bの先端までの距離が307μm、凸部31の上端から逆円錐形状凹部17bの先端までの距離が797μmである。そして、最終的に得られたマイクロニードルアレイ1aのマイクロニードル先部11の直径が263μm、マイクロニードル先部11の高さが348μmである。 
 次に、図27及び図28を参照して、本発明の実施例2について説明する。 この実施例2により作製したマイクロニードルアレイ1bは、図27に示すようなものである。また、このマイクロニードルアレイ1bの形状は、前記実施例1のマイクロニードルアレイ1aと同様である。
 また、上記マイクロニードルアレイ1bも、前記第2の実施の形態による雌型27を使用して、図8に示す方法で製造されたものである。以下、詳細に説明する。
 まず、マイクロニードル基部7が設けられた上記基板3を成形するための型を作製した。この型は、前記実施例1における基板3を成形するための型と同様である。
 次に、前記実施例1の場合と同様にして、上記基板3を熱ナノインプリント成形法により成形した。上記基板3も、前記実施例1と同様であり、上記基板3に形成されたマイクロニードル基部7の高さ(図23中上下方向の大きさ)は、前記実施例1の場合と同様に、507μm、直径は304μmであった。
 次に、上記基板3に貫通孔9を形成した。この貫通孔9の形成は、前記実施例1の場合と同様に、フェムト秒レーザーにより行われた。上記貫通孔9の直径も、前記実施例1の場合と同様、およそ40μm程度であった。
 次に、上記基板3のマイクロニードル基部7の先端側にマイクロニードル5を成形するための雌型27を、前記実施例1の場合と同様の方法により作製した。この雌型27は、前記実施例1の雌型27と同様の寸法である。
 次に、上記雌型27を用いて、マイクロニードル5のマイクロニードル先部11の作製を行った。まず、上記雌型27のマイクロニードル成形用凹部29内に汎用のディスペンサーを用いて、材料19としての水溶性のポリビニルピロリドン(濃度が20%)をおよそ30nl注入した。
 次に、上記雌型27に基板3を嵌合させた。このとき、基板3の表面が上記雌型27の凸部31に当接するようにした。実施例2の場合も、前記実施例1の場合と同様に、上記雌型27と基板3とが嵌合される。すなわち、図25に示すように、上記凸部31によって、個々の上記マイクロニードル成形用凹部29と上記マイクロニードル基部7の中心位置や嵌合量が揃えられている。
 次に、上記基板3と上記雌型27、及び、材料19を、ホットプレート上で30分間80℃に加熱させ、上記材料19を硬化させた。その後、上記雌型27からマイクロニードルアレイ1bを離間させた。図27に示すように、このマイクロニードルアレイ1bのマイクロニードル基部7の先端側にはポリビニルピロリドン製のマイクロニードル先部11が設置されている。この円錐型先部の底面の直径は286μm、高さは291μmであった。実施例2による上記マイクロニードルアレイ1bの場合、正方形状に5×5=25本のマイクロニードル5が形成されており、個々の上記マイクロニードル5間のピッチは1.0mmであった。
 尚、図27の基板3上にあるマイクロニードル5の両側にある突起は、材料の注入量が適切でなく、余剰な材料が流れて硬化したものである。
 実施例2で使用した基板3、雌型27、最終的に得られたマイクロニードルアレイ1bの各部の寸法を図28に整理して示す。図28(a)は基板3の一部を示す図、図28(b)は雌型27の一部を示す図、図28(c)は基板3を雌型27に嵌合させた状態の一部を示す図で、図28(d)は最終的に得られたマイクロニードルアレイ1aの一部を示す図である。まず、基板3の厚みは300μm、基部7の直径は304μm、基部7の高さは507μmである。又、雌型27の凸部31の外直径が600μm、高さが296μmである。又、雌型27の円筒形状凹部17aの内直径が238μmである。又、雌型27の厚みが1500μm、雌型27の円筒形状凹部17aの下端から逆円錐形状凹部17bの先端までの距離が307μm、凸部31の上端から逆円錐形状凹部17bの先端までの距離が797μmである。そして、最終的に得られたマイクロニードルアレイ1bのマイクロニードル先部11の直径が286μm、マイクロニードル先部11の高さが291μmである。 
 次に、図29乃至図32を参照して、本発明の実施例3について説明する。 実施例3により作製したマイクロニードルアレイ1cは、図29に示すようなものである。また、この
 実施例3によるマイクロニードルアレイ1cは、基本的には前記実施例2と同様な方法により製造されたものであるが、基部のサイズや雌型の形状、結果として形成される返し部がある点だけが異なる。以下、詳細に説明する。
 まず、マイクロニードル基部57は、前記実施例2と同様熱ナノインプリント成形法により成形した。ここで形成したマイクロニードル基部57は、図27に示す実施例2のマイクロニードル基部7よりもサイズが小さく、高さが408μm、直径は186μmであった。
 次に、上記マイクロニードル基部57の先端側に返し形状を有するマイクロニードル55を成形するための雌型27を製造した。この雌型27は図30に示すようなものである。
 なお、この雌型27の製造方法は前記実施例2と同様であるが、金属型として返し形状を有するものを使用している。。また、マイクロニードル成形用凹部29全体の深さは780μmであり、円筒形凹部17aの直径は175μmであった。また、円錐形凹部17bの底面の直径は、円筒形凹部17a及び上記マイクロニードル基部57より大きく、366μmであった。また、雌型27の凸部31は、幅が50μm、直径(外側)が694μm、高さが55μmであった。
 次に、上記雌型27及びマイクロニードル基部57を用いて、前記実施例2と同様な方法によりマイクロニードル先部59の作製を行った。すなわち、まず雌型27のマイクロニードル成形用凹部29内に汎用のディスペンサーを用いて、水溶性のポリビニルピロリドン(濃度が20%)をおよそ25nl注入した。
 次に、上記雌型27に上記基板3を嵌合させた。このとき、基板の表面が上記雌型27の凸部31に当接するようにした。
 なお、図30に示す写真は、上記マイクロニードル成形用凹部29内に上記材料19としての水溶性のポリビニルピロリドンは注入せずに、上記雌型27と基板3とが嵌合した状態を表したものである。
 次に、前記実施例2と同様に、上記基板3と雌型27及び材料19をホットプレート上で60分間80℃に加熱させ、材料を硬化させた。その後、上記雌型27からマイクロニードルアレイ1cを離間させた。図29に示すように、このマイクロニードルアレイ1cのマイクロニードル基部57の先端側にはポリビニルピロリドン製のマイクロニードル先部59が設置されている。この円錐型先部の最大直径は379μm、高さは496μmであった。また、このとき雌型27の弾性によって、返し形状になっている部分もほとんど変形なく雌型27から離型されていた。
 次に、このマイクロニードルアレイ1cを用いて、ダミー皮膚としてのシリコーンゴムに穿刺試験を行い、穿刺強度及び返しの効果を検証した。まず、図31(a)は穿刺前の状態を示すもので、図中マイクロニードルアレイ1cの上側にシリコーンゴムシート111が設置されている。続いて、マイクロニードルアレイ1cを上記シリコーンゴムシート111に向かって下から垂直に穿刺した状態を図31(b)に示している。ここで、マイクロニードルアレイ1cは、根元から倒れたり、変形したりすることもなく、スムーズにシリコーンゴム111に穿刺された。次に、マイクロニードルアレイ1cを下側に剥離させたところ、マイクロニードル先部59のみをシリコーンゴムシート111内に残留させることができた。その様子を図31(c)に示す。これによって、返し形状によって先部のみを皮膚内に容易に残留させることが可能であることが示された。
 実施例3で使用した基板3、雌型27、最終的に得られたマイクロニードルアレイ1cの各部の寸法を図32に整理して示す。図32(a)は基板3の一部を示す図、図32(b)は雌型27の一部を示す図、図32(c)は基板3を雌型27に嵌合させた状態の一部を示す図で、図32(d)は最終的に得られたマイクロニードルアレイ1cの一部を示す図である。まず、基板3の厚みは300μm、基部7の直径は186μm、基部7の高さは408μmである。又、雌型27の凸部31の外直径が604μm、幅が50μm、高さが55μmである。又、雌型27の円筒形状凹部7aの内直径が175μmである。又、雌型27の厚みが1500μm、雌型27の円筒形状凹部7aの上端から逆円錐形状凹部7bの先端までの距離が780μm、凸部31の上端から逆円錐形状凹部17bの先端までの距離が835μmである。そして、最終的に得られたマイクロニードルアレイ1cのマイクロニードル先部11の直径が379μm、マイクロニードル先部11の高さが496μmである。
 本発明は、皮下に薬剤等の目的物質を投与して種々の疾患の予防や治療を行うためのマイクロニードルアレイと、そのようなマイクロニードルアレイを製造するマイクロニードルアレイ製造方法に関し、特に、穿刺時に破損しにくく、それにより確実に穿刺を行うことができるとともに、所望の量の目的物質を投与できるように工夫したものに関し、例えば、ワクチンの経皮投与に用いるマイクロニードルアレイに好適である。
 1、1a、1b マイクロニードルアレイ
 3 基板
 5 マイクロニードル
 7 マイクロニードル基部
 9 貫通孔(マイクロニードル先部入り込み用凹部)
 11 マイクロニードル先部
 13 凸部
 15 雌型
 17 マイクロニードル成形用凹部
 19 材料(固化後マイクロニードル先部となる)
 21 皮膚
 23 治具
 25 凸部
 27 雌型
 29 マイクロニードル成形用凹部
 31 凸部
 37 マイクロニードルアレイ
 39 基板
 41 マイクロニードル
 42 マイクロニードル基部
 43 突起
 45 マイクロニードル先部
 47 凹部
 49 凸部
 51 マイクロニードルアレイ
 53 基板
 55 マイクロニードル
 57 マイクロニードル基部
 58 突起
 59 マイクロニードル先部
 60 垂直部
 61 凹部
 63 凸部
 65 マイクロニードルアレイ
 67 凹凸部
 68 マイクロニードルアレイ
 69 マイクロニードルアレイ
 71 基板
 73 マイクロニードル
 75 マイクロニードル基部
 77 マイクロニードル先部
 79 基板
 81 マイクロニードル基部
 83 溝(マイクロニードル先部入り込み用凹部)
 85 雌型
 87 マイクロニードル成形用凹部
 89 溝(通路)
 91 雌型
 93 マイクロニードル成形用凹部
 95 凸部
 97 溝(通路)
 99 基板
 101 貫通孔(通路)
 103 雌型
 105 マイクロニードル成形用凹部
 107 溝(通路)

Claims (20)

  1.  基板と、
     上記基板に一体に突出・形成された複数のマイクロニードル基部と、
     上記複数のマイクロニードル基部の先にそれぞれ設置されることによりマイクロニードルを構成し生体内可溶性又は生分解性を備えているとともに目的物質を保持したマイクロニードル先部と、
     を具備し、
     上記マイクロニードル基部にはマイクロニードル先部入り込み用凹部が形成されており、
     上記マイクロニードル先部の一部は上記マイクロニードル先部入り込み用凹部に入り込んでいることを特徴とするマイクロニードルアレイ。
  2.  請求項1記載のマイクロニードルアレイにおいて、
     上記マイクロニードル先部入り込み用凹部は貫通孔又は溝であることを特徴とするマイクロニードルアレイ。
  3.  請求項1又は請求項2記載のマイクロニードルアレイにおいて、
     上記複数のマイクロニードルを皮下に穿刺して引き抜くことにより上記マイクロニードル先部を皮下に残留させるように構成されていることを特徴とするマイクロニードルアレイ。
  4.  請求項1~請求項3の何れかに記載のマイクロニードルアレイにおいて、
     上記マイクロニードル先部は垂直部を備えていることを特徴とするマイクロニードルアレイ。
  5.  請求項4記載のマイクロニードルアレイにおいて、
     上記マイクロニードル先部の垂直部には凹凸部が形成されていることを特徴とするマイクロニードルアレイ。
  6.  請求項1~請求項5の何れかに記載のマイクロニードルアレイにおいて、
     上記マイクロニードル基部とマイクニードル先部は、その横断面形状が矩形を成していることを特徴とするマイクロニードルアレイ。
  7.  請求項1~請求項6の何れかに記載のマイクロニードルアレイにおいて、
     上記マイクロニードル基部の上記マイクロニードル先部側には突起が形成されていて、上記マイクロニードル先部は上記突起を覆うように上記マイクロニードル基部に設置されていることを特徴とするマイクロニードルアレイ。
  8.  請求項1~請求項7の何れかに記載のマイクロニードルアレイにおいて、
     上記基板と上記マイクロニードル基部は樹脂製であることを特徴とするマイクロニードルアレイ。
  9.  請求項8記載のマイクロニードルアレイにおいて、
     上記樹脂は生体適合性樹脂であることを特徴とするマイクロニードルアレイ。
  10.  請求項8記載のマイクロニードルアレイにおいて、
     上記樹脂は生分解性樹脂であることを特徴とするマイクロニードルアレイ。
  11.  請求項8記載のマイクロニードルアレイにおいて、
     上記樹脂は生体内非可溶性樹脂であることを特徴とするマイクロニードルアレイ。
  12.  請求項1~請求項11の何れかに記載のマイクロニードルアレイにおいて、
     上記マイクロニードル先部には返し部が形成されていることを特徴とするマイクロニードルアレイ。
  13.  マイクロニードル成形用凹部を備えた雌型を用意するとともに基板にマイクロニードル先部入り込み用凹部が形成された複数のマイクロニードル基部を一体形成したものを用意し、
     上記複数のマイクロニードル基部を上記マイクロニードル成形用凹部内に嵌合させるように上記基板を上記雌型に設置し、
     上記マイクロニードル成形用凹部内に上記マイクロニードル先部を構成し目的物質を含んだ溶解又は溶融状態の材料を充填するとともにその充填された材料の一部が上記マイクロニードル先部入り込み用凹部内に入り込むようにし、
     所定の養生後上記基板を上記雌型から離型させることにより上記基板の複数のマイクロニードル基部の先にマイクロニードル先部をそれぞれ設置した構成のマイクロニードルアレイが得られるようにしたことを特徴とするマイクロニードルアレイ製造方法。
  14.  マイクロニードル成形用凹部を備えた雌型を用意するとともに基板にマイクロニードル先部入り込み用凹部が形成された複数のマイクロニードル基部を一体形成したものを用意し、
     上記雌型の上記マイクロニードル成形用凹部内に上記マイクロニードル先部を構成し目的物質を含んだ溶解又は溶融状態の材料を充填し、
     上記複数のマイクロニードル基部を上記マイクロニードル成形用凹部内に嵌合させるように上記基板を上記雌型に設置し上記充填された材料の一部が上記マイクロニードル先部入り込み用凹部内に入り込むようにし、
     所定の養生後上記基板を上記雌型から離型させることにより上記基板の複数のマイクロニードル基部の先にマイクロニードル先部をそれぞれ設置した構成のマイクロニードルアレイが得られるようにしたことを特徴とするマイクロニードルアレイ製造方法。
  15.  請求項13又は請求項14記載のマイクロニードルアレイ製造方法において、
     上記マイクロニードル基部を上記マイクロニードル成形用凹部にラミナーフロー下でラミナーフローと垂直に嵌合させるようにしたことを特徴とするマイクロニードルアレイ製造方法。
  16.  請求項13~請求項15の何れかに記載のマイクロニードルアレイ製造方法において、
     上記マイクロニードル基部の上記マイクロニードル成形用凹部内への嵌合量を調整することにより、上記マイクロニードル先部の大きさを制御するようにしたことを特徴とするマイクロニードルアレイ製造方法。
  17.  請求項13~請求項16の何れかに記載のマイクロニードルアレイ製造方法において、
     上記マイクロニードル基部に形成された上記マイクロニードル先部入り込み用凹部は貫通孔又は溝であることを特徴とするマイクロニードルアレイ製造方法。
  18.  請求項13~請求項17の何れかに記載のマイクロニードルアレイ製造方法において、
     上記雌型はエラストマー系材料から構成されていることを特徴とするマイクロニードルアレイ製造方法。
  19.  請求項13~請求項18の何れかに記載のマイクロニードルアレイ製造方法において、
     上記雌型の上記マイクロニードル成形用凹部の縁部には凸部が設けられていることを特徴とするマイクロニードルアレイ製造方法。
  20.  請求項13~請求項19の何れかに記載のマイクロニードルアレイ製造方法において、
     上記雌型及び又は上記基板には上記マイクロニードル成形用凹部と外部とを連絡する通路が形成されていることを特徴とするマイクロニードルアレイ製造方法。
PCT/JP2014/069983 2013-07-30 2014-07-29 マイクロニードルアレイとマイクロニードルアレイ製造方法 WO2015016235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14832762.0A EP3028735A4 (en) 2013-07-30 2014-07-29 Microneedle array and microneedle array manufacturing method
JP2015529583A JP6370296B2 (ja) 2013-07-30 2014-07-29 マイクロニードルアレイとマイクロニードルアレイ製造方法
US14/908,394 US10500386B2 (en) 2013-07-30 2014-07-29 Microneedle array manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-157329 2013-07-30
JP2013157329 2013-07-30

Publications (1)

Publication Number Publication Date
WO2015016235A1 true WO2015016235A1 (ja) 2015-02-05

Family

ID=52431765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069983 WO2015016235A1 (ja) 2013-07-30 2014-07-29 マイクロニードルアレイとマイクロニードルアレイ製造方法

Country Status (4)

Country Link
US (1) US10500386B2 (ja)
EP (1) EP3028735A4 (ja)
JP (1) JP6370296B2 (ja)
WO (1) WO2015016235A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208635A1 (ja) * 2015-06-23 2016-12-29 凸版印刷株式会社 針状体及び針状体の製造方法
WO2017164405A1 (ja) * 2016-03-25 2017-09-28 凸版印刷株式会社 経皮投与デバイス
CN107405301A (zh) * 2015-03-27 2017-11-28 利奥制药有限公司 用于向皮肤递送活性成分的微针贴片
US20180243543A1 (en) * 2017-02-27 2018-08-30 Quadmedicine Microneedle and method of manufacturing the same
JPWO2017130793A1 (ja) * 2016-01-28 2018-09-13 株式会社リコー マイクロニードルアレイ、マイクロニードルシート
KR20190091008A (ko) * 2018-01-26 2019-08-05 가천대학교 산학협력단 마이크로 니들 및 이의 제조방법

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834423B2 (en) 2009-10-23 2014-09-16 University of Pittsburgh—of the Commonwealth System of Higher Education Dissolvable microneedle arrays for transdermal delivery to human skin
US10441768B2 (en) 2015-03-18 2019-10-15 University of Pittsburgh—of the Commonwealth System of Higher Education Bioactive components conjugated to substrates of microneedle arrays
WO2017066768A1 (en) 2015-10-16 2017-04-20 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Mullti-component biio-active drug delivery and controlled release to the skin by microneedle array devices
US11744889B2 (en) 2016-01-05 2023-09-05 University of Pittsburgh—of the Commonwealth System of Higher Education Skin microenvironment targeted delivery for promoting immune and other responses
WO2017150824A1 (ko) * 2016-03-03 2017-09-08 가천대학교 산학협력단 마이크로 니들 및 이의 제조방법
KR101728526B1 (ko) * 2016-06-23 2017-04-19 주식회사 쿼드메디슨 마이크로 니들 및 이의 제조방법
KR101692266B1 (ko) * 2016-08-01 2017-01-03 부산대학교 산학협력단 마이크로니들 패치 및 이의 제조 방법
US20180056053A1 (en) * 2016-08-26 2018-03-01 Juvic Inc. Protruding microstructure for transdermal delivery
WO2019136133A1 (en) * 2018-01-03 2019-07-11 The Trustees Of Columbia University In The City Of New York Microneedle for local delivery of therapeutic agent
KR102164792B1 (ko) * 2018-12-24 2020-10-14 한국기초과학지원연구원 마이크로니들 패치의 제조방법, 그에 의해 제조된 마이크로니들 및 마이크로니들 패치를 포함하는 물질 전달 시스템
AU2020275934A1 (en) * 2019-05-16 2021-12-02 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Microneedle arrays with undercut features for cutaneous and non-cutaneous drug delivery
DE102020109157A1 (de) * 2020-04-02 2021-10-07 Lts Lohmann Therapie-Systeme Ag Trägerelement für Mikronadeln sowie Mikronadelarray-Einrichtung
CN113082500A (zh) * 2021-02-26 2021-07-09 北京大学 经皮输送装置及制备方法
CN114228054B (zh) * 2021-12-14 2022-08-16 优微(珠海)生物科技有限公司 一种微针模具及微针贴的制备方法
CN114146301A (zh) * 2021-12-27 2022-03-08 广州纳丽生物科技有限公司 一种d型微针及其在超微针片的应用
CN115137964B (zh) * 2022-05-31 2023-07-25 优微(珠海)生物科技有限公司 微针制备模具及其制备微针方法和微针制备生产线

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206084A (ja) * 1992-01-28 1993-08-13 Matsushita Electric Ind Co Ltd ドライエッチング方法
JPH0680508A (ja) 1992-09-04 1994-03-22 Shikoku Sogo Kenkyusho:Kk 害虫駆除方法および害虫駆除材
JPH0740357A (ja) * 1993-07-27 1995-02-10 Konica Corp 屈折率分布を有するプラスチックレンズの製造方法
US20040106904A1 (en) * 2002-10-07 2004-06-03 Gonnelli Robert R. Microneedle array patch
JP2004526581A (ja) * 2001-03-14 2004-09-02 ザ プロクター アンド ギャンブル カンパニー ソフトリソグラフィ及びフォトリソグラフィを使用して微小針(microneedles)構造を製造する方法
JP2007069915A (ja) * 2005-09-05 2007-03-22 Shionogi & Co Ltd 粉体供給装置、粉体供給方法、粉体供給充填装置および粉体供給充填方法
WO2008020633A1 (fr) * 2006-08-18 2008-02-21 Toppan Printing Co., Ltd. Micro-aiguille et timbre à micro-aiguilles
US20080269670A1 (en) * 2007-04-24 2008-10-30 Velcro Industries B.V. Skin Penetrating Touch Fasteners
WO2008139648A1 (ja) * 2007-05-15 2008-11-20 Hisamitsu Pharmaceutical Co., Inc. マイクロニードルのコーティング方法
WO2011138917A1 (ja) * 2010-05-01 2011-11-10 株式会社オプトニクス精密 経皮投与装置及びその製造方法
JP2013032324A (ja) 2011-08-03 2013-02-14 Bioserentack Co Ltd 局所麻酔薬を含有する即効性のマイクロニードル・アレイ・パッチ製剤
JP2013515524A (ja) * 2009-12-23 2013-05-09 デバイオテック・ソシエテ・アノニム 可溶性マイクロニードル
JP2013094224A (ja) * 2011-10-28 2013-05-20 Toppan Printing Co Ltd マイクロニードルデバイスおよびその製造方法
JP2013517907A (ja) * 2010-01-29 2013-05-20 アイコン メディカル コーポレーション 膨張可能な器具上の生分解性突起

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956139A (en) * 1987-10-06 1990-09-11 Canon Denshi Kabushiki Kaisha Method of producing an exposure blade
KR20070100820A (ko) 2005-01-31 2007-10-11 가부시키가이샤 바이오세렌택 경피 흡수 제제, 경피 흡수 제제 유지 시트 및 경피 흡수제제 유지 용구
EP2090331A4 (en) * 2006-11-22 2012-04-18 Toppan Printing Co Ltd MICRONADEL ARRANGEMENT AND MANUFACTURING METHOD THEREFOR
US9289925B2 (en) 2009-04-10 2016-03-22 3M Innovative Properties Company Methods of making hollow microneedle arrays and articles and uses therefrom
JP5587647B2 (ja) 2010-03-29 2014-09-10 東レエンジニアリング株式会社 マイクロニードルシートの製造方法
KR20120119250A (ko) * 2011-04-21 2012-10-31 (주)마이티시스템 단턱이 형성된 미세바늘

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206084A (ja) * 1992-01-28 1993-08-13 Matsushita Electric Ind Co Ltd ドライエッチング方法
JPH0680508A (ja) 1992-09-04 1994-03-22 Shikoku Sogo Kenkyusho:Kk 害虫駆除方法および害虫駆除材
JPH0740357A (ja) * 1993-07-27 1995-02-10 Konica Corp 屈折率分布を有するプラスチックレンズの製造方法
JP2004526581A (ja) * 2001-03-14 2004-09-02 ザ プロクター アンド ギャンブル カンパニー ソフトリソグラフィ及びフォトリソグラフィを使用して微小針(microneedles)構造を製造する方法
US20040106904A1 (en) * 2002-10-07 2004-06-03 Gonnelli Robert R. Microneedle array patch
JP2007069915A (ja) * 2005-09-05 2007-03-22 Shionogi & Co Ltd 粉体供給装置、粉体供給方法、粉体供給充填装置および粉体供給充填方法
WO2008020633A1 (fr) * 2006-08-18 2008-02-21 Toppan Printing Co., Ltd. Micro-aiguille et timbre à micro-aiguilles
US20080269670A1 (en) * 2007-04-24 2008-10-30 Velcro Industries B.V. Skin Penetrating Touch Fasteners
WO2008139648A1 (ja) * 2007-05-15 2008-11-20 Hisamitsu Pharmaceutical Co., Inc. マイクロニードルのコーティング方法
JP2013515524A (ja) * 2009-12-23 2013-05-09 デバイオテック・ソシエテ・アノニム 可溶性マイクロニードル
JP2013517907A (ja) * 2010-01-29 2013-05-20 アイコン メディカル コーポレーション 膨張可能な器具上の生分解性突起
WO2011138917A1 (ja) * 2010-05-01 2011-11-10 株式会社オプトニクス精密 経皮投与装置及びその製造方法
JP2013032324A (ja) 2011-08-03 2013-02-14 Bioserentack Co Ltd 局所麻酔薬を含有する即効性のマイクロニードル・アレイ・パッチ製剤
JP2013094224A (ja) * 2011-10-28 2013-05-20 Toppan Printing Co Ltd マイクロニードルデバイスおよびその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Biological Products Standards", MINISTRY OF HEALTH, LABOR AND WELFARE
ANTIVIRUL RESEARCH, vol. 28, 1995, pages 253 - 264
JOURNAL OF LEUKOCYTE BIOLOGY, vol. 58, 1995, pages 365 - 372
LEONARD Y. CHU; MARK R. PRAUSNITZ: "Separable Arrowhead Microneedles", JOURNAL OF CONTROLLED RELEASE, vol. 149, 2011, pages 242 - 249, XP028148592, DOI: doi:10.1016/j.jconrel.2010.10.033
See also references of EP3028735A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107405301B (zh) * 2015-03-27 2021-11-30 利奥制药有限公司 用于向皮肤递送活性成分的微针贴片
CN107405301A (zh) * 2015-03-27 2017-11-28 利奥制药有限公司 用于向皮肤递送活性成分的微针贴片
JP2018510170A (ja) * 2015-03-27 2018-04-12 レオ ファーマ アクティーゼルスカブ 有効成分を皮膚へ送達するためのマイクロニードルパッチ製剤
WO2016208635A1 (ja) * 2015-06-23 2016-12-29 凸版印刷株式会社 針状体及び針状体の製造方法
US10300261B2 (en) 2015-06-23 2019-05-28 Toppan Printing Co., Ltd. Needle-shaped body and method for producing needle-shaped body
JPWO2017130793A1 (ja) * 2016-01-28 2018-09-13 株式会社リコー マイクロニードルアレイ、マイクロニードルシート
JPWO2017164405A1 (ja) * 2016-03-25 2019-02-07 凸版印刷株式会社 経皮投与デバイス
US10946181B2 (en) 2016-03-25 2021-03-16 Toppan Printing Co., Ltd. Transdermal administration device
WO2017164405A1 (ja) * 2016-03-25 2017-09-28 凸版印刷株式会社 経皮投与デバイス
JP7020399B2 (ja) 2016-03-25 2022-02-16 凸版印刷株式会社 経皮投与デバイス
US20180243543A1 (en) * 2017-02-27 2018-08-30 Quadmedicine Microneedle and method of manufacturing the same
US11213663B2 (en) * 2017-02-27 2022-01-04 Quadmedicine Microneedle and method of manufacturing the same
KR20190091008A (ko) * 2018-01-26 2019-08-05 가천대학교 산학협력단 마이크로 니들 및 이의 제조방법
KR102094744B1 (ko) * 2018-01-26 2020-03-30 가천대학교 산학협력단 마이크로 니들 및 이의 제조방법

Also Published As

Publication number Publication date
US20160158512A1 (en) 2016-06-09
EP3028735A4 (en) 2017-04-12
JPWO2015016235A1 (ja) 2017-03-02
EP3028735A1 (en) 2016-06-08
US10500386B2 (en) 2019-12-10
JP6370296B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6370296B2 (ja) マイクロニードルアレイとマイクロニードルアレイ製造方法
KR101747099B1 (ko) 생체적합성 고분자를 이용한 마이크로니들의 제조방법
WO2014142135A1 (ja) マイクロニードルパッチ
KR101610598B1 (ko) 잇몸 굴곡에 맞게 유연하며 치과용 물질 전달을 위한 마이크로 니들 및 그 제작방법
JP6736337B2 (ja) マイクロニードルアレイ
CN108245482B (zh) 一种可程序性释放药物的聚合物复合微针及其制备
KR102071152B1 (ko) 마이크로니들 어레이
EP2842595B1 (en) Microneedle and microneedle array
US10857093B2 (en) Microarray for delivery of therapeutic agent, methods of use, and methods of making
EP3761864B1 (en) Method of manufacturing a microneedle assembly
CN105283216A (zh) 包括倒置致动器的微针注入设备
JP2017517295A (ja) マイクロニードル及びその製造方法
KR101832716B1 (ko) 정량 투여가 가능하며 약물 투입 속도 조절이 가능한 미세바늘 구조체 및 제조방법
MX2013004660A (es) Microaguja.
CN106853271B (zh) 微结构体的制造方法
JP2016030072A (ja) マイクロニードルアレイ
CN112295100A (zh) 微针阵列的制造方法、微针阵列及微针阵列单元
CN110897996B (zh) 可溶性利多卡因高聚物微针的制备方法
KR20150127876A (ko) 약물 전달용 마이크로 총알
Korkmaz et al. Dissolvable and Coated Microneedle Arrays: Design, Fabrication, Materials and Administration Methods
JP2023101406A (ja) 粒子付着型マイクロニードル及びその製造方法
WO2017179613A1 (ja) マイクロニードルアレイの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529583

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908394

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014832762

Country of ref document: EP