WO2015016047A1 - 航空機用タイヤ - Google Patents

航空機用タイヤ Download PDF

Info

Publication number
WO2015016047A1
WO2015016047A1 PCT/JP2014/068611 JP2014068611W WO2015016047A1 WO 2015016047 A1 WO2015016047 A1 WO 2015016047A1 JP 2014068611 W JP2014068611 W JP 2014068611W WO 2015016047 A1 WO2015016047 A1 WO 2015016047A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
circumferential
circumferential groove
width direction
Prior art date
Application number
PCT/JP2014/068611
Other languages
English (en)
French (fr)
Inventor
山口 卓
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP14831198.8A priority Critical patent/EP3028875B1/en
Priority to US14/908,538 priority patent/US20160167444A1/en
Priority to CN201480043224.9A priority patent/CN105431306B/zh
Publication of WO2015016047A1 publication Critical patent/WO2015016047A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C2011/0334Stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C2011/133Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls comprising recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/02Tyres specially adapted for particular applications for aircrafts

Definitions

  • the present invention relates to an aircraft tire.
  • a plurality of circumferential grooves extending in the tire circumferential direction are formed for drainage (for example, Japanese Patent Application Laid-Open No. 2007-168784).
  • the aircraft tire according to the first aspect of the present invention is provided with a plurality of circumferential grooves that extend in the tire circumferential direction and are provided with a plurality of recesses in the tire bottom in the tire circumferential direction at intervals in the tire width direction.
  • the number of the recesses in the circumferential groove forming the land portion having the longest length in the tire width direction is larger than the other circumferential grooves.
  • the aircraft tire of the present invention can improve drainage while maintaining the rigidity of the tread.
  • FIG. 2 is a cross-sectional view taken along line 2X-2X in FIG.
  • FIG. 3 is a cross-sectional view taken along line 3X-3X in FIG. 2. It is sectional drawing which cut
  • FIG. 1 is a development view of a tread 12 of an aircraft tire (hereinafter simply referred to as “tire”) 10 according to a first embodiment.
  • Tire indicates the circumferential direction of the tire 10 (hereinafter referred to as “tire circumferential direction” as appropriate), and the arrow X indicates the tire width direction of the tire 10.
  • Reference sign CL indicates the equator plane of the tire 10 (hereinafter referred to as “tire equator plane” as appropriate).
  • the side near the tire equatorial plane CL along the tire width direction is described as “inner side in the tire width direction”, and the side far from the tire equatorial plane CL along the tire width direction is described as “outer side in the tire width direction”. To do.
  • reference numeral 12E in FIG. 1 indicates a ground end of the tread 12.
  • the term “grounding end” as used herein refers to TRA (The Tire and Rim Association Inc. Year Book) or ETRTO (The European Tire and Rim Technical Organization standard rim). ) And tires are mounted, and the air pressure (standard internal pressure) corresponding to the maximum load (standard load) of the single wheel in the applicable size described in the same standard is filled as the internal pressure, and in the applicable size described in the same standard The outermost contact point in the tire width direction when the standard load of a single wheel is applied.
  • the tire 10 of the present embodiment can use the same internal structure as that of a conventionally known aircraft tire. For this reason, description about the internal structure of the tire 10 is abbreviate
  • a first circumferential groove 14 extending linearly along the tire circumferential direction has a tire width direction across the tire equatorial plane CL.
  • Rib-shaped first land portions 16 that are provided on both sides and are continuous in the tire circumferential direction are formed between the pair of first circumferential grooves 14.
  • the first land portion 16 is formed on the tire equatorial plane CL of the tread 12.
  • the tread 12 is provided with a second circumferential groove 18 extending linearly along the tire circumferential direction on the outer side in the tire width direction of the first circumferential groove 14, and the first circumferential groove 14 and the second circumferential groove 14.
  • a rib-shaped second land portion 20 that is continuous in the tire circumferential direction is formed between the circumferential groove 18 and the circumferential groove 18.
  • the first circumferential groove 14 and the second circumferential groove 18 of the present embodiment extend linearly along the tire circumferential direction, the present invention is not limited to this configuration.
  • the tire circumferential groove It may extend in a zigzag shape or a wave shape along the direction.
  • the first circumferential groove 14 and the second circumferential groove 18 have a constant groove width (see FIG. 1), but the groove width may not be constant.
  • the tread 12 is formed with a rib-shaped third land portion 22 continuous in the tire circumferential direction outside the second circumferential groove 18 in the tire width direction.
  • the length W1 of the first land portion 16 in the tire width direction is greater than the length W2 of the second land portion 20 in the tire width direction and the length W3 of the third land portion 22 in the tire width direction. Is also getting wider.
  • the length W1 of the first land portion 16 is an extension of the surface (tread surface) 16A of the first land portion 16 and the side wall (the first circumferential groove 14 of the first circumferential groove 14) in the tire width direction cross section. It is the average value of the length measured along the tire width direction between the intersections with the extended line of the groove wall 14A) on the first land portion 16 side.
  • the length W2 of the second land portion 20 is an extension of the surface (tread) 20A of the second land portion 20 and the second land portion 20 in the tire width direction cross section. It is the average value of the length measured along the tire width direction between the intersections with the extension line of the side wall (the groove wall 18A on the second land portion 20 side of the second circumferential groove 18). Further, the length W3 of the third land portion 22 is determined by the extension line of the surface (tread surface) 22A of the third land portion 22 and the side wall of the third land portion 22 (the second circumferential groove 18 in the tire width direction cross section).
  • the 1st land part 16 of this embodiment is an example of the land part with the largest length of the tire width direction of this invention
  • channel 14 is the length of the tire width direction of this invention most. It is an example of the circumferential groove
  • the second circumferential groove 18 is an example of another circumferential groove of the present invention.
  • first recesses 30 are provided on the groove bottom 14 ⁇ / b> B of the first circumferential groove 14 at intervals in the tire circumferential direction.
  • the first recess 30 extends between both the groove walls 14 ⁇ / b> A of the first circumferential groove 14.
  • the first recess 30 extends linearly along the tire width direction from one groove wall 14A of the first circumferential groove 14 to the other groove wall 14A, and the extending direction is the longitudinal direction.
  • the shape is a groove (elongated depression).
  • the direction in which the first recess 30 extends may be any direction as long as it intersects the extending direction of the first circumferential groove 14 (synonymous with the tire circumferential direction in the present embodiment).
  • the 1st recessed part 30 is good also as a structure extended in the zigzag shape or a wave shape, for example along the said crossing direction (this embodiment tire width direction).
  • the depth of the first concave portion 30 (distance from the groove bottom 14B to the concave bottom) is substantially constant in the middle portion in the longitudinal direction, and the depth of the first circumferential groove 14 (from the tread 12 tread surface to the groove bottom 14B). Value is smaller than the distance).
  • channel 14 of this embodiment is made substantially constant along a tire circumferential direction.
  • a plurality of second recesses 32 are provided on the groove bottom 18 ⁇ / b> B of the second circumferential groove 18 at intervals in the tire circumferential direction.
  • the second recess 32 extends between both groove walls 18A of the second circumferential groove 18. More specifically, the second recessed portion 32 extends linearly along the tire width direction from one groove wall 18A of the second circumferential groove 18 to the other groove wall 18A, and the extending direction is the longitudinal direction.
  • the shape is a groove (elongated depression).
  • the extending direction of the second recess 32 may be any direction as long as it intersects the extending direction of the second circumferential groove 18 (in this embodiment, synonymous with the tire circumferential direction).
  • the 2nd recessed part 32 is good also as a structure extended in the zigzag shape or a wave shape, for example along the said crossing direction (this embodiment tire width direction).
  • the depth of the second recess 32 (distance from the groove bottom 18B to the recess bottom) is substantially constant in the middle portion in the longitudinal direction, and the depth of the second circumferential groove 18 (from the tread 12 tread to the groove bottom 18B). Value is smaller than the distance). Note that the depth of the second circumferential groove 18 of the present embodiment is substantially constant along the tire circumferential direction.
  • the 1st recessed part 30 of this embodiment is an example of the recessed part provided in the circumferential groove
  • the 2nd recessed part 32 is the present invention. It is an example of the recessed part provided in another circumferential groove
  • the number of first recesses 30 provided in the first circumferential groove 14 is greater than the number of second recesses 32 provided in the second circumferential groove 18.
  • the length A1 of the first recess 30 in the tire circumferential direction and the length A2 of the second recess 32 in the tire circumferential direction are the same length. For this reason, the length (interval) P1 in the tire circumferential direction between the adjacent first recesses 30 is narrower than the length (interval) P2 in the tire circumferential direction between the adjacent second recesses 32.
  • the length A1 of the tire circumferential direction of the 1st recessed part 30 and the length A2 of the 2nd recessed part 32 in the tire circumferential direction may differ.
  • the length A1 in the tire circumferential direction of the first concave portion 30 is an extension line of the groove bottom 14B and the concave wall of the first concave portion 30 in a cross section in a direction orthogonal to the extending direction (longitudinal direction) of the first concave portion 30. It is the average value of the lengths measured along the direction (the tire circumferential direction in this embodiment) orthogonal to the direction in which the first recess 30 extends between the intersections with the extension line.
  • the length A2 in the tire circumferential direction of the second recess 32 is such that the extension line of the groove bottom 18B and the recess wall of the second recess 32 are in a cross section in a direction orthogonal to the direction (longitudinal direction) in which the second recess 32 extends.
  • first recesses 30 are provided on the groove bottom 14 ⁇ / b> B of the first circumferential groove 14 so that at least one first recess 30 exists in the ground contact region of the tread 12.
  • the first recesses 30 may be arranged at 12 or more positions on the circumference of the tire 10, more preferably at intervals of 2 to 3 cm in the tire circumferential direction.
  • the contact area of the tread 12 referred to here is when the maximum load is applied in the TRA standard or the ETRTO standard in a state where the air pressure corresponding to the maximum load of the single wheel in the applicable size of the tire 10 is filled as the internal pressure.
  • the grounding area is when the maximum load is applied in the TRA standard or the ETRTO standard in a state where the air pressure corresponding to the maximum load of the single wheel in the applicable size of the tire 10 is filled as the internal pressure.
  • channel 14 are tire width directions. It is lined up along. Moreover, every other 1st recessed part 30 among the several 1st recessed parts 30 arrange
  • this invention is not limited to this structure, The 1st recessed part 30 provided in one 1st circumferential groove
  • the first recesses 30 and the second recesses 32 may not be aligned in the tire width direction but may be shifted in the tire circumferential direction.
  • the tread pattern including the first recess 30 and the second recess 32 is symmetrical with respect to the tire equatorial plane CL.
  • the effect of the tire 10 will be described.
  • the first circumferential groove is not increased without increasing the groove width and the groove depth of the first circumferential groove 14 as a whole.
  • the groove volume (drainage capacity) of 14 can be increased.
  • the plurality of second recesses 32 are provided in the second circumferential groove 18, the overall width of the second circumferential groove 18 and the groove depth of the second circumferential groove 18 are not increased.
  • the groove volume (drainage capacity) can be increased.
  • the tire 10 can increase drainage capacity of the first circumferential groove 14 and the second circumferential groove 18 and improve drainage while maintaining the rigidity of the tread 12.
  • the first circumferential groove 14 By increasing the number of first recesses 30 to be provided than the number of second recesses 32 provided in the second circumferential groove 18, the drainage of the tire 10 can be effectively improved.
  • the tire 10 rolls on the road surface while supporting the weight of the airframe when the aircraft travels on the ground.
  • the tread 12 is subjected to shear strain in the tire circumferential direction.
  • This shear strain also occurs in the groove bottom 14B of the first circumferential groove 14 and the groove bottom 18B of the second circumferential groove 18 which are thin portions of the tread 12, but in the groove bottoms 14B and 18B. Since the first concave portion 30 and the second concave portion 32 are respectively provided, shear strain generated in the groove bottoms 14B and 18B is absorbed by the first concave portion 30 and the second concave portion 32.
  • each heat dissipation area of the 1st circumferential groove 14 and the 2nd circumferential groove 18 is provided. Has increased. Thereby, the temperature rise of the groove bottoms 14B and 18B at the time of ground traveling of the aircraft can be suppressed.
  • the first recess 30 extends between both the groove walls 14A of the first circumferential groove 14, the effect of absorbing the groove volume, the heat radiation area, and the shear strain of the first circumferential groove 14 is improved.
  • the first concave portion 30 is formed in a groove shape extending from one groove wall 14A of the first circumferential groove 14 to the other groove wall 14A and extending in the longitudinal direction, the rubber thickness of the tread 12 is the largest.
  • the length A1 in the tire circumferential direction of the first concave portion 30 that is a thin portion can be made smaller than the length of the first concave portion 30 in the tire width direction, and the rigidity of the tread 12 due to the formation of the first concave portion 30 Reduction can be suppressed.
  • the second recess 32 extends between the groove walls 18A of the second circumferential groove 18, the effect of absorbing the groove volume, heat radiation area, and shear strain of the second circumferential groove 18 is improved. Further, since the second recess 32 extends from one groove wall 18A of the second circumferential groove 18 to the other groove wall 18A and has a groove shape in which the extending direction is the longitudinal direction, the rubber thickness of the tread 12 is the largest.
  • the length A2 in the tire circumferential direction of the second recess 32 which is a thin portion, can be made smaller than the length in the tire width direction of the second recess 32, and the rigidity of the tread 12 due to the formation of the second recess 32 Reduction can be suppressed.
  • the first land portion 16 formed on the tire equatorial plane CL is the land portion having the longest length in the tire width direction.
  • the land portion 16 can sufficiently withstand.
  • the first recess 30 is provided in the groove bottom 14B.
  • the present invention is not limited to this configuration, and the first recess 30 is provided in the groove bottom 14B.
  • both ends in the longitudinal direction (extending direction) of the first concave portion 30 may reach the middle part of the groove wall 14A from the groove bottom 14B.
  • at least one end in the longitudinal direction of the first concave portion 30 may be opened from the groove bottom 14 ⁇ / b> B to the tread surface of the first land portion 16 through the groove wall 14 ⁇ / b> A.
  • the above-described configuration of the first recess 30 can also be applied to the second recess 32.
  • the first recess 30 is provided on the groove bottom 14 ⁇ / b> B so as to extend between the groove walls 14 ⁇ / b> A of the first circumferential groove 14.
  • the invention is not limited to this configuration, and the first recess 30 may be provided only in the middle portion of the groove bottom 14B in the tire width direction without extending between the groove walls 14A. Note that the above-described configuration of the first recess 30 can also be applied to the second recess 32.
  • the number of the first recesses 30 provided in the pair of first circumferential grooves 14 is the same, but the present invention is not limited to this configuration, and each first circumferential groove 14.
  • the number of first recesses 30 provided in the first recess 30 may be different as long as it is greater than the number of second recesses 32 provided in one second circumferential groove.
  • the tread 12 is provided with two first circumferential grooves 14 and two second circumferential grooves 18.
  • the invention is not limited to this configuration, and the tread 12 may be separately provided with one or more circumferential grooves extending in the tire circumferential direction on the outer side in the tire width direction of the second circumferential groove 18.
  • the third circumferential groove 44 extends linearly along the tire circumferential direction on the outer side in the tire width direction of the second circumferential groove 18.
  • An example of another circumferential groove of the invention may be provided.
  • a third land portion 46 is formed between the third circumferential groove 44 and the second circumferential groove 18, and a fourth land portion 48 is formed on the outer side in the tire width direction of the third circumferential groove 44. Is formed.
  • the length W3 of the third land portion 46 in the tire width direction is narrower than the length W2 of the second land portion 20 in the tire width direction.
  • the length W3 of the 3rd land part 46 in FIG. 5 is the length of the tire width direction measured by the method similar to the 1st land part 16 and the 2nd land part 20.
  • a plurality of third recesses 50 having the same width as the second recesses 32 are provided on the groove bottom 44B of the third circumferential groove 44 at intervals in the tire circumferential direction.
  • the third recess 50 extends in a straight line along the tire width direction from one groove wall 44A of the third circumferential groove 44 to the other groove wall 44A, and the extending direction is a groove (elongated depression). It is made into a shape.
  • the number of third recesses 50 provided in the third circumferential groove 44 is smaller than the number of second recesses 32 provided in the second circumferential groove 18.
  • test example Next, in order to confirm the effect of the present invention, an aircraft tire of an example and a comparative aircraft tire not included in the present invention were prepared, and the following tests 1 to 3 were performed.
  • the size of the test aircraft tire is 1400 ⁇ 530R23.
  • Example An aircraft tire having the same structure as that of the first embodiment.
  • Comparative Example 1 An aircraft tire having the same structure as that of the first embodiment, but having no recess in the circumferential groove.
  • Comparative Example 2 An aircraft tire having the same structure as that of the first embodiment, but having the same number of first recesses in the first circumferential groove as the number of second recesses in the second circumferential groove.
  • Test 1 A test tire is attached to a standard rim of the TRA standard, filled with air until the standard internal pressure of the standard is reached, and rolled on a wet road surface with a predetermined load (100% of the standard load) applied. After that, the braking distance until braking and stopping was measured. This braking distance indicates the drainage of the test tire.
  • Table 1 the drainage performance of each test tire is expressed as an index when the braking distance (drainage performance) of Comparative Example 1 is set to 100. Moreover, the drainage property has shown the favorable result, so that a numerical value is large.
  • Test 2 A test tire is mounted on a standard rim of the TRA standard, filled with air until the standard internal pressure of the standard is reached, and a predetermined load (100% of the standard load) is applied on the drum of the drum testing machine. After rolling for a predetermined distance, the temperature of the groove bottom of the circumferential groove was measured at a plurality of locations on the circumference, and the average value was obtained.
  • Table 1 the groove bottom temperature of each test tire is expressed as an index when the groove bottom temperature of Comparative Example 1 is set to 100. Further, the groove bottom temperature shows a better result as the numerical value is larger.
  • Test 3 A test tire is mounted on a standard rim of the TRA standard, filled with air until the standard internal pressure of the standard is reached, and rolled on a dry road surface with a predetermined load (100% of the standard load) applied. In this case, the maximum value of strain generated at the groove bottom of the circumferential groove was measured.
  • the strain hereinafter referred to as “groove bottom strain” as appropriate
  • the groove bottom strain is an index when the maximum value of the groove bottom strain of Comparative Example 1 is 100. It is represented by Moreover, the groove bottom distortion has shown a favorable result, so that a numerical value is large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

航空機用タイヤ(10)は、タイヤ周方向に延びると共に溝底にタイヤ周方向に間隔をあけて凹部が複数設けられた周方向溝がタイヤ幅方向に間隔をあけて複数設けられ、複数の周方向溝によって形成された複数の陸部のうち最もタイヤ幅方向の長さが大きい第1陸部(16)を形成する第1周方向溝(14)に他の第2周方向溝(18)よりも多くの凹部が配置されたトレッド(12)、を有している。

Description

航空機用タイヤ
 本発明は、航空機用タイヤに関する。
 航空機用タイヤのトレッドには、排水用としてタイヤ周方向に延びる周方向溝が複数本形成されている(例えば、特開2007-168784号公報)。
 ところで、航空機用タイヤでは、航空機の着陸時や地上走行時にトレッドが受ける荷重が大きいため、トレッドの剛性を維持する観点から周方向溝の溝幅や溝深さに制限が設けられることがある。
 本発明は、航空機用タイヤにおいて、トレッドの剛性を維持しつつ、排水性を向上することを課題とする。
 本発明の第1の態様の航空機用タイヤは、タイヤ周方向に延びると共に溝底にタイヤ周方向に間隔をあけて凹部が複数設けられた周方向溝がタイヤ幅方向に間隔をあけて複数設けられ、複数の前記周方向溝によって形成された複数の陸部のうち最もタイヤ幅方向の長さが大きい前記陸部を形成する前記周方向溝に他の前記周方向溝よりも多くの前記凹部が配置されたトレッド、を有している。
 本発明の航空機用タイヤは、トレッドの剛性を維持しつつ、排水性を向上させることができる。
第1実施形態の航空機用タイヤのトレッドパターンを示すトレッドの展開図である。 図1の2X-2X線断面図である。 図2の3X-3X線断面図である。 第1実施形態の凹部の変形例をタイヤ幅方向に沿って切断した断面図である。 第2実施形態の航空機用タイヤのトレッドパターンを示すトレッドの展開図である。
(第1実施形態)
 以下、本発明の第1実施形態の航空機用タイヤについて説明する。
 図1は、第1実施形態の航空機用タイヤ(以下、単に「タイヤ」と記載する。)10のトレッド12の展開図を示している。なお、図1中の矢印Sはタイヤ10の周方向(以下、適宜「タイヤ周方向」と記載する。)を示し、矢印Xはタイヤ10のタイヤ幅方向を示している。また、符号CLはタイヤ10の赤道面(以下、適宜「タイヤ赤道面」と記載する。)を示している。なお、本実施形態では、タイヤ幅方向に沿ってタイヤ赤道面CLに近い側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってタイヤ赤道面CLから遠い側を「タイヤ幅方向外側」と記載する。
 また、図1中の符号12Eは、トレッド12の接地端を示している。なお、ここでいう「接地端」とは、TRA(The Tire and Rim Association Inc.のYear Book)またはETRTO(The European Tyre and Rim Technical OrganisationのYear Book)の規格が適用される正規リム(標準リム)にタイヤを装着し、同規格に記載されている適用サイズにおける単輪の最大荷重(標準荷重)に対応する空気圧(標準内圧)を内圧として充填し、同規格に記載されている適用サイズにおける単輪の標準荷重を負荷したときのタイヤ幅方向最外側の接地点をいう。
 本実施形態のタイヤ10は、内部構造として従来公知の航空機用タイヤの内部構造と同様のものを用いることができる。このため、タイヤ10の内部構造に関しては説明を省略する。
 図1に示すように、タイヤ10の路面との接地部位を構成するトレッド12には、タイヤ周方向に沿って直線状に延びる第1周方向溝14がタイヤ赤道面CLを挟んでタイヤ幅方向両側にそれぞれ設けられており、一対の第1周方向溝14間にタイヤ周方向に連続するリブ状の第1陸部16が形成されている。なお、第1陸部16は、トレッド12のタイヤ赤道面CL上に形成されている。
 また、トレッド12には、タイヤ周方向に沿って直線状に延びる第2周方向溝18が第1周方向溝14のタイヤ幅方向外側に設けられており、第1周方向溝14と第2周方向溝18との間にタイヤ周方向に連続するリブ状の第2陸部20が形成されている。
 なお、本実施形態の第1周方向溝14及び第2周方向溝18は、それぞれタイヤ周方向に沿って直線状に延びているが、本発明はこの構成に限定されず、例えば、タイヤ周方向に沿ってジグザグ状や波状に延びていてもよい。さらに、第1周方向溝14及び第2周方向溝18は、それぞれ溝幅が一定(図1参照)とされているが、溝幅が一定でなくとも構わない。
 さらに、トレッド12には、第2周方向溝18のタイヤ幅方向外側にタイヤ周方向に連続するリブ状の第3陸部22が形成されている。
 図1に示すように、第1陸部16のタイヤ幅方向の長さW1は、第2陸部20のタイヤ幅方向の長さW2及び第3陸部22のタイヤ幅方向の長さW3よりも広くなっている。ここで、第1陸部16の長さW1は、タイヤ幅方向断面において、第1陸部16の表面(踏面)16Aの延長線と第1陸部16の側壁(第1周方向溝14の第1陸部16側の溝壁14A)の延長線との交点間をタイヤ幅方向に沿って測定した長さの平均値である。第2陸部20の長さW2も第1陸部16の長さW1と同様に、タイヤ幅方向断面において、第2陸部20の表面(踏面)20Aの延長線と第2陸部20の側壁(第2周方向溝18の第2陸部20側の溝壁18A)の延長線との交点間をタイヤ幅方向に沿って測定した長さの平均値である。また、第3陸部22の長さW3は、タイヤ幅方向断面において、第3陸部22の表面(踏面)22Aの延長線と第3陸部22の側壁(第2周方向溝18の第3陸部22側の溝壁18A)の延長線との交点から接地端12Eまでをタイヤ幅方向に沿って測定した長さの平均値である。なお、本実施形態の第1陸部16は、本発明の最もタイヤ幅方向の長さが大きい陸部の一例であり、第1周方向溝14は、本発明の最もタイヤ幅方向の長さが大きい陸部を形成する周方向溝の一例である。また、第2周方向溝18は、本発明の他の周方向溝の一例である。
 図1、図3に示すように、第1周方向溝14の溝底14Bには、第1凹部30がタイヤ周方向に間隔をあけて複数設けられている。この第1凹部30は、図2に示すように、第1周方向溝14の両溝壁14A間に亘っている。具体的に説明すると、第1凹部30は、第1周方向溝14の一方の溝壁14Aから他方の溝壁14Aへタイヤ幅方向に沿って直線状に延びると共に延びる方向が長手方向とされた溝(細長い窪み)状とされている。なお、第1凹部30の延びる方向は、第1周方向溝14の延在方向(本実施形態では、タイヤ周方向と同義)に対して交差する方向であれば、どの方向でも構わない。さらに、第1凹部30は、上記交差する方向(本実施形態では、タイヤ幅方向)に沿って、例えば、ジグザグ状や波状に延びる構成としてもよい。
 また、第1凹部30の深さ(溝底14Bから凹底までの距離)は、長手方向の中間部分では略一定とされ、第1周方向溝14の深さ(トレッド12踏面から溝底14Bまでの距離)よりも値が小さくされている。なお、本実施形態の第1周方向溝14の深さは、タイヤ周方向に沿って略一定とされている。
 図1に示すように、第2周方向溝18の溝底18Bには、第2凹部32がタイヤ周方向に間隔をあけて複数設けられている。この第2凹部32は、第2周方向溝18の両溝壁18A間に亘っている。具体的に説明すると、第2凹部32は、第2周方向溝18の一方の溝壁18Aから他方の溝壁18Aへタイヤ幅方向に沿って直線状に延びると共に延びる方向が長手方向とされた溝(細長い窪み)状とされている。なお、第2凹部32の延びる方向は、第2周方向溝18の延在方向(本実施形態では、タイヤ周方向と同義)に対して交差する方向であれば、どの方向でも構わない。さらに、第2凹部32は、上記交差する方向(本実施形態では、タイヤ幅方向)に沿って、例えば、ジグザグ状や波状に延びる構成としてもよい。
 また、第2凹部32の深さ(溝底18Bから凹底までの距離)は、長手方向の中間部分では略一定とされ、第2周方向溝18の深さ(トレッド12踏面から溝底18Bまでの距離)よりも値が小さくされている。なお、本実施形態の第2周方向溝18の深さは、タイヤ周方向に沿って略一定とされている。
 なお、本実施形態の第1凹部30は、本発明の最もタイヤ幅方向の長さが大きい陸部を形成する周方向溝に設けられる凹部の一例であり、第2凹部32は、本発明の他の周方向溝に設けられる凹部の一例である。
 図1に示すように、第1周方向溝14に設けられる第1凹部30の数は、第2周方向溝18に設けられる第2凹部32の数よりも多くなっている。なお、本実施形態では、第1凹部30のタイヤ周方向の長さA1と第2凹部32のタイヤ周方向の長さA2が同じ長さになっている。このため、隣り合う第1凹部30間のタイヤ周方向の長さ(間隔)P1が、隣り合う第2凹部32間のタイヤ周方向の長さ(間隔)P2よりも狭くなっている。なお、本発明は上記構成に限定されず、第1凹部30のタイヤ周方向の長さA1と第2凹部32のタイヤ周方向の長さA2が異なっていてもよい。また、第1凹部30のタイヤ周方向の長さA1は、第1凹部30の延びる方向(長手方向)と直交する方向の断面において、溝底14Bの延長線と第1凹部30の凹壁の延長線との交点間を第1凹部30の延びる方向と直交する方向(本実施形態では、タイヤ周方向)に沿って測定した長さの平均値である。一方、第2凹部32のタイヤ周方向の長さA2は、第2凹部32の延びる方向(長手方向)と直交する方向の断面において、溝底18Bの延長線と第2凹部32の凹壁の延長線との交点間を第2凹部32の延びる方向と直交する方向(本実施形態では、タイヤ周方向)に沿って測定した長さの平均値である。
 また、第1凹部30は、トレッド12の接地領域内に少なくとも一つ存在するように第1周方向溝14の溝底14Bに複数設けられている。なお、第1凹部30は、タイヤ10の周上12個所以上、より好ましくは、タイヤ周方向に2~3cm間隔で配置されるとよい。なお、ここでいうトレッド12の接地領域とは、TRA規格またはETRTO規格において、タイヤ10の適用サイズにおける単輪の最大荷重に対応する空気圧を内圧として充填した状態で、上記最大荷重を負荷したときの接地領域をいう。
 また、図1に示すように、本実施形態では、一方の第1周方向溝14に設けられた第1凹部30と、他方の第1周方向溝14の第1凹部30とがタイヤ幅方向に沿って並んでいる。また、タイヤ周方向に間隔をあけて配置された複数の第1凹部30のうち一つ置きの第1凹部30と、第2凹部32とがタイヤ幅方向に沿って並んでいる。なお、本発明はこの構成に限定されず、一方の第1周方向溝14に設けられた第1凹部30と、他方の第1周方向溝14の第1凹部30とがタイヤ幅方向に沿って並ばずに、タイヤ周方向にずれて配置されてもよく、第1凹部30と第2凹部32がタイヤ幅方向に並ばずに、タイヤ周方向にずれて配置されてもよい。
 なお、本実施形態のタイヤ10は、第1凹部30及び第2凹部32を含むトレッドパターンがタイヤ赤道面CLに対して左右対称とされている。
 次に、タイヤ10の作用効果について説明する。
 タイヤ10では、第1周方向溝14に複数の第1凹部30を設けていることから、第1周方向溝14の溝幅や溝深さを全体的に増やすことなく、第1周方向溝14の溝容積(排水容量)を増大させることができる。一方、第2周方向溝18に複数の第2凹部32を設けていることから、第2周方向溝18の溝幅や溝深さを全体的に増やすことなく、第2周方向溝18の溝容積(排水容量)を増大させることができる。
 これにより、タイヤ10は、トレッド12の剛性を維持しつつ、第1周方向溝14及び第2周方向溝18の排水容量を増大させて排水性を向上させることができる。
 特に、最もタイヤ幅方向の長さが大きい第1陸部16を形成する第1周方向溝14には、第2周方向溝18よりも多量の排水が流れ込むため、第1周方向溝14に設ける第1凹部30の数を第2周方向溝18に設ける第2凹部32の数よりも多くすることで、タイヤ10の排水性を効果的に向上させることができる。
 ところで、タイヤ10は、航空機の地上走行時に、機体の重量を支えながら路面上を転動する。このとき、トレッド12には、タイヤ周方向のせん断歪が生じる。このせん断歪は、トレッド12の中でもゴム厚が薄い部分である第1周方向溝14の溝底14B及び第2周方向溝18の溝底18Bにも生じるが、これらの溝底14B、18Bにはそれぞれ第1凹部30、第2凹部32を設けていることから、各溝底14B、18Bに生じるせん断歪が第1凹部30、第2凹部32で吸収される。これにより、第1周方向溝14の溝底14B及び第2周方向溝18の溝底18Bに過剰な歪みが生じるのを緩和することができる。
 また、タイヤ10では、溝底14Bに第1凹部30を設け、溝底18Bに第2凹部32を設けていることから、第1周方向溝14及び第2周方向溝18の各々の放熱面積が増大している。これにより、航空機の地上走行時における溝底14B、18Bの温度上昇を抑制することができる。
 また、第1凹部30が第1周方向溝14の両溝壁14A間に亘っていることから、第1周方向溝14の溝容積、放熱面積、及びせん断歪を吸収する効果が向上する。さらに、第1凹部30を第1周方向溝14の一方の溝壁14Aから他方の溝壁14Aへ延びると共に延びる方向が長手方向となる溝状としていることから、トレッド12の中で最もゴム厚が薄い部分である第1凹部30のタイヤ周方向の長さA1を該第1凹部30のタイヤ幅方向の長さよりも小さい値にすることができ、第1凹部30の形成によるトレッド12の剛性低下を抑制できる。同様に、第2凹部32が第2周方向溝18の両溝壁18A間に亘っていることから、第2周方向溝18の溝容積、放熱面積、及びせん断歪を吸収する効果が向上し、さらに第2凹部32が第2周方向溝18の一方の溝壁18Aから他方の溝壁18Aへ延びると共に延びる方向が長手方向となる溝状としていることから、トレッド12の中で最もゴム厚が薄い部分である第2凹部32のタイヤ周方向の長さA2を該第2凹部32のタイヤ幅方向の長さよりも小さい値にすることができ、第2凹部32の形成によるトレッド12の剛性低下を抑制できる。
 また、タイヤ10では、タイヤ赤道面CL上に形成される第1陸部16を最もタイヤ幅方向の長さが大きい陸部としていることから、地上走行時や離陸時の荷重に対して第1陸部16が十分に耐えることができる。
 第1実施形態のタイヤ10では、図2に示すように、第1凹部30が溝底14B内に設けられているが、本発明はこの構成に限定されず、第1凹部30が溝底14Bから少なくとも一方の溝壁14Aの高さ方向(陸部高さ方向)中間部分まで延びていてもよい。例えば、図4に示す変形例の第1凹部30のように、第1凹部30の長手方向(延びる方向)の両端を溝底14Bから溝壁14Aの中腹部分に到達させてもよい。また、第1凹部30の長手方向の少なくとも一端を、溝底14Bから溝壁14Aを通り、第1陸部16の踏面に開口させてもよい。なお、第2凹部32にも第1凹部30の上記構成を適用することができる。
 また、第1実施形態のタイヤ10では、図2に示すように、第1凹部30が第1周方向溝14の溝壁14A間に亘るように溝底14Bに設けられる構成としているが、本発明はこの構成に限定されず、第1凹部30は、溝壁14A間に亘らずに溝底14Bのタイヤ幅方向の中間部分のみに設けられる構成としてもよい。なお、第2凹部32にも第1凹部30の上記構成を適用することができる。
 第1実施形態のタイヤ10では、一対の第1周方向溝14に設ける第1凹部30の数を同じ数にしているが、本発明はこの構成に限定されず、各第1周方向溝14に設ける第1凹部30の数は、一つの第2周方向溝に設ける第2凹部32の数よりも多ければ、異なっていてもよい。
 また、第1実施形態のタイヤ10では、図1に示すように、トレッド12には、2本の第1周方向溝14と2本の第2周方向溝18が設けられているが、本発明はこの構成に限定されず、トレッド12には、第2周方向溝18のタイヤ幅方向外側に一つ以上のタイヤ周方向に延びる周方向溝が別途設けられてもよい。例えば、図5に示す第2実施形態のタイヤ40のトレッド42のように、第2周方向溝18のタイヤ幅方向外側にタイヤ周方向に沿って直線状に延びる第3周方向溝44(本発明の他の周方向溝の一例)を設けてもよい。このトレッド42には、第3周方向溝44と第2周方向溝18との間に第3陸部46が形成され、第3周方向溝44のタイヤ幅方向外側に第4陸部48が形成されている。第3陸部46のタイヤ幅方向の長さW3は、第2陸部20のタイヤ幅方向の長さW2よりも狭くなっている。なお、図5における第3陸部46の長さW3は、第1陸部16や第2陸部20と同様の方法で測定されるタイヤ幅方向の長さである。また、第3周方向溝44の溝底44Bには、第2凹部32と同じ幅の第3凹部50がタイヤ周方向に間隔をあけて複数設けられている。この第3凹部50は、第3周方向溝44の一方の溝壁44Aから他方の溝壁44Aへタイヤ幅方向に沿って直線状に延びると共に延びる方向が長手方向とされた溝(細長い窪み)状とされている。なお、第3周方向溝44に設けられる第3凹部50の数は、第2周方向溝18に設けられる第2凹部32の数よりも少なくなっている。
 以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
 (試験例)
 次に、本発明の効果を確かめるために、実施例の航空機用タイヤと、本発明に含まれない比較例の航空機用タイヤを用意し、以下の試験1~3を実施した。なお、供試航空機用タイヤのサイズは1400×530R23である。
 まず、各供試タイヤの構造について説明する。
 実施例:第1実施形態と同じ構造を有する航空機用タイヤ。
 比較例1:第1実施形態と同じ構造を有するが、周方向溝に凹部が設けられていない航空機用タイヤ。
 比較例2:第1実施形態と同じ構造を有するが、第1周方向溝の第1凹部の数が第2周方向溝の第2凹部の数と同じ航空機用タイヤ。
 試験1:供試タイヤをTRA規格の標準リムに取り付け、同規格の標準内圧となるまで空気を充填し、そして、所定の荷重(標準荷重の100%)を付与した状態でウエット路面を転動させ、その後、ブレーキをかけて停止するまでの制動距離を測定した。この制動距離が供試タイヤの排水性を示している。なお、表1では、各供試タイヤの排水性を、比較例1の制動距離(排水性)を100としたときの指数で表している。また、排水性は、数値が大きいほど良好な結果を示している。
 試験2:供試タイヤをTRA規格の標準リムに取り付け、同規格の標準内圧となるまで空気を充填し、そして、所定の荷重(標準荷重の100%)を付与したドラム試験機のドラム上を所定距離転動させた後、周方向溝の溝底の温度を周上複数個所で測定し、その平均値を求めた。なお、表1では、各供試タイヤの溝底温度を、比較例1の溝底温度を100としたときの指数で表している。また、溝底温度は、数値が大きいほど良好な結果を示している。
 試験3:供試タイヤをTRA規格の標準リムに取り付け、同規格の標準内圧となるまで空気を充填し、そして、所定の荷重(標準荷重の100%)を付与した状態で乾燥路面を転動させた場合に、周方向溝の溝底に生じる歪の最大値を測定した。なお、表1では、各供試タイヤの溝底に生じる歪(以下、適宜、「溝底歪」と記載する。)を、比較例1の溝底歪の最大値を100としたときの指数で表している。また、溝底歪は、数値が大きいほど良好な結果を示している。
Figure JPOXMLDOC01-appb-T000001
 表1から、周方向溝に凹部を設けない比較例1の航空機用タイヤよりも、周方向溝に凹部を設ける比較例2の航空機用タイヤが排水性、周方向溝の溝底温度、及び、溝底歪が改良されていることが分かる。
 また、表1から、実施例の航空機用タイヤが比較例2の航空機用タイヤよりも排水性、周方向溝の溝底温度、及び、溝底歪に関して優れていることが分かる。すなわち、実施例1の航空機用タイヤのように、最もタイヤ幅方向の長さが大きい陸部を形成する周方向溝に他の周方向溝よりも凹部を多く設ける構成を採用することで、排水性、周方向溝の溝底温度、及び、溝底歪を効果的に改良できることが分かる。
 なお、2013年8月2日に出願された日本国特許出願2013-161681号の開示は、その全体が参照により本明細書に取り込まれる。

Claims (4)

  1.  タイヤ周方向に延びると共に溝底にタイヤ周方向に間隔をあけて凹部が複数設けられた周方向溝がタイヤ幅方向に間隔をあけて複数設けられ、複数の前記周方向溝によって形成された複数の陸部のうち最もタイヤ幅方向の長さが大きい前記陸部を形成する前記周方向溝に他の前記周方向溝よりも多くの前記凹部が配置されたトレッド、を有する航空機用タイヤ。
  2.  前記凹部は、前記周方向溝の両溝壁間に亘っている、請求項1に記載の航空機用タイヤ。
  3.  前記凹部は、前記周方向溝の一方の溝壁から他方の溝壁へ延びると共に延びる方向が長手方向とされた溝状とされている、請求項2に記載の航空機用タイヤ。
  4.  最もタイヤ幅方向の長さが大きい前記陸部が前記トレッドのタイヤ赤道面上に形成されている、請求項1~3のいずれか1項に記載の航空機用タイヤ。
PCT/JP2014/068611 2013-08-02 2014-07-11 航空機用タイヤ WO2015016047A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14831198.8A EP3028875B1 (en) 2013-08-02 2014-07-11 Aircraft tire
US14/908,538 US20160167444A1 (en) 2013-08-02 2014-07-11 Aircraft tire
CN201480043224.9A CN105431306B (zh) 2013-08-02 2014-07-11 航空器轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013161681A JP6184233B2 (ja) 2013-08-02 2013-08-02 航空機用タイヤ
JP2013-161681 2013-08-02

Publications (1)

Publication Number Publication Date
WO2015016047A1 true WO2015016047A1 (ja) 2015-02-05

Family

ID=52431587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068611 WO2015016047A1 (ja) 2013-08-02 2014-07-11 航空機用タイヤ

Country Status (5)

Country Link
US (1) US20160167444A1 (ja)
EP (1) EP3028875B1 (ja)
JP (1) JP6184233B2 (ja)
CN (1) CN105431306B (ja)
WO (1) WO2015016047A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2268344A (en) * 1938-08-18 1941-12-30 Us Rubber Co Pneumatic tire tread
JPS6447602A (en) * 1987-08-18 1989-02-22 Sumitomo Rubber Ind Radial tire for aeroplane
JP2000515081A (ja) * 1996-07-22 2000-11-14 ザ グッドイヤー タイヤ アンド ラバー カンパニー 流液溝を有するタイヤトレッド
JP2007168784A (ja) 2005-12-20 2007-07-05 Goodyear Tire & Rubber Co:The 航空機用ラジアルタイヤとその製造方法
WO2013015410A1 (ja) * 2011-07-27 2013-01-31 株式会社ブリヂストン タイヤ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2759512A (en) * 1951-07-14 1956-08-21 Walter H Schlichtmann Airplane tire tread
LU58967A1 (ja) * 1968-06-27 1969-11-11
US3773283A (en) * 1972-03-22 1973-11-20 Abplanalp Robert Self rotating airplane tire
IT1054822B (it) * 1976-01-26 1981-11-30 Pirelli Pneumatico in grado di offrire caratteristiche di comportamento alla guida e di tenuta di strada sostanzialmente costanti al crescere dell usura
JPS6031400B2 (ja) * 1979-01-20 1985-07-22 松下電器産業株式会社 スピ−カ特性測定装置
DE3916711A1 (de) * 1989-05-23 1990-11-29 Klaus D Dipl Ing Debus Tiefrillen-reifen - aqua-planing-verhinderungs-reifen
CA2156392A1 (en) * 1993-12-27 1995-07-06 Hirohisa Fukata Tire for vehicle
JP4413355B2 (ja) * 2000-01-14 2010-02-10 株式会社ブリヂストン 空気入りタイヤ
US6374883B1 (en) * 2000-05-19 2002-04-23 The Goodyear Tire & Rubber Company Aircraft tire with two aquachannels
US7326311B2 (en) * 2005-04-29 2008-02-05 Kimberly-Clark Worldwide, Inc. Method of producing intermittently elastic webs
JP4639974B2 (ja) * 2005-06-07 2011-02-23 横浜ゴム株式会社 空気入りタイヤ
US7926533B2 (en) * 2007-10-31 2011-04-19 The Goodyear Tire & Rubber Company, Inc. Pneumatic tire with increased lower sidewall durability
JP5374410B2 (ja) * 2010-02-18 2013-12-25 株式会社ブリヂストン タイヤ
JP5491953B2 (ja) * 2010-05-07 2014-05-14 株式会社ブリヂストン タイヤ
JP5498245B2 (ja) * 2010-05-10 2014-05-21 株式会社ブリヂストン タイヤ
JP5617399B2 (ja) * 2010-07-14 2014-11-05 横浜ゴム株式会社 空気入りタイヤ
JP5797412B2 (ja) * 2011-01-21 2015-10-21 株式会社ブリヂストン 空気入りタイヤ
JP5804823B2 (ja) * 2011-07-26 2015-11-04 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP5801133B2 (ja) * 2011-08-01 2015-10-28 株式会社ブリヂストン 空気入りタイヤ
WO2013148355A1 (en) * 2012-03-30 2013-10-03 Compagnie Generale Des Etablissements Michelin Tire treads with reduced undertread thickness
JP5932618B2 (ja) * 2012-11-20 2016-06-08 住友ゴム工業株式会社 空気入りタイヤ
JP5798579B2 (ja) * 2013-02-06 2015-10-21 住友ゴム工業株式会社 重荷重用空気入りタイヤ
JP6031400B2 (ja) * 2013-04-12 2016-11-24 株式会社ブリヂストン 航空機用タイヤ
JP6138567B2 (ja) * 2013-04-24 2017-05-31 株式会社ブリヂストン 空気入りタイヤ
EP2990232B1 (en) * 2013-04-25 2018-03-21 Bridgestone Corporation Aircraft tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2268344A (en) * 1938-08-18 1941-12-30 Us Rubber Co Pneumatic tire tread
JPS6447602A (en) * 1987-08-18 1989-02-22 Sumitomo Rubber Ind Radial tire for aeroplane
JP2000515081A (ja) * 1996-07-22 2000-11-14 ザ グッドイヤー タイヤ アンド ラバー カンパニー 流液溝を有するタイヤトレッド
JP2007168784A (ja) 2005-12-20 2007-07-05 Goodyear Tire & Rubber Co:The 航空機用ラジアルタイヤとその製造方法
WO2013015410A1 (ja) * 2011-07-27 2013-01-31 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
US20160167444A1 (en) 2016-06-16
JP6184233B2 (ja) 2017-08-23
JP2015030389A (ja) 2015-02-16
CN105431306B (zh) 2018-03-30
EP3028875A4 (en) 2016-08-24
CN105431306A (zh) 2016-03-23
EP3028875A1 (en) 2016-06-08
EP3028875B1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP5391262B2 (ja) 空気入りタイヤ
JP5406949B2 (ja) 重荷重用空気入りタイヤ
JP5658728B2 (ja) 空気入りタイヤ
JP5698775B2 (ja) 重荷重用空気入りタイヤ
KR101955948B1 (ko) 공기입 타이어
JP6194279B2 (ja) 空気入りタイヤ
JP6259339B2 (ja) 空気入りタイヤ
JP5435175B1 (ja) 空気入りタイヤ
JP6043237B2 (ja) 空気入りタイヤ
JP5781566B2 (ja) 空気入りタイヤ
CN106515316B (zh) 充气轮胎
WO2015107973A1 (ja) タイヤ
JP6121143B2 (ja) 空気入りタイヤ
JP2014156165A (ja) 重荷重用空気入りタイヤ
JP2017043208A (ja) 重荷重用タイヤ
US10576791B2 (en) Tire
KR20180111543A (ko) 타이어
WO2014175125A1 (ja) 航空機用タイヤ
JP6423702B2 (ja) 空気入りタイヤ
JP5200123B2 (ja) 重荷重用空気入りタイヤ
JP2019081490A (ja) 空気入りタイヤ
US10000092B2 (en) Pneumatic tire
JP6430310B2 (ja) 空気入りタイヤ
JP6082367B2 (ja) 空気入りタイヤ
JP6184233B2 (ja) 航空機用タイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043224.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14908538

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014831198

Country of ref document: EP