WO2015008863A1 - ニッケル-マンガン系複合オキシ水酸化物、その製造方法、及びその用途 - Google Patents

ニッケル-マンガン系複合オキシ水酸化物、その製造方法、及びその用途 Download PDF

Info

Publication number
WO2015008863A1
WO2015008863A1 PCT/JP2014/069238 JP2014069238W WO2015008863A1 WO 2015008863 A1 WO2015008863 A1 WO 2015008863A1 JP 2014069238 W JP2014069238 W JP 2014069238W WO 2015008863 A1 WO2015008863 A1 WO 2015008863A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
manganese composite
aqueous solution
manganese
composite oxyhydroxide
Prior art date
Application number
PCT/JP2014/069238
Other languages
English (en)
French (fr)
Inventor
藤井 康浩
望水 井出
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to EP14826634.9A priority Critical patent/EP3023391B1/en
Priority to ES14826634.9T priority patent/ES2682200T3/es
Priority to KR1020157036108A priority patent/KR102196829B1/ko
Priority to CN201480040835.8A priority patent/CN105377766B/zh
Priority to US14/904,548 priority patent/US10122016B2/en
Publication of WO2015008863A1 publication Critical patent/WO2015008863A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/58Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O8]n-
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel-manganese composite oxyhydroxide, a method for producing the same, and a use thereof. Specifically, nickel-manganese composite oxyhydroxide, a method for producing the same, lithium-nickel-manganese composite oxide obtained using the composite oxyhydroxide, and lithium using the composite oxide as a positive electrode
  • the present invention relates to a secondary battery.
  • the lithium-nickel-manganese composite oxide has a superlattice structure in which nickel and manganese are regularly arranged.
  • the method for producing a lithium-nickel-manganese composite oxide includes a solid phase reaction method in which a nickel source and a manganese source are mixed and fired, a composite hydroxide containing nickel and manganese, and a composite oxyhydroxide. There is a manufacturing method using as a precursor.
  • the composite hydroxide or composite oxyhydroxide containing nickel and manganese is a preferable precursor when the ordered arrangement of nickel and manganese is premised because the metal is more uniformly distributed.
  • a nickel-manganese composite hydroxide obtained by a coprecipitation method under an inert atmosphere is disclosed as a precursor of a lithium-nickel-manganese composite oxide (Patent Document 1 and Non-Patent Document 1). reference).
  • Patent Document 1 when a nickel-manganese-iron composite metal hydroxide is separated into solid and liquid co-precipitate slurry and stored for a long time as a wet cake, manganese oxide (Mn 3 O It has been pointed out that 4 ) is a by-product. Moreover, when the composite metal hydroxide containing Mn 3 O 4 as a by-product and a lithium compound are mixed and fired, the product lithium composite metal oxide has a non-uniform composition, and this lithium composite metal It has been pointed out that battery performance using oxides is insufficient.
  • Ni x Mn 1-x (OH) 2 is obtained by converting manganese oxide (Mn 3 O 4 ) when drying a wet cake with x ⁇ 1/3.
  • Mn 3 O 4 manganese oxide
  • the nickel-manganese composite hydroxide having a relatively high manganese composition is unstable in the atmosphere, and there is a problem that the Mn component segregates despite the coprecipitate.
  • An object of the present invention is a nickel-manganese complex oxyhydroxide, which is a complex compound of nickel and manganese, which is stable in the air and does not cause segregation of manganese components in processes such as coprecipitation, washing and drying. Is to provide things. Furthermore, an object of the present invention is to provide a lithium-nickel-manganese composite oxide using a nickel-manganese composite oxyhydroxide and a lithium secondary using the lithium-nickel-manganese composite oxide as a positive electrode. It is to provide a battery.
  • the present inventors diligently studied a precursor of a lithium-nickel-manganese composite oxide.
  • an oxyhydroxide having a specific structure similar to a hydroxide is stable in the atmosphere even if the chemical composition of Mn is relatively high, and manganese oxide (Mn 3 O 4 ) was not produced as a by-product, Mn component was not segregated, and the metal element was highly dispersible.
  • a lithium secondary battery using such a nickel-manganese composite oxyhydroxide as a precursor and a lithium-nickel-manganese composite oxide obtained from the composite oxyhydroxide as a positive electrode has a small 4V potential flat portion. The inventors have found that the energy density is particularly high, and have completed the present invention.
  • the present invention has the following gist.
  • the chemical composition formula is Ni (0.25 + ⁇ ) ⁇ x M1 x Mn (0.75 ⁇ ) ⁇ y M2 y OOH (where M1 and M2 are independently Mg, Al, Ti, V, (Represents one selected from Cr, Fe, Co, Cu, Zn and Zr, 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.25, and ⁇ 0.025 ⁇ ⁇ ⁇ 0.025) And a nickel-manganese composite oxyhydroxide characterized by having a hexagonal cadmium hydroxide structure.
  • Metal salt aqueous solution Metal salt aqueous solution containing nickel and manganese, or one or more selected from the group consisting of Mg, Al, Ti, V, Cr, Fe, Co, Cu, Zn and Zr, containing nickel and manganese Metal salt aqueous solution containing oxidizing agent; aerobic gas or hydrogen peroxide solution (6)
  • the production method according to (5) further comprising adding a complexing agent.
  • the complexing agent is ammonia, an ammonium salt, or an amino acid.
  • a lithium-nickel-manganese composite oxide obtained by mixing and heat-treating the nickel-manganese composite oxyhydroxide according to any one of (1) to (4) above and a lithium compound.
  • the nickel-manganese composite oxyhydroxide of the present invention is stable in the air, does not produce manganese oxide (Mn 3 O 4 ) as a by-product during long-term storage or drying, and further segregates Mn components.
  • the metal element has high dispersibility and is useful as a precursor of a lithium-nickel-manganese composite oxide used as a positive electrode of a lithium secondary battery.
  • FIG. 3 is an XRD pattern of the nickel-manganese composite oxyhydroxide of Example 1.
  • FIG. 2 is an XRD pattern of a nickel-manganese composite oxyhydroxide of Example 2.
  • FIG. 3 is an XRD pattern of a nickel-manganese composite oxyhydroxide of Example 3.
  • FIG. 4 is an XRD pattern of a nickel-manganese composite oxyhydroxide of Example 4.
  • 6 is an XRD pattern of a nickel-manganese composite oxyhydroxide of Example 5.
  • FIG. 7 is an XRD pattern of a nickel-manganese composite oxyhydroxide of Example 6.
  • FIG. 6 is an XRD pattern of the lithium-nickel-manganese composite oxide of Example 7 (the arrow in the figure indicates a superlattice peak).
  • FIG. 6 is an XRD pattern of the lithium-nickel-manganese composite oxide of Example 8 (the arrow in the figure indicates a superlattice peak).
  • 4 is an XRD pattern of a nickel-manganese composite oxyhydroxide of Example 9.
  • 3 is an XRD pattern of a nickel-manganese composite oxyhydroxide of Example 10.
  • 4 is an XRD pattern of a nickel-manganese composite oxyhydroxide of Example 11.
  • 4 is an XRD pattern of a nickel-manganese composite oxyhydroxide of Example 12.
  • 4 is an XRD pattern of a magnesium-substituted nickel-manganese composite oxyhydroxide of Example 13.
  • 4 is an XRD pattern of an iron-substituted nickel-manganese composite oxyhydroxide of Example 14.
  • 6 is an XRD pattern of a cobalt-substituted nickel-manganese composite oxyhydroxide of Example 15.
  • 6 is an XRD pattern of a copper-substituted nickel-manganese composite oxyhydroxide of Example 16.
  • FIG. 2 is an XRD pattern of a nickel-manganese composite compound of Comparative Example 1.
  • FIG. 3 is an XRD pattern of a nickel-manganese composite compound of Comparative Example 2.
  • FIG. 4 is an XRD pattern of a nickel-manganese composite compound of Comparative Example 3.
  • FIG. 2 is a scanning electron micrograph of the nickel-manganese composite oxyhydroxide of Example 1.
  • FIG. 2 is a particle size distribution curve of a nickel-manganese composite oxyhydroxide of Example 1.
  • FIG. 6 is a scanning electron micrograph of the nickel-manganese composite oxyhydroxide of Example 5.
  • FIG. 6 is a scanning electron micrograph of the nickel-manganese composite oxyhydroxide of Example 6.
  • FIG. 2 is a scanning electron micrograph of the nickel-manganese composite oxyhydroxide of Example 11.
  • FIG. 4 is a scanning electron micrograph of the nickel-manganese composite oxyhydroxide of Example 12.
  • FIG. 4 is a scanning electron micrograph of the lithium-nickel-manganese composite oxide of Example 7.
  • FIG. FIG. 6 is a charge / discharge curve of the lithium-nickel-manganese composite oxide of Example 7 (2 to 4 cycles).
  • FIG. FIG. 10 is a charge / discharge cycle performance chart of Example 7 (1 to 30 cycles).
  • 4 is a scanning electron micrograph of the lithium-nickel-manganese composite oxide of Example 8.
  • FIG. 6 is a charge / discharge curve of the lithium-nickel-manganese composite oxide of Example 8 (2 to 4 cycles).
  • FIG. 10 is a charge / discharge cycle performance chart of Example 8 (1 to 30 cycles).
  • the nickel-manganese composite oxyhydroxide of the present invention has a chemical composition formula of Ni (0.25 + ⁇ ) -x M1 x Mn (0.75- ⁇ ) -y M2 y OOH (where M1 and M2 are respectively Independently represents one selected from Mg, Al, Ti, V, Cr, Fe, Co, Cu, Zn and Zr, 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.25, ⁇ 0 .025 ⁇ ⁇ ⁇ 0.025).
  • Ni + M1 0.25 ⁇ 0.025
  • Mn + M2 0.75 ⁇ 0.025
  • Battery capacity in the vicinity of 5V decreases.
  • Ni + M1 is preferably 0.25 ⁇ 0.01
  • Mn + M2 is preferably 0.75 ⁇ 0.01.
  • is ⁇ 0.025 ⁇ ⁇ ⁇ 0.025.
  • is out of this range, it deviates from the formal valences of Ni 2+ and Mn 4+ and is around 5 V (Li The battery capacity of the metal negative electrode reference) decreases.
  • the improvement of performance in particular, the stability of the charge / discharge cycle and the effect of suppressing elution of Mn can be expected.
  • the degree of ordering of the Ni—Mn ordered arrangement in the spinel type sublattice is lowered, and the battery capacity in the vicinity of 5 V (based on the Li metal negative electrode) is lowered.
  • 0 ⁇ x ⁇ 0.1 and 0 ⁇ y ⁇ 0.25 are preferable, and 0 ⁇ x ⁇ 0.05 and 0 ⁇ y ⁇ 0.1 are more preferable.
  • the amount of substitution of different elements for Ni is small.
  • Preferred specific chemical compositions of the nickel-manganese composite oxyhydroxide of the present invention include, for example, Ni 0.25 Mn 0.75 OOH, Ni 0.25 Mn 0.65 Ti 0.10 OOH, Ni 0 .20 Fe 0.05 Mn 0.75 OOH, Ni 0.23 Mg 0.02 Mn 0.75 OOH, Ni 0.225 Mg 0.025 Mn 0.75 OOH, Ni 0.225 Co 0.05 Mn 0 .725 OOH (Ni 0.225 Co 0.025 Mn 0.725 Co 0.025 OOH), Ni 0.23 Zn 0.02 Mn 0.75, and the like. Of these, Ni 0.25 Mn 0.75 OOH is preferable.
  • the nickel-manganese composite oxyhydroxide of the present invention is a cadmium hydroxide type oxyhydroxide having a hexagonal crystal structure.
  • the ⁇ -type nickel hydroxide type structure has a relatively wide transition metal layer, and therefore, an anion that can be an impurity such as SO 4 is easily incorporated.
  • a cadmium hydroxide type crystal structure is preferable because anions are not taken in between the transition metal layers.
  • the cadmium hydroxide type structure is a crystal structure in which hydroxide ions are arranged at the positions of iodide ions in the hexagonal cadmium iodide type structure, and the hydroxide ions have a nearly hexagonal close-packed structure.
  • the metal ions are located in the octahedral hexacoordinate gaps every other layer in the c-axis direction.
  • metal ions such as nickel, manganese, M1, and M2 are located instead of the cadmium ions in the cadmium hydroxide structure.
  • the tap density of the nickel-manganese composite oxyhydroxide of the present invention is preferably 1.0 g / cm 3 or more, since the filling property of the positive electrode active material in the electrode affects the energy density, and 1.5 g / Cm 3 or more is more preferable, and 2.0 g / cm 3 or more is particularly preferable. Of these, 1.7 to 2.2 g / cm 3 is most preferable. If the tap density is 1.0 g / cm 3 or more, the filling property of the lithium-nickel-manganese composite oxide obtained using the nickel-manganese composite oxyhydroxide of the present invention as a raw material tends to be high.
  • the nickel-manganese composite oxyhydroxide of the present invention has a theoretical average valence of trivalent, and the average valence of Ni, Mn, M1 and M2 in the chemical composition formula is 2.8 to 3.1. It is preferable that 2.9 to 3.0 is more preferable.
  • the average valence is determined by an iodometry method. The theoretical average valence is based on the formal oxidation number.
  • the specific surface area of the nickel-manganese composite oxyhydroxide of the present invention is not particularly limited, but it is preferably 70 m 2 / g or less, because high filling properties are easily obtained, and preferably 50 m 2 / g or less. Is more preferably 35 m 2 / g or less, and most preferably 10 m 2 / g or less. Of these, 5 to 35 m 2 / g is extremely preferable. In general, since the filling property and the specific surface area have a correlation, a powder having a high filling property is easily obtained with a low specific surface area.
  • the average particle size of the nickel-manganese composite oxyhydroxide of the present invention is preferably 5 to 20 ⁇ m and more preferably 5 to 10 ⁇ m in order to adapt to the particle size at which an electrode can be easily formed.
  • the average particle diameter is an average particle diameter of secondary particles in which primary particles are aggregated, that is, a so-called aggregated particle diameter.
  • the particle size distribution of the nickel-manganese composite oxyhydroxide of the present invention is not particularly limited, and examples thereof include a monodispersed particle size distribution and a bimodal particle size distribution. When the particle size distribution is monodispersed, that is, a mono-modal distribution, the particle size is uniform even when the positive electrode is used, and the charge / discharge reaction is also more uniform. .
  • the nickel-manganese composite oxyhydroxide of the present invention has a chemical composition formula of Ni (0.25 + ⁇ ) -x M1 x Mn (0.75- ⁇ ) -y M2 y OOH (where M1 and M2 are respectively Independently represents one selected from Mg, Al, Ti, V, Cr, Fe, Co, Cu, Zn and Zr, 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.25, ⁇ 0 .025 ⁇ ⁇ ⁇ 0.025).
  • the nickel-manganese composite oxyhydroxide of the present invention is different from those included in the chemical composition formula as long as the effect is not hindered, for example, alkali metals such as Mg, Ca, Na, K, and alkaline earth metals Etc. may be contained. These Mg and the like are preferably as small as possible, but if they are contained in an appropriate amount, an effect of improving the cycle performance may be seen. However, when the content of these metals exceeds 1000 ppm, problems such as an increase in 4V potential flat portion capacity and loss of energy density occur. Therefore, 1000 ppm or less is preferable, 20 to 1000 ppm is more preferable, 200 to 1000 ppm is more preferable, and 300 to 600 ppm is particularly preferable.
  • the nickel-manganese composite oxyhydroxide of the present invention is selected from the group consisting of nickel and manganese, or nickel and manganese, and Mg, Al, Ti, V, Cr, Fe, Co, Cu, Zn, and Zr.
  • An aqueous metal salt solution containing at least seeds, an aqueous caustic soda solution, and an aerobic gas or hydrogen peroxide solution as an oxidizing agent are mixed at pH 8.5 to 10 to obtain a mixed aqueous solution. It can manufacture by depositing a system composite oxyhydroxide to obtain a slurry.
  • the aqueous metal salt solution contains at least nickel and manganese, and can further contain one or more metals selected from the group consisting of Mg, Al, Ti, V, Cr, Fe, Co, Cu, Zn, and Zr.
  • the metal salt aqueous solution include nickel, manganese, and other predetermined metals, in which sulfate, chloride, nitrate, acetate, etc. are dissolved, inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, or acetic acid.
  • An aqueous solution in which nickel, manganese, and other predetermined metals are dissolved in an organic acid can be used.
  • an aqueous solution containing nickel sulfate and manganese sulfate can be exemplified.
  • the ratio of nickel, manganese, and other predetermined metals in the aqueous metal salt solution should be the ratio of nickel, manganese, and other predetermined metals in the target nickel-manganese composite oxyhydroxide. You can do it.
  • preferable ranges of ⁇ , x, and y are as described above.
  • the total concentration (metal concentration) of all metals such as nickel and manganese in the metal salt aqueous solution is arbitrary, since the metal concentration affects the productivity, 1.0 mol / L or more is preferable, and 2.0 mol / L The above is more preferable.
  • the caustic soda aqueous solution is a sodium hydroxide aqueous solution.
  • a sodium hydroxide aqueous solution obtained by dissolving solid sodium hydroxide in water, a sodium hydroxide aqueous solution generated by salt electrolysis or the like, and a concentration adjusted with water can be used.
  • the concentration of the aqueous caustic soda solution is preferably 10 to 48% by weight, more preferably 15 to 25% by weight.
  • the oxidizing agent is an oxygen-containing gas or a hydrogen peroxide solution.
  • the oxidizing agent is not an oxygen-containing gas or hydrogen peroxide solution, for example, when sodium persulfate, sodium chlorate or the like is used, the target oxyhydroxide cannot be obtained.
  • the oxygen-containing gas include air and oxygen. Economically, air is the most preferred. Gases such as air and oxygen are added by bubbling with a bubbler or the like.
  • the hydrogen peroxide solution can be mixed with a metal salt aqueous solution or a caustic soda aqueous solution. Examples of the concentration of the hydrogen peroxide solution include 3 to 30% by weight, preferably 3 to 10% by weight.
  • a mixed aqueous solution can be obtained by mixing an aqueous solution of metal salt, an aqueous solution of caustic soda, and an aerobic gas or hydrogen peroxide solution as an oxidizing agent at a pH of 8.5 to 10.
  • the nickel-manganese composite oxyhydroxide of the present invention precipitates in the mixed aqueous solution and is obtained as a slurry.
  • the pH exceeds 10
  • a crystal phase other than the cadmium hydroxide type structure is formed, and fine particles are likely to be formed. Such fine particles have low filtration / washing efficiency, and the production efficiency is remarkably lowered.
  • the crystalline phase does not have a cadmium hydroxide structure, but a mixed phase of ⁇ -type oxyhydroxide or spinel-type oxide, and the target nickel-manganese composite oxyhydroxide is obtained. It becomes difficult to precipitate.
  • pH 9 to 10 is preferred.
  • the temperature at which the metal salt aqueous solution, the caustic soda aqueous solution and the oxidizing agent are mixed is not particularly limited, but the oxidation reaction of the metal salt aqueous solution is easy to proceed, and the nickel-manganese composite oxyhydroxide is more easily precipitated. Therefore, it is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and particularly preferably 60 to 70 ° C.
  • the temperature to mix can also be 80 degreeC or more depending on the following complexing agent to be used, the above low temperature is preferable on a manufacturing process.
  • PH may fluctuate by mixing metal salt aqueous solution, caustic soda aqueous solution and oxidizing agent.
  • the pH can be controlled by appropriately mixing an alkaline aqueous solution other than the caustic soda aqueous solution into the mixed aqueous solution. Mixing of the alkaline aqueous solution other than the caustic soda aqueous solution may be performed continuously or intermittently.
  • the alkaline aqueous solution other than the caustic soda aqueous solution include aqueous solutions of alkali metals such as potassium hydroxide and lithium hydroxide.
  • the alkali concentration of the aqueous alkali solution can be exemplified by 1 mol / L or more, but 1 to 10 mol / L is preferable.
  • a complexing agent can be added.
  • a complexing agent is present, the solubility of nickel ions increases, the particle surface becomes smooth, and the sphericity is improved. As a result, there is an advantage that the tap density is improved.
  • ammonia, ammonium salts or amino acids are preferred.
  • ammonia ammonia water etc. are illustrated, for example.
  • ammonium salts include ammonium sulfate, ammonium chloride, ammonium nitrate, and ammonium carbonate, with ammonium sulfate being particularly preferred.
  • amino acids include glycine, alanine, asparagine, glutamine, lysine and the like, and glycine is particularly preferable.
  • the complexing agent is preferably fed with an aqueous metal salt solution.
  • concentration is preferably 0.1 to 2, more preferably 0.5 to 1, as the NH 3 / transition metal molar ratio.
  • amino acids are used, the amino acid / transition metal molar ratio is preferably 0.001 to 0.25, more preferably 0.005 to 0.1.
  • the production of the nickel-manganese composite oxyhydroxide of the present invention does not necessarily require atmospheric control, and can be carried out in a normal atmospheric atmosphere.
  • the method for producing the nickel-manganese composite oxyhydroxide may be either a batch type or a continuous type.
  • the mixing time is arbitrary. For example, 3 to 48 hours can be mentioned, and further 6 to 24 hours can be mentioned.
  • the average residence time in which the nickel-manganese composite oxyhydroxide particles stay in the reaction vessel is preferably 1 to 30 hours, and more preferably 3 to 20 hours.
  • the method for producing a nickel-manganese composite oxyhydroxide of the present invention it is preferable that after the nickel-manganese composite oxyhydroxide is precipitated, the resulting slurry is filtered, and the cake is washed and dried. Washing is performed to remove impurities adhering to or adsorbing to the nickel-manganese composite oxyhydroxide.
  • the cleaning method include a method of adding nickel-manganese composite oxyhydroxide to water (for example, pure water, tap water, river water, etc.), stirring and cleaning.
  • Drying is performed to remove moisture from the nickel-manganese composite oxyhydroxide.
  • the drying method include a method of drying nickel-manganese composite oxyhydroxide at 110 to 150 ° C. for 2 to 15 hours. Drying is performed using an apparatus such as a convection heat transfer drying or a radiation heat transfer drying method.
  • pulverization may be performed after washing and drying.
  • the pulverization is performed to obtain a powder having an average particle size suitable for the application.
  • the pulverization conditions are arbitrary as long as the desired average particle diameter can be obtained. Examples thereof include wet pulverization and dry pulverization.
  • the nickel-manganese composite oxyhydroxide of the present invention has a high dispersibility of metal elements, and can be used for producing a lithium-nickel-manganese composite oxide.
  • the production method includes nickel-manganese composite oxyhydroxide, lithium, and a lithium compound.
  • the mixing ratio of the nickel-manganese composite oxyhydroxide and the lithium raw material used in the production of the lithium-nickel-manganese composite oxide of the present invention is preferably 0.50 to 0.55 in terms of a lithium / transition metal molar ratio. 0.51 to 0.53 is more preferable.
  • the mixing can be performed by dry mixing or wet processing, but the method is arbitrary. Examples of dry mixing include mixing using a Henschel mixer.
  • any lithium compound can be used.
  • the lithium compound include one or more selected from the group consisting of lithium hydroxide, lithium oxide, lithium carbonate, lithium iodide, lithium nitrate, lithium oxalate, and alkyl lithium.
  • examples of preferable lithium compounds include one or more selected from the group consisting of lithium hydroxide, lithium oxide, and lithium carbonate.
  • the respective raw materials are mixed and then fired using a muffle electric furnace or the like to produce a lithium-nickel-manganese composite oxide.
  • Firing can be performed at a temperature of 500 to 1000 ° C., preferably 800 to 1000 ° C., in various atmospheres such as air and oxygen.
  • the obtained lithium-nickel-manganese composite oxide can be used as a positive electrode active material of a lithium secondary battery.
  • metallic lithium, lithium, or a material capable of occluding and releasing lithium ions can be used.
  • examples thereof include metallic lithium, lithium / aluminum alloy, lithium / tin alloy, lithium / lead alloy, and carbon material that can electrochemically insert and desorb lithium ions.
  • a carbon material capable of electrochemically inserting and removing lithium ions is particularly preferably used from the viewpoint of safety and battery characteristics.
  • the electrolyte used in the lithium secondary battery of the present invention is not particularly limited.
  • a solid electrolyte can be used. Of these, carbonates are preferred.
  • the separator used in the lithium secondary battery of the present invention is not particularly limited. For example, a microporous film made of polyethylene or polypropylene can be used.
  • a mixture of the lithium-nickel-manganese composite oxide of the present invention and a conductive agent is molded into a pellet form, and then 100 to 200 ° C., preferably 150 to A molded product obtained by drying under reduced pressure at 200 ° C. is used as a positive electrode for a battery, and a negative electrode made of a metal lithium foil and an electrolytic solution in which lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate.
  • a mixture of the lithium-nickel-manganese composite oxide of the present invention and a conductive agent is molded into a pellet form, and then 100 to 200 ° C., preferably 150 to A molded product obtained by drying under reduced pressure at 200 ° C. is used as a positive electrode for a battery, and a negative electrode made of a metal lithium foil and an electrolytic solution in which lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate and diethy
  • composition analysis of the composite oxyhydroxide was performed by inductively coupled plasma emission spectrometry (ICP method). That is, the complex oxyhydroxide was dissolved in a mixed solution of hydrochloric acid and hydrogen peroxide to prepare a measurement solution. The obtained measurement solution was analyzed using an inductively coupled plasma emission spectrometer (trade name: OPTIMA 3000 DV, manufactured by PERKIN ELMER) to determine the chemical composition.
  • ICP method inductively coupled plasma emission spectrometry
  • ⁇ Measurement of metal valence> The average valence of metals such as nickel and manganese was measured by iodometry. 0.3 g of complex oxyhydroxide and 3.0 g of potassium iodide were dissolved in 50 ml of 7N-hydrochloric acid solution, and then neutralized by adding 200 ml of 1N-NaOH solution. A 0.1N sodium thiosulfate aqueous solution was dropped into the neutralized sample solution, and the average valence was calculated from the amount dropped. A starch solution was used as an indicator.
  • ⁇ Powder X-ray diffraction measurement> The powder X-ray diffraction measurement of the sample was performed using an X-ray diffractometer (trade name: MXP-3, manufactured by Mac Science).
  • MXP-3 X-ray diffractometer
  • the composite oxyhydroxide 0.5g was thrown in 50 mL of 0.1N ammonia water, and it ultrasonically irradiated for 10 second to make a dispersion slurry.
  • the dispersed slurry was put into a particle size distribution measuring device (trade name: Microtrac HRA, manufactured by HONEWELL), and volume distribution was measured by a laser diffraction method.
  • the particle size distribution and average particle size ( ⁇ m) were determined from the obtained volume distribution.
  • Lithium-nickel-manganese composite oxide and a mixture of polytetrafluoroethylene and acetylene black (trade name: TAB-2) as a conductive agent were mixed at a weight ratio of 4: 1 and 1 ton / cm 2. After forming into a pellet shape on a mesh (manufactured by SUS316) at a pressure of 150 ° C., it was dried under reduced pressure at 150 ° C. to produce a battery positive electrode.
  • the battery voltage was charged / discharged at a constant current between 4.9 V and 3.0 V for 30 cycles at room temperature.
  • the current density during charge / discharge was 0.4 mA / cm 2 .
  • Example 1 Nickel sulfate and manganese sulfate were dissolved in pure water to obtain an aqueous solution (metal salt aqueous solution) containing 1.5 mol / L (liter) of nickel sulfate and 0.5 mol / L of manganese sulfate. The total concentration of all metals in the metal salt aqueous solution was 2.0 mol / L. Moreover, after putting 200g of pure waters into the reaction container of 1L of internal volumes, this was heated up to 80 degreeC and maintained.
  • the obtained aqueous metal salt solution was added to the reaction vessel at a supply rate of 0.28 g / min. Further, air was bubbled into the reaction vessel as an oxidizing agent at a supply rate of 1 L / min.
  • a 2 mol / L sodium hydroxide aqueous solution (caustic soda aqueous solution) was intermittently added so that the pH was 10 when supplying the metal salt aqueous solution and air to obtain a mixed aqueous solution.
  • nickel-manganese composite oxyhydroxide was precipitated, and a slurry was obtained.
  • the obtained slurry was filtered and washed with pure water, and then the wet cake was air-dried in the air for 1 week. Thereafter, the resultant was dried at 115 ° C. for 5 hours to obtain a nickel-manganese composite oxyhydroxide (Ni 0.25 Mn 0.75 OOH).
  • the measurement results of the nickel-manganese composite oxyhydroxide are shown in Table 1.
  • Example 2 A slurry was obtained in the same manner as in Example 1, except that the oxidizing agent was oxygen and a 2 mol / L sodium hydroxide aqueous solution was intermittently added so that the pH was 8.5. The obtained slurry was filtered, washed, and dried in the same manner as in Example 1 to obtain a nickel-manganese composite oxyhydroxide (Ni 0.25 Mn 0.75 OOH).
  • the measurement results of the nickel-manganese composite oxyhydroxide are shown in Table 1.
  • Example 3 A slurry was obtained in the same manner as in Example 1 except that the oxidizing agent was 15 wt% aqueous hydrogen peroxide (feed rate: 0.34 g / min). The obtained slurry was filtered, washed, and dried in the same manner as in Example 1 to obtain a nickel-manganese composite oxyhydroxide (Ni 0.25 Mn 0.75 OOH). .
  • the measurement results of the nickel-manganese composite oxyhydroxide are shown in Table 1.
  • Example 4 Nickel sulfate and manganese sulfate were dissolved in pure water to obtain an aqueous solution (metal salt aqueous solution) containing 1.5 mol / L nickel sulfate and 0.5 mol / L manganese sulfate (total of all metals in the metal salt aqueous solution). The concentration was 2.0 mol / L). Moreover, after putting 200g of pure waters into the reaction container of 1L of internal volumes, this was heated up to 80 degreeC and maintained.
  • the metal salt aqueous solution and a 1.0 mol / L ammonium sulfate solution were added to the reaction vessel at a supply rate of 0.28 g / min. Further, air was bubbled into the reaction vessel as an oxidizing agent at a supply rate of 1 L / min.
  • a 2 mol / L sodium hydroxide aqueous solution (caustic soda aqueous solution) was intermittently added so that the pH was 9 when supplying the metal salt aqueous solution and air to obtain a mixed aqueous solution.
  • nickel-manganese composite oxyhydroxide was precipitated to obtain a slurry.
  • Ni 0.24 Mn 0.76 OOH nickel-manganese composite oxyhydroxide
  • the measurement results of the nickel-manganese composite oxyhydroxide are shown in Table 1.
  • Example 5 Nickel sulfate and manganese sulfate were dissolved in pure water to obtain an aqueous solution (metal salt aqueous solution) containing 1.5 mol / L nickel sulfate and 0.5 mol / L manganese sulfate (total of all metals in the metal salt aqueous solution). The concentration was 2.0 mol / L). Moreover, after putting 200g of pure waters into the reaction container of 1L of internal volumes, this was heated up to 60 degreeC and maintained.
  • the metal salt aqueous solution and 0.25 mol / L ammonium sulfate solution were continuously added to the reaction vessel at a supply rate of 0.28 g / min. Further, air was bubbled into the reaction vessel as an oxidizing agent at a supply rate of 1 L / min.
  • a 2 mol / L sodium hydroxide aqueous solution (caustic soda aqueous solution) was continuously added to obtain a mixed aqueous solution so that the pH was 9.25.
  • nickel-manganese composite oxyhydroxide was precipitated, and a slurry was continuously obtained from the lower part of the reaction tank.
  • the average stay time was 15 hours.
  • Ni 0.25 Mn 0.75 OOH nickel-manganese composite oxyhydroxide
  • the measurement results of the nickel-manganese composite oxyhydroxide are shown in Table 1.
  • Examples 1 to 6 are nickel-manganese composite oxyhydroxides having a hexagonal cadmium hydroxide structure and an average valence of metal close to 3. Furthermore, in Examples 1 to 6, it was confirmed by XRD pattern analysis that manganese oxide (Mn 3 O 4 ) was not by-produced.
  • Example 7 The nickel-manganese composite oxyhydroxide obtained in Example 4 and lithium carbonate (a lithium / transition metal molar ratio of 0.52) were mixed using a Henschel mixer, and the mixture was air-flowed at 900 ° C. for 12 hours. After firing, the lithium-nickel-manganese composite oxide was synthesized by firing at 700 ° C. for 48 hours. From the result of chemical composition analysis, the composition formula can be expressed as Li 2 NiMn 3 O 8 . Further, from the XRD pattern, superlattice peaks corresponding to the nickel-manganese ordered arrangement were clearly observed at a plurality of arrows in FIG.
  • the battery performance of the obtained lithium-nickel-manganese composite oxide was evaluated. As a result, it was found from the charge / discharge curve that the potential flat portion near 4V corresponding to Mn4 + / 3 + redox was as small as about 2 mAh / g, and the capacity near 5V corresponding to Ni4 + / 3 + redox was not impaired. . Moreover, since a capacity
  • Example 8 The nickel-manganese composite oxyhydroxide obtained in Example 6 and lithium carbonate were mixed, calcined at 800 ° C. for 10 hours in an air stream, and then calcined at 700 ° C. for 48 hours to obtain lithium-nickel. -Manganese complex oxide was synthesized. From the result of chemical composition analysis, the composition formula could be expressed as Li 2 NiMn 3 O 8 . Further, from the XRD pattern, superlattice peaks corresponding to the nickel-manganese ordered arrangement were clearly observed at a plurality of arrows in FIG.
  • the battery performance of the obtained lithium-nickel-manganese composite oxide was evaluated. As a result, it was found from the charge / discharge curve that the potential flat portion in the vicinity of 4V corresponding to Mn4 + / 3 + redox was as small as about 2 mAh / g, and the capacity in the vicinity of 5V corresponding to Ni4 + / 3 + redox was not impaired. Moreover, since a capacity
  • Example 9 Nickel sulfate and manganese sulfate were dissolved in pure water to obtain an aqueous solution (metal salt aqueous solution) containing 0.46 mol / L nickel sulfate and 1.54 mol / L manganese sulfate (total of all metals in the metal salt aqueous solution). The concentration was 2.0 mol / L).
  • a nickel-manganese composite oxyhydroxide (Ni 0.23 Mn 0.77 OOH) was obtained in the same manner as in Example 5 except that the composition of the metal salt was changed as described above.
  • the measurement results of the nickel-manganese composite oxyhydroxide are shown in Table 1.
  • Example 10 Nickel sulfate and manganese sulfate were dissolved in pure water to obtain an aqueous solution (metal salt aqueous solution) containing 0.54 mol / L nickel sulfate and 1.46 mol / L manganese sulfate (total of all metals in the metal salt aqueous solution). The concentration was 2.0 mol / L).
  • a nickel-manganese composite oxyhydroxide (Ni 0.27 Mn 0.73 OOH) was obtained in the same manner as in Example 5 except that the composition of the metal salt was changed as described above.
  • the measurement results of the nickel-manganese composite oxyhydroxide are shown in Table 1.
  • Example 11 Nickel sulfate and manganese sulfate were dissolved in pure water to obtain an aqueous solution (metal salt aqueous solution) containing 1.5 mol / L nickel sulfate and 0.5 mol / L manganese sulfate (total of all metals in the metal salt aqueous solution). The concentration was 2.0 mol / L). Moreover, after putting 200g of pure waters into the reaction container of 1L of internal volumes, this was heated up to 60 degreeC and maintained.
  • the obtained metal salt aqueous solution and 0.1 mol / L glycine solution were continuously added to the reaction vessel at a supply rate of 0.28 g / min. Further, air was bubbled into the reaction vessel as an oxidizing agent at a supply rate of 1 L / min.
  • a 2 mol / L sodium hydroxide aqueous solution (caustic soda aqueous solution) was continuously added so that the pH was 8.75 to obtain a mixed aqueous solution.
  • nickel-manganese composite oxyhydroxide was precipitated, and a slurry was continuously obtained from the lower part of the reaction tank. The average stay time was 15 hours.
  • Ni 0.25 Mn 0.75 OOH nickel-manganese composite oxyhydroxide
  • the measurement results of the nickel-manganese composite oxyhydroxide are shown in Table 1.
  • Example 12 Nickel sulfate and manganese sulfate were dissolved in pure water to obtain an aqueous solution (metal salt aqueous solution) containing 1.5 mol / L nickel sulfate and 0.5 mol / L manganese sulfate (total of all metals in the metal salt aqueous solution). The concentration was 2.0 mol / L). Moreover, after putting 200g of pure waters into the reaction container of 1L of internal volumes, this was heated up to 70 degreeC and maintained.
  • the obtained metal salt aqueous solution and 0.01 mol / L glycine solution were continuously added to the reaction vessel at a supply rate of 0.28 g / min. Further, air was bubbled into the reaction vessel as an oxidizing agent at a supply rate of 1 L / min.
  • a 2 mol / L sodium hydroxide aqueous solution (caustic soda aqueous solution) was continuously added to obtain a mixed aqueous solution so that the pH was 9.25.
  • nickel-manganese composite oxyhydroxide was precipitated, and a slurry was continuously obtained from the lower part of the reaction tank. The average stay time was 15 hours.
  • Ni 0.25 Mn 0.75 OOH nickel-manganese composite oxyhydroxide
  • the measurement results of the nickel-manganese composite oxyhydroxide are shown in Table 1.
  • Example 13 Magnesium sulfate, nickel sulfate, and manganese sulfate are dissolved in pure water, and an aqueous solution (metal salt aqueous solution) containing 0.05 mol / L magnesium sulfate, 0.45 mol / L nickel sulfate, and 1.5 mol / L manganese sulfate. (The total concentration of all metals in the aqueous metal salt solution was 2.0 mol / L). Moreover, after putting 200g of pure waters into the reaction container of 1L of internal volumes, this was heated up to 80 degreeC and maintained.
  • aqueous metal salt solution and 0.25 mol / L ammonium sulfate solution were added to the reaction vessel at a supply rate of 0.28 g / min. Further, air was bubbled into the reaction vessel as an oxidizing agent at a supply rate of 1 L / min.
  • a 2 mol / L sodium hydroxide aqueous solution (caustic soda aqueous solution) was intermittently added to obtain a mixed aqueous solution so that the pH was 9.25 when supplying the metal salt aqueous solution and air.
  • nickel-manganese composite oxyhydroxide was precipitated to obtain a slurry.
  • the obtained slurry was filtered and washed with pure water, and then the wet cake was air-dried in the air for 1 week. Thereafter, the resultant was dried at 115 ° C. for 5 hours to obtain a magnesium-substituted nickel-manganese composite oxyhydroxide (Ni 0.225 Mg 0.025 Mn 0.75 OOH).
  • Example 14 An aqueous solution (metal salt aqueous solution) containing iron sulfate, nickel sulfate, and manganese sulfate dissolved in pure water and containing 0.10 mol / L iron sulfate, 0.45 mol / L nickel sulfate, and 1.45 mol / L manganese sulfate (The total concentration of all metals in the aqueous metal salt solution was 2.0 mol / L)
  • an iron-substituted nickel-manganese composite oxyhydroxide [Ni 0. 225 Fe 0.05 Mn 0.725 OOH (Ni 0.225 Fe 0.025 Mn 0.725 Fe 0.025 OOH)] was obtained.
  • Example 15 An aqueous solution (metal salt aqueous solution) containing cobalt sulfate, nickel sulfate and manganese sulfate dissolved in pure water and containing 0.10 mol / L cobalt sulfate, 0.45 mol / L nickel sulfate and 1.45 mol / L manganese sulfate (The total concentration of all metals in the aqueous metal salt solution was 2.0 mol / L)
  • a cobalt-substituted nickel-manganese composite oxyhydroxide [Ni 0. 225 Co 0.05 Mn 0.725 OOH (Ni 0.225 Co 0.025 Mn 0.725 Co 0.025 OOH)] was obtained.
  • Example 16 An aqueous solution (metal salt aqueous solution) containing 0.05 mol / L copper sulfate, 0.45 mol / L nickel sulfate and 1.5 mol / L manganese sulfate, in which copper sulfate, nickel sulfate and manganese sulfate are dissolved in pure water (The total concentration of all metals in the aqueous metal salt solution was 2.0 mol / L)
  • a copper-substituted nickel-manganese composite oxyhydroxide Ni 0. 225 Cu 0.025 Mn 0.75 OOH.
  • Examples 9 to 14 are all nickel-manganese composite oxyhydroxides having a hexagonal cadmium hydroxide structure and an average valence of metal close to 3, or specific metal-substituted nickel- It was found to be a manganese-based composite oxyhydroxide. Further, in Examples 9 to 14, it was confirmed by XRD pattern analysis that manganese oxide (Mn 3 O 4 ) was not by-produced.
  • Comparative Example 1 A slurry was obtained in the same manner as in Example 2 except that the pH was changed to 7. The obtained slurry was filtered, washed and dried in the same manner as in Example 2 to obtain a nickel-manganese composite compound.
  • the obtained nickel-manganese composite compound was found to be a mixed phase of spinel oxide and ⁇ -Ni (OH) 2 hydroxide in its XRD pattern. The measurement results of the nickel-manganese composite compound are shown in Table 2.
  • Example 2 A slurry was obtained in the same manner as in Example 1 except that the pH was 11. The obtained slurry was filtered, washed and dried in the same manner as in Example 1 to obtain a nickel-manganese composite compound. The obtained nickel-manganese composite compound was found to be a mixed phase of cadmium hydroxide type oxyhydroxide and spinel type oxide in its XRD pattern. The measurement results of the nickel-manganese composite compound are shown in Table 2.
  • Comparative Example 3 A slurry was obtained in the same manner as in Example 1 except that the oxidizing agent was a 30 wt% sodium persulfate aqueous solution (feed rate: 0.28 g / min). The obtained slurry was filtered, washed and dried in the same manner as in Example 1 to obtain a nickel-manganese composite compound. The obtained nickel-manganese composite compound had a pattern shape that is different from the cadmium hydroxide type oxyhydroxide in the XRD pattern, and that all peak shapes are considered to be broad layered compounds.
  • the measurement results of the nickel-manganese composite compound are shown in Table 2. As is apparent from Table 2, in the reaction using oxygen gas at pH 7 and 11, and in the reaction using sodium persulfate different from oxygen gas and hydrogen peroxide as the oxidant, the oxygen of cadmium hydroxide structure A single crystal phase of hydroxide was not obtained.
  • the nickel-manganese composite oxyhydroxide of the present invention can be used as a precursor of a lithium-nickel-manganese composite oxide used for a positive electrode active material of a lithium secondary battery, and the lithium-nickel- Manganese complex oxide can constitute a high-performance lithium secondary battery as a positive electrode material for a battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 大気中で安定であり、長期間の保管や、乾燥時にマンガン酸化物(Mn)が副生しない、金属元素の分散性の高いニッケル-マンガン系複合オキシ水酸化物、その製造方法、及びその用途。 化学組成式が、Ni(0.25+α)-xM1Mn(0.75-α)-yM2OOH(但し、M1及びM2は、それぞれ独立に、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1、0≦y≦0.25であり、-0.025≦α≦0.025である)で表され、かつ 結晶構造が六方晶系の水酸化カドミウム型構造であることを特徴とするニッケル-マンガン系複合オキシ水酸化物、その製造方法、及び用途。

Description

ニッケル-マンガン系複合オキシ水酸化物、その製造方法、及びその用途
 本発明は、ニッケル-マンガン系複合オキシ水酸化物、その製造方法、及びその用途に関するものである。詳しくは、ニッケル-マンガン系複合オキシ水酸化物、その製造方法、及び該複合オキシ水酸化物を用いて得られるリチウム-ニッケル-マンガン系複合酸化物、並びに該複合酸化物を正極として使用するリチウム二次電池に関する。
 スピネル型構造のリチウム-ニッケル-マンガン系複合酸化物は、5V級リチウム二次電池用正極活物質として注目されている。
 リチウム-ニッケル-マンガン系複合酸化物は、ニッケルとマンガンとが規則配列した超格子構造である。
 リチウム-ニッケル-マンガン系複合酸化物の製造方法としては、ニッケル源、及びマンガン源を混合して焼成する固相反応法や、ニッケル及びマンガンを含有する複合水酸化物や、複合オキシ水酸化物を前駆体として用いる製造方法がある。ニッケル及びマンガンを含有する複合水酸化物や複合オキシ水酸化物は、金属がより均一に分布しているため、ニッケルとマンガンの規則配列を前提とした場合、好ましい前駆体といえる。
 例えば、リチウム-ニッケル-マンガン系複合酸化物の前駆体として、不活性雰囲気下の共沈法により得られたニッケル-マンガン複合水酸化物が開示されている(特許文献1、及び非特許文献1参照)。
特開2011-153067号公報
F.Zhou et al., Chem. Mater. 2010, 22, 1015-1021
 特許文献1において、ニッケル-マンガン-鉄系の複合金属水酸化物は、共沈物スラリーを固液分離して、ウェットケーク(wet cake)として長期間保管した場合、マンガン酸化物(Mn)が副生する、という問題が指摘されている。また、副生物のMnを含む複合金属水酸化物と、リチウム化合物とを混合して焼成した場合、生成物であるリチウム複合金属酸化物は、不均一な組成となり、このリチウム複合金属酸化物を用いた電池性能が不十分である、という問題が指摘されている。
 また、非特許文献1において、ニッケル-マンガン複合水酸化物;NiMn1-x(OH)は、x≦1/3のウェットケークの乾燥時に、マンガン酸化物(Mn)を副生する、という記載がある。
 このように、比較的マンガン組成の高いニッケル-マンガン複合水酸化物は、大気中で不安定であり、共沈物にもかかわらず、Mn成分が偏析するという課題がある。
 本発明の目的は、ニッケル及びマンガンの複合化合物であって、大気中で安定であり、共沈、洗浄、乾燥などの工程で、マンガン成分の偏析を生じない、ニッケル-マンガン系複合オキシ水酸化物を提供することである。
 さらに、本発明の目的は、ニッケル-マンガン系複合オキシ水酸化物を用いたリチウム-ニッケル-マンガン系複合酸化物の提供と、該リチウム-ニッケル-マンガン系複合酸化物を正極とするリチウム二次電池を提供することである。
 本発明者らは、リチウム-ニッケル-マンガン系複合酸化物の前駆体について鋭意検討した。その結果、水酸化物と類縁する特定の構造を有するオキシ水酸化物は、Mnの化学組成が比較的高くても大気中で安定であり、長期間の保管や、乾燥時にマンガン酸化物(Mn)が副生せず、さらに、Mn成分の偏析がなく、金属元素の分散性が高いことを見出した。かかるニッケル-マンガン系複合オキシ水酸化物を前駆体とし、該複合オキシ水酸化物から得られるリチウム-ニッケル-マンガン系複合酸化物を正極として使用するリチウム二次電池は、4V電位平坦部が少なくエネルギー密度の点で特に高性能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記の要旨を有する。
(1)化学組成式がNi(0.25+α)-xM1Mn(0.75-α)-yM2OOH(但し、M1及びM2は、それぞれ独立に、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1、0≦y≦0.25であり、-0.025≦α≦0.025である)で表され、かつ結晶構造が六方晶系の水酸化カドミウム型構造であることを特徴とするニッケル-マンガン系複合オキシ水酸化物。
(2)αが0である上記(1)に記載のニッケル-マンガン系複合オキシ水酸化物。
(3)Ni、Mn、M1及びM2の平均原子価が2.8~3.1である上記(1)又は(2)に記載のニッケル-マンガン系複合オキシ水酸化物。
(4)平均粒子径が、5~20μmである上記(1)~(3)のいずれかに記載のニッケル-マンガン系複合オキシ水酸化物。
(5)下記の金属塩水溶液、苛性ソーダ水溶液、及び下記の酸化剤を、pH8.5~10で混合して混合水溶液とし、該混合水溶液中で析出させることを特徴とする上記(1)~(4)のいずれかに記載のニッケル-マンガン系複合オキシ水酸化物の製造方法。
 金属塩水溶液;ニッケル及びマンガンを含む金属塩水溶液、又はニッケル及びマンガンを含み、さらにMg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrからなる群から選ばれる1種以上を含む金属塩水溶液
 酸化剤;有酸素ガス又は過酸化水素水
(6)さらに、錯化剤を添加する、上記(5)に記載の製造方法。
(7)前記錯化剤が、アンモニア、アンモニウム塩又はアミノ酸である、上記(6)に記載の製造方法。
(8)上記(1)~(4)のいずれかに記載のニッケル-マンガン系複合オキシ水酸化物とリチウム化合物とを混合し、熱処理して得られるリチウム-ニッケル-マンガン系複合酸化物。
(9)上記(8)に記載のリチウム-ニッケル-マンガン系複合酸化物を、正極活物質として使用することを特徴とするリチウム二次電池。
 本発明のニッケル-マンガン系複合オキシ水酸化物は、大気中で安定であり、長期間の保管や、乾燥時にマンガン酸化物(Mn)が副生せず、さらに、Mn成分の偏析がなく、金属元素の分散性が高く、リチウム二次電池の正極として用いられるリチウム-ニッケル-マンガン系複合酸化物の前駆体として有用である。
実施例1のニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例2のニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例3のニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例4のニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例5のニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例6のニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例7のリチウム-ニッケル-マンガン系複合酸化物のXRDパターンである(図中の矢印は超格子ピークを示す)。 実施例8のリチウム-ニッケル-マンガン系複合酸化物のXRDパターンである(図中の矢印は超格子ピークを示す)。 実施例9のニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例10のニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。
実施例11のニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例12のニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例13のマグネシウム置換ニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例14の鉄置換ニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例15のコバルト置換ニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 実施例16の銅置換ニッケル-マンガン系複合オキシ水酸化物のXRDパターンである。 比較例1のニッケル-マンガン系複合化合物のXRDパターンである。 比較例2のニッケル-マンガン系複合化合物のXRDパターンである。 比較例3のニッケル-マンガン系複合化合物のXRDパターンである。
実施例1のニッケル-マンガン系複合オキシ水酸化物の走査型電子顕微鏡写真である。 実施例1のニッケル-マンガン系複合オキシ水酸化物の粒度分布曲線である。 実施例5のニッケル-マンガン系複合オキシ水酸化物の走査型電子顕微鏡写真である。 実施例6のニッケル-マンガン系複合オキシ水酸化物の走査型電子顕微鏡写真である。 実施例11のニッケル-マンガン系複合オキシ水酸化物の走査型電子顕微鏡写真である。 実施例12のニッケル-マンガン系複合オキシ水酸化物の走査型電子顕微鏡写真である。 実施例7のリチウム-ニッケル-マンガン系複合酸化物の走査型電子顕微鏡写真である。 実施例7のリチウム-ニッケル-マンガン系複合酸化物の充放電曲線である(2~4サイクル)。 実施例7の充放電サイクル性能図である(1~30サイクル)。 実施例8のリチウム-ニッケル-マンガン系複合酸化物の走査型電子顕微鏡写真である。 実施例8のリチウム-ニッケル-マンガン系複合酸化物の充放電曲線である(2~4サイクル)。 実施例8の充放電サイクル性能図である(1~30サイクル)。
 本発明のニッケル-マンガン系複合オキシ水酸化物は、化学組成式がNi(0.25+α)-xM1Mn(0.75-α)-yM2OOH(但し、M1及びM2は、それぞれ独立に、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1、0≦y≦0.25であり、-0.025≦α≦0.025である)で表される。
 上記化学組成式中、Ni+M1=0.25±0.025、Mn+M2=0.75±0.025であり、これらの数値範囲を外れると、Ni2+、及びMn4+という形式原子価から乖離し、5V付近(Li金属負極基準)の電池容量が低下する。なかでも、Ni+M1としては、0.25±0.01、Mn+M2としては、0.75±0.01が好ましい。
 また、上記化学組成式中、αは、-0.025≦α≦0.025であり、αがこの範囲を外れると、Ni2+、及びMn4+という形式原子価から乖離し、5V付近(Li金属負極基準)の電池容量が低下する。αは、0(Ni:Mn=0.25:0.75(モル比))が好ましい。
 本発明のニッケル-マンガン系複合オキシ水酸化物は、異種金属がない場合(x=0及びy=0)でも十分な効果が発揮されるが、異種元素の置換(M1,M2)により、電池性能、特に充放電サイクルの安定性の向上やMnの溶出抑制効果が期待できる。ただし、異種金属が多すぎると、スピネル型副格子内のNi-Mn規則配列の規則度が低下し、5V付近(Li金属負極基準)の電池容量が低下する。そのため、0≦x≦0.1、0≦y≦0.25が好ましく、0≦x≦0.05、0≦y≦0.1がより好ましい。
 スピネル型副格子内のNi-Mn規則配列の規則度や、5V付近(Li金属負極基準)の電池容量を維持するため、Niに対する異種元素の置換量は少ない方が好ましい。
 本発明のニッケル-マンガン系複合オキシ水酸化物の好ましい具体的な化学組成としては、例えば、Ni0.25Mn0.75OOH、Ni0.25Mn0.65Ti0.10OOH、Ni0.20Fe0.05Mn0.75OOH、Ni0.23Mg0.02Mn0.75OOH、Ni0.225Mg0.025Mn0.75OOH、Ni0.225Co0.05Mn0.725OOH(Ni0.225Co0.025Mn0.725Co0.025OOH)、Ni0.23Zn0.02Mn0.75等が挙げられる。中でもNi0.25Mn0.75OOHが好ましい。
 本発明のニッケル-マンガン系複合オキシ水酸化物は、結晶構造が六方晶系の水酸化カドミウム型のオキシ水酸化物である。一方、例えば、α型水酸化ニッケル型構造は遷移金属層間が比較的広いため、SOなどの不純物となり得るアニオンを取り込みやすい。水酸化カドミウム型の結晶構造であれば、遷移金属層間にはアニオンは取り込まれないため好ましい。
 水酸化カドミウム型構造とは、六方晶系のヨウ化カドミウム型構造のヨウ化物イオンの位置に、水酸化物イオンが配置した結晶構造であり、水酸化物イオンが、ほぼ六方最密充填構造に配置し、c軸方向の層の一つおきに八面体六配位の間隙に金属イオンが位置する。
 本発明のニッケル-マンガン系複合オキシ水酸化物の結晶構造では、水酸化カドミウム型構造中のカドミウムイオンの代わりに、ニッケル、マンガン、M1、M2等の金属イオンが位置する。
 本発明のニッケル-マンガン系複合オキシ水酸化物のタップ密度は、電極中の正極活物質の充填性がエネルギー密度に影響するため、1.0g/cm以上であることが好ましく、1.5g/cm以上であることがさらに好ましく、2.0g/cm以上であることが特に好ましい。中でも、1.7~2.2g/cmが最も好ましい。
 タップ密度が1.0g/cm以上であれば、本発明のニッケル-マンガン系複合オキシ水酸化物を原料として得られるリチウム-ニッケル-マンガン系複合酸化物の充填性が高くなりやすい。
 本発明のニッケル-マンガン系複合オキシ水酸化物は、理論平均原子価が3価であり、化学組成式中のNi、Mn、M1及びM2の平均原子価は、2.8~3.1であることが好ましく、2.9~3.0がさらに好ましい。ここに、平均原子価は、ヨードメトリー法により求められる。なお、理論平均原子価は形式酸化数に準じるものである。
 本発明のニッケル-マンガン系複合オキシ水酸化物の比表面積は、特に限定するものではないが、高い充填性が得られやすいため、70m/g以下であることが好ましく、50m/g以下であることがさらに好ましく、35m/g以下であることが特に好ましく、10m/g以下であることが最も好ましい。中でも、5~35m/gが極めて好ましい。
 一般的には、充填性と比表面積とは相関関係があるため、低比表面積の方が高い充填性の粉末が得られやすい。
 本発明のニッケル-マンガン系複合オキシ水酸化物の平均粒子径は、電極を形成しやすい粒子径に適合させるため、5~20μmが好ましく、5~10μmがさらに好ましい。なお、平均粒子径とは、一次粒子が凝集した二次粒子の平均粒子径、いわゆる凝集粒子径である。
 本発明のニッケル-マンガン系複合オキシ水酸化物の粒子径分布は、特に限定されるものではなく、例えば、単分散の粒子径分布、二峰性の粒子径分布等が挙げられる。単分散、すなわち、モノモーダル(Mono-modal)な分布を有する粒子径分布である場合には、正極とした際にも粒子径が均一であるため、その充放電反応もより均一なものとなる。
 本発明のニッケル-マンガン系複合オキシ水酸化物は、化学組成式がNi(0.25+α)-xM1Mn(0.75-α)-yM2OOH(但し、M1及びM2は、それぞれ独立に、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1、0≦y≦0.25であり、-0.025≦α≦0.025である)で表される。
 本発明のニッケル-マンガン系複合オキシ水酸化物は、その効果を阻害しない限り、化学組成式に含まれるものとは別に、例えば、Mg、Ca、Na、K等のアルカリ金属、アルカリ土類金属等を含有していてもよい。これらのMg等は、極力少ない方が好ましいが、適量含むことで、サイクル性能向上の効果がみられる場合がある。しかし、これら金属の含有量が1000ppmを超えると、4V電位平坦部容量が増加し、エネルギー密度が損なわれるなどの課題が生ずる。そのため、1000ppm以下が好ましく、20~1000ppmがより好ましく、200~1000ppmがさらに好ましく、300~600ppmが特に好ましい。
 次に、本発明のニッケル-マンガン系複合オキシ水酸化物の製造方法について説明する。
 本発明のニッケル-マンガン系複合オキシ水酸化物は、ニッケル及びマンガン、又はニッケル及びマンガン、並びにMg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrからなる群から選ばれる1種以上を含む金属塩水溶液、苛性ソーダ水溶液、及び酸化剤として有酸素ガス又は過酸化水素水を、pH8.5~10で混合して混合水溶液を得た後、該混合水溶液中で、ニッケル-マンガン系複合オキシ水酸化物を析出させて、スラリーを得ることにより製造することができる。
 金属塩水溶液は、少なくともニッケル及びマンガンを含み、さらにMg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrからなる群から選ばれる1種以上の金属を含むことができる。
 金属塩水溶液としては、ニッケル及びマンガン、さらに他の所定の金属を含む、硫酸塩、塩化物、硝酸塩、酢酸塩などを溶解させた水溶液、硫酸、塩酸、硝酸などの無機酸、あるいは酢酸などの有機酸に、ニッケル及びマンガン、さらに他の所定の金属を溶解した水溶液、等を挙げることができる。好ましい金属塩水溶液としては、硫酸ニッケル及び硫酸マンガンを含む水溶液を例示することができる。
 また、金属塩水溶液中のニッケル、マンガン、及び他の所定の金属の割合は、目的とするニッケル-マンガン系複合オキシ水酸化物中のニッケル、マンガン、及び他の所定の金属の割合となるようにすればよい。
 金属塩水溶液中のニッケル、マンガン、及び他の所定の金属の割合は、モル比で、Ni+M1:Mn+M2=0.25+α:0.75-α、Ni:M1=(0.25+α)-x:x、Mn:M2=(0.75-α)-y:y(M1及びM2は、それぞれ独立に、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1、0≦y≦0.25であり、-0.025≦α≦0.025である)を挙げることができる。ここで、α、x、及びyの好ましい範囲などは、上記したとおりである。
 金属塩水溶液中のニッケル、マンガンなどの全金属の合計濃度(金属濃度)は任意であるが、金属濃度は生産性に影響を及ぼすため、1.0mol/L以上が好ましく、2.0mol/L以上がさらに好ましい。
 苛性ソーダ水溶液は、水酸化ナトリウム水溶液であり、例えば、固形状水酸化ナトリウムを水に溶解させたもの、食塩電解で生成した水酸化ナトリウム水溶液を、水で濃度調製したもの等を用いることができる。
 苛性ソーダ水溶液の濃度は、10~48重量%が好ましく、15~25重量%がより好ましい。
 酸化剤は、酸素含有ガス又は過酸化水素水である。酸化剤が酸素含有ガス又は過酸化水素水でない場合、例えば、過硫酸ソーダ、塩素酸ソーダ等を用いた場合は、目的とするオキシ水酸化物が得られない。酸素含有ガスとしては、例えば、空気、酸素等を例示することができる。経済上、空気が最も好ましい。空気や酸素などのガスは、バブラー(bubbler)などを用いてバブリングさせることで添加する。一方、過酸化水素水は、金属塩水溶液や苛性ソーダ水溶液と一緒に混合することができる。過酸化水素水の濃度としては、3~30重量%、好ましくは3~10重量%を例示することができる。
 金属塩水溶液、苛性ソーダ水溶液、及び酸化剤として有酸素ガス又は過酸化水素水を、pH8.5~10で混合することにより、混合水溶液が得られる。本発明のニッケル-マンガン系複合オキシ水酸化物は、該混合水溶液中で析出し、スラリーとして得られる。pH10を超えると、水酸化カドミウム型構造以外の結晶相となり、微細粒子となりやすい。このような微細粒子は濾過・洗浄効率が低く、著しく製造効率が低くなる。一方、pH8.5未満であると、結晶相が水酸化カドミウム型構造とならず、α型オキシ水酸化物やスピネル型酸化物の混合相となり、目的のニッケル-マンガン系複合オキシ水酸化物が析出しにくくなる。高い製造効率での目的物の製造を可能とするためには、pH9~10が好ましい。
 金属塩水溶液、苛性ソーダ水溶液及び酸化剤を混合するときの温度は、特に限定するものではないが、金属塩水溶液の酸化反応が進みやすく、ニッケル-マンガン系複合オキシ水酸化物がより析出しやすくするために、50℃以上が好ましく、60℃以上がさらに好ましく、60~70℃が特に好ましい。
 なお、混合する温度は、使用する下記の錯化剤によっては、80℃以上とすることもできるが、製造工程上は、上記のような、低い温度が好ましい。
 金属塩水溶液、苛性ソーダ水溶液及び酸化剤の混合によりpHが変動する場合がある。この場合、適宜、苛性ソーダ水溶液以外のアルカリ水溶液を混合水溶液に混合することで、pHを制御することができる。苛性ソーダ水溶液以外のアルカリ水溶液の混合は、連続的に行ってもよく、断続的に行ってもよい。苛性ソーダ水溶液以外のアルカリ水溶液としては、例えば、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水溶液が例示できる。また、アルカリ水溶液のアルカリ濃度は1mol/L以上を例示することができるが、1~10mol/Lが好ましい。
 なお、本発明のニッケル-マンガン系複合オキシ水酸化物の製造の際には、錯化剤を添加することができる。錯化剤を共存させると、ニッケルイオンの溶解度が増加し、粒子表面が円滑となり球形度が向上する。その結果、タップ密度が向上するといった利点がある。
 錯化剤としては、アンモニア、アンモニウム塩又はアミノ酸が好適である。
 アンモニアとしては、例えば、アンモニア水等が例示される。
 アンモニウム塩としては、例えば、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、炭酸アンモニウム等が例示され、硫酸アンモニウムが特に好ましい。
 アミノ酸としては、例えば、グリシン、アラニン、アスパラギン、グルタミン、リシン等が例示され、グリシンが特に好ましい。
 該錯化剤は、金属塩水溶液とともにフィード(feed)するのが好ましい。その濃度は、アンモニア又はアンモニウム塩では、NH/遷移金属のモル比として、0.1~2が好ましく、さらに好ましくは0.5~1である。アミノ酸を使用する場合は、アミノ酸/遷移金属のモル比として、0.001~0.25が好ましく、さらに好ましくは0.005~0.1である。
 本発明のニッケル-マンガン系複合オキシ水酸化物の製造は、雰囲気制御は必ずしも必要なく、通常の大気雰囲気下で行うことが可能である。
 ニッケル-マンガン系複合オキシ水酸化物の製造方法は、バッチ式、連続式のどちらでもよい。バッチ式の場合、混合時間は任意である。例えば、3~48時間が挙げられ、さらには6~24時間を挙げることができる。一方、連続式の場合、ニッケル-マンガン系複合オキシ水酸化物粒子が、反応容器内に滞在する平均滞在時間は、1~30時間が好ましく、3~20時間がより好ましい。
 本発明のニッケル-マンガン系複合オキシ水酸化物の製造方法では、ニッケル-マンガン系複合オキシ水酸化物が析出した後に、得られたスラリーをろ過し、ケーキの洗浄及び乾燥を行うのが好ましい。
 洗浄は、ニッケル-マンガン系複合オキシ水酸化物に付着、あるいは吸着した不純物を除去するために行う。洗浄方法としては、水(例えば、純水、水道水、河川水等)に、ニッケル-マンガン系複合オキシ水酸化物を添加し、撹拌して洗浄する方法が例示できる。
 乾燥は、ニッケル-マンガン系複合オキシ水酸化物の水分を除去するために行う。乾燥方法としては、例えば、ニッケル-マンガン系複合オキシ水酸化物を、110~150℃で、2~15時間、乾燥する方法が挙げられる。乾燥は、対流伝熱乾燥、輻射伝熱乾燥方式等の装置を用いて行う。
 本発明の製造方法では、洗浄し、乾燥した後に、粉砕を行ってもよい。
 粉砕は、用途に適した平均粒子径の粉末とするために行う。所望の平均粒子径が得られる方法であれば、粉砕条件は任意であり、例えば、湿式粉砕、乾式粉砕等の方法が例示できる。
 本発明のニッケル-マンガン系複合オキシ水酸化物は、金属元素の分散性が高く、リチウム-ニッケル-マンガン系複合酸化物の製造に使用することができる。
 本発明のニッケル-マンガン系複合オキシ水酸化物を原料として、リチウム-ニッケル-マンガン系複合酸化物を製造する場合、その製造方法は、ニッケル-マンガン系複合オキシ水酸化物と、リチウム及びリチウム化合物からなる群から選ばれる少なくとも一種とを、混合する工程(混合工程)と熱処理する工程(焼成工程)とを有することが好ましい。
 本発明のリチウム-ニッケル-マンガン系複合酸化物の製造に用いる、ニッケル-マンガン系複合オキシ水酸化物とリチウム原料の混合割合は、リチウム/遷移金属モル比で0.50~0.55が好ましく、0.51~0.53がさらに好ましい。
 また、混合は乾式混合、湿式により可能であるが、その方法は任意である。乾式混合ではヘンシェルミキサーを用いた混合を例示できる。
 混合工程において、リチウム化合物は任意のものを用いることができる。リチウム化合物としては、水酸化リチウム、酸化リチウム、炭酸リチウム、ヨウ化リチウム、硝酸リチウム、シュウ酸リチウム及びアルキルリチウムからなる群から選ばれる1種以上が例示できる。好ましいリチウム化合物としては、水酸化リチウム、酸化リチウム及び炭酸リチウムからなる群から選ばれる1種以上が例示できる。
 焼成工程においては、それぞれの原料を混合した後に、マッフル電気炉等を用いて焼成して、リチウム-ニッケル-マンガン系複合酸化物を製造する。焼成は500~1000℃、好ましくは800~1000℃の温度で、空気中、酸素中などの各種の雰囲気下で行うことができる。
 得られたリチウム-ニッケル-マンガン系複合酸化物は、リチウム二次電池の正極活物質として用いることができる。
 本発明のリチウム二次電池に用いる負極活物質としては、金属リチウム、リチウム、又はリチウムイオンを吸蔵放出可能な物質を用いることができる。例えば、金属リチウム、リチウム/アルミニウム合金、リチウム/スズ合金、リチウム/鉛合金、電気化学的にリチウムイオンを挿入・脱離することができる炭素材料等が例示される。中でも、電気化学的にリチウムイオンを挿入・脱離することができる炭素材料が、安全性及び電池の特性の面から、特に好適に用いられる。
 本発明のリチウム二次電池で用いる電解質は、特に制限はなく、例えば、カーボネート類、スルホラン類、ラクトン類、エーテル類等の有機溶媒中に、リチウム塩を溶解したものや、リチウムイオン導電性の固体電解質を用いることができる。中でも、カーボネート類が好ましい。
 本発明のリチウム二次電池で用いるセパレーターは、特に制限はないが、例えば、ポリエチレン製、ポリプロピレン製などの微細多孔膜等を用いることができる。
 本発明のリチウム二次電池の構成の一例としては、本発明のリチウム-ニッケル-マンガン系複合酸化物と導電剤との混合物を、ペレット状に成型した後、100~200℃、好ましくは150~200℃で減圧乾燥して得られる成形物を電池用正極とし、金属リチウム箔からなる負極、及びエチレンカーボネートとジエチルカーボネートの混合溶媒に六フッ化リン酸リチウムを溶解した電解液を用いたものが挙げられる。
 以下、本発明を実施例により更に詳細に説明するが、これらに限定して解釈されるものではない。
 <化学組成の測定>
 複合オキシ水酸化物(複合化合物)の組成分析は、誘導結合プラズマ発光分析法(ICP法)により行った。すなわち、複合オキシ水酸化物を塩酸、及び過酸化水素の混合溶液に溶解させ、測定溶液を調製した。得られた測定溶液を誘導結合プラズマ発光分析装置(商品名:OPTIMA3000DV、PERKIN ELMER社製)を用いて分析し、化学組成を確定した。
 <金属原子価の測定>
 ニッケル、マンガンなどの金属の平均原子価は、ヨードメトリーにより測定した。複合オキシ水酸化物0.3gとヨウ化カリウム3.0gを、7N-塩酸溶液50mlに溶解させた後、1N-NaOH溶液200mlを添加して中和した。中和した試料液に対して、0.1N-チオ硫酸ナトリウム水溶液を滴下し、滴下量から平均原子価を計算した。なお、指示薬にはでんぷん溶液を用いた。
 <粉末X線回折測定>
 X線回折装置(商品名:MXP-3、マックサイエンス社製)を使用し、試料の粉末X線回折測定を行った。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャンであり、スキャン条件は毎秒0.04°、計測時間は3秒、測定範囲は2θとして5°~100°の範囲で測定した。
 <結晶相の同定>
 上記の条件のXRD測定で得られたXRDパターンにおいて、2θ=19.0±0.5°にシャープなピークを有し、36.9±1.5°、48.0±3.5°、62.0±5.0°、及び65.0±5.0°にブロードなXRDピークを有することをもって、結晶相が、六方晶系の水酸化カドミウム構造であるとした。最低角以外のピーク形状がブロードであるのは積層欠陥の影響である。
 <粒度分布及び平均粒子径の測定>
 複合オキシ水酸化物0.5gを0.1Nアンモニア水50mL中に投入し、10秒間超音波照射して分散スラリーとした。該分散スラリーを粒度分布測定装置(商品名:マイクロトラックHRA、HONEWELL社製)に投入し、レーザー回折法で体積分布の測定を行なった。得られた体積分布から粒度分布及び平均粒子径(μm)を求めた。
 <タップ密度の測定>
 複合オキシ水酸化物2gを10mL(ミリリットル)のガラス製メスシリンダーに充填し、これを200回タッピング(tapping)した。重量及びタッピング後の体積から、タップ密度(g/cm)を算出した。
 <比表面積の測定>
 流動式比表面積自動測定装置(商品名:フローソーブ3-2305、Micrometrics社製)を用い、複合オキシ水酸化物1.0gを窒素気流中150℃、1時間前処理した後、BET1点法にて吸脱着面積を測定した後、重量で除することで比表面積(m/g)を求めた。
 <電池性能評価>
 リチウム-ニッケル-マンガン系複合酸化物と、導電剤のポリテトラフルオロエチレンとアセチレンブラックとの混合物(商品名:TAB-2)とを、重量比4:1の割合で混合し、1ton/cmの圧力で、メッシュ(SUS316製)上にペレット状に成型した後、150℃で減圧乾燥し、電池用正極を作製した。
 得られた電池用正極と、金属リチウム箔(厚さ0.2mm)からなる負極、及びエチレンカーボネートとジエチルカーボネートとの混合溶媒に六フッ化リン酸リチウムを1mol/dmの濃度で溶解した電解液を用いて、リチウム二次電池を構成した。当該リチウム二次電池を用いて、定電流で、電池電圧が4.9Vから3.0Vの間を、室温下で30サイクル充放電させた。充放電時の電流密度は0.4mA/cmとした。
 実施例1
 硫酸ニッケル及び硫酸マンガンを純水に溶解し、1.5mol/L(リットル)の硫酸ニッケル及び0.5mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)を得た。金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった。
 また、内容積1Lの反応容器に純水200gを入れた後、これを80℃まで昇温し、維持した。
 得られた金属塩水溶液を供給速度0.28g/minで反応容器に添加した。また、酸化剤として、空気を供給速度1L/minで反応容器中にバブリングした。金属塩水溶液及び空気供給の際、pHが10となるように、2mol/Lの水酸化ナトリウム水溶液(苛性ソーダ水溶液)を断続的に添加して混合水溶液を得た。かかる混合水溶液中で、ニッケル-マンガン系複合オキシ水酸化物が析出し、スラリーが得られた。得られたスラリーをろ過し、純水で洗浄した後、ウェットケーキを1週間、大気中で風乾した。その後、115℃で5時間乾燥することで、ニッケル-マンガン系複合オキシ水酸化物(Ni0.25Mn0.75OOH)を得た。
 得られたニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例2
 酸化剤を酸素とし、pHが8.5となるように2mol/Lの水酸化ナトリウム水溶液を断続的に添加したこと以外は、実施例1と同様な方法でスラリーを得た。得られたスラリーを、実施例1と同様にして、ろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合オキシ水酸化物(Ni0.25Mn0.75OOH)を得た。
 得られたニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例3
 酸化剤を15重量%過酸化水素水(供給速度0.34g/min)としたこと以外は、実施例1と同様な方法でスラリーを得た。得られたスラリーを、実施例1と同様な方法で、ろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合オキシ水酸化物(Ni0.25Mn0.75OOH)を得た。
 得られたニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例4
 硫酸ニッケル及び硫酸マンガンを純水に溶解し、1.5mol/Lの硫酸ニッケル及び0.5mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)を得た(金属塩水溶液中の全金属の合計濃度は、2.0mol/Lであった)。
 また、内容積1Lの反応容器に純水200gを入れた後、これを80℃まで昇温し、維持した。
 当該金属塩水溶液と1.0mol/Lの硫酸アンモニウム溶液を、供給速度0.28g/minで反応容器に添加した。また、酸化剤として、空気を供給速度1L/minで反応容器中にバブリングした。金属塩水溶液及び空気供給の際、pHが9となるように、2mol/Lの水酸化ナトリウム水溶液(苛性ソーダ水溶液)を断続的に添加して、混合水溶液を得た。得られた混合水溶液中で、ニッケル-マンガン系複合オキシ水酸化物が析出し、スラリーを得た。得られたスラリーをろ過し、純水で洗浄した後、ウェットケーキを1週間、大気中で風乾した。その後、115℃で5時間乾燥することで、ニッケル-マンガン系複合オキシ水酸化物(Ni0.24Mn0.76OOH)を得た。
 得られたニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例5
 硫酸ニッケル及び硫酸マンガンを純水に溶解し、1.5mol/Lの硫酸ニッケル及び0.5mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)を得た(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)。
 また、内容積1Lの反応容器に純水200gを入れた後、これを60℃まで昇温し、維持した。
 当該金属塩水溶液と0.25mol/Lの硫酸アンモニウム溶液を、供給速度0.28g/minで反応容器に連続的に添加した。また、酸化剤として、空気を供給速度1L/minで反応容器中にバブリングした。金属塩水溶液及び空気供給の際、pHが9.25となるように、2mol/Lの水酸化ナトリウム水溶液(苛性ソーダ水溶液)を連続的に添加して混合水溶液を得た。得られた混合水溶液中で、ニッケル-マンガン系複合オキシ水酸化物が析出し、反応槽下部より連続的にスラリーを得た。平均滞在時間は15hであった。得られたスラリーをろ過し、純水で洗浄した後、ウェットケーキを1週間、大気中で風乾した。その後、115℃で5時間乾燥することで、ニッケル-マンガン系複合オキシ水酸化物(Ni0.25Mn0.75OOH)を得た。
 得られたニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例6
 pHを9.0、硫酸アンモニウム溶液の濃度を0.5mol/Lとした以外は、実施例5と同様な方法で、ニッケル-マンガン系複合オキシ水酸化物(Ni0.25Mn0.75OOH)を得た。
 得られたニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°に極めてシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。
 当該ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 表1より、実施例1~6は、いずれも六方晶系の水酸化カドミウム構造を有し、金属の平均原子価が3に近いニッケル-マンガン系複合オキシ水酸化物であることが分かった。さらに、実施例1~6では、マンガン酸化物(Mn)が副生していないことが、XRDパターンの解析により確認できた。
 実施例7
 実施例4で得られたニッケル-マンガン系複合オキシ水酸化物と炭酸リチウムと(リチウム/遷移金属モル比0.52)を、ヘンシェルミキサーを用いて混合し、空気流中、900℃で12時間焼成した後、700℃で48時間焼成することにより、リチウム-ニッケル-マンガン系複合酸化物を合成した。化学組成分析の結果から、組成式はLiNiMnと表すことができる。
 また、XRDパターンからは、ニッケル-マンガン規則配列に対応する超格子ピークが、図7中の複数の矢印箇所に明瞭に観察された。
 次いで、得られたリチウム-ニッケル-マンガン系複合酸化物の電池性能の評価を行った。その結果、充放電曲線から、Mn4+/3+酸化還元に対応する4V付近の電位平坦部が、2mAh/g程度と少なく、Ni4+/3+酸化還元に対応する5V付近の容量を損なわないことが判明した。また、30サイクルまで容量低下がみられないことから、充放電サイクル性能が良好であることが示された。
 実施例8
 実施例6で得られたニッケル-マンガン系複合オキシ水酸化物と炭酸リチウムとを混合し、空気流中、800℃で10時間焼成した後、700℃で48時間焼成することにより、リチウム-ニッケル-マンガン系複合酸化物を合成した。化学組成分析の結果から、組成式はLiNiMnと表すことができた。
 また、XRDパターンからは、ニッケル-マンガン規則配列に対応する超格子ピークが、図8中の複数の矢印箇所に明瞭に観察された。
 次いで、得られたリチウム-ニッケル-マンガン系複合酸化物の電池性能の評価を行った。その結果、充放電曲線から、Mn4+/3+酸化還元に対応する4V付近の電位平坦部が2mAh/g程度と少なく、Ni4+/3+酸化還元に対応する5V付近の容量を損なわないことが判明した。また、30サイクルまで容量低下がみられないことから、充放電サイクル性能が良好であることが示された。
 実施例9
 硫酸ニッケル及び硫酸マンガンを純水に溶解し、0.46mol/Lの硫酸ニッケル及び1.54mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)を得た(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)。
 金属塩の組成を前記のように変更した以外は、実施例5と同様にして、ニッケル-マンガン系複合オキシ水酸化物(Ni0.23Mn0.77OOH)を得た。
 得られたニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例10
 硫酸ニッケル及び硫酸マンガンを純水に溶解し、0.54mol/Lの硫酸ニッケル及び1.46mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)を得た(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)。
 金属塩の組成を前記のように変更した以外は、実施例5と同様にして、ニッケル-マンガン系複合オキシ水酸化物(Ni0.27Mn0.73OOH)を得た。
 得られたニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例11
 硫酸ニッケル及び硫酸マンガンを純水に溶解し、1.5mol/Lの硫酸ニッケル及び0.5mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)を得た(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)。
 また、内容積1Lの反応容器に純水200gを入れた後、これを60℃まで昇温し、維持した。
 次いで、得られた金属塩水溶液と0.1mol/Lのグリシン溶液を、供給速度0.28g/minで反応容器に連続的に添加した。また、酸化剤として、空気を供給速度1L/minで反応容器中にバブリングした。金属塩水溶液及び空気供給の際、pHが8.75となるように、2mol/Lの水酸化ナトリウム水溶液(苛性ソーダ水溶液)を連続的に添加して混合水溶液を得た。得られた混合水溶液中で、ニッケル-マンガン系複合オキシ水酸化物が析出し、反応槽下部より連続的にスラリーを得た。平均滞在時間は15hであった。得られたスラリーをろ過し、純水で洗浄した後、ウェットケーキを1週間、大気中で風乾した。その後、115℃で5時間乾燥することで、ニッケル-マンガン系複合オキシ水酸化物(Ni0.25Mn0.75OOH)を得た。
 得られたニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例12
 硫酸ニッケル及び硫酸マンガンを純水に溶解し、1.5mol/Lの硫酸ニッケル及び0.5mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)を得た(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)。
 また、内容積1Lの反応容器に純水200gを入れた後、これを70℃まで昇温し、維持した。
 次いで、得られた金属塩水溶液と0.01mol/Lのグリシン溶液を、供給速度0.28g/minで反応容器に連続的に添加した。また、酸化剤として、空気を供給速度1L/minで反応容器中にバブリングした。金属塩水溶液及び空気供給の際、pHが9.25となるように、2mol/Lの水酸化ナトリウム水溶液(苛性ソーダ水溶液)を連続的に添加して混合水溶液を得た。得られた混合水溶液中で、ニッケル-マンガン系複合オキシ水酸化物が析出し、反応槽下部より連続的にスラリーを得た。平均滞在時間は15hであった。得られたスラリーをろ過し、純水で洗浄した後、ウェットケーキを1週間、大気中で風乾した。その後、115℃で5時間乾燥することで、ニッケル-マンガン系複合オキシ水酸化物(Ni0.25Mn0.75OOH)を得た。
 得られたニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例13
 硫酸マグネシウム、硫酸ニッケル、及び硫酸マンガンを純水に溶解し、0.05mol/Lの硫酸マグネシウム、0.45mol/Lの硫酸ニッケル及び1.5mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)を得た(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)。
 また、内容積1Lの反応容器に純水200gを入れた後、これを80℃まで昇温し、維持した。
 次いで、得られた金属塩水溶液と0.25mol/Lの硫酸アンモニウム溶液を、供給速度0.28g/minで反応容器に添加した。また、酸化剤として、空気を供給速度1L/minで反応容器中にバブリングした。金属塩水溶液及び空気供給の際、pHが9.25となるように、2mol/Lの水酸化ナトリウム水溶液(苛性ソーダ水溶液)を断続的に添加して混合水溶液を得た。該混合水溶液中で、ニッケル-マンガン系複合オキシ水酸化物が析出し、スラリーを得た。得られたスラリーをろ過し、純水で洗浄した後、ウェットケーキを1週間、大気中で風乾した。その後、115℃で5時間乾燥することで、マグネシウム置換ニッケル-マンガン系複合オキシ水酸化物(Ni0.225Mg0.025Mn0.75OOH)を得た。
 得られたマグネシウム置換ニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。
 当該マグネシウム置換ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例14
 硫酸鉄、硫酸ニッケル、及び硫酸マンガンを純水に溶解し、0.10mol/Lの硫酸鉄、0.45mol/Lの硫酸ニッケル及び1.45mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)を調製した以外は、実施例13と同様にして、鉄置換ニッケル-マンガン系複合オキシ水酸化物[Ni0.225Fe0.05Mn0.725OOH(Ni0.225Fe0.025Mn0.725Fe0.025OOH)]を得た。
 得られた鉄置換ニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。
 当該鉄置換ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例15
 硫酸コバルト、硫酸ニッケル、及び硫酸マンガンを純水に溶解し、0.10mol/Lの硫酸コバルト、0.45mol/Lの硫酸ニッケル及び1.45mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)を調製した以外は、実施例13と同様にして、コバルト置換ニッケル-マンガン系複合オキシ水酸化物[Ni0.225Co0.05Mn0.725OOH(Ni0.225Co0.025Mn0.725Co0.025OOH)]を得た。
 得られたコバルト置換ニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該コバルト置換ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 実施例16
 硫酸銅、硫酸ニッケル、及び硫酸マンガンを純水に溶解し、0.05mol/Lの硫酸銅、0.45mol/Lの硫酸ニッケル及び1.5mol/Lの硫酸マンガンを含む水溶液(金属塩水溶液)(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)を調製した以外は、実施例13と同様にして、銅置換ニッケル-マンガン系複合オキシ水酸化物(Ni0.225Cu0.025Mn0.75OOH)を得た。
 得られた銅置換ニッケル-マンガン系複合オキシ水酸化物のXRDパターンが、2θ=19.0°にシャープなピークを有し、2θ=40°以降にブロードなピークを有することなどの解析から、その結晶構造は、積層欠陥を有する水酸化カドミウム構造であるが確認できた。当該銅置換ニッケル-マンガン系複合オキシ水酸化物の測定結果を表1に示す。
 表1より、実施例9~14は、いずれも六方晶系の水酸化カドミウム構造を有し、金属の平均原子価が3に近いニッケル-マンガン系複合オキシ水酸化物、又は特定金属置換ニッケル-マンガン系複合オキシ水酸化物であることが分かった。さらに、実施例9~14では、マンガン酸化物(Mn)が副生していないことが、XRDパターンの解析により確認できた。
 比較例1
 pHを7としたこと以外は、実施例2と同様な方法によりスラリーを得た。
 得られたスラリーを、実施例2と同様にして、ろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
 得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、スピネル型酸化物とα-Ni(OH)型水酸化物の混合相であることが分かった。当該ニッケル-マンガン系複合化合物の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 比較例2
 pHを11としたこと以外は、実施例1と同様な方法によりスラリーを得た。
 得られたスラリーを、実施例1と同様にして、ろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
 得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、水酸化カドミウム型のオキシ水酸化物とスピネル型酸化物の混合相であることが分かった。当該ニッケル-マンガン系複合化合物の測定結果を表2に示す。
 比較例3
 酸化剤を30重量%過硫酸ソーダ水溶液(供給速度0.28g/min)としたこと以外は、実施例1と同様な方法でスラリーを得た。
 得られたスラリーを、実施例1と同様にして、ろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
 得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、水酸化カドミウム型のオキシ水酸化物とはピーク位置が異なり、全てのピーク形状がブロードな層状化合物と考えられるパターン形状を示した。
 当該ニッケル-マンガン系複合化合物の測定結果を表2に示す。
 表2から明らかなように、pH7及び11で、有酸素ガスを用いた反応、及び酸化剤に有酸素ガス及び過酸化水素とは異なる過硫酸ソーダを用いた反応では、水酸化カドミウム構造のオキシ水酸化物の単一結晶相は得られなかった。
 本発明のニッケル-マンガン系複合オキシ水酸化物は、リチウム二次電池の正極活物質などに用いられるリチウム-ニッケル-マンガン系複合酸化物の前駆体として使用することができ、そのリチウム-ニッケル-マンガン系複合酸化物は、電池用正極材料として、高性能なリチウム二次電池を構成することが可能となる。
 なお、2013年7月18日に出願された日本特許出願2013-149435号、及び2013年12月2日に出願された日本特許出願2013-249314号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  化学組成式がNi(0.25+α)-xM1Mn(0.75-α)-yM2OOH(但し、M1及びM2は、それぞれ独立に、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1、0≦y≦0.25であり、-0.025≦α≦0.025である)で表され、かつ
    結晶構造が六方晶系の水酸化カドミウム型構造であることを特徴とするニッケル-マンガン系複合オキシ水酸化物。
  2.  αが0である請求項1に記載のニッケル-マンガン系複合オキシ水酸化物。
  3.  Ni、Mn、M1及びM2の平均原子価が、2.8~3.1である請求項1又は2に記載のニッケル-マンガン系複合オキシ水酸化物。
  4.  平均粒子径が、5~20μmである請求項1~3のいずれかに記載のニッケル-マンガン系複合オキシ水酸化物。
  5.  下記の金属塩水溶液、苛性ソーダ水溶液、及び下記の酸化剤を、pH8.5~10で混合して混合水溶液とし、該混合水溶液中で析出させることを特徴とする請求項1~4のいずれかに記載のニッケル-マンガン系複合オキシ水酸化物の製造方法。
     金属塩水溶液;ニッケル及びマンガンを含む金属塩水溶液、又はニッケル及びマンガンを含み、さらにMg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrからなる群から選ばれる1種以上を含む金属塩水溶液
     酸化剤;有酸素ガス又は過酸化水素水
  6.  さらに、錯化剤を添加する、請求項5に記載の製造方法。
  7.  前記錯化剤が、アンモニア、アンモニウム塩又はアミノ酸である、請求項6に記載の製造方法。
  8.  請求項1~4のいずれかに記載のニッケル-マンガン系複合オキシ水酸化物とリチウム化合物とを混合し、熱処理して得られるリチウム-ニッケル-マンガン系複合酸化物。
  9.  請求項8に記載のリチウム-ニッケル-マンガン系複合酸化物を、正極活物質として使用することを特徴とするリチウム二次電池。
PCT/JP2014/069238 2013-07-18 2014-07-18 ニッケル-マンガン系複合オキシ水酸化物、その製造方法、及びその用途 WO2015008863A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14826634.9A EP3023391B1 (en) 2013-07-18 2014-07-18 Nickel-manganese-based composite oxyhydroxide, production method therefor, and use therefor
ES14826634.9T ES2682200T3 (es) 2013-07-18 2014-07-18 Oxihidróxido compuesto a base de níquel-manganeso, método de producción del mismo y su uso
KR1020157036108A KR102196829B1 (ko) 2013-07-18 2014-07-18 니켈-망간계 복합 옥시 수산화물, 그 제조 방법, 및 그 용도
CN201480040835.8A CN105377766B (zh) 2013-07-18 2014-07-18 镍-锰系复合羟基氧化物、其制造方法及其用途
US14/904,548 US10122016B2 (en) 2013-07-18 2014-07-18 Nickel-manganese composite oxyhydroxide, its production method, and its application

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-149435 2013-07-18
JP2013149435 2013-07-18
JP2013249314 2013-12-02
JP2013-249314 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015008863A1 true WO2015008863A1 (ja) 2015-01-22

Family

ID=52346303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069238 WO2015008863A1 (ja) 2013-07-18 2014-07-18 ニッケル-マンガン系複合オキシ水酸化物、その製造方法、及びその用途

Country Status (7)

Country Link
US (1) US10122016B2 (ja)
EP (1) EP3023391B1 (ja)
KR (1) KR102196829B1 (ja)
CN (1) CN105377766B (ja)
ES (1) ES2682200T3 (ja)
TW (1) TWI636613B (ja)
WO (1) WO2015008863A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105690A (ja) * 2015-11-27 2017-06-15 東ソー株式会社 ニッケル−マンガン−チタン系複合組成物及びその製造方法、並びにその用途
JP2017197406A (ja) * 2016-04-27 2017-11-02 東ソー株式会社 ニッケル−マンガン複合物の製造方法
CN107922212A (zh) * 2015-08-24 2018-04-17 住友金属矿山株式会社 锰镍复合氢氧化物及制造方法、锂锰镍复合氧化物及制造方法、以及非水系电解质二次电池
CN108352523A (zh) * 2016-02-29 2018-07-31 三井金属矿业株式会社 尖晶石型含锂锰复合氧化物
JP2018536972A (ja) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
EP3356297A4 (en) * 2015-09-30 2019-05-15 Umicore PRECURSORS FOR LITHIUM TRANSITION METAL OXIDE CATHODE MATERIALS FOR RECHARGEABLE BATTERIES

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170533B2 (ja) * 2015-08-17 2022-11-14 ビーエーエスエフ ソシエタス・ヨーロピア 正極活性材料及びそれによる前駆体の製造方法、正極活性材料及びその使用
EP3671916A4 (en) 2017-08-14 2021-04-28 Mitsui Mining & Smelting Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SOLID STATE SECONDARY BATTERIES
WO2020209239A1 (ja) * 2019-04-11 2020-10-15 Jfeミネラル株式会社 前駆体、前駆体の製造方法、正極材、正極材の製造方法、および、リチウムイオン二次電池
CA3194883A1 (en) * 2020-10-13 2022-04-21 Basf Se Process for making a particulate (oxy)hydroxide, and particulate (oxy)hydroxide and its use
KR102580334B1 (ko) * 2020-12-21 2023-09-18 포스코홀딩스 주식회사 리튬 이차 전지용 양극 활물질 전구체, 이의 제조 방법 및 양극 활물질
CA3232367A1 (en) * 2021-09-21 2023-03-30 Sabine FRISCHHUT Method for making precursors of cathode active materials for lithium ion batteries
CN113903903A (zh) * 2021-10-13 2022-01-07 中南大学 一种掺杂改性高镍正极材料的制备方法
WO2024037914A1 (en) * 2022-08-15 2024-02-22 Basf Se Process for making an (oxy)hydroxide, and (oxy)hydroxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254847B1 (en) * 1997-04-15 2001-07-03 Tateho Chemical Industries Co., Ltd. Metal hydroxide solid solution, metal oxide solid solution and processes for their production
JP2007070205A (ja) * 2005-09-09 2007-03-22 Tanaka Chemical Corp ニッケルマンガンコバルト複合酸化物及びその製造方法
JP2008266136A (ja) * 2003-04-17 2008-11-06 Agc Seimi Chemical Co Ltd リチウム−ニッケル−コバルト−マンガン含有複合酸化物とリチウム二次電池用正極活物質用原料およびその製造方法
JP2009515799A (ja) * 2005-08-12 2009-04-16 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 無機化合物
JP2011153067A (ja) 2009-12-28 2011-08-11 Sumitomo Chemical Co Ltd 複合金属水酸化物およびリチウム複合金属酸化物の製造方法ならびに非水電解質二次電池
WO2014098238A1 (ja) * 2012-12-20 2014-06-26 東ソー株式会社 ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490613B1 (ko) * 2000-03-13 2005-05-17 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조방법
JP2003059490A (ja) * 2001-08-17 2003-02-28 Tanaka Chemical Corp 非水電解質二次電池用正極活物質及びその製造方法
JP4475941B2 (ja) * 2003-12-12 2010-06-09 日本化学工業株式会社 リチウムマンガンニッケル複合酸化物の製造方法
US9136533B2 (en) * 2006-01-20 2015-09-15 Jx Nippon Mining & Metals Corporation Lithium nickel manganese cobalt composite oxide and lithium rechargeable battery
CN101127398A (zh) * 2007-06-28 2008-02-20 河南师范大学 一种球形羟基氧化镍钴锰及其制备方法
DE102007039471A1 (de) * 2007-08-21 2009-02-26 H.C. Starck Gmbh Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in Lithium-Sekundärbatterien
AU2008319749B2 (en) * 2007-11-01 2012-10-18 Agc Seimi Chemical Co., Ltd. Granulated powder of transition metal compound for raw material for positive electrode active material of lithium secondary battery, and method for producing the same
KR101920485B1 (ko) * 2011-09-26 2018-11-21 전자부품연구원 리튬 이차전지용 양극 활물질의 전구체, 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254847B1 (en) * 1997-04-15 2001-07-03 Tateho Chemical Industries Co., Ltd. Metal hydroxide solid solution, metal oxide solid solution and processes for their production
JP2008266136A (ja) * 2003-04-17 2008-11-06 Agc Seimi Chemical Co Ltd リチウム−ニッケル−コバルト−マンガン含有複合酸化物とリチウム二次電池用正極活物質用原料およびその製造方法
JP2009515799A (ja) * 2005-08-12 2009-04-16 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 無機化合物
JP2007070205A (ja) * 2005-09-09 2007-03-22 Tanaka Chemical Corp ニッケルマンガンコバルト複合酸化物及びその製造方法
JP2011153067A (ja) 2009-12-28 2011-08-11 Sumitomo Chemical Co Ltd 複合金属水酸化物およびリチウム複合金属酸化物の製造方法ならびに非水電解質二次電池
WO2014098238A1 (ja) * 2012-12-20 2014-06-26 東ソー株式会社 ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. ZHOU ET AL., CHEM. MATER, vol. 22, 2010, pages 1015 - 1021

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922212B (zh) * 2015-08-24 2020-04-03 住友金属矿山株式会社 锰镍复合氢氧化物及制造方法、锂锰镍复合氧化物及制造方法、以及非水系电解质二次电池
CN107922212A (zh) * 2015-08-24 2018-04-17 住友金属矿山株式会社 锰镍复合氢氧化物及制造方法、锂锰镍复合氧化物及制造方法、以及非水系电解质二次电池
US20180205079A1 (en) * 2015-08-24 2018-07-19 Sumitomo Metal Mining Co., Ltd. Manganese nickel composite hydroxide and method for producing same, lithium manganese nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
US10559823B2 (en) * 2015-08-24 2020-02-11 Sumitomo Metal Mining Co., Ltd. Manganese nickel composite hydroxide and method for producing same, lithium manganese nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
EP3356297A4 (en) * 2015-09-30 2019-05-15 Umicore PRECURSORS FOR LITHIUM TRANSITION METAL OXIDE CATHODE MATERIALS FOR RECHARGEABLE BATTERIES
US10547056B2 (en) 2015-09-30 2020-01-28 Umicore Precursors for lithium transition metal oxide cathode materials for rechargeable batteries
JP2017105690A (ja) * 2015-11-27 2017-06-15 東ソー株式会社 ニッケル−マンガン−チタン系複合組成物及びその製造方法、並びにその用途
CN108352523A (zh) * 2016-02-29 2018-07-31 三井金属矿业株式会社 尖晶石型含锂锰复合氧化物
JP2018536972A (ja) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
US10700352B2 (en) 2016-03-04 2020-06-30 Lg Chem, Ltd. Precursor of positive electrode active material for secondary battery and positive electrode active material prepared using the same
JP2021180191A (ja) * 2016-03-04 2021-11-18 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
JP6991530B2 (ja) 2016-03-04 2022-01-12 エルジー・ケム・リミテッド 二次電池用正極活物質の前駆体およびこれを用いて製造された正極活物質
JP2017197406A (ja) * 2016-04-27 2017-11-02 東ソー株式会社 ニッケル−マンガン複合物の製造方法

Also Published As

Publication number Publication date
EP3023391B1 (en) 2018-05-30
KR20160032032A (ko) 2016-03-23
EP3023391A4 (en) 2016-12-28
EP3023391A1 (en) 2016-05-25
KR102196829B1 (ko) 2020-12-30
US20160156033A1 (en) 2016-06-02
TW201507251A (zh) 2015-02-16
CN105377766B (zh) 2018-06-05
TWI636613B (zh) 2018-09-21
CN105377766A (zh) 2016-03-02
US10122016B2 (en) 2018-11-06
ES2682200T3 (es) 2018-09-19

Similar Documents

Publication Publication Date Title
WO2015008863A1 (ja) ニッケル-マンガン系複合オキシ水酸化物、その製造方法、及びその用途
KR101989760B1 (ko) 정극 활성 물질 전구체 입자 분말 및 정극 활성 물질 입자 분말, 및 비수전해질 이차 전지
JP6357928B2 (ja) ニッケル−マンガン系複合オキシ水酸化物及びその製造方法、並びにその用途
WO2014098238A1 (ja) ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途
KR101566595B1 (ko) 망간 산화물 및 그 제조 방법, 그리고 그것을 사용한 리튬망간계 복합 산화물의 제조 방법
JP5678482B2 (ja) マンガン酸化物及びその製造方法
JPWO2004092073A1 (ja) リチウム−ニッケル−コバルト−マンガン含有複合酸化物およびリチウム二次電池用正極活物質用原料とそれらの製造方法
JP2007091573A (ja) リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途
KR20120108031A (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및, 리튬 이온 전지
KR20140138780A (ko) 정극 활물질 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
KR20140141606A (ko) 금속 함유 사삼산화망간 복합화 입자 및 그 제조 방법
WO2015068735A1 (ja) ニッケル-マンガン系複合酸化物及びその製造方法、並びにその用途
JP6686493B2 (ja) ニッケル−マンガン−チタン系複合組成物及びその製造方法、並びにその用途
JP5811233B2 (ja) マンガン酸化物及びそれを用いたマンガン酸リチウムの製造方法
JP6546117B2 (ja) リチウムイオン電池用正極活物質の製造方法
JP7206808B2 (ja) コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途
KR102005600B1 (ko) 사삼산화망간 및 그 제조 방법
JP2017178748A (ja) ニッケル−マンガン系複合化合物及びその製造方法
JP2015182922A (ja) 立方晶スピネル型構造ニッケル−マンガン系複合酸化物及びその製造方法、並びにその用途
JP6578682B2 (ja) 四三酸化マンガン及びその製造方法
JP2023162559A (ja) リチウム複合酸化物及びその製造方法
JP2017057115A (ja) マンガン酸化物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157036108

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14904548

Country of ref document: US

Ref document number: 2014826634

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE