WO2014098238A1 - ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途 - Google Patents

ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途 Download PDF

Info

Publication number
WO2014098238A1
WO2014098238A1 PCT/JP2013/084350 JP2013084350W WO2014098238A1 WO 2014098238 A1 WO2014098238 A1 WO 2014098238A1 JP 2013084350 W JP2013084350 W JP 2013084350W WO 2014098238 A1 WO2014098238 A1 WO 2014098238A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
nickel
composite oxide
manganese composite
manganese
Prior art date
Application number
PCT/JP2013/084350
Other languages
English (en)
French (fr)
Inventor
藤井 康浩
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2014098238A1 publication Critical patent/WO2014098238A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel-cobalt-manganese composite oxide, a method for producing the same, and a use thereof. More specifically, a nickel-cobalt-manganese composite oxide suitable as a precursor of a lithium-nickel-cobalt-manganese composite oxide, and a lithium-nickel obtained using the nickel-cobalt-manganese composite oxide.
  • the present invention relates to a cobalt-manganese composite oxide and a lithium secondary battery using the lithium-nickel-cobalt-manganese composite oxide as a positive electrode.
  • Lithium-nickel-cobalt-manganese composite oxide is attracting attention as a positive electrode active material for lithium secondary batteries.
  • As a method for producing a lithium-nickel-cobalt-manganese composite oxide there is a production method using a composite hydroxide or nickel oxyhydroxide containing nickel, cobalt and manganese as a precursor.
  • a composite hydroxide or composite oxyhydroxide containing nickel, cobalt and manganese is regarded as a preferred precursor because these metals are more uniformly distributed.
  • Patent Document 1 cobalt manganese coprecipitated nickel hydroxide powder obtained by a coprecipitation method in a reducing atmosphere is disclosed.
  • nickel cobalt manganese composite oxyhydroxide powder obtained by coprecipitation of nickel cobalt manganese composite hydroxide in the presence of aqueous ammonia solution and then dispersing it in sodium hydroxide and sodium persulfate aqueous solution is obtained. It is disclosed (Patent Document 2).
  • the cobalt manganese coprecipitated nickel hydroxide powder of Patent Document 1 and the nickel cobalt manganese composite oxyhydroxide powder of Patent Document 2 are precursors composed of hydroxide and oxyhydroxide. Such a precursor has low reactivity, particularly reactivity with lithium or a lithium compound, and when a lithium composite oxide is obtained using this as a raw material, a high firing temperature is required.
  • the present invention solves these problems, and is a composite compound of nickel, cobalt and manganese, which is lithium-nickel-cobalt- at a lower firing temperature than a precursor made of a conventional hydroxide or oxyhydroxide.
  • a nickel-cobalt-manganese composite oxide capable of providing a manganese-based composite oxide, a lithium-nickel-cobalt-manganese composite oxide obtained using the nickel-cobalt-manganese composite oxide, and
  • An object of the present invention is to provide a lithium secondary battery using the lithium-nickel-cobalt-manganese composite oxide as a positive electrode.
  • the present inventors diligently studied a precursor of a lithium-nickel-cobalt-manganese composite oxide.
  • the nickel-cobalt-manganese composite oxide having a specific crystal structure is highly reactive with lithium and lithium compounds, and the lithium-nickel-cobalt-manganese composite oxide is used as a positive electrode.
  • the present inventors have found that a lithium secondary battery has high performance and have completed the present invention.
  • a method for producing a nickel-cobalt-manganese composite oxide according to any one of (1) to (7) above, wherein an aqueous solution containing nickel, cobalt and manganese and a persulfate aqueous solution are mixed with a pH of 11 A method for producing a nickel-cobalt-manganese composite oxide comprising a precipitation step of mixing in the following to obtain a mixed aqueous solution and precipitating a nickel-cobalt-manganese composite oxide in the mixed aqueous solution.
  • a nickel-cobalt-manganese composite can be expected to provide a lithium-nickel-cobalt-manganese composite oxide at a lower firing temperature than a precursor made of a conventional hydroxide or oxyhydroxide.
  • An oxide can be provided. Therefore, the nickel-cobalt-manganese composite oxide of the present invention is highly reactive with a lithium compound, and can produce a lithium-nickel-cobalt-manganese composite oxide excellent as a positive electrode of a lithium secondary battery.
  • the nickel-cobalt-manganese composite oxide of the present invention has a high specific surface area, the reactivity with the lithium compound is higher. In the lithium composite oxide obtained using this as a raw material, lithium is more uniform. Can be expected to be distributed.
  • FIG. 2 is an XRD pattern of a nickel-cobalt-manganese composite oxide of Example 1.
  • FIG. 3 is an XRD pattern of a mixed powder of nickel-cobalt-manganese based composite oxide and lithium carbonate of Example 1 and a fired product thereof.
  • 3 is an XRD pattern of a nickel-cobalt-manganese composite oxide of Example 2.
  • FIG. 3 is an XRD pattern of a nickel-cobalt-manganese composite oxide of Example 3.
  • FIG. 4 is an XRD pattern of a nickel-cobalt-manganese composite oxide of Example 4.
  • FIG. 4 is a particle size distribution of a nickel-cobalt-manganese composite oxide of Example 4.
  • FIG. 4 is a scanning electron micrograph of the nickel-cobalt-manganese composite oxide of Example 4 (scale in the figure is 10 ⁇ m).
  • 7 is an XRD pattern of a nickel-cobalt-manganese composite oxide of Example 5.
  • FIG. 6 is a scanning electron micrograph of the nickel-cobalt-manganese composite oxide of Example 5 (scale in the figure is 10 ⁇ m). 6 is a pore distribution curve of a nickel-cobalt-manganese composite oxide of Example 5.
  • 3 is an XRD pattern of a nickel-cobalt-manganese composite compound of Comparative Example 1.
  • FIG. 3 is an XRD pattern of a nickel-cobalt-manganese composite compound of Comparative Example 2.
  • 4 is an XRD pattern of a nickel-cobalt-manganese composite compound of Comparative Example 3.
  • 6 is an XRD pattern of a mixed powder of nickel cobalt manganese composite hydroxide and lithium carbonate of Comparative Example 4 and a fired product thereof.
  • the present invention relates to a nickel-cobalt-manganese complex oxide characterized by having a crystallite diameter of 30 mm or less and a pseudo-spinel structure, a method for producing the same, and a use thereof.
  • the crystallite size of the nickel-cobalt-manganese composite oxide of the present invention is 30 mm or less, preferably 25 mm or less, and more preferably 20 mm or less.
  • the nickel-cobalt-manganese composite oxide of the present invention becomes a composite oxide which is not amorphous and does not have too high crystallinity, so-called low crystal nickel-cobalt-manganese composite oxide.
  • the crystallite diameter exceeds 30 mm, the crystallinity of the nickel-cobalt-manganese composite oxide becomes too high. If the crystallinity becomes too high, the reactivity between the nickel-cobalt-manganese composite oxide and the lithium compound tends to decrease.
  • the nickel-cobalt-manganese composite oxide tends to be amorphous. If the crystallite diameter is 10 mm or more, further 12 mm or more, and further 15 mm or more, the nickel-cobalt-manganese composite oxide of the present invention is obtained with a moderately crystalline nickel-cobalt-manganese composite oxide. Become.
  • the crystallite diameter can be calculated by the following Scherrer equation from the half-value width of the XRD peak in a powder X-ray diffraction (hereinafter referred to as “XRD”) pattern.
  • Crystallite diameter ( ⁇ ) K ⁇ ⁇ / ( ⁇ ⁇ cos ⁇ )
  • K is the Scherrer constant (0.9)
  • is the X-ray wavelength ( ⁇ )
  • is the half width of the XRD peak at the diffraction angle 2 ⁇
  • is the diffraction angle.
  • is 1.5405.
  • the nickel-cobalt-manganese composite oxide of the present invention has a pseudo spinel structure.
  • the structure has XRD peaks of 5 ° and 66.2 ⁇ 3.5 °, and these XRD peaks are broad. Furthermore, the XRD peak in the XRD pattern is substantially the above three broad peaks. It is a structure which is only an XRD peak.
  • 37.1 ° peak intensity 18.3 ° peak intensity
  • 18.3 ° peak intensity is preferably 37.1 ° peak intensity or less.
  • the nickel-cobalt-manganese composite oxide of the present invention has a pseudo-spinel crystal structure closer to the spinel structure. It is considered to be. The closer the pseudo-spinel structure is to the spinel structure, the more easily the nickel, cobalt and manganese in the nickel-cobalt-manganese composite oxide are more uniformly distributed.
  • the nickel-cobalt-manganese composite oxide of the present invention is a low crystal nickel-cobalt-manganese composite oxide. Therefore, the nickel-cobalt-manganese composite oxide of the present invention has a broad XRD peak in the XRD pattern. Therefore, the nickel-cobalt-manganese composite oxide of the present invention does not substantially have a sharp XRD peak, that is, an XRD peak having a half width of 2.0 ° or less in the XRD pattern.
  • the nickel-cobalt-manganese composite oxide of the present invention preferably contains substantially no nickel-cobalt-manganese oxyhydroxide.
  • Oxyhydroxides have different crystal structures such as ⁇ -type and ⁇ -type.
  • nickel, cobalt, and manganese in the nickel-cobalt-manganese composite oxide of the present invention are represented by the following formula in terms of molar ratio.
  • Ni: Co: Mn (1-xy): x: y (However, x and y are each larger than 0 and x + y is 0.7 or less.)
  • the content of cobalt and manganese (x + y) is 0.7 or less.
  • (x + y) exceeds 0.7, the thermal stability of the positive electrode decreases.
  • (X + y) is preferably 0.67 or less, more preferably 0.5 or less, and further preferably 0.4 or less.
  • the discharge capacity per unit weight of the lithium-nickel-cobalt-manganese composite oxide obtained using the nickel-cobalt-manganese composite oxide of the present invention tends to increase.
  • the ratio of cobalt to manganese is arbitrary.
  • Cobalt and manganese in the above formula are preferably x ⁇ y.
  • the BET specific surface area of the nickel-cobalt-manganese composite oxide of the present invention is preferably 30 m 2 / g or more, more preferably 100 m 2 / g or more, and 150 m 2 / g or more. Is more preferable, and it is still more preferable that it is 200 m ⁇ 2 > / g or more.
  • the height of the BET specific surface area reflects the pore structure.
  • the nickel-cobalt-manganese composite oxide of the present invention has micropores having a pore diameter of 10 mm or less, and substantially has no meso and macropores. Such a pore distribution results in a complex oxide having sufficient reactivity.
  • the tap density of the nickel-cobalt-manganese composite oxide of the present invention is preferably 1.0 g / cm 3 or more, more preferably 1.2 g / cm 3 or more, and 1.5 g / cm 3 or more. More preferably.
  • the tap density is 1.0 g / cm 3 or more, the filling property of the lithium-nickel-cobalt-manganese composite oxide obtained using the nickel-cobalt-manganese composite oxide of the present invention as a raw material tends to be high.
  • the average valence of nickel, cobalt and manganese of the nickel-cobalt-manganese composite oxide of the present invention is 2.7 or more and less than 3.0.
  • the theoretical valence of the spinel oxide is 2.7, and it is important not to deviate from this value.
  • Examples of the average particle size of the nickel-cobalt-manganese composite oxide of the present invention include 5 to 20 ⁇ m, and further 5 to 10 ⁇ m.
  • the average particle diameter is an average particle diameter of secondary particles in which primary particles are aggregated, that is, a so-called aggregated particle diameter.
  • the particle distribution of the nickel-cobalt-manganese composite oxide of the present invention may be a monodisperse, that is, a particle size distribution having a monomodal distribution, for example, a particle size distribution as shown in FIG. it can.
  • the nickel-cobalt-manganese composite oxide of the present invention is obtained by mixing an aqueous solution containing nickel, cobalt and manganese and an aqueous persulfate solution at a pH of 11 or less to obtain a mixed aqueous solution, and the nickel-cobalt-manganese in the mixed aqueous solution. It can obtain by the manufacturing method characterized by including the precipitation process which precipitates a system complex oxide.
  • an aqueous solution containing nickel, cobalt and manganese (hereinafter referred to as “metal salt aqueous solution”) and a persulfate aqueous solution are mixed to obtain a mixed aqueous solution.
  • the metal salt aqueous solution contains nickel, cobalt, and manganese.
  • an aqueous metal salt solution an aqueous solution in which a sulfate, chloride, nitrate or acetate containing at least one of nickel, cobalt and manganese is dissolved and containing nickel, cobalt and manganese, sulfuric acid, hydrochloric acid, Examples thereof include an aqueous solution in which one or more of nickel, cobalt, and manganese are dissolved in an inorganic acid such as nitric acid or acetic acid and that contains nickel, cobalt, and manganese.
  • an aqueous solution containing nickel sulfate, cobalt sulfate and manganese sulfate can be exemplified.
  • the ratio of nickel, cobalt and manganese in the aqueous metal salt solution may be the ratio of nickel, cobalt and manganese of the target nickel-cobalt-manganese composite oxide.
  • the ratio of nickel, cobalt and manganese in the aqueous metal salt solution is preferably represented by the following formula in terms of molar ratio.
  • Ni: Co: Mn (1-xy): x: y (However, x and y are each larger than 0 and x + y is 0.7 or less.)
  • the content of cobalt and manganese (x + y) is 0.7 or less, preferably 0.67 or less, more preferably 0.5 or less, and 0.4 or less. More preferably.
  • the ratio of cobalt and manganese in the above formula is arbitrary.
  • x ⁇ y can be exemplified.
  • the persulfate aqueous solution can be exemplified by one or more of a sodium persulfate aqueous solution and a potassium persulfate aqueous solution, and is preferably a sodium persulfate aqueous solution.
  • concentration of the persulfate aqueous solution include 3 to 30% by weight.
  • the nickel-cobalt-manganese composite oxide of the present invention is precipitated from the mixed solution.
  • the pH of mixing is preferably 10 or less, and more preferably 9 or less.
  • the nickel-cobalt-manganese composite oxide is difficult to precipitate, and the production efficiency tends to decrease.
  • the mixing pH is 5 or more, preferably 5.5 or more, more preferably 6 or more, production with high production efficiency is possible.
  • the pH may fluctuate due to mixing of the aqueous metal salt solution and the aqueous persulfate solution.
  • the pH can be controlled by appropriately mixing an aqueous alkaline solution with the mixed aqueous solution.
  • the mixing of the alkaline aqueous solution may be performed continuously or intermittently.
  • alkaline aqueous solution examples include aqueous solutions of alkali metals such as sodium hydroxide and potassium hydroxide, and an aqueous solution of sodium hydroxide is preferable.
  • the alkali concentration of aqueous alkali solution can illustrate 1 mol / L or more.
  • the redox potential of the mixed aqueous solution with respect to the standard hydrogen electrode (hereinafter simply referred to as “redox potential”) is preferably 0.25 V or higher, more preferably 0.5 V or higher, and 0 More preferably, it is 0.6 V or more, and even more preferably 0.7 V or more.
  • the oxidation-reduction potential is 0.25 V or more, the dispersibility of the nickel-cobalt-manganese composite oxide particles obtained tends to increase.
  • the redox potential is preferably 0.9V or less, and more preferably 0.8V or less.
  • the mixing method of the metal salt aqueous solution and the persulfate aqueous solution is arbitrary.
  • a metal salt aqueous solution and a persulfate aqueous solution are added and mixed in a slurry containing water or the nickel-cobalt-manganese composite oxide of the present invention.
  • the atmosphere in the precipitation step is arbitrary, and may be any of an oxidizing atmosphere, an inert atmosphere, or a reducing atmosphere.
  • an oxidizing atmosphere for example, air
  • atmosphere can be illustrated.
  • atmosphere control is not necessary, and since it can be performed in a normal air atmosphere, it is advantageous in terms of cost reduction.
  • the mixing temperature exceeds 50 ° C., preferably 60 ° C. or higher, more preferably 80 ° C. or higher.
  • the mixing temperature exceeds 50 ° C., the oxidation reaction of the metal salt aqueous solution easily proceeds. This makes it difficult for nickel-cobalt-manganese hydroxide to precipitate.
  • the mixing time in the precipitation step is arbitrary. For example, it can be 3 to 48 hours, and further 6 to 24 hours.
  • a complexing agent can be added in the precipitation step.
  • a complexing agent ammonia or an ammonium salt is preferable, and examples thereof include aqueous ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, and ammonium carbonate.
  • the complexing agent is preferably fed together with metal ions.
  • the concentration is preferably from 0.1 to 2, more preferably from 0.5 to 1, as the NH 3 / transition metal molar ratio.
  • the cleaning process impurities adhering to and adsorbing to the nickel-cobalt-manganese composite oxide are removed.
  • the cleaning method include a method of adding a nickel-cobalt-manganese composite oxide to water and cleaning it.
  • the moisture of the nickel-cobalt-manganese composite oxide is removed.
  • the drying method include drying the nickel-cobalt-manganese composite oxide at 110 to 150 ° C. for 2 to 15 hours.
  • the powder has an average particle size suitable for the application. If it becomes a desired average particle diameter, grinding
  • the nickel-cobalt-manganese composite oxide of the present invention has high reactivity with a lithium compound, it can be used in a method for producing a lithium-nickel-cobalt-manganese composite oxide.
  • the production method includes nickel-cobalt-manganese composite oxide, lithium and lithium. It is preferable to have a mixing step of mixing at least one of the compounds and a firing step.
  • any lithium compound can be used.
  • the lithium compound include one or more selected from the group consisting of lithium hydroxide, lithium oxide, lithium carbonate, lithium iodide, lithium nitrate, lithium oxalate, and alkyl lithium.
  • any one or more selected from the group consisting of lithium hydroxide, lithium oxide and lithium carbonate can be exemplified.
  • the raw materials are mixed and then fired to produce a lithium-nickel-cobalt-manganese composite oxide. Firing can be performed at any temperature of 500 to 1000 ° C., preferably at any temperature of 800 to 1000 ° C., in various atmospheres such as air and oxygen.
  • the lithium-nickel-cobalt-manganese composite oxide of the present invention thus obtained can be represented by the chemical formula LiMO 2 (M: nickel, cobalt, manganese).
  • the crystal structure is a layered rock salt structure (space group R-3m) having a structure in which transition metal-oxygen octahedrons and lithium-oxygen octahedrons are alternately stacked.
  • the particle form is the same as that of the precursor, and the average particle diameter is, for example, 5 to 20 ⁇ m, and further 5 to 10 ⁇ m.
  • Examples of the particle distribution include a particle size distribution having a monodisperse, that is, a monomodal distribution.
  • the lithium-nickel-cobalt-manganese composite oxide of the present invention thus obtained is used as a positive electrode active material for a lithium secondary battery.
  • metallic lithium and a material capable of occluding and releasing lithium or lithium ions can be used.
  • examples include lithium metal, lithium / aluminum alloy, lithium / tin alloy, lithium / lead alloy, and carbon materials that can electrochemically insert and desorb lithium ions, and electrochemically insert lithium ions.
  • a carbon material that can be detached is particularly suitable from the viewpoint of safety and battery characteristics.
  • the electrolyte used in the lithium secondary battery of the present invention is not particularly limited.
  • a lithium salt dissolved in an organic solvent such as carbonates, sulfolanes, lactones, ether condyles, or lithium ion conductivity.
  • a solid electrolyte or the like can be used.
  • the separator used in the lithium secondary battery of the present invention is not particularly limited, and for example, a microporous film made of polyethylene or polypropylene can be used.
  • a molded product obtained by molding a mixture with a conductive agent into a pellet and drying under reduced pressure at 100 to 200 ° C. is used as a battery positive electrode.
  • electrolytic solution in which lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate.
  • the composition analysis of the sample was performed by inductively coupled plasma emission spectrometry (ICP method). That is, the sample was dissolved in a mixed solution of hydrochloric acid and hydrogen peroxide to prepare a measurement solution.
  • the composition of the sample was analyzed by measuring the obtained measurement solution using a general inductively coupled plasma optical emission analyzer (trade name: OPTIMA 3000 DV, manufactured by PERKIN ELMER).
  • the particle size distribution of the sample was measured as follows. 0.5 g of a sample was put into 50 mL of 0.1N ammonia water, and ultrasonic dispersion was performed for 10 seconds to obtain a dispersion slurry. The dispersed slurry was put into a particle size distribution measuring device (trade name: Microtrac HRA, manufactured by HONEWELL), and volume distribution was measured by a laser diffraction method. The particle size distribution and average particle size were determined from the obtained volume distribution.
  • ⁇ Measurement of pore distribution> For the pore distribution of the sample, both the mercury intrusion method and the nitrogen adsorption method were used.
  • the mercury intrusion method meso and macropore evaluation analysis was performed using an automatic porosimeter and autopore 9510 manufactured by Micrometrics.
  • the nitrogen adsorption method micropore evaluation analysis was performed using an automatic gas adsorption amount measuring apparatus and bell soap 18 manufactured by Bell Japan. Further, the MP method was adopted as a method for evaluating micropore pore distribution.
  • a battery characteristic test as a positive electrode of a lithium-nickel-cobalt-manganese composite oxide was conducted.
  • a mixture of lithium-nickel-cobalt-manganese composite oxide, a conductive agent polytetrafluoroethylene and acetylene black (trade name: TAB-2) at a weight ratio of 4: 1, and 1 ton / cm After forming into a pellet shape on a mesh (made of SUS316) at a pressure of 2 , it was dried under reduced pressure at 150 ° C. to produce a battery positive electrode.
  • each of the discharge capacities were measured and compared with more discharge capacity (current density 5 discharge capacity in the discharge capacity / current density 0.4 mA / cm 2 at .0mA / cm 2).
  • Example 1 Nickel sulfate, cobalt sulfate and manganese sulfate are dissolved in pure water to obtain an aqueous solution containing 1 mol / L nickel sulfate, 0.4 mol / L cobalt sulfate and 0.6 mol / L manganese sulfate. did. Further, 200 g of pure water was put into a reaction vessel having an internal volume of 1 L, and then this was heated to 80 ° C. and maintained.
  • the raw material aqueous solution and 26.6 wt% sodium persulfate aqueous solution were added to the reaction vessel so that the molar ratio of sodium persulfate to the metal in the raw material aqueous solution was 1: 0.75, and nickel-cobalt-manganese was added.
  • a system complex oxide slurry was obtained.
  • a 2 mol / L sodium hydroxide aqueous solution was intermittently added so that the pH was 8.
  • the oxidation-reduction potential of the slurry was 0.64V.
  • the obtained slurry was filtered, washed and dried to obtain the nickel-cobalt-manganese composite oxide of this example.
  • the XRD pattern of the obtained nickel-cobalt-manganese composite oxide is shown in FIG.
  • the crystal structure of the obtained nickel-cobalt-manganese composite oxide was a pseudo-spinel structure, and the 18.3 ° peak intensity and the 37.1 ° peak intensity were equivalent. This suggests that the nickel-cobalt-manganese composite oxide has a pseudo-spinel structure having a crystal structure closer to a spinel structure.
  • the full width at half maximum of the XRD peak is 4.0 ° or more, and the crystallite diameter is 16 mm. I found out.
  • the obtained nickel-cobalt-manganese composite oxide was evaluated for pore distribution by mercury porosimetry. As a result, meso and macro pores were not detected except for pores of 1 to 10 ⁇ m which are considered to be interparticle voids.
  • the evaluation results of the nickel-cobalt-manganese composite oxide are shown in Table 1.
  • the chemical composition of the obtained sample was expressed as Li 1.04 Ni 0.48 Co 0.21 Mn 0.31 O 2.0 .
  • the crystal phase was a single phase with a layered rock salt structure (space group R3-m).
  • the tap density was 1.7 g / cc. Table 2 shows the results of battery performance evaluation.
  • Example 2 A slurry was obtained in the same manner as in Example 1 except that a 2 mol / L aqueous sodium hydroxide solution was intermittently added so that the pH was 5. The oxidation-reduction potential of the slurry was 0.77V. The obtained slurry was filtered, washed and dried to obtain the nickel-cobalt-manganese composite oxide of this example. The XRD pattern of the obtained nickel-cobalt-manganese composite oxide is shown in FIG. The crystal structure of the obtained nickel-cobalt-manganese composite oxide was a pseudo-spinel structure, and the 18.3 ° peak intensity and the 37.1 ° peak intensity were equivalent.
  • the nickel-cobalt-manganese composite oxide has a crystal structure closer to a spinel structure. Further, in the XRD pattern of the nickel-cobalt-manganese composite oxide, the full width at half maximum of the XRD peak is 4.0 ° or more, and the crystallite diameter is 14 mm. I found out. The evaluation results of the nickel-cobalt-manganese composite oxide are shown in Table 1.
  • Example 3 A slurry was obtained in the same manner as in Example 1 except that a 2 mol / L aqueous sodium hydroxide solution was intermittently added so that the pH was 6. The oxidation-reduction potential of the slurry was 0.82V. The obtained slurry was filtered, washed and dried to obtain the nickel-cobalt-manganese composite oxide of this example.
  • FIG. 4 shows an XRD pattern of the obtained nickel-cobalt-manganese composite oxide.
  • the crystal structure of the obtained nickel-cobalt-manganese composite oxide was a pseudo-spinel structure, and the 18.3 ° peak intensity and the 37.1 ° peak intensity were equivalent.
  • the nickel-cobalt-manganese composite oxide has a crystal structure closer to a spinel structure.
  • the nickel-cobalt-manganese composite oxide is a low-crystal nickel-cobalt-manganese composite oxide whose XRD peak half width in the XRD pattern is 4.0 ° or more and whose crystallite diameter is 18 mm. It turns out that.
  • the evaluation results of the nickel-cobalt-manganese composite oxide are shown in Table 1.
  • Example 4 2 mol / L sodium hydroxide aqueous solution was added intermittently so that the pH was 5.5, and the raw material aqueous solution and 26.
  • a slurry was obtained in the same manner as in Example 1 except that a 7% by weight aqueous sodium persulfate solution was added to the reaction vessel.
  • the obtained slurry was filtered, washed and dried in the same manner as in Example 1 to obtain a nickel-cobalt-manganese composite oxide of this example.
  • the XRD pattern of the obtained nickel-cobalt-manganese composite oxide is shown in FIG.
  • the crystal structure of the obtained nickel-cobalt-manganese composite oxide was a pseudo-spinel structure, and the 18.3 ° peak intensity and the 37.1 ° peak intensity were equivalent. This suggests that the nickel-cobalt-manganese composite oxide has a crystal structure closer to a spinel structure. Further, the nickel-cobalt-manganese composite oxide is a low-crystal nickel-cobalt-manganese composite oxide whose XRD peak half width in the XRD pattern is 4.0 ° or more and whose crystallite diameter is 18 mm. It turns out that.
  • the nickel-cobalt-manganese composite oxide had an average particle size of 7.8 ⁇ m and a tap density of 1.6 g / cm 3 .
  • the particle size distribution of the obtained nickel-cobalt-manganese composite oxide is shown in FIG.
  • a scanning electron micrograph is shown in FIG.
  • the evaluation results of the nickel-cobalt-manganese composite oxide are shown in Table 1.
  • Example 5 Nickel sulfate, cobalt sulfate and manganese sulfate are dissolved in pure water to obtain an aqueous solution containing 1 mol / L nickel sulfate, 0.4 mol / L cobalt sulfate and 0.6 mol / L manganese sulfate. did. Further, 200 g of pure water was put into a reaction vessel having an internal volume of 1 L, and then this was heated to 80 ° C. and maintained.
  • the raw material aqueous solution, 26.6 wt% sodium persulfate aqueous solution and 1 mol / L ammonium sulfate aqueous solution were added to the reaction vessel to obtain a nickel-cobalt-manganese composite oxide slurry.
  • the flow rate was set so that the molar ratio of sodium persulfate to the metal of the raw material aqueous solution was 0.75: 1 and the molar ratio of ammonium sulfate to the metal of the raw aqueous solution was 0.5: 1.
  • the obtained slurry was filtered, washed and dried to obtain the nickel-cobalt-manganese composite oxide of this example.
  • the XRD pattern of the obtained nickel-cobalt-manganese composite oxide is shown in FIG.
  • the crystal structure of the obtained nickel-cobalt-manganese composite oxide was found to be a pseudo-spinel structure from the XRD pattern. Further, from the half width of the 18.3 ° peak in the XRD pattern of the nickel-cobalt-manganese composite oxide, it was found that the nickel-cobalt-manganese composite oxide was a low-crystal nickel-cobalt-manganese composite oxide having a crystallite diameter of 26 mm.
  • the obtained nickel-cobalt-manganese composite oxide was evaluated for pore distribution by mercury porosimetry. As a result, meso and macro pores were not detected except for pores of 1 to 10 ⁇ m which are considered to be interparticle voids. As a result of evaluation of the pore distribution by the nitrogen adsorption method, micropores having a pore diameter of 10 mm or less were detected. This revealed that the nickel-cobalt-manganese composite oxide was a microporous material. A scanning electron micrograph of the obtained nickel-cobalt-manganese composite oxide is shown in FIG. Furthermore, the pore distribution curve is shown in FIG.
  • the evaluation results of the nickel-cobalt-manganese composite oxide are shown in Table 1. From Table 1, the nickel-cobalt-manganese composite oxides of Examples 1 to 5 are all low-crystalline nickel-cobalt-manganese composite oxides having a pseudo spinel structure and a crystallite diameter of 20 mm or less. I found out. Furthermore, in these Examples, it has confirmed that the highly crystalline composite hydroxide and composite oxyhydroxide were not producing
  • Comparative Example 1 A slurry was obtained in the same manner as in Example 1 except that air was blown into the reaction solution at a rate of 1 L / min instead of the sodium persulfate aqueous solution. The oxidation-reduction potential of the slurry was 0.12V. The obtained slurry was filtered, washed and dried to obtain a nickel-cobalt-manganese composite compound of this comparative example.
  • the XRD pattern of the obtained nickel-cobalt-manganese composite compound is shown in FIG.
  • Table 3 shows the evaluation results of the nickel-cobalt-manganese composite oxyhydroxide.
  • Comparative Example 2 Instead of the sodium persulfate aqueous solution, air was blown into the reaction solution at a rate of 1 L / min, and 2 mol / L sodium hydroxide aqueous solution was intermittently added so that the pH was 10. A slurry was obtained in the same manner as in Example 1. The oxidation-reduction potential of the slurry was 0.13V. The obtained slurry was filtered, washed and dried to obtain a nickel-cobalt-manganese composite compound of this comparative example. The XRD pattern of the obtained nickel-cobalt-manganese composite compound is shown in FIG.
  • Comparative Example 4 In a reaction tank having an internal volume of 2 liters, nitrogen was bubbled into 1 liter of pure water in advance, and then an aqueous solution containing nickel chloride, manganese chloride, cobalt chloride and ammonium chloride at 0.5 mol / kg and 3 mol / kg sodium hydroxide, respectively. The aqueous solution was continuously added while maintaining the pH in the reaction tank at 9, and a coprecipitated compound slurry was continuously obtained from the lower part of the reaction tank. The reaction temperature was 60 ° C. and the average residence time was 5 h. The obtained coprecipitate compound slurry was filtered, washed with pure water, and dried.
  • Table 3 shows the evaluation results of the nickel cobalt manganese composite hydroxide. As is apparent from Table 3, in Comparative Examples 1 to 4, it was found that when air or hydrogen peroxide solution was used, oxyhydroxide was precipitated and a complex compound having high crystallinity was contained. Next, the nickel cobalt manganese composite hydroxide obtained in Comparative Example 4 was stirred and mixed with lithium carbonate and a Henschel mixer, and the mixed powder was fired in the atmosphere at 900 ° C. for 12 hours to obtain a composite oxide.
  • the XRD pattern of the obtained composite oxide is a layered rock salt type single crystal phase, and the chemical composition is expressed as Li 1.00 [Ni 0.52 Mn 0.20 Co 0.28 ] O 2 .
  • the tap density was 2.0 g / cm 3 and the average particle size was 12 ⁇ m.
  • Table 2 shows the results of battery performance evaluation.
  • the presence or absence of a lithium carbonate diffraction peak was confirmed from the XRD pattern. As shown in FIG. 14, the diffraction peak derived from lithium carbonate disappeared at a firing temperature of 600 ° C.
  • Example 1 From the result in Example 1 and the result in Comparative Example 4, it was clarified that the nickel-cobalt-manganese composite oxide of Example 1 started to react with lithium carbonate at a low temperature.
  • the smooth progress of the reaction can be expected to suppress the modulation of Li composition and the accompanying structural irregularities. These effects were considered to be reflected in the battery performance such as the difference in discharge capacity.
  • the nickel-cobalt-manganese composite oxide of the present invention can be used as a precursor of a lithium-nickel-cobalt-manganese composite oxide used for a positive electrode active material of a lithium secondary battery.
  • a high-performance lithium secondary battery using a nickel-cobalt-manganese composite oxide as a positive electrode for a battery can be configured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 従来の水酸化物やオキシ水酸化物からなる前駆体よりも、より低い焼成温度でリチウム-ニッケル-コバルト-マンガン系複合酸化物を得ることができるニッケル-コバルト-マンガン系複合酸化物、リチウム二次電池を提供する。 結晶子径が30Å以下で、擬スピネル構造を有することを特徴とするニッケル-コバルト-マンガン系複合酸化物、該複合酸化物の該製造方法、及び該複合酸化物から得られるリチウム-ニッケル-コバルト-マンガン系複合酸化物を正極に含むリチウム二次電池。

Description

ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途
 本発明は、ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途に関するものである。より詳しくは、リチウム-ニッケル-コバルト-マンガン系複合酸化物の前駆体として適したニッケル-コバルト-マンガン系複合酸化物、そのニッケル-コバルト-マンガン系複合酸化物を使用して得られるリチウム-ニッケル-コバルト-マンガン系複合酸化物、及び、そのリチウム-ニッケル-コバルト-マンガン系複合酸化物を正極として使用するリチウム二次電池に関する。
 リチウム-ニッケル-コバルト-マンガン系複合酸化物はリチウム二次電池用正極活物質として注目されている。リチウム-ニッケル-コバルト-マンガン系複合酸化物の製造方法として、ニッケル、コバルト及びマンガンを含有する複合水酸化物や複合オキシ水酸化物を前駆体とする製造方法がある。ニッケル、コバルト及びマンガンを含有する複合水酸化物や複合オキシ水酸化物は、これらの金属がより均一に分布しているため、好ましい前駆体とされている。
 例えば、リチウム-ニッケル-コバルト-マンガン系複合酸化物の前駆体として、還元雰囲気下の共沈法により得られたコバルトマンガン共沈水酸化ニッケル粉末が開示されている(特許文献1)。
 また、アンモニア水溶液の存在下でニッケルコバルトマンガン複合水酸化物を共沈させ、その後、これを水酸化ナトリウムと過硫酸ナトリウム水溶液に分散させることで得られたニッケルコバルトマンガン複合オキシ水酸化物粉末が開示されている(特許文献2)。
日本特開2008-195608号公報 国際公開2005/02354号
 特許文献1のコバルトマンガン共沈ニッケル水酸化物粉末及び、特許文献2のニッケルコバルトマンガン複合オキシ水酸化物粉末は、水酸化物及びオキシ水酸化物からなる前駆体である。このような前駆体は反応性、特にリチウムやリチウム化合物との反応性が低く、これを原料としてリチウム複合酸化物を得る場合、高い焼成温度が必要とされる。
 本発明ではこれらの課題を解決し、ニッケル、コバルト及びマンガンの複合化合物であって、従来の水酸化物やオキシ水酸化物からなる前駆体よりも、より低い焼成温度でリチウム-ニッケル-コバルト-マンガン系複合酸化物を与えることができるニッケル-コバルト-マンガン系複合酸化物、そのニッケル-コバルト-マンガン系複合酸化物を使用して得られるリチウム-ニッケル-コバルト-マンガン系複合酸化物、及び、そのリチウム-ニッケル-コバルト-マンガン系複合酸化物を正極として使用するリチウム二次電池を提供することを目的とする。
 本発明者らはリチウム-ニッケル-コバルト-マンガン系複合酸化物の前駆体について鋭意検討した。その結果、特有の結晶構造を有するニッケル-コバルト-マンガン系複合酸化物がリチウムやリチウム化合物と高い反応性があること、及び、そのリチウム-ニッケル-コバルト-マンガン系複合酸化物を正極として使用するリチウム二次電池が高性能であることを見出し、本発明を完成するに至った。
 本発明は以下の構成を要旨とするものである。
(1)結晶子径が30Å以下で、擬スピネル構造を有することを特徴とするニッケル-コバルト-マンガン系複合酸化物。
(2)ニッケル、コバルト及びマンガンがモル比で以下の式で表される上記(1)に記載のニッケル-コバルト-マンガン系複合酸化物。
  Ni:Co:Mn=(1-x-y):x:y
(但し、x、yはそれぞれ0より大きく、かつ、x+yが0.7以下である)
(3)Cu-Kα線を線源とするXRD測定におけるXRDパターンにおいて、2θ=18.3±0.5°のXRDピークの強度(「18.3°ピーク強度」とする。)と2θ=37.1±1.5°のXRDピークの強度(「37.1°ピーク強度」とする。)が同等又は18.3°ピーク強度が37.1°ピーク強度以下である上記(1)又は(2)に記載のニッケル-コバルト-マンガン系複合酸化物。
(4)BET比表面積が30m/g以上である上記(1)~(3)のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物。
(5)細孔直径が10Å以下のマイクロ孔を有する上記(1)~(4)のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物。
(6)タップ密度が1.0g/cm以上である上記(1)~(5)のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物。
(7)ニッケル、コバルト及びマンガンの平均原子価が2.7以上3.0未満である上記(1)~(6)のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物。
(8)上記(1)~(7)のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物の製造方法であり、ニッケル、コバルト及びマンガンを含む水溶液と過硫酸塩水溶液とをpH11以下で混合して混合水溶液を得、該混合水溶液においてニッケル-コバルト-マンガン系複合酸化物を析出させる析出工程を含むニッケル-コバルト-マンガン系複合酸化物の製造方法。
(9)前記析出工程において、錯化剤を添加する上記(8)に記載のニッケル-コバルト-マンガン系複合酸化物の製造方法。
(10)錯化剤が、アンモニア又はアンモニウムイオンを含む上記(9)に記載のニッケル-コバルト-マンガン系複合酸化物の製造方法。
(11)前記析出工程において、前記混合水溶液の標準水素電極に対する酸化還元電位を0.25V以上とする上記(8)~(10)のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物の製造方法。
(12)上記(1)~(7)のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物とリチウム化合物を混合し、焼成して得られることを特徴とするリチウム-ニッケル-コバルト-マンガン系複合酸化物。
(13)上記(1)~(7)のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物を使用し、リチウム化合物と混合し、焼成する上記(12)に記載のリチウム-ニッケル-コバルト-マンガン系複合酸化物の製造方法。
(14)上記(12)に記載のリチウム-ニッケル-コバルト-マンガン系複合酸化物を正極として用いることを特徴とするリチウム二次電池。
 本発明により、従来の水酸化物やオキシ水酸化物からなる前駆体よりも、より低い焼成温度でリチウム-ニッケル-コバルト-マンガン系複合酸化物を与えることが期待できるニッケル-コバルト-マンガン系複合酸化物を提供することができる。そのため、本発明のニッケル-コバルト-マンガン系複合酸化物は、リチウム化合物と反応性が高く、リチウム二次電池の正極として優れたリチウム-ニッケル-コバルト-マンガン系複合酸化物を製造できる。
 また、本発明のニッケル-コバルト-マンガン系複合酸化物は、高い比表面積を有するため、リチウム化合物との反応性がより高くなり、これを原料として得られるリチウム複合酸化物において、リチウムがより均一に分布することが期待できる。
実施例1のニッケル-コバルト-マンガン系複合酸化物のXRDパターンである。 実施例1のニッケル-コバルト-マンガン系複合酸化物と炭酸リチウムとの混合粉末及びその焼成物のXRDパターンである。 実施例2のニッケル-コバルト-マンガン系複合酸化物のXRDパターンである。 実施例3のニッケル-コバルト-マンガン系複合酸化物のXRDパターンである。 実施例4のニッケル-コバルト-マンガン系複合酸化物のXRDパターンである。 実施例4のニッケル-コバルト-マンガン系複合酸化物の粒子径分布である。 実施例4のニッケル-コバルト-マンガン系複合酸化物の走査型電子顕微鏡写真(図中スケールは10μm)である。 実施例5のニッケル-コバルト-マンガン系複合酸化物のXRDパターンである。 実施例5のニッケル-コバルト-マンガン系複合酸化物の走査型電子顕微鏡写真(図中スケールは10μm)である。 実施例5のニッケル-コバルト-マンガン系複合酸化物の細孔分布曲線である。 比較例1のニッケル-コバルト-マンガン系複合化合物のXRDパターンである。 比較例2のニッケル-コバルト-マンガン系複合化合物のXRDパターンである。 比較例3のニッケル-コバルト-マンガン系複合化合物のXRDパターンである。 比較例4のニッケルコバルトマンガン系複合水酸化物と炭酸リチウムとの混合粉末及びその焼成物のXRDパターンである。
 本発明は、結晶子径が30Å以下で、擬スピネル構造を有することを特徴とするニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途である。
 以下、本発明について詳細に説明する。
 本発明のニッケル-コバルト-マンガン系複合酸化物の結晶子径は30Å以下であり、25Å以下であることが好ましく、20Å以下であることがより好ましい。これにより本発明のニッケル-コバルト-マンガン系複合酸化物が非晶質ではなく、なおかつ、結晶性が高すぎない複合酸化物、いわゆる低結晶ニッケル-コバルト-マンガン系複合酸化物となる。結晶子径が30Åを超えると、ニッケル-コバルト-マンガン系複合酸化物の結晶性が高くなりすぎる。結晶性が高くなりすぎると、当該ニッケル-コバルト-マンガン系複合酸化物とリチウム化合物等との反応性が低下しやすくなる。
 結晶子径が小さくなりすぎるとニッケル-コバルト-マンガン系複合酸化物が非晶質(amorphous)となりやすい。結晶子径が10Å以上、更には12Å以上、また更には15Å以上であれば、本発明のニッケル-コバルト-マンガン系複合酸化物が、適度な結晶性のニッケル-コバルト-マンガン系複合酸化物となる。
 ここで、結晶子径は、粉末X線回折(以下、「XRD」とする。)パターンにおいて、XRDピークの半値幅から以下のシェラー式により計算することができる。
   結晶子径(Å)=K×λ/(β×cosθ)
 シェラー式において、Kはシェラー定数(0.9)、λはX線の波長(Å)、βは回折角2θのXRDピークの半値幅、θは回折角である。なお、CuKαを線源とするXRD測定の場合、λは1.5405である。また、以下に示す擬スピネル構造は、βを2θ=18.3±0.5°のXRDピークの半値幅を用い、その結晶子径を求めることができる。
 本発明のニッケル-コバルト-マンガン系複合酸化物は、その結晶構造が擬スピネル構造である。
 擬スピネル構造は、Cu-Kα線を線源とするXRD測定におけるXRDパターン(以下、単に「XRDパターン」とする。)において、2θ=18.3±0.5°、37.1±1.5°及び66.2±3.5°のXRDピークを有し、なおかつ、これらのXRDピークがブロードである構造であり、更には、XRDパターンにおけるXRDピークが、実質的に上記3つのブロードなXRDピークのみである構造である。
 さらに、XRDパターンにおいて、2θ=18.3±0.5°のXRDピークの強度(以下、「18.3°ピーク強度」とする。)と2θ=37.1±1.5°のXRDピークの強度(以下、「37.1°ピーク強度」とする。)が同等又は18.3°ピーク強度が37.1°ピーク強度以下であることが好ましい。18.3°ピーク強度が、37.1°ピーク強度と同等又はそれ以下となることで、本発明のニッケル-コバルト-マンガン系複合酸化物が、よりスピネル構造に近い擬スピネル構造の結晶構造となると考えられる。擬スピネル構造がスピネル構造に近づくほど、ニッケル-コバルト-マンガン系複合酸化物中のニッケル、コバルト及びマンガンが、より均一に分布しやすくなる。
 このように、本発明のニッケル-コバルト-マンガン系複合酸化物は、低結晶ニッケル-コバルト-マンガン系複合酸化物である。そのため、本発明のニッケル-コバルト-マンガン系複合酸化物は、そのXRDパターンにおけるXRDピークはブロードである。したがって、本発明のニッケル-コバルト-マンガン系複合酸化物は、そのXRDパターンにおいて、シャープなXRDピーク、すなわち、半値幅が2.0°以下のXRDピークを実質的に有さない。
 本発明のニッケル-コバルト-マンガン系複合酸化物は、ニッケル-コバルト-マンガン系オキシ水酸化物を実質的に含まないことが好ましい。オキシ水酸化物は、α型、β型などの異なる結晶構造のものがある。しかしながら、いずれのオキシ水酸化物も、そのXRDパターンにおいて2θ=10°~23°、例えば、2θ=12±2.0°にシャープなXRDピークを有する。そのため、本発明のニッケル-コバルト-マンガン系複合酸化物は、そのXRDパターンにおいて2θ=10°~23°にシャープなXRDピークを有さず、特に2θ=12±2.0°にシャープなXRDピークを実質的に含まない。
 本発明のニッケル-コバルト-マンガン系複合酸化物のニッケル、コバルト及びマンガンがモル比で以下の式で表されることが好ましい。
   Ni:Co:Mn=(1-x-y):x:y
(但し、x、yはそれぞれ0より大きく、かつ、x+yが0.7以下である)
 上記の式において、コバルト及びマンガンの含有量(x+y)は、0.7以下である。(x+y)が0.7を超えると、正極の熱安定性が低下する。(x+y)は、0.67以下であることが好ましく、0.5以下であることがより好ましく、0.4以下であることがさらに好ましい。(x+y)が低くなるほど、本発明のニッケル-コバルト-マンガン系複合酸化物を原料として得られるリチウム-ニッケル-コバルト-マンガン系複合酸化物の単位重量当たりの放電容量が多くなる傾向がある。
 本発明のニッケル-コバルト-マンガン系複合酸化物は、擬スピネル構造を有していれば、そのコバルトとマンガンとの割合は任意である。上記の式におけるコバルトとマンガンは、x≦yであることが好ましい。
 また、本発明のニッケル-コバルト-マンガン系複合酸化物の好ましい組成としては、例えば、モル比でNi:Co:Mn=(1-x-y):x:y=0.6:0.2:0.2、0.5:0.2:0.3又は0.33:0.34:0.33等を挙げることができる。
 BET比表面積が高いほど、反応性は高くなりやすい。そのため、本発明のニッケル-コバルト-マンガン系複合酸化物のBET比表面積は30m/g以上であることが好ましく、100m/g以上であることがより好ましく、150m/g以上であることが更に好ましく、200m/g以上であることが更により好ましい。BET比表面積が高いほどニッケル-コバルト-マンガン系複合酸化物の反応性は高くなるが、例えば300m/g以下であれば、十分な反応性を有した複合酸化物となる。
 また、BET比表面積の高さは細孔構造を反映している。本発明のニッケル-コバルト-マンガン系複合酸化物は、細孔直径が10Å以下のマイクロ孔を有し、実質的にメソ、マクロ孔を有さない。このような細孔分布により、十分な反応性を有した複合酸化物となる。
 本発明のニッケル-コバルト-マンガン系複合酸化物のタップ密度は1.0g/cm以上であることが好ましく、1.2g/cm以上であることがより好ましく、1.5g/cm以上であることが更に好ましい。タップ密度が1.0g/cm以上であれば、本発明のニッケル-コバルト-マンガン系複合酸化物を原料として得られるリチウム-ニッケル-コバルト-マンガン系複合酸化物の充填性が高くなりやすい。
 本発明のニッケル-コバルト-マンガン系複合酸化物のニッケル、コバルト及びマンガンの平均原子価は2.7以上3.0未満である。スピネル型酸化物の理論的な原子価は2.7であり、この値から乖離しないことが重要である。
 本発明のニッケル-コバルト-マンガン系複合酸化物の平均粒子径は、例えば、5~20μm、さらには5~10μmを挙げることができる。なお、平均粒子径とは、一次粒子が凝集した二次粒子の平均粒子径、いわゆる凝集粒子径である。
 本発明のニッケル-コバルト-マンガン系複合酸化物の粒子分布は、単分散、すなわち、モノモーダルな分布を有する粒子径分布、例えば、図6に示すような粒子径分布であることを挙げることができる。
 次に、本発明のニッケル-コバルト-マンガン系複合酸化物の製造方法について説明する。
 本発明のニッケル-コバルト-マンガン系複合酸化物は、ニッケル、コバルト及びマンガンを含む水溶液と過硫酸塩水溶液とをpH11以下で混合して混合水溶液を得、該混合水溶液中でニッケル-コバルト-マンガン系複合酸化物を析出させる析出工程を含むことを特徴とする製造方法により得ることができる。
 析出工程においては、ニッケル、コバルト及びマンガンを含む水溶液(以下、「金属塩水溶液」とする。)と過硫酸塩水溶液とを混合して混合水溶液を得る。
 金属塩水溶液は、ニッケル、コバルト及びマンガンを含む。金属塩水溶液としては、ニッケル、コバルト及びマンガンのそれぞれ1種以上を含む硫酸塩、塩化物、硝酸塩又は酢酸塩などを溶解させた水溶液であってニッケル、コバルト及びマンガンを含むもの、硫酸、塩酸、硝酸又は酢酸などの無機酸にニッケル、コバルト及びマンガンのそれぞれ1種以上を溶解した水溶液であってニッケル、コバルト及びマンガンを含むもの等を挙げることができる。好ましい金属塩水溶液として、硫酸ニッケル、硫酸コバルト及び硫酸マンガンを含む水溶液を例示することができる。
 また、金属塩水溶液中のニッケル、コバルト及びマンガンの割合は、目的とするニッケル-コバルト-マンガン系複合酸化物のニッケル、コバルト及びマンガンの割合となるようにすればよい。金属塩水溶液中のニッケル、コバルト及びマンガンの割合は、モル比で以下の式で表されることが好ましい。
   Ni:Co:Mn=(1-x-y):x:y
(但し、x、yはそれぞれ0より大きく、かつ、x+yが0.7以下である)
 上記の式において、コバルト及びマンガンの含有量である(x+y)は、0.7以下であり、0.67以下であることが好ましく、0.5以下であることがより好ましく、0.4以下であることがさらに好ましい。
 上記の式におけるコバルトとマンガンとの割合は任意である。上記の式におけるコバルトとマンガンの割合として、x≦yを例示することができる。
 好ましい金属塩水溶液の組成としては、例えば、モル比でNi:Co:Mn=(1-x-y):x:y=0.6:0.2:0.2、0.5:0.2:0.3又は0.33:0.34:0.33等を挙げることができる。
 金属塩水溶液中のニッケル、コバルト及びマンガンの合計濃度として、1mol/L以上を例示することができる。
 過硫酸塩水溶液は、過硫酸ナトリウム水溶液又は過硫酸カリウム水溶液のいずれか1種以上を例示することができ、過硫酸ナトリウム水溶液であることが好ましい。過硫酸塩水溶液の濃度として、3~30重量%を例示することができる。
 析出工程では、金属塩水溶液と過硫酸塩水溶液とをpH11以下で混合する。これにより混合水溶液が得られ、該混合溶液から本発明のニッケル-コバルト-マンガン系複合酸化物が析出する。pH11を超えると、得られるニッケル-コバルト-マンガン系複合酸化物が微細粒子となりやすい。このような微細粒子は濾過・洗浄効率が低く、これにより著しく製造効率が低くなる。そのため、混合のpHは10以下であることが好ましく、9以下であることが更に好ましい。一方、pHが低くなりすぎると、ニッケル-コバルト-マンガン系複合酸化物が析出しにくくなり、製造効率が低下しやすい。混合のpHは5以上、好ましくは5.5以上、更に好ましくは6以上であれば、高い製造効率での製造が可能である。
 析出工程では、金属塩水溶液と過硫酸塩水溶液との混合によりpHが変動する場合がある。この場合、適宜、アルカリ水溶液を混合水溶液に混合することでpHを制御することができる。アルカリ水溶液の混合は、連続的に行ってもよく、断続的に行ってもよい。
 アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水溶液が例示でき、水酸化ナトリウムの水溶液であることが好ましい。また、アルカリ水溶液のアルカリ濃度は1mol/L以上を例示することができる。
 析出工程において、混合水溶液の標準水素電極に対する酸化還元電位(以下、単に「酸化還元電位」とする。)は0.25V以上であることが好ましく、0.5V以上であることがより好ましく、0.6V以上であることが更に好ましく、0.7V以上であることが更により好ましい。酸化還元電位が0.25V以上であることで得られるニッケル-コバルト-マンガン系複合酸化物の粒子の分散性が高くなる傾向にある。一方、酸化還元電位が高くなりすぎると、水の分解が生じやすくなる。そのため、酸化還元電位は0.9V以下であることが好ましく、0.8V以下であることがより好ましい。
 金属塩水溶液と過硫酸塩水溶液との混合方法は任意である。例えば、水や本発明のニッケル-コバルト-マンガン系複合酸化物を含むスラリー中に、金属塩水溶液と過硫酸塩水溶液とを添加して混合することを例示できる。
 析出工程における雰囲気は任意であり、酸化性雰囲気、不活性雰囲気又は還元性雰囲気のいずれでもよい。反応を簡便に行うため、酸化性雰囲気、例えば、大気中で行うことを例示できる。以上のように、雰囲気制御は必要なく、通常の大気雰囲気下で行うことが可能であるため、コスト低減の点で有利である。
 遷移金属塩水溶液及び過硫酸塩水溶液を混合するときの混合温度は50℃を超え、好ましくは60℃以上、より好ましくは80℃以上で行なう。混合温度が50℃を超えることで、金属塩水溶液の酸化反応が進みやすくなる。これにより、ニッケル-コバルト-マンガン水酸化物が析出しにくくなる。
 ニッケル-コバルト-マンガン系複合酸化物が得られれば、析出工程における混合時間は任意である。例えば、3~48時間、更には6~24時間を挙げることができる。
 なお、本発明の製造方法では,析出工程において錯化剤を添加することができる。錯化剤を共存させると、金属イオンの溶解度が増加し、粒子表面が円滑となり球形度が向上する。その結果、タップ密度が向上するといった利点がある。錯化剤としては、アンモニア又はアンモニウム塩が好適であり、例えば、アンモニア水、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、炭酸アンモニウム等が例示される。該錯化剤は、金属イオンとともにフィードさせるのが好ましい。その濃度は、NH/遷移金属モル比として0.1~2が好ましく、さらに好ましくは0.5~1である。
 本発明の製造方法では、析出工程の後に、洗浄工程、乾燥工程及び粉砕工程のうち少なくとも1つの工程を有していてもよい。
 洗浄工程では、ニッケル-コバルト-マンガン系複合酸化物に付着、吸着した不純物を除去する。洗浄方法としては、水にニッケル-コバルト-マンガン系複合酸化物を添加し、これを洗浄する方法等が例示できる。
 乾燥工程では、ニッケル-コバルト-マンガン系複合酸化物の水分を除去する。乾燥方法としては、ニッケル-コバルト-マンガン系複合酸化物を110~150℃で2~15時間で乾燥することが挙げられる。
 粉砕工程では、用途に適した平均粒子径の粉末とする。所望の平均粒子径となれば粉砕条件は任意であり、例えば、湿式粉砕または乾式粉砕などの方法で粉砕することが例示できる。
 本発明のニッケル-コバルト-マンガン系複合酸化物は、リチウム化合物との反応性が高いために、リチウム-ニッケル-コバルト-マンガン系複合酸化物の製造方法に使用することができる。
 本発明のニッケル-コバルト-マンガン系複合酸化物を原料として、リチウム-ニッケル-コバルト-マンガン系複合酸化物を製造する場合、その製造方法は、ニッケル-コバルト-マンガン系複合酸化物とリチウム及びリチウム化合物の少なくとも一方とを混合する混合工程と、焼成工程とを有することが好ましい。
 混合工程において、リチウム化合物は任意のものを用いることができる。リチウム化合物として、水酸化リチウム、酸化リチウム、炭酸リチウム、ヨウ化リチウム、硝酸リチウム、シュウ酸リチウム及びアルキルリチウムからなる群から選ばれる1種以上が例示できる。好ましいリチウム化合物として、水酸化リチウム、酸化リチウム及び炭酸リチウムからなる群から選ばれるいずれか1種以上が例示できる。リチウム化合物のニッケル-コバルト-マンガン系複合酸化物に対する混合割合は、例えば、Li/(Ni+Co+Mn)モル比=1.01~1.10が挙げられる。
 焼成工程において、原料を混合後に焼成してリチウム-ニッケル-コバルト-マンガン系複合酸化物を製造する。焼成は500~1000℃のいずれかの温度で、好ましくは800~1000℃のいずれかの温度で、空気中、酸素中など各種の雰囲気で行うことができる。
 このようにして得られた本発明のリチウム-ニッケル-コバルト-マンガン系複合酸化物は、化学式LiMO(M:ニッケル、コバルト、マンガン)と表すことができる。結晶構造は層状岩塩構造(空間群R-3m)であり、遷移金属-酸素八面体とリチウム-酸素八面体が交互に積層した構造を有する。粒子形態は前駆体と同じく、平均粒子径は、例えば、5~20μm、さらには5~10μmを挙げることができる。粒子分布は、単分散、すなわち、モノモーダルな分布を有する粒子径分布を挙げることができる。
 このようにして得られた本発明のリチウム-ニッケル-コバルト-マンガン系複合酸化物については、リチウム二次電池の正極活物質として用いられる。
 本発明のリチウム二次電池に用いる負極活物質としては、金属リチウム並びにリチウムまたはリチウムイオンを吸蔵放出可能な物質を用いることができる。例えば、金属リチウム、リチウム/アルミニウム合金、リチウム/スズ合金、リチウム/鉛合金、電気化学的にリチウムイオンを挿入・脱離することができる炭素材料等が例示され、電気化学的にリチウムイオンを挿入・脱離することができる炭素材料が安全性および電池の特性の面から特に好適である。
 また、本発明のリチウム二次電池で用いる電解質としても特に制限はなく、例えば、カーボネート類、スルホラン類、ラクトン類、エーテル顆等の有機溶媒中にリチウム塩を溶解したものや、リチウムイオン導電性の固体電解質等を用いることができる。
 また、本発明のリチウム二次電池で用いるセパレーターとしては、特に制限はないが、例えば、ポリエチレンまたポリプロピレン製の微細多孔膜等を用いることができる。
 以上のようなリチウム二次電池の構成の一例として、導電剤との混合物をペレット状に成型した後、100~200℃で減圧乾燥して得られる成形物を電池用正極とし、金属リチウム箔からなる負極、およびエチレンカーボネートとジエチルカーボネートとの混合溶媒に六フッ化リン酸リチウムを溶解した電解液を用いたものが挙げられる。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 <化学組成の測定>
 試料の組成分析は誘導結合プラズマ発光分析法(ICP法)により行った。すなわち、試料を塩酸、過酸化水素の混合溶液に溶解させ、測定溶液を調製した。一般的な誘導結合プラズマ発光分析装置(商品名:OPTIMA3000DV、PERKIN ELMER社製)を用い、得られた測定溶液を測定することで、試料の組成を分析した。
 <金属の平均原子価の測定>
 ニッケル、コバルト、マンガンの平均原子価をヨードメトリーにより測定した。試料0.3gとヨウ化カリウム3.0gを7N-塩酸溶液50mlに溶解させて後、1N-NaOH溶液200mlを添加し中和した。中和した試料液に対して、0.1N-チオ硫酸ナトリウム水溶液を滴下し、滴下量から平均原子価を計算した。なお、指示薬にはでんぷん溶液を用いた。
 <粉末X線回折測定>
 一般的なX線回折装置(商品名:MXP-3、マックサイエンス社製)を使用し、試料の粉末X線回折測定を行った。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャン、スキャン条件は毎秒0.04°、計測時間は3秒、及び、測定範囲は2θとして5°から100°の範囲で測定した。
 <結晶相の同定>
 上記の条件のXRD測定で得られたXRDパターンにおいて、2θ=18.3±0.5°、37.1±1.5°及び66.2±3.5°にブロードなXRDピークを有すること、及び、半値幅が2.0°以下のシャープなXRDピークを有さないことをもって、擬スピネル構造とみなした。
 <粒子径分布、平均粒子径の測定>
 試料の粒子径分布は以下の様に測定した。試料0.5gを0.1Nアンモニア水50mL中に投入し、10秒間超音波照射して分散スラリーとした。当該分散スラリーを粒度分布測定装置(商品名:マイクロトラックHRA、HONEWELL社製)に投入し、レーザー回折法で体積分布の測定を行なった。得られた体積分布から粒度分布及び平均粒子径を求めた。
 <タップ密度の測定>
 試料2gを10mLのガラス製メスシリンダーに充填し、これを200回タッピングした。重量およびタッピング後の体積から、タップ密度を算出した。
 <BET比表面積の測定>
 流動式比表面積自動測定装置フローソーブ3-2305を用い、試料1.0gを窒素気流中150℃、1時間前処理した後、BET1点法にて吸脱着面積を測定した後、重量で除することで、BET比表面積(m/g)を求めた。
 <細孔分布測定>
 試料の細孔分布は、水銀圧入法と窒素吸着法の両方を用いた。水銀圧入法については、マイクロメトリクス社製、自動ポロシメータ、オートポア9510を用いて、メソ、マクロ孔の評価解析を行った。窒素吸着法については、日本ベル社製、自動ガス吸着量測定装置、ベルソープ18を用いて、マイクロ孔の評価解析を行った。また、マイクロ孔細孔分布評価方法としてMP法を採用した。
 <電池性能評価>
 リチウム-ニッケル-コバルト-マンガン系複合酸化物の正極としての電池特性試験を行った。
 リチウム-ニッケル-コバルト-マンガン系複合酸化物と導電剤のポリテトラフルオロエチレンとアセチレンブラックとの混合物(商品名:TAB-2)とを重量比で4:1の割合で混合し、1ton/cmの圧力でメッシュ(SUS316製)上にペレット状に成型した後、150℃で減圧乾燥し、電池用正極を作製した。得られた電池用正極と、金属リチウム箔(厚さ0.2mm)からなる負極、およびエチレンカーボネートとジエチルカーボネートとの混合溶媒に六フッ化リン酸リチウムを1mol/dmの濃度で溶解した電解液を用いて電池を構成した。当該電池を用いて定電流で電池電圧が4.3Vから2.5Vの間室温下で充放電させた。電流密度0.4mA/cmで充電した後、電流密度0.4mA/cmおよび5.0mA/cmで放電し、それぞれの放電容量を測定し、さらに放電容量を比較した(電流密度5.0mA/cmでの放電容量/電流密度0.4mA/cmでの放電容量)。
 実施例1
 硫酸ニッケル、硫酸コバルト及び硫酸マンガンを純水に溶解し、1mol/Lの硫酸ニッケル、0.4mol/Lの硫酸コバルト及び0.6mol/Lの硫酸マンガンを含む水溶液を得、これを原料水溶液とした。
 また、内容積1Lの反応容器に純水200gを入れた後、これを80℃まで昇温、維持した。
 当該原料水溶液と26.6重量%の過硫酸ナトリウム水溶液を、過硫酸ナトリウムと原料水溶液の金属とのモル比が1:0.75となるように反応容器に添加して、ニッケル-コバルト-マンガン系複合酸化物スラリーを得た。原料水溶液及び過酸化ナトリウム水溶液の添加の際、pHが8となるように、2mol/Lの水酸化ナトリウム水溶液を断続的に添加した。当該スラリーの酸化還元電位は0.64Vであった。
 得られたスラリーをろ過、洗浄したのち、乾燥することで本実施例のニッケル-コバルト-マンガン系複合酸化物を得た。
 得られたニッケル-コバルト-マンガン系複合酸化物のXRDパターンを図1に示す。得られたニッケル-コバルト-マンガン系複合酸化物の結晶構造は擬スピネル構造であり、かつ、18.3°ピーク強度と37.1°ピーク強度が同等であった。これより、当該ニッケル-コバルト-マンガン系複合酸化物は、よりスピネル構造に近い結晶構造をした擬スピネル構造であることが示唆された。さらに、当該ニッケル-コバルト-マンガン系複合酸化物のXRDパターンにおけるXRDピークの半値幅がいずれも4.0°以上であり、結晶子径が16Åの低結晶ニッケル-コバルト-マンガン系複合酸化物であることが分かった。
 また、得られたニッケル-コバルト-マンガン系複合酸化物について水銀圧入法による細孔分布評価を行った。その結果、粒子間空隙と考えられる1~10μmの細孔以外にメソ、マクロ孔は検出されなかった。
 当該ニッケル-コバルト-マンガン系複合酸化物の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 次に、上記操作により得られたニッケル-コバルト-マンガン系複合酸化物と炭酸リチウム(平均粒子径0.3μm)とをLi/(Ni+Co+Mn)モル比=1.05で混合し、大気中900℃で12時間焼成した。得られた試料の化学組成はLi1.04Ni0.48Co0.21Mn0.312.0と表せた。また、結晶相は層状岩塩型構造(空間群R3-m)の単一相であった。また、タップ密度は1.7g/ccであった。電池性能評価の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 また、ニッケル-コバルト-マンガン系複合酸化物と炭酸リチウムとの反応性を評価するために、以下の実験を行った。上記操作により得られたニッケル-コバルト-マンガン系複合酸化物と炭酸リチウム(平均粒子径0.3μm)とをLi/(Ni+Co+Mn)モル比=1.05で混合した混合粉末を大気中400、500、600℃で12時間焼成した。XRDパターンから炭酸リチウムの回折ピークの有無を確認した。図2に示す通り、炭酸リチウム由来の回折ピークは焼成温度500℃で消滅した。
 実施例2
 pHが5となるように2mol/Lの水酸化ナトリウム水溶液を断続的に添加したこと以外は実施例1と同様な方法でスラリーを得た。当該スラリーの酸化還元電位は0.77Vであった。
 得られたスラリーをろ過、洗浄したのち、乾燥することで本実施例のニッケル-コバルト-マンガン系複合酸化物を得た。
 得られたニッケル-コバルト-マンガン系複合酸化物のXRDパターンを図3に示す。得られたニッケル-コバルト-マンガン系複合酸化物の結晶構造は擬スピネル構造であり、かつ、18.3°ピーク強度と37.1°ピーク強度が同等であった。これより、当該ニッケル-コバルト-マンガン系複合酸化物は、よりスピネル構造に近い結晶構造をしていることが示唆された。さらに、当該ニッケル-コバルト-マンガン系複合酸化物のXRDパターンにおけるXRDピークの半値幅がいずれも4.0°以上であり、結晶子径が14Åの低結晶ニッケル-コバルト-マンガン系複合酸化物であることが分かった。
 当該ニッケル-コバルト-マンガン系複合酸化物の評価結果を表1に示す。
 実施例3
 pHが6となるように2mol/Lの水酸化ナトリウム水溶液を断続的に添加したこと以外は実施例1と同様な方法でスラリーを得た。当該スラリーの酸化還元電位は0.82Vであった。
 得られたスラリーをろ過、洗浄したのち、乾燥することで本実施例のニッケル-コバルト-マンガン系複合酸化物を得た。
 得られたニッケル-コバルト-マンガン系複合酸化物のXRDパターンを図4に示す。得られたニッケル-コバルト-マンガン系複合酸化物の結晶構造は擬スピネル構造であり、かつ、18.3°ピーク強度と37.1°ピーク強度が同等であった。これより、当該ニッケル-コバルト-マンガン系複合酸化物は、よりスピネル構造に近い結晶構造をしていることが示唆された。さらに、当該ニッケル-コバルト-マンガン系複合酸化物のそのXRDパターンにおけるXRDピークの半値幅がいずれも4.0°以上であり、結晶子径が18Åの低結晶ニッケル-コバルト-マンガン系複合酸化物であることが分かった。
 当該ニッケル-コバルト-マンガン系複合酸化物の評価結果を表1に示す。
 実施例4
 pHが5.5となるように2mol/Lの水酸化ナトリウム水溶液を断続的に添加したこと、及び、スラリー量が一定となるように断続的にスラリーの抜液を行いながら原料水溶液と26.7重量%の過硫酸ナトリウム水溶液を反応容器に添加したこと以外は実施例1と同様な方法でスラリーを得た。
 得られたスラリーを実施例1と同様にろ過、洗浄、及び乾燥し、本実施例のニッケル-コバルト-マンガン系複合酸化物を得た。
 得られたニッケル-コバルト-マンガン系複合酸化物のXRDパターンを図5に示す。得られたニッケル-コバルト-マンガン系複合酸化物の結晶構造は擬スピネル構造であり、かつ、18.3°ピーク強度と37.1°ピーク強度が同等であった。これより、当該ニッケル-コバルト-マンガン系複合酸化物は、よりスピネル構造に近い結晶構造をしていることが示唆された。さらに、当該ニッケル-コバルト-マンガン系複合酸化物のそのXRDパターンにおけるXRDピークの半値幅がいずれも4.0°以上であり、結晶子径が18Åの低結晶ニッケル-コバルト-マンガン系複合酸化物であることが分かった。
 さらに当該ニッケル-コバルト-マンガン系複合酸化物は平均粒子径が7.8μm、タップ密度が1.6g/cmであった。得られたニッケル-コバルト-マンガン系複合酸化物の粒子径分布を図6に示す。また、走査型電子顕微鏡写真を図7に示す。
 当該ニッケル-コバルト-マンガン系複合酸化物の評価結果を表1に示す。
 実施例5
 硫酸ニッケル、硫酸コバルト及び硫酸マンガンを純水に溶解し、1mol/Lの硫酸ニッケル、0.4mol/Lの硫酸コバルト及び0.6mol/Lの硫酸マンガンを含む水溶液を得、これを原料水溶液とした。
 また、内容積1Lの反応容器に純水200gを入れた後、これを80℃まで昇温、維持した。
 当該原料水溶液と26.6重量%の過硫酸ナトリウム水溶液および1mol/Lの硫酸アンモニウム水溶液を、反応容器に添加して、ニッケル-コバルト-マンガン系複合酸化物スラリーを得た。この際、過硫酸ナトリウムと原料水溶液の金属とのモル比が0.75:1、硫酸アンモニウムと原料水溶液の金属とのモル比が0.5:1となるように流量設定した。また、原料水溶液及び過酸化ナトリウム水溶液の添加の際、pHが5.5となるように、2mol/Lの水酸化ナトリウム水溶液を断続的に添加した。当該スラリーの酸化還元電位は0.64Vであった。
 得られたスラリーをろ過、洗浄したのち、乾燥することで本実施例のニッケル-コバルト-マンガン系複合酸化物を得た。
 得られたニッケル-コバルト-マンガン系複合酸化物のXRDパターンを図8に示す。得られたニッケル-コバルト-マンガン系複合酸化物の結晶構造はXRDパターンから、擬スピネル構造であることが判明した。さらに、当該ニッケル-コバルト-マンガン系複合酸化物のXRDパターンにおける18.3°ピークの半値幅から、結晶子径が26Åの低結晶ニッケル-コバルト-マンガン系複合酸化物であることが分かった。
 また、得られたニッケル-コバルト-マンガン系複合酸化物について水銀圧入法による細孔分布評価を行った。その結果、粒子間空隙と考えられる1~10μmの細孔以外にメソ、マクロ孔は検出されなかった。また、窒素吸着法による細孔分布評価の結果、細孔直径が10Å以下のマイクロ孔が検出された。これにより、当該ニッケル-コバルト-マンガン系複合酸化物は、マイクロ多孔体であることが明らかとなった。得られたニッケル-コバルト-マンガン系複合酸化物の走査型電子顕微鏡写真を図9に示す。さらに、その細孔分布曲線を図10に示す。
 当該ニッケル-コバルト-マンガン系複合酸化物の評価結果を表1に示す。
 表1より、実施例1~5のニッケル-コバルト-マンガン系複合酸化物はいずれも擬スピネル構造を有し、なおかつ結晶子径が20Å以下の低結晶性ニッケル-コバルト-マンガン系複合酸化物であることが分かった。さらに、これらの実施例では、結晶性の高い複合水酸化物や複合オキシ水酸化物が生成していないことが確認できた。
 比較例1
 過硫酸ナトリウム水溶液の代わりに、空気を1L/分の速度で反応溶液中に吹き込んだこと以外は実施例1と同様な方法によりスラリーを得た。当該スラリーの酸化還元電位は0.12Vであった。
 得られたスラリーをろ過、洗浄したのち、乾燥することで本比較例のニッケル-コバルト-マンガン系複合化合物を得た。
 得られたニッケル-コバルト-マンガン系複合化合物のXRDパターンを図11に示す。本比較例で得られたニッケル-コバルト-マンガン系複合化合物は、そのXRDパターンにおいて、2θ=12±1°に半値幅が1.2°のXRDピークを有しており、結晶性の高いオキシ水酸化物を主結晶相とするニッケル-コバルト-マンガン系複合オキシ水酸化物であることが分かった。
 当該ニッケル-コバルト-マンガン系複合オキシ水酸化物の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 比較例2
 過硫酸ナトリウム水溶液の代わりに、空気を1L/分の速度で反応溶液中に吹き込んだこと、及び、pHが10となるように2mol/Lの水酸化ナトリウム水溶液を断続的に添加したこと以外は実施例1と同様な方法によりスラリーを得た。当該スラリーの酸化還元電位は0.13Vであった。
 得られたスラリーをろ過、洗浄したのち、乾燥することで本比較例のニッケル-コバルト-マンガン系複合化合物を得た。
 得られたニッケル-コバルト-マンガン系複合化合物のXRDパターンを図12に示す。本比較例で得られたニッケル-コバルト-マンガン系複合化合物は、そのXRDパターンにおいて、2θ=12±1°に半値幅が1.0°のXRDピークを有しており、結晶性の高いオキシ水酸化物を主結晶相とするニッケル-コバルト-マンガン系複合オキシ水酸化物であることが分かった。
 当該ニッケル-コバルト-マンガン系複合オキシ水酸化物の評価結果を表3に示す。
 比較例3
 過硫酸ナトリウム水溶液の代わりに12.5重量%の過酸化水素水を使用したこと以外は実施例1と同様な方法によりスラリーを得た。当該スラリーの酸化還元電位は0.23Vであった。
 得られたスラリーをろ過、洗浄したのち、乾燥することで本比較例のニッケル-コバルト-マンガン系複合化合物を得た。
 得られたニッケル-コバルト-マンガン系複合化合物のXRDパターンを図13に示す。本比較例で得られたニッケル-コバルト-マンガン系複合化合物は、そのXRDパターンにおいて、2θ=12±1°に半値幅が1.6°のXRDピークを有しており、結晶性の高いオキシ水酸化物を主結晶相とするニッケル-コバルト-マンガン系複合オキシ水酸化物であることが分かった。
 当該ニッケル-コバルト-マンガン系複合オキシ水酸化物の評価結果を表3に示す。
 比較例4
 内容積2リットルの反応槽において、予め純水1リットルに窒素バブリングし、次に塩化ニッケル、塩化マンガン、塩化コバルト及び塩化アンモニウムを各々0.5mol/kgとした水溶液と3mol/kgの水酸化ナトリウム水溶液を反応槽内のpHを9に保ちつつ連続的に添加し、反応槽下部より連続的に共沈化合物スラリーを得た。反応温度は60℃、平均滞在時間は5hであった。得られた共沈化合物スラリーをろ過した後、純水で洗浄し、乾燥した。
 乾燥した共沈化合物の化学組成はNi:Co:Mnモル比=5:2:3であった。また、XRD測定の結果、ニッケルコバルトマンガン複合水酸化物(層状構造)であった。平均粒子径は13μmであった。また、タップ密度は2.0g/ccであった。
 当該ニッケルコバルトマンガン複合水酸化物の評価結果を表3に示す。
 表3から明らかなように、比較例1~4では、空気や過酸化水素水を使用した場合、オキシ水酸化物が析出し、結晶性の高い複合化合物が含まれることが分かった。
 次に、比較例4で得られたニッケルコバルトマンガン複合水酸化物を炭酸リチウムとヘンシェルミキサーにより撹拌混合し、混合粉末を大気中900℃、12時間焼成し、複合酸化物を得た。
 得られた複合酸化物のXRDパターンは層状岩塩型の単一結晶相で、化学組成はLi1.00[Ni0.52Mn0.20Co0.28]Oと表される。タップ密度2.0g/cm、平均粒子径12μmであった。電池性能評価の結果を表2に示す。
 また、ニッケルコバルトマンガン複合水酸化物と炭酸リチウムとの反応性を評価するために、以下の実験を行った。上記操作により得られた複合水酸化物と炭酸リチウム(平均粒子径0.3μm)とをLi/(Ni+Co+Mn)モル比=1.05で混合した混合粉末を大気中400、500、600℃で12時間焼成した。XRDパターンから炭酸リチウムの回折ピークの有無を確認した。図14に示す通り、炭酸リチウム由来の回折ピークは焼成温度600℃で消滅した。
 実施例1での結果と比較例4での結果より、実施例1のニッケル-コバルト-マンガン系複合酸化物の方が炭酸リチウムと低温から反応を開始することが明らかとなった。反応が円滑に進行することにより、Li組成の変調やそれに伴う構造不整を抑制することが期待できる。また、これらの効果は放電容量差など電池性能に反映されると考えられた。
 本発明のニッケル-コバルト-マンガン系複合酸化物は、リチウム二次電池の正極活物質などに用いられるリチウム-ニッケル-コバルト-マンガン系複合酸化物の前駆体として使用することができ、そのリチウム-ニッケル-コバルト-マンガン系複合酸化物を電池用正極として使用した高性能なリチウム二次電池を構成することが可能となる。
 なお、2012年12月20日に出願された日本特許出願2012-278666号及び2013年8月14日に出願された日本特許出願2013-168720号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
*:LiCOに帰属されるX線回折ピーク
1:600℃焼成試料
2:500℃焼成試料
3:400℃焼成試料
4:原料混合粉末

Claims (14)

  1.  結晶子径が30Å以下で、擬スピネル構造を有することを特徴とするニッケル-コバルト-マンガン系複合酸化物。
  2.  ニッケル、コバルト及びマンガンがモル比で以下の式で表される請求項1に記載のニッケル-コバルト-マンガン系複合酸化物。
          Ni:Co:Mn=(1-x-y):x:y
      (但し、x、yはそれぞれ0より大きく、かつ、x+yが0.7以下である)
  3.  Cu-Kα線を線源とするXRD測定におけるXRDパターンにおいて、2θ=18.3±0.5°のXRDピークの強度(「18.3°ピーク強度」とする。)と2θ=37.1±1.5°のXRDピークの強度(「37.1°ピーク強度」とする。)が同等であるか又は18.3°ピーク強度が37.1°ピーク強度以下である請求項1又は請求項2に記載のニッケル-コバルト-マンガン系複合酸化物。
  4.  BET比表面積が30m/g以上である請求項1~請求項3のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物。
  5.  細孔直径が10Å以下のマイクロ孔を有する請求項1~請求項4のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物。
  6.  タップ密度が1.0g/cm以上である請求項1~請求項5のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物。
  7.  ニッケル、コバルト及びマンガンの平均原子価が2.7以上3.0未満である請求項1~請求項6のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物。
  8.  請求項1~請求項7のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物の製造方法であり、ニッケル、コバルト及びマンガンを含む水溶液と過硫酸塩水溶液とをpH11以下で混合して混合水溶液を得、該混合水溶液においてニッケル-コバルト-マンガン系複合酸化物を析出させる析出工程を含むニッケル-コバルト-マンガン系複合酸化物の製造方法。
  9.  前記析出工程において、錯化剤を添加する請求項8に記載のニッケル-コバルト-マンガン系複合酸化物の製造方法。
  10.  錯化剤が、アンモニア又はアンモニウムイオンを含む請求項9に記載のニッケル-コバルト-マンガン系複合酸化物の製造方法。
  11.  前記析出工程において、前記混合水溶液の標準水素電極に対する酸化還元電位を0.25V以上とする請求項8~請求項10のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物の製造方法。
  12.  請求項1~請求項7のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物とリチウム化合物を混合し、焼成して得られるリチウム-ニッケル-コバルト-マンガン系複合酸化物。
  13.  請求項1~請求項7のいずれかの項に記載のニッケル-コバルト-マンガン系複合酸化物を使用し、リチウム化合物と混合し、焼成する請求項12に記載のリチウム-ニッケル-コバルト-マンガン系複合酸化物の製造方法。
  14.  請求項12に記載のリチウム-ニッケル-コバルト-マンガン系複合酸化物を正極として用いるリチウム二次電池。
PCT/JP2013/084350 2012-12-20 2013-12-20 ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途 WO2014098238A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-278666 2012-12-20
JP2012278666 2012-12-20
JP2013168720A JP2014139119A (ja) 2012-12-20 2013-08-14 ニッケル−コバルト−マンガン系複合酸化物及びその製造方法、並びにその用途
JP2013-168720 2013-08-14

Publications (1)

Publication Number Publication Date
WO2014098238A1 true WO2014098238A1 (ja) 2014-06-26

Family

ID=50978551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084350 WO2014098238A1 (ja) 2012-12-20 2013-12-20 ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途

Country Status (3)

Country Link
JP (1) JP2014139119A (ja)
TW (1) TW201431794A (ja)
WO (1) WO2014098238A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008863A1 (ja) * 2013-07-18 2015-01-22 東ソー株式会社 ニッケル-マンガン系複合オキシ水酸化物、その製造方法、及びその用途
CN105118983A (zh) * 2015-09-16 2015-12-02 湖北宇电能源科技股份有限公司 一种镍锰酸锂正极材料的制备方法
WO2018079816A1 (ja) * 2016-10-31 2018-05-03 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
EP3356297A4 (en) * 2015-09-30 2019-05-15 Umicore PRECURSORS FOR LITHIUM TRANSITION METAL OXIDE CATHODE MATERIALS FOR RECHARGEABLE BATTERIES
WO2019102319A1 (ja) * 2017-11-24 2019-05-31 株式会社半導体エネルギー研究所 二次電池および二次電池の作製方法
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6391857B2 (ja) * 2016-02-29 2018-09-19 三井金属鉱業株式会社 スピネル型リチウムマンガン含有複合酸化物
JP7163010B2 (ja) * 2017-07-14 2022-10-31 株式会社半導体エネルギー研究所 正極活物質、正極、および二次電池
JP6902424B2 (ja) * 2017-08-01 2021-07-14 日揮触媒化成株式会社 複合金属酸化物の製造方法
KR102324996B1 (ko) 2017-08-14 2021-11-12 미쓰이금속광업주식회사 전고체형 리튬 이차전지용 양극 활물질
JP7382758B2 (ja) 2019-08-07 2023-11-17 株式会社田中化学研究所 ニッケル複合水酸化物、ニッケル複合水酸化物を前駆体とした正極活物質
WO2021025099A1 (ja) 2019-08-07 2021-02-11 株式会社田中化学研究所 ニッケル複合水酸化物、ニッケル複合水酸化物を前駆体とした正極活物質、及びこれらの製造方法
CN114014381B (zh) * 2021-10-29 2023-06-16 蜂巢能源科技有限公司 一种正极材料的界面复合改性方法、正极材料及应用
WO2023131987A1 (ja) * 2022-01-04 2023-07-13 株式会社 東芝 電極、電池、及び電池パック

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220232A (ja) * 2001-01-23 2002-08-09 Japan Storage Battery Co Ltd リチウム含有金属化合物の製造方法
WO2004092073A1 (ja) * 2003-04-17 2004-10-28 Seimi Chemical Co. Ltd. リチウム-ニッケル-コバルト-マンガン含有複合酸化物およびリチウム二次電池用正極活物質用原料とそれらの製造方法
WO2005020354A1 (ja) * 2003-08-21 2005-03-03 Seimi Chemical Co., Ltd. リチウム二次電池用の正極活物質粉末
JP2009515799A (ja) * 2005-08-12 2009-04-16 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 無機化合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220232A (ja) * 2001-01-23 2002-08-09 Japan Storage Battery Co Ltd リチウム含有金属化合物の製造方法
WO2004092073A1 (ja) * 2003-04-17 2004-10-28 Seimi Chemical Co. Ltd. リチウム-ニッケル-コバルト-マンガン含有複合酸化物およびリチウム二次電池用正極活物質用原料とそれらの製造方法
WO2005020354A1 (ja) * 2003-08-21 2005-03-03 Seimi Chemical Co., Ltd. リチウム二次電池用の正極活物質粉末
JP2009515799A (ja) * 2005-08-12 2009-04-16 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 無機化合物

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008863A1 (ja) * 2013-07-18 2015-01-22 東ソー株式会社 ニッケル-マンガン系複合オキシ水酸化物、その製造方法、及びその用途
US10122016B2 (en) 2013-07-18 2018-11-06 Tosoh Corporation Nickel-manganese composite oxyhydroxide, its production method, and its application
CN105118983A (zh) * 2015-09-16 2015-12-02 湖北宇电能源科技股份有限公司 一种镍锰酸锂正极材料的制备方法
US10547056B2 (en) 2015-09-30 2020-01-28 Umicore Precursors for lithium transition metal oxide cathode materials for rechargeable batteries
EP3356297A4 (en) * 2015-09-30 2019-05-15 Umicore PRECURSORS FOR LITHIUM TRANSITION METAL OXIDE CATHODE MATERIALS FOR RECHARGEABLE BATTERIES
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11043660B2 (en) 2016-07-05 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
WO2018079816A1 (ja) * 2016-10-31 2018-05-03 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
US11365130B2 (en) 2016-10-31 2022-06-21 Sumitomo Chemical Company, Limited Positive electrode active material precursor for lithium secondary battery, and method for manufacturing positive electrode active material for lithium secondary battery
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
WO2019102319A1 (ja) * 2017-11-24 2019-05-31 株式会社半導体エネルギー研究所 二次電池および二次電池の作製方法
CN111328433A (zh) * 2017-11-24 2020-06-23 株式会社半导体能源研究所 二次电池及二次电池的制造方法
JPWO2019102319A1 (ja) * 2017-11-24 2020-12-03 株式会社半導体エネルギー研究所 二次電池および二次電池の作製方法
JP7213825B2 (ja) 2017-11-24 2023-01-27 株式会社半導体エネルギー研究所 リチウムイオン二次電池

Also Published As

Publication number Publication date
TW201431794A (zh) 2014-08-16
JP2014139119A (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2014098238A1 (ja) ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途
TWI636613B (zh) 鎳-錳系複合氧氫氧化物及其製造方法、以及其用途
JP5716001B2 (ja) 無機化合物
JP5678482B2 (ja) マンガン酸化物及びその製造方法
TWI584520B (zh) Li-Ni composite oxide particles and nonaqueous electrolyte batteries
WO2014192759A1 (ja) 正極活物質
WO2011105361A1 (ja) 正極活物質前駆体粒子粉末及び正極活物質粒子粉末、並びに非水電解質二次電池
WO2012020768A1 (ja) ニッケル-コバルト含有複合化合物の製造方法
JP6357928B2 (ja) ニッケル−マンガン系複合オキシ水酸化物及びその製造方法、並びにその用途
JP2007091573A (ja) リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途
WO2013146287A1 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2004002141A (ja) リチウム−ニッケル−マンガン複合酸化物とその製造方法及びそれを用いるリチウムイオン二次電池
JP2015153551A (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2015068735A1 (ja) ニッケル-マンガン系複合酸化物及びその製造方法、並びにその用途
JP6686493B2 (ja) ニッケル−マンガン−チタン系複合組成物及びその製造方法、並びにその用途
JP5811233B2 (ja) マンガン酸化物及びそれを用いたマンガン酸リチウムの製造方法
JP7206808B2 (ja) コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途
JP6155957B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6123391B2 (ja) 四三酸化マンガン及びその製造方法
JP2002338246A (ja) リチウム・マンガン複合酸化物の製造方法及び該リチウム・マンガン複合酸化物を用いてなるリチウム電池
JP2017178748A (ja) ニッケル−マンガン系複合化合物及びその製造方法
JP7192397B2 (ja) リチウム-コバルト-マンガン系複合酸化物及びこれを含むリチウム二次電池
JP2015182922A (ja) 立方晶スピネル型構造ニッケル−マンガン系複合酸化物及びその製造方法、並びにその用途
JP2017057115A (ja) マンガン酸化物及びその製造方法
JP2014139128A (ja) リチウムマンガン系複合酸化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865471

Country of ref document: EP

Kind code of ref document: A1