WO2015068735A1 - ニッケル-マンガン系複合酸化物及びその製造方法、並びにその用途 - Google Patents
ニッケル-マンガン系複合酸化物及びその製造方法、並びにその用途 Download PDFInfo
- Publication number
- WO2015068735A1 WO2015068735A1 PCT/JP2014/079358 JP2014079358W WO2015068735A1 WO 2015068735 A1 WO2015068735 A1 WO 2015068735A1 JP 2014079358 W JP2014079358 W JP 2014079358W WO 2015068735 A1 WO2015068735 A1 WO 2015068735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nickel
- composite oxide
- manganese composite
- manganese
- lithium
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/66—Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/32—Three-dimensional structures spinel-type (AB2O4)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/76—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a nickel-manganese composite oxide, a method for producing the same, and a use thereof.
- a nickel-manganese composite oxide suitable as a precursor of a lithium-nickel-manganese composite oxide, a lithium-nickel-manganese composite oxide obtained using the nickel-manganese composite oxide The present invention also relates to a lithium secondary battery using the lithium-nickel-manganese composite oxide as a positive electrode.
- the lithium-nickel-manganese composite oxide has a superlattice structure in which nickel and manganese are regularly arranged.
- the production method includes a solid phase reaction method in which a nickel source and a manganese source are mixed and calcined, and a composite carbonate, composite hydroxide, composite oxyhydroxide, or composite oxide containing nickel and manganese as a precursor. There is a manufacturing method to make a body.
- the composite compound containing nickel and manganese is a preferable precursor when the ordered arrangement of nickel and manganese is premised because the metal is more uniformly distributed.
- a nickel-manganese composite oxide obtained by firing a nickel-manganese composite hydroxide obtained by a coprecipitation method is used as a precursor of a lithium-nickel-manganese composite oxide (Patent Document). 1). Further, it is disclosed that a nickel-manganese composite oxide obtained by spray-drying and firing a nickel salt and a manganese salt is used as a precursor of a lithium-nickel-manganese composite oxide (see Patent Document 2).
- the manganese nickel composite oxide particle powder of Patent Document 1 is a cubic spinel composite oxide having a space group of Fd-3m.
- the manganese nickel composite oxide powder is neutralized with an aqueous manganese salt solution using an excess amount of an alkaline aqueous solution to form an aqueous suspension containing manganese hydroxide, and an oxidation reaction thereof is performed to obtain a trimanganese tetroxide nucleus. It is obtained by performing a primary reaction to obtain particles, adding a manganese raw material and a nickel raw material to the reaction solution after the primary reaction, performing a secondary reaction in which an oxidation reaction is performed, and then firing in an oxidizing atmosphere . As described above, since the manufacturing process is very complicated, it is estimated that the manufacturing cost is expensive.
- the manganese nickel composite oxide of Patent Document 2 is charged with a Mn salt and a Ni salt so as to have a predetermined atomic ratio of Mn and Ni, and pulverized and mixed until the average particle size becomes 0.1 ⁇ m or less.
- the obtained slurry is spray-dried to obtain a mixture of Mn salt and Ni salt, and the mixture is calcined at 800 to 1000 ° C. It is estimated that the manufacturing cost increases as in the case of Patent Document 1.
- a nickel manganese composite oxide in which nickel and manganese are dispersed at an atomic level is suitable as a precursor of a lithium-nickel-manganese composite oxide as a positive electrode, but the manufacturing process is complicated. It has the problem of being.
- the present invention provides a nickel-manganese composite oxide having high dispersibility of nickel and manganese by a general and simple process such as coprecipitation, washing and drying, and uses the nickel-manganese composite oxide. It is an object of the present invention to provide a lithium-nickel-manganese composite oxide obtained as described above and a lithium secondary battery using the lithium-nickel-manganese composite oxide as a positive electrode.
- the present inventors diligently studied a nickel-manganese composite oxide which is a precursor of a lithium-nickel-manganese composite oxide. As a result, it was found that a tetragonal spinel-type nickel-manganese composite oxide can be obtained by controlling the pH and oxidation-reduction potential through a series of operations such as general coprecipitation, washing and drying. Furthermore, the present inventors have found that a lithium secondary battery using a lithium-nickel-manganese composite oxide having a highly dispersible nickel-manganese composite oxide as a precursor as a positive electrode has high performance. It came to complete.
- the present invention has the following gist.
- the chemical composition formula is (Ni (0.25 + ⁇ ) -x M1 x Mn (0.75- ⁇ ) -y M2 y ) 3 O 4
- M1 and M2 are each independently Mg, Al, Ti, V, Cr, Fe, Co , Cu, Zn, and Zr, and 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.25, and ⁇ 0.05 ⁇ ⁇ ⁇ 0.05.
- a nickel-manganese complex oxide characterized in that the crystal structure is a tetragonal spinel structure.
- a lithium-nickel-manganese composite oxide obtained by mixing the nickel-manganese composite oxide according to any one of (1) to (5) above and a lithium compound and heat-treating the mixture. .
- the nickel-manganese composite oxide of the present invention is a precursor having high dispersibility of metal elements because it is very close to a single crystal phase. In addition, the manufacturing process is simple. Furthermore, when a lithium-nickel-manganese composite oxide having the nickel-manganese composite oxide of the present invention as a precursor is used as a positive electrode, the lithium secondary battery has high performance.
- FIG. 2 is an XRD pattern of a nickel-manganese composite oxide of Example 1.
- FIG. 2 is an XRD pattern of a nickel-manganese composite oxide of Example 2.
- FIG. 3 is an XRD pattern of a nickel-manganese composite oxide of Example 3.
- FIG. 4 is an XRD pattern of a nickel-manganese composite oxide of Example 4.
- FIG. 6 is an XRD pattern of the lithium-nickel-manganese composite oxide of Example 5 (the arrow in the figure indicates a superlattice peak).
- FIG. 2 is an XRD pattern of a nickel-manganese composite compound of Comparative Example 1.
- FIG. 3 is an XRD pattern of a nickel-manganese composite compound of Comparative Example 2.
- FIG. 4 is an XRD pattern of a nickel-manganese composite compound of Comparative Example 3.
- 7 is an XRD pattern of a nickel-manganese composite compound of Comparative Example 4.
- 2 is a scanning electron micrograph of the nickel-manganese composite oxide of Example 1.
- FIG. 3 is a scanning electron micrograph of the nickel-manganese composite oxide of Example 2.
- FIG. 4 is a scanning electron micrograph of the nickel-manganese composite oxide of Example 3.
- FIG. 4 is a scanning electron micrograph of the nickel-manganese composite oxide of Example 4.
- FIG. 2 is a particle size distribution curve of the nickel-manganese composite oxide of Example 1.
- FIG. 2 is a particle size distribution curve of a nickel-manganese composite oxide of Example 2.
- FIG. 4 is a particle size distribution curve of a nickel-manganese composite oxide of Example 3.
- FIG. 4 is a particle size distribution curve of a nickel-manganese composite oxide of Example 4.
- FIG. 6 is a charge / discharge curve of the lithium-nickel-manganese composite oxide of Example 5 (2 to 4 cycles).
- FIG. 10 is a charge / discharge cycle performance chart of Example 5 (1 to 10 cycles).
- the nickel-manganese composite oxide of the present invention has a chemical composition formula of (Ni (0.25 + ⁇ ) -x M1 x Mn (0.75- ⁇ ) -y M2 y ) 3 O 4 (M1 and M2 are Each independently represents one selected from Mg, Al, Ti, V, Cr, Fe, Co, Cu, Zn and Zr, 0 ⁇ x ⁇ 0.1 and 0 ⁇ y ⁇ 0.25 Yes, and ⁇ 0.05 ⁇ ⁇ ⁇ 0.05.
- the battery capacity near 5V decreases due to deviation from the formal valences of Ni 2+ and Mn 4+ .
- the dissimilar metal is preferably Cr, Fe, or Ti, and particularly preferably Cr. If the content of the dissimilar metal is too large, the degree of ordering of the Ni—Mn ordered arrangement in the spinel type sublattice decreases and the battery capacity near 5 V (based on the Li metal negative electrode) decreases, so 0 ⁇ x ⁇ 0. 1 and 0 ⁇ y ⁇ 0.25 is essential.
- 0 ⁇ x ⁇ 0.05 and 0 ⁇ y ⁇ 0.1 In order to maintain the degree of order of the Ni—Mn ordered arrangement in the spinel type sublattice and the battery capacity in the vicinity of 5 V (based on the Li metal negative electrode), it is preferable that the amount of substitution of different elements for Ni is small.
- Specific preferred chemical compositions of the nickel-manganese composite oxide of the present invention include, for example, (Ni 0.25 Mn 0.75 ) 3 O 4 , (Ni 0.25 Mn 0.65 Ti 0.10 ) 3 O 4 , (Ni 0.20 Fe 0.05 Mn 0.75 ) 3 O 4 , (Ni 0.23 Mg 0.02 Mn 0.75 ) 3 O 4 , (Ni 0.23 Zn 0.02 Mn 0.75 ) 3 O 4 and the like.
- (Ni 0.25 Mn 0.75 ) 3 O 4 is preferable.
- the nickel-manganese composite oxide of the present invention has a tetragonal spinel type crystal structure.
- the tetragonal spinel type is advantageous in that the element distribution of Ni and Mn is made uniform, and a Ni—Mn ordered arrangement is easily realized.
- the lithium-nickel-manganese composite oxide have a spinel structure, the reaction between the raw material and the lithium compound may proceed smoothly.
- the tetragonal spinel type means that the crystal lattice is classified as tetragonal, the crystal structure is a spinel type, and the space group is I41 / amd.
- the lattice constant a of the crystal structure is 5.7 to 5.9 and the lattice constant c is 8.8 to 9.4, the content of tetragonal spinel oxide is high and it is the main phase.
- a trace amount of either or both of oxyhydroxide and hydrotalcite hydroxide is produced.
- the lattice constant a is 5.8 to 5.9 ⁇
- the lattice constant c is 8.8 to 9.1 ⁇ . In this case, a crystal phase very close to a single crystal phase can be obtained.
- the tap density of the nickel-manganese based composite oxide of the present invention is preferably 1.0 g / cm 3 or more, because the filling property of the positive electrode active material in the electrode affects the energy density, and preferably 1.5 g / cm 3. still more preferably 3 or more, and particularly preferably 2.0 g / cm 3 or more. Usually, it is preferably 2.5 g / cm 3 or less.
- the tap density is 1.0 g / cm 3 or more, the filling property of the lithium-nickel-manganese composite oxide obtained using the nickel-manganese composite oxide of the present invention as a raw material tends to be high.
- the nickel-manganese composite oxide of the present invention has a theoretical average valence of 2.7
- the average valence of Ni, Mn, M1, and M2 in the chemical composition formula is 2.5 to 2.9.
- 2.6 to 2.7 is more preferable.
- the average valence is determined by an iodometry method.
- the average particle size of the nickel-manganese composite oxide of the present invention is preferably 5 to 20 ⁇ m, and more preferably 5 to 10 ⁇ m in order to adapt to the particle size at which an electrode can be easily formed.
- the average particle diameter is an average particle diameter of secondary particles in which primary particles are aggregated, that is, a so-called aggregated particle diameter.
- the average particle diameter in the present invention means a volume average particle diameter (D50), and a dispersed slurry of particles is obtained from a volume distribution obtained by a particle size distribution measuring apparatus of a laser diffraction method.
- the specific surface area of the nickel-manganese based composite oxide of the present invention is not particularly limited, but is preferably 70 m 2 / g or less, and is preferably 50 m 2 / g or less because high filling properties are easily obtained. Is more preferably 30 m 2 / g or less, and most preferably 10 m 2 / g or less. Usually, it is preferably 5 m 2 / g or more. In general, since the filling property and the specific surface area have a correlation, a powder having a high filling property is easily obtained with a low specific surface area.
- Examples of the particle size distribution of the nickel-manganese composite oxide of the present invention include a monodispersed particle size distribution and a bimodal particle size distribution.
- the particle size distribution is monodispersed, that is, a monomodal distribution, the charge / discharge reaction becomes more uniform because the particle size is uniform even when the positive electrode is formed.
- the nickel-manganese composite oxide of the present invention has a chemical composition formula of (Ni (0.25 + ⁇ ) -x M1 x Mn (0.75- ⁇ ) -y M2 y ) 3 O 4 (M1 and M2 are Each is independently represented by Mg, Al, Ti, V, Cr, Fe, Co, Cu, Zn, and Zr). Apart from the contained metal, it may contain other metals such as alkali metals such as Mg, Ca, Na and K, and alkaline earth metals. The content of other metals is preferably as small as possible, but inclusion of an appropriate amount may show an effect of improving cycle performance.
- the content of other metals exceeds 1000 ppm, there is a problem that the capacity of the 4 V potential flat portion increases and the energy density is impaired. Therefore, it is 1000 ppm or less, preferably 20 to 1000 ppm, more preferably 200 to 1000 ppm, 300 to 600 ppm is particularly preferred.
- the nickel-manganese composite oxide of the present invention is one or more selected from the group consisting of nickel and manganese, or nickel, manganese, and Mg, Al, Ti, V, Cr, Fe, Co, Cu, Zn, and Zr.
- An aqueous metal salt solution containing sodium hydroxide, an aqueous caustic soda solution, and an oxygen-containing gas as an oxidant are mixed at pH 7 or more and less than pH 8.5 at a redox potential of ⁇ 0.1 to 0.2 V to obtain a mixed aqueous solution. It can manufacture by making it precipitate.
- the aqueous metal salt solution preferably contains at least nickel and manganese, and further contains one or more metals selected from the group consisting of Mg, Al, Ti, V, Cr, Fe, Co, Cu, Zn, and Zr.
- metal salt aqueous solutions include nickel, manganese, sulfates, chlorides, nitrates and acetates containing other specified metals, inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid.
- examples thereof include an aqueous solution in which nickel and manganese, and other predetermined metals are dissolved in an acid.
- An example of a preferable aqueous metal salt solution is an aqueous solution containing nickel sulfate and manganese sulfate.
- the ratio of nickel, manganese, and other predetermined metals in the aqueous metal salt solution should be the ratio of nickel, manganese, and other predetermined metals of the target nickel-manganese composite oxide. Is preferred.
- ⁇ is preferably 0 to 0.01, x is 0 to 0.1, and y is preferably 0 to 0.25.
- ⁇ is 0, x is 0 to 0.05, and y is 0 to 0.1. preferable.
- the total concentration (metal concentration) of all metals such as nickel and manganese in the metal salt aqueous solution is arbitrary, since the metal concentration affects the productivity, 1.0 mol / L or more is preferable, and 2.0 mol / L The above is more preferable. Usually, it is preferably 2.5 mol / L or less.
- the caustic soda aqueous solution is an aqueous sodium hydroxide solution, and for example, an aqueous solution of solid sodium hydroxide or an aqueous solution of sodium hydroxide generated from salt electrolysis can be used.
- an oxygen-containing gas is preferably used.
- the oxygen-containing gas include air and oxygen. Economically, air is the most preferred. Gases such as air and oxygen are added by bubbling using a bubbler or the like.
- a mixed aqueous solution is obtained by mixing a metal salt aqueous solution, a caustic soda aqueous solution, and an oxygen-containing gas as an oxidizing agent at a pH of 7 or more and less than 8.5 at a redox potential of ⁇ 0.1 to 0.2 V.
- the nickel-manganese composite oxide of the invention is deposited.
- the pH is 8.5 or more, the oxyhydroxide becomes the main phase and the target oxide cannot be obtained.
- the crystal phase is mainly composed of hydrotalcite-type hydroxide. Hydrotalcite-type hydroxides easily incorporate anions such as sulfate ions that become impurities between layers. For this reason, in order to obtain a tetragonal spinel type oxide more easily, pH 7.5 or more and less than pH 8.5 are preferable, and in order to approach a single crystal phase, pH 8 or more and less than pH 8.5 are more preferable.
- the oxidation-reduction potential also affects the generated phase, and when the oxidation-reduction potential exceeds 0.2 V, oxyhydroxide by-product becomes obvious. On the other hand, when the oxidation-reduction potential is less than ⁇ 0.1 V, a by-product of hydrotalcite type hydroxide becomes apparent. In order to make it closer to a single crystal phase, a range of ⁇ 0.1 to 0.1 V is more preferable.
- the oxidation-reduction potential can be controlled by the supply amount of the oxygen-containing gas.
- the temperature at which the metal salt aqueous solution, the caustic soda aqueous solution and the oxidizing agent are mixed is not particularly limited, but the oxidation reaction is likely to proceed, and the nickel-manganese complex oxide is more likely to precipitate. Is preferable, 60 ° C. or more is more preferable, and 60 to 70 ° C. is particularly preferable.
- PH may fluctuate by mixing metal salt aqueous solution, caustic soda aqueous solution and oxidizing agent.
- the pH can be controlled by appropriately mixing an alkaline aqueous solution other than the caustic soda aqueous solution into the mixed aqueous solution.
- Mixing of the alkaline aqueous solution other than the caustic soda aqueous solution may be performed continuously or intermittently.
- the alkaline aqueous solution other than the caustic soda aqueous solution include aqueous solutions of alkali metals such as potassium hydroxide and lithium hydroxide.
- the alkali concentration of the aqueous alkali solution is, for example, 1 mol / L or more, preferably 5 to 10 mol / L.
- a complexing agent can be added.
- a complexing agent is present, the solubility of nickel ions increases, the particle surface becomes smooth, and the sphericity is improved. As a result, there is an advantage that the tap density is improved.
- the complexing agent ammonia, ammonium salts or amino acids are preferred.
- ammonia examples include aqueous ammonia
- ammonium salts include ammonium sulfate, ammonium chloride, ammonium nitrate, and ammonium carbonate.
- amino acids include glycine, alanine, asparagine, glutamine, and lysine. Is exemplified.
- the complexing agent is preferably fed with an aqueous metal salt solution.
- the concentration of NH 3 / transition metal in the ammonia or ammonium salt is preferably 0.1 to 2, more preferably 0.5 to 1, and in the case of amino acid, the amino acid / transition metal molar ratio is 0.001. Is preferably 0.25 to 0.25, more preferably 0.005 to 0.1.
- the production of the nickel-manganese based composite oxide of the present invention does not require atmospheric control and can be performed in a normal atmospheric atmosphere.
- the mixing time is arbitrary as long as the nickel-manganese complex oxide is obtained. For example, 3 to 48 hours can be mentioned, and preferably 6 to 24 hours.
- washing and drying are performed after the nickel-manganese composite oxide is deposited.
- impurities adhering to and adsorbing to the nickel-manganese complex oxide are removed.
- the cleaning method include a method of adding nickel-manganese complex oxide to water, stirring and cleaning.
- the drying the moisture of the nickel-manganese composite oxide is removed.
- the drying method include drying the nickel-manganese composite oxide at 110 to 150 ° C., preferably 110 to 120 ° C. for 2 to 15 hours.
- pulverization may be performed after washing and drying.
- a powder having an average particle size suitable for the application is used.
- the pulverization conditions are arbitrary as long as a desired average particle size can be obtained, and examples thereof include wet pulverization and dry pulverization.
- the nickel-manganese composite oxide of the present invention has a high dispersibility of metal elements, and can be used for producing a lithium-nickel-manganese composite oxide.
- the production method includes a mixing step of mixing the nickel-manganese composite oxide and a lithium compound. And a firing step.
- any lithium compound can be used.
- the lithium compound include one or more selected from the group consisting of lithium hydroxide, lithium oxide, lithium carbonate, lithium iodide, lithium nitrate, lithium oxalate, and alkyl lithium.
- examples of preferable lithium compounds include one or more selected from the group consisting of lithium hydroxide, lithium oxide, and lithium carbonate.
- the raw materials are mixed and then fired to produce a lithium-nickel-manganese composite oxide.
- Calcination can be carried out at various temperatures such as in air and oxygen at a temperature of 500 to 1000 ° C., preferably 700 to 900 ° C., for 24 to 70 hours, preferably 24 to 48 hours.
- the lithium-nickel-manganese composite oxide thus obtained is used as a positive electrode active material for a lithium secondary battery.
- metallic lithium or a material capable of occluding and releasing lithium or lithium ions can be used.
- metallic lithium, lithium / aluminum alloy, lithium / tin alloy, lithium / lead alloy, or a carbon material capable of electrochemically inserting / extracting lithium ions is exemplified.
- a carbon material capable of electrochemically inserting and removing lithium ions is preferable from the viewpoint of safety and battery characteristics.
- Examples of the electrolyte used in the lithium secondary battery of the present invention include a lithium salt dissolved in an organic solvent such as carbonates, sulfolanes, lactones and ethers, and a lithium ion conductive solid electrolyte. Can be used.
- a separator used in the lithium secondary battery of the present invention for example, a microporous film made of polyethylene or polypropylene can be used.
- a molded product obtained by molding a mixture with a conductive agent into a pellet and drying under reduced pressure at 100 to 200 ° C. is used as a battery positive electrode, and a metallic lithium foil And a negative electrode composed of the above, and those using an electrolytic solution in which lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate.
- the composition analysis of the composite oxide (composite compound) was performed by inductively coupled plasma emission spectrometry (ICP method). That is, a complex oxide (composite compound) was dissolved in a mixed solution of hydrochloric acid and hydrogen peroxide to prepare a measurement solution. The composition of the composite oxide (composite compound) in the measurement solution was measured and analyzed using a general inductively coupled plasma emission analyzer (trade name: OPTIMA 3000 DV, manufactured by PERKIN ELMER).
- ICP method inductively coupled plasma emission spectrometry
- the average valence of metals such as nickel and manganese was measured by iodometry.
- 0.3 g of complex oxide (composite compound) and 3.0 g of potassium iodide were dissolved in 50 mL (milliliter) of 7N-hydrochloric acid solution, and then neutralized by adding 200 mL of 1N-NaOH solution.
- a 0.1N sodium thiosulfate aqueous solution was dropped into the neutralized sample solution, and the average valence was calculated from the amount dropped.
- a starch solution was used as an indicator.
- a battery characteristic test as a positive electrode of lithium-nickel-manganese composite oxide was conducted.
- a mixture (trade name: TAB-2) of a lithium-nickel-manganese composite oxide, polytetrafluoroethylene and acetylene black as a conductive agent was mixed at a weight ratio of 4: 1, and 1 ton / cm 2 .
- a battery was constructed using the liquid. Using the battery, the battery voltage was charged and discharged at a constant current between 4.9 V and 3.0 V at room temperature. The battery was charged / discharged at a current density of 0.4 mA / cm 2 , and each specific capacity (mAh / g) was measured.
- Example 1 Nickel sulfate and manganese sulfate were dissolved in pure water to obtain an aqueous solution containing 1.5 mol / L (liter) of nickel sulfate and 0.5 mol / L of manganese sulfate, which was used as a metal salt aqueous solution (metal salt aqueous solution). The total concentration of all the metals in it was 2.0 mol / L). Further, 200 g of pure water was put into a reaction vessel having an internal volume of 1 L, and then this was heated to 80 ° C. and maintained.
- the aqueous metal salt solution was added to the reaction vessel at a supply rate of 0.28 g / min.
- air was bubbled into the reaction vessel as an oxidizing agent at a supply rate of 0.2 L / min.
- a 2 mol / L sodium hydroxide aqueous solution (caustic soda aqueous solution) is intermittently added so that the pH is 8.4 when supplying the metal salt aqueous solution and air to obtain a mixed aqueous solution.
- a system composite oxide was precipitated to obtain a slurry.
- the oxidation-reduction potential at this time was 0.02V.
- the obtained slurry was filtered and washed, and then the wet cake was dried at 115 ° C.
- nickel-manganese composite oxide [(Ni 0.26 Mn 0.74 ) 3 O 4 ]. It was. From the XRD pattern of the obtained nickel-manganese composite oxide, a tetragonal spinel structure was the main phase, and a small amount of hydrotalcite hydroxide was the subphase.
- the measurement results of the nickel-manganese composite oxide are shown in Table 1 together with the measurement results of Examples 2 to 4.
- Example 2 Same as Example 1 except that the 2 mol / L sodium hydroxide aqueous solution was intermittently added so that the pH was 8.0, and the 1 mol / L ammonium sulfate solution was added in an amount equivalent to the metal salt aqueous solution.
- a slurry was obtained by various methods. The redox potential at this time was 0.10V.
- Example 4 Except that the 2 mol / L sodium hydroxide aqueous solution was intermittently added so that the pH was 8.0, and that the 3 mol / L ammonium sulfate solution was added in an amount equal to the metal salt aqueous solution at 0.38 g / min.
- a slurry was obtained in the same manner as in Example 1. At this time, the oxidation-reduction potential was 0.03V.
- Example 5 The nickel-manganese composite oxide obtained in Example 4 and lithium carbonate were mixed, and calcined at 900 ° C. for 10 hours in an air stream, and then calcined at 700 ° C. for 48 hours, thereby lithium-nickel-manganese.
- a composite oxide was synthesized. From the result of chemical composition analysis, the composition formula could be expressed as Li 2 NiMn 3 O 8 . Further, from the XRD pattern, a superlattice peak corresponding to the nickel-manganese ordered arrangement was clearly observed.
- the battery performance of the lithium-nickel-manganese composite oxide was evaluated. From the charge / discharge curve, it was found that the potential flat portion in the vicinity of 4V corresponding to Mn4 + / 3 + redox was as small as about 3 mAh / g, and the capacity in the vicinity of 5V corresponding to Ni4 + / 3 + redox was not impaired. Moreover, since capacity reduction was not seen to 10 cycles, it turned out that charging / discharging cycling performance is favorable.
- Comparative Example 1 A slurry was obtained in the same manner as in Example 1 except that the pH was 10. The oxidation-reduction potential at this time was 0.43V. The obtained slurry was filtered, washed, and dried to obtain a nickel-manganese composite compound. The obtained nickel-manganese composite compound showed a pattern characteristic of oxyhydroxide in its XRD pattern, and no diffraction peak corresponding to tetragonal spinel oxide was observed. The measurement results of the nickel-manganese composite compound are shown in Table 2 together with the measurement results of Comparative Examples 2 to 4.
- Comparative Example 2 A slurry was obtained in the same manner as in Example 1 except that the pH was set to 6. The oxidation-reduction potential at this time was 0.21V. The obtained slurry was filtered, washed, and dried to obtain a nickel-manganese composite compound. The obtained nickel-manganese composite compound was found to have a crystal phase with hydrotalcite hydroxide as the main phase in its XRD pattern.
- Comparative Example 3 A slurry was obtained in the same manner as in Example 1 except that the oxidizing agent was a 30 wt% sodium persulfate aqueous solution (feed rate: 0.28 g / min). At this time, the oxidation-reduction potential was 0.67V. The obtained slurry was filtered, washed, and dried to obtain a nickel-manganese composite compound. The obtained nickel-manganese composite compound had a peak position different from that of the tetragonal spinel oxide in the XRD pattern, and all the peak shapes showed a broad pattern shape.
- the oxidizing agent was a 30 wt% sodium persulfate aqueous solution (feed rate: 0.28 g / min). At this time, the oxidation-reduction potential was 0.67V.
- the obtained slurry was filtered, washed, and dried to obtain a nickel-manganese composite compound.
- the obtained nickel-manganese composite compound had a peak position
- Comparative Example 4 A slurry was obtained in the same manner as in Example 1 except that the oxidizing agent was 15% by weight hydrogen peroxide water (feed rate: 0.28 g / min). The oxidation-reduction potential at this time was 0.11V. The obtained slurry was filtered, washed, and dried to obtain a nickel-manganese composite compound. In the XRD pattern, the obtained nickel-manganese composite compound became a mixed phase with oxyhydroxide as the main phase and a small amount of tetragonal spinel oxide as the subphase.
- the nickel-manganese composite oxide of the present invention can be used as a precursor of a lithium-nickel-manganese composite oxide used for a positive electrode active material of a lithium secondary battery, and the lithium-nickel-manganese composite. It becomes possible to constitute a high-performance lithium secondary battery using the composite oxide as a battery positive electrode. It should be noted that the entire content of the specification, claims, and abstract of Japanese Patent Application No. 2013-232446 filed on November 8, 2013 is incorporated herein as the disclosure of the specification of the present invention. Is.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
製造プロセスが簡素な、金属元素の分散性の高いニッケル-マンガン系複合酸化物及びその製造方法、並びにその用途を提供する。 化学組成式が、(Ni(0.25+α)-xM1xMn(0.75-α)-yM2y)3O4(M1及びM2はそれぞれ独立して、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1、0≦y≦0.25であり、-0.05≦α≦0.05である)で表され、結晶構造が正方晶スピネル型構造であることを特徴とするニッケル-マンガン系複合酸化物。
Description
本発明は、ニッケル-マンガン系複合酸化物及びその製造方法、並びにその用途に関するものである。詳しくは、リチウム-ニッケル-マンガン系複合酸化物の前駆体として適したニッケル-マンガン系複合酸化物、そのニッケル-マンガン系複合酸化物を使用して得られるリチウム-ニッケル-マンガン系複合酸化物、及び、そのリチウム-ニッケル-マンガン系複合酸化物を正極として使用するリチウム二次電池に関する。
スピネル型構造のリチウム-ニッケル-マンガン系複合酸化物は、5V級リチウム二次電池用正極活物質として注目されている。リチウム-ニッケル-マンガン系複合酸化物はニッケルとマンガンとが規則配列した超格子構造を有する。その製造方法としては、ニッケル源、マンガン源を混合し焼成する固相反応法や、ニッケル及びマンガンを含有する、複合炭酸塩、複合水酸化物、複合オキシ水酸化物、又は複合酸化物を前駆体とする製造方法がある。ニッケル及びマンガンを含有する複合化合物は、金属がより均一に分布しているため、ニッケルとマンガンの規則配列を前提とした場合、好ましい前駆体といえる。
例えば、リチウム-ニッケル-マンガン系複合酸化物の前駆体として、共沈法により得られたニッケル-マンガン複合水酸化物を焼成したニッケル-マンガン複合酸化物を用いることが開示されている(特許文献1参照)。
また、ニッケル塩とマンガン塩とを噴霧乾燥、焼成したニッケル-マンガン複合酸化物をリチウム-ニッケル-マンガン系複合酸化物の前駆体として用いることが開示されている(特許文献2参照)。
また、ニッケル塩とマンガン塩とを噴霧乾燥、焼成したニッケル-マンガン複合酸化物をリチウム-ニッケル-マンガン系複合酸化物の前駆体として用いることが開示されている(特許文献2参照)。
特許文献1のマンガンニッケル複合酸化物粒子粉末は、Fd-3mの空間群を有する立方晶スピネル型複合酸化物である。前記マンガンニッケル複合酸化物粉末は、マンガン塩水溶液に過剰量のアルカリ水溶液を用いて中和して、マンガン水酸化物を含有する水懸濁液とし、その酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液に対して、マンガン原料とニッケル原料を添加した後、酸化反応を行う二次反応を行い、次いで、酸化性雰囲気で焼成して得られる。以上のように、製造工程が非常に複雑であるため、製造コストが高価であると推定される。
また、特許文献2のマンガンニッケル複合酸化物は、所定のMnとNiの原子比となるようにMn塩とNi塩を溶媒中に投入し、平均粒径が0.1μm以下となるまで粉砕混合し、得られたスラリーを噴霧乾燥させ、Mn塩とNi塩の混合物を得る工程、前記混合物を800~1000℃で焼成する工程から成る。特許文献1と同様に製造コストが嵩むと推定される。
このように、ニッケルとマンガンとが原子レベルで分散したニッケルマンガン系複合酸化物は、正極であるリチウム-ニッケル-マンガン系複合酸化物の前駆体として好適であるにもかかわらず、製造工程が複雑であるという課題を有している。
このように、ニッケルとマンガンとが原子レベルで分散したニッケルマンガン系複合酸化物は、正極であるリチウム-ニッケル-マンガン系複合酸化物の前駆体として好適であるにもかかわらず、製造工程が複雑であるという課題を有している。
本発明は、共沈、洗浄、乾燥といった一般的かつ簡素な工程で、ニッケルとマンガンが高い分散性を有するニッケル-マンガン系複合酸化物を提供し、そのニッケル-マンガン系複合酸化物を使用して得られるリチウム-ニッケル-マンガン系複合酸化物、及びそのリチウム-ニッケル-マンガン系複合酸化物を正極として使用するリチウム二次電池を提供することを目的とする。
本発明者らはリチウム-ニッケル-マンガン系複合酸化物の前駆体であるニッケル-マンガン系複合酸化物について鋭意検討した。その結果、一般的な共沈、洗浄、乾燥といった一連の操作で、pHと酸化還元電位を制御することにより、正方晶スピネル型ニッケル-マンガン系複合酸化物が得られることを見出した。さらに、金属元素の分散性の高いニッケル-マンガン系複合酸化物を前駆体としたリチウム-ニッケル-マンガン系複合酸化物を正極として使用するリチウム二次電池が高性能であることを見出し、本発明を完成するに至った。
本発明は以下の要旨を有する。
(1)化学組成式が、
(Ni(0.25+α)-xM1xMn(0.75-α)-yM2y)3O4(M1及びM2はそれぞれ独立して、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1、0≦y≦0.25であり、-0.05≦α≦0.05である。)で表され、結晶構造が正方晶スピネル型構造であることを特徴とするニッケル-マンガン系複合酸化物。
(1)化学組成式が、
(Ni(0.25+α)-xM1xMn(0.75-α)-yM2y)3O4(M1及びM2はそれぞれ独立して、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1、0≦y≦0.25であり、-0.05≦α≦0.05である。)で表され、結晶構造が正方晶スピネル型構造であることを特徴とするニッケル-マンガン系複合酸化物。
(2)空間群がI41/amdであり、格子定数aが5.7~5.9Åであり、かつ格子定数cが8.8~9.4Åである、上記(1)に記載のニッケル-マンガン系複合酸化物。
(3)正方晶スピネル型構造が主相であり、副相としてオキシ水酸化物、ハイドロタルサイト型水酸化物のいずれか、又は両方を含む、上記(1)又は(2)に記載のニッケル-マンガン系複合酸化物。
(4)Ni、Mn、M1及びM2の平均原子価が2.5~2.9である、上記(1)~(3)のいずれかに記載のニッケル-マンガン系複合酸化物。
(5)平均粒子径が5~20μmである、上記(1)~(4)のいずれかに記載のニッケル-マンガン系複合酸化物。
(3)正方晶スピネル型構造が主相であり、副相としてオキシ水酸化物、ハイドロタルサイト型水酸化物のいずれか、又は両方を含む、上記(1)又は(2)に記載のニッケル-マンガン系複合酸化物。
(4)Ni、Mn、M1及びM2の平均原子価が2.5~2.9である、上記(1)~(3)のいずれかに記載のニッケル-マンガン系複合酸化物。
(5)平均粒子径が5~20μmである、上記(1)~(4)のいずれかに記載のニッケル-マンガン系複合酸化物。
(6)ニッケル及びマンガン、又はニッケル、マンガン、並びにMg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrからなる群から選ばれる1種以上を含む金属塩水溶液、苛性ソーダ水溶液及び酸化剤として酸素含有ガスを、pH7以上pH8.5未満、酸化還元電位-0.1~0.2Vで混合して混合水溶液を得て、該混合水溶液中で析出させることを特徴とする上記(1)~(5)のいずれかに記載のニッケル-マンガン系複合酸化物の製造方法。
(7)さらに、錯化剤を添加する、上記(6)に記載のニッケル-マンガン系複合酸化物の製造方法。
(8)錯化剤がアンモニア、アンモニウム塩又はアミノ酸である、上記(7)に記載のニッケル-マンガン系複合酸化物の製造方法。
(8)錯化剤がアンモニア、アンモニウム塩又はアミノ酸である、上記(7)に記載のニッケル-マンガン系複合酸化物の製造方法。
(9)上記(1)~(5)のいずれかに記載のニッケル-マンガン系複合酸化物とリチウム化合物を混合し、熱処理して得られることを特徴とするリチウム-ニッケル-マンガン系複合酸化物。
(10)上記(9)に記載のリチウム-ニッケル-マンガン系複合酸化物を正極活物質として使用することを特徴とするリチウム二次電池。
(10)上記(9)に記載のリチウム-ニッケル-マンガン系複合酸化物を正極活物質として使用することを特徴とするリチウム二次電池。
本発明のニッケル-マンガン系複合酸化物は、単一結晶相に極めて近いため、金属元素の分散性が高い前駆体である。また、製造プロセスが簡素であるという利点を有する。さらに、本発明のニッケル-マンガン系複合酸化物を前駆体としたリチウム-ニッケル-マンガン系複合酸化物を正極として使用した場合、リチウム二次電池は高性能である。
以下、本発明について詳細に説明する。
本発明のニッケル-マンガン系複合酸化物は、化学組成式が、(Ni(0.25+α)-xM1xMn(0.75-α)-yM2y)3O4(M1及びM2は、それぞれ独立して、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1であり、0≦y≦0.25であり、-0.05≦α≦0.05である。)で表される。
本発明のニッケル-マンガン系複合酸化物は、化学組成式が、(Ni(0.25+α)-xM1xMn(0.75-α)-yM2y)3O4(M1及びM2は、それぞれ独立して、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1であり、0≦y≦0.25であり、-0.05≦α≦0.05である。)で表される。
上記式中、Ni+M1=0.25±0.05であり、Mn+M2=0.75±0.05である。これらの数値範囲を外れると、Ni2+、Mn4+という形式原子価から乖離し、5V付近(Li金属負極基準)の電池容量が低下する。
-0.05≦α≦0.05であり、αがこの範囲を外れると、Ni2+、Mn4+という形式原子価から乖離し、5V付近(Li金属負極基準)の電池容量が低下する。α=0(Ni:Mn=0.25:0.75(モル比))が好ましい。
-0.05≦α≦0.05であり、αがこの範囲を外れると、Ni2+、Mn4+という形式原子価から乖離し、5V付近(Li金属負極基準)の電池容量が低下する。α=0(Ni:Mn=0.25:0.75(モル比))が好ましい。
本発明のニッケル-マンガン系複合酸化物は、異種金属(M1,M2)を含まない場合(x=0及びy=0)でも十分な効果が発揮されるが、異種元素置換により、電池性能、特に充放電サイクルの安定性の向上やMnの溶出抑制効果が期待できる。異種金属は、Cr、Fe、Tiが好ましく、特に、Crが好ましい。
異種金属の含有量が多すぎると、スピネル型副格子内のNi-Mn規則配列の規則度が低下し、5V付近(Li金属負極基準)の電池容量が低下するため、0≦x≦0.1であり、0≦y≦0.25が必須である。特に、好ましくは、0≦x≦0.05であり、0≦y≦0.1である。
スピネル型副格子内のNi-Mn規則配列の規則度や5V付近(Li金属負極基準)の電池容量を維持するため、Niに対する異種元素置換量は少ない方が好ましい。
異種金属の含有量が多すぎると、スピネル型副格子内のNi-Mn規則配列の規則度が低下し、5V付近(Li金属負極基準)の電池容量が低下するため、0≦x≦0.1であり、0≦y≦0.25が必須である。特に、好ましくは、0≦x≦0.05であり、0≦y≦0.1である。
スピネル型副格子内のNi-Mn規則配列の規則度や5V付近(Li金属負極基準)の電池容量を維持するため、Niに対する異種元素置換量は少ない方が好ましい。
本発明のニッケル-マンガン系複合酸化物の具体的な好ましい化学組成としては、例えば、(Ni0.25Mn0.75)3O4、(Ni0.25Mn0.65Ti0.10)3O4、(Ni0.20Fe0.05Mn0.75)3O4、(Ni0.23Mg0.02Mn0.75)3O4、(Ni0.23Zn0.02Mn0.75)3O4等が挙げられる。なかでも、(Ni0.25Mn0.75)3O4が好ましい。
本発明のニッケル-マンガン系複合酸化物は、結晶構造が正方晶スピネル型である。正方晶スピネル型であることにより、Ni及びMnの元素分布が均一化され、Ni-Mn規則配列が実現しやすい利点がある。また、原料及び最終生成物であるリチウム-ニッケル-マンガン系複合酸化物の両方がスピネル型構造であることで、原料とリチウム化合物との反応が円滑に進行する可能性がある。
ここに、正方晶スピネル型とは、結晶格子が正方晶に分類され、結晶構造はスピネル型であるものをいい、空間群がI41/amdである。
ここに、正方晶スピネル型とは、結晶格子が正方晶に分類され、結晶構造はスピネル型であるものをいい、空間群がI41/amdである。
結晶構造の格子定数aが5.7~5.9Åであり、格子定数cが8.8~9.4Åである場合、正方晶スピネル型酸化物の含有率が高く主相である。副相として、オキシ水酸化物、ハイドロタルサイト型水酸化物のいずれか又は両方が微量生成する。さらに好ましくは、格子定数aが5.8~5.9Å、格子定数cが8.8~9.1Åである。この場合、極めて単一結晶相に近い結晶相が得られる。
本発明のニッケル-マンガン系複合酸化物のタップ密度は、電極中の正極活物質の充填性がエネルギー密度に影響するため、1.0g/cm3以上であることが好ましく、1.5g/cm3以上であることがさらに好ましく、2.0g/cm3以上であることが特に好ましい。通常、好ましくは、2.5g/cm3以下である。タップ密度が1.0g/cm3以上であれば、本発明のニッケル―マンガン系複合酸化物を原料として得られるリチウム-ニッケル-マンガン系複合酸化物の充填性が高くなりやすい。
本発明のニッケル-マンガン系複合酸化物は、理論平均原子価が2.7価のため、化学組成式中のNi、Mn、M1及びM2の平均原子価が2.5~2.9であることが好ましく、2.6~2.7がさらに好ましい。ここに、平均原子価は、ヨードメトリー法により求める。
本発明のニッケル-マンガン系複合酸化物の平均粒子径は、電極を形成しやすい粒子径に適合させるため、5~20μmが好ましく、5~10μmがさらに好ましい。なお、平均粒子径とは、一次粒子が凝集した二次粒子の平均粒子径、いわゆる凝集粒子径である。本発明における平均粒子径は、体積平均粒子径(D50)を意味し、粒子の分散スラリーを、レーザー回析法の粒度分布測定装置により求めた体積分布から求めるものである。
本発明のニッケル-マンガン系複合酸化物の比表面積は、特に限定するものではないが、高い充填性が得られやすいため、70m2/g以下であることが好ましく、50m2/g以下であることがさらに好ましく、30m2/g以下であることが特に好ましく、10m2/g以下であることが最も好ましい。通常、好ましくは、5m2/g以上である。一般的には、充填性と比表面積とは相関関係があるため、低比表面積の方が高い充填性の粉末が得られやすい。
本発明のニッケル-マンガン系複合酸化物の粒子径分布は、例えば、単分散の粒子径分布、二峰性の粒子径分布等が挙げられる。
単分散、すなわち、モノモーダルな分布を有する粒子径分布である場合には、正極とした際にも粒子径が均一であるため、その充放電反応はより均一なものとなる。
単分散、すなわち、モノモーダルな分布を有する粒子径分布である場合には、正極とした際にも粒子径が均一であるため、その充放電反応はより均一なものとなる。
本発明のニッケル-マンガン系複合酸化物は、化学組成式が、(Ni(0.25+α)-xM1xMn(0.75-α)-yM2y)3O4(M1及びM2は、それぞれ独立して、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種)で表されるものであるが、その効果を阻害しない限り、化学組成式に含まれる金属とは別に、例えば、Mg、Ca、Na、K等のアルカリ金属、アルカリ土類金属等のその他の金属を含有していてもよい。その他の金属の含有量は、極力少ない方が好ましいが、適量含むことで、サイクル性能向上の効果がみられる場合がある。その他の金属の含有量が1000ppmを超えると、4V電位平坦部容量が増加し、エネルギー密度を損なう課題があるため、1000ppm以下であり、20~1000ppmが好ましく、200~1000ppmがさらに好ましく、300~600ppmが特に好ましい。
次に、本発明のニッケル-マンガン系複合酸化物の製造方法について説明する。
本発明のニッケル-マンガン系複合酸化物は、ニッケル及びマンガン、又はニッケル、マンガン、並びにMg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrからなる群から選ばれる1種以上を含む金属塩水溶液、苛性ソーダ水溶液及び酸化剤として酸素含有ガスを、pH7以上pH8.5未満、酸化還元電位-0.1~0.2Vで混合して混合水溶液を得て、該混合水溶液中で析出させることにより製造することができる。
本発明のニッケル-マンガン系複合酸化物は、ニッケル及びマンガン、又はニッケル、マンガン、並びにMg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrからなる群から選ばれる1種以上を含む金属塩水溶液、苛性ソーダ水溶液及び酸化剤として酸素含有ガスを、pH7以上pH8.5未満、酸化還元電位-0.1~0.2Vで混合して混合水溶液を得て、該混合水溶液中で析出させることにより製造することができる。
金属塩水溶液は、少なくともニッケル及びマンガンを含み、さらにMg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrからなる群から選ばれる1種以上の金属を含むことが好ましい。
金属塩水溶液としては、ニッケル及びマンガン、さらに他の所定の金属を含む硫酸塩、塩化物、硝酸塩、酢酸塩などを溶解させた水溶液や、硫酸、塩酸、硝酸などの無機酸、酢酸などの有機酸にニッケル及びマンガン、さらに他の所定の金属を溶解した水溶液等を挙げることができる。好ましい金属塩水溶液として、硫酸ニッケル及び硫酸マンガンを含む水溶液を例示することができる。
また、金属塩水溶液中のニッケル、マンガン、及び他の所定の金属の割合は、目的とするニッケル-マンガン系複合酸化物のニッケル、マンガン、及び他の所定の金属の割合となるようにするのが好ましい。
また、金属塩水溶液中のニッケル、マンガン、及び他の所定の金属の割合は、目的とするニッケル-マンガン系複合酸化物のニッケル、マンガン、及び他の所定の金属の割合となるようにするのが好ましい。
金属塩水溶液中のニッケル、マンガン、及び他の所定の金属の割合は、モル比で、(Ni+M1):(Mn+M2)=(0.25+α):(0.75-α)、Ni:M1=((0.25+α)-x):x、Mn:M2=((0.75-α)-y):yを挙げることができる。なかでも、αが0~0.01、xが0~0.1、yが0~0.25が好ましく、αが0、xが0~0.05、yが0~0.1がより好ましい。
金属塩水溶液中のニッケル、マンガンなどの全金属の合計濃度(金属濃度)は任意であるが、金属濃度は生産性に影響を及ぼすため、1.0mol/L以上が好ましく、2.0mol/L以上がさらに好ましい。通常、好ましくは、2.5mol/L以下である。
金属塩水溶液中のニッケル、マンガンなどの全金属の合計濃度(金属濃度)は任意であるが、金属濃度は生産性に影響を及ぼすため、1.0mol/L以上が好ましく、2.0mol/L以上がさらに好ましい。通常、好ましくは、2.5mol/L以下である。
苛性ソーダ水溶液は、水酸化ナトリウム水溶液であり、例えば、固形状水酸化ナトリウムを水溶させたものや食塩電解から生成した水酸化ナトリウム水溶液を濃度調整したもの等を用いることができる。
酸化剤としては、酸素含有ガスが好ましく用いられる。酸化剤が酸素含有ガスでない場合(例えば、過硫酸ソーダ、塩素酸ソーダ等)は、目的とする正方晶スピネル型酸化物が得られない。酸素含有ガスとしては、例えば、空気、酸素等を例示することができる。経済上、空気が最も好ましい。空気や酸素などのガスはバブラー(Bubbler)などを用いてバブリングさせることで添加する。
酸化剤としては、酸素含有ガスが好ましく用いられる。酸化剤が酸素含有ガスでない場合(例えば、過硫酸ソーダ、塩素酸ソーダ等)は、目的とする正方晶スピネル型酸化物が得られない。酸素含有ガスとしては、例えば、空気、酸素等を例示することができる。経済上、空気が最も好ましい。空気や酸素などのガスはバブラー(Bubbler)などを用いてバブリングさせることで添加する。
金属塩水溶液、苛性ソーダ水溶液及び酸化剤としての酸素含有ガスを、pH7以上pH8.5未満、酸化還元電位-0.1~0.2Vで混合することにより混合水溶液が得られ、該混合水溶液から本発明のニッケル-マンガン系複合酸化物が析出する。
上記pHが8.5以上であると、オキシ水酸化物が主相となり、目的とする酸化物が得られない。一方、pH7未満であると、ハイドロタルサイト型水酸化物が主相とした結晶相となる。ハイドロタルサイト型水酸化物は、層間に不純物となる硫酸イオンなどのアニオンを取り込みやすい。このため、正方晶スピネル型酸化物をより容易に得るためには、pH7.5以上pH8.5未満が好ましく、単一結晶相に近づけるためにはpH8以上pH8.5未満がさらに好ましい。
上記pHが8.5以上であると、オキシ水酸化物が主相となり、目的とする酸化物が得られない。一方、pH7未満であると、ハイドロタルサイト型水酸化物が主相とした結晶相となる。ハイドロタルサイト型水酸化物は、層間に不純物となる硫酸イオンなどのアニオンを取り込みやすい。このため、正方晶スピネル型酸化物をより容易に得るためには、pH7.5以上pH8.5未満が好ましく、単一結晶相に近づけるためにはpH8以上pH8.5未満がさらに好ましい。
上記酸化還元電位も生成相に影響し、酸化還元電位が0.2Vを超えると、オキシ水酸化物の副生が顕在化する。一方、酸化還元電位が-0.1V未満であると、ハイドロタルサイト型水酸化物の副生が顕在化する。単一結晶相により近づけるためには-0.1~0.1Vの範囲がさらに好ましい。酸化還元電位は酸素含有ガスの供給量により制御可能である。
金属塩水溶液、苛性ソーダ水溶液及び酸化剤を混合するときの温度は、特に限定するものではないが、酸化反応が進みやすくなり、ニッケル-マンガン系複合酸化物がより析出しやすくなるため、50℃以上が好ましく、60℃以上がさらに好ましく、60~70℃が特に好ましい。
金属塩水溶液、苛性ソーダ水溶液及び酸化剤を混合するときの温度は、特に限定するものではないが、酸化反応が進みやすくなり、ニッケル-マンガン系複合酸化物がより析出しやすくなるため、50℃以上が好ましく、60℃以上がさらに好ましく、60~70℃が特に好ましい。
金属塩水溶液、苛性ソーダ水溶液及び酸化剤の混合によりpHが変動する場合がある。この場合、苛性ソーダ水溶液以外のアルカリ水溶液を混合水溶液に適宜混合することで、pHを制御することができる。苛性ソーダ水溶液以外のアルカリ水溶液の混合は、連続的に行ってもよく、断続的に行ってもよい。苛性ソーダ水溶液以外のアルカリ水溶液としては、例えば、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水溶液が例示できる。また、アルカリ水溶液のアルカリ濃度は、例えば1mol/L以上であり、好ましくは、5~10mol/Lである。
なお、本発明のニッケル-マンガン系複合酸化物の製造の際には、錯化剤を添加することができる。錯化剤を共存させると、ニッケルイオンの溶解度が増加し、粒子表面が円滑となり球形度が向上する。その結果、タップ密度が向上するという利点がある。錯化剤としては、アンモニア、アンモニウム塩又はアミノ酸が好適である。
アンモニアとしては、例えば、アンモニア水等が例示され、アンモニウム塩としては、例えば、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、炭酸アンモニウム等が例示され、アミノ酸としては、例えば、グリシン、アラニン、アスパラギン、グルタミン、リシン等が例示される。
該錯化剤は、金属塩水溶液とともにフィード(feed)させるのが好ましい。その濃度は、アンモニア又はアンモニウム塩では、NH3/遷移金属モル比として0.1~2が好ましく、さらに好ましくは0.5~1であり、アミノ酸では、アミノ酸/遷移金属モル比として0.001~0.25が好ましく、さらに好ましくは0.005~0.1である。
本発明のニッケル-マンガン系複合酸化物の製造は、雰囲気制御は必要なく、通常の大気雰囲気下で行うことが可能である。
該錯化剤は、金属塩水溶液とともにフィード(feed)させるのが好ましい。その濃度は、アンモニア又はアンモニウム塩では、NH3/遷移金属モル比として0.1~2が好ましく、さらに好ましくは0.5~1であり、アミノ酸では、アミノ酸/遷移金属モル比として0.001~0.25が好ましく、さらに好ましくは0.005~0.1である。
本発明のニッケル-マンガン系複合酸化物の製造は、雰囲気制御は必要なく、通常の大気雰囲気下で行うことが可能である。
ニッケル-マンガン系複合酸化物が得られる限り、混合時間は任意である。例えば、3~48時間が挙げられ、好ましくは6~24時間である。
本発明のニッケル-マンガン系複合酸化物の製造方法では、ニッケル-マンガン系複合酸化物が析出した後に、洗浄及び乾燥を行う。
洗浄では、ニッケル-マンガン系複合酸化物に付着、吸着した不純物を除去する。洗浄方法としては、例えば、水にニッケル-マンガン系複合酸化物を添加し、撹拌して、洗浄する方法等が例示できる。
乾燥では、ニッケル-マンガン系複合酸化物の水分を除去する。乾燥方法としては、例えば、ニッケル-マンガン系複合酸化物を110~150℃、好ましくは110~120℃で2~15時間乾燥すること等が挙げられる。
本発明のニッケル-マンガン系複合酸化物の製造方法では、ニッケル-マンガン系複合酸化物が析出した後に、洗浄及び乾燥を行う。
洗浄では、ニッケル-マンガン系複合酸化物に付着、吸着した不純物を除去する。洗浄方法としては、例えば、水にニッケル-マンガン系複合酸化物を添加し、撹拌して、洗浄する方法等が例示できる。
乾燥では、ニッケル-マンガン系複合酸化物の水分を除去する。乾燥方法としては、例えば、ニッケル-マンガン系複合酸化物を110~150℃、好ましくは110~120℃で2~15時間乾燥すること等が挙げられる。
本発明の製造方法では、洗浄し、乾燥した後に、粉砕を行ってもよい。
粉砕では、用途に適した平均粒子径の粉末とする。所望の平均粒子径が得られる方法であれば、粉砕条件は任意であり、例えば、湿式粉砕、乾式粉砕等の方法が挙げられる。
本発明のニッケル-マンガン系複合酸化物は、金属元素の分散性が高く、リチウム-ニッケル-マンガン系複合酸化物の製造に使用することができる。
粉砕では、用途に適した平均粒子径の粉末とする。所望の平均粒子径が得られる方法であれば、粉砕条件は任意であり、例えば、湿式粉砕、乾式粉砕等の方法が挙げられる。
本発明のニッケル-マンガン系複合酸化物は、金属元素の分散性が高く、リチウム-ニッケル-マンガン系複合酸化物の製造に使用することができる。
本発明のニッケル-マンガン系複合酸化物を原料として、リチウム-ニッケル-マンガン系複合酸化物を製造する場合、その製造方法は、ニッケル-マンガン系複合酸化物とリチウム化合物とを混合する混合工程と、焼成工程とを有することが好ましい。
混合工程において、リチウム化合物は任意のものを用いることができる。リチウム化合物として、水酸化リチウム、酸化リチウム、炭酸リチウム、ヨウ化リチウム、硝酸リチウム、シュウ酸リチウム及びアルキルリチウムからなる群から選ばれる1種以上が例示できる。好ましいリチウム化合物として、水酸化リチウム、酸化リチウム及び炭酸リチウムからなる群から選ばれる1種以上が例示できる。
焼成工程において、原料を混合後に焼成してリチウム-ニッケル-マンガン系複合酸化物を製造する。焼成は500~1000℃、好ましくは700~900℃の温度で、24~70時間、好ましくは24~48時間、空気中、酸素中など各種の雰囲気で行うことができる。
このように得られたリチウム-ニッケル-マンガン系複合酸化物は、リチウム二次電池の正極活物質として用いられる。
このように得られたリチウム-ニッケル-マンガン系複合酸化物は、リチウム二次電池の正極活物質として用いられる。
本発明のリチウム二次電池に用いる負極活物質としては、金属リチウム、又はリチウム若しくはリチウムイオンを吸蔵放出可能な物質を用いることができる。例えば、金属リチウム、リチウム/アルミニウム合金、リチウム/スズ合金、リチウム/鉛合金、又は電気化学的にリチウムイオンを挿入・脱離することができる炭素材料が例示される。特に、電気化学的にリチウムイオンを挿入・脱離することができる炭素材料が、安全性及び電池の特性の面から好適である。
また、本発明のリチウム二次電池で用いる電解質としては、例えば、カーボネート類、スルホラン類、ラクトン類、エーテル類等の有機溶媒中にリチウム塩を溶解したものや、リチウムイオン導電性の固体電解質を用いることができる。
また、本発明のリチウム二次電池で用いるセパレーターとしては、例えば、ポリエチレン製、ポリプロピレン製の微細多孔膜等を用いることができる。
また、本発明のリチウム二次電池で用いるセパレーターとしては、例えば、ポリエチレン製、ポリプロピレン製の微細多孔膜等を用いることができる。
本発明のリチウム二次電池の構成の一例として、例えば、導電剤との混合物をペレット状に成型した後、100~200℃で減圧乾燥して得られる成形物を電池用正極とし、金属リチウム箔からなる負極、及びエチレンカーボネートとジエチルカーボネートとの混合溶媒に、六フッ化リン酸リチウムを溶解した電解液を用いたもの等が挙げられる。
以下、本発明を実施例により更に具体的に説明するが、これらに限定されるものではない。
<化学組成の測定>
複合酸化物(複合化合物)の組成分析は、誘導結合プラズマ発光分析法(ICP法)により行った。すなわち、複合酸化物(複合化合物)を塩酸、及び過酸化水素の混合溶液に溶解させ、測定溶液を調製した。一般的な誘導結合プラズマ発光分析装置(商品名:OPTIMA3000DV、PERKIN ELMER社製)を用い、前記測定溶液中の複合酸化物(複合化合物)の組成を測定し、分析した。
複合酸化物(複合化合物)の組成分析は、誘導結合プラズマ発光分析法(ICP法)により行った。すなわち、複合酸化物(複合化合物)を塩酸、及び過酸化水素の混合溶液に溶解させ、測定溶液を調製した。一般的な誘導結合プラズマ発光分析装置(商品名:OPTIMA3000DV、PERKIN ELMER社製)を用い、前記測定溶液中の複合酸化物(複合化合物)の組成を測定し、分析した。
<金属の平均原子価の測定>
ニッケル、マンガンなどの金属の平均原子価をヨードメトリーにより測定した。複合酸化物(複合化合物)0.3gとヨウ化カリウム3.0gを、7N-塩酸溶液50mL(ミリリットル)に溶解させた後、1N-NaOH溶液200mLを添加し中和した。中和した試料液に対して、0.1N-チオ硫酸ナトリウム水溶液を滴下し、滴下量から平均原子価を計算した。なお、指示薬にはでんぷん溶液を用いた。
ニッケル、マンガンなどの金属の平均原子価をヨードメトリーにより測定した。複合酸化物(複合化合物)0.3gとヨウ化カリウム3.0gを、7N-塩酸溶液50mL(ミリリットル)に溶解させた後、1N-NaOH溶液200mLを添加し中和した。中和した試料液に対して、0.1N-チオ硫酸ナトリウム水溶液を滴下し、滴下量から平均原子価を計算した。なお、指示薬にはでんぷん溶液を用いた。
<粉末X線回折測定>
一般的なX線回折装置(商品名:MXP-3、マックサイエンス社製)を使用し、試料の粉末X線回折測定を行った。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャン、スキャン条件は毎秒0.04°、計測時間は3秒、測定範囲は2θとして5°から100°の範囲で測定した。
一般的なX線回折装置(商品名:MXP-3、マックサイエンス社製)を使用し、試料の粉末X線回折測定を行った。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャン、スキャン条件は毎秒0.04°、計測時間は3秒、測定範囲は2θとして5°から100°の範囲で測定した。
<結晶構造の解析>
上記条件のXRD測定で得られたXRDパターンにおいて、正方晶スピネル結晶相の構造精密化をRietveld法で行った。解析ソフトウェアであるRietan-2000を用いてパターンフィッティング(Pattern Fitting)することにより、格子定数a及びcを求めた。副生相であるオキシ水酸化物及びハイドロタルサイト型水酸化物については、それぞれ2θ=19.2°±0.5°及び2θ=11.7°±1.0°の、正方晶スピネル構造では帰属不可能な回折ピークを確認することにより、それらの生成を確認した。
上記条件のXRD測定で得られたXRDパターンにおいて、正方晶スピネル結晶相の構造精密化をRietveld法で行った。解析ソフトウェアであるRietan-2000を用いてパターンフィッティング(Pattern Fitting)することにより、格子定数a及びcを求めた。副生相であるオキシ水酸化物及びハイドロタルサイト型水酸化物については、それぞれ2θ=19.2°±0.5°及び2θ=11.7°±1.0°の、正方晶スピネル構造では帰属不可能な回折ピークを確認することにより、それらの生成を確認した。
<粒度分布、及び平均粒子径の測定>
複合酸化物(複合化合物)0.5gを0.1Nアンモニア水50mL中に投入し、10秒間超音波照射して分散スラリーとした。当該分散スラリーを粒度分布測定装置(商品名:マイクロトラックHRA、HONEWELL社製)に投入し、レーザー回折法で体積分布の測定を行なった。得られた体積分布から粒度分布及び平均粒子径(D50、μm)を求めた。
複合酸化物(複合化合物)0.5gを0.1Nアンモニア水50mL中に投入し、10秒間超音波照射して分散スラリーとした。当該分散スラリーを粒度分布測定装置(商品名:マイクロトラックHRA、HONEWELL社製)に投入し、レーザー回折法で体積分布の測定を行なった。得られた体積分布から粒度分布及び平均粒子径(D50、μm)を求めた。
<タップ密度の測定>
複合酸化物(複合化合物)2gを10mLのガラス製メスシリンダーに充填し、これを200回タッピングした。重量及びタッピング後の体積から、タップ密度(g/cm3)を算出した。
複合酸化物(複合化合物)2gを10mLのガラス製メスシリンダーに充填し、これを200回タッピングした。重量及びタッピング後の体積から、タップ密度(g/cm3)を算出した。
<比表面積の測定>
流動式比表面積自動測定装置(商品名:フローソーブ3-2305、Micrometrics社製)を用い、複合酸化物(複合化合物)1.0gを、窒素気流中150℃、1時間前処理した後、BET1点法にて吸脱着面積を測定した後、重量で除することで比表面積(m2/g)を求めた。
流動式比表面積自動測定装置(商品名:フローソーブ3-2305、Micrometrics社製)を用い、複合酸化物(複合化合物)1.0gを、窒素気流中150℃、1時間前処理した後、BET1点法にて吸脱着面積を測定した後、重量で除することで比表面積(m2/g)を求めた。
<電池性能評価>
リチウム-ニッケル-マンガン系複合酸化物の正極としての電池特性試験を行った。
リチウム-ニッケル-マンガン系複合酸化物と導電剤のポリテトラフルオロエチレンとアセチレンブラックとの混合物(商品名:TAB-2)を、重量比で4:1の割合で混合し、1ton/cm2の圧力で、メッシュ(SUS316製)上にペレット状に成型した後、150℃で減圧乾燥し、電池用正極を作製した。得られた電池用正極と、金属リチウム箔(厚さ0.2mm)からなる負極、及びエチレンカーボネートとジエチルカーボネートの混合溶媒に、六フッ化リン酸リチウムを1mol/dm3の濃度で溶解した電解液を用いて電池を構成した。当該電池を用いて、定電流で電池電圧が4.9Vから3.0Vの間、室温下で充放電させた。電流密度0.4mA/cm2で充放電し、それぞれの比容量(mAh/g)を測定した。
リチウム-ニッケル-マンガン系複合酸化物の正極としての電池特性試験を行った。
リチウム-ニッケル-マンガン系複合酸化物と導電剤のポリテトラフルオロエチレンとアセチレンブラックとの混合物(商品名:TAB-2)を、重量比で4:1の割合で混合し、1ton/cm2の圧力で、メッシュ(SUS316製)上にペレット状に成型した後、150℃で減圧乾燥し、電池用正極を作製した。得られた電池用正極と、金属リチウム箔(厚さ0.2mm)からなる負極、及びエチレンカーボネートとジエチルカーボネートの混合溶媒に、六フッ化リン酸リチウムを1mol/dm3の濃度で溶解した電解液を用いて電池を構成した。当該電池を用いて、定電流で電池電圧が4.9Vから3.0Vの間、室温下で充放電させた。電流密度0.4mA/cm2で充放電し、それぞれの比容量(mAh/g)を測定した。
実施例1
硫酸ニッケル及び硫酸マンガンを純水に溶解し、1.5mol/L(リットル)の硫酸ニッケル及び0.5mol/Lの硫酸マンガンを含む水溶液を得て、これを金属塩水溶液とした(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)。
また、内容積1Lの反応容器に純水200gを入れた後、これを80℃まで昇温、維持した。
硫酸ニッケル及び硫酸マンガンを純水に溶解し、1.5mol/L(リットル)の硫酸ニッケル及び0.5mol/Lの硫酸マンガンを含む水溶液を得て、これを金属塩水溶液とした(金属塩水溶液中の全金属の合計濃度は2.0mol/Lであった)。
また、内容積1Lの反応容器に純水200gを入れた後、これを80℃まで昇温、維持した。
当該金属塩水溶液を供給速度0.28g/minで反応容器に添加した。また、酸化剤として空気を、供給速度0.2L/minで反応容器中にバブリングした。金属塩水溶液及び空気供給の際、pHが8.4となるように、2mol/Lの水酸化ナトリウム水溶液(苛性ソーダ水溶液)を断続的に添加して混合水溶液とし、該混合水溶液中でニッケル-マンガン系複合酸化物が析出し、スラリーを得た。この際の酸化還元電位は0.02Vであった。得られたスラリーをろ過し、洗浄した後、そのウェットケーキを115℃で5時間乾燥することで、ニッケル-マンガン系複合酸化物[(Ni0.26Mn0.74)3O4]を得た。
得られたニッケル-マンガン系複合酸化物のXRDパターンから、正方晶スピネル構造を主相、微量のハイドロタルサイト型水酸化物が副相であった。
当該ニッケル-マンガン系複合酸化物の測定結果を、実施例2~4の測定結果とあわせて、表1に示す。
得られたニッケル-マンガン系複合酸化物のXRDパターンから、正方晶スピネル構造を主相、微量のハイドロタルサイト型水酸化物が副相であった。
当該ニッケル-マンガン系複合酸化物の測定結果を、実施例2~4の測定結果とあわせて、表1に示す。
実施例2
pHが8.0となるように2mol/Lの水酸化ナトリウム水溶液を断続的に添加したこと、及び1mol/Lの硫酸アンモニウム溶液を金属塩水溶液と等量添加したこと以外は、実施例1と同様な方法でスラリーを得た。この際の酸化還元電位は0.10Vであった。得られたスラリーをろ過し、洗浄した後、乾燥することでニッケル-マンガン系複合酸化物[(Ni0.25Mn0.75)3O4]を得た。
得られたニッケル-マンガン系複合酸化物のXRDパターンからは、2θ=12°付近に弱い散漫散乱がみられるものの、ほぼ正方晶スピネル型構造の単一結晶相であった。
pHが8.0となるように2mol/Lの水酸化ナトリウム水溶液を断続的に添加したこと、及び1mol/Lの硫酸アンモニウム溶液を金属塩水溶液と等量添加したこと以外は、実施例1と同様な方法でスラリーを得た。この際の酸化還元電位は0.10Vであった。得られたスラリーをろ過し、洗浄した後、乾燥することでニッケル-マンガン系複合酸化物[(Ni0.25Mn0.75)3O4]を得た。
得られたニッケル-マンガン系複合酸化物のXRDパターンからは、2θ=12°付近に弱い散漫散乱がみられるものの、ほぼ正方晶スピネル型構造の単一結晶相であった。
実施例3
0.5mol/Lの硫酸アンモニウム溶液を用いた以外は、実施例2と同様な方法でスラリーを得た。この際の酸化還元電位は0.06Vであった。得られたスラリーをろ過し、洗浄した後、乾燥することでニッケル-マンガン系複合酸化物[(Ni0.26Mn0.74)3O4]を得た。
得られたニッケル-マンガン系酸化物のXRDパターンからは、2θ=12°付近に弱い散漫散乱がみられ、2θ=19°付近にオキシ水酸化物に対応する弱い回折ピークがみられた。正方晶スピネル型構造の結晶相比率は他の副相に比べ高いことは明らかである。
0.5mol/Lの硫酸アンモニウム溶液を用いた以外は、実施例2と同様な方法でスラリーを得た。この際の酸化還元電位は0.06Vであった。得られたスラリーをろ過し、洗浄した後、乾燥することでニッケル-マンガン系複合酸化物[(Ni0.26Mn0.74)3O4]を得た。
得られたニッケル-マンガン系酸化物のXRDパターンからは、2θ=12°付近に弱い散漫散乱がみられ、2θ=19°付近にオキシ水酸化物に対応する弱い回折ピークがみられた。正方晶スピネル型構造の結晶相比率は他の副相に比べ高いことは明らかである。
実施例4
pHが8.0となるように2mol/Lの水酸化ナトリウム水溶液を断続的に添加したこと、及び3mol/Lの硫酸アンモニウム溶液を0.38g/minで金属塩水溶液と等量添加したこと以外は、実施例1と同様な方法でスラリーを得た。この際の酸化還元電位は0.03Vであった。得られたスラリーをろ過し、洗浄した後、乾燥することでニッケル-マンガン系複合酸化物[(Ni0.24Mn0.76)3O4]を得た。
得られたニッケル-マンガン系複合酸化物のXRDパターンからは、2θ=12°付近に極めて弱い散漫散乱がみられるものの、ほぼ正方晶スピネル型構造の単一結晶相であった。
pHが8.0となるように2mol/Lの水酸化ナトリウム水溶液を断続的に添加したこと、及び3mol/Lの硫酸アンモニウム溶液を0.38g/minで金属塩水溶液と等量添加したこと以外は、実施例1と同様な方法でスラリーを得た。この際の酸化還元電位は0.03Vであった。得られたスラリーをろ過し、洗浄した後、乾燥することでニッケル-マンガン系複合酸化物[(Ni0.24Mn0.76)3O4]を得た。
得られたニッケル-マンガン系複合酸化物のXRDパターンからは、2θ=12°付近に極めて弱い散漫散乱がみられるものの、ほぼ正方晶スピネル型構造の単一結晶相であった。
実施例5
実施例4で得られたニッケル-マンガン系複合酸化物と炭酸リチウムとを混合し、空気流中、900℃で10時間焼成した後、700℃で48時間焼成することにより、リチウム‐ニッケル-マンガン系複合酸化物を合成した。化学組成分析の結果から、組成式はLi2NiMn3O8と表すことができた。また、XRDパターンからは、ニッケル-マンガン規則配列に対応する超格子ピークが明瞭に観察された。
実施例4で得られたニッケル-マンガン系複合酸化物と炭酸リチウムとを混合し、空気流中、900℃で10時間焼成した後、700℃で48時間焼成することにより、リチウム‐ニッケル-マンガン系複合酸化物を合成した。化学組成分析の結果から、組成式はLi2NiMn3O8と表すことができた。また、XRDパターンからは、ニッケル-マンガン規則配列に対応する超格子ピークが明瞭に観察された。
当該リチウム‐ニッケル-マンガン系複合酸化物の電池性能評価を行った。充放電曲線から、Mn4+/3+酸化還元に対応する4V付近の電位平坦部が3mAh/g程度と少なく、Ni4+/3+酸化還元に対応する5V付近の容量を損なわないことが判明した。また、10サイクルまで容量低下がみられないことから、充放電サイクル性能が良好であることが分かった。
比較例1
pHを10としたこと以外は、実施例1と同様な方法によりスラリーを得た。この際の酸化還元電位は0.43Vであった。
得られたスラリーをろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、オキシ水酸化物に特徴的なパターンを示し、正方晶スピネル型酸化物に対応する回折ピークはみられなかった。
当該ニッケル-マンガン系複合化合物の測定結果を、比較例2~4の測定結果とあわせて、表2に示す。
pHを10としたこと以外は、実施例1と同様な方法によりスラリーを得た。この際の酸化還元電位は0.43Vであった。
得られたスラリーをろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、オキシ水酸化物に特徴的なパターンを示し、正方晶スピネル型酸化物に対応する回折ピークはみられなかった。
当該ニッケル-マンガン系複合化合物の測定結果を、比較例2~4の測定結果とあわせて、表2に示す。
比較例2
pHを6としたこと以外は、実施例1と同様な方法によりスラリーを得た。この際の酸化還元電位は0.21Vであった。
得られたスラリーをろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、ハイドロタルサイト型水酸化物を主相とした結晶相であることが分かった。
pHを6としたこと以外は、実施例1と同様な方法によりスラリーを得た。この際の酸化還元電位は0.21Vであった。
得られたスラリーをろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、ハイドロタルサイト型水酸化物を主相とした結晶相であることが分かった。
比較例3
酸化剤を30重量%過硫酸ソーダ水溶液(供給速度0.28g/min)としたこと以外は、実施例1と同様な方法でスラリーを得た。この際の酸化還元電位は0.67Vであった。
得られたスラリーをろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、正方晶スピネル型酸化物とはピーク位置が異なり、全てのピーク形状がブロードなパターン形状を示した。
酸化剤を30重量%過硫酸ソーダ水溶液(供給速度0.28g/min)としたこと以外は、実施例1と同様な方法でスラリーを得た。この際の酸化還元電位は0.67Vであった。
得られたスラリーをろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、正方晶スピネル型酸化物とはピーク位置が異なり、全てのピーク形状がブロードなパターン形状を示した。
比較例4
酸化剤を15重量%過酸化水素水(供給速度0.28g/min)としたこと以外は、実施例1と同様な方法でスラリーを得た。この際の酸化還元電位は0.11Vであった。
得られたスラリーをろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、オキシ水酸化物が主相、少量の正方晶スピネル酸化物を副相とした混合相となった。
表2から明らかなように、pH6及び10での酸素含有ガスでの反応、及び酸化剤に酸素含有ガスとは異なる過硫酸ソーダ、又は過酸化水素を用いた際は、純分の高い正方晶スピネル型酸化物は得られない。
酸化剤を15重量%過酸化水素水(供給速度0.28g/min)としたこと以外は、実施例1と同様な方法でスラリーを得た。この際の酸化還元電位は0.11Vであった。
得られたスラリーをろ過し、洗浄した後、乾燥することで、ニッケル-マンガン系複合化合物を得た。
得られたニッケル-マンガン系複合化合物は、そのXRDパターンにおいて、オキシ水酸化物が主相、少量の正方晶スピネル酸化物を副相とした混合相となった。
表2から明らかなように、pH6及び10での酸素含有ガスでの反応、及び酸化剤に酸素含有ガスとは異なる過硫酸ソーダ、又は過酸化水素を用いた際は、純分の高い正方晶スピネル型酸化物は得られない。
本発明のニッケル-マンガン系複合酸化物は、リチウム二次電池の正極活物質などに用いられるリチウム-ニッケル-マンガン系複合酸化物の前駆体として使用することができ、そのリチウム-ニッケル-マンガン系複合酸化物を電池用正極として使用した高性能なリチウム二次電池を構成することが可能となる。
なお、2013年11月8日に出願された日本特許出願2013-232446号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
なお、2013年11月8日に出願された日本特許出願2013-232446号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (10)
- 化学組成式が、(Ni(0.25+α)-xM1xMn(0.75-α)-yM2y)3O4(M1及びM2はそれぞれ独立して、Mg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrから選ばれる1種を表し、0≦x≦0.1、0≦y≦0.25であり、-0.05≦α≦0.05である。)で表され、結晶構造が正方晶スピネル型構造であることを特徴とするニッケル-マンガン系複合酸化物。
- 空間群がI41/amdであり、格子定数aが5.7~5.9Åであり、かつ格子定数cが8.8~9.4Åであることを特徴とする請求項1に記載のニッケル-マンガン系複合酸化物。
- 正方晶スピネル型構造が主相であり、副相としてオキシ水酸化物、ハイドロタルサイト型水酸化物のいずれか、又は両方を含むことを特徴とする請求項1又は2に記載のニッケル-マンガン系複合酸化物。
- Ni、Mn、M1及びM2の平均原子価が2.5~2.9であることを特徴とする請求項1~3のいずれかの項に記載のニッケル-マンガン系複合酸化物。
- 平均粒子径が5~20μmであることを特徴とする請求項1~4のいずれかの項に記載のニッケル-マンガン系複合酸化物。
- ニッケル及びマンガン、又はニッケル、マンガン、並びにMg、Al、Ti、V、Cr、Fe、Co、Cu、Zn及びZrからなる群から選ばれる1種以上を含む金属塩水溶液、苛性ソーダ水溶液及び酸化剤として酸素含有ガスを、pH7以上pH8.5未満、酸化還元電位-0.1~0.2Vで混合して混合水溶液を得て、該混合水溶液中で析出させることを特徴とする請求項1~5のいずれかの項に記載のニッケル-マンガン系複合酸化物の製造方法。
- さらに、錯化剤を添加することを特徴とする請求項6に記載のニッケル-マンガン系複合酸化物の製造方法。
- 錯化剤がアンモニア、アンモニウム塩又はアミノ酸であることを特徴とする請求項7に記載のニッケル-マンガン系複合酸化物の製造方法。
- 請求項1~5のいずれかの項に記載のニッケル-マンガン系複合酸化物とリチウム化合物を混合し、熱処理して得られることを特徴とするリチウム-ニッケル-マンガン系複合酸化物。
- 請求項9に記載のリチウム-ニッケル-マンガン系複合酸化物を正極活物質として使用することを特徴とするリチウム二次電池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013232446 | 2013-11-08 | ||
JP2013-232446 | 2013-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015068735A1 true WO2015068735A1 (ja) | 2015-05-14 |
Family
ID=53041512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079358 WO2015068735A1 (ja) | 2013-11-08 | 2014-11-05 | ニッケル-マンガン系複合酸化物及びその製造方法、並びにその用途 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2015110509A (ja) |
TW (1) | TW201519498A (ja) |
WO (1) | WO2015068735A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017030994A (ja) * | 2015-07-29 | 2017-02-09 | 公立大学法人首都大学東京 | 無機系単分散球形微粒子、電池用電極並びに電池 |
EP3509141A4 (en) * | 2016-08-30 | 2019-09-25 | Shandong Yuhuang New Energy Technology Co., Ltd. | HIGH-QUALITY, LITHIUM AND MANGANESE-BASED POSITIVE ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY AND METHOD FOR SYNTHESIS THEREOF |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6665633B2 (ja) * | 2016-03-30 | 2020-03-13 | 東ソー株式会社 | ニッケル−マンガン複合オキシ水酸化物の製造法 |
JP6902424B2 (ja) * | 2017-08-01 | 2021-07-14 | 日揮触媒化成株式会社 | 複合金属酸化物の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003187802A (ja) * | 2001-11-08 | 2003-07-04 | Alcatel | リチウム二次電池のカソード活物質として高電圧で使用可能なリチウム挿入化合物 |
CN102683645A (zh) * | 2011-03-17 | 2012-09-19 | 中国科学院宁波材料技术与工程研究所 | 一种锂离子电池正极材料层状富锂锰基氧化物的制备方法 |
JP2013020736A (ja) * | 2011-07-07 | 2013-01-31 | Toda Kogyo Corp | 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池 |
-
2014
- 2014-10-14 JP JP2014210272A patent/JP2015110509A/ja active Pending
- 2014-11-05 WO PCT/JP2014/079358 patent/WO2015068735A1/ja active Application Filing
- 2014-11-05 TW TW103138280A patent/TW201519498A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003187802A (ja) * | 2001-11-08 | 2003-07-04 | Alcatel | リチウム二次電池のカソード活物質として高電圧で使用可能なリチウム挿入化合物 |
CN102683645A (zh) * | 2011-03-17 | 2012-09-19 | 中国科学院宁波材料技术与工程研究所 | 一种锂离子电池正极材料层状富锂锰基氧化物的制备方法 |
JP2013020736A (ja) * | 2011-07-07 | 2013-01-31 | Toda Kogyo Corp | 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池 |
Non-Patent Citations (4)
Title |
---|
D. G. WICKHAM ET AL.: "SOLID-PHASE EQUILIBRIA IN THE SYSTEM NiO-Mn2O3-O2", JOURNAL OF INORGANIC AND NUCLEAR CHEMISTRY, vol. 26, no. 8, August 1964 (1964-08-01), pages 1369 - 1377 * |
J. WANG ET AL.: "Synthesis and electrochemical properties of layered lithium transition metal oxides", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 8, 2011, pages 2544 - 2549 * |
S. L. CHENG ET AL.: "Cation distribution in nickel manganese oxide", JOURNAL OF APPLIED PHYSICS, vol. 111, no. 7, pages 07A321 /1 - 07A321/3 * |
X. -X. TANG ET AL.: "NiMn204 REVISITED", JOURNAL OF THE LESS-COMMON METALS, vol. 156, 1989, pages 357 - 368 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017030994A (ja) * | 2015-07-29 | 2017-02-09 | 公立大学法人首都大学東京 | 無機系単分散球形微粒子、電池用電極並びに電池 |
EP3509141A4 (en) * | 2016-08-30 | 2019-09-25 | Shandong Yuhuang New Energy Technology Co., Ltd. | HIGH-QUALITY, LITHIUM AND MANGANESE-BASED POSITIVE ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY AND METHOD FOR SYNTHESIS THEREOF |
Also Published As
Publication number | Publication date |
---|---|
TW201519498A (zh) | 2015-05-16 |
JP2015110509A (ja) | 2015-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI636613B (zh) | 鎳-錳系複合氧氫氧化物及其製造方法、以及其用途 | |
WO2014098238A1 (ja) | ニッケル-コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途 | |
JP5716001B2 (ja) | 無機化合物 | |
JP6357928B2 (ja) | ニッケル−マンガン系複合オキシ水酸化物及びその製造方法、並びにその用途 | |
KR101566595B1 (ko) | 망간 산화물 및 그 제조 방법, 그리고 그것을 사용한 리튬망간계 복합 산화물의 제조 방법 | |
EP2835353B1 (en) | Metal-containing trimanganese tetraoxide combined particles and their production process | |
JP2004002141A (ja) | リチウム−ニッケル−マンガン複合酸化物とその製造方法及びそれを用いるリチウムイオン二次電池 | |
JP5673932B2 (ja) | 立方晶岩塩型構造を有するリチウムマンガン系複合酸化物およびその製造方法 | |
WO2015068735A1 (ja) | ニッケル-マンガン系複合酸化物及びその製造方法、並びにその用途 | |
JP6686493B2 (ja) | ニッケル−マンガン−チタン系複合組成物及びその製造方法、並びにその用途 | |
JP6221310B2 (ja) | 四三酸化マンガン組成物及びその製造方法並びにその用途 | |
JP7206808B2 (ja) | コバルト-マンガン系複合酸化物及びその製造方法、並びにその用途 | |
JP6221309B2 (ja) | 金属化合物組成物及びその製造方法 | |
JP6123391B2 (ja) | 四三酸化マンガン及びその製造方法 | |
JP2017178748A (ja) | ニッケル−マンガン系複合化合物及びその製造方法 | |
JP2015182922A (ja) | 立方晶スピネル型構造ニッケル−マンガン系複合酸化物及びその製造方法、並びにその用途 | |
JP2017057115A (ja) | マンガン酸化物及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14859598 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14859598 Country of ref document: EP Kind code of ref document: A1 |