WO2014208704A1 - ポリイミド前駆体、及びポリイミド - Google Patents

ポリイミド前駆体、及びポリイミド Download PDF

Info

Publication number
WO2014208704A1
WO2014208704A1 PCT/JP2014/067079 JP2014067079W WO2014208704A1 WO 2014208704 A1 WO2014208704 A1 WO 2014208704A1 JP 2014067079 W JP2014067079 W JP 2014067079W WO 2014208704 A1 WO2014208704 A1 WO 2014208704A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical formula
polyimide
polyimide precursor
repeating unit
mmol
Prior art date
Application number
PCT/JP2014/067079
Other languages
English (en)
French (fr)
Inventor
卓也 岡
幸徳 小濱
祥行 渡辺
久野 信治
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2015524124A priority Critical patent/JP6350526B2/ja
Priority to US14/901,006 priority patent/US20160137787A1/en
Priority to KR1020167002122A priority patent/KR102190722B1/ko
Priority to CN201480047172.2A priority patent/CN105492496B/zh
Publication of WO2014208704A1 publication Critical patent/WO2014208704A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important

Definitions

  • the present invention relates to a polyimide precursor from which a polyimide having a low coefficient of linear thermal expansion and excellent heat resistance, solvent resistance, and mechanical properties can be obtained.
  • Polyimide is excellent in heat resistance, solvent resistance (chemical resistance), mechanical properties, electrical properties, etc., so it can be used in electrical and electronic equipment such as flexible wiring boards and tapes for TAB (Tape Automated Bonding). Widely used.
  • a polyimide obtained from an aromatic tetracarboxylic dianhydride and an aromatic diamine particularly a polyimide obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine is preferable. Is used.
  • polyimide is being studied as an alternative to a glass substrate in the field of display devices.
  • a display that is lightweight and excellent in flexibility and that can be bent and rolled can be realized.
  • high transparency is also required, but wholly aromatic polyimides obtained from aromatic tetracarboxylic dianhydrides and aromatic diamines are formed by intramolecular conjugation and charge transfer complex formation.
  • aromatic polyimides obtained from aromatic tetracarboxylic dianhydrides and aromatic diamines are formed by intramolecular conjugation and charge transfer complex formation.
  • intramolecular conjugation and charge transfer complex formation can be achieved by introducing fluorine atoms into the molecule, imparting flexibility to the main chain, and introducing bulky groups as side chains.
  • a method of inhibiting and expressing transparency has been proposed.
  • Patent Documents 1 to 6 and Non-Patent Document 1 describe various highly semi-alicyclic polyimides using alicyclic tetracarboxylic dianhydride as a tetracarboxylic acid component and aromatic diamine as a diamine component. Is disclosed. Such a semi-alicyclic polyimide has transparency, bending resistance, and high heat resistance. Semi-alicyclic polyimide generally tends to have a large linear thermal expansion coefficient, but semi-alicyclic polyimides having a relatively small linear thermal expansion coefficient have also been proposed.
  • a conductor such as metal is formed on a polyimide film as a substrate. Also in this case, if the linear thermal expansion coefficient of polyimide is large and the difference in the linear thermal expansion coefficient from the conductor is large, warping may occur when forming a circuit board, and circuit formation may be difficult. Therefore, a polyimide having a low linear thermal expansion coefficient is required.
  • a method of synthesizing polyimide by reacting a tetracarboxylic acid component and a diamine component there are thermal imidization and chemical imidization.
  • a polyimide when a polyimide is produced by chemical imidization, a polyimide having a relatively low linear thermal expansion coefficient can be obtained.
  • a chemical imidizing agent an acid anhydride such as acetic anhydride or an amine compound such as pyridine or isoquinoline
  • the chemical imidizing agent may cause coloring, which is not preferable in applications requiring transparency.
  • a polyimide precursor solution (or solution composition) is cast-coated on a substrate such as a glass substrate, and this is heat-treated to imidize to form a polyimide layer (polyimide film). After forming on a material, a circuit, a thin-film transistor, etc. are formed on the polyimide layer of the obtained polyimide laminated body. In this case, the linear thermal expansion coefficient of polyimide cannot be reduced by stretching.
  • a copolymer [poly (amide acid-imide) copolymer] in which a part of repeating units of an amic acid (or amic acid) structure has an imide structure is also known, for example, Patent Documents 7 to 13 and Non-Patent Documents 2 to 4.
  • Non-Patent Document 5 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and 4,4′-oxydianiline (ODA) are reacted to obtain a polyamic acid.
  • s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • ODA 4,4′-oxydianiline
  • pre-imidization rate Of 100%, 80%, 60%, 40%, 20%, 0% polyamic acid-polyimide solution and heat-treating it, the coefficient of linear thermal expansion (CTE) ) was measured, the higher the pre-imidization rate, the lower the linear thermal expansion coefficient.
  • CTE linear thermal expansion
  • the pre-imidization rate was 100%, that is, a polyimide solution that had been completely imidized was heat-treated. Linear thermal expansion coefficient of the polyimide film is described that has the lowest was (Fig.9). However, it is also described that the higher the pre-imidization rate (pre-ID), the lower the 5% weight loss temperature (T 5% ) and the lower the heat resistance (page 4162, right column, below). To 8-6 lines).
  • JP 2003-168800 A International Publication No. 2008/146737 JP 2002-69179 A JP 2002-146021 A JP 2008-31406 A International Publication No. 2011/099518 International Publication No. 2010/13412 JP 2005-336243 A JP 2006-206756 A Japanese Patent Laid-Open No. 9-185064 JP 2006-70096 A JP 2010-196041 A JP 2010-18802 A
  • a chemical imidizing agent an acid anhydride such as acetic anhydride or an amine compound such as pyridine or isoquinoline
  • thermal imidization it is generally performed to reduce the linear thermal expansion coefficient by a stretching operation.
  • the linear thermal expansion coefficient of polyimide cannot be reduced by stretching depending on the use or the polyimide production (film formation) process.
  • the present invention has been made in view of the situation as described above, and comprises a specific diamine component and a tetracarboxylic acid component produced by thermal imidization, and has heat resistance, solvent resistance, and mechanical properties. It aims at providing the polyimide precursor from which the polyimide which is excellent and has a low linear thermal expansion coefficient is obtained.
  • the present invention also provides a polyimide precursor having a low linear thermal expansion coefficient, a polyimide having excellent heat resistance, solvent resistance, and mechanical properties, more preferably a polyimide having excellent transparency. Objective.
  • the present invention relates to the following matters.
  • the content of the repeating unit represented by the following chemical formula (2) is 30 mol% or more and 90 mol% or less with respect to all the repeating units, 50 mol% or more of the total amount of B in the following chemical formula (1) and the following chemical formula (2) is represented by the divalent group represented by the following chemical formula (3) and / or the following chemical formula (4).
  • a polyimide precursor produced by thermal imidization which is one or more of divalent groups.
  • A is a tetravalent group obtained by removing a carboxyl group from tetracarboxylic acid
  • B is a divalent group obtained by removing an amino group from diamine, provided that A and A contained in each repeating unit are B may be the same or different
  • X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms.
  • V 1 , U 1 , and T 1 are each independently a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • Z 1 and W 1 are each independently a direct bond, or selected from the group consisting of groups represented by the formula: —NHCO—, —CONH—, —COO—, —OCO— 1 type to be used.
  • a in the chemical formula (1) and the chemical formula (2) is one or more of tetravalent groups obtained by removing a carboxyl group from an alicyclic tetracarboxylic acid. precursor.
  • a in the chemical formula (1) and the chemical formula (2) is one or more of tetravalent groups obtained by removing a carboxyl group from an aromatic tetracarboxylic acid. body.
  • Item 4 The polyimide precursor according to any one of Items 1 to 3, comprising a structure represented by the following chemical formula (5):
  • n is an integer of 1 to 1000.
  • Item 6 The varnish according to Item 5, which does not contain a chemical imidizing agent.
  • a method for producing the polyimide precursor according to any one of Items 1 to 4, A soluble imide containing a repeating unit represented by the chemical formula (2) by heating a tetracarboxylic acid component and a diamine component to 100 ° C. or higher in a solvent that does not contain a chemical imidizing agent and causing them to react thermally. Obtaining a reaction solution containing the compound; Item 5.
  • a method for producing the polyimide precursor according to any one of Items 1 to 4, A soluble imide containing a repeating unit represented by the chemical formula (2) by heating a tetracarboxylic acid component and a diamine component to 100 ° C. or higher in a solvent that does not contain a chemical imidizing agent and causing them to react thermally. Obtaining a reaction solution containing the compound; Isolating an imide compound containing a repeating unit represented by the chemical formula (2) from the obtained reaction solution; An imidization of less than 100 ° C.
  • a step of performing a reaction under the condition of suppressing the above to obtain a polyimide precursor according to any one of Items 1 to 4, A method characterized by comprising:
  • TAB film containing polyimide according to item 10 or 11 substrate for electric / electronic component, wiring substrate, insulating film for electric / electronic component, protective film for electric / electronic component, substrate for display, substrate for touch panel, or Solar cell substrate.
  • the present invention it is possible to provide a polyimide precursor that is produced by thermal imidization and that can obtain a polyimide having excellent heat resistance, solvent resistance, mechanical properties, and low linear thermal expansion coefficient without performing a stretching operation. .
  • the present invention can provide a polyimide precursor that provides a polyimide having a low linear thermal expansion coefficient, excellent heat resistance, solvent resistance, mechanical properties, and excellent transparency.
  • the linear thermal expansion coefficient of polyimide can be lowered while maintaining excellent properties without performing a stretching operation in thermal imidization, and further, heat resistance can be improved.
  • Example 3 is a 1 H-NMR spectrum of a polyimide precursor solution of Comparative Example 3.
  • 2 is a 1 H-NMR spectrum of a polyimide precursor solution of Example 19.
  • the polyimide precursor of the present invention comprises a repeating unit having an amic acid structure represented by the chemical formula (1) and a repeating unit having an imide structure represented by the chemical formula (2), and represented by the chemical formula (2).
  • the content of the repeating unit is 30 mol% or more and 90 mol% with respect to all repeating units [(repeating unit represented by chemical formula (1)) + (repeating unit represented by chemical formula (2))]. It is as follows. That is, the molar ratio of [(repeat unit represented by chemical formula (2)) / ⁇ (repeat unit represented by chemical formula (1)) + (repeat unit represented by chemical formula (2)) ⁇ ] is 30 moles. % To 90 mol%, and the imidization rate is 30% to 90%.
  • the content of the repeating unit represented by the chemical formula (2) with respect to all repeating units is 30 mol% or more (by producing a polyimide by imidizing a polyimide precursor having an imidization rate of 30% or more), it consists only of repeating units of an amic acid structure represented by the chemical formula (1), and the imidization rate is 0%. Compared with the case where a certain polyimide precursor is imidized, a polyimide having a low linear thermal expansion coefficient is obtained. Furthermore, heat resistance can also be improved.
  • the polyimide precursor of the present invention is 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more of the total diamine component, More preferably, 90 mol% or more, particularly preferably 100 mol%, is used as a diamine component that gives a repeating unit in which B is a divalent group represented by the chemical formula (3) or the chemical formula (4).
  • B is a divalent group represented by the chemical formula (3) or the chemical formula (4).
  • the resulting polyimide is excellent in solvent resistance, which means it is not soluble in organic solvents.
  • the content of the repeating unit represented by the chemical formula (2) with respect to all repeating units is 90 mol. % (Imidation rate exceeds 90%), the solubility of the polyimide precursor (or polyimide) is reduced, and the polyimide precursor (or polyimide) is precipitated, thereby obtaining a polyimide having excellent characteristics.
  • the content of the repeating unit represented by the chemical formula (2) with respect to all the repeating units [the total amount of the repeating unit represented by the chemical formula (1) and the repeating unit represented by the chemical formula (2)]. Is 90 mol% or less.
  • the polyimide precursor of the present invention was obtained by, for example, reacting a tetracarboxylic acid component and a diamine component under conditions in which an imidization reaction proceeds (an imide compound is generated), and then obtained. It can synthesize
  • the content of the repeating unit represented by the chemical formula (2) with respect to all the repeating units is a ratio of a tetracarboxylic acid component and a diamine component reacted under conditions where an imidization reaction proceeds (an imide compound is generated) and a tetracarboxylic acid component reacted under conditions that suppress imidization It can obtain
  • the tetracarboxylic acid component and the diamine component reacted under the conditions under which the imidization reaction proceeds give the repeating unit represented by the chemical formula (2), and the reaction is performed under conditions that suppress imidization.
  • the tetracarboxylic acid component and the diamine component give the repeating unit represented by the chemical formula (1).
  • the polymerization degree of the repeating unit of the imide structure represented by the chemical formula (2) (that is, n in the chemical formula (5)) is not particularly limited, and can be an integer of 1 to 1000, for example.
  • the polyimide precursor of the present invention can be synthesized, for example, by a two-step reaction. In this case, first, a tetracarboxylic acid component and a diamine component are reacted to form the chemical formula (2 The soluble imide compound which consists of a repeating unit represented by this is obtained.
  • the degree of polymerization of the repeating unit of the imide structure represented by the chemical formula (2) (that is, n in the chemical formula (5)) is changed. Can be controlled.
  • the tetracarboxylic acid component is larger than the stoichiometric ratio, an imide compound in which both ends are acid anhydride groups or carboxyl groups is obtained, and when the diamine component is larger than the stoichiometric ratio, both ends are amino groups. An imide compound as a group is obtained.
  • the repeating unit represented by the chemical formula (2) is used.
  • a solution containing an imide compound is obtained.
  • an imide compound having an amino group at both ends and a degree of polymerization (n) of 2 is obtained from the charged amounts of tetracarboxylic dianhydride and diamine.
  • the repeating unit represented by the chemical formula (2) is used.
  • a solution containing the imide compound and tetracarboxylic dianhydride is obtained.
  • an imide compound having an acid anhydride group or a carboxyl group at both ends and a polymerization degree (n) of 1 is obtained from the amounts of tetracarboxylic dianhydride and diamine charged.
  • the polyimide precursor of the present invention comprises a repeating unit of an amic acid structure represented by the chemical formula (1) and a repeating unit of an imide structure represented by the chemical formula (2), and the chemical formula (1). And 50 mol% or more of the total amount of B in the chemical formula (2), preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 100 mol%, It is a divalent group represented by the chemical formula (3) or the chemical formula (4).
  • the polyimide precursor of the present invention comprises a tetracarboxylic acid component and 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 100.
  • Mol% is a polyimide precursor obtained from a diamine represented by the following chemical formula (3A) and a diamine component that is one or more of the diamines represented by the following chemical formula (4A).
  • 4A chemical formula
  • the resulting polyimide has heat resistance and solvent resistance. Excellent properties such as properties and mechanical properties.
  • V 1 , U 1 , and T 1 are each independently a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • Z 1 and W 1 are each independently a direct bond, or selected from the group consisting of groups represented by the formula: —NHCO—, —CONH—, —COO—, —OCO— 1 type to be used.
  • 50 mol% or more of the total amount of B in the chemical formula (1) and the chemical formula (2) is one kind of a divalent group represented by the chemical formula (3) or the chemical formula (4), or If there are two or more kinds, less than 50 mol% of B in the chemical formula (1) or the chemical formula (2) is one kind of divalent group represented by the chemical formula (3) or the chemical formula (4). Or two or more, and 50 mol% or more may be one or more other groups.
  • the total amount of B in the chemical formula (1) and the chemical formula (2) is preferably not more than 80 mol% or less than 80 mol%, more preferably It may be preferable that 90 mol% or less or less than 90 mol% is a divalent group represented by the chemical formula (3) or the chemical formula (4).
  • Aromatic or aliphatic diamines [a diamine component other than the diamine represented by the chemical formula (3A) and the diamine represented by the chemical formula (4A)] in 100 mol% of the total diamine components, preferably 20 mol% or less , More preferably less than 20 mol%, more preferably 10 mol% or less, more preferably less than 10 mol%.
  • the diamine represented by the chemical formula (3A) and the chemical formula (4A) Examples of the diamine include p-phenylenediamine (PPD), 4,4′-diaminobenzanilide (DABAN), 2,2′-bis (trifluoromethyl) benzidine (TFMB), 9,9-bis ( 4-aminophenyl) fluorene (FDA), benzidine, 3,3′-diamino-biphenyl, 3,3′-bis (trifluoromethyl) benzidine, 3,3′-diaminobenzanilide, o-tolidine, m-tolidine N, N′-bis (4-aminophenyl) terephthalamide, N, N′-p-phenylenebis (p-aminobenzamide), 4 Aminophenyl-4-aminobenzoate, bis (4-aminopheny
  • diamine component examples include p-phenylenediamine, 4,4′-diaminobenzanilide, 2,2′-bis (trifluoromethyl) benzidine, benzidine, o-tolidine, m-tolidine, N, N′-bis (4 -Aminophenyl) terephthalamide, N, N'-p-phenylenebis (p-aminobenzamide), 4-aminophenyl-4-aminobenzoate, bis (4-aminophenyl) terephthalate, biphenyl-4,4'-dicarboxylic Acid bis (4-aminophenyl) ester, p-phenylenebis (p-aminobenzoate), bis (4-aminophenyl)-[1,1′-biphenyl] -4,4′-dicarboxylate, [1, Those containing 1′-biphenyl] -4,4′-diyl bis (4-aminobenzoate) are preferred
  • At least a part of B in the chemical formula (1) and / or the chemical formula (2) is represented by the following chemical formula (6-1) or (6-2). Particularly preferred is a divalent group.
  • the content is not particularly limited, but is preferably 30 mol% or more of the total amount of B in chemical formula (1) and chemical formula (2).
  • B is a divalent group represented by the chemical formula (3) or the chemical formula (4)
  • the diamine component other than the diamine represented by the above can be used in the range of less than 50 mol%.
  • Examples of such a diamine component include m-phenylenediamine, 2-methylbenzene-1,4-diamine, 2- (trifluoromethyl) benzene-1,4-diamine, and 9,9-bis (4- Aminophenyl) fluorene (FDA), 4,4′-oxydianiline, 3,4′-oxydianiline, 3,3′-oxydianiline, p-methylenebis (phenylenediamine), 1,3-bis (4 -Aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoro Propane, 2,2-bis (4-aminophenyl) hexafluoropropane, bis (4-aminophenyl) sulfone, 3,3-bis ((a Nophenoxy) phenyl) propane,
  • An aromatic diamine having a plurality of aromatic rings, such as -aminophenoxy) biphenyl, in which the aromatic rings are connected by an ether bond (—O—) is preferably 20 mol% or less, more preferably 20 mol. It may be preferred to use less than 10%, more preferably 10 mol% or less, more preferably less than 10 mol%.
  • the tetracarboxylic acid component used in the present invention is not particularly limited, and may be an alicyclic tetracarboxylic acid component or an aromatic tetracarboxylic acid component.
  • the tetracarboxylic acid component includes tetracarboxylic acid and tetracarboxylic acid derivatives such as tetracarboxylic dianhydride, tetracarboxylic acid silyl ester, tetracarboxylic acid ester, and tetracarboxylic acid chloride.
  • tetracarboxylic acid component examples include norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydride (CpODA), (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethananaphthalene-2t, 3t, 6c, 7c-tetracarboxylic dianhydride (DNDAxx), (4arH, 8acH) -decahydro- 1t, 4t: 5c, 8c-dimethanonaphthalene-2c, 3c, 6c, 7c-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic acid, 1,2,3,4-cyclobutane Tetracarboxylic dianhydride, [1,1′-bi (cyclohexane
  • a in the chemical formulas (1) and (2) is preferably a tetravalent group obtained by removing a carboxyl group from an aromatic tetracarboxylic acid.
  • tetracarboxylic acid component examples include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic Acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 4,4'-oxydiphthalic anhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride It is particularly preferable to use p-terphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride.
  • s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • pyromellitic dianhydride 3,3 ′, 4,4′-benzophenonetetracarboxylic Acid dianhydride
  • a in the chemical formulas (1) and (2) is preferably a tetravalent group obtained by removing a carboxyl group from an alicyclic tetracarboxylic acid.
  • tetracarboxylic acid component examples include norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid anhydride, (4 arH , 8acH) -decahydro-1t, 4t: It is particularly preferred to use 5c, 8c-dimethanonaphthalene-2t, 3t, 6c, 7c-tetracarboxylic dianhydride.
  • X 1 and X 2 in the chemical formula (1) are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms (more preferably a methyl group or an ethyl group), or 3 to 3 carbon atoms. 9 alkylsilyl group (more preferably, trimethylsilyl group or t-butyldimethylsilyl group).
  • X 1 and X 2 can change the type of functional group and the introduction rate of the functional group by a production method described later.
  • the introduction rate of the functional group is not particularly limited, but when an alkyl group or an alkylsilyl group is introduced, each of X 1 and X 2 is 25% or more, preferably 50% or more, more preferably 75% or more. Alternatively, it can be an alkylsilyl group.
  • the polyimide precursor of the present invention has a chemical structure taken by X 1 and X 2 , 1) partially imidized polyamic acid (X 1 and X 2 are hydrogen), 2) partially imidized polyamic acid ester (X 1 , X 2 At least a part of the alkyl group), 3) 4) a partially imidized polyamic acid silyl ester (at least a part of X 1 and X 2 is an alkylsilyl group).
  • the polyimide precursor of this invention can be manufactured with the following manufacturing methods for every classification. However, the manufacturing method of the polyimide precursor of this invention is not limited to the following manufacturing methods.
  • the polyimide precursor (partial imidized polyamic acid) of this invention can be manufactured by thermal imidation as follows, for example.
  • a tetracarboxylic dianhydride as a tetracarboxylic acid component and a diamine component are heated and reacted thermally, and expressed by the chemical formula (2).
  • a reaction solution containing a soluble imide compound composed of repeating units is obtained (first step).
  • the polyimide precursor of the present invention has a repeating unit represented by the chemical formula (2) with respect to all repeating units [total amount of the repeating unit represented by the chemical formula (1) and the repeating unit represented by the chemical formula (2)].
  • the content is 30 mol% or more and 90 mol% or less (that is, the imidization ratio is 30% or more and 90% or less).
  • the tetracarboxylic acid component or diamine component to be reacted here is the first step and the next step. It is preferably 30 to 90 mol% based on the total amount of the tetracarboxylic acid component or diamine component to be reacted in the two steps.
  • one of the tetracarboxylic acid component or diamine component added to the solvent is 30 to 90 with respect to the total amount of the tetracarboxylic acid component or diamine component to be reacted in the first step and the next second step. It is preferable that it is mol%.
  • the imide compound obtained here is a repeating represented by the chemical formula (1). It may contain a unit.
  • the molar ratio of the tetracarboxylic acid component to be reacted and the diamine component is the polymerization degree of the desired imide compound, that is, the polymerization degree of the repeating unit of the imide structure represented by the chemical formula (2) in the polyimide precursor [chemical formula ( 5) can be appropriately selected according to n].
  • a tetracarboxylic dianhydride as a tetracarboxylic acid component is reacted with a diamine component under a condition where the imidization reaction proceeds, specifically at a temperature of 100 ° C. or higher. More specifically, a diamine is dissolved in a solvent, and tetracarboxylic dianhydride is gradually added to the solution while stirring, and is added at a temperature of 100 ° C. or higher, preferably 120 to 250 ° C., and 0.5 to 72. By stirring for a time, a soluble imide compound is obtained. The order of addition of diamine and tetracarboxylic dianhydride may be reversed.
  • a polyimide precursor is produced by thermal imidization, and therefore no chemical imidizing agent is used.
  • the chemical imidizing agent is an acid anhydride (dehydrating agent) such as acetic anhydride, and an amine compound (catalyst) such as pyridine or isoquinoline.
  • the soluble imide compound composed of the repeating unit represented by the chemical formula (2) may be an acid anhydride group, a carboxyl group or an amino group at both ends.
  • the polyimide precursor of the present invention is prepared by adding a tetracarboxylic acid component and / or a diamine component to the reaction solution containing the soluble imide compound obtained in the first step, and performing a reaction under the conditions to suppress imidization. Is obtained (second step).
  • the molar ratio of the total amount of the tetracarboxylic acid component to be reacted in the first step and the second step and the total amount of the diamine component is approximately equimolar, preferably the molar ratio of the diamine component to the tetracarboxylic acid component [diamine component
  • the tetracarboxylic acid component and / or the diamine component are added so that the number of moles of the tetracarboxylic acid component] is 0.90 to 1.10, more preferably 0.95 to 1.05.
  • the reaction is carried out under conditions that suppress imidization, specifically at a temperature of less than 100 ° C. More specifically, diamine is added to the reaction solution containing the soluble imide compound obtained in the first step, and the mixture is stirred at less than 100 ° C., preferably in the range of ⁇ 20 to 80 ° C. for 1 to 72 hours.
  • the polyimide precursor of the present invention is obtained by adding carboxylic dianhydride and stirring for 1 to 72 hours at less than 100 ° C., preferably in the range of ⁇ 20 to 80 ° C.
  • the order of addition of diamine and tetracarboxylic dianhydride may be reversed, or diamine and tetracarboxylic dianhydride may be added simultaneously.
  • imidization may proceed, but all the repeating units of the polyimide precursor finally obtained [the repeating unit represented by the chemical formula (1) and the repeating unit represented by the chemical formula (2) Reaction temperature and reaction time such that the content of the repeating unit represented by the chemical formula (2) with respect to the total amount] is 30 mol% or more and 90 mol% or less (that is, the imidization ratio is 30% or more and 90% or less). Is appropriately selected.
  • the repeating unit of the imide structure represented by the chemical formula (2) is generated.
  • the repeating unit of the amic acid structure represented by the chemical formula (1) is mainly used. Generate.
  • a polyimide having a lower linear thermal expansion coefficient may be obtained by reacting a tetracarboxylic acid component giving a polymer having a large linear thermal expansion coefficient with a diamine component in the first step to form a repeating unit of an imide structure. .
  • Solvents used in preparing the polyimide precursor are, for example, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, 1-ethyl-2-pyrrolidone, 1,1,3, Aprotic solvents such as 3-tetramethylurea, 1,3-dimethyl-2-imidazolidinone and dimethyl sulfoxide are preferable, and N, N-dimethylacetamide and 1-methyl-2-pyrrolidone are particularly preferable. If the component and the polyimide precursor to be generated are dissolved, any type of solvent can be used without any problem, and the structure is not particularly limited.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone , Cyclic ester solvents such as ⁇ -methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol Phenol solvents such as acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably employed.
  • a soluble imide compound composed of the repeating unit represented by the chemical formula (2) is isolated from the obtained reaction solution, and in the second step, the soluble imide compound represented by the chemical formula (2) is isolated.
  • the polyimide precursor of the present invention can also be obtained by adding an imide compound comprising a repeating unit and a tetracarboxylic acid component and / or a diamine component to a solvent and reacting under conditions that suppress imidization.
  • the imide compound obtained in the first step is preferably an amino group at both ends. This is because when the terminal is an acid anhydride group, the acid anhydride may be ring-opened at the time of isolation and may be converted to carboxylic acid or the like.
  • Isolation of the soluble imide compound is, for example, by dropping or mixing the reaction solution containing the soluble imide compound obtained in the first step into a poor solvent such as water to precipitate (reprecipitate) the imide compound. It can be carried out.
  • reaction conditions in the first step and the second step are the same as described above.
  • the polyimide precursor (partially imidized polyamic acid) of the present invention can also be produced as follows.
  • a temperature of less than 100 ° C. a reaction solution containing a (poly) amic acid compound composed of a repeating unit represented by the chemical formula (1) (first step). More specifically, diamine is dissolved in a solvent not containing a chemical imidizing agent, and tetracarboxylic dianhydride is gradually added to this solution while stirring, and the temperature is less than 100 ° C., preferably ⁇ 20 to 80 ° C.
  • tetracarboxylic dianhydride is added, and the mixture is stirred at less than 100 ° C., preferably in the range of ⁇ 20 to 80 ° C. for 1 to 72 hours.
  • the order of addition of diamine and tetracarboxylic dianhydride may be reversed, or diamine and tetracarboxylic dianhydride may be added simultaneously.
  • the tetracarboxylic dianhydride as the tetracarboxylic acid component and the diamine component are approximately equimolar, preferably the molar ratio of the diamine component to the tetracarboxylic acid component [number of moles of diamine component / tetracarboxylic acid The number of moles of the component] is preferably 0.90 to 1.10, more preferably 0.95 to 1.05.
  • the imidization may partially proceed, and the (poly) amic acid compound obtained in the first step may include a repeating unit represented by the chemical formula (2).
  • the content of the repeating unit represented by the chemical formula (2) with respect to all repeating units is 90 mol%. (Imidation rate is less than 90%).
  • the reaction solution containing the (poly) amic acid compound obtained in the first step is heated under a condition where the imidization reaction proceeds, specifically at a temperature of 100 ° C. or higher, and thermally reacted.
  • a part of the repeating unit represented by the chemical formula (1) is converted into the repeating unit represented by the chemical formula (2), and the content of the repeating unit represented by the chemical formula (2) is all repeating units
  • the polyimide precursor of the present invention is obtained in an amount of 30 mol% or more and 90 mol% or less with respect to (repeat unit represented by chemical formula (1)) + (repeat unit represented by chemical formula (2)) (second) Process). More specifically, the polyimide precursor of the present invention can be obtained by stirring the reaction solution at 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 150 to 250 ° C. for 5 minutes to 72 hours.
  • the chemical formula (2) with respect to all repeating units of the polyimide precursor finally obtained [total amount of repeating units represented by chemical formula (1) and chemical unit (2)].
  • the reaction temperature and the reaction time are appropriately selected so that the content of the repeating unit represented by) is 30 mol% or more and 90 mol% or less (that is, the imidization rate is 30% or more and 90% or less). Even when the reaction temperature and the reaction time are within the above ranges, when the reaction temperature is relatively high and the reaction time is relatively long, the content of the repeating unit represented by the chemical formula (2) is all repeating units [ It may be 90 mol% or more based on (repeating unit represented by chemical formula (1)) + (repeating unit represented by chemical formula (2))].
  • the same solvent as described above can be used as a solvent used for preparing the polyimide precursor.
  • a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent.
  • the polyimide precursor obtained by this method is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
  • a partially imidized polyamic acid ester is obtained by heating the obtained polyimide precursor to a temperature of 80 ° C. or higher and allowing it to thermally react to partially imidize.
  • Partially imidized polyamic acid silyl ester (indirect method) A diamine and a silylating agent are reacted in advance to obtain a silylated diamine. If necessary, the silylated diamine is purified by distillation or the like. Then, the silylated diamine is dissolved in the dehydrated solvent, and the tetracarboxylic dianhydride is gradually added while stirring, and the temperature is 0 to 120 ° C., preferably 5 to 80 ° C. A polyimide precursor is obtained by stirring for ⁇ 72 hours. When the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably.
  • silylating agent that does not contain chlorine as the silylating agent used here, because it is not necessary to purify the silylated diamine.
  • the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
  • an amine catalyst such as pyridine, piperidine or triethylamine can be used to accelerate the reaction.
  • This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
  • the partially imidized polyamic acid silyl ester is obtained by heating the obtained polyimide precursor to a temperature of 80 ° C. or higher and causing it to thermally react to imidize a part thereof.
  • Partially imidized polyamic acid silyl ester (direct method)
  • the polyamic acid solution obtained by the method 1) and the silylating agent are mixed and stirred at 0 to 120 ° C., preferably 5 to 80 ° C. for 1 to 72 hours, whereby a partially imidized polyamic acid silyl ester is obtained. can get.
  • silylating agent used here it is preferable to use a silylating agent not containing chlorine because it is not necessary to purify the silylated polyamic acid or the obtained polyimide.
  • examples of the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
  • a tetracarboxylic dianhydride as a tetracarboxylic acid component and a diamine component are reacted under a condition that suppresses imidization, specifically at a temperature of less than 100 ° C., and a silylating agent is mixed, and 0 to A polyimide precursor is obtained by stirring at 120 ° C., preferably 5 to 80 ° C. for 1 to 72 hours.
  • a partially imidized polyamic acid silyl ester is obtained by heating the obtained polyimide precursor to a temperature of 80 ° C. or higher and causing it to thermally react to partially imidize.
  • the polyimide precursor varnish (polyimide precursor solution or solution composition) of the present invention can be easily obtained.
  • the polyimide precursor solution or solution composition obtained by the said manufacturing method may remove or add a solvent as needed, and may add a desired component.
  • the logarithmic viscosity of the polyimide precursor is not particularly limited, but the logarithmic viscosity in the solvent solution used at the time of polymerization at a concentration of 0.5 g / dL at 30 ° C. is 0.2 dL / g or more, preferably 0.8. It is preferably 5 dL / g or more.
  • the logarithmic viscosity is 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, and the mechanical strength and heat resistance of the resulting polyimide are excellent.
  • the varnish of the polyimide precursor contains at least the polyimide precursor of the present invention and a solvent.
  • the total amount of the tetracarboxylic acid component and the diamine component is 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more with respect to the total amount of the solvent, the tetracarboxylic acid component and the diamine component. It is preferable that In general, the content is preferably 60% by mass or less, and preferably 50% by mass or less. This concentration is a concentration approximately approximate to the solid content concentration resulting from the polyimide precursor, but if this concentration is too low, it becomes difficult to control the film thickness of the polyimide film obtained, for example, when producing a polyimide film. Sometimes.
  • the solvent used for the polyimide precursor varnish of the present invention is not particularly limited as long as the polyimide precursor dissolves, and any type of solvent can be used without any problem.
  • Examples of the solvent used for the varnish of the polyimide precursor include the same solvents as those used when preparing the polyimide precursor.
  • a solvent can also be used in combination of multiple types.
  • the viscosity (rotational viscosity) of the varnish of the polyimide precursor is not particularly limited, but the rotational viscosity measured using an E-type rotational viscometer at a temperature of 25 ° C. and a shear rate of 20 sec ⁇ 1 is 0.01 to 1000 Pa ⁇ sec is preferable, and 0.1 to 100 Pa ⁇ sec is more preferable. Moreover, thixotropy can also be provided as needed. When the viscosity is in the above range, it is easy to handle when coating or forming a film, and the repelling is suppressed and the leveling property is excellent, so that a good film can be obtained.
  • the polyimide precursor varnish of the present invention is optionally provided with a coupling agent such as an antioxidant, a filler, a dye, a pigment, a silane coupling agent, a primer, a flame retardant, an antifoaming agent, a leveling agent, and a rheology control.
  • a coupling agent such as an antioxidant, a filler, a dye, a pigment, a silane coupling agent, a primer, a flame retardant, an antifoaming agent, a leveling agent, and a rheology control.
  • An agent (flow aid), a release agent, and the like can be added.
  • the polyimide precursor varnish of the present invention preferably contains no chemical imidizing agent.
  • the polyimide of the present invention is obtained from the polyimide precursor of the present invention as described above, and can be suitably produced by subjecting the polyimide precursor of the present invention to a dehydration cyclization reaction (imidation reaction).
  • a dehydration cyclization reaction imidation reaction
  • All the well-known methods of thermal imidation can be applied suitably.
  • the form of the polyimide obtained can mention suitably a film, the laminated body of a polyimide film and another base material, a coating film, powder, a bead, a molded object, a foam.
  • the polyimide obtained from the polyimide precursor of the present invention can be mixed with inorganic particles such as silica, if necessary.
  • the method of mixing the inorganic particles is not particularly limited, but the method of dispersing the inorganic particles in a polymerization solvent and polymerizing the polyimide precursor in the solvent, the method of mixing the polyimide precursor solution and the inorganic particles And a method of mixing a polyimide precursor solution and an inorganic particle dispersion solution.
  • the polyimide of the present invention (polyimide obtained from the polyimide precursor of the present invention) is not particularly limited, but the linear thermal expansion coefficient from 50 ° C. to 200 ° C. when formed into a film is preferably 40 ppm / K or less, more preferably. Is 35 ppm / K or less, more preferably 30 ppm / K or less, particularly preferably 25 ppm / K or less, and has a very low coefficient of linear thermal expansion.
  • the linear thermal expansion coefficient is large, the difference in the linear thermal expansion coefficient with a conductor such as metal is large, which may cause problems such as an increase in warpage when a circuit board is formed.
  • the polyimide of the present invention (polyimide obtained from the polyimide precursor of the present invention) is not particularly limited, but the total light transmittance in a 10 ⁇ m thick film ( (Average light transmittance at a wavelength of 380 nm to 780 nm) is preferably 80% or more, more preferably 83% or more, still more preferably 85% or more, and particularly preferably 88% or more.
  • the total light transmittance is low, it is necessary to strengthen the light source, which may cause a problem that energy is applied.
  • the polyimide of the present invention (polyimide obtained from the polyimide precursor of the present invention) is not particularly limited, but the light transmittance at a wavelength of 400 nm in a film having a thickness of 10 ⁇ m is preferably 65% or more, more preferably 70. % Or more, more preferably 75% or more, and particularly preferably 80% or more.
  • the total light transmittance in a 10 ⁇ m-thick film and the light transmittance at a wavelength of 400 nm in a 10 ⁇ m-thick film may not be within the above ranges. In some cases.
  • the film made of the polyimide of the present invention depends on the application, but the thickness of the film is preferably 1 ⁇ m to 250 ⁇ m, more preferably 1 ⁇ m to 150 ⁇ m, still more preferably 1 ⁇ m to 50 ⁇ m, and particularly preferably 1 ⁇ m to 30 ⁇ m. is there.
  • the polyimide film is used for light transmission, if the polyimide film is too thick, the light transmittance may be lowered.
  • the polyimide of the present invention (polyimide obtained from the polyimide precursor of the present invention) is not particularly limited, but the 5% weight loss temperature is preferably more than 470 ° C., more preferably 480 ° C. or more, and further preferably 490 It is °C or higher, particularly preferably 495 °C or higher.
  • a gas barrier film or the like is formed on a polyimide by forming a transistor on the polyimide or the like, if the heat resistance is low, swelling may occur between the polyimide and the barrier film due to outgassing due to decomposition of the polyimide or the like. .
  • higher heat resistance is preferred, but depending on the application, characteristics other than heat resistance are required, and the 5% weight loss temperature may be 470 ° C. or lower.
  • the polyimide obtained from the polyimide precursor of the present invention is suitable as a TAB film, a substrate for electric / electronic parts, and a wiring substrate.
  • a substrate for electric / electronic parts for example, it can be suitably used as a printed circuit board, a power circuit board, a flexible heater, or a resistor board.
  • it is also useful for applications such as insulating films and protective films for electric and electronic parts, particularly insulating films and protective films formed on a material having a low linear expansion coefficient such as a base substrate such as LSI.
  • an alicyclic tetracarboxylic acid component when used as the tetracarboxylic acid component, it has excellent properties such as high transparency, bending resistance, and high heat resistance, and also has a very low linear thermal expansion coefficient.
  • a transparent substrate for a display, a transparent substrate for a touch panel, or a substrate for a solar cell it can be suitably used.
  • the polyimide precursor varnish of the present invention is cast on a substrate such as ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat resistant plastic film (polyimide), etc. Drying is performed in an inert gas or in air using hot air or infrared rays at a temperature of 20 to 180 ° C., preferably 20 to 150 ° C.
  • a polyimide film / substrate laminate or a polyimide film can be produced by heating imidization in air at a temperature of about 200 to 500 ° C., more preferably about 250 to 450 ° C. using hot air or infrared rays. .
  • the thickness of the polyimide film here is preferably 1 to 250 ⁇ m, more preferably 1 to 150 ⁇ m, because of the transportability in the subsequent steps.
  • a flexible conductive substrate can be obtained by forming a conductive layer on one side or both sides of the polyimide film / base laminate or the polyimide film obtained in this way.
  • a flexible conductive substrate can be obtained, for example, by the following method. That is, as a first method, the polyimide film / substrate laminate is not peeled off from the substrate, and the surface of the polyimide film is sputtered, vapor-deposited, printed, etc. by a conductive substance (metal or metal oxide). A conductive layer of conductive layer / polyimide film / base material is produced. Then, if necessary, a flexible conductive substrate composed of a conductive layer / polyimide film laminate can be obtained by peeling the electrically conductive layer / polyimide film laminate from the base material.
  • the polyimide film is peeled off from the substrate of the polyimide film / substrate laminate to obtain a polyimide film, and a conductive substance (metal or metal oxide, conductive organic substance, A conductive layer made of a conductive layer / polyimide film laminate, or a conductive layer / polyimide film / conductive layer laminate. Can be obtained.
  • a conductive substance metal or metal oxide, conductive organic substance,
  • a gas barrier layer such as water vapor or oxygen, light adjustment by sputtering, vapor deposition or gel-sol method, etc.
  • An inorganic layer such as a layer may be formed.
  • the conductive layer is preferably formed with a circuit by a method such as a photolithography method, various printing methods, or an ink jet method.
  • the substrate thus obtained has a circuit of a conductive layer on the surface of a polyimide film composed of the polyimide of the present invention, with a gas barrier layer or an inorganic layer as necessary.
  • This substrate is flexible, has excellent bendability, heat resistance, and mechanical properties, and further has a very low linear thermal expansion coefficient up to high temperatures and excellent solvent resistance, so that it is easy to form a fine circuit.
  • the polyimide film of the present invention or the laminate having at least one polyimide layer of the present invention can be suitably used as a TAB film, a substrate for electric / electronic parts, and a wiring substrate.
  • a printed circuit board, a power circuit It can be suitably used as a substrate, a flexible heater, or a resistor substrate.
  • the polyimide of the present invention using an alicyclic tetracarboxylic acid component (such as an alicyclic tetracarboxylic dianhydride) as the tetracarboxylic acid component has high transparency in addition to the above properties. Therefore, this polyimide film or a laminate having at least one polyimide layer can be suitably used as a display substrate, a touch panel substrate, a solar cell substrate, or the like.
  • a transistor inorganic transistor, organic transistor
  • a transistor is further formed on this substrate by vapor deposition, various printing methods, an ink jet method or the like to manufacture a flexible thin film transistor, and a liquid crystal element, an EL element, a photoelectric transistor for a display device are manufactured. It is suitably used as an element.
  • Imidation ratio (%) ⁇ 1- (Y / Z) ⁇ (1 / X) ⁇ ⁇ 100 (I)
  • X Integral value of carboxylic acid proton peak / integral value of aromatic proton peak when imidation rate is 0%, obtained from monomer charge amount
  • Y Integral value of carboxylic acid proton peak obtained from 1 H-NMR measurement
  • Z integrated value of aromatic proton peak obtained from 1 H-NMR measurement
  • FIG. 1 shows 1 H-NMR measurement results of the polyimide precursor solution of Comparative Example 3.
  • the peak near the chemical shift of 7 to 8.3 ppm on the horizontal axis is the peak of aromatic proton
  • the peak near 9.6 to 10.6 ppm is the peak of amide proton
  • the peak near 12 ppm is the peak of carboxylic acid proton. Since the polyimide precursor of Comparative Example 3 is reacted under reaction conditions in which imidization does not proceed, the imidation rate is considered to be 0%.
  • the ratio of the integrated value of the aromatic proton peak and the integrated value of the carboxylic acid proton peak when the imidation rate is 0%, calculated from the amount of monomer charged, is 7: 2. From the result of 1 H-NMR measurement, it was confirmed that the ratio of the integrated value of the aromatic proton peak to the integrated value of the carboxylic acid proton peak was 7: 2, and the imidization ratio was 0%.
  • FIG. 2 shows the 1 H-NMR measurement results of the polyimide precursor solution of Example 19.
  • the integrated value of the aromatic proton peak near 7 to 8.3 ppm of chemical shift was 7, whereas the integrated value of the carboxylic acid proton peak near 12 ppm was 1.23.
  • the ratio of the integrated value of the aromatic proton peak to the integrated value of the carboxylic acid proton peak is 7: 2.
  • the ratio of the integrated value of the aromatic proton peak and the integrated value of the carboxylic acid proton peak was 7: 1.23, so that imidization proceeded. This is because the amount of carboxylic acid decreased.
  • Example 19 The imidation ratio of Example 19 was calculated by the above formula (I) to be 38.5%.
  • Linear thermal expansion coefficient (CTE) A polyimide film having a thickness of about 10 ⁇ m is cut into a strip having a width of 4 mm to form a test piece, and a TMA / SS6100 (manufactured by SII Nano Technology Co., Ltd.) is used. The temperature was raised to 500 ° C. in minutes. The linear thermal expansion coefficient from 50 ° C. to 200 ° C. was determined from the obtained TMA curve.
  • [5% weight loss temperature] A polyimide film having a thickness of about 10 ⁇ m was used as a test piece, and the temperature was increased from 25 ° C. to 600 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen stream using a calorimeter measuring device (Q5000IR) manufactured by TA Instruments. From the obtained weight curve, a 5% weight loss temperature was determined.
  • Table 1 shows the structural formulas of the tetracarboxylic acid component and the diamine component used in Examples and Comparative Examples.
  • TFMB 2.000 g (6.246 mmol) was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 32.8 g in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at room temperature for 1 hour.
  • 1.600 g (4.164 mmol) of CpODA was gradually added and stirred at 50 ° C. for 5 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added and toluene was refluxed for 3 hours, and then toluene was extracted and cooled to room temperature to obtain a solution containing an imide compound.
  • the degree of polymerization (n) of this imide compound calculated from the amount of charged monomers is 2, and the terminal is an amino group.
  • the solution was charged with 1.419 g (6.246 mmol) of DABAN and stirred at room temperature for 1 hour.
  • CpODA (3.201 g, 8.327 mmol) was added to this solution and stirred at room temperature for 24 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • TFMB 1.500 g (4.684 mmol) was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 24.7 g in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at room temperature for 1 hour.
  • 1.350 g (3.513 mmol) of CpODA was gradually added and stirred at 50 ° C. for 5 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added and toluene was refluxed for 3 hours, and then toluene was extracted and cooled to room temperature to obtain a solution containing an imide compound.
  • the degree of polymerization (n) of this imide compound calculated from the amount of charged monomers is 3, and the terminal is an amino group.
  • 1.065 g (4.684 mmol) of DABAN was added and stirred at room temperature for 1 hour.
  • 2.251 g (5.855 mmol) of CpODA was added and stirred at room temperature for 24 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 3 TFMB 1.500 g (4.684 mmol) was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 24.7 g in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at room temperature for 1 hour. To this solution, 1.575 g (4.099 mmol) of CpODA was gradually added and stirred at 50 ° C. for 5 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added and toluene was refluxed for 3 hours, and then toluene was extracted and cooled to room temperature to obtain a solution containing an imide compound.
  • the degree of polymerization (n) of this imide compound calculated from the amount of charged monomers is 7, and the terminal is an amino group.
  • 1.065 g (4.684 mmol) of DABAN was added and stirred at room temperature for 1 hour.
  • CpODA 2.026g (5.270 mmol) was put into this solution, and it stirred at room temperature for 24 hours, and obtained the uniform and viscous polyimide precursor solution.
  • the logarithmic viscosity of the obtained polyimide precursor was 0.7 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 4 TFMB 1.500 g (4.684 mmol) was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 24.7 g in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at room temperature for 1 hour. To this solution, 1.688 g (4.391 mmol) of CpODA was gradually added and stirred at 50 ° C. for 5 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added and toluene was refluxed for 3 hours, and then toluene was extracted and cooled to room temperature to obtain a solution containing an imide compound.
  • the degree of polymerization (n) of this imide compound calculated from the amount of charged monomers is 15, and the terminal is an amino group.
  • 1.065 g (4.684 mmol) of DABAN was added and stirred at room temperature for 1 hour.
  • CpODA 1.913g (4.977 mmol) was put into this solution, and it stirred at room temperature for 24 hours, and obtained the uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 5 TFMB 1.500 g (4.684 mmol) was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 24.7 g in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at room temperature for 1 hour. To this solution, 1.764 g (4.590 mmol) of CpODA was gradually added and stirred at 50 ° C. for 5 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added and toluene was refluxed for 3 hours, and then toluene was extracted and cooled to room temperature to obtain a solution containing an imide compound.
  • the degree of polymerization (n) of this imide compound calculated from the amount of charged monomers is 49, and the terminal is an amino group.
  • 1.065 g (4.684 mmol) of DABAN was added and stirred at room temperature for 1 hour.
  • CpODA 1.836g (4.778 mmol) was put into this solution, and it stirred at room temperature for 24 hours, and obtained the uniform and viscous polyimide precursor solution.
  • the logarithmic viscosity of the obtained polyimide precursor was 0.6 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 6 TFMB 1.500 g (4.684 mmol) was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 24.7 g in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at room temperature for 1 hour. To this solution, 1.799 g (4.679 mmol) of CpODA was gradually added and stirred at 50 ° C. for 5 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added and toluene was refluxed for 3 hours, and then toluene was extracted and cooled to room temperature to obtain a solution containing an imide compound.
  • the degree of polymerization (n) of this imide compound calculated from the charged monomer amount is 999, and the terminal is an amino group.
  • 1.065 g (4.684 mmol) of DABAN was added and stirred at room temperature for 1 hour.
  • 1.802 g (4.689 mmol) of CpODA was added and stirred at room temperature for 24 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 7 In a reaction vessel substituted with nitrogen gas, 3.601 g (9.368 mmol) of CpODA was charged, and DMAc was charged in an amount of 24.7 g in an amount that the total monomer mass (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 1.500 g (4.684 mmol) of TFMB was gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 8 In a reaction vessel substituted with nitrogen gas, 3.000 g (7.805 mmol) of CpODA was placed, and DMAc was charged in an amount of 27.4 g in an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 1.666 g (5.203 mmol) of TFMB was gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 9 2.500 g (6.504 mmol) of CpODA was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 30.0 g in such an amount that the charged monomer total mass (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 1.822 g (5.691 mmol) of TFMB was gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 10 2.500 g (6.504 mmol) of CpODA was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 32.1 g in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. TFMB 1.953 g (6.097 mmol) was gradually added to this solution and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 11 2.500 g (6.504 mmol) of CpODA was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 33.6 g in such an amount that the charged monomer total mass (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 2.041 g (6.374 mmol) of TFMB was gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 12 2.500 g (6.504 mmol) of CpODA was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 34.2 g in such an amount that the charged monomer total mass (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 2.081 g (6.497 mmol) of TFMB was gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 13 In a reaction vessel substituted with nitrogen gas, 3.555 g (11.101 mmol) of TFMB was added, 36.1 g of NMP was added, and the mixture was stirred at room temperature for 1 hour to obtain a uniform solution. To this solution, 2.844 g (7.399 mmol) of CpODA was gradually added and stirred at 50 ° C. for 5 hours. Thereafter, the temperature was raised to 170 ° C., 25 mL of toluene was added and toluene was refluxed for 5 hours, and then toluene was extracted and cooled to room temperature.
  • TFMB5 the degree of polymerization (n) of this imide compound calculated from the amount of charged monomers is 2, and the terminal is an amino group
  • Amount of 1.617 g (1.173 mmol) of TFMB5 obtained and 0.800 g (3.520 mmol) of DABAN are charged, and DMAc is added so that the total monomer mass (total of diamine component and carboxylic acid component) is 20% by mass.
  • 16.9 g was added and stirred at room temperature for 1 hour.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 14 In a reaction vessel substituted with nitrogen gas, 0.713 g (3.136 mmol) of DABAN and 1.004 g (3.136 mmol) of TFMB were put, DMAc was charged, and the total amount of monomers charged (total of diamine component and carboxylic acid component) was added in an amount of 20% by mass and stirred at room temperature for 1 hour. To this solution, 2.411 g (6.272 mmol) of CpODA was gradually added and stirred at room temperature for 24 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added, and toluene was refluxed for 15 minutes. Then, toluene was extracted, cooled to room temperature, and a uniform and viscous polyimide precursor solution (imidation ratio: 52%). Got.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 15 In a reaction vessel substituted with nitrogen gas, 0.713 g (3.136 mmol) of DABAN and 1.004 g (3.136 mmol) of TFMB were put, DMAc was charged, and the total amount of monomers charged (total of diamine component and carboxylic acid component) was added in an amount of 20% by mass and stirred at room temperature for 1 hour. To this solution, 2.411 g (6.272 mmol) of CpODA was gradually added and stirred at room temperature for 24 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added, and the toluene was refluxed for 10 minutes. Then, the toluene was extracted, cooled to room temperature, and a uniform and viscous polyimide precursor solution (imidation ratio: 44%). Got.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 16 In a reaction vessel substituted with nitrogen gas, 4.502 g (11.711 mmol) of CpODA was charged, and DMAc was added in an amount of 29.3 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 1.500 g (4.684 mmol) of TFMB was gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 17 In a reaction vessel substituted with nitrogen gas, 4.502 g (11.711 mmol) of CpODA was charged, and DMAc was added in an amount of 29.3 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 1.500 g (4.684 mmol) of TFMB and 0.253 g (2.342 mmol) of PPD were gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 18 TFMB 1.500 g (4.684 mmol) was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 21.6 g in an amount such that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at room temperature for 1 hour. To this solution, 1.239 g (4.099 mmol) of DNDAxx was gradually added and stirred at 50 ° C. for 5 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added and toluene was refluxed for 3 hours, and then toluene was extracted and cooled to room temperature to obtain a solution containing an imide compound.
  • the degree of polymerization (n) of this imide compound calculated from the amount of charged monomers is 7, and the terminal is an amino group.
  • 1.065 g (4.684 mmol) of DABAN was added and stirred at room temperature for 1 hour.
  • 1.593 g (5.270 mmol) of DNDAxx was added and stirred at room temperature for 24 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 19 TFMB 1.50 g (4.684 mmol) was placed in a reaction vessel substituted with nitrogen gas, and DMAc was charged in an amount of 21.6 g in such an amount that the total monomer charge (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at room temperature for 1 hour. To this solution, 1.388 g (4.591 mmol) of DNDAxx was gradually added and stirred at 50 ° C. for 5 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added and toluene was refluxed for 3 hours, and then toluene was extracted and cooled to room temperature to obtain a solution containing an imide compound.
  • the degree of polymerization (n) of this imide compound calculated from the amount of charged monomers is 49, and the terminal is an amino group.
  • 1.065 g (4.684 mmol) of DABAN was added and stirred at room temperature for 1 hour.
  • 1.444 g (4.778 mmol) of DNDAxx was added and stirred at room temperature for 24 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 20 In a reaction vessel substituted with nitrogen gas, 3.776 g (12.491 mmol) of DNDAxx was added, and DMAc was charged in an amount of 28.8 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 2,000 g (6.246 mmol) of TFMB and 0.568 g (2.498 mmol) of DABAN were gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 21 In a reaction vessel substituted with nitrogen gas, 1.773 g (5.867 mmol) of DNDAxx was added, DMAc was charged, and 15.6 g of an amount such that the total monomer mass (total of diamine component and carboxylic acid component) was 15% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 0.400 g (1.760 mmol) of DABAN was gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 22 In a reaction vessel substituted with nitrogen gas, 2.130 g (7.048 mmol) of DNDAxx was added, and DMAc was charged in an amount of 29.8 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 10% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 0.801 g (3.524 mmol) of DABAN was gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 23 In a reaction vessel substituted with nitrogen gas, 1.400 g (6.160 mmol) of DABAN and 0.666 g (6.160 mmol) of PPD were charged, DMAc was charged, and the total amount of monomers charged (total of diamine component and carboxylic acid component) was added in an amount of 20% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.724 g (12.320 mmol) of DNDAxx was gradually added and stirred at room temperature for 24 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 24 In a reaction vessel substituted with nitrogen gas, 1.400 g (6.160 mmol) of DABAN and 0.666 g (6.160 mmol) of PPD were charged, DMAc was charged, and the total amount of monomers charged (total of diamine component and carboxylic acid component) was added in an amount of 20% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.724 g (12.320 mmol) of DNDAxx was gradually added and stirred at room temperature for 24 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 25 In a reaction vessel substituted with nitrogen gas, 1.400 g (6.160 mmol) of DABAN and 0.666 g (6.160 mmol) of PPD were charged, and NMP was charged, and the total mass of monomers (total of diamine component and carboxylic acid component) was added. Was added in an amount of 20% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.724 g (12.320 mmol) of DNDAxx was gradually added and stirred at room temperature for 24 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added, and the toluene was refluxed for 20 minutes. Then, the toluene was extracted, cooled to room temperature, and a uniform and viscous polyimide precursor solution (imidization ratio: 73%). Got.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 26 In a reaction vessel substituted with nitrogen gas, 3.540 g (11.711 mmol) of DNDAxx was added, and DMAc was charged in an amount of 25.4 g so that the total monomer mass (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 1.500 g (4.684 mmol) of TFMB was gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 27 In a reaction vessel substituted with nitrogen gas, 5.542 g (18.334 mmol) of DNDAxx was put, and DMAc was charged in an amount of 36.7 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 1 hour to obtain a uniform solution. To this solution, 1.174 g (3.667 mmol) of TFMB and 0.500 g (2.200 mmol) of DABAN were gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 28 In a reaction vessel substituted with nitrogen gas, 1.409 g (4.400 mmol) of TFMB and 1.000 g (4.400 mmol) of DABAN were charged, DMAc was charged, and the total mass of monomers (total of diamine component and carboxylic acid component) was added. Was added in an amount of 20% by mass, and stirred at room temperature for 1 hour. To this solution, 2.657 g (8.791 mmol) of DNDAxx was gradually added and stirred at 50 ° C. for 5 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 29 2.325 g (11.000 mmol) of DNDAxx is placed in a reaction vessel substituted with nitrogen gas, and DMAc is charged in an amount of 21.3 g so that the total monomer weight (total of diamine component and carboxylic acid component) is 20% by mass. And stirred at room temperature for 1 hour. To this solution, 0.383 g (1.100 mmol) of FDA was gradually added and stirred at 50 ° C. for 5 hours. Thereafter, the temperature was raised to 160 ° C., 25 mL of toluene was added, and toluene was refluxed for 3 hours. Then, toluene was extracted and cooled to 50 ° C.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 450 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 30 In a reaction vessel substituted with nitrogen gas, 3.032 g (9.468 mmol) of TFMB was placed, and NMP was added in an amount of 32.27 g in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 15% by mass. And stirred at room temperature for 1 hour. To this solution, 2.786 g (9.468 mmol) of s-BPDA was gradually added and stirred at room temperature for 24 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 31 TFMB (2,000 g, 6.246 mmol) and DABAN (1.419 g, 6.246 mmol) were placed in a reaction vessel substituted with nitrogen gas, NMP was charged, and the total monomer mass (sum of diamine component and carboxylic acid component) was added. Was added in an amount of 20% by mass and stirred at room temperature for 1 hour. To this solution, 3.875 g (12.491 mmol) of ODPA was gradually added and stirred at room temperature for 24 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 32 In a reaction vessel substituted with nitrogen gas, 1.818 g (8.0000 mmol) of DABAN, 1.108 g (1.000 mmol) of PPD and 0.368 g (1.000 mmol) of BAPB were charged, NMP was charged, and the total amount of monomers was charged. 21.27 g in an amount such that the mass (total of diamine component and carboxylic acid component) was 20% by mass was added, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.023 g (10.000 mmol) of DNDAxx was gradually added and stirred at room temperature for 24 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 33 In a reaction vessel purged with nitrogen gas, 1.591 g (7.0000 mmol) of DABAN, 1.108 g (1.000 mmol) of PPD and 0.737 g (2.000 mmol) of BAPB were added, and NMP was charged. 21.83 g in an amount such that the mass (total of diamine component and carboxylic acid component) was 20% by mass was added, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.023 g (10.000 mmol) of DNDAxx was gradually added and stirred at room temperature for 24 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 430 ° C. as it is to thermally imidize.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • the present invention it is possible to provide a polyimide precursor which is produced by thermal imidization and from which a polyimide having a low linear thermal expansion coefficient can be obtained without performing a stretching operation.
  • the present invention can provide a polyimide precursor having a low linear thermal expansion coefficient, a polyimide having excellent heat resistance, solvent resistance, and mechanical properties, and a polyimide having excellent transparency. .
  • the polyimide obtained from the polyimide precursor of the present invention has a low linear thermal expansion coefficient up to a high temperature and can easily form a fine circuit, and should be suitably used as a TAB film, a substrate for electric / electronic parts, and a wiring substrate. It can also be suitably used as an insulating film or protective film for electric / electronic parts.
  • the polyimide obtained from the polyimide precursor of the present invention using an alicyclic tetracarboxylic acid component as a tetracarboxylic acid component has high transparency and a low linear thermal expansion coefficient up to a high temperature, so that a fine circuit can be formed. It is easy, and can be suitably used for forming a substrate for display applications. That is, the polyimide film of the present embodiment of the present invention can be suitably used as a transparent substrate that is colorless and transparent and capable of forming a fine circuit, such as for display applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、下記化学式(1)で表される繰り返し単位と下記化学式(2)で表される繰り返し単位とからなり、下記化学式(2)で表される繰り返し単位の含有量が全繰り返し単位に対して30モル%以上90モル%以下であり、下記化学式(1)および下記化学式(2)中のBの合計量の50モル%以上がp-フェニレン基および/または特定の2個以上のベンゼン環を含む2価の基である、熱イミド化によって製造されたポリイミド前駆体に関する。(式中、Aは、テトラカルボン酸からカルボキシル基を除いた4価の基であり、Bは、ジアミンからアミノ基を除いた2価の基であり、ただし、各繰り返し単位に含まれるAおよびBは、同一であっても異なっていてもよい。X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)

Description

ポリイミド前駆体、及びポリイミド
 本発明は、線熱膨張係数が低く、耐熱性、耐溶剤性、機械的特性にも優れたポリイミドが得られるポリイミド前駆体に関する。
 ポリイミドは、耐熱性、耐溶剤性(耐薬品性)、機械的特性、電気的性質などに優れているため、フレキシブル配線基板、TAB(Tape Automated Bonding)用テープ等の電気・電子機器類の用途に広く使用されている。例えば、芳香族テトラカルボン酸二無水物と芳香族ジアミンとから得られるポリイミド、特に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとから得られるポリイミドが好適に使用されている。
 また、ポリイミドは、表示装置分野で、ガラス基板の代替として検討が進められている。ガラス基板をポリイミド等のプラスチック基板に置き換えることで、軽量でフレキシブル性に優れ、さらには曲げたり丸めたりすることが可能なディスプレイが可能となる。このような用途においては透明性が高いことも必要になるが、芳香族テトラカルボン酸二無水物と芳香族ジアミンとから得られる全芳香族ポリイミドは、分子内共役や電荷移動錯体の形成により、本質的に黄褐色に着色する傾向がある。このため、着色を抑制する手段として、例えば分子内へのフッ素原子の導入、主鎖への屈曲性の付与、側鎖として嵩高い基の導入などによって、分子内共役や電荷移動錯体の形成を阻害して、透明性を発現させる方法が提案されている。
 また、原理的に電荷移動錯体を形成しない半脂環式または全脂環式ポリイミドを用いることも提案されている。例えば、特許文献1~6、非特許文献1に、テトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた種々の、透明性が高い半脂環式ポリイミドが開示されている。このような半脂環式ポリイミドは、透明性、折り曲げ耐性、高耐熱性を兼ね備えている。半脂環式ポリイミドは、一般に、線熱膨張係数が大きい傾向があるが、線熱膨張係数が比較的小さい半脂環式ポリイミドも提案されている。
 フレキシブル配線基板やTAB用テープ等の用途においては、通常、ポリイミドフィルム上に銅が積層される。ポリイミドの線熱膨張係数が大きく、銅との線熱膨張係数の差が大きいと、積層体(積層フィルム)に反りが生じ、加工精度が低下して電子部品の精密実装が困難になることがある。そのため、ポリイミドには、低線熱膨張係数であることが求められている。
 一方、表示装置分野においては、基板であるポリイミドフィルム上に金属などの導体が形成される。この場合も、ポリイミドの線熱膨張係数が大きく、導体との線熱膨張係数の差が大きいと、回路基板を形成する際に反りが生じ、回路形成が困難になることがある。そのため、低線熱膨張係数のポリイミドが必要とされている。
 テトラカルボン酸成分とジアミン成分とを反応させてポリイミドを合成する手法としては、熱イミド化と、化学イミド化とがある。一般に、化学イミド化によってポリイミドを製造すると、線熱膨張係数が比較的低いポリイミドを得ることができる。しかしながら、化学イミド化剤(無水酢酸などの酸無水物や、ピリジン、イソキノリンなどのアミン化合物)が可塑剤として働き、ポリイミドの物性が変化することがある。また、化学イミド化剤が着色の要因となることがあり、透明性が必要な用途においては好ましくない。
 一方、熱イミド化によってポリイミドを製造する場合、ポリイミド前駆体溶液の自己支持性フィルム(ゲルフィルムとも言う。)を延伸した後、あるいは延伸しながら加熱して熱的にイミド化することにより、線熱膨張係数を低下させることができる。しかしながら、延伸は大規模な装置を必要とする。また、ポリイミド前駆体の溶液(または溶液組成物)を基材上に流延塗布し、これを加熱処理して自己支持性フィルムとした後、自己支持性フィルムを基材から剥離して延伸しなければならず、用途によっては適用できない場合がある。例えば、ディスプレイ用途などでは、ポリイミド前駆体の溶液(または溶液組成物)をガラス基板などの基材上に流延塗布し、これを加熱処理してイミド化させ、ポリイミド層(ポリイミドフィルム)を基材上に形成した後、得られたポリイミド積層体のポリイミド層上に回路、薄膜トランジスタなどが形成される。この場合は、延伸によりポリイミドの線熱膨張係数を低下させることができない。
 一方、ポリイミド前駆体として、アミック酸(またはアミド酸)構造の繰り返し単位の一部がイミド構造になっている共重合体[ポリ(アミド酸-イミド)共重合体]も知られており、例えば、特許文献7~13、非特許文献2~4に開示されている。
 非特許文献5には、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)と4,4’-オキシジアニリン(ODA)とを反応させてポリアミック酸を得た後、得られたポリアミック酸の溶液に化学イミド化剤(脱水剤)を100mol%,80mol%,60mol%,40mol%,20mol%,0mol%添加し、プレ-イミド化率(pre-ID)が100%,80%,60%,40%,20%,0%のポリアミック酸-ポリイミドの溶液を調製し、これを加熱処理して得られた6種類のポリイミドフィルムの線熱膨張係数(CTE)を測定した結果、プレ-イミド化率が高いほど線熱膨張係数が低くなり、プレ-イミド化率100%、すなわち完全にイミド化を完了させたポリイミドの溶液を加熱処理して得られたポリイミドフィルムの線熱膨張係数が最も低くなったことが記載されている(Fig.9)。ただし、プレ-イミド化率(pre-ID)が高くなるほど、5%重量減少温度(T5%)が低くなり、耐熱性が低くなったことも記載されている(4162頁、右欄、下から8~6行)。
特開2003-168800号公報 国際公開第2008/146637号 特開2002-69179号公報 特開2002-146021号公報 特開2008-31406号公報 国際公開第2011/099518号 国際公開第2010/113412号 特開2005-336243号公報 特開2006-206756号公報 特開平9-185064号公報 特開2006-70096号公報 特開2010-196041号公報 特開2010-18802号公報
高分子論文集,Vol.68,No.3,p.127-131 European Polymer Journal,Vol.46,p.283-297(2010) Journal of Photopolymer Science and Technology,Vol.18,p.307-312(2005) Journal of Photopolymer Science and Technology,Vol.24,p.255-258(2011) Polymer,Vol.53,p.4157-4163(2012)
 上記のように、線熱膨張係数が比較的低いポリイミドを得ることができる化学イミド化の場合、化学イミド化剤(無水酢酸などの酸無水物や、ピリジン、イソキノリンなどのアミン化合物)を使用することによって、ポリイミドの物性が変化することがある。一方、熱イミド化の場合、延伸操作によって線熱膨張係数を低下させることが一般的に行われている。しかし、用途によっては、あるいはポリイミドの製造(成膜)プロセスによっては、延伸によりポリイミドの線熱膨張係数を低下させることができない。
 特に、熱イミド化によって製造される、耐熱性、耐溶剤性、機械的特性に優れた特定のジアミン成分とテトラカルボン酸成分とからなるポリイミド、より好ましくは透明性にも優れたポリイミドにおいて、延伸操作を行うことなく、その優れた特性を保持しながら、線熱膨張係数を低下させることが、用途によっては、望まれている。
 本発明は、以上のような状況に鑑みてなされたものであり、熱イミド化によって製造される、特定のジアミン成分とテトラカルボン酸成分とからなり、耐熱性、耐溶剤性、機械的特性に優れ、線熱膨張係数が低いポリイミドが得られるポリイミド前駆体を提供することを目的とする。本発明は、また、線熱膨張係数が低く、耐熱性、耐溶剤性、機械的特性にも優れたポリイミド、より好ましくは透明性にも優れたポリイミドが得られるポリイミド前駆体を提供することを目的とする。
 本発明は、以下の事項に関する。
 1. 下記化学式(1)で表される繰り返し単位と、下記化学式(2)で表される繰り返し単位とからなり、
 下記化学式(2)で表される繰り返し単位の含有量が、全繰り返し単位に対して、30モル%以上90モル%以下であり、
 下記化学式(1)および下記化学式(2)中のBの合計量の50モル%以上が、下記化学式(3)で表される2価の基、および/または、下記化学式(4)で表される2価の基の1種以上である、熱イミド化によって製造されたことを特徴とするポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000005
(式中、Aは、テトラカルボン酸からカルボキシル基を除いた4価の基であり、Bは、ジアミンからアミノ基を除いた2価の基であり、ただし、各繰り返し単位に含まれるAおよびBは、同一であっても異なっていてもよい。X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(式中、mは1~3の整数を示し、nは0~3の整数を示す。V、U、Tはそれぞれ独立に水素原子、メチル基、トリフルオロメチル基よりなる群から選択される1種を示し、Z、Wはそれぞれ独立に直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種を示す。)
 2. 前記化学式(1)および前記化学式(2)中のAが、脂環式テトラカルボン酸からカルボキシル基を除いた4価の基の1種以上であることを特徴とする前記項1に記載のポリイミド前駆体。
 3. 前記化学式(1)および前記化学式(2)中のAが、芳香族テトラカルボン酸からカルボキシル基を除いた4価の基の1種以上であることを特徴とする前記項1に記載のポリイミド前駆体。
 4. 下記化学式(5)で表される構造を含むことを特徴とする前記項1~3のいずれかに記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000008
(式中、AおよびBは前記と同義であり、nは1~1000の整数である。)
 5. 前記項1~4のいずれかに記載のポリイミド前駆体を含むワニス。
 6. 化学イミド化剤を含まないことを特徴とする前記項5に記載のワニス。
 7. 前記項1~4のいずれかに記載のポリイミド前駆体を製造する方法であって、
 化学イミド化剤を含まない溶媒中で、テトラカルボン酸成分とジアミン成分とを100℃以上に加熱して熱的に反応させて、前記化学式(2)で表される繰り返し単位を含む可溶性のイミド化合物を含む反応溶液を得る工程と、
 得られた反応溶液に、テトラカルボン酸成分および/またはジアミン成分を加えて、100℃未満のイミド化を抑制する条件下で反応を行い、前記項1~4のいずれかに記載のポリイミド前駆体を得る工程と、
を有することを特徴とする方法。
 8. 前記項1~4のいずれかに記載のポリイミド前駆体を製造する方法であって、
 化学イミド化剤を含まない溶媒中で、テトラカルボン酸成分とジアミン成分とを100℃以上に加熱して熱的に反応させて、前記化学式(2)で表される繰り返し単位を含む可溶性のイミド化合物を含む反応溶液を得る工程と、
 得られた反応溶液から、前記化学式(2)で表される繰り返し単位を含むイミド化合物を単離する工程と、
 化学イミド化剤を含まない溶媒に、単離した前記化学式(2)で表される繰り返し単位を含むイミド化合物と、テトラカルボン酸成分および/またはジアミン成分とを加えて、100℃未満のイミド化を抑制する条件下で反応を行い、前記項1~4のいずれかに記載のポリイミド前駆体を得る工程と、
を有することを特徴とする方法。
 9. 前記項1~4のいずれかに記載のポリイミド前駆体を製造する方法であって、
 化学イミド化剤を含まない溶媒中で、テトラカルボン酸成分とジアミン成分とを100℃未満のイミド化を抑制する条件下で反応させて、前記化学式(1)で表される繰り返し単位を含む(ポリ)アミック酸化合物を含む反応溶液を得る工程と、
 前記化学式(1)で表される繰り返し単位を含む(ポリ)アミック酸化合物を含む反応溶液を100℃以上に加熱して熱的に反応させて、前記化学式(1)で表される繰り返し単位の一部を前記化学式(2)で表される繰り返し単位に変換して、前記項1~4のいずれかに記載のポリイミド前駆体を得る工程と、
を有することを特徴とする方法。
 10. 前記項1~4のいずれかに記載のポリイミド前駆体から得られるポリイミド。
 11. 前記項5または6に記載のワニスを加熱処理して得られるポリイミド。
 12. 前記項5または6に記載のワニスを加熱処理して得られるポリイミドフィルム。
 13. 前記項10または11に記載のポリイミドを含むTAB用フィルム、電気・電子部品用基板、配線基板、電気・電子部品用絶縁膜、電気・電子部品用保護膜、ディスプレイ用基板、タッチパネル用基板、または太陽電池用基板。
 本発明によって、熱イミド化によって製造され、延伸操作を行うことなく、耐熱性、耐溶剤性、機械的特性に優れ、線熱膨張係数が低いポリイミドが得られるポリイミド前駆体を提供することができる。また、本発明によって、線熱膨張係数が低く、耐熱性、耐溶剤性、機械的特性に優れ、さらには透明性にも優れたポリイミドが得られるポリイミド前駆体を提供することができる。本発明によれば、熱イミド化において延伸操作を行うことなく、優れた特性を保持しながら、ポリイミドの線熱膨張係数を低下させることができ、さらには耐熱性を向上させることもできる。
比較例3のポリイミド前駆体溶液のH-NMRスペクトルである。 実施例19のポリイミド前駆体溶液のH-NMRスペクトルである。
 本発明のポリイミド前駆体は、前記化学式(1)で表されるアミック酸構造の繰り返し単位と、前記化学式(2)で表されるイミド構造の繰り返し単位とからなり、前記化学式(2)で表される繰り返し単位の含有量が、全繰り返し単位[(化学式(1)で表される繰り返し単位)+(化学式(2)で表される繰り返し単位)]に対して、30モル%以上90モル%以下である。すなわち、[(化学式(2)で表される繰り返し単位)/{(化学式(1)で表される繰り返し単位)+(化学式(2)で表される繰り返し単位)}]のモル比が30モル%以上90モル%以下であり、イミド化率が30%以上90%以下ということになる。
 全繰り返し単位[化学式(1)で表される繰り返し単位と化学式(2)で表される繰り返し単位の合計量]に対する前記化学式(2)で表される繰り返し単位の含有量が30モル%以上(イミド化率が30%以上)であるポリイミド前駆体をイミド化してポリイミドを製造することにより、前記化学式(1)で表されるアミック酸構造の繰り返し単位のみからなり、イミド化率が0%であるポリイミド前駆体をイミド化した場合と比較して、線熱膨張係数が低いポリイミドが得られる。さらには耐熱性も向上させることができる。
 一方、後述するように、本発明のポリイミド前駆体は、優れた特性を有するポリイミドを得るために、全ジアミン成分の50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%を、Bが前記化学式(3)または前記化学式(4)で表される2価の基である繰り返し単位を与えるジアミン成分にする。得られるポリイミドは耐溶剤性に優れるが、それは有機溶剤に可溶でないことを意味する。その結果、全繰り返し単位[化学式(1)で表される繰り返し単位と化学式(2)で表される繰り返し単位の合計量]に対する前記化学式(2)で表される繰り返し単位の含有量が90モル%を超える(イミド化率が90%を超える)と、ポリイミド前駆体(またはポリイミド)の溶解性が低下してポリイミド前駆体(またはポリイミド)が析出し、優れた特性を有するポリイミドを得ることができないことがあるため、全繰り返し単位[化学式(1)で表される繰り返し単位と化学式(2)で表される繰り返し単位の合計量]に対する前記化学式(2)で表される繰り返し単位の含有量を90モル%以下にする。
 全繰り返し単位[化学式(1)で表される繰り返し単位と化学式(2)で表される繰り返し単位の合計量]に対する前記化学式(2)で表される繰り返し単位の含有量(すなわち、イミド化率)は、当該ポリイミド前駆体(ポリイミド前駆体溶液)のH-NMRスペクトルを測定し、芳香族プロトンのピーク(7~8.3ppm)の積分値とカルボン酸プロトンのピーク(12ppm付近)の積分値の比より算出することができる。
 また、後述するように、本発明のポリイミド前駆体は、例えば、イミド化反応が進行する(イミド化合物が生成する)条件下でテトラカルボン酸成分とジアミン成分とを反応させ、その後、得られた反応溶液にテトラカルボン酸成分および/またはジアミン成分を加えて、イミド化を抑制する条件下で反応させることで合成することができる。その場合、全繰り返し単位[化学式(1)で表される繰り返し単位と化学式(2)で表される繰り返し単位の合計量]に対する前記化学式(2)で表される繰り返し単位の含有量(すなわち、イミド化率)は、イミド化反応が進行する(イミド化合物が生成する)条件下で反応させたテトラカルボン酸成分およびジアミン成分と、イミド化を抑制する条件下で反応させたテトラカルボン酸成分およびジアミン成分の割合から求めることができる。なお、ここで、イミド化反応が進行する条件下で反応させたテトラカルボン酸成分およびジアミン成分が、前記化学式(2)で表される繰り返し単位を与え、イミド化を抑制する条件下で反応させたテトラカルボン酸成分およびジアミン成分が、前記化学式(1)で表される繰り返し単位を与える。
 前記化学式(2)で表されるイミド構造の繰り返し単位の重合度(すなわち、化学式(5)中のn)は特に限定されず、例えば、1~1000の整数とすることができる。後述するように、本発明のポリイミド前駆体は、例えば、二段階の反応で合成することができ、その場合、まず最初に、テトラカルボン酸成分とジアミン成分とを反応させて、前記化学式(2)で表される繰り返し単位からなる可溶性のイミド化合物を得る。このときに反応させるテトラカルボン酸成分とジアミン成分のモル比を調整することによって、前記化学式(2)で表されるイミド構造の繰り返し単位の重合度(すなわち、化学式(5)中のn)を制御することができる。なお、テトラカルボン酸成分が化学量論比よりも多い場合、両末端が酸無水物基またはカルボキシル基であるイミド化合物が得られ、ジアミン成分が化学量論比よりも多い場合、両末端がアミノ基であるイミド化合物が得られる。
 例えば、2モルのテトラカルボン酸二無水物と3モルのジアミンとをイミド化反応が進行する(イミド化合物が生成する)条件下で反応させると、前記化学式(2)で表される繰り返し単位からなるイミド化合物を含む溶液が得られる。この場合、テトラカルボン酸二無水物とジアミンの仕込み量より、両末端がアミノ基で、重合度(n)が2のイミド化合物が得られる。また、10モルのテトラカルボン酸二無水物と1モルのジアミンとをイミド化反応が進行する(イミド化合物が生成する)条件下で反応させると、前記化学式(2)で表される繰り返し単位からなるイミド化合物と、テトラカルボン酸二無水物を含む溶液が得られる。この場合、テトラカルボン酸二無水物とジアミンの仕込み量より、両末端が酸無水物基またはカルボキシル基で、重合度(n)が1のイミド化合物が得られる。
 本発明のポリイミド前駆体は、前記化学式(1)で表されるアミック酸構造の繰り返し単位と、前記化学式(2)で表されるイミド構造の繰り返し単位とからなり、且つ、前記化学式(1)および前記化学式(2)中のBの合計量の50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%が、前記化学式(3)または前記化学式(4)で表される2価の基である。換言すれば、本発明のポリイミド前駆体は、テトラカルボン酸成分と、50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%が、下記化学式(3A)で表されるジアミンおよび下記化学式(4A)で表されるジアミンの1種以上であるジアミン成分とから得られるポリイミド前駆体である。全ジアミン成分の50モル%以上、より好ましくは70モル%以上が前記化学式(3)または前記化学式(4)で表される2価の基である場合、得られるポリイミドは、耐熱性、耐溶剤性、機械的特性などの特性に優れる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式中、mは1~3の整数を示し、nは0~3の整数を示す。V、U、Tはそれぞれ独立に水素原子、メチル基、トリフルオロメチル基よりなる群から選択される1種を示し、Z、Wはそれぞれ独立に直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種を示す。)
 なお、前記化学式(1)および前記化学式(2)中のBの合計量の50モル%以上が、前記化学式(3)または前記化学式(4)で表される2価の基の1種、または2種以上であれば、前記化学式(1)または前記化学式(2)中のBの50モル%未満が、前記化学式(3)または前記化学式(4)で表される2価の基の1種、または2種以上であり、50モル%以上が、それ以外の基1種以上であってもよい。
 ある実施態様においては、得られるポリイミドの所望の物性の点から、前記化学式(1)および前記化学式(2)中のBの合計量の好ましくは80モル%以下または80モル%未満、より好ましくは90モル%以下または90モル%未満が、前記化学式(3)または前記化学式(4)で表される2価の基であることが好ましいことがある。例えば、4,4’-ビス(4-アミノフェノキシ)ビフェニル等の、複数の芳香環を有し、芳香環同士がエーテル結合(-O-)で連結されている芳香族ジアミン類などの他の芳香族または脂肪族ジアミン類〔前記化学式(3A)で表されるジアミンおよび前記化学式(4A)で表されるジアミン以外のジアミン成分〕を、全ジアミン成分100モル%中、好ましくは20モル%以下、より好ましくは20モル%未満、より好ましくは10モル%以下、より好ましくは10モル%未満で使用することができる。
 Bが前記化学式(3)または前記化学式(4)で表される2価の基である繰り返し単位を与えるジアミン成分〔前記化学式(3A)で表されるジアミンおよび前記化学式(4A)で表されるジアミン〕としては、例えば、p-フェニレンジアミン(PPD)や、4,4’-ジアミノベンズアニリド(DABAN)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、9,9-ビス(4-アミノフェニル)フルオレン(FDA)、ベンジジン、3,3’-ジアミノ-ビフェニル、3,3’-ビス(トリフルオロメチル)ベンジジン、3,3’-ジアミノベンズアニリド、o-トリジン、m-トリジン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、4-アミノフェニル-4-アミノベンゾエート、ビス(4-アミノフェニル)テレフタレート、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステル、p-フェニレンビス(p-アミノベンゾエート)、ビス(4-アミノフェニル)-[1,1’-ビフェニル]-4,4’-ジカルボキシレート、[1,1’-ビフェニル]-4,4’-ジイル, ビス(4-アミノベンゾエート)等が挙げられる。これらは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 ジアミン成分としては、p-フェニレンジアミン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)ベンジジン、ベンジジン、o-トリジン、m-トリジン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、4-アミノフェニル-4-アミノベンゾエート、ビス(4-アミノフェニル)テレフタレート、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステル、p-フェニレンビス(p-アミノベンゾエート)、ビス(4-アミノフェニル)-[1,1’-ビフェニル]-4,4’-ジカルボキシレート、[1,1’-ビフェニル]-4,4’-ジイル ビス(4-アミノベンゾエート)を含むものが好ましく、4,4’-ジアミノベンズアニリドを含むものが特に好ましい。換言すれば、本発明のポリイミド前駆体は、前記化学式(1)および/または前記化学式(2)中のBの少なくとも一部が、下記化学式(6-1)または(6-2)で表される2価の基であることが特に好ましい。その含有量は、特に限定されないが、化学式(1)および化学式(2)中のBの合計量の30モル%以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 本発明においては、Bが前記化学式(3)または前記化学式(4)で表される2価の基である繰り返し単位を与えるジアミン成分〔前記化学式(3A)で表されるジアミンおよび前記化学式(4A)で表されるジアミン〕以外のジアミン成分を50モル%未満の範囲で使用することもできる。
 このようなジアミン成分としては、例えば、m-フェニレンジアミン、2-メチルベンゼン-1,4-ジアミン、2-(トリフルオロメチル)ベンゼン-1,4-ジアミンや、9,9-ビス(4-アミノフェニル)フルオレン(FDA)、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3-ビス((アミノフェノキシ)フェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス((アミノフェノキシ)ジフェニル)スルホン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル等の芳香族ジアミンや、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、1,2-ジアミノシクロへキサン等の脂環式ジアミンが挙げられる。これらは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 前記のように、ある実施態様においては、このような前記化学式(3A)で表されるジアミンおよび前記化学式(4A)で表されるジアミン以外のジアミン成分、例えば、4,4’-ビス(4-アミノフェノキシ)ビフェニル等の、複数の芳香環を有し、芳香環同士がエーテル結合(-O-)で連結されている芳香族ジアミン類などを好ましくは20モル%以下、より好ましくは20モル%未満、より好ましくは10モル%以下、より好ましくは10モル%未満で使用することが好ましいことがある。
 本発明で用いるテトラカルボン酸成分は、特に限定されず、脂環式テトラカルボン酸成分であっても、芳香族テトラカルボン酸成分であってもよい。なお、テトラカルボン酸成分には、テトラカルボン酸と、テトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等のテトラカルボン酸誘導体が含まれる。
 テトラカルボン酸成分としては、例えば、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(CpODA)、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸二無水物(DNDAxx)、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸二無水物、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、オクタヒドロペンタレン-1,3,4,6-テトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、6-(カルボキシメチル)ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタ-5-エン-2,3,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカン-3,4,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ-7-エン-3,4,9,10-テトラカルボン酸、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸や、これらの誘導体等の脂環式テトラカルボン酸成分(脂環式テトラカルボン酸二無水物)や、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、ピロメリット酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、4,4’-オキシジフタル酸無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、m-ターフェニルー3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニルー3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,2-ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、2,2-ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、4,4’-ビス〔4-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、4,4’-ビス〔3-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物等の芳香族テトラカルボン酸成分(芳香族テトラカルボン酸二無水物)が挙げられる。これらは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。なお、芳香族テトラカルボン酸成分1種以上と脂環式テトラカルボン酸成分1種以上を併用することもできる。
 耐熱性に優れたポリイミドを得るためには、テトラカルボン酸成分として芳香族テトラカルボン酸成分を使用することが好ましい。換言すれば、前記化学式(1)および化学式(2)中のAが、芳香族テトラカルボン酸からカルボキシル基を除いた4価の基であることが好ましい。テトラカルボン酸成分としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、4,4’-オキシジフタル酸無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、p-ターフェニルー3,4,3’,4’-テトラカルボン酸二無水物を使用することが特に好ましい。
 透明性に優れたポリイミドを得るためには、テトラカルボン酸成分として脂環式テトラカルボン酸成分を使用することが好ましい。換言すれば、前記化学式(1)および化学式(2)中のAが、脂環式テトラカルボン酸からカルボキシル基を除いた4価の基であることが好ましい。テトラカルボン酸成分としては、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸無水物、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸二無水物を使用することが特に好ましい。
 前記化学式(1)中のX、Xはそれぞれ独立に水素、炭素数1~6、好ましくは炭素数1~3のアルキル基(より好ましくはメチル基もしくはエチル基)、または炭素数3~9のアルキルシリル基(より好ましくはトリメチルシリル基もしくはt-ブチルジメチルシリル基)のいずれかである。
 X、Xは、後述する製造方法によって、その官能基の種類、及び官能基の導入率を変化させることができる。官能基の導入率は、特に限定されないが、アルキル基もしくはアルキルシリル基を導入する場合、X、Xはそれぞれ、25%以上、好ましくは50%以上、より好ましくは75%以上をアルキル基もしくはアルキルシリル基にすることができる。
 本発明のポリイミド前駆体は、XとXが取る化学構造によって、1)部分イミド化ポリアミド酸(XとXが水素)、2)部分イミド化ポリアミド酸エステル(X、Xの少なくとも一部がアルキル基)、3)4)部分イミド化ポリアミド酸シリルエステル(X、Xの少なくとも一部がアルキルシリル基)に分類することができる。そして、本発明のポリイミド前駆体は、この分類ごとに、以下の製造方法により製造することができる。ただし、本発明のポリイミド前駆体の製造方法は、以下の製造方法に限定されるものではない。
1)部分イミド化ポリアミド酸
 本発明のポリイミド前駆体(部分イミド化ポリアミド酸)は、例えば次のようにして、熱イミド化によって製造することができる。
 まず最初に、化学イミド化剤を含まない溶媒中で、テトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とを加熱して熱的に反応させて、前記化学式(2)で表される繰り返し単位からなる可溶性のイミド化合物を含む反応溶液を得る(第1工程)。本発明のポリイミド前駆体は、全繰り返し単位[化学式(1)で表される繰り返し単位と化学式(2)で表される繰り返し単位の合計量]に対する前記化学式(2)で表される繰り返し単位の含有量が30モル%以上90モル%以下(すなわち、イミド化率が30%以上90%以下)であり、したがって、ここで反応させるテトラカルボン酸成分またはジアミン成分は、第1工程および次の第2工程において反応させるテトラカルボン酸成分またはジアミン成分の全量に対して30~90モル%であることが好ましい。換言すれば、第1工程において、溶媒に加えるテトラカルボン酸成分またはジアミン成分の一方が、第1工程および次の第2工程において反応させるテトラカルボン酸成分またはジアミン成分の全量に対して30~90モル%であることが好ましい。ただし、最終的に得られるポリイミド前駆体の全繰り返し単位[化学式(1)で表される繰り返し単位と化学式(2)で表される繰り返し単位の合計量]に対する前記化学式(2)で表される繰り返し単位の含有量が30モル%以上90モル%以下(すなわち、イミド化率が30%以上90%以下)になれば、ここで得られるイミド化合物は、前記化学式(1)で表される繰り返し単位を含むものであってもよい。
 また、反応させるテトラカルボン酸成分とジアミン成分のモル比は、所望のイミド化合物の重合度、すなわちポリイミド前駆体中の前記化学式(2)で表されるイミド構造の繰り返し単位の重合度[化学式(5)中のn]に応じて適宜選択することができる。
 第1工程においては、イミド化反応が進行する条件下で、具体的には100℃以上の温度で、テトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とを反応させる。より具体的には、溶剤にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、100℃以上、好ましくは120~250℃の範囲で0.5~72時間攪拌することで、可溶性のイミド化合物が得られる。ジアミンとテトラカルボン酸二無水物の添加順序を逆にしてもよい。
 本発明においては、熱イミド化によってポリイミド前駆体を製造し、したがって、化学イミド化剤を使用しない。ここで、化学イミド化剤とは、無水酢酸などの酸無水物(脱水剤)、およびピリジン、イソキノリンなどのアミン化合物(触媒)である。
 なお、この前記化学式(2)で表される繰り返し単位からなる可溶性のイミド化合物は、両末端が酸無水物基またはカルボキシル基であっても、アミノ基であってもよい。
 次いで、第1工程で得られた可溶性のイミド化合物を含む反応溶液に、テトラカルボン酸成分および/またはジアミン成分を加えて、イミド化を抑制する条件下で反応を行い、本発明のポリイミド前駆体を得る(第2工程)。この第2工程では、第1工程および第2工程において反応させるテトラカルボン酸成分の全量とジアミン成分の全量のモル比が略等モル、好ましくはテトラカルボン酸成分に対するジアミン成分のモル比[ジアミン成分のモル数/テトラカルボン酸成分のモル数]が0.90~1.10、より好ましくは0.95~1.05になるように、テトラカルボン酸成分および/またはジアミン成分を加える。
 第2工程においては、イミド化を抑制する条件下で、具体的には100℃未満の温度で反応を行う。より具体的には、第1工程で得られた可溶性のイミド化合物を含む反応溶液にジアミンを添加し、100℃未満、好ましくは-20~80℃の範囲で1~72時間攪拌した後、テトラカルボン酸二無水物を添加し、100℃未満、好ましくは-20~80℃の範囲で1~72時間攪拌することで、本発明のポリイミド前駆体が得られる。ジアミンとテトラカルボン酸二無水物の添加順序を逆にしてもよく、また、ジアミンとテトラカルボン酸二無水物を同時に添加してもよい。また、反応させるテトラカルボン酸成分の全量を、第1工程において溶媒に加えた場合は、ジアミンのみを添加し、反応させるジアミン成分の全量を、第1工程において溶媒に加えた場合は、テトラカルボン酸二無水物のみを添加する。
 第2工程においてもイミド化が進行してもよいが、最終的に得られるポリイミド前駆体の全繰り返し単位[化学式(1)で表される繰り返し単位と化学式(2)で表される繰り返し単位の合計量]に対する前記化学式(2)で表される繰り返し単位の含有量が30モル%以上90モル%以下(すなわち、イミド化率が30%以上90%以下)になるように反応温度および反応時間を適宜選択する。
 第1工程では、主に、前記化学式(2)で表されるイミド構造の繰り返し単位を生成し、第2工程では、主に、前記化学式(1)で表されるアミック酸構造の繰り返し単位を生成する。線熱膨張係数が大きい重合体を与えるテトラカルボン酸成分とジアミン成分とを第1工程で反応させ、イミド構造の繰り返し単位とすることで、より線熱膨張係数が低いポリイミドが得られることがある。
 ポリイミド前駆体を調製する際に使用する溶媒は、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、1-エチル-2-ピロリドン、1,1,3,3-テトラメチル尿素、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等の非プロトン性溶媒が好ましく、特にN,N-ジメチルアセトアミド、1-メチル-2-ピロリドンが好ましいが、原料モノマー成分と生成するポリイミド前駆体が溶解すれば、どんな種類の溶媒であっても問題はなく使用できるので、特にその構造には限定されない。溶媒として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。また、これらを複数種組み合わせて使用することもできる。
 第1工程の後、得られた反応溶液から、前記化学式(2)で表される繰り返し単位からなる可溶性のイミド化合物を単離し、第2工程で、単離した前記化学式(2)で表される繰り返し単位からなるイミド化合物とテトラカルボン酸成分および/またはジアミン成分とを溶媒に加えて、イミド化を抑制する条件下で反応を行い、本発明のポリイミド前駆体を得ることもできる。この場合は、第1工程で得るイミド化合物は、両末端がアミノ基であることが好ましい。末端が酸無水物基の場合、単離時に酸無水物が開環し、カルボン酸等に変わる可能性があるためである。
 可溶性のイミド化合物の単離は、例えば、第1工程で得られた可溶性のイミド化合物を含む反応溶液を水などの貧溶媒に滴下または混合して、イミド化合物を析出(再沈殿)させることで行うことができる。
 なお、この場合も、第1工程および第2工程の反応条件は上記と同様である。
 また、本発明のポリイミド前駆体(部分イミド化ポリアミド酸)は、次のようにして、製造することもできる。
 まず最初に、化学イミド化剤を含まない溶媒中で、テトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とをイミド化を抑制する条件下で、具体的には100℃未満の温度で反応させて、前記化学式(1)で表される繰り返し単位からなる(ポリ)アミック酸化合物を含む反応溶液を得る(第1工程)。より具体的には、化学イミド化剤を含まない溶媒にジアミンを溶解し、攪拌しながら、この溶液にテトラカルボン酸二無水物を徐々に添加し、100℃未満、好ましくは-20~80℃の範囲で1~72時間攪拌した後、テトラカルボン酸二無水物を添加し、100℃未満、好ましくは-20~80℃の範囲で1~72時間攪拌する。ジアミンとテトラカルボン酸二無水物の添加順序を逆にしてもよく、また、ジアミンとテトラカルボン酸二無水物を同時に添加してもよい。
 この第1工程においては、テトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とを略等モル、好ましくはテトラカルボン酸成分に対するジアミン成分のモル比[ジアミン成分のモル数/テトラカルボン酸成分のモル数]が0.90~1.10、より好ましくは0.95~1.05の割合で反応させることが好ましい。
 また、イミド化が一部進行して、第1工程において得られる(ポリ)アミック酸化合物が、前記化学式(2)で表される繰り返し単位を含むものであってもよい。ただし、全繰り返し単位[化学式(1)で表される繰り返し単位と化学式(2)で表される繰り返し単位の合計量]に対する前記化学式(2)で表される繰り返し単位の含有量は90モル%未満(イミド化率は90%未満)である。
 次いで、第1工程で得られた(ポリ)アミック酸化合物を含む反応溶液を、イミド化反応が進行する条件下、具体的には100℃以上の温度に加熱して熱的に反応させて、前記化学式(1)で表される繰り返し単位の一部を前記化学式(2)で表される繰り返し単位に変換して、前記化学式(2)で表される繰り返し単位の含有量が全繰り返し単位[(化学式(1)で表される繰り返し単位)+(化学式(2)で表される繰り返し単位)]に対して30モル%以上90モル%以下である本発明のポリイミド前駆体を得る(第2工程)。より具体的には、反応溶液を100℃以上、好ましくは120℃以上、より好ましくは150~250℃の範囲で5分~72時間攪拌することで、本発明のポリイミド前駆体が得られる。
 この第2工程においては、最終的に得られるポリイミド前駆体の全繰り返し単位[化学式(1)で表される繰り返し単位と化学式(2)で表される繰り返し単位の合計量]に対する前記化学式(2)で表される繰り返し単位の含有量が30モル%以上90モル%以下(すなわち、イミド化率が30%以上90%以下)になるように反応温度および反応時間を適宜選択する。反応温度および反応時間が上記の範囲内であっても、反応温度が比較的高く、且つ反応時間が比較的長い場合、前記化学式(2)で表される繰り返し単位の含有量が全繰り返し単位[(化学式(1)で表される繰り返し単位)+(化学式(2)で表される繰り返し単位)]に対して90モル%以上になることがある。
 なお、この場合も、ポリイミド前駆体を調製する際に使用する溶媒としては、上記と同様のものを使用することができる。
2)部分イミド化ポリアミド酸エステル
 テトラカルボン酸二無水物を任意のアルコールと反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸ジクロライドを得る。このジエステルジカルボン酸クロライドとジアミンを-20~120℃、好ましくは-5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。
 この方法で得られるポリイミド前駆体は、安定なため、水やアルコールなどの溶剤を加えて再沈殿などの精製を行うこともできる。
 得られたポリイミド前駆体を80℃以上の温度に加熱して熱的に反応させて一部をイミド化することで、部分イミド化ポリアミド酸エステルが得られる。
3)部分イミド化ポリアミド酸シリルエステル(間接法)
 あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得る。必要に応じて、蒸留等により、シリル化されたジアミンの精製を行う。そして、脱水された溶剤中にシリル化されたジアミンを溶解させておき、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
 ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたジアミンを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
 また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
 得られたポリイミド前駆体を80℃以上の温度に加熱して熱的に反応させて一部をイミド化することで、部分イミド化ポリアミド酸シリルエステルが得られる。
4)部分イミド化ポリアミド酸シリルエステル(直接法)
 1)の方法で得られたポリアミド酸溶液とシリル化剤を混合し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、部分イミド化ポリアミド酸シリルエステルが得られる。
 ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたポリアミド酸、もしくは、得られたポリイミドを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
 また、テトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とをイミド化を抑制する条件下で、具体的には100℃未満の温度で反応させ、シリル化剤を混合し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。得られたポリイミド前駆体を80℃以上の温度に加熱して熱的に反応させて一部をイミド化することで、部分イミド化ポリアミド酸シリルエステルが得られる。
 前記製造方法は、いずれも溶媒中で好適に行うことができるので、その結果として、本発明のポリイミド前駆体のワニス(ポリイミド前駆体溶液または溶液組成物)を容易に得ることができる。なお、前記製造方法により得られるポリイミド前駆体溶液または溶液組成物は、必要に応じて、溶媒を除去または加えて、また所望の成分を添加してもよい。
 本発明において、ポリイミド前駆体の対数粘度は、特に限定されないが、30℃での濃度0.5g/dLの重合時に用いた溶媒の溶液における対数粘度が0.2dL/g以上、好ましくは0.5dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、ポリイミド前駆体の分子量が高く、得られるポリイミドの機械強度や耐熱性に優れる。
 本発明において、ポリイミド前駆体のワニスは、少なくとも本発明のポリイミド前駆体と溶媒とを含む。溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、テトラカルボン酸成分とジアミン成分との合計量が5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上の割合であることが好適である。なお、通常は60質量%以下、好ましくは50質量%以下であることが好適である。この濃度は、ポリイミド前駆体に起因する固形分濃度にほぼ近似される濃度であるが、この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。
 本発明のポリイミド前駆体のワニスに用いる溶媒としては、ポリイミド前駆体が溶解すれば特に限定されず、どんな種類の溶媒であっても問題なく使用できる。ポリイミド前駆体のワニスに用いる溶媒としては、例えば、前記のポリイミド前駆体を調製する際に使用する溶媒と同じものが挙げられる。なお、溶媒は、複数種を組み合わせて使用することもできる。
 本発明において、ポリイミド前駆体のワニスの粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec-1で測定した回転粘度が、0.01~1000Pa・secが好ましく、0.1~100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。
 本発明のポリイミド前駆体のワニスは、必要に応じて、酸化防止剤、フィラー、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを添加することができる。本発明のポリイミド前駆体のワニスは、化学イミド化剤を含まないことが好ましい。
 本発明のポリイミドは、前記のような本発明のポリイミド前駆体から得られるものであり、本発明のポリイミド前駆体を脱水閉環反応(イミド化反応)することで好適に製造することができる。本発明においては、特に限定されず、公知の熱イミド化の方法いずれも好適に適用することができる。得られるポリイミドの形態は、フィルム、ポリイミドフィルムと他の基材との積層体、コーティング膜、粉末、ビーズ、成型体、発泡体などを好適に挙げることができる。
 本発明のポリイミド前駆体から得られるポリイミド、すなわち本発明のポリイミドは、必要に応じて、シリカ等の無機粒子を混合することもできる。無機粒子を混合する方法としては、特に限定されるものではないが、重合溶媒に無機粒子を分散させ、その溶媒中でポリイミド前駆体を重合する方法、ポリイミド前駆体溶液と無機粒子を混合する方法、ポリイミド前駆体溶液と無機粒子分散溶液を混合する方法等がある。
 本発明のポリイミド(本発明のポリイミド前駆体から得られるポリイミド)は、特に限定されないが、フィルムにしたときの50℃から200℃までの線熱膨張係数が、好ましくは40ppm/K以下、より好ましくは35ppm/K以下、さらに好ましくは30ppm/K以下、特に好ましくは25ppm/K以下であり、極めて低い線熱膨張係数を有する。線熱膨張係数が大きいと、金属などの導体との線熱膨張係数の差が大きく、回路基板を形成する際に反りが増大するなどの不具合が生じることがある。
 用途によっては、優れた光透過性を有することが望ましく、本発明のポリイミド(本発明のポリイミド前駆体から得られるポリイミド)は、特に限定されないが、厚さ10μmのフィルムでの全光透過率(波長380nm~780nmの平均光透過率)が、好ましくは80%以上、より好ましくは83%以上、さらに好ましくは85%以上、特に好ましくは88%以上であることができる。ディスプレイ用途等で使用する場合、全光透過率が低いと光源を強くする必要があり、エネルギーがかかるといった問題等を生じることがある。
 また、本発明のポリイミド(本発明のポリイミド前駆体から得られるポリイミド)は、特に限定されないが、厚さ10μmのフィルムでの波長400nmにおける光透過率が、好ましくは65%以上、より好ましくは70%以上、さらに好ましくは75%以上、特に好ましくは80%以上であることができる。
 用途によっては光透過性以外の特性が求められ、厚さ10μmのフィルムでの全光透過率、及び、厚さ10μmのフィルムでの波長400nmにおける光透過率が上記の範囲内でなくてもよい場合もある。
 なお、本発明のポリイミドからなるフィルムは、用途にもよるが、フィルムの厚みとしては、好ましくは1μm~250μm、より好ましくは1μm~150μm、さらに好ましくは1μm~50μm、特に好ましくは1μm~30μmである。ポリイミドフィルムを光が透過する用途に使用する場合、ポリイミドフィルムが厚すぎると光透過率が低くなる恐れがある。
 本発明のポリイミド(本発明のポリイミド前駆体から得られるポリイミド)は、特に限定されないが、5%重量減少温度が、好ましくは470℃を超え、より好ましくは480℃以上であり、さらに好ましくは490℃以上であり、特に好ましくは495℃以上である。ポリイミド上にトランジスタを形成する等で、ポリイミド上にガスバリア膜等を形成する場合、耐熱性が低いと、ポリイミドとバリア膜との間で、ポリイミドの分解等に伴うアウトガスにより膨れが生じることがある。一般に耐熱性は高い方が好ましいが、用途によっては、耐熱性以外の特性が求められ、5%重量減少温度が470℃以下であってもよい場合もある。
 本発明のポリイミド前駆体から得られるポリイミド、すなわち本発明のポリイミドのフィルム、または本発明のポリイミド層を少なくとも1層有する積層体は、TAB用フィルム、電気・電子部品用基板、配線基板として好適に使用でき、例えば、プリント回路基板、電力用回路基板、フレキシブルヒーター、抵抗器用基板として好適に使用することができる。また、電気・電子部品用の絶縁膜や保護膜、特に、LSI等のベース基材等の線膨張係数が小さい材料上に形成する絶縁膜、保護膜等の用途にも有用である。
 また、特にテトラカルボン酸成分として脂環式テトラカルボン酸成分を用いた場合、高い透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線熱膨張係数を有することから、ディスプレイ用透明基板、タッチパネル用透明基板、或いは太陽電池用基板の用途において、好適に用いることができる。
 以下では、本発明のポリイミド前駆体を用いた、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムの製造方法の一例について述べる。ただし、以下の方法に限定されるものではない。
 例えばセラミック(ガラス、シリコン、アルミナ)、金属(銅、アルミニウム、ステンレス)、耐熱プラスチックフィルム(ポリイミド)などの基材に、本発明のポリイミド前駆体のワニスを流延し、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用いて、20~180℃、好ましくは20~150℃の温度範囲で乾燥する。次いで、得られたポリイミド前駆体フィルムを基材上で、もしくはポリイミド前駆体フィルムを基材上から剥離し、そのフィルムの端部を固定した状態で、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用い、200~500℃、より好ましくは250~450℃程度の温度で加熱イミド化することでポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを製造することができる。なお、得られるポリイミドフィルムが酸化劣化するのを防ぐため、加熱イミド化は、真空中、或いは不活性ガス中で行うことが望ましい。加熱イミド化の温度が高すぎなければ空気中で行なっても差し支えない。ここでのポリイミドフィルム(ポリイミドフィルム/基材積層体の場合は、ポリイミドフィルム層)の厚さは、以後の工程の搬送性のため、好ましくは1~250μm、より好ましくは1~150μmである。
 この様にして得られたポリイミドフィルム/基材積層体、もしくはポリイミドフィルムは、その片面もしくは両面に導電性層を形成することによって、フレキシブルな導電性基板を得ることができる。
 フレキシブルな導電性基板は、例えば次の方法によって得ることができる。すなわち、第一の方法としては、ポリイミドフィルム/基材積層体を基材からポリイミドフィルムを剥離せずに、そのポリイミドフィルム表面に、スパッタ、蒸着、印刷などによって、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を形成させ、導電性層/ポリイミドフィルム/基材の導電性積層体を製造する。その後必要に応じて、基材より電気導電層/ポリイミドフィルム積層体を剥離することによって、導電性層/ポリイミドフィルム積層体からなるフレキシブルな導電性基板を得ることができる。
 第二の方法としては、ポリイミドフィルム/基材積層体の基材からポリイミドフィルムを剥離して、ポリイミドフィルムを得、そのポリイミドフィルム表面に、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を、第一の方法と同様にして形成させ、導電性層/ポリイミドフィルム積層体、または導電性層/ポリイミドフィルム/導電性層積層体からなるフレキシブルな導電性基板を得ることができる。
 なお、第一、第二の方法において、必要に応じて、ポリイミドフィルムの表面に導電層を形成する前に、スパッタ、蒸着やゲル-ゾル法などによって、水蒸気、酸素などのガスバリヤ層、光調整層などの無機層を形成しても構わない。
 また、導電層は、フォトリソグラフィ法や各種印刷法、インクジェット法などの方法によって、回路が好適に形成される。
 このようにして得られる基板は、本発明のポリイミドによって構成されたポリイミドフィルムの表面に、必要に応じてガスバリヤ層や無機層を介し、導電層の回路を有するものである。この基板は、フレキシブルであり、折り曲げ性、耐熱性、機械的特性が優れ、さらに高温まで極めて低い線熱膨張係数、優れた耐溶剤性を併せ有するので微細な回路の形成が容易である。
 本発明のポリイミドのフィルム、または本発明のポリイミド層を少なくとも1層有する積層体は、TAB用フィルム、電気・電子部品用基板、配線基板として好適に使用でき、例えば、プリント回路基板、電力用回路基板、フレキシブルヒーター、抵抗器用基板として好適に使用することができる。また、電気・電子部品用の絶縁膜や保護膜、特に、LSI等のベース基材等の線膨張係数が小さい材料上に形成する絶縁膜、保護膜等の用途にも有用である。
 また、特にテトラカルボン酸成分として脂環式テトラカルボン酸成分(脂環式テトラカルボン酸二無水物など)を用いた本発明のポリイミドは、上記の特性に加え、透明性も高い。したがって、このポリイミドのフィルム、またはポリイミド層を少なくとも1層有する積層体は、ディスプレイ用の基板、タッチパネル用の基板、太陽電池用の基板等として好適に使用することができる。
 すなわち、この基板に、蒸着、各種印刷法、或いはインクジェット法などによって、さらにトランジスタ(無機トランジスタ、有機トランジスタ)が形成されてフレキシブル薄膜トランジスタが製造され、そして、表示デバイス用の液晶素子、EL素子、光電素子として好適に用いられる。
 以下、実施例及び比較例によって本発明を更に説明する。尚、本発明は以下の実施例に限定されるものではない。
 以下の各例において評価は次の方法で行った。
<ポリイミド前駆体のワニスの評価>
 [対数粘度]
 濃度0.5g/dLのポリイミド前駆体の各種溶液を調製し、ウベローデ粘度計を用いて、30℃で測定し、対数粘度を求めた。
 [イミド化率]
 溶媒にジメチルスルホキシド-dを用い、日本電子製M-AL400でポリイミド前駆体溶液のH-NMR測定を行い、芳香族プロトンのピークの積分値とカルボン酸プロトンのピークの積分値の比から、下記式(I)によってイミド化率[全繰り返し単位に対する化学式(2)で表される繰り返し単位の含有量]を算出した。
  イミド化率(%)={1-(Y/Z)×(1/X)}×100   (I)
 X:モノマーの仕込み量から求められる、イミド化率0%の場合のカルボン酸プロトンピークの積分値/芳香族プロトンピークの積分値
 Y:H-NMR測定から得られるカルボン酸プロトンピークの積分値
 Z:H-NMR測定から得られる芳香族プロトンピークの積分値
 具体例を下記に示す。
 図1は、比較例3のポリイミド前駆体溶液のH-NMR測定結果である。横軸の化学シフト7~8.3ppm付近のピークは芳香族プロトンのピーク、9.6~10.6ppm付近のピークはアミドプロトンのピーク、12ppm付近のピークはカルボン酸プロトンのピークである。比較例3のポリイミド前駆体は、イミド化が進行しない反応条件下で反応させているため、イミド化率は0%になると考えられる。モノマーの仕込み量から算出した、イミド化率0%の場合の芳香族プロトンピークの積分値とカルボン酸プロトンピークの積分値の比は7:2である。H-NMR測定結果では、芳香族プロトンピークの積分値とカルボン酸プロトンピークの積分値の比は7:2であり、イミド化率が0%であることが確認された。
 図2は、実施例19のポリイミド前駆体溶液のH-NMR測定結果である。化学シフト7~8.3ppm付近の芳香族プロトンピークの積分値は7であるのに対して、12ppm付近のカルボン酸プロトンピークの積分値は1.23であった。上記に示したように、イミド化率0%の場合、芳香族プロトンピークの積分値とカルボン酸プロトンピークの積分値の比は7:2である。実施例19のポリイミド前駆体溶液のH-NMR測定結果では、芳香族プロトンピークの積分値とカルボン酸プロトンピークの積分値の比が7:1.23であった理由はイミド化が進行し、カルボン酸量が減少したためである。
 実施例19のイミド化率を上記式(I)によって算出すると、38.5%となった。
イミド化率(%)=[1-(1.23/7)×{1/(2/7)}]×100
        =38.5
<ポリイミドフィルムの評価>
 [400nm光透過率、全光透過率]
 大塚電子製MCPD-300を用いて、膜厚約10μmのポリイミド膜の400nmにおける光透過率と、全光透過率(380nm~780nmにおける平均透過率)を測定した。測定した400nmにおける光透過率と、全光透過率を反射率を10%としてランベルト・ベール式を用いて、10μm厚の400nmにおける光透過率と、全光透過率を算出した。算出式を下記に示す。
 Log10((T+10)/100)=10/L×(Log10((T’+10)/100))
 Log10((T+10)/100)=10/L×(Log10((T’+10)/100))
:反射率を10%としたときの10μm厚のポリイミドフィルムの400nmにおける光透過率(%)
’:測定した400nmにおける光透過率(%)
:反射率を10%としたときの10μm厚のポリイミドフィルムの全光透過率(%)
’:測定した全光透過率(%)
L:測定したポリイミドフィルムの膜厚(μm)
 [弾性率、破断伸度、破断強度]
 膜厚約10μmのポリイミドフィルムをIEC450規格のダンベル形状に打ち抜いて試験片とし、ORIENTEC社製TENSILONを用いて、チャック間長30mm、引張速度2mm/分で、初期の弾性率、破断伸度、破断強度を測定した。
 [線熱膨張係数(CTE)]
 膜厚約10μmのポリイミドフィルムを幅4mmの短冊状に切り取って試験片とし、TMA/SS6100 (エスアイアイ・ナノテクノロジー株式会社製)を用い、チャック間長15mm、荷重2g、昇温速度20℃/分で500℃まで昇温した。得られたTMA曲線から、50℃から200℃までの線熱膨張係数を求めた。
 [5%重量減少温度]
 膜厚約10μmのポリイミドフィルムを試験片とし、TAインスツルメント社製 熱量計測定装置(Q5000IR)を用い、窒素気流中、昇温速度10℃/分で25℃から600℃まで昇温した。得られた重量曲線から、5%重量減少温度を求めた。
 [溶解性試験]
 膜厚約10μmのポリイミドフィルムを試験片とし、N,N-ジメチルアセトアミドに5分間浸漬させ、目視で変化のなかったものを○、白濁や溶解があったものを×とした。
 以下の各例で使用した原材料の略称、純度等は、次のとおりである。
 [ジアミン成分]
DABAN: 4,4’-ジアミノベンズアニリド〔純度:99.90%(GC分析)〕
TFMB: 2,2’-ビス(トリフルオロメチル)ベンジジン〔純度:99.83%(GC分析)〕
PPD: p-フェニレンジアミン〔純度:99.9%(GC分析)〕
FDA: 9,9-ビス(4-アミノフェニル)フルオレン
BAPB: 4,4’-ビス(4-アミノフェノキシ)ビフェニル
 [テトラカルボン酸成分]
CpODA:ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸無水物
DNDAxx:(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸二無水物〔DNDAxxとしての純度:99.2%(GC分析)〕
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
ODPA:4,4’-オキシジフタル酸無水物
[溶媒]
DMAc: N,N-ジメチルアセトアミド
NMP: 1-メチル-2-ピロリドン
 表1に実施例、比較例で使用したテトラカルボン酸成分、ジアミン成分の構造式を記す。
Figure JPOXMLDOC01-appb-T000012
 〔実施例1〕
 窒素ガスで置換した反応容器中にTFMB 2.000g(6.246ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の32.8gを加え、室温で1時間攪拌した。この溶液にCpODA 1.600g(4.164ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は2であり、末端はアミノ基である。その溶液にDABAN 1.419g(6.246ミリモル)を入れ、室温で1時間攪拌した。この溶液にCpODA 3.201g(8.327ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例2〕
 窒素ガスで置換した反応容器中にTFMB 1.500g(4.684ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の24.7gを加え、室温で1時間攪拌した。この溶液にCpODA 1.350g(3.513ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は3であり、末端はアミノ基である。その溶液にDABAN 1.065g(4.684ミリモル)を入れ、室温で1時間攪拌した。この溶液にCpODA 2.251g(5.855ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例3〕
 窒素ガスで置換した反応容器中にTFMB 1.500g(4.684ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の24.7gを加え、室温で1時間攪拌した。この溶液にCpODA 1.575g(4.099ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は7であり、末端はアミノ基である。その溶液にDABAN 1.065g(4.684ミリモル)を入れ、室温で1時間攪拌した。この溶液にCpODA 2.026g(5.270ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.7dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例4〕
 窒素ガスで置換した反応容器中にTFMB 1.500g(4.684ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の24.7gを加え、室温で1時間攪拌した。この溶液にCpODA 1.688g(4.391ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は15であり、末端はアミノ基である。その溶液にDABAN 1.065g(4.684ミリモル)を入れ、室温で1時間攪拌した。この溶液にCpODA 1.913g(4.977ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例5〕
 窒素ガスで置換した反応容器中にTFMB 1.500g(4.684ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の24.7gを加え、室温で1時間攪拌した。この溶液にCpODA 1.764g(4.590ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は49であり、末端はアミノ基である。その溶液にDABAN 1.065g(4.684ミリモル)を入れ、室温で1時間攪拌した。この溶液にCpODA 1.836g(4.778ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例6〕
 窒素ガスで置換した反応容器中にTFMB 1.500g(4.684ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の24.7gを加え、室温で1時間攪拌した。この溶液にCpODA 1.799g(4.679ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は999であり、末端はアミノ基である。その溶液にDABAN 1.065g(4.684ミリモル)を入れ、室温で1時間攪拌した。この溶液にCpODA 1.802g(4.689ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例7〕
 窒素ガスで置換した反応容器中にCpODA 3.601g(9.368ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の24.7gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 1.500g(4.684ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は1であり、末端は酸無水物基である。その溶液にDABAN 1.065g(4.684ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例8〕
 窒素ガスで置換した反応容器中にCpODA 3.000g(7.805ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の27.4gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 1.666g(5.203ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は2であり、末端は酸無水物基である。その溶液にDABAN 1.183g(5.203ミリモル)を入れ、50℃で5時間撹拌した。その溶液にCpODA 1.00g(2.602ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例9〕
 窒素ガスで置換した反応容器中にCpODA 2.500g(6.504ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の30.0gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 1.822g(5.691ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は7であり、末端は酸無水物基である。その溶液にDABAN 1.293g(5.691ミリモル)を入れ、50℃で5時間撹拌した。その溶液にCpODA 1.875g(4.878ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例10〕
 窒素ガスで置換した反応容器中にCpODA 2.500g(6.504ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の32.1gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 1.953g(6.097ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は15であり、末端は酸無水物基である。その溶液にDABAN 1.386g(6.097ミリモル)を入れ、50℃で5時間撹拌した。その溶液にCpODA 2.188g(5.691ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例11〕
 窒素ガスで置換した反応容器中にCpODA 2.500g(6.504ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の33.6gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 2.041g(6.374ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は49であり、末端は酸無水物基である。その溶液にDABAN 1.449g(6.374ミリモル)を入れ、50℃で5時間撹拌した。その溶液にCpODA 2.40g(6.244ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例12〕
 窒素ガスで置換した反応容器中にCpODA 2.500g(6.504ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の34.2gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 2.081g(6.497ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は999であり、末端は酸無水物基である。その溶液にDABAN 1.477g(6.497ミリモル)を入れ、50℃で5時間撹拌した。その溶液にCpODA 2.495g(6.491ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例13〕
 窒素ガスで置換した反応容器中にTFMB 3.555g(11.101ミリモル)を入れ、NMP 36.1gを加え、室温で1時間攪拌し、均一な溶液を得た。この溶液にCpODA 2.844g(7.399ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、170℃へ昇温し、トルエンを25mL添加し、5時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却した。その溶液を500mlの水に滴下し、固体のイミド化合物TFMB5(仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は2であり、末端はアミノ基である。)を析出させ、回収、減圧乾燥した。得られたTFMB5 1.617g(1.173ミリモル)とDABAN 0.800g(3.520ミリモル)を入れ、DMAcを仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の16.9gを加え、室温で1時間攪拌した。その溶液にCpODA 1.804g(4.693ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.8dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例14〕
 窒素ガスで置換した反応容器中にDABAN 0.713g(3.136ミリモル)とTFMB 1.004g(3.136ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の16.5gを加え、室温で1時間攪拌した。この溶液にCpODA 2.411g(6.272ミリモル)を徐々に加え、室温で24時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、15分間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、均一で粘稠なポリイミド前駆体溶液(イミド化率:52%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例15〕
 窒素ガスで置換した反応容器中にDABAN 0.713g(3.136ミリモル)とTFMB 1.004g(3.136ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の16.5gを加え、室温で1時間攪拌した。この溶液にCpODA 2.411g(6.272ミリモル)を徐々に加え、室温で24時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、10分間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、均一で粘稠なポリイミド前駆体溶液(イミド化率:44%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔比較例1〕
 窒素ガスで置換した反応容器中にDABAN 0.713g(3.136ミリモル)とTFMB 1.004g(3.136ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の16.5gを加え、室温で1時間攪拌した。この溶液にCpODA 2.411g(6.272ミリモル)を徐々に加え、室温で24時間撹拌し、均一で粘稠なポリイミド前駆体溶液(イミド化率:0%)を得た。得られたポリイミド前駆体の対数粘度は0.2dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔参考例1〕
 窒素ガスで置換した反応容器中にDABAN 0.713g(3.136ミリモル)とTFMB 1.004g(3.136ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の16.5gを加え、室温で1時間攪拌した。この溶液にCpODA 2.411g(6.272ミリモル)を徐々に加え、室温で24時間撹拌した。その後、160℃へ昇温し、トルエンを25ml添加し、30分間トルエンを還流させると、析出物が確認された。その後、室温まで冷却したが、析出物はさらに増え、均一なワニスは得られなかった。
 〔実施例16〕
 窒素ガスで置換した反応容器中にCpODA 4.502g(11.711ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の29.3gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 1.500g(4.684ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は1であり、末端は酸無水物基である。その溶液にDABAN 1.065g(4.684ミリモル)とPPD 0.253g(2.342ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔実施例17〕
 窒素ガスで置換した反応容器中にCpODA 4.502g(11.711ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の29.3gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 1.500g(4.684ミリモル)とPPD 0.253g(2.342ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は1であり、末端は酸無水物基である。その溶液にDABAN 1.065g(4.684ミリモル)とを入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔比較例2〕
 窒素ガスで置換した反応容器中にDABAN 0.355g(1.561ミリモル)とTFMB 0.50g(1.561ミリモル)とPPD 0.084g(0.781ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の9.8gを加え、室温で1時間攪拌した。この溶液にCpODA 1.500g(3.903ミリモル)を徐々に加え、室温で24時間撹拌し、均一で粘稠なポリイミド前駆体溶液(イミド化率:0%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔実施例18〕
 窒素ガスで置換した反応容器中にTFMB 1.500g(4.684ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の21.6gを加え、室温で1時間攪拌した。この溶液にDNDAxx 1.239g(4.099ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は7であり、末端はアミノ基である。その溶液にDABAN 1.065g(4.684ミリモル)を入れ、室温で1時間攪拌した。この溶液にDNDAxx 1.593g(5.270ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔実施例19〕
 窒素ガスで置換した反応容器中にTFMB 1.50g(4.684ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の21.6gを加え、室温で1時間攪拌した。この溶液にDNDAxx 1.388g(4.591ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は49であり、末端はアミノ基である。その溶液にDABAN 1.065g(4.684ミリモル)を入れ、室温で1時間攪拌した。この溶液にDNDAxx 1.444g(4.778ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔実施例20〕
 窒素ガスで置換した反応容器中にDNDAxx 3.776g(12.491ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の28.8gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 2.000g(6.246ミリモル)とDABAN 0.568g(2.498ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は1であり、末端は酸無水物基である。その溶液にDABAN 0.852g(3.747ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.8dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔比較例3〕
 窒素ガスで置換した反応容器中にDABAN 0.800g(3.520ミリモル)とTFMB 1.127g(3.520ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の16.6gを加え、室温で1時間攪拌した。この溶液にDNDAxx 2.128g(7.040ミリモル)を徐々に加え、室温で24時間撹拌し、均一で粘稠なポリイミド前駆体溶液(イミド化率:0%)を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔実施例21〕
 窒素ガスで置換した反応容器中にDNDAxx 1.773g(5.867ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 15質量%となる量の15.6gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にDABAN 0.400g(1.760ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は1であり、末端は酸無水物基である。その溶液にDABAN 0.267g(1.173ミリモル)とPPD 0.317g(2.933ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-4に示す。
 〔実施例22〕
 窒素ガスで置換した反応容器中にDNDAxx 2.130g(7.048ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 10質量%となる量の29.8gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にDABAN 0.801g(3.524ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は1であり、末端は酸無水物基である。その溶液にPPD 0.381g(3.524ミリモル)を入れ、室温で24時間攪拌した。この溶液を減圧濃縮し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-4に示す。
 〔実施例23〕
 窒素ガスで置換した反応容器中にDABAN 1.400g(6.160ミリモル)とPPD 0.666g(6.160ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の23.5gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.724g(12.320ミリモル)を徐々に加え、室温で24時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、15分間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、均一で粘稠なポリイミド前駆体溶液(イミド化率:50%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-4に示す。
 〔実施例24〕
 窒素ガスで置換した反応容器中にDABAN 1.400g(6.160ミリモル)とPPD 0.666g(6.160ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の23.5gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.724g(12.320ミリモル)を徐々に加え、室温で24時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、20分間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、均一で粘稠なポリイミド前駆体溶液(イミド化率:69%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-4に示す。
 〔比較例4〕
 窒素ガスで置換した反応容器中にDABAN 0.800g(3.520ミリモル)とPPD 0.381g(3.520ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の13.4gを加え、室温で1時間攪拌した。この溶液にDNDAxx 2.128g(7.040ミリモル)を徐々に加え、室温で24時間撹拌し、均一で粘稠なポリイミド前駆体溶液(イミド化率:0%)を得た。得られたポリイミド前駆体の対数粘度は0.7dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-4に示す。
 〔比較例5〕
 窒素ガスで置換した反応容器中にDNDAxx 0.798g(2.640ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 5質量%となる量の23.6gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にPPD 0.029g(0.264ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は1であり、末端は酸無水物基である。その溶液にDABAN 0.300g(1.320ミリモル)とPPD 0.114g(1.056ミリモル)を入れ、室温で24時間攪拌した。この溶液を減圧濃縮し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-4に示す。
 〔比較例6〕
 窒素ガスで置換した反応容器中にDNDAxx 2.660g(8.800ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 15質量%となる量の23.4gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にDABAN 0.200g(0.880ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は1であり、末端は酸無水物基である。その溶液にDABAN 0.800g(3.520ミリモル)とPPD 0.476g(4.400ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.5dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-4に示す。
 〔実施例25〕
 窒素ガスで置換した反応容器中にDABAN 1.400g(6.160ミリモル)とPPD 0.666g(6.160ミリモル)を入れ、NMPを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の23.5gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.724g(12.320ミリモル)を徐々に加え、室温で24時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、20分間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、均一で粘稠なポリイミド前駆体溶液(イミド化率:73%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-4に示す。
 〔比較例7〕
 窒素ガスで置換した反応容器中にDABAN 1.400g(6.160ミリモル)とPPD 0.666g(6.160ミリモル)を入れ、NMPを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の23.5gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.724g(12.320ミリモル)を徐々に加え、室温で24時間撹拌し、均一で粘稠なポリイミド前駆体溶液(イミド化率:0%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-4に示す。
 〔実施例26〕
 窒素ガスで置換した反応容器中にDNDAxx 3.540g(11.711ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の25.4gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 1.500g(4.684ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は1であり、末端は酸無水物基である。その溶液にDABAN 1.065g(4.684ミリモル)とPPD 0.253g(2.342ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-5に示す。
 〔実施例27〕
 窒素ガスで置換した反応容器中にDNDAxx 5.542g(18.334ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の36.7gを加え、50℃で1時間攪拌し、均一な溶液を得た。この溶液にTFMB 1.174g(3.667ミリモル)とDABAN 0.500g(2.200ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は1であり、末端は酸無水物基である。その溶液にDABAN 1.167g(5.133ミリモル)とPPD 0.793g(7.333ミリモル)を入れ、室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-5に示す。
 〔実施例28〕
 窒素ガスで置換した反応容器中にTFMB 1.409g(4.400ミリモル)とDABAN 1.000g(4.400ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の40.0gを加え、室温で1時間攪拌した。この溶液にDNDAxx 2.657g(8.791ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、イミド化合物を含む溶液を得た。仕込みモノマー量から計算されるこのイミド化合物の重合度(n)は999であり、末端はアミノ基である。その溶液にDABAN 1.000g(4.400ミリモル)とPPD 0.952g(8.800ミリモル)を入れ、室温で5時間攪拌し、DNDAxx 3.993g(13.209ミリモル)室温で24時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.7dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-5に示す。
 〔実施例29〕
 窒素ガスで置換した反応容器中にDNDAxx 3.325g(11.000ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の21.3gを加え、室温で1時間攪拌した。この溶液にFDA 0.383g(1.100ミリモル)を徐々に加え、50℃で5時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、3時間トルエンを還流させた後、トルエンを抜き出し、50℃まで冷却した。その溶液にDABAN 1.000g(4.400ミリモル)とPPD 0.595g(5.500ミリモル)を入れ、50℃で10時間攪拌した。その後、160℃へ昇温し、トルエンを25ml添加し、15分間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.7dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から450℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-5に示す。
 〔実施例30〕
 窒素ガスで置換した反応容器中にTFMB 3.032g(9.468ミリモル)を入れ、NMPを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 15質量%となる量の32.27gを加え、室温で1時間攪拌した。この溶液にs-BPDA 2.786g(9.468ミリモル)を徐々に加え、室温で24時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、15分間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、均一で粘稠なポリイミド前駆体溶液(イミド化率:50%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-5に示す。
 〔比較例8〕
 窒素ガスで置換した反応容器中にTFMB 3.032g(9.468ミリモル)を入れ、NMPを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 15質量%となる量の32.27gを加え、室温で1時間攪拌した。この溶液にs-BPDA 2.786g(9.468ミリモル)を徐々に加え、室温で24時間撹拌し、均一で粘稠なポリイミド前駆体溶液(イミド化率:0%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-5に示す。
 〔実施例31〕
 窒素ガスで置換した反応容器中にTFMB 2.000g(6.246ミリモル)とDABAN 1.419g(6.246ミリモル)を入れ、NMPを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の29.18gを加え、室温で1時間攪拌した。この溶液にODPA 3.875g(12.491ミリモル)を徐々に加え、室温で24時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、15分間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、均一で粘稠なポリイミド前駆体(イミド化率:47%)溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-5に示す。
 〔比較例9〕
 窒素ガスで置換した反応容器中にTFMB 2.000g(6.246ミリモル)とDABAN 1.419g(6.246ミリモル)を入れ、NMPを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の29.18gを加え、室温で1時間攪拌した。この溶液にODPA 3.875g(12.491ミリモル)を徐々に加え、室温で24時間撹拌し、均一で粘稠なポリイミド前駆体溶液(イミド化率:0%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-5に示す。
 〔実施例32〕
 窒素ガスで置換した反応容器中にDABAN 1.818g(8.000ミリモル)とPPD 1.108g(1.000ミリモル)とBAPB 0.368g(1.000ミリモル)を入れ、NMPを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の21.27gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.023g(10.000ミリモル)を徐々に加え、室温で24時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、15分間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、均一で粘稠なポリイミド前駆体(イミド化率:43%)溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-6に示す。
 〔比較例10〕
 窒素ガスで置換した反応容器中にDABAN 1.818g(8.000ミリモル)とPPD 1.108g(1.000ミリモル)とBAPB 0.368g(1.000ミリモル)を入れ、NMPを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の21.27gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.023g(10.000ミリモル)を徐々に加え、室温で24時間撹拌し、均一で粘稠なポリイミド前駆体溶液(イミド化率:0%)を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-6に示す。
 〔実施例33〕
 窒素ガスで置換した反応容器中にDABAN 1.591g(7.000ミリモル)とPPD 1.108g(1.000ミリモル)とBAPB 0.737g(2.000ミリモル)を入れ、NMPを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の21.83gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.023g(10.000ミリモル)を徐々に加え、室温で24時間撹拌した。その後、160℃へ昇温し、トルエンを25mL添加し、15分間トルエンを還流させた後、トルエンを抜き出し、室温まで冷却し、均一で粘稠なポリイミド前駆体(イミド化率:35%)溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-6に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 本発明によって、熱イミド化によって製造され、延伸操作を行うことなく線熱膨張係数が低いポリイミドが得られるポリイミド前駆体を提供することができる。また、本発明によって、線熱膨張係数が低く、耐熱性、耐溶剤性、機械的特性にも優れたポリイミド、さらには透明性にも優れたポリイミドが得られるポリイミド前駆体を提供することができる。
 本発明のポリイミド前駆体から得られるポリイミドは、高温まで低線熱膨張係数であって微細な回路の形成が容易であり、TAB用フィルム、電気・電子部品用基板、配線基板として好適に用いることができ、また、電気・電子部品用の絶縁膜や保護膜としても好適に用いることができる。特にテトラカルボン酸成分として脂環式テトラカルボン酸成分を用いた本発明のポリイミド前駆体から得られるポリイミドは、透明性が高く、且つ高温まで低線熱膨張係数であって微細な回路の形成が容易であり、特にディスプレイ用途などの基板を形成するために好適に用いることができる。すなわち、本発明の本実施形態のポリイミドフィルムは、ディスプレイ用途などの無色透明で微細な回路形成可能な透明基板として好適に用いることができる。

Claims (13)

  1.  下記化学式(1)で表される繰り返し単位と、下記化学式(2)で表される繰り返し単位とからなり、
     下記化学式(2)で表される繰り返し単位の含有量が、全繰り返し単位に対して、30モル%以上90モル%以下であり、
     下記化学式(1)および下記化学式(2)中のBの合計量の50モル%以上が、下記化学式(3)で表される2価の基、および/または、下記化学式(4)で表される2価の基の1種以上である、熱イミド化によって製造されたことを特徴とするポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは、テトラカルボン酸からカルボキシル基を除いた4価の基であり、Bは、ジアミンからアミノ基を除いた2価の基であり、ただし、各繰り返し単位に含まれるAおよびBは、同一であっても異なっていてもよい。X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式中、mは1~3の整数を示し、nは0~3の整数を示す。V、U、Tはそれぞれ独立に水素原子、メチル基、トリフルオロメチル基よりなる群から選択される1種を示し、Z、Wはそれぞれ独立に直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種を示す。)
  2.  前記化学式(1)および前記化学式(2)中のAが、脂環式テトラカルボン酸からカルボキシル基を除いた4価の基の1種以上であることを特徴とする請求項1に記載のポリイミド前駆体。
  3.  前記化学式(1)および前記化学式(2)中のAが、芳香族テトラカルボン酸からカルボキシル基を除いた4価の基の1種以上であることを特徴とする請求項1に記載のポリイミド前駆体。
  4.  下記化学式(5)で表される構造を含むことを特徴とする請求項1~3のいずれかに記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000004
    (式中、AおよびBは前記と同義であり、nは1~1000の整数である。)
  5.  請求項1~4のいずれかに記載のポリイミド前駆体を含むワニス。
  6.  化学イミド化剤を含まないことを特徴とする請求項5に記載のワニス。
  7.  請求項1~4のいずれかに記載のポリイミド前駆体を製造する方法であって、
     化学イミド化剤を含まない溶媒中で、テトラカルボン酸成分とジアミン成分とを100℃以上に加熱して熱的に反応させて、前記化学式(2)で表される繰り返し単位を含む可溶性のイミド化合物を含む反応溶液を得る工程と、
     得られた反応溶液に、テトラカルボン酸成分および/またはジアミン成分を加えて、100℃未満のイミド化を抑制する条件下で反応を行い、請求項1~4のいずれかに記載のポリイミド前駆体を得る工程と、
    を有することを特徴とする方法。
  8.  請求項1~4のいずれかに記載のポリイミド前駆体を製造する方法であって、
     化学イミド化剤を含まない溶媒中で、テトラカルボン酸成分とジアミン成分とを100℃以上に加熱して熱的に反応させて、前記化学式(2)で表される繰り返し単位を含む可溶性のイミド化合物を含む反応溶液を得る工程と、
     得られた反応溶液から、前記化学式(2)で表される繰り返し単位を含むイミド化合物を単離する工程と、
     化学イミド化剤を含まない溶媒に、単離した前記化学式(2)で表される繰り返し単位を含むイミド化合物と、テトラカルボン酸成分および/またはジアミン成分とを加えて、100℃未満のイミド化を抑制する条件下で反応を行い、請求項1~4のいずれかに記載のポリイミド前駆体を得る工程と、
    を有することを特徴とする方法。
  9.  請求項1~4のいずれかに記載のポリイミド前駆体を製造する方法であって、
     化学イミド化剤を含まない溶媒中で、テトラカルボン酸成分とジアミン成分とを100℃未満のイミド化を抑制する条件下で反応させて、前記化学式(1)で表される繰り返し単位を含む(ポリ)アミック酸化合物を含む反応溶液を得る工程と、
     前記化学式(1)で表される繰り返し単位を含む(ポリ)アミック酸化合物を含む反応溶液を100℃以上に加熱して熱的に反応させて、前記化学式(1)で表される繰り返し単位の一部を前記化学式(2)で表される繰り返し単位に変換して、請求項1~4のいずれかに記載のポリイミド前駆体を得る工程と、
    を有することを特徴とする方法。
  10.  請求項1~4のいずれかに記載のポリイミド前駆体から得られるポリイミド。
  11.  請求項5または6に記載のワニスを加熱処理して得られるポリイミド。
  12.  請求項5または6に記載のワニスを加熱処理して得られるポリイミドフィルム。
  13.  請求項10または11に記載のポリイミドを含むTAB用フィルム、電気・電子部品用基板、配線基板、電気・電子部品用絶縁膜、電気・電子部品用保護膜、ディスプレイ用基板、タッチパネル用基板、または太陽電池用基板。
     
     
PCT/JP2014/067079 2013-06-27 2014-06-26 ポリイミド前駆体、及びポリイミド WO2014208704A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015524124A JP6350526B2 (ja) 2013-06-27 2014-06-26 ポリイミド前駆体、及びポリイミド
US14/901,006 US20160137787A1 (en) 2013-06-27 2014-06-26 Polymide precursor and polymide
KR1020167002122A KR102190722B1 (ko) 2013-06-27 2014-06-26 폴리이미드 전구체, 및 폴리이미드
CN201480047172.2A CN105492496B (zh) 2013-06-27 2014-06-26 聚酰亚胺前体和聚酰亚胺

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-135640 2013-06-27
JP2013135640 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208704A1 true WO2014208704A1 (ja) 2014-12-31

Family

ID=52142030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067079 WO2014208704A1 (ja) 2013-06-27 2014-06-26 ポリイミド前駆体、及びポリイミド

Country Status (6)

Country Link
US (1) US20160137787A1 (ja)
JP (2) JP6350526B2 (ja)
KR (1) KR102190722B1 (ja)
CN (1) CN105492496B (ja)
TW (1) TWI634172B (ja)
WO (1) WO2014208704A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204569A (ja) * 2015-04-27 2016-12-08 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
WO2017002663A1 (ja) * 2015-06-30 2017-01-05 Jxエネルギー株式会社 ポリイミドフィルム、有機エレクトロルミネッセンス素子、透明導電性積層体、タッチパネル、太陽電池、及び、表示装置
CN106928707A (zh) * 2015-12-31 2017-07-07 株式会社东进世美肯 聚酰亚胺高分子组合物及其制造方法、聚酰亚胺膜
EP3228452A1 (en) * 2016-04-01 2017-10-11 Microcosm Technology Co., Ltd. Flexible and transparent polyimide laminate and manufacturing method thereof
JP2019038916A (ja) * 2017-08-24 2019-03-14 宇部興産株式会社 γ−ブチロラクトン溶媒中で重合した可溶性透明ポリイミド
KR20200093078A (ko) 2017-12-28 2020-08-04 우베 고산 가부시키가이샤 폴리이미드, 폴리이미드 용액 조성물, 폴리이미드 필름 및 기판
JP2020128537A (ja) * 2016-08-25 2020-08-27 エルジー・ケム・リミテッド ジアミン化合物及びその製造方法
JP2022094356A (ja) * 2017-02-03 2022-06-24 東京応化工業株式会社 ポリイミド前駆体組成物
WO2023085041A1 (ja) * 2021-11-11 2023-05-19 三菱瓦斯化学株式会社 ポリイミド樹脂、ワニス及びポリイミドフィルム
WO2023140276A1 (ja) * 2022-01-21 2023-07-27 Ube株式会社 ポリイミドバインダ前駆体組成物、およびそれを用いた蓄電デバイス
WO2024176695A1 (ja) * 2023-02-21 2024-08-29 エセックス古河マグネットワイヤジャパン株式会社 絶縁被覆用芳香族ポリイミド樹脂ワニス、及びこれを用いた絶縁電線、コイル、回転電機並びに電気・電子機器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104508009B (zh) * 2012-05-28 2016-09-07 宇部兴产株式会社 聚酰亚胺前体和聚酰亚胺
KR102069286B1 (ko) * 2015-11-20 2020-01-22 동우 화인켐 주식회사 플렉서블 표시 장치
KR102347037B1 (ko) * 2016-05-31 2022-01-05 우베 고산 가부시키가이샤 폴리이미드 전구체, 폴리이미드, 폴리이미드 필름 및 기판, 그리고 폴리이미드의 제조에 사용되는 테트라카르복실산 이무수물
JP7076939B2 (ja) * 2016-07-19 2022-05-30 株式会社ジャパンディスプレイ 光配向膜用ワニス及び液晶表示装置
GB2555478B (en) 2016-10-31 2022-06-15 Mahle Engine Systems Uk Ltd Bearing material, bearing and method
KR102360593B1 (ko) * 2018-05-24 2022-02-10 우베 고산 가부시키가이샤 전극용 결합제 수지 조성물, 전극 합제 페이스트, 및 전극
CN112204086B (zh) * 2019-02-01 2023-04-14 株式会社Lg化学 基于聚酰亚胺的聚合物膜、使用其的显示装置用基底和光学装置
CN111341983B (zh) * 2020-04-13 2023-01-31 上海极紫科技有限公司 一种耐高温的锂电池隔膜、组成及其制备方法
CN116457211A (zh) * 2020-11-27 2023-07-18 Ube株式会社 聚酰亚胺前体组合物、聚酰亚胺膜和聚酰亚胺膜/基材层积体
CN113480732A (zh) * 2021-06-16 2021-10-08 浙江中科玖源新材料有限公司 一种聚酰亚胺及无色透明聚酰亚胺膜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336243A (ja) * 2004-05-25 2005-12-08 Nissan Chem Ind Ltd 高透明性を有するポリ(アミド酸−イミド)共重合体とそのポジ型感光性樹脂組成物およびその硬化膜
JP2006206756A (ja) * 2005-01-28 2006-08-10 Sony Chem Corp ポリイミド化合物及びフレキシブル配線板
JP2008026891A (ja) * 2006-06-22 2008-02-07 Jsr Corp 液晶配向剤および液晶表示素子
JP2008189694A (ja) * 2007-01-31 2008-08-21 Ube Ind Ltd アミック酸構造の繰返単位の一部がイミド構造になっている共重合体、およびその製造方法
JP2010134116A (ja) * 2008-12-03 2010-06-17 Asahi Kasei E-Materials Corp ポジ型感光性樹脂組成物
WO2012121259A1 (ja) * 2011-03-07 2012-09-13 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
JP2012219178A (ja) * 2011-04-08 2012-11-12 Hitachi Cable Ltd ポリイミド樹脂、その製造方法および該樹脂を用いた絶縁電線
JP2012226293A (ja) * 2011-04-14 2012-11-15 Daxin Material Corp 液晶配向剤
JP2013088443A (ja) * 2011-10-13 2013-05-13 Jsr Corp 液晶配向剤および液晶表示素子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2075999B (en) * 1980-05-19 1985-01-23 Gen Electric Improved polyamide acid polymer coating composition and bondable substrate
JP3612832B2 (ja) 1995-12-28 2005-01-19 Jsr株式会社 イミド基含有ポリアミック酸の製造方法並びに液晶配向剤
JP2002069179A (ja) 2000-08-29 2002-03-08 Ube Ind Ltd 可溶性、透明なポリイミドおよびその製造法
JP2002146021A (ja) 2000-11-10 2002-05-22 Ube Ind Ltd 可溶性、透明なポリイミドおよびその製造法
JP2003168800A (ja) 2001-11-30 2003-06-13 Mitsubishi Gas Chem Co Inc 薄膜トランジスタ基板
JP2003292813A (ja) * 2002-03-29 2003-10-15 Toray Ind Inc 顔料分散熱硬化性樹脂溶液組成物、その製造方法およびカラーフィルター
JP4639697B2 (ja) 2004-08-31 2011-02-23 新日本理化株式会社 イミド基含有ジアミン、該イミド基含有ポリイミド前駆体、該前駆体を含有してなるポジ型感光性樹脂組成物、ポジ型パターンの製造方法及び電子部品
JP5320668B2 (ja) 2005-11-15 2013-10-23 三菱化学株式会社 テトラカルボン酸系化合物及びそのポリイミド、ならびにその製造方法
TW200801737A (en) * 2006-06-22 2008-01-01 Jsr Corp Liquid crystal alignment agent and liquid crystal display device
CN101674923B (zh) 2007-05-24 2013-01-09 三菱瓦斯化学株式会社 无色透明树脂薄膜的制备方法及制备装置
JP5158356B2 (ja) * 2008-06-03 2013-03-06 Jsr株式会社 液晶配向剤、液晶配向膜および液晶表示素子
KR101115058B1 (ko) 2008-07-09 2012-02-13 주식회사 엘지화학 폴리이미드-폴리아믹산 공중합체, 이의 제조방법, 이를포함하는 감광성 조성물 및 이에 의해 제공된 보호막
JP5201155B2 (ja) 2009-01-27 2013-06-05 新日本理化株式会社 ポリ(アミド酸―イミド)樹脂
CN102369233B (zh) 2009-03-31 2013-10-16 三井化学株式会社 低热膨胀性嵌段聚酰亚胺及其前驱体和其用途
WO2011099518A1 (ja) 2010-02-09 2011-08-18 Jx日鉱日石エネルギー株式会社 ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸及びそのエステル類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類の製造方法、それを用いて得られるポリイミド、並びに、ポリイミドの製造方法
JP5751403B2 (ja) * 2010-06-08 2015-07-22 Jsr株式会社 液晶配向剤
TWI534177B (zh) * 2011-03-11 2016-05-21 Ube Industries 聚醯亞胺前驅體及聚醯亞胺
JP5824237B2 (ja) * 2011-04-28 2015-11-25 三井化学株式会社 ポリイミドフィルムの製造方法
JP5973442B2 (ja) * 2011-08-08 2016-08-23 Jxエネルギー株式会社 透明フィルム、透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336243A (ja) * 2004-05-25 2005-12-08 Nissan Chem Ind Ltd 高透明性を有するポリ(アミド酸−イミド)共重合体とそのポジ型感光性樹脂組成物およびその硬化膜
JP2006206756A (ja) * 2005-01-28 2006-08-10 Sony Chem Corp ポリイミド化合物及びフレキシブル配線板
JP2008026891A (ja) * 2006-06-22 2008-02-07 Jsr Corp 液晶配向剤および液晶表示素子
JP2008189694A (ja) * 2007-01-31 2008-08-21 Ube Ind Ltd アミック酸構造の繰返単位の一部がイミド構造になっている共重合体、およびその製造方法
JP2010134116A (ja) * 2008-12-03 2010-06-17 Asahi Kasei E-Materials Corp ポジ型感光性樹脂組成物
WO2012121259A1 (ja) * 2011-03-07 2012-09-13 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
JP2012219178A (ja) * 2011-04-08 2012-11-12 Hitachi Cable Ltd ポリイミド樹脂、その製造方法および該樹脂を用いた絶縁電線
JP2012226293A (ja) * 2011-04-14 2012-11-15 Daxin Material Corp 液晶配向剤
JP2013088443A (ja) * 2011-10-13 2013-05-13 Jsr Corp 液晶配向剤および液晶表示素子

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204569A (ja) * 2015-04-27 2016-12-08 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
WO2017002663A1 (ja) * 2015-06-30 2017-01-05 Jxエネルギー株式会社 ポリイミドフィルム、有機エレクトロルミネッセンス素子、透明導電性積層体、タッチパネル、太陽電池、及び、表示装置
CN107709421A (zh) * 2015-06-30 2018-02-16 Jxtg能源株式会社 聚酰亚胺薄膜、有机电致发光元件、透明导电性层叠体、触控面板、太阳能电池及显示设备
CN106928707A (zh) * 2015-12-31 2017-07-07 株式会社东进世美肯 聚酰亚胺高分子组合物及其制造方法、聚酰亚胺膜
CN106928707B (zh) * 2015-12-31 2021-07-20 株式会社东进世美肯 聚酰亚胺高分子组合物及其制造方法、聚酰亚胺膜
EP3228452A1 (en) * 2016-04-01 2017-10-11 Microcosm Technology Co., Ltd. Flexible and transparent polyimide laminate and manufacturing method thereof
CN107293353A (zh) * 2016-04-01 2017-10-24 律胜科技股份有限公司 挠性透明聚酰亚胺层压板及其制造方法
JP2020128537A (ja) * 2016-08-25 2020-08-27 エルジー・ケム・リミテッド ジアミン化合物及びその製造方法
US11319282B2 (en) 2016-08-25 2022-05-03 Lg Chem, Ltd. Diamine compound and method for producing same
JP2022094356A (ja) * 2017-02-03 2022-06-24 東京応化工業株式会社 ポリイミド前駆体組成物
JP7402398B2 (ja) 2017-02-03 2023-12-21 東京応化工業株式会社 ポリイミド前駆体組成物
JP2019038916A (ja) * 2017-08-24 2019-03-14 宇部興産株式会社 γ−ブチロラクトン溶媒中で重合した可溶性透明ポリイミド
JP6994712B2 (ja) 2017-08-24 2022-01-14 宇部興産株式会社 γ-ブチロラクトン溶媒中で重合した可溶性透明ポリイミド
KR20200093078A (ko) 2017-12-28 2020-08-04 우베 고산 가부시키가이샤 폴리이미드, 폴리이미드 용액 조성물, 폴리이미드 필름 및 기판
KR20220124824A (ko) 2017-12-28 2022-09-14 유비이 가부시키가이샤 폴리이미드, 폴리이미드 용액 조성물, 폴리이미드 필름 및 기판
WO2023085041A1 (ja) * 2021-11-11 2023-05-19 三菱瓦斯化学株式会社 ポリイミド樹脂、ワニス及びポリイミドフィルム
WO2023140276A1 (ja) * 2022-01-21 2023-07-27 Ube株式会社 ポリイミドバインダ前駆体組成物、およびそれを用いた蓄電デバイス
WO2024176695A1 (ja) * 2023-02-21 2024-08-29 エセックス古河マグネットワイヤジャパン株式会社 絶縁被覆用芳香族ポリイミド樹脂ワニス、及びこれを用いた絶縁電線、コイル、回転電機並びに電気・電子機器

Also Published As

Publication number Publication date
CN105492496B (zh) 2017-09-22
JP6516048B2 (ja) 2019-05-22
US20160137787A1 (en) 2016-05-19
KR102190722B1 (ko) 2020-12-14
CN105492496A (zh) 2016-04-13
JP2018172685A (ja) 2018-11-08
JPWO2014208704A1 (ja) 2017-02-23
JP6350526B2 (ja) 2018-07-04
TW201512345A (zh) 2015-04-01
KR20160024979A (ko) 2016-03-07
TWI634172B (zh) 2018-09-01

Similar Documents

Publication Publication Date Title
JP6516048B2 (ja) ポリイミド前駆体、及びポリイミド
JP6531812B2 (ja) ポリイミド前駆体及びポリイミド
JP6721070B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP6669074B2 (ja) ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
JP6283954B2 (ja) ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、及び基板
JP5978288B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6607193B2 (ja) ポリイミド前駆体、ポリイミド、及びポリイミドフィルム
JP6283953B2 (ja) ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、および基板
WO2015053312A1 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
WO2015080139A1 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JPWO2019131894A1 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6461470B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP6638744B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
WO2015080156A1 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047172.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818285

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015524124

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14901006

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167002122

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14818285

Country of ref document: EP

Kind code of ref document: A1