WO2014200003A1 - リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2014200003A1
WO2014200003A1 PCT/JP2014/065411 JP2014065411W WO2014200003A1 WO 2014200003 A1 WO2014200003 A1 WO 2014200003A1 JP 2014065411 W JP2014065411 W JP 2014065411W WO 2014200003 A1 WO2014200003 A1 WO 2014200003A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
active material
Prior art date
Application number
PCT/JP2014/065411
Other languages
English (en)
French (fr)
Inventor
保坂 伸幸
泰大 池田
田中 一正
佐野 篤史
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2015522801A priority Critical patent/JP6256466B2/ja
Priority to US14/897,554 priority patent/US10193157B2/en
Priority to CN201480033829.XA priority patent/CN105283984B/zh
Publication of WO2014200003A1 publication Critical patent/WO2014200003A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same.
  • lithium ion secondary batteries are lighter and have a higher capacity than nickel cadmium batteries and nickel metal hydride batteries, they are widely applied as power sources for portable electronic devices. It is also a promising candidate as a power source for use in hybrid vehicles and electric vehicles. In recent years, along with the downsizing and higher functionality of portable electronic devices, further increase in capacity is expected for lithium ion secondary batteries serving as power sources.
  • an alloy-based negative electrode material such as silicon or silicon oxide.
  • Silicon can occlude and release lithium ions electrochemically, and can charge and discharge with a much larger capacity than graphite.
  • the theoretical discharge capacity of silicon is 4,210 mAh / g, which is known to be 11 times higher than that of graphite.
  • Patent Document 1 discloses a polyacrylic acid having predetermined mechanical characteristics for improving the adhesion between the negative electrode active material layer and the negative electrode current collector and for suppressing the volume expansion of the negative electrode. Resins have been proposed as negative electrode binders. Since polyacrylic resin can use water as a solvent, it has the advantages of low environmental impact during production and low cost.
  • the problem is that the adhesiveness to the negative electrode current collector is too strong.
  • the negative electrode active material having a large expansion and contraction such as silicon
  • the stress due to the expansion and contraction of the negative electrode active material during rapid charge / discharge To cause irreversible shape change of the negative electrode, that is, wrinkles.
  • rapid charge / discharge means charge / discharge at a current density of 10C or more.
  • 1C is a current value at which charging is completed in just one hour after charging a battery cell having a capacity of a nominal capacity value at a constant current.
  • the present invention suppresses wrinkles (morphological changes) of the negative electrode active material layer and the negative electrode current collector due to expansion and contraction associated with rapid charge and discharge of the negative electrode for lithium ion secondary batteries having high energy density, and after rapid charge and discharge cycles
  • An object of the present invention is to provide a negative electrode for a lithium secondary battery capable of suppressing slipping of the negative electrode active material layer from the negative electrode current collector, and a lithium ion secondary battery using the same.
  • a negative electrode for a lithium ion secondary battery includes a negative electrode active material containing 5% by weight or more of silicon or silicon oxide, and 1% or more of the carboxyl groups at the side chain end portions of polyacrylic acid. It has a binder which is a polyacrylate salt crosslinked with magnesium or an alkaline earth metal, and a negative electrode current collector.
  • the adhesion with the negative electrode current collector can be adjusted, and the expansion of the negative electrode active material during rapid charge / discharge Generation of wrinkles can be suppressed by relieving a load caused by in-plane stress on the negative electrode current collector due to shrinkage.
  • the degree of cross-linking of the above-mentioned cross-linked polyacrylate with magnesium or alkaline earth metal is 1 to 90% with respect to the carboxyl group contained in polyacrylic acid. It is more preferable.
  • the adhesion between the negative electrode current collector and the negative electrode active material layer is further relaxed, and wrinkles of the negative electrode current collector are suppressed by expansion and contraction of the negative electrode active material layer during rapid charge / discharge.
  • the aforementioned degree of crosslinking is 30 to 90%, the effect of suppressing the expansion of the negative electrode active material layer during charging becomes more remarkable. Due to this expansion suppressing effect, the stress in the negative electrode active material layer is reduced, and the wrinkle suppressing effect of the negative electrode current collector is improved.
  • the average degree of polymerization of the cross-linked polyacrylate is preferably 3,000 to 30,000.
  • the negative electrode active material can suppress sliding from the negative electrode active material layer.
  • the average degree of polymerization is 6,500 to 30,000, the mechanical strength is stronger, and even during rapid charge / discharge, the active material is further prevented from sliding even if in-plane stress occurs due to expansion and contraction of the negative electrode active material. can do.
  • the negative electrode active material layer and the negative electrode current collector are prevented from wrinkling (morphological change) due to expansion and contraction due to rapid charge / discharge, and the negative electrode active material layer is prevented from slipping even after the rapid charge / discharge cycle.
  • the negative electrode for lithium ion secondary batteries which can be provided can be provided.
  • FIG. 1 shows a cross-sectional view of a lithium ion secondary battery 100 as a lithium ion secondary battery.
  • the lithium ion secondary battery 100 of FIG. 1 is formed by laminating via an outer package 50, a positive electrode 10 and a negative electrode 20 provided inside the outer package, and a separator 18 disposed therebetween.
  • the separator 18 is composed of an electrode body 30 and a non-aqueous electrolyte containing an electrolyte, and the separator 18 holds the non-aqueous electrolyte that is a lithium ion moving medium between the positive and negative electrodes during charging and discharging.
  • the shape of the lithium ion secondary battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a coin shape, a flat shape, a laminate film shape, and the like.
  • a laminate film is used as the outer package 50, and in the following examples, a laminate film type battery is produced and evaluated.
  • the laminate film is configured as a three-layer structure in which, for example, polypropylene, aluminum, and nylon are laminated in this order.
  • the positive electrode 10 includes a positive electrode active material layer 14 containing a positive electrode active material that absorbs and releases lithium ions, a conductive additive, and a binder on at least one main surface of the positive electrode current collector 12.
  • the negative electrode 20 includes a negative electrode active material layer 24 containing a negative electrode active material that absorbs and releases lithium ions, a conductive additive, and a binder on at least one main surface of the negative electrode current collector 22. Yes.
  • the negative electrode 20 used in the lithium ion secondary battery is a negative active material containing silicon or silicon oxide, and a polyacrylic acid salt in which the carboxyl group at the side chain end of the polyacrylic acid is crosslinked with magnesium or an alkaline earth metal.
  • the negative electrode 20 can have a high energy density.
  • Silicon may be contained as a simple substance, an alloy, a compound, or a mixture of two or more of them.
  • the sum of the weight of silicon and silicon oxide in the total weight of the negative electrode active material is that silicon in the negative electrode active material has a large effect of suppressing wrinkles of the negative electrode and a higher energy density can be obtained.
  • the sum of silicon oxides is preferably 5% by weight or more, more preferably 20% by weight or more, and further preferably 40% by weight or more.
  • M y Si (M is at least one element other than Si, y is greater than zero), for example SiB 4, SiB 6, Mg 2 Si, Ni 2 Si, TiSi 2, MoSi 2, NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2 , and the like.
  • examples of the silicon compound include a nitrogenated compound and a carbonized compound. Specifically SiC, Si 3 N 4, Si 2 N 2 O, LiSiO, and the like.
  • Silicon oxide is SiO x (0 ⁇ x ⁇ 2), and any oxidation number can be selected. Further, silicon oxide may be contained alone or in a state of being compounded with silicon, a silicon alloy, or a silicon compound.
  • the negative electrode active material may be used in combination with a negative electrode active material that occludes / releases lithium ions other than silicon or silicon oxide.
  • a negative electrode active material that occludes / releases lithium ions other than silicon or silicon oxide For example, graphite, soft carbon, hard carbon, TiO 2, Li 4 Ti 5 O 12, Fe 2 O 3, etc. SnO and the like.
  • the binder is added for the purpose of maintaining the electrode structure by adhering the constituent members in the negative electrode active material layer 24 or the negative electrode active material layer 24 and the negative electrode current collector 22.
  • a polyacrylic acid etc. are used as a binder contained in the negative electrode 20 for lithium ion secondary batteries.
  • polyacrylic acid has a problem that the adhesion to the negative electrode current collector 22 is too strong.
  • the negative electrode active material having a large expansion and contraction such as silicon has too strong adhesion between the binder and the negative electrode current collector 22, the stress due to the expansion and contraction of the negative electrode active material during rapid charge / discharge It is transmitted to the negative electrode current collector 22 to generate an irreversible shape change of the negative electrode 20, that is, wrinkles.
  • the acidity of the polyacrylic acid is lowered and the adhesion is adjusted by substituting the carboxyl group in the polyacrylic acid with an alkali metal or the like. It became clear that we could do it. However, in the state where the adhesion between the negative electrode active material layer 24 and the negative electrode current collector 22 is lowered, the polyacrylic acid alkali metal salt does not have sufficient mechanical strength during rapid charge / discharge.
  • the mechanical strength of the negative electrode active material layer 24 can be improved while suppressing the acidity of the polyacrylic acid.
  • the carboxyl group at the end of the side chain of polyacrylic acid has a bond (-COO-M-OOC-) cross-linked with magnesium or an alkaline earth metal, the three-dimensional bond network is strengthened.
  • the mechanical strength is stronger than that of polyacrylic acid alkali metal salt, and the negative electrode active material layer 24 has an effect of suppressing expansion during charging. Therefore, the stress applied to the negative electrode active material layer 24 can be reduced, and the effect of suppressing the slipping of the negative electrode active material layer 24 can be improved even after rapid charge / discharge.
  • the degree of crosslinking of the polyacrylate salt crosslinked with magnesium or an alkaline earth metal is preferably 1 to 90% with respect to the carboxyl group contained in the polyacrylic acid.
  • the adhesion between the negative electrode current collector and the negative electrode active material layer is further relaxed, and wrinkles of the negative electrode current collector are suppressed by expansion and contraction of the negative electrode active material layer during rapid charge / discharge.
  • the degree of crosslinking is 30% or more, the expansion of the negative electrode active material layer 24 can be suppressed. If the degree of crosslinking is 90% or less, necessary and sufficient adhesion between the negative electrode current collector 22 and the negative electrode active material layer 24 can be maintained, and slipping of the negative electrode active material layer 24 is suppressed.
  • the above-mentioned degree of crosslinking means a ratio of a predetermined amount of polyacrylic acid substituted with magnesium ions or alkaline earth metal ions with respect to the carboxyl group at the end of the side chain of polyacrylic acid.
  • the degree of cross-linking 100%, it can be obtained by substituting all the hydrogen ions of about 11,000 carboxyl groups in the molecular structure with magnesium ions or alkaline earth metal ions. Since magnesium ion or alkaline earth metal ion is a divalent metal, it can react with two carboxyl groups with one magnesium ion or alkaline earth metal ion, so about 5,500 magnesium ions. Alternatively, if there is an alkaline earth metal ion, a degree of crosslinking of 100% can be obtained.
  • the average degree of polymerization of the cross-linked polyacrylate is preferably 3,000 to 30,000. With this average degree of polymerization, it is necessary and sufficient elastic modulus and tensile strength, and expansion of the negative electrode active material layer 24 can be suppressed.
  • the mechanical strength is stronger, and even during rapid charge / discharge, even if in-plane stress occurs due to expansion / contraction of the negative electrode active material. It is possible to further suppress the active material from sliding down.
  • the negative electrode slurry containing the negative electrode active material when used, the negative electrode slurry has a suitable viscosity and the dispersion and application of the negative electrode slurry composition are facilitated.
  • cross-linked polyacrylic acid and a different kind of binder are mixed and used within a range not impairing the mechanical strength of the cross-linked polyacrylic acid and the adjusted adhesion between the negative electrode active material layer and the negative electrode current collector. May be.
  • the different binder include polyimide, polyamide, polyamideimide, polyacrylonitrile, polyalginic acid and the like.
  • a conductive additive may be additionally added for the purpose of improving conductivity.
  • the conductive auxiliary agent used in the present embodiment is not particularly limited, and a known material can be used. Examples thereof include carbon blacks such as acetylene black, furnace black, channel black, and thermal black, vapor grown carbon fibers (VGCF), carbon fibers such as carbon nanotubes, and carbon materials such as graphite. More than seeds can be used.
  • the negative electrode current collector 22 and the positive electrode current collector 12 are made of a conductive material, and the negative electrode active material layer 24 and the positive electrode active material layer 14 are disposed on one main surface or both surfaces, respectively.
  • the material which comprises the negative electrode collector 22 is not specifically limited as the lithium ion secondary battery of this embodiment,
  • a negative electrode collector 22 used for the negative electrode 20 copper, stainless steel, nickel, titanium Alternatively, a metal foil such as an alloy of these can be used. Copper and a copper alloy are particularly preferable, and a foil made of an electrolytic copper foil and a rolled copper foil can be suitably used.
  • the positive electrode current collector 12 used for the positive electrode 10 a metal foil such as aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used. In particular, the positive electrode current collector 12 is preferably an aluminum foil.
  • Non-aqueous electrolyte a lithium salt dissolved in a non-aqueous solvent (organic solvent) is used.
  • the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF3CF 2 SO 2) 2 , LiN (CF 3 SO 2) (C4F 9 SO 2), LiN (CF 3 CF 2 CO) 2, salts such as LiBOB can be used.
  • these salts may be used individually by 1 type, and may use 2 or more types together.
  • organic solvent for example, propylene carbonate, ethylene carbonate, fluoroethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate and the like are preferably mentioned. These may be used alone or in combination of two or more at any ratio.
  • the organic solvent is preferably used by mixing a cyclic carbonate and a chain carbonate, and particularly preferably contains at least two kinds of fluoroethylene carbonate and diethyl carbonate from the viewpoint of the balance between discharge capacity and cycle characteristics.
  • the separator 18 only needs to be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, polyester And a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polypropylene.
  • the lithium ion secondary battery 100 of this embodiment can be manufactured as follows, for example.
  • the negative electrode 20 can be manufactured as follows. For example, the above-described negative electrode active material, conductive additive, and polyacrylic acid binder are mixed and dispersed in a solvent such as water to prepare a paste-like negative electrode slurry. Next, this negative electrode slurry is applied to one surface or both surfaces of the negative electrode current collector 22 such as a copper foil using a comma roll coater, for example, and the solvent is evaporated in a drying furnace. In addition, when apply
  • the negative electrode 20 on which the negative electrode active material is formed is bonded to one or both sides of the negative electrode current collector 22 by using a roll press or the like, and the negative electrode active material layer 24 on the negative electrode current collector 22 While improving the adhesiveness with the negative electrode collector 22, it becomes a negative electrode sheet which has a predetermined density.
  • the carboxyl group at the end of the side chain of polyacrylic acid is magnesium or alkaline earth metal.
  • a cross-linking chemical reaction occurs, and the polyacrylic acid binder can be a polyacrylic acid binder cross-linked with magnesium or an alkaline earth metal.
  • the negative electrode sheet is punched into a predetermined electrode size using an electrode mold to form the negative electrode 20 for the lithium ion secondary battery of this embodiment.
  • the area of the negative electrode 20 is preferably larger than the area of the positive electrode 10. This is because the area of the negative electrode 20 is made larger than the area of the opposing positive electrode 10 to reduce the possibility of an internal short circuit due to lithium deposition.
  • the positive electrode 10 can be manufactured as follows. For example, the above-described positive electrode active material, conductive additive, and binder are mixed and dispersed in a solvent such as N-methyl-2-pyrrolidone to produce a paste-like positive electrode slurry. Next, the positive electrode active material layer 14 having a predetermined thickness is applied to one surface or both surfaces of the positive electrode current collector 12 such as an aluminum foil, and the solvent is dried in a drying furnace. I let you. In addition, when apply
  • the positive electrode 10 on which the positive electrode active material layer 14 is formed is pressure-bonded to one or both surfaces of the positive electrode current collector 12 by a roll press or the like, and the positive electrode active material layer 14, the positive electrode current collector 12, At the same time, the positive electrode sheet having a predetermined density is obtained.
  • the positive electrode sheet is punched into a predetermined electrode size using an electrode mold to form the positive electrode 10 for the lithium ion secondary battery of this embodiment.
  • the area of the positive electrode 10 is preferably smaller than the area of the negative electrode 20. This is because, by making the area of the positive electrode 10 slightly smaller than the area of the opposing negative electrode 20, it is possible to easily prevent the occurrence of an internal short circuit due to lithium deposition.
  • the electrode body 30 can be manufactured by laminating the negative electrode 20 and the positive electrode 10 via the separator 18. This is used as one electrode body, and an electrode body composed of an arbitrary number of layers can be manufactured by the same manufacturing method.
  • the separator 18 can be suitably used that has an electrode die punched larger than both electrodes.
  • a negative electrode lead 62 made of nickel is attached to the protruding end portion of the copper foil where the negative electrode active material layer 24 is not provided.
  • An aluminum positive electrode lead 60 is attached to the protruding end portion of the aluminum foil not provided with the material layer 14 by an ultrasonic welding machine.
  • the electrode body 30 is inserted into an aluminum laminate film exterior body 50 and heat-sealed except for one peripheral portion to form a closed portion, and a predetermined amount of non-aqueous electrolysis is formed in the exterior body 50. After injecting the liquid, the remaining one portion is sealed by heat sealing while reducing the pressure, and the lithium ion secondary battery 100 can be manufactured.
  • the lithium ion secondary battery 100 when charged, for example, lithium ions are released from the positive electrode active material layer 14 and occluded in the negative electrode active material layer 24 through a nonaqueous electrolytic solution. Further, when discharging is performed, for example, lithium ions are released from the negative electrode active material layer 24 and are occluded in the positive electrode active material layer 14 through the nonaqueous electrolytic solution. Therefore, the lithium ion secondary battery 100 can store electric capacity.
  • the present invention has been described in detail according to the embodiment.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • a lithium ion secondary battery having a laminate film structure has been described.
  • the present invention also applies to a lithium ion secondary battery having a structure in which a positive electrode and a negative electrode are folded or stacked. Can be applied.
  • the present invention can also be suitably applied to lithium ion secondary batteries such as coin type, square type, and flat type.
  • Example 1 ⁇ Preparation of negative electrode for lithium ion secondary battery> 60% by weight of SiO disproportionated by heat treatment at 1000 ° C. under reduced pressure as a negative electrode active material, 20% by weight of acetylene black as a conductive assistant, and polyacrylic acid having an average polymerization degree of 11,000 as a binder 20% by weight and water were mixed and dispersed to prepare a paste-like negative electrode slurry. Then, using a comma roll coater, the negative electrode active material layer was uniformly applied on both surfaces of the copper foil having a thickness of 10 ⁇ m so as to have a predetermined thickness. Next, the negative electrode active material was dried in an air atmosphere at 100 ° C. in a drying furnace.
  • coated to both surfaces of the said copper foil was adjusted to the substantially same film thickness.
  • the negative electrode on which the negative electrode active material was formed was pressure-bonded to both surfaces of the negative electrode current collector by a roll press to obtain a negative electrode sheet having a predetermined density. Then, this negative electrode sheet was immersed in a 5% by weight magnesium chloride aqueous solution for 5 minutes, so that the polyacrylic acid binder was cross-linked with a cross-linking degree of 30%, and the polyacrylic acid magnesium having an average polymerization degree of 11,000 and did.
  • the negative electrode sheet was punched into an electrode size of 21 ⁇ 31 mm using an electrode mold and dried with hot air in a heat treatment furnace to produce a negative electrode for a lithium ion secondary battery according to Example 1.
  • the heat treatment was performed in a vacuum.
  • the N-methyl-2-pyrrolidone solvent in the positive electrode active material was dried in an air atmosphere at 110 ° C. in a drying furnace.
  • coated to both surfaces of the said aluminum foil was adjusted to the substantially same film thickness.
  • the positive electrode on which the positive electrode active material was formed was pressure-bonded to both surfaces of the positive electrode current collector by a roll press to obtain a positive electrode sheet having a predetermined density.
  • the positive electrode sheet was punched into an electrode size of 20 ⁇ 30 mm using an electrode mold to produce a positive electrode for a lithium ion secondary battery.
  • the prepared negative electrode and positive electrode were laminated via a polypropylene separator having a thickness of 16 ⁇ m and a size of 22 ⁇ 33 mm to prepare an electrode body. Three negative electrodes and two positive electrodes were laminated via four separators so that the negative and positive electrodes were alternately laminated. Further, in the negative electrode of the electrode body, a nickel negative electrode lead is attached to the protruding end portion of the copper foil not provided with the negative electrode active material layer, while the positive electrode of the electrode body is provided with aluminum without the positive electrode active material layer. An aluminum positive electrode lead was attached to the protruding end of the foil by an ultrasonic welding machine.
  • this electrode body is inserted into an aluminum laminate film outer package and heat-sealed except for one peripheral portion to form a closed portion, and EC / DEC is blended at a ratio of 3: 7 in the outer package.
  • EC / DEC EC / DEC is blended at a ratio of 3: 7 in the outer package.
  • Example 2 The average polymerization in which the negative electrode for lithium ion secondary battery and the lithium ion secondary battery according to Example 2 were crosslinked with a crosslinking degree of 60% by immersing in a 5 wt% magnesium chloride aqueous solution for 10 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the polyacrylic acid magnesium having a degree of 11,000 was used.
  • Example 3 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 3 were obtained by immersing the binder in a 5% by weight magnesium chloride aqueous solution for 15 minutes to crosslink the binder at a crosslinking degree of 90%.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the polyacrylic acid magnesium having a degree of 11,000 was used.
  • Example 4 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 4 were average polymerized in which the binder was crosslinked at a crosslinking degree of 20% by immersing in a 5 wt% calcium chloride aqueous solution for 3 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the calcium acrylate had a degree of 11,000.
  • Example 5 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 5 were average polymerized in which the binder was crosslinked at a crosslinking degree of 30% by immersing in a 5 wt% calcium chloride aqueous solution for 5 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the calcium acrylate had a degree of 11,000.
  • Example 6 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 6 were average polymerized in which the binder was crosslinked at a crosslinking degree of 60% by immersing in a 5 wt% calcium chloride aqueous solution for 10 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the calcium acrylate had a degree of 11,000.
  • Example 7 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 7 were obtained by immersing the binder in a 5% by weight calcium chloride aqueous solution for 15 minutes to crosslink the binder at a crosslinking degree of 90%.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the calcium acrylate had a degree of 11,000.
  • Example 8 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 8 were average polymerized in which the binder was crosslinked with a crosslinking degree of 100% by immersing in a 5 wt% calcium chloride aqueous solution for 20 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the calcium acrylate had a degree of 11,000.
  • Example 9 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 9 were average polymerized by immersing the binder in a 5% by weight barium chloride aqueous solution for 5 minutes to crosslink the binder at a crosslinking degree of 20%.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the barium polyacrylate having a degree of 11,000 was used.
  • Example 10 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 10 were obtained by immersing the binder in a 5% by weight barium chloride aqueous solution for 8 minutes to crosslink the binder with a crosslinking degree of 30%.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the barium polyacrylate having a degree of 11,000 was used.
  • Example 11 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 11 were average polymerized in which the binder was crosslinked at a crosslinking degree of 60% by immersing in a 5% by weight barium chloride aqueous solution for 20 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the barium polyacrylate having a degree of 11,000 was used.
  • Example 12 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 12 were average polymerized in which the binder was crosslinked at a crosslinking degree of 90% by immersing in a 5% by weight barium chloride aqueous solution for 30 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the barium polyacrylate having a degree of 11,000 was used.
  • Example 13 In the negative electrode for lithium ion secondary battery and the lithium ion secondary battery according to Example 13, the negative electrode slurry was prepared using polyacrylic acid having an average polymerization degree of 6,500 as a binder at the time of preparing the negative electrode slurry. Lithium was obtained in the same manner as in Example 1 except that the binder was crosslinked with a 60% crosslinking degree by being immersed in a 5% by weight calcium chloride aqueous solution, and the average polymerization degree was 6,500 calcium acrylate. An anode for an ion secondary battery and a lithium ion secondary battery were produced.
  • Example 14 In the negative electrode for lithium ion secondary battery and the lithium ion secondary battery according to Example 14, the binder at the time of preparing the negative electrode slurry was polyacrylic acid having an average degree of polymerization of 30,000, and the negative electrode sheet prepared thereby was treated for 20 minutes. Lithium was obtained in the same manner as in Example 1, except that the binder was crosslinked with a 60% crosslinking degree by being immersed in a 5% by weight calcium chloride aqueous solution, and the average polymerization degree was 30,000 calcium acrylate. An anode for an ion secondary battery and a lithium ion secondary battery were produced.
  • Example 15 In the negative electrode for lithium ion secondary battery and the lithium ion secondary battery according to Example 15, the binder at the time of preparing the negative electrode slurry was polyacrylic acid having an average polymerization degree of 3,000, and the negative electrode sheet thus prepared was used for 4 minutes. Lithium was obtained in the same manner as in Example 1 except that the binder was crosslinked with a 30% crosslinking degree by being immersed in a 5% by weight calcium chloride aqueous solution, and the average polymerization degree was 3,000 calcium acrylate. An anode for an ion secondary battery and a lithium ion secondary battery were produced.
  • Example 16 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 16 were average polymerized in which the binder was crosslinked at a crosslinking degree of 60% by immersing in a 5 wt% calcium chloride aqueous solution for 8 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 15 except that the calcium acrylate had a degree of 3,000.
  • Example 17 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 17 were average polymerized in which the binder was crosslinked at a crosslinking degree of 90% by immersing in a 5 wt% calcium chloride aqueous solution for 12 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 15 except that the calcium acrylate had a degree of 3,000.
  • Example 18 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Example 18 were averaged in which the binder was crosslinked at a crosslinking degree of 60% by immersing in a 5 wt% aqueous strontium hydroxide solution for 15 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that polystrontium acrylate having a polymerization degree of 11,000 was used.
  • Example 19 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Example 19 were averaged in which the binder was crosslinked with a crosslinking degree of 60% by immersing in an aqueous solution of 5% by weight of radium hydroxide for 15 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the radium polyacrylate having a polymerization degree of 11,000 was used.
  • Example 20 As the negative electrode active material, SiO disproportionated by heat treatment at 1000 ° C. under reduced pressure was used.
  • the negative active material is 60% by weight
  • acetylene black is 20% by weight as a conductive assistant
  • polyacrylic acid having an average degree of polymerization of 11,000 as a binder is neutralized with a predetermined amount of calcium hydroxide to produce polyacrylic.
  • a paste-like negative electrode slurry was prepared by mixing and dispersing 20% by weight of calcium polyacrylate obtained by crosslinking the carboxyl group of the acid at a ratio of 1% and water.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the coating, drying and rolling steps were performed under the same conditions as in Example 1 to produce a negative electrode for a lithium ion secondary battery.
  • Example 21 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 21 were average polymerized in which the binder was crosslinked with a crosslinking degree of 1% by immersing in a 5 wt% magnesium chloride aqueous solution for 10 seconds.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the polyacrylic acid magnesium having a degree of 11,000 was used.
  • Example 22 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 22 were obtained by immersing the binder in a 5 wt% barium chloride aqueous solution for 15 seconds to crosslink the binder with a crosslinking degree of 1%.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the barium polyacrylate having a degree of 11,000 was used.
  • Example 23 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Example 23 were averaged in which the binder was crosslinked at a crosslinking degree of 30% by immersing in a 5 wt% aqueous strontium hydroxide solution for 8 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that polystrontium acrylate having a polymerization degree of 11,000 was used.
  • Example 24 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Example 24 were averaged in which the binder was crosslinked at a crosslinking degree of 90% by immersing in a 5% by weight strontium hydroxide aqueous solution for 23 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that polystrontium acrylate having a polymerization degree of 11,000 was used.
  • Example 25 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 25 were obtained by immersing the binder in a 5 wt% aqueous solution of radium hydroxide for 8 minutes to crosslink the binder with a crosslinking degree of 30%.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the radium polyacrylate having a polymerization degree of 11,000 was used.
  • Example 26 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 26 were averaged in which the binder was crosslinked at a crosslinking degree of 90% by immersing in a 5 wt% radium hydroxide aqueous solution for 23 minutes.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the radium polyacrylate having a polymerization degree of 11,000 was used.
  • Example 27 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 27 were the same as those in Example 20 except that the SiO content was 80 wt% and the graphite content was 20 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Example 28 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Example 28 were the same as those in Example 20 except that the SiO content was 60 wt% and the graphite content was 40 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Example 29 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 29 were the same as those in Example 20 except that the SiO content was 40 wt% and the graphite content was 60 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Example 30 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 30 were the same as those in Example 20 except that the SiO content was 20 wt% and the graphite content was 80 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Example 31 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 31 were the same as those in Example 20 except that the SiO content was 10 wt% and the graphite content was 90 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Example 32 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 32 were the same as those in Example 20 except that the SiO content was 5 wt% and the graphite content was 95 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Comparative Example 1 The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Comparative Example 1 were the same as in Example 1 except that the binder was polyacrylic acid that had an average polymerization degree of 11,000 and was not crosslinked. A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Comparative Example 2 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Comparative Example 2 were the same as in Example 1 except that the binder was sodium polyacrylate having an average polymerization degree of 11,000. A battery negative electrode and a lithium ion secondary battery were produced.
  • the sodium polyacrylate which concerns on the comparative example 2 neutralized the carboxyl group of the polyacrylic acid used in Example 1 in the ratio of 30% using sodium hydroxide.
  • Comparative Example 3 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Comparative Example 3 were the same as in Example 1 except that the binder was sodium polyacrylate having an average polymerization degree of 11,000. A battery negative electrode and a lithium ion secondary battery were produced.
  • the sodium polyacrylate which concerns on the comparative example 3 neutralized the carboxyl group of the polyacrylic acid used in Example 1 in the ratio of 60% using sodium hydroxide.
  • Comparative Example 4 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Comparative Example 4 were the same as in Example 1 except that the binder was sodium polyacrylate having an average polymerization degree of 11,000. A battery negative electrode and a lithium ion secondary battery were produced. In addition, the sodium polyacrylate which concerns on the comparative example 4 neutralized the carboxyl group of the polyacrylic acid used in Example 1 in the ratio of 90% using sodium hydroxide.
  • Comparative Example 5 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Comparative Example 5 were immersed in a 5 wt% aqueous solution of zinc hydroxide dissolved in a dilute acetic acid aqueous solution for 15 minutes, so that the binder was 30%.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the polyacrylic acid zinc having an average degree of polymerization of 11,000 was crosslinked.
  • Comparative Example 6 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Comparative Example 6 were immersed in a 5% by weight zinc hydroxide aqueous solution dissolved in a dilute acetic acid aqueous solution for 30 minutes, whereby 60% binder was added.
  • a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the polyacrylic acid zinc having an average degree of polymerization of 11,000 was crosslinked.
  • Comparative Example 7 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Comparative Example 7 were the same as those in Comparative Example 1 except that the SiO content was 80 wt% and the graphite content was 20 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Comparative Example 8 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Comparative Example 8 were the same as Comparative Example 1 except that the SiO content was 60 wt% and the graphite content was 40 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Comparative Example 9 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Comparative Example 9 were the same as in Comparative Example 1 except that the SiO content was 40 wt% and the graphite content was 60 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Comparative Example 10 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Comparative Example 10 were the same as those in Comparative Example 1 except that the SiO content was 20 wt% and the graphite content was 80 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Comparative Example 11 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Comparative Example 11 were the same as Comparative Example 1 except that the SiO content was 10 wt% and the graphite content was 90 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Comparative Example 12 A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Comparative Example 12 were the same as Comparative Example 1 except that the SiO content was 5 wt% and the graphite content was 95 wt% in the negative electrode active material. In the same manner, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced.
  • Comparative Example 13 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Comparative Example 13 were the same as Comparative Example 1 except that the negative electrode active material was graphite, and the negative electrode for lithium ion secondary batteries and the lithium ion secondary battery was made.
  • Comparative Example 14 The negative electrode for lithium ion secondary batteries and the lithium ion secondary battery according to Comparative Example 14 were the same as in Example 20 except that the negative electrode active material was graphite, and the negative electrode for lithium ion secondary batteries and the lithium ion secondary battery was made.
  • the negative electrodes for lithium ion secondary batteries produced in Examples and Comparative Examples were cut into a size of 30 mm ⁇ 15 mm and used as negative electrode test pieces.
  • a double-sided tape manufactured by Sumitomo 3M was affixed to a pedestal of a smooth stainless steel plate, and the cut-out negative electrode test piece was laminated on the double-sided tape so as not to embed air.
  • the active material layer surface of the negative electrode test piece and the double-sided tape are stuck together.
  • a grip portion is provided by bending a part of the negative electrode test piece (about 5 mm from the tip) to 90 ° when pasting.
  • the holding part of the negative electrode test piece was sandwiched between holding jigs and pulled up vertically at a speed of 100 mm / min to peel the negative electrode active material layer of the negative electrode test piece from the negative electrode current collector.
  • peel strength was computed with the following formulas.
  • Peel strength (mN / mm) Peel stress (mN) ⁇ Negative electrode test piece width (mm)
  • the lithium ion secondary batteries produced in the examples and comparative examples were charged under the following charge / discharge test conditions, and the expansion rate of the negative electrode during the initial charge was evaluated. Charging was performed at 25 ° C. The charging condition was constant current charging until the voltage became 4.2 V at a constant current of 10C. After disassembling the charged lithium ion secondary battery and taking out the negative electrode, the thickness of the negative electrode is measured at six points with a micrometer, the average value is calculated, and the coefficient of expansion is compared with the thickness of the negative electrode before charging. Was calculated.
  • the expansion coefficient of the negative electrode during the initial charge is defined by the following calculation formula.
  • Expansion rate of negative electrode during initial charge (%) (negative electrode thickness in initial charge state / negative electrode thickness before charge) ⁇ 100 (%)
  • the peel strength between the negative electrode active material layer and the negative electrode current collector according to Examples 1 to 26 and Comparative Examples 1 to 6 Table 1 shows the results of the observation of the peeling form, the expansion rate in the thickness direction of the negative electrode during the first charge, the presence or absence of wrinkles of the negative electrode and the presence or absence of coating film peeling at the 10th charge / discharge cycle.
  • the negative electrode wrinkles after 10 cycles means that the negative electrode is not slightly wrinkled but is slightly distorted, and that the coating film after 10 cycles is almost free of peeling. This means that the negative electrode active material layer is not exfoliated, but the extent to which a part of the negative electrode active material layer such as the end and four corners of the negative electrode is peeled off.
  • the negative electrodes for lithium ion secondary batteries produced in Comparative Examples 1 to 6 exhibited at least one of the following problems: electrode expansion, electrode wrinkle, and peeling after the charge / discharge cycle.
  • the negative electrode active material layer and the negative electrode current collector according to Example 20 and Examples 27 to 32 and Comparative Example 1 and Comparative Examples 7 to 14 Table 2 shows the results of the peel strength from the body, the observation of the peel form, the expansion rate in the negative electrode thickness direction at the first charge, the presence or absence of wrinkles of the negative electrode and the presence or absence of coating film peeling at the 10th charge / discharge cycle.
  • the effect of suppressing the expansion of the negative electrode by calcium polyacrylate was confirmed when the silicon oxide content was 5% or more.
  • the lithium ion secondary batteries according to Comparative Example 1 and Comparative Examples 7 to 12 when the SiO content is 5 wt% to 20 wt%, wrinkles of the negative electrode are confirmed, and as the SiO content increases, the lithium ion secondary batteries rapidly The wrinkles of the negative electrode after 10 cycles of charge / discharge were remarkably confirmed.
  • the lithium ion secondary batteries according to Example 20 and Examples 27 to 32 when the silicon oxide content is 5% or more, the negative electrode expansion suppression effect is exhibited, and thus wrinkles after 10 cycles of rapid charge / discharge can be suppressed. It became clear.
  • the wrinkle suppression effect of the negative electrode was significantly observed when the SiO content was 40% by weight or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高エネルギー密度を有し、リチウムイオン二次電池用負極の急速充放電に伴う膨張収縮による負極活物質層および負極集電体のシワ(形態変化)を抑制しつつ、急速充放電サイクル後負極活物質層の滑落を抑制することができるリチウム二次電池用負極およびこれを用いたリチウムイオン二次電池を提供する。 【解決手段】本発明のリチウム二次電池用負極およびこれを用いたリチウムイオン二次電池は負極活物質としてシリコンまたは酸化シリコンを5%以上含む負極活物質と、ポリアクリル酸の側鎖末端部のカルボキシル基をマグネシウムまたはアルカリ土類金属で架橋されたポリアクリル酸塩であるバインダーと、負極集電体とを有する。

Description

リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池等と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。また、ハイブリッド自動車や、電気自動車用に搭載される電源として有力な候補ともなっている。近年は、携帯電子機器の小型化、高機能化に伴い、これらの電源となるリチウムイオン二次電池への更なる高容量化が期待されている。
 そこで、現在、注目されているのが、シリコンや酸化シリコンなどの合金系負極材料である。シリコンは、リチウムイオンを電気化学的に吸蔵および放出可能であり、黒鉛に比べて非常に大きな容量の充放電が可能である。特にシリコンの理論放電容量は4,210mAh/gであり、黒鉛の11倍もの高容量を示すことが知られている。
 しかし、シリコンやシリコン化合物を負極活物質として使用した場合、充放電によるリチウムイオンの挿入と脱離に伴った電極の膨張収縮が、黒鉛を負極活物質として用いた場合よりも顕著に大きくなる。したがって、シリコンなどの合金系負極材料を負極活物質に用いたリチウムイオン二次電池では、充電と放電の繰り返しによって、負極活物質層が膨張収縮することで、負極に多大な応力が加わる。
 その結果、負極集電体上に形成された負極活物質層にクラックが発生したり、負極活物質層と負極集電体との間で剥離を生じたりするなどの課題が生じる。これにより、負極活物質-負極活物質間、および負極活物質-負極集電体間での導電パスが遮断され、その結果、リチウムイオン二次電池としてのサイクル特性が低下する。
 上述した課題に対して、特許文献1では、負極活物質層-負極集電体との密着性を向上するためおよび負極の体積膨張を抑制するために所定の機械的特性をもったポリアクリル酸樹脂が負極用バインダーとして提案されている。ポリアクリル酸樹脂は溶媒として水を用いることができるため、製造時の環境負荷が低く、コストを抑制できるといった長所を併せ持つ。
 一般的に負極活物質層と負極集電体は密着性が高いほど、充放電サイクル時の負極活物質層の滑落が少なく、劣化が低減されるため、良いバインダーとされるが、ポリアクリル酸は負極集電体との密着性が強過ぎるということが問題となる。
 シリコンのような膨張収縮が大きい負極活物質とした負極は、バインダーと負極集電体との密着性が強すぎると、急速充放電時に負極活物質の膨張収縮に起因する応力が負極集電体に伝わり、負極の不可逆な形態変化、すなわちシワ、を発生させる。
 本明細書中における急速充放電とは10C以上の電流密度での充放電を意味する。なお、1Cとは公称容量値の容量を有する電池セルを定電流充電して、ちょうど1時間で充電が終了となる電流値のことである。
特開2000-348730号公報
 本発明は、高エネルギー密度を有するリチウムイオン二次電池用負極の急速充放電に伴う膨張収縮による負極活物質層および負極集電体のシワ(形態変化)を抑制しつつ、急速充放電サイクル後、負極集電体から負極活物質層の滑落を抑制することができるリチウム二次電池用負極およびこれを用いたリチウムイオン二次電池を提供することを目的とする。
 上記課題を解決するため、本発明のリチウムイオン二次電池用負極は、シリコンまたは酸化シリコンを5重量%以上含む負極活物質と、ポリアクリル酸の側鎖末端部のカルボキシル基の1%以上がマグネシウムまたはアルカリ土類金属で架橋されたポリアクリル酸塩であるバインダーと、負極集電体と、を有することを特徴とする。
 本発明によれば、ポリアクリル酸の側鎖末端部のカルボキシル基の量を調整することにより、負極集電体との密着性を調整することができ、急速充放電時の負極活物質の膨張収縮による負極集電体への面内応力による負荷を緩和してシワの発生を抑制することができる。
 ポリアクリル酸の側鎖末端部のカルボキシル基をマグネシウムまたはアルカリ土類金属で架橋された結合(-COO-M-OOC-:M=マグネシウム、アルカリ土類金属)によりバインダー自体の3次元的な結合ネットワークが強化される。そのため本発明のリチウムイオン二次電池用負極に用いられるバインダーは機械的強度が強く、負極活物質層の膨張を抑制する効果がある。したがって、負極活物質層にかかる応力そのものを低減することができ、負極活物質層の滑落を抑制することができる。
 本発明のリチウムイオン二次電池用負極は、前述の架橋されたポリアクリル酸塩のマグネシウムまたはアルカリ土類金属による架橋度が、ポリアクリル酸に含まれるカルボキシル基に対して1~90%であることがより好ましい。
 これによれば、負極集電体と負極活物質層の密着性がより緩和され、急速充放電時の負極活物質層の膨張収縮によって、負極集電体のシワが抑制される。
 特に前述の架橋度が、30~90%である場合、充電時の負極活物質層の膨張抑制効果がより顕著となる。この膨張抑制効果により、負極活物質層中の応力が低減し、負極集電体のシワの抑制効果が向上する。
 さらに、架橋されたポリアクリル酸塩の平均重合度は3,000~30,000であることが好ましい。
 これによれば、負極活物質が負極活物質層から滑落を抑制することができる。
 特に平均重合度が6,500~30,000ではより機械的強度が強く、急速充放電時においても負極活物質の膨張収縮により面内応力が発生しても活物質が滑落することをさらに抑制することができる。
 本発明によれば、急速充放電に伴う膨張収縮による負極活物質層および負極集電体のシワ(形態変化)を抑制しつつ、急速充放電サイクル後においても負極活物質層の滑落を抑制することができるリチウムイオン二次電池用負極を提供することができる。
リチウムイオン二次電池の構成を表す断面図である。
 以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。
<リチウムイオン二次電池>
 リチウムイオン二次電池は、図1に、リチウムイオン二次電池100の構成断面図を示す。図1のリチウムイオン二次電池100は、外装体50と外装体の内部に設けられた正極10および負極20と、これらの間に配置されたセパレーター18を介して積層されることで形成される電極体30と電解質を含む非水電解液から構成され、上記セパレーター18は充放電時における正負極間でのリチウムイオンの移動媒体である上記非水電解液を保持する。
 リチウムイオン二次電池の形状としては、特に制限はなく、例えば、円筒型、角型、コイン型、偏平型、ラミネートフィルム型など、いずれであってもよい。本発明では、ラミネートフィルムを外装体50として用い、下記実施例では、ラミネートフィルム型電池を作製し評価する。ラミネートフィルムは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されている。
(リチウムイオン二次電池用正極)
 上記正極10は、リチウムイオンを吸蔵・放出する正極活物質と、導電助剤と、バインダーとを含む正極活物質層14を正極集電体12の少なくとも一方の主面に備えて構成されており、上記負極20は、リチウムイオンを吸蔵・放出する負極活物質と、導電助剤と、バインダーとを含む負極活物質層24を負極集電体22の少なくとも一方の主面に備えて構成されている。
(リチウムイオン二次電池用負極)
 リチウムイオン二次電池に用いられる負極20は、シリコンまたは酸化シリコンを含む負極活物質と、ポリアクリル酸の側鎖末端部のカルボキシル基をマグネシウムまたはアルカリ土類金属で架橋されたポリアクリル酸塩であるバインダーと、負極集電体22と、を有する。
<負極活物質>
 負極活物質としてシリコンまたは酸化シリコンを含有することにより、負極20が高いエネルギー密度を有することができる。シリコンは、単体で含まれていても、合金で含まれていても、化合物で含まれていてもよく、それらの2種以上が混在した状態で含まれていてもよい。
 なお、負極活物質の総重量に占めるシリコンと酸化シリコンの重量の和は、負極のシワを抑制する効果が大きいこと、および、より大きいエネルギー密度が得られるという観点から、負極活物質中におけるシリコンまたは酸化シリコンの和が5重量%以上であることが好ましく、より好ましくは20重量%以上であり、さらに好ましくは40重量%以上である。
 シリコン化合物は具体的には、MSi(MはSi以外の1種以上の元素であり、yは0以上の数値である)、例えばSiB、SiB、MgSi、NiSi、TiSi、MoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSiなどが挙げられる。
 さらに、シリコン化合物は例えば窒素化化合物、炭化化合物などがある。具体的にはSiC、Si、SiO、LiSiO、などが挙げられる。
 酸化シリコンはSiO(0<≦2)であり、任意の酸化数を選ぶことができる。
また、酸化シリコンは単体で含まれていても、シリコンやシリコン合金やシリコン化合物と複合化された状態で含まれていてもよい。
 負極活物質はシリコンまたは酸化シリコン以外のリチウムイオンを吸蔵・放出する負極活物質と組み合わせて用いてもよい。例えば、黒鉛、ソフトカーボン、ハードカーボン、TiO、LiTi12、Fe、SnOなどが挙げられる。
<架橋されたポリアクリル酸塩バインダー>
 バインダーは、負極活物質層24中の構成する部材同士または、負極活物質層24と負極集電体22とを密着させて電極構造を維持する目的で添加される。リチウムイオン二次電池用負極20に含まれるバインダーとして、ポリアクリル酸などを用いる。
 しかし、ポリアクリル酸は負極集電体22との密着性が強過ぎるという問題がある。一般的に負極活物質層24と負極集電体22は密着性が高いほど、充放電サイクル時の負極活物質の滑落が少なく、劣化が低減されるため、良いとされる。しかし、シリコンのような膨張収縮が大きい負極活物質とした負極は、バインダーと負極集電体22との密着性が強すぎると、急速充放電時において負極活物質の膨張収縮に起因する応力が負極集電体22に伝わり、負極20の不可逆な形態変化、すなわちシワ、を発生させる。
 さらに本発明者らが上記シワを抑制するために、鋭意検討した結果、ポリアクリル酸中のカルボキシル基をアルカリ金属などで置換することで、ポリアクリル酸の酸性度を低下させ、密着性を調整できることが明らかとなった。しかしながら、負極活物質層24と負極集電体22との密着性が低下した状態では、急速充放電時においてはポリアクリル酸アルカリ金属塩では機械的強度が十分ではない。
 ポリアクリル酸中のカルボキシル基をマグネシウムまたはアルカリ土類金属で架橋することにより、ポリアクリル酸の酸性度を抑制しつつ、負極活物質層24の機械的強度を向上させることができる。
 ポリアクリル酸の側鎖末端部のカルボキシル基をマグネシウムまたはアルカリ土類金属で架橋された結合(-COO-M-OOC-)を有するため、3次元的な結合ネットワークが強化され、ポリアクリル酸やポリアクリル酸アルカリ金属塩よりも機械的強度が強く、負極活物質層24の充電時における膨張を抑制する効果がある。したがって、負極活物質層24にかかる応力自体を低減することができ、急速充放電後においても負極活物質層24の滑落を抑制する効果を向上することができる。
 さらにマグネシウムまたはアルカリ土類金属で架橋されたポリアクリル酸塩の架橋度はポリアクリル酸に含まれるカルボキシル基に対して1~90%であることが好ましい。
前述の架橋度である場合、10サイクル後の負極のシワや塗膜剥離が抑制される。
 これによれば、負極集電体と負極活物質層の密着性がより緩和され、急速充放電時の負極活物質層の膨張収縮によって、負極集電体のシワが抑制される。
 特に前述の架橋度が30%以上の架橋度であれば、負極活物質層24の膨張を抑制することができる。90%以下の架橋度であれば、必要十分な負極集電体22と負極活物質層24の密着性が維持でき、負極活物質層24の滑落が抑制される。
 前述した架橋度とは、所定量のポリアクリル酸において、ポリアクリル酸の側鎖末端部のカルボキシル基に対して、マグネシウムイオンまたはアルカリ土類金属イオンで置換された割合を意味する。
 例えば、分子量800,000のポリアクリル酸において、モノマーのアクリル酸の分子量を72と想定した場合、ポリアクリル酸分子構造中のカルボキシル基の数は、約11,000個となる。よって100%の架橋度にする場合は、マグネシウムイオンまたはアルカリ土類金属イオンで、前述した分子構造中の約11,000個のカルボキシル基の水素イオンを全て置換することで得られる。なお、マグネシウムイオンまたはアルカリ土類金属イオンは2価金属であるため、1つのマグネシウムイオンまたはアルカリ土類金属イオンで、2つのカルボキシル基と反応することができるため、約5,500個のマグネシウムイオンまたはアルカリ土類金属イオンがあれば、100%の架橋度が得られる。
 さらに架橋されたポリアクリル酸塩の平均重合度は3,000~30,000であることが好ましい。この平均重合度であれば、必要十分な弾性率と引張り強度であり、負極活物質層24の膨張を抑制することができる。
 特に架橋されたポリアクリル酸塩の平均重合度が6,500~30,000では、より機械的強度が強く、急速充放電時においても負極活物質の膨張収縮により面内応力が発生しても活物質が滑落することをさらに抑制することができる。
 さらに、30,000以下の平均重合度であれば、負極活物質を含む負極スラリーにする際、負極スラリーは好適な粘度となり、負極スラリー組成物の分散や塗布が容易となる。
 なお、架橋されたポリアクリル酸の機械的強度および負極活物質層と負極集電体との調整された密着性を損なわない範囲で、架橋されたポリアクリル酸と異種のバインダーと混合して用いてもよい。異種のバインダーとして、例えばポリイミド、ポリアミド、ポリアミドイミド、ポリアクリロニトリル、ポリアルギン酸などが挙げられる。
<導電助剤>
 負極活物質層24および正極活物質層14において、導電性を向上させることを目的として導電助剤を追加で添加してもよい。本実施形態において用いられる導電助剤は特に制限されず、周知の材料を用いることができる。例えば、アセチレンブラック、ファーネスブラック、チャンネルブラック、サーマルブラック等のカーボンブラック、気相成長炭素繊維(VGCF)、カーボンナノチューブ等の炭素繊維、およびグラファイトなどの炭素材料が挙げられ、これらの1種または2種以上を用いることができる。
<集電体>
 負極集電体22および正極集電体12は、導電性材料から構成され、その一方の主面または両面にそれぞれ負極活物質層24および正極活物質層14が配置される。本実施形態のリチウムイオン二次電池として、負極集電体22を構成する材料は特に限定するものではないが、負極20に用いられる負極集電体22としては、銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金などの金属箔を用いることができる。特に銅および銅合金が好ましく、電解銅箔および圧延銅箔によって製造された箔を好適に用いることができる。正極10に用いられる正極集電体12としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金などの金属箔を用いることができ、特に正極集電体12としては、アルミニウム箔が好ましい。
(非水電解液)
 非水電解液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが使用される。リチウム塩としては、例えば、LiPF、LiClO、LiBF、LiAsF、LiCFSO、LiCF、CFSO、LiC(CFSO、LiN(CFSO、LiN(CF3CFSO、LiN(CFSO)(C4FSO)、LiN(CFCFCO)、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。
 また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、フルオロエチレンカーボネート、及び、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。有機溶媒は環状カーボネートと鎖状カーボネートを混合して用いることが好ましい、放電容量とサイクル特性のバランスの観点から少なくともフルオロエチレンカーボネートとジエチルカーボネートの2種を含むことが特に好ましい。
(セパレータ)
 セパレータ18は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
<リチウムイオン二次電池の製造方法>
本実施形態のリチウムイオン二次電池100は、例えば、次のようにして製造することができる。
 まず、負極20は以下のようにして製造することができる。例えば、上述した負極活物質と、導電助剤と、ポリアクリル酸バインダーとを水などの溶媒に混合分散させてペースト状の負極スラリーを作製する。次いで、この負極スラリーを例えばコンマロールコーターを用いて、所定の厚みを有する負極スラリーを銅箔などの負極集電体22の片面または両面に塗布し、乾燥炉内にて溶媒を蒸発させる。なお、上記負極集電体22の両面に塗布された場合、負極活物質層24となる塗膜の厚みは、両面とも同じ膜厚であることが望ましい。上記負極活物質が形成された負極20をロールプレス機などにより、負極活物質層24を負極集電体22の片面または両面に圧着させ、負極集電体22上の負極活物質層24と、負極集電体22との密着性を高めると同時に、所定の密度を有する負極シートとなる。
 この負極シートを任意の濃度で調整したマグネシウムまたはアルカリ土類金属のハロゲン化物や水酸化物の希釈溶液に浸漬させることにより、ポリアクリル酸の側鎖末端部のカルボキシル基をマグネシウムまたはアルカリ土類金属で架橋する化学反応が起こり、ポリアクリル酸バインダーをマグネシウムまたはアルカリ土類金属で架橋されたポリアクリル酸塩バインダーとすることができる。
 上記負極シートは、電極金型を用いて所定の電極サイズに打ち抜き、本実施形態のリチウムイオン二次電池用の負極20とする。上記負極20の面積は、正極10の面積よりも大きいサイズであることが好ましい。負極20の面積を、対向する正極10の面積よりも大きくして、リチウムの析出による内部短絡が発生する可能性を低減するためである。
 正極10は以下のようにして製造することができる。例えば、上述した正極活物質と、導電助剤と、バインダーとをN-メチル-2-ピロリドンなどの溶媒に混合分散させてペースト状の正極スラリーを作製する。次いで、この正極スラリーを例えばコンマロールコーターを用いて、所定の厚みを有する正極活物質層14をアルミニウム箔などの正極集電体12の片面または両面に塗布し、乾燥炉内にて溶媒を乾燥させた。なお、上記正極集電体12の両面に塗布された場合、正極活物質層14となる塗膜の厚みは、両面とも同じ膜厚であることが望ましい。
 上記正極活物質層14が形成された正極10をロールプレス機などにより、正極活物質層14を正極集電体12の片面または両面に圧着させ、正極活物質層14と正極集電体12との密着性を高めると同時に、所定の密度を有する正極シートとなる。
 上記正極シートは、電極金型を用いて所定の電極サイズに打ち抜き、本実施形態のリチウムイオン二次電池用の正極10とする。既に上述している通り、上記正極10の面積は、負極20の面積よりも小さいサイズであることが好ましい。正極10の面積を、対向する負極20の面積よりも若干小さくすることで、簡易的にリチウムの析出による内部短絡の発生を防止するためである。
 続いて、負極20と正極10とをセパレーター18を介して積層することで電極体30を作製することができる。これを電極体1層とし、同様の作製方法にて任意の積層数で構成された電極体を作製することができる。上記セパレーター18は、負極20と正極10とが直接接触しないようにするために、電極金型を用いて両電極よりも電極サイズが大きく打ち抜いたものを好適に用いることができる。
 次いで、上記電極体30の負極20において、負極活物質層24を設けていない銅箔の突起端部に、ニッケル製の負極リード62を取り付け、一方、電極体30の正極10においては、正極活物質層14を設けていないアルミニウム箔の突起端部に、アルミニウム製の正極リード60を超音波溶接機によって取り付ける。そして、この電極体30を、アルミニウムのラミネートフィルムの外装体50内に挿入して周囲の1箇所を除いてヒートシールすることにより閉口部を形成し、外装体50内に所定量の非水電解液を注入した後に、残りの1箇所を減圧しながらヒートシールすることにより密封し、リチウムイオン二次電池100を作製することができる。
 このリチウムイオン二次電池100では、充電を行うと、例えば、正極活物質層14からリチウムイオンが放出され、非水電解液を介して負極活物質層24に吸蔵される。また、放電を行うと、例えば、負極活物質層24からリチウムイオンが放出され、非水電解液を介して正極活物質層14に吸蔵される。したがって、上記リチウムイオン二次電池100は電気容量を貯蔵することができる。
 以上、実施の形態により本発明を詳細に説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態においては、ラミネートフィルム構造を有するリチウムイオン二次電池について説明したが、本発明は、正極および負極を折り畳んだり、あるいは積み重ねた構造を有するリチウムイオン二次電池についても同様に適用することができる。さらにコイン型、角型あるいは扁平型などのリチウムイオン二次電池についても好適に応用することができる。
(実施例1)
<リチウムイオン二次電池用負極の作製>
 負極活物質として減圧下において1000℃の熱処理で不均化反応させたSiOを60重量%と、導電助剤としてアセチレンブラックを20重量%と、バインダーとして平均重合度11,000のポリアクリル酸を20重量%と、水とを混合分散させてペースト状の負極スラリーを作製した。そして、コンマロールコーターを用いて、この負極スラリーを厚さ10μmの銅箔の両面に所定の厚みとなるように、均一に負極活物質層を塗布した。次いで、乾燥炉内にて100℃の大気雰囲気下で上記負極活物質を乾燥させた。なお、上記銅箔の両面に塗布された負極活物質層の塗膜の厚みは、ほぼ同じ膜厚に調整した。上記負極活物質が形成された負極をロールプレス機によって、負極活物質層を負極集電体の両面に圧着させ、所定の密度を有する負極シートを得た。
 その後、この負極シートを5分間、5重量%の塩化マグネシウム水溶液に浸漬させることにより、ポリアクリル酸バインダーが30%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸マグネシウムとした。
 上記負極シートは、電極金型を用いて21×31mmの電極サイズに打ち抜き、そして熱処理炉にて熱風乾燥させ、実施例1に係るリチウムイオン二次電池用負極を作製した。なお、上記熱処理は、真空中にて実施した。
<リチウムイオン二次電池用正極の作製>
 正極活物質としてコバルト酸リチウム(LiCoO)を96重量%と、導電助剤としてケッチェンブラックを2重量%と、バインダーとしてPVDFを2重量%と、N-メチル-2-ピロリドンの溶媒とを混合分散させて、ペースト状の正極スラリーを作製した。そして、コンマロールコーターを用いて、この正極スラリーを厚さ20μmのアルミニウム箔の両面に所定の厚みとなるように、均一に正極活物質層を塗布した。次いで、乾燥炉内にて、110℃の大気雰囲気下で上記正極活物質中のN-メチル-2-ピロリドン溶媒を乾燥させた。なお、上記アルミニウム箔の両面に塗布された正極活物質層の塗膜の厚みは、ほぼ同じ膜厚に調整した。上記正極活物質が形成された正極をロールプレス機によって、正極活物質層を正極集電体の両面に圧着させ、所定の密度を有する正極シートを得た。
 上記正極シートは、電極金型を用いて20×30mmの電極サイズに打ち抜き、リチウムイオン二次電池用正極を作製した。
<リチウムイオン二次電池の作製>
 上記作製した負極と正極とを、厚さ16μmの22×33mmサイズのポリプロピレン製のセパレーターを介して積層し、電極体を作製した。負極3枚と正極2枚とを負極と正極が交互に積層されるようセパレーター4枚を介して積層した。さらに、上記電極体の負極において、負極活物質層を設けていない銅箔の突起端部にニッケル製の負極リードを取り付け、一方、電極体の正極においては、正極活物質層を設けていないアルミニウム箔の突起端部にアルミニウム製の正極リードを超音波溶接機によって取り付けた。そしてこの電極体を、アルミニウムのラミネートフィルムの外装体内に挿入して周囲の1箇所を除いてヒートシールすることにより閉口部を形成し、上記外装体内にEC/DECが3:7の割合で配合された溶媒中に、リチウム塩として1M(mol/L)のLiPFが添加された非水電解液を注入した後に、残りの1箇所を真空シール機によって減圧しながらヒートシールで密封し、実施例1に係るリチウムイオン二次電池を作製した。
(実施例2)
 実施例2に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、10分間、5重量%の塩化マグネシウム水溶液に浸漬させることにより、バインダーを60%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸マグネシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例3)
 実施例3に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、15分間、5重量%の塩化マグネシウム水溶液に浸漬させることにより、バインダーを90%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸マグネシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例4)
 実施例4に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、3分間、5重量%の塩化カルシウム水溶液に浸漬させることにより、バインダーを20%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸カルシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例5)
 実施例5に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、5分間、5重量%の塩化カルシウム水溶液に浸漬させることにより、バインダーを30%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸カルシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例6)
 実施例6に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、10分間、5重量%の塩化カルシウム水溶液に浸漬させることにより、バインダーを60%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸カルシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例7)
 実施例7に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、15分間、5重量%の塩化カルシウム水溶液に浸漬させることにより、バインダーを90%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸カルシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例8)
 実施例8に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、20分間、5重量%の塩化カルシウム水溶液に浸漬させることにより、バインダーを100%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸カルシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例9)
 実施例9に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、5分間、5重量%の塩化バリウム水溶液に浸漬させることにより、バインダーを20%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸バリウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例10)
 実施例10に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、8分間、5重量%の塩化バリウム水溶液に浸漬させることにより、バインダーを30%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸バリウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例11)
 実施例11に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、20分間、5重量%の塩化バリウム水溶液に浸漬させることにより、バインダーを60%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸バリウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例12)
 実施例12に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、30分間、5重量%の塩化バリウム水溶液に浸漬させることにより、バインダーを90%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸バリウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例13)
 実施例13に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極スラリー作製時のバインダーを平均重合度が6,500のポリアクリル酸とし、これにより作製した負極シートを7分間、5重量%の塩化カルシウム水溶液に浸漬させることにより、バインダーを60%の架橋度で架橋された、平均重合度が6,500のポリアクリル酸カルシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例14)
 実施例14に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極スラリー作製時のバインダーを平均重合度が30,000のポリアクリル酸とし、これにより作製した負極シートを20分間、5重量%の塩化カルシウム水溶液に浸漬させることにより、バインダーを60%の架橋度で架橋された、平均重合度が30,000のポリアクリル酸カルシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例15)
 実施例15に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極スラリー作製時のバインダーを平均重合度が3,000のポリアクリル酸とし、これにより作製した負極シートを4分間、5重量%の塩化カルシウム水溶液に浸漬させることにより、バインダーを30%の架橋度で架橋された、平均重合度が3,000のポリアクリル酸カルシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例16)
 実施例16に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、8分間、5重量%の塩化カルシウム水溶液に浸漬させることにより、バインダーを60%の架橋度で架橋された、平均重合度が3,000のポリアクリル酸カルシウムとした以外は、実施例15と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例17)
 実施例17に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、12分間、5重量%の塩化カルシウム水溶液に浸漬させることにより、バインダーを90%の架橋度で架橋された、平均重合度が3,000のポリアクリル酸カルシウムとした以外は、実施例15と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例18)
 実施例18に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、15分間、5重量%の水酸化ストロンチウム水溶液に浸漬させることにより、バインダーを60%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸ストロンチウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例19)
 実施例19に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、15分間、5重量%の水酸化ラジウム水溶液に浸漬させることにより、バインダーを60%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸ラジウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例20)
 負極活物質として減圧下において1000℃の熱処理で不均化反応させたSiOを用いた。この負極活物質を60重量%と、導電助剤としてアセチレンブラックを20重量%と、バインダーとして平均重合度11,000のポリアクリル酸と所定量の水酸化カルシウムとの中和反応により、ポリアクリル酸のカルボキシル基を1%の割合で架橋したポリアクリル酸カルシウムを20重量%と、水とを混合分散させてペースト状の負極スラリーを作製した。その後実施例1と同様の条件で塗布、乾燥および圧延工程を行い、リチウムイオン二次電池用負極を作製した以外は実施例1と同様にリチウムイオン二次電池を作製した。
(実施例21)
実施例21に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、10秒間、5重量%の塩化マグネシウム水溶液に浸漬させることにより、バインダーを1%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸マグネシウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例22)
 実施例22に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、15秒間、5重量%の塩化バリウム水溶液に浸漬させることにより、バインダーを1%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸バリウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例23)
 実施例23に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、8分間、5重量%の水酸化ストロンチウム水溶液に浸漬させることにより、バインダーを30%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸ストロンチウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例24)
 実施例24に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、23分間、5重量%の水酸化ストロンチウム水溶液に浸漬させることにより、バインダーを90%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸ストロンチウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例25)
 実施例25に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、8分間、5重量%の水酸化ラジウム水溶液に浸漬させることにより、バインダーを30%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸ラジウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例26)
 実施例26に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、23分間、5重量%の水酸化ラジウム水溶液に浸漬させることにより、バインダーを90%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸ラジウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例27)
 実施例27に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を80重量%および黒鉛の含有率を20重量%とした以外は、実施例20と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例28)
 実施例28に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を60重量%および黒鉛の含有率を40重量%とした以外は、実施例20と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例29)
 実施例29に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を40重量%および黒鉛の含有率を60重量%とした以外は、実施例20と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例30)
 実施例30に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を20重量%および黒鉛の含有率を80重量%とした以外は、実施例20と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例31)
 実施例31に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を10重量%および黒鉛の含有率を90重量%とした以外は、実施例20と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(実施例32)
 実施例32に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を5重量%および黒鉛の含有率を95重量%とした以外は、実施例20と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例1)
 比較例1に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、バインダーを平均重合度が11,000の架橋処理されていないポリアクリル酸とした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例2)
 比較例2に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、バインダーを平均重合度が11,000のポリアクリル酸ナトリウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
 なお、比較例2に係るポリアクリル酸ナトリウムは実施例1で用いたポリアクリル酸のカルボキシル基を30%の割合で水酸化ナトリウムを用いて中和した。
(比較例3)
 比較例3に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、バインダーを平均重合度が11,000のポリアクリル酸ナトリウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
 なお、比較例3に係るポリアクリル酸ナトリウムは実施例1で用いたポリアクリル酸のカルボキシル基を60%の割合で水酸化ナトリウムを用いて中和した。
(比較例4)
 比較例4に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、バインダーを平均重合度が11,000のポリアクリル酸ナトリウムとした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
 なお、比較例4に係るポリアクリル酸ナトリウムは実施例1で用いたポリアクリル酸のカルボキシル基を90%の割合で水酸化ナトリウムを用いて中和した。
(比較例5)
 比較例5に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、15分間、希酢酸水溶液中に溶解させた5重量%の水酸化亜鉛水溶液に浸漬させることにより、バインダーを30%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸亜鉛とした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例6)
 比較例6に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、30分間、希酢酸水溶液中に溶解させた5重量%の水酸化亜鉛水溶液に浸漬させることにより、バインダーを60%の架橋度で架橋された、平均重合度が11,000のポリアクリル酸亜鉛とした以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例7)
比較例7に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を80重量%および黒鉛の含有率を20重量%とした以外は、比較例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例8)
 比較例8に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を60重量%および黒鉛の含有率を40重量%とした以外は、比較例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例9)
 比較例9に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を40重量%および黒鉛の含有率を60重量%とした以外は、比較例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例10)
 比較例10に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を20重量%および黒鉛の含有率を80重量%とした以外は、比較例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例11)
 比較例11に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を10重量%および黒鉛の含有率を90重量%とした以外は、比較例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例12)
 比較例12に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質中においてSiOの含有率を5重量%および黒鉛の含有率を95重量%とした以外は、比較例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例13)
 比較例13に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質を黒鉛とした以外は、比較例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(比較例14)
 比較例14に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質を黒鉛とした以外は、実施例20と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
<評価>
実施例1~実施例26と比較例1~比較例6で作製したリチウムイオン二次電池用負極、およびリチウムイオン二次電池について、負極活物質層と負極集電体との剥離強度、初回充電時の負極厚み方向への膨張率、急速充放電サイクルが10サイクル目における負極のシワの有無および塗膜剥離の有無について評価した。
(剥離試験)
 リチウムイオン二次電池用負極において、前記負極を構成する負極活物質層と負極集電体との密着性を、卓上引張り試験機Ez-TEST(島津製作所社製)を用いて評価した。なお、ロードセルは20N用の冶具を使用した。
 まず、実施例および比較例で作製したリチウムイオン二次電池用負極を、30mm×15mmのサイズに切り出し、これを負極試験片とした。次いで平滑なステンレス板の台座に、住友スリーエム社製の両面テープを貼り付け、上記切り出された負極試験片をこの両面テープの上から、空気を抱き込ませないように張り合わせた。このとき、負極試験片の活物質層表面と、両面テープとが張り合わされている状態となる。また、張り合わせる際に、上記負極試験片の一部(先端から5mm程度)を90°に折り曲げることで、つかみ部を設けている。
 上記負極試験片のつかみ部をつかみ冶具に挟み込み、速度100mm/minで垂直に引き上げ、負極試験片の負極活物質層を負極集電体から剥離させた。そして以下の計算式により剥離強度を算出した。
 剥離強度(mN/mm)=剥離応力(mN)÷負極試験片の幅(mm)
(初回充電時の負極の膨張率測定)
 実施例および比較例で作製したリチウムイオン二次電池は、下記に示す充放電試験条件によって充電を行ない、初回充電時の負極の膨張率について評価した。なお、充電は25℃にて実施した。充電条件は、10Cの定電流で4.2Vになるまで定電流充電を行った。充電状態のリチウムイオン二次電池を分解し、負極を取り出した後、負極の厚さをマイクロメーターで6点の測定を行い、平均値を算出し、充電以前の負極の厚みと比較し膨張率を算出した。
 例えば、初回充電時の負極の膨張率は、以下の計算式によって定義される。
 初回充電時の負極の膨張率(%)=(初回充電状態の負極の厚さ/充電前の負極の厚さ)×100(%)
(充放電試験10サイクル目における負極の形態観察)
 実施例および比較例で作製したリチウムイオン二次電池は、下記に示す充放電試験条件によって充放電を繰り返した後、分解し、充放電10サイクル目における負極の形態観察を目視により行い、負極のシワの有無および塗膜剥離の有無を目視により評価した。
 なお、充放電は25℃にて実施した。充放電試験条件は、10Cの定電流で4.2Vになるまで定電流充電を行い、その後は10Cの定電流で電池電圧が2.5Vとなるまで放電し、上記を1サイクルとした。
 本発明内のリチウムイオン二次電池用負極、およびリチウムイオン二次電池について、実施例1~実施例26および比較例1~比較例6に係る負極活物質層と負極集電体との剥離強度、剥離形態観察、初回充電時の負極厚み方向への膨張率、充放電サイクルが10サイクル目における負極のシワの有無および塗膜剥離の有無の結果について表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 上記表1より明らかなように、ポリアクリル酸の側鎖末端部のカルボキシル基の1%以上がマグネシウムまたはアルカリ土類金属で架橋されたポリアクリル酸塩バインダーを用いることにより10サイクル後のシワおよび塗膜の剥離が抑制できることが分かった。さらに、マグネシウムまたはアルカリ土類金属で架橋されたポリアクリル酸塩バインダーの架橋度が1~90%であり、平均重合度が3,000~30,000のとき充放電サイクル後における負極のシワおよび塗膜剥離の抑制効果がより好適な状態となることが明らかとなった。
 なお、10サイクル後の負極のシワがほぼ無しというのは、明らかな負極のシワではなく極僅かに負極が歪む程度を意味し、また、10サイクル後の塗膜の剥離がほぼ無しというのは、明らかな負極活物質層の剥離ではなく、負極の端部や四隅などの一部の負極活物質層が剥がれた程度を意味する。
 比較例1~比較例6で作製したリチウムイオン二次電池用負極は、電極の膨張、電極のシワ、または充放電サイクル後の剥離の少なくともいずれかの不具合が見られた。
 比較例5および比較例6で作製した亜鉛で架橋したポリアクリル酸亜鉛はバインダーが一部溶解したことによる負極活物質層の負極集電体からの剥離が確認された。ポリアクリル酸亜鉛は耐電解液性または対還元性が弱いためであると考えられる。
さらに実施例20および実施例27~32と比較例1および比較例7~14で作製したリチウムイオン二次電池用負極、およびリチウムイオン二次電池について、初回充電時の負極厚み方向への膨張率、急速充放電サイクルが10サイクル目における負極のシワの有無および塗膜剥離の有無について上記と同様に評価した。
 本発明内のリチウムイオン二次電池用負極、およびリチウムイオン二次電池について、実施例20および実施例27~32、と比較例1および比較例7~14に係る負極活物質層と負極集電体との剥離強度、剥離形態観察、初回充電時の負極厚み方向への膨張率、充放電サイクルが10サイクル目における負極のシワの有無および塗膜剥離の有無の結果について表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 上記表2より明らかなように、酸化シリコンの含有率が5%以上でポリアクリル酸カルシウムによる負極の膨張抑制の効果が確認された。比較例1および比較例7~12に係るリチウムイオン二次電池はSiOの含有率が5重量%~20重量%の時、負極のシワは確認され、さらにSiOの含有率が大きくなるにつれ、急速充放電10サイクル後の負極のシワが顕著に確認された。一方、実施例20および実施例27~32に係るリチウムイオン二次電池では酸化シリコンの含有率が5%以上で負極の膨張抑制効果を示し、ひいては急速充放電10サイクル後のシワを抑制できることが明らかとなった。また、負極のシワの抑制効果はSiOの含有率が40重量%以上で顕著に観察された。
 比較例13および14に係るリチウムイオン二次電池では、急速充放電10サイクル後に負極活物質層の剥離が見られた。また、SiOの含有量が増加するにつれ、剥離強度が増加する傾向が確認された。これは、SiO粒子が黒鉛粒子に比べ硬いため、圧延によりアンカー効果が発現しているためと推測される。すなわち、SiOが5重量%以上含まれることが必要である。
 また、ポリアクリル酸の架橋度が1%であっても、負極のシワを抑制する効果が得られることが表2の結果から明らかとなった。

Claims (4)

  1.  シリコンまたは酸化シリコンを5重量%以上含む負極活物質と、ポリアクリル酸の側鎖末端部のカルボキシル基の1%以上がマグネシウムまたはアルカリ土類金属で架橋されたポリアクリル酸塩であるバインダーと、負極集電体と、を有することを特徴とするリチウムイオン二次電池用負極。
  2.  前記架橋されたポリアクリル酸塩のマグネシウムまたはアルカリ土類金属による架橋度は前記ポリアクリル酸に含まれるカルボキシル基に対して1~90%であることを特徴とする請求項1に記載のリチウムイオン二次電池用負極。
  3.  前記架橋されたポリアクリル酸塩の平均重合度は3,000~30,000であることを特徴とする請求項1または2に記載のリチウムイオン二次電池用負極。
  4.  請求項1~3のいずれか一項に記載のリチウムイオン二次電池用負極を用いたリチウムイオン二次電池。
PCT/JP2014/065411 2013-06-12 2014-06-11 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池 WO2014200003A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015522801A JP6256466B2 (ja) 2013-06-12 2014-06-11 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
US14/897,554 US10193157B2 (en) 2013-06-12 2014-06-11 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
CN201480033829.XA CN105283984B (zh) 2013-06-12 2014-06-11 锂离子二次电池用负极以及使用其的锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-123721 2013-06-12
JP2013123721 2013-06-12

Publications (1)

Publication Number Publication Date
WO2014200003A1 true WO2014200003A1 (ja) 2014-12-18

Family

ID=52022294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065411 WO2014200003A1 (ja) 2013-06-12 2014-06-11 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US10193157B2 (ja)
JP (1) JP6256466B2 (ja)
CN (1) CN105283984B (ja)
WO (1) WO2014200003A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046896A1 (ja) * 2015-09-16 2017-03-23 株式会社 東芝 非水電解質二次電池および電池パック
WO2017188032A1 (ja) * 2016-04-28 2017-11-02 凸版印刷株式会社 非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池
WO2018051628A1 (ja) * 2016-09-16 2018-03-22 株式会社村田製作所 リチウムイオン二次電池用負極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2018060771A (ja) * 2016-09-30 2018-04-12 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2018107060A (ja) * 2016-12-28 2018-07-05 凸版印刷株式会社 非水電解質二次電池用負極
CN109888286A (zh) * 2019-01-23 2019-06-14 西安交通大学 一种动态离子交联的聚丙烯酸-聚乙二醇水凝胶粘合剂及其制备方法和应用
WO2019117056A1 (ja) * 2017-12-13 2019-06-20 株式会社クラレ 非水電解質電池用バインダー、それを用いたバインダー水溶液およびスラリー組成物、並びに非水電解質電池用電極および非水電解質電池
KR20200041661A (ko) * 2018-10-12 2020-04-22 삼성전자주식회사 바인더, 그 제조방법, 이를 포함하는 이차전지용 전극 및 이차전지
WO2020218049A1 (ja) * 2019-04-26 2020-10-29 東亞合成株式会社 二次電池電極用バインダー及びその利用
US11069894B2 (en) * 2015-12-04 2021-07-20 The University Of Akron Crosslinked polymer binders for electrochemical energy storage devices
US11631846B2 (en) 2018-06-04 2023-04-18 Lg Energy Solutions, Ltd. Battery cell, secondary battery, and method of manufacturing battery cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090845A (ja) * 2013-11-07 2015-05-11 Tdk株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7059931B2 (ja) 2016-09-15 2022-04-26 日本電気株式会社 リチウムイオン二次電池
US10468719B1 (en) * 2017-07-26 2019-11-05 Cora Aero Llc Generation of wrinkle-free silicon monoxide electrodes using combined preformation and formation
WO2019039399A1 (ja) * 2017-08-24 2019-02-28 日本電気株式会社 リチウムイオン二次電池用負極およびこれを含むリチウムイオン二次電池
CN107681158A (zh) * 2017-09-17 2018-02-09 亚士创能科技(上海)股份有限公司 锂电池硅基负极材料自愈合粘结剂、锂电池硅基负极材料及其制备方法、电池负极和锂电池
CN108520958A (zh) * 2018-03-12 2018-09-11 深圳市优特利电源有限公司 改性聚合物粘结剂、电极浆料和电极以及锂离子电池
CN110492103A (zh) * 2019-08-19 2019-11-22 上海纳米技术及应用国家工程研究中心有限公司 一种锂离子电池硅碳负极粘结剂的制备方法及其产品和应用
CN114614017B (zh) * 2022-03-24 2024-09-03 深圳市皓飞实业有限公司 粘结剂、负极极片以及锂离子电池
CN118173785B (zh) * 2024-03-18 2024-08-06 绿能纤材(重庆)科技有限公司 一种锂电池硅基负极的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348730A (ja) * 2000-01-01 2000-12-15 Seiko Instruments Inc 非水電解質二次電池
JP2001513437A (ja) * 1997-08-25 2001-09-04 コリア リサーチ インスティテュート オブ ケミカル テクノロジー 二重構造を有するポリイオン錯体分離膜
JP2006517224A (ja) * 2003-02-07 2006-07-20 テイコク ファーマ ユーエスエー インコーポレーテッド 皮膚用薬の対象への投与方法
JP2010097761A (ja) * 2008-10-15 2010-04-30 Denso Corp 非水電解質二次電池用負極及び非水電解質二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101987A1 (ja) * 2010-02-22 2011-08-25 トヨタ自動車株式会社 リチウムイオン二次電池とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513437A (ja) * 1997-08-25 2001-09-04 コリア リサーチ インスティテュート オブ ケミカル テクノロジー 二重構造を有するポリイオン錯体分離膜
JP2000348730A (ja) * 2000-01-01 2000-12-15 Seiko Instruments Inc 非水電解質二次電池
JP2006517224A (ja) * 2003-02-07 2006-07-20 テイコク ファーマ ユーエスエー インコーポレーテッド 皮膚用薬の対象への投与方法
JP2010097761A (ja) * 2008-10-15 2010-04-30 Denso Corp 非水電解質二次電池用負極及び非水電解質二次電池

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6130052B1 (ja) * 2015-09-16 2017-05-17 株式会社東芝 非水電解質二次電池および電池パック
WO2017046896A1 (ja) * 2015-09-16 2017-03-23 株式会社 東芝 非水電解質二次電池および電池パック
US11069894B2 (en) * 2015-12-04 2021-07-20 The University Of Akron Crosslinked polymer binders for electrochemical energy storage devices
WO2017188032A1 (ja) * 2016-04-28 2017-11-02 凸版印刷株式会社 非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池
CN109075318A (zh) * 2016-04-28 2018-12-21 凸版印刷株式会社 非水电解质二次电池用负极、非水电解质二次电池负极用粘合剂以及非水电解质二次电池
JPWO2017188032A1 (ja) * 2016-04-28 2019-03-07 凸版印刷株式会社 非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池
CN109075318B (zh) * 2016-04-28 2022-06-24 凸版印刷株式会社 非水电解质二次电池用负极、非水电解质二次电池负极用粘合剂以及非水电解质二次电池
WO2018051628A1 (ja) * 2016-09-16 2018-03-22 株式会社村田製作所 リチウムイオン二次電池用負極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JPWO2018051628A1 (ja) * 2016-09-16 2019-04-11 株式会社村田製作所 リチウムイオン二次電池用負極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US11532821B2 (en) 2016-09-16 2022-12-20 Murata Manufacturing Co., Ltd. Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
JP2018060771A (ja) * 2016-09-30 2018-04-12 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
US11165058B2 (en) 2016-09-30 2021-11-02 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method of producing negative electrode active material
JP2018107060A (ja) * 2016-12-28 2018-07-05 凸版印刷株式会社 非水電解質二次電池用負極
JPWO2019117056A1 (ja) * 2017-12-13 2020-12-24 株式会社クラレ 非水電解質電池用バインダー、それを用いたバインダー水溶液およびスラリー組成物、並びに非水電解質電池用電極および非水電解質電池
WO2019117056A1 (ja) * 2017-12-13 2019-06-20 株式会社クラレ 非水電解質電池用バインダー、それを用いたバインダー水溶液およびスラリー組成物、並びに非水電解質電池用電極および非水電解質電池
JP7183183B2 (ja) 2017-12-13 2022-12-05 株式会社クラレ 非水電解質電池用バインダー、それを用いたバインダー水溶液およびスラリー組成物、並びに非水電解質電池用電極および非水電解質電池
US11631846B2 (en) 2018-06-04 2023-04-18 Lg Energy Solutions, Ltd. Battery cell, secondary battery, and method of manufacturing battery cell
KR20200041661A (ko) * 2018-10-12 2020-04-22 삼성전자주식회사 바인더, 그 제조방법, 이를 포함하는 이차전지용 전극 및 이차전지
KR102663020B1 (ko) 2018-10-12 2024-05-07 삼성전자주식회사 바인더, 그 제조방법, 이를 포함하는 이차전지용 전극 및 이차전지
CN109888286A (zh) * 2019-01-23 2019-06-14 西安交通大学 一种动态离子交联的聚丙烯酸-聚乙二醇水凝胶粘合剂及其制备方法和应用
JPWO2020218049A1 (ja) * 2019-04-26 2020-10-29
WO2020218049A1 (ja) * 2019-04-26 2020-10-29 東亞合成株式会社 二次電池電極用バインダー及びその利用
JP7428181B2 (ja) 2019-04-26 2024-02-06 東亞合成株式会社 二次電池電極用バインダー及びその利用

Also Published As

Publication number Publication date
US10193157B2 (en) 2019-01-29
CN105283984A (zh) 2016-01-27
JP6256466B2 (ja) 2018-01-10
CN105283984B (zh) 2018-07-10
US20160141626A1 (en) 2016-05-19
JPWO2014200003A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6256466B2 (ja) リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
CN104769753B (zh) 电极/隔板叠层体的制造方法以及锂离子二次电池
US8932765B2 (en) Electrode assembly for electric storage device and electric storage device
TWI553945B (zh) 非水系蓄電池用分隔器及非水系蓄電池
EP3627586B1 (en) Separator for non-aqueous secondary batteries, non-aqueous secondary battery, and method for producing non-aqueous secondary battery
WO2022141508A1 (zh) 一种电化学装置和电子装置
KR20180041683A (ko) 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 기능층, 및 비수계 이차 전지
JP6325180B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2015090845A (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4852824B2 (ja) リチウム二次電池用負極、その製造方法及びリチウム二次電池
JP6236964B2 (ja) リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP6974930B2 (ja) 非水電解質二次電池
JP5920630B2 (ja) 二次電池
JP5365668B2 (ja) リチウム二次電池及びその負極の製造方法
WO2019004459A1 (ja) 電気化学素子用バインダー組成物、電気化学素子機能層用スラリー組成物、電気化学素子接着層用スラリー組成物、および複合膜
JP2016012478A (ja) セパレータおよびリチウムイオン二次電池
KR20220049447A (ko) 음극 슬러리, 음극 및 이차전지
KR102051544B1 (ko) 완충형 바인더층을 가진 분리막 및 이를 포함하는 전극조립체
KR101616721B1 (ko) 접착력이 향상된 바인더 및 상기 바인더를 포함하는 리튬 이차전지
JP2019036416A (ja) 非水電解質二次電池の製造方法
JP6973401B2 (ja) 蓄電素子及びその製造方法
WO2019004460A1 (ja) 電気化学素子用バインダー組成物、電気化学素子機能層用スラリー組成物、電気化学素子接着層用スラリー組成物、および複合膜
JP7033633B2 (ja) 非水電解質二次電池
EP3872906B1 (en) Nonaqueous secondary battery electrode, electrode slurry, and nonaqueous secondary battery
JP6992578B2 (ja) リチウムイオン二次電池用電極及びそれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033829.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522801

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897554

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810998

Country of ref document: EP

Kind code of ref document: A1