WO2017188032A1 - 非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池 - Google Patents

非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池 Download PDF

Info

Publication number
WO2017188032A1
WO2017188032A1 PCT/JP2017/015336 JP2017015336W WO2017188032A1 WO 2017188032 A1 WO2017188032 A1 WO 2017188032A1 JP 2017015336 W JP2017015336 W JP 2017015336W WO 2017188032 A1 WO2017188032 A1 WO 2017188032A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
negative electrode
secondary battery
electrolyte secondary
crosslinking
Prior art date
Application number
PCT/JP2017/015336
Other languages
English (en)
French (fr)
Inventor
均 栗原
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP17789317.9A priority Critical patent/EP3451420B1/en
Priority to CN201780025542.6A priority patent/CN109075318B/zh
Priority to JP2018514503A priority patent/JP6973382B2/ja
Publication of WO2017188032A1 publication Critical patent/WO2017188032A1/ja
Priority to US16/168,955 priority patent/US11101464B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a nonaqueous electrolyte secondary battery, a binder for a negative electrode of a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries for example, Li-ion secondary batteries
  • Li-ion secondary batteries have been used as secondary batteries that can be repeatedly charged and discharged with the aim of reducing oil consumption and greenhouse gas emissions, and further diversifying and improving the energy base. Attention has been gathered.
  • Li-ion secondary batteries are expected to be used for electric vehicles, hybrid electric vehicles, and fuel cell vehicles. Since electric vehicles are required to improve the cruising distance, higher energy density of Li-ion secondary batteries will be further required in the future.
  • a graphite electrode When attention is paid to the negative electrode of the current Li ion secondary battery, a graphite electrode is generally used.
  • the theoretical capacity of graphite is 372 mAh (ie 372 mAhg (active material) ⁇ 1 ) per gram of active material.
  • Si and Sn have attracted attention in recent years as an active material having a capacity exceeding that of graphite.
  • the theoretical capacity of Si is 4200 mAhg (active material) ⁇ 1
  • Sn is 990 mAhg (active material) ⁇ 1 .
  • Si has a capacity about 11 times that of graphite, the volume change accompanying Li occlusion and release increases. For example, compared to graphite, the volume of Si increases by about 4 times due to Li occlusion.
  • an electrode using an active material (Si, Sn) having a large capacity has a large volume change due to charge / discharge, desorption from the electrode due to cutting or pulverization of the conductive path of the electrode, current collection There is a risk of peeling of the body and the mixture layer. This may be a factor that degrades the life characteristics of the Li ion secondary battery.
  • polymer binder examples include carboxymethyl cellulose, polyamideimide, polyacrylic acid, and sodium alginate. These are binders harder than the polyvinylidene fluoride conventionally used as a binder.
  • Patent Document 1 uses a cross-linked polyacrylic acid. It has been reported that cross-linked polyacrylic acid is less likely to break the electrode structure and has improved life characteristics compared to non-crosslinked polyacrylic acid. On the other hand, as shown in Non-Patent Document 1, it has been reported that the life characteristics of the crosslinked sodium alginate by metal ions is improved.
  • the present inventor has found that the cross-linking by the covalent bond using the cross-linking agent increases the mechanical strength, but the bond is uneven and is broken due to local stress concentration. It was concluded that it is difficult to improve the life characteristics sufficiently.
  • the metal ion bond is a reversible bond, so the uniformity of the bond is high, but the mechanical strength is lower than that of the covalent bond, and it has been concluded that it is difficult to improve the life characteristics sufficiently. .
  • the present invention focuses on the above points, and is a negative electrode for a non-aqueous electrolyte secondary battery having excellent life characteristics, a binder for a negative electrode of a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary.
  • An object is to provide a battery.
  • the present inventor has reversible bonding (reversible bonding) such as metal ion bonding, for example, in order to suppress local stress concentration due to uneven cross-linking. It came to develop the binder for negative electrodes which combined irreversible coupling
  • a negative electrode for a non-aqueous electrolyte secondary battery includes a current collector and a mixture layer formed on the current collector and having an active material and a binder,
  • the binder is characterized in that a network between molecular chains in which crosslinking by irreversible bonding and crosslinking by reversible bonding are mixed is formed.
  • a binder for a negative electrode of a nonaqueous electrolyte secondary battery is a nonaqueous electrolyte secondary battery including a current collector and a mixture layer formed on the current collector.
  • the binder contained in the mixture layer is characterized in that an intermolecular chain network in which crosslinking by irreversible bonding and crosslinking by reversible bonding are mixed is formed.
  • a nonaqueous electrolyte secondary battery according to one embodiment of the present invention includes a negative electrode for the nonaqueous electrolyte secondary battery, a positive electrode, a nonaqueous electrolyte disposed between the negative electrode and the positive electrode, It is characterized by providing.
  • a negative electrode for a non-aqueous electrolyte secondary battery excellent in life characteristics for example, capable of improving cycle characteristics
  • a binder for a negative electrode of a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary A battery can be provided.
  • FIG. 6 is a graph showing the cycle evaluation results of Examples 2 to 5 and showing the relationship between the crosslinking amount of the binder and the life characteristics.
  • FIG. 6 is a graph showing the cycle evaluation results of Examples 6 to 10, showing the relationship between the ratio of reversible bonding / irreversible bonding in the binder and the life characteristics.
  • Embodiments of the present invention will be described below with reference to the drawings. However, the same reference numerals are given to portions corresponding to each other in the drawings to be described below, and description of the overlapping portions will be omitted as appropriate. Further, the embodiment of the present invention exemplifies a configuration for embodying the technical idea of the present invention, and the material, shape, structure, arrangement, etc. of each part are not specified as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a negative electrode 10 for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • the negative electrode 10 for a non-aqueous electrolyte secondary battery includes a current collector 1 and a mixture layer 3 formed on the current collector 1. That is, the negative electrode 10 has a structure in which the mixture layer 3 is laminated on the current collector 1.
  • the current collector 1 is preferably made of a highly conductive material, for example, a single metal foil such as gold, silver, copper, nickel, stainless steel, titanium, platinum, or an alloy containing two or more of these metals.
  • the mixture layer 3 includes, for example, a binder, an active material, and a conductive additive.
  • the binder forms a network between molecular chains in the binder by mixing crosslinks by irreversible bonds and crosslinks by reversible bonds.
  • the reversible bond may include an ionic bond by a divalent or higher metal cation.
  • Binder The binder layer 3 has only to contain a polymer composed of an ethylenically unsaturated carboxylic acid compound.
  • the ethylenically unsaturated carboxylic acid having a molecular weight of 1 million to 5 million (high molecular weight).
  • a polymer comprising an acid compound and a copolymer of a monomer having a molecular weight of 1,000 or more and 10,000 or less (lower molecular weight than the aforementioned polymer) and having a flexibility and an ethylenically unsaturated carboxylic acid compound .
  • the above binder includes a main binder and an auxiliary binder.
  • the main binder is composed of an ethylenically unsaturated carboxylic acid compound having a molecular weight of 1,000,000 to 5,000,000.
  • the auxiliary binder is made of a copolymer of a flexible monomer and an ethylenically unsaturated carboxylic acid compound. The molecular weight of this copolymer is 1000 or more and 10,000 or less.
  • the main binder and the auxiliary binder may be partially salted with a divalent or higher valent metal cation.
  • the main binder has a crosslink by a covalent bond and a metal ion bond
  • the auxiliary binder does not contain a covalent bond but may contain a metal ion bond. That is, the main binder may have crosslinks due to irreversible bonds, and the auxiliary binder may not have crosslinks due to irreversible bonds.
  • the ionic bond by the metal ion of the main binder and the auxiliary binder may be made by calcium ions.
  • the main binder has an ethylenically unsaturated carboxylic acid compound (that is, a high molecular weight binder) having a molecular weight of 1,000,000 to 5,000,000.
  • a high molecular weight binder ethylenically unsaturated carboxylic acid compound having a molecular weight of 1,000,000 to 5,000,000.
  • the auxiliary binder has a molecular weight of 1000 or more and 10,000 or less, and has a copolymer of a flexible monomer and an ethylenically unsaturated carboxylic acid compound (that is, a low molecular weight binder). For this reason, it is easy to adhere to the active material surface, and while suppressing the contact between the active material and the electrolytic solution, it is possible to provide a film that is stable against volume change of the active material. This film can be expected to act as SEI (Solid Electrolyte Interphase). As a result, it is possible to suppress the continuous destruction and generation of SEI in repeated charging and discharging, and to improve the life characteristics.
  • SEI Solid Electrolyte Interphase
  • polyacrylic acid examples include polyacrylic acid, maleic acrylate copolymer, styrene acrylate copolymer, vinyl acrylate polymer, etc.
  • Sodium salts, lithium salts, potassium salts, magnesium salts, calcium salts, ammonium salts, and the like are desirable.
  • sodium polyacrylate is particularly preferable in terms of improving the life characteristics as described later.
  • Examples of the copolymer of the monomer having flexibility and the ethylenically unsaturated carboxylic acid compound used in the auxiliary binder include, for example, an acrylic acid maleic acid copolymer, an acrylic acid styrene copolymer, and an acrylic acid olefin copolymer.
  • a polymer or the like is desirable.
  • a maleic acrylate copolymer is particularly desirable.
  • the auxiliary binder is a copolymer containing a maleic acid moiety, and a part of the maleic acid moiety may be subjected to an intramolecular acid anhydride treatment with an adjacent carboxyl group.
  • the ratio of the auxiliary binder is 0.1% by mass or more and 50% by mass or less with respect to the total weight of the binder (main binder and auxiliary binder).
  • the crosslinking process by the covalent bond of the main binder is performed using a crosslinking agent.
  • a crosslinking agent what reacts with carboxylic acid and forms a bridge
  • the reactive group corresponding to 0.01 mol% or more and 2.0 mol% or less is involved in the crosslinking with respect to the total of the reactive groups capable of crosslinking by reversible bonding and irreversible bonding. Also good.
  • the total number of reactive groups involved in crosslinking by reversible bonding of the main binder and auxiliary binder may be 1 to 9 times the number of reactive groups involved in crosslinking by irreversible bonding of the main binder.
  • the mixture layer 3 is formed, for example, by applying a negative electrode slurry on the current collector 1.
  • a crosslinking agent is dropped into an aqueous polymer solution to complete the crosslinking reaction by covalent bond, followed by crosslinking treatment by metal ion bond with calcium salt, and then an auxiliary binder is added, and finally the conductive assistant is added.
  • the crosslinking agent is not particularly limited as long as it is a crosslinking agent that reacts with a carboxylic acid group to form a crosslinking.
  • the crosslinking agent in the present embodiment for example, it is desirable to use a carbodiimide compound or an aziridine compound that can complete the crosslinking reaction in a few minutes at room temperature if a known crosslinking agent is used.
  • a known crosslinking agent for example, aziridine compounds are particularly desirable.
  • the main binder may be a polymer synthesized by adding a small amount of a polyfunctional monomer from the stage of monomer polymerization.
  • the active material of this embodiment is not particularly limited as long as it can reversibly absorb and release Li, and a known active material can be used, but a material that is alloyed with Li is used. It is desirable. In particular, when the material used for the active material is a material having a capacity larger than that of graphite, the effect of the present embodiment is remarkably obtained.
  • the material to be alloyed with Li for example, one or more alloys selected from the group consisting of Si, Ge, Sn, Pb, Al, Ag, Zn, Hg, and Au can be used.
  • it is SiOx, and more preferably, x is 0 or more and 1.5 or less. When x is larger than 1.5, a sufficient amount of insertion and extraction of Li cannot be ensured.
  • not only such an active material but also graphite may be added as an active material.
  • Conductive aid for example, carbon black, natural graphite, artificial graphite, metal oxides such as titanium oxide and ruthenium oxide, metal fibers, and the like can be used.
  • carbon black having a structure structure is preferable, and furnace black, ketjen black, and acetylene black (AB), which are one of them, are particularly preferable.
  • a mixed system of carbon black and another conductive agent such as vapor grown carbon fiber (VGCF) is also preferable.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of the nonaqueous electrolyte secondary battery 100 according to the embodiment of the present invention.
  • the non-aqueous electrolyte secondary battery 100 includes a negative electrode 10, a positive electrode 30, and a non-aqueous electrolyte 20 filled between the negative electrode 10 and the positive electrode 30.
  • a separator may be interposed between the negative electrode 10 and the positive electrode 30.
  • Examples of the solvent of the electrolytic solution used in the nonaqueous electrolyte secondary battery include low-viscosity chain carbonates such as dimethyl carbonate and diethyl carbonate, cyclic carbonates having a high dielectric constant such as ethylene carbonate, propylene carbonate, and butylene carbonate.
  • Examples include ⁇ -butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, methylpropionate, vinylene carbonate, dimethylformamide, sulfolane, and mixed solvents thereof. it can.
  • electrolyte contained in electrolyte solution there is no restriction
  • the electrolyte in the present embodiment for example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiI, LiAlCl 4, or a mixture thereof can be used.
  • it is a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 .
  • the binder has a high mechanical strength.
  • the main binder suppresses destruction of the mixture layer.
  • the auxiliary binder covering the surface of the active material having a large volume change can form a stable film on the surface of the active material, it is possible to suppress the continuous generation of SEI accompanying repeated charge / discharge.
  • a negative electrode 10 for a non-aqueous electrolyte secondary battery includes a current collector 1 and a mixture layer 3 formed on the current collector 1.
  • the binder in the mixture layer 3 is a mixture of irreversible bonds and reversible bonds to form an intermolecular chain network in the binder.
  • the binder is subjected to a crosslinking treatment, and at least one polymer constituting the binder is subjected to a crosslinking treatment including both an irreversible bond and a reversible bond.
  • the mechanical strength of a binder increases and it can suppress the destruction of the mixture layer 3 accompanying repeated charging / discharging.
  • the negative electrode 10 for nonaqueous electrolyte secondary batteries excellent in lifetime characteristics can be provided.
  • the polymer which comprises a binder is a polymer which consists of an ethylenically unsaturated carboxylic acid compound. According to such a configuration, a carboxylic acid group can be used as a binding site in the crosslinking treatment using an irreversible bond and a reversible bond.
  • a binder has a main binder and an auxiliary binder. The main binder is made of a polymer composed of an ethylenically unsaturated carboxylic acid having a molecular weight of 1,000,000 to 5,000,000.
  • the auxiliary binder is made of a copolymer of a monomer having flexibility and a molecular weight of 1000 or more and 10,000 or less and an ethylenically unsaturated carboxylic acid compound. According to such a configuration, the shape of the mixture layer 3 can be maintained by the main binder. In addition, the auxiliary binder can suppress the continuous destruction and generation of SEI accompanying repeated charging and discharging.
  • a divalent or higher metal cation for example, calcium ion
  • the main binder which comprises a binder is made into the crosslinking process by an irreversible bond
  • the auxiliary binder is not made into the crosslinking process by an irreversible bond. That is, the main binder contains both irreversible crosslinks and reversible crosslinks, and the auxiliary binder does not include irreversible crosslinks. According to such a configuration, it is possible to realize a main binder having a high breaking strength for maintaining the shape of the mixture layer and an auxiliary binder having a high elongation that easily follows the volume change of the active material.
  • assistant binder is a copolymer containing the maleic acid site
  • the maleic acid moiety is dehydrated and condensed to form a ring in the negative electrode preparation step. That is, a part of the maleic acid moiety is subjected to an intramolecular acid anhydride treatment with an adjacent carboxyl group to generate a cyclic hydrocarbon moiety. Since this hydrocarbon site does not contain a carboxylic acid group, flexibility can be imparted.
  • the crosslinking treatment density by irreversible bonding of the main binder constituting the binder is equivalent to 0.01 mol% to 3.0 mol% with respect to the total number of reactive groups that can be crosslinked by the main binder. This is the density at which the reactive groups involved are involved in crosslinking. According to such a structure, a binder can be formed more appropriately.
  • the total number of each reactive group involved in crosslinking by reversible bonding of the main binder and auxiliary binder is 1 to 9 times the number of reactive groups involved in crosslinking by irreversible bonding of the main binder. It is. According to such a structure, a binder can be formed more appropriately.
  • the crosslinking agent by the irreversible bond of the main binder which comprises a binder is an aziridine type compound.
  • the carboxyl group of the main binder and the aziridine group of the cross-linking agent react to give an irreversible bond to the main binder.
  • a part of the main binder and the auxiliary binder are salts of divalent or higher metal cations.
  • the crosslinking agent by the reversible bond given to the main binder and the auxiliary binder is a calcium salt.
  • the carboxyl groups and calcium ions of the main binder and the auxiliary binder form a metal ion bond, and a reversible bond can be given to the main binder and the auxiliary binder.
  • an active material is nano silicon. According to such a configuration, the deterioration of the active material is suppressed, and the cycle characteristics of the negative electrode can be improved.
  • Example 1 To 92.54 g of water, 4.96 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million) was added and stirred with a dispaper. Subsequently, 0.15 g of a 10-fold diluted aqueous solution of an aziridine compound (manufactured by Nippon Shokubai Co., Ltd., PZ-33) was added to the polymer solution and stirred for 20 minutes. Subsequently, 2.34 g of a 100-fold diluted aqueous solution of calcium chloride was added and further stirred. Thus, a 5% cross-linked sodium polyacrylate aqueous solution was prepared.
  • the prepared 5% cross-linked sodium polyacrylate aqueous solution was diluted with water to 0.5%, transferred to a petri dish, and dried at 40 ° C.
  • the obtained film was cut into a 20 ⁇ 50 mm square. Further, drying under reduced pressure at 105 ° C. was performed for 5 hours. It was stored for 3 days in a humidity control booth adjusted to 23.3 ° C. and a humidity of 46%.
  • a binder as a sample for tensile test was obtained. As will be described later, this binder was subjected to a tensile test.
  • FIG. 3A is a graph showing the tensile test results of the binder produced in Example 1.
  • FIG. 3 (b) is a photograph figure which shows the binder after fracture
  • the elongation was 1000% by adding a crosslink by a reversible bond to a crosslink by an irreversible bond. This indicates that cross-linking unevenness is suppressed, local load concentration in the binder is suppressed, and a binder that is difficult to break can be produced.
  • it also has a bridge by irreversible bonding as shown in FIG. 3B, the sample after the tensile test was able to return to almost the same shape and dimensions as before the fracture.
  • Example 2 8.06 g of water was added to 33.53 g of the 5% cross-linked sodium polyacrylate aqueous solution prepared in Example 1, and the mixture was stirred in a dispaper. Subsequently, 0.18 g of 50% maleic acrylate copolymer aqueous solution was added and further stirred. Next, 5.88 g of Si particles (2.5 ⁇ m), 1.18 g of acetylene black (AB) and 1.18 g of vapor grown carbon fiber (VGCF) were added and stirred. Subsequently, this dispersion was performed with a fill mix to obtain a negative electrode slurry.
  • AB acetylene black
  • VGCF vapor grown carbon fiber
  • the obtained negative electrode slurry was applied to a current collector.
  • a current collector a copper foil having a thickness of 12 ⁇ m was used.
  • the negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.0 mg / cm 2 .
  • preliminary drying was performed at 80 ° C. for 30 minutes. This was pressed to a density of 1.0 g / cm 3 .
  • it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • a half coin cell was created and subjected to cycle evaluation.
  • Example 3 2.94 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million) was added to 94.84 g of water, and the mixture was stirred in a dispaper. Subsequently, 0.09 g of a 10-fold diluted aqueous solution of an aziridine compound (manufactured by Nippon Shokubai Co., Ltd., PZ-33) was added to the polymer solution, and the mixture was stirred for 20 minutes. Subsequently, 2.10 g of a 100-fold diluted aqueous solution of calcium chloride was added and further stirred. Thus, a 3% crosslinked sodium polyacrylate aqueous solution was prepared.
  • the obtained negative electrode slurry was applied to a current collector.
  • a current collector a copper foil having a thickness of 12 ⁇ m was used.
  • the negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.0 mg / cm 2 .
  • preliminary drying was performed at 80 ° C. for 30 minutes. This was pressed to a density of 1.0 g / cm 3 .
  • it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • Example 4 2.94 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million) was added to 94.32 g of water, and the mixture was stirred in a dispaper. Subsequently, 0.09 g of a 10-fold diluted aqueous solution of an aziridine compound (manufactured by Nippon Shokubai Co., Ltd., PZ-33) was added to the polymer solution, and the mixture was stirred for 20 minutes. Subsequently, 2.62 g of a 100-fold diluted aqueous solution of calcium chloride was added and further stirred. Thus, a 3% crosslinked sodium polyacrylate aqueous solution was prepared.
  • the obtained negative electrode slurry was applied to a current collector.
  • a current collector a copper foil having a thickness of 12 ⁇ m was used.
  • Negative electrode slurry so that the basis weight of 1.0 mg / cm 2, was applied by a doctor blade. Subsequently, preliminary drying was performed at 80 ° C. for 30 minutes. This was pressed to a density of 1.0 g / cm 3 . Finally, it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • Example 5 2.93 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million) was added to 93.81 g of water, and the mixture was stirred in a dispaper. Subsequently, 0.09 g of a 10-fold diluted aqueous solution of an aziridine compound (manufactured by Nippon Shokubai Co., Ltd., PZ-33) was added to the polymer solution, and the mixture was stirred for 20 minutes. Subsequently, 3.14 g of a 100-fold diluted aqueous solution of calcium chloride was added and further stirred. Thus, a 3% crosslinked sodium polyacrylate aqueous solution was prepared.
  • the obtained negative electrode slurry was applied to a current collector.
  • a current collector a copper foil having a thickness of 12 ⁇ m was used.
  • the negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.0 mg / cm 2 .
  • preliminary drying was performed at 80 ° C. for 30 minutes. This was pressed to a density of 1.0 g / cm 3 .
  • it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • Example 6 To 94.11 g of water, 4.93 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million) was added and stirred with a dispaper. Subsequently, 0.67 g of a 10-fold diluted aqueous solution of an aziridine compound (manufactured by Nippon Shokubai Co., Ltd., PZ-33) was added to the polymer solution and stirred for 20 minutes. Subsequently, 0.29 g of a 100-fold diluted aqueous solution of calcium chloride was added and further stirred. Thus, a 5% cross-linked sodium polyacrylate aqueous solution was prepared.
  • the negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.0 mg / cm 2 . Subsequently, preliminary drying was performed at 80 ° C. for 30 minutes. No press was performed. Finally, it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • Example 7 To 93.89 g of water, 4.93 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million) was added, and the mixture was stirred in a dispaper. Subsequently, 0.59 g of a 10-fold diluted aqueous solution of an aziridine compound (manufactured by Nippon Shokubai Co., Ltd., PZ-33) was added to the polymer solution and stirred for 20 minutes. Subsequently, 0.58 g of a 100-fold diluted aqueous solution of calcium chloride was added and further stirred. Thus, a 5% cross-linked sodium polyacrylate aqueous solution was prepared.
  • sodium polyacrylate manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million
  • the negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.0 mg / cm 2 . Subsequently, preliminary drying was performed at 80 ° C. for 30 minutes. No press was performed. Finally, it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • Example 8 4.93 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million) was added to 93.22 g of water, and the mixture was stirred in a dispaper. Subsequently, 0.37 g of a 10-fold diluted aqueous solution of an aziridine compound (manufactured by Nippon Shokubai Co., Ltd., PZ-33) was added to the polymer solution and stirred for 20 minutes. Subsequently, 1.48 g of a 100-fold diluted aqueous solution of calcium chloride was added and further stirred. Thus, a 5% cross-linked sodium polyacrylate aqueous solution was prepared.
  • the negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.0 mg / cm 2 . Subsequently, preliminary drying was performed at 80 ° C. for 30 minutes. No press was performed. Finally, it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • Example 9 To 92.55 g of water, 4.96 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million) was added and stirred with a dispaper. Subsequently, 0.15 g of a 10-fold diluted aqueous solution of an aziridine compound (manufactured by Nippon Shokubai Co., Ltd., PZ-33) was added to the polymer solution and stirred for 20 minutes. Subsequently, 2.34 g of a 100-fold diluted aqueous solution of calcium chloride was added and further stirred. Thus, a 5% cross-linked sodium polyacrylate aqueous solution was prepared.
  • sodium polyacrylate manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million
  • the negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.0 mg / cm 2 . Subsequently, preliminary drying was performed at 80 ° C. for 30 minutes. No press was performed. Finally, it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • Example 10 4.92 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million) was added to 92.32 g of water, and the mixture was stirred in a dispaper. Subsequently, 0.07 g of a 10-fold diluted aqueous solution of an aziridine compound (manufactured by Nippon Shokubai Co., Ltd., PZ-33) was added to the polymer solution, and the mixture was stirred for 20 minutes. Subsequently, 2.64 g of a 100-fold diluted aqueous solution of calcium chloride was added and further stirred. Thus, a 5% cross-linked sodium polyacrylate aqueous solution was prepared.
  • sodium polyacrylate manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million
  • the negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.0 mg / cm 2 . Subsequently, preliminary drying was performed at 80 ° C. for 30 minutes. No press was performed. Finally, it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • Example 11 To 92.55 g of water, 4.96 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd., molecular weight 5 million) was added and stirred with a dispaper. Subsequently, 0.15 g of a 10-fold diluted aqueous solution of an aziridine compound (manufactured by Nippon Shokubai Co., Ltd., PZ-33) was added to the polymer solution and stirred for 20 minutes. Subsequently, 2.34 g of a 100-fold diluted aqueous solution of calcium chloride was added and further stirred. Thus, a 5% cross-linked sodium polyacrylate aqueous solution was prepared.
  • the negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.0 mg / cm 2 . Subsequently, preliminary drying was performed at 80 ° C. for 30 minutes. Finally, it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • the obtained negative electrode slurry was applied to a current collector.
  • a current collector a copper foil having a thickness of 12 ⁇ m was used.
  • the negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.0 mg / cm 2 . Subsequently, preliminary drying was performed at 80 ° C. for 30 minutes. Finally, it was dried under reduced pressure at 105 ° C. for 5 hours. This obtained the electrode (negative electrode).
  • the discharge capacity maintenance ratio was calculated by (discharge capacity in a predetermined cycle) / (discharge capacity in the first cycle) ⁇ 100.
  • a 2032 type coin cell was used. The electrode was punched into a disk with a diameter of 15 mm, and the Li electrode was punched into a disk with a diameter of 18 mm for evaluation.
  • the coin cell was basically composed of an electrode, a Li electrode, and a separator (Asahi Kasei Corporation, Hypore ND525).
  • the electrolyte was a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) in a ratio of 3: 7 (wt / wt) to which LiPF 6 was added to 1 M, and fluoroethylene carbonate (FEC) 10 What added the mass% was used.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • FEC fluoroethylene carbonate
  • FIG. 4 is a cycle evaluation result of Examples 2 to 5 and is a graph showing the relationship between the amount of crosslinking of the binder and the life characteristics (the relationship between the ratio of reactive groups cross-linked with the binder and the life of the coin cell). It is a figure which shows the result evaluated.).
  • the retention rate (%) of the discharge capacity in each cycle was calculated as the life characteristic.
  • the amount of crosslinking of the binder of Example 2 is an amount corresponding to 0.9 mol% with respect to the total number of reactive groups that can be crosslinked by the binder.
  • the amount of crosslinking of the binder of Example 3 is an amount corresponding to 1.3 mol% with respect to the total number of reactive groups that can be crosslinked by the binder.
  • the amount of crosslinking of the binder of Example 4 is an amount corresponding to 1.6 mol% with respect to the total number of reactive groups that can be crosslinked by the binder.
  • the amount of crosslinking of the binder of Example 5 is an amount corresponding to 1.9 mol% with respect to the total number of reactive groups that can be crosslinked by the binder. All of Examples 2 to 5 showed a good maintenance rate, and showed a maintenance rate of 70% or more after 20 cycles. Moreover, the crosslinking effect was not acquired with the amount of crosslinking less than 0.01 mol%.
  • FIG. 5 is a graph showing the cycle evaluation results of Examples 6 to 10 and showing the relationship between the ratio of the reversible bond / irreversible bond in the binder and the life characteristics. Also here, the retention rate (%) of the discharge capacity in each cycle was calculated as the life characteristic.
  • the amount of crosslinking was fixed at 0.9 mol%, and the ratio of crosslinking between reversible bond and irreversible bond was examined.
  • Example 6 the total number of reactive groups of the main binder and auxiliary binder consumed by crosslinking by reversible bonding is 0.1 times the number of reactive groups of main binder consumed by crosslinking by irreversible bonding. That is, in Example 6, the number of reactive groups of the binder consumed by crosslinking by reversible bonding is 0.1 times the number of reactive groups of the binder consumed by crosslinking by irreversible bonding. In Example 7, the number of reactive groups of the binder consumed by crosslinking by reversible bonding is 0.3 times the number of reactive groups of the binder consumed by crosslinking by irreversible bonding.
  • Example 8 the number of reactive groups of the binder consumed by crosslinking by reversible bonding is one times the number of reactive groups of the binder consumed by crosslinking by irreversible bonding. In Example 9, the number of reactive groups of the binder consumed by crosslinking by reversible bonding is four times the number of reactive groups of the binder consumed by crosslinking by irreversible bonding. In Example 10, the number of reactive groups of the binder consumed by crosslinking by reversible bonding is 9 times the number of reactive groups of the binder consumed by crosslinking by irreversible bonding.
  • the discharge capacity retention rate was 80% or more after 15 cycles in all of Examples 6 to 10.
  • the amount of crosslinking is preferably 1 or more times as shown in Example 8, Example 9, and Example 10. That is, it is particularly desirable when the number of reactive groups of the binder consumed by crosslinking by reversible bonding is larger than the number of reactive groups of the binder consumed by crosslinking by irreversible bonding.
  • the maintenance rate of the discharge capacity was 85% or more, and it was found that the life characteristics were more excellent.
  • FIG. 6 is a graph showing the cycle evaluation results of Example 11 and Comparative Example 1, and is a graph showing the relationship between the presence / absence of reversible coupling in the binder and the capacity.
  • a capacity value (mAhg ⁇ 1 ) per 1 g of active material in each cycle was obtained as a life characteristic.
  • Example 11 the binder corresponding to Example 2 and Example 9 was used.
  • Example 11 and Comparative Example 1 nanosilicon was used as the negative electrode active material.
  • nano-silicon By using nano-silicon, it is easy to reflect the effect of the binder by suppressing elements due to deterioration of the active material in the life test.
  • FIG. 6 the reversible bond and the irreversible bond in Example 11 can obtain a stable capacity over 150 cycles.
  • the negative electrode for a non-aqueous electrolyte secondary battery, the binder for the negative electrode of the non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery according to the present invention are an electric power source for various portable electronic devices and an electric power that requires high energy density. It is used for an electrode of a storage battery for driving such as an automobile, a power storage device for various types of energy such as solar energy and wind power generation, or a storage power source for household appliances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

寿命特性に優れた非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池を提供する。本実施形態に係る非水電解質二次電池(100)用の負極(10)は、集電体(1)と、集電体(1)上に形成され、活物質とバインダとを有する合剤層(3)と、を備える。そして、バインダには、不可逆結合による架橋と可逆結合による架橋とが混在した分子鎖間ネットワークが形成されている。例えば、バインダに架橋処理を加える。このとき、可逆結合と不可逆結合の架橋を行うことで、架橋ムラを抑制し、バインダへの負荷の局所集中を抑える。

Description

非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池
 本発明は、非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池に関するものである。
 近年、石油使用量や温室効果ガス削減、エネルギー基盤の更なる多様化や効率化を目指し、繰り返し充放電可能な二次電池として、非水電解質二次電池(例えば、Liイオン二次電池)に注目が集まっている。Liイオン二次電池は、特に、電気自動車やハイブリッド電気自動車、燃料電池車への用途展開が見込まれている。電気自動車においては、航続距離の向上が要求されることから、今後、Liイオン二次電池の高エネルギー密度化が一層要求されていくことになる。
 現状のLiイオン二次電池の負極に注目すると、黒鉛電極が一般に用いられている。黒鉛の理論容量は、活物質1gあたり372mAh(すなわち、372mAhg(活物質)-1)である。これに対し、黒鉛を上回る容量を示す活物質として、SiやSnが近年注目されている。Siの理論容量は、4200mAhg(活物質)-1であり、Snは、990mAhg(活物質)-1である。しかしながら、Siは、黒鉛の約11倍の容量を持っているために、Li吸蔵や放出に伴う体積変化も大きくなる。例えば、黒鉛と比べて、SiはLi吸蔵により体積は約4倍増加する。黒鉛と比べて、大容量を有する活物質(Si、Sn)を用いた電極は、充放電に伴う大きな体積変化から、電極の導電パスの切断や微粉化に伴う電極からの脱離、集電体と合剤層の剥離等の恐れがある。このことは、Liイオン二次電池の寿命特性を低下させる要因となる可能性がある。
 これに対し、近年、種々の高分子バインダを適用することにより、電極構造の維持と寿命特性の改善が報告されている。例えば、高分子バインダとして、カルボキシメチルセルロースやポリアミドイミド、ポリアクリル酸、アルギン酸ナトリウムが挙げられる。これらは、従来からバインダとして用いられているポリビニリデンフロライドよりも硬いバインダである。
 バインダの機械特性を改善するために、特許文献1では、ポリアクリル酸を架橋したものを用いている。架橋したポリアクリル酸は、無架橋のポリアクリル酸に比べ、電極構造が破壊され難くなり、寿命特性が改善されることが報告されている。一方、非特許文献1に示されるように、金属イオンによる架橋アルギン酸ナトリウムについても、寿命特性が改善することが報告されている。
特開2007-157709号公報
Chem.Commun.,2014,50,6386-6389.
 ところで、本発明者は、架橋効果について鋭意検討したところ、架橋剤を用いた共有結合による架橋は、機械強度が高くなるが、結合にムラが多く、局所的な応力集中によって、破断されてしまい、寿命特性を十分に改善することが難しいという結論に至った。一方、金属イオン結合は、可逆的な結合であることから、結合の均一性は高いものの、共有結合に比べ、機械強度は低く、十分な寿命特性の改善を為すことが難しいという結論に至った。
 そこで、本発明は、上記のような点に着目したものであって、寿命特性に優れた非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池を提供することを目的とする。
 本発明者は、化学結合による架橋の効果を十分に生かすために、架橋のムラによる局所的な応力集中を抑制すべく、例えば金属イオン結合等の可逆的な結合(可逆結合)と、例えば共有結合等の不可逆的な結合(不可逆結合)とを組み合わせた負極用バインダを開発するに至った。
 すなわち、本発明の一態様に係る非水電解質二次電池用の負極は、集電体と、前記集電体上に形成され、活物質とバインダとを有する合剤層と、を備え、前記バインダには、不可逆結合による架橋と可逆結合による架橋とが混在した分子鎖間ネットワークが形成されていることを特徴とする。
 また、本発明の一態様に係る非水電解質二次電池の負極用バインダは、集電体と、前記集電体上に形成される合剤層とを備える非水電解質二次電池の、前記合剤層に含まれるバインダであって、不可逆結合による架橋と可逆結合による架橋とが混在した分子鎖間ネットワークが形成されていることを特徴とする。
 また、本発明の一態様に係る非水電解質二次電池は、上記の非水電解質二次電池用の負極と、正極と、前記負極と前記正極との間に配置された非水電解質と、を備えることを特徴とする。
 本発明の一態様によれば、寿命特性に優れた(例えば、サイクル特性を向上させうる)非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池を提供することができる。
本発明の実施形態に係る非水電解質二次電池用の負極10の構成例を模式的に示す断面図である。 本発明の実施形態に係る非水電解質二次電池100の構成例を模式的に示す断面図である。 実施例1で作製したバインダの引張試験結果を示す図である。 実施例2~5のサイクル評価結果であり、バインダの架橋量と寿命特性との関係を示すグラフである。 実施例6~10のサイクル評価結果であり、バインダにおける可逆結合/不可逆結合の割合と、寿命特性との関係を示すグラフである。 実施例11、比較例1のサイクル評価結果であり、バインダにおける可逆結合の有無と、容量との関係を示すグラフである。
 以下、本発明の実施形態について図面を参照して説明する。
 ただし、以下に説明する各図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適宜省略する。また、本発明の実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、各部の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
(非水電解質二次電池用の負極)
 図1は、本発明の実施形態に係る非水電解質二次電池用の負極10の構成例を模式的に示す断面図である。図1に示すように、この非水電解質二次電池用の負極10は、集電体1と、集電体1上に形成された合剤層3とを有する。すなわち、負極10は、集電体1上に、合剤層3が積層された構造である。
 集電体1は、良導電性の材質が好ましく、例えば、金、銀、銅、ニッケル、ステンレス、チタン、白金等の金属箔単体若しくはこれら金属を2種以上含む合金から構成される。
 合剤層3は、例えば、バインダと、活物質と、導電助剤とを有する。また、本実施形態において、バインダは、不可逆結合による架橋と可逆結合による架橋とが混在して該バインダ内に分子鎖間ネットワークを形成している。ここで、上記可逆結合は、2価以上の金属カチオンによるイオン結合を含むものであってもよい。
(1)バインダ
 合剤層3が有するバインダは、エチレン性不飽和カルボン酸化合物からなる高分子を含んでいればよく、例えば、分子量100万以上500万以下(高分子量)のエチレン性不飽和カルボン酸化合物からなる高分子と、分子量1000以上1万以下(前述の高分子に比べて低分子量)であり、柔軟性を有するモノマーとエチレン性不飽和カルボン酸化合物との共重合体と、を含む。
 例えば、上記のバインダは、主バインダと補助バインダとを含む。主バインダは、分子量100万以上500万以下のエチレン性不飽和カルボン酸化合物からなる。補助バインダは、柔軟性を有するモノマーとエチレン性不飽和カルボン酸化合物との共重合体からなる。この共重合体の分子量は1000以上1万以下である。ここで、主バインダと補助バインダとは、一部が2価以上の金属カチオンによる塩となっていてもよい。また、主バインダは、共有結合と金属イオン結合による架橋を有し、補助バインダは、共有結合を含まず、金属イオン結合を含んでいても良い。つまり、主バインダには不可逆結合による架橋が存在し、補助バインダには不可逆結合による架橋が存在しなくてもよい。さらに、主バインダと補助バインダの金属イオンによるイオン結合は、カルシウムイオンによってなされていてもよい。
 このように、本実施形態では、主バインダとして、分子量100万以上500万以下のエチレン性不飽和カルボン酸化合物(つまり、高分子量のバインダ)を有する。このため、合剤層3全体の機械強度を向上でき、合剤層3でのクラック発生を抑制できる。また、主バインダに架橋処理を施すため、合剤層3のクラック発生を抑制できる高い効果を得る。その結果、導電パスの切断を抑制でき、寿命特性を良好なものにすることができる。
 また、本実施形態では、補助バインダとして、分子量1000以上1万以下であり、柔軟性を有するモノマーとエチレン性不飽和カルボン酸化合物との共重合体(つまり、低分子量のバインダ)を有する。このため、活物質表面へ付着しやすく、活物質と電解液の接触を抑制するとともに、活物質の体積変化にも安定な膜を付与できる。この膜は、SEI(Solid Electrolyte Interphase)としての作用が期待できる。その結果、繰り返し充放電での継続的なSEIの破壊と生成を抑制し、寿命特性を向上することができる。
 また、主バインダに用いられる、エチレン性不飽和カルボン酸化合物からなる高分子としては、例えば、ポリアクリル酸、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、アクリル酸酢酸ビニル重合体等のナトリウム塩、リチウム塩、カリウム塩、マグネシウム塩、カルシウム塩、アンモニウム塩等が望ましい。そのなかでも特に、後述するように寿命特性を向上させる点で、ポリアクリル酸ナトリウムが望ましい。
 また、補助バインダに用いられる、柔軟性を有するモノマーとエチレン性不飽和カルボン酸化合物との共重合体としては、例えば、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、アクリル酸オレフィン共重合体等が望ましい。そのなかでも特に、アクリル酸マレイン酸共重合体が望ましい。なお、補助バインダは、マレイン酸部位を含んだ共重合体であり、そのマレイン酸部位の一部が、隣り合うカルボキシル基と分子内酸無水化処理されたものであってもよい。
 さらに、補助バインダの割合は、バインダ(主バインダと補助バインダ)の全重量に対し、0.1質量%以上50質量%以下である。
 また、主バインダの共有結合による架橋処理は、架橋剤を用いて行われる。架橋剤としては、例えば、カルボン酸と反応して架橋形成するものを使用できる。
 なお、主バインダと補助バインダとを含むバインダでは、可逆結合及び不可逆結合による架橋可能な反応基の総和に対し、0.01mol%以上2.0mol%以下に相当する反応基が架橋に関与してもよい。また、主バインダ及び補助バインダの可逆結合による架橋に関与した反応基数の総数は、主バインダの不可逆結合による架橋に関与した反応基数の1倍以上9倍以下であってもよい。
 合剤層3は、例えば集電体1上に負極スラリを塗布して形成される。負極スラリは、高分子水溶液に架橋剤を滴下し、共有結合による架橋反応を完了させ、続いて、カルシウム塩による金属イオン結合による架橋処理を行い、その後、補助バインダを加え、最後に、導電助剤や活物質を混合して作成する。
 架橋剤としては、カルボン酸基と反応して架橋形成する架橋剤であれば、特に制限はない。本実施形態における架橋剤としては、例えば、公知の架橋剤を使用すれば、室温下、数分で架橋反応を完了できる、カルボジイミド系化合物やアジリジン系化合物を使用することが望ましい。そのなかでも特に、アジリジン系化合物が望ましい。また、主バインダは、モノマー重合の段階から、多官能性モノマーを少量加えて、合成した高分子であっても良い。
(2)活物質
 本実施形態の活物質としては、Liを可逆的に吸蔵及び放出できるものであれば、特に制限がなく、公知の活物質も使用できるがLiと合金化する材料を使用することが望ましい。特に、活物質に使用される材料が、黒鉛よりも容量が大きい材料であれば、本実施形態の効果が顕著に得られる。
 Liと合金化する材料としては、例えば、Si、Ge、Sn、Pb、Al、Ag、Zn、Hg、及びAuからなる群から選択された1つ以上の合金を使用できる。好ましくは、SiOxであり、より好ましくは、xは0以上1.5以下であることが好ましい。xが1.5より大きい場合、十分なLiの吸蔵及び放出量を確保することができない。また、このような活物質のみならず、黒鉛も活物質として加えてもよい。
(3)導電助剤
 導電助剤としては、例えば、カーボンブラックや天然黒鉛、人造黒鉛、さらには、酸化チタンや酸化ルテニウム等の金属酸化物、金属ファイバー等を使用できる。そのなかでもストラクチャー構造を呈するカーボンブラックが好ましく、特にその一種であるファーネスブラックやケッチェンブラック、アセチレンブラック(AB)が望ましい。なお、カーボンブラックと、その他の導電剤、例えば、気相成長炭素繊維(VGCF)との混合系も好ましい。
(非水電解質二次電池)
 図2は、本発明の実施形態に係る非水電解質二次電池100の構成例を模式的に示す断面図である。図2に示すように、この非水電解質二次電池100は、負極10と、正極30と、負極10と正極30との間に充填された非水電解質20と、を備える。また、非水電解質20が液体電解質(すなわち、電解液)の場合、負極10と正極30との間にはセパレータが介在していてもよい。
 非水電解質二次電池に用いる電解液の溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート等の低粘度の鎖状炭酸エステル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の高誘電率の環状炭酸エステル、γ‐ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、メチルアセテート、メチルプロピオネート、ビニレンカーボネート、ジメチルホルムアミド、スルホラン、及びこれらの混合溶媒等を挙げることができる。
 電解液に含まれる電解質としては、特に制限がなく、公知のものも使用できる。本実施形態における電解質としては、例えば、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiN(CFSO、LiI、LiAlCl等及びそれらの混合物等を使用できる。好ましくは、LiBF、LiPFのうちの1種または2種以上を混合したリチウム塩である。
(本実施形態の効果)
 本実施形態によれば、バインダは、高い機械強度を有する。例えば、主バインダは合剤層の破壊を抑制する。さらに、体積変化の大きい活物質表面を覆う補助バインダは、活物質表面に安定な皮膜を形成することができるので、繰り返し充放電に伴う継続的なSEI生成を抑制することが可能である。
 より詳細に説明すると、本実施形態は以下の効果を奏する。
(1)本実施形態に係る非水電解質二次電池用の負極10は、集電体1と、集電体1上に形成された合剤層3とを備える。そして、合剤層3におけるバインダは、不可逆結合と可逆結合とが混在して該バインダ内に分子鎖間ネットワークを形成している。例えば、バインダは架橋処理がなされており、バインダを構成する少なくとも一つの高分子は、不可逆結合と可逆結合のいずれも含む架橋処理がなされている。このような構成によれば、バインダの機械強度が増し、繰り返しの充放電に伴う合剤層3の破壊を抑制できる。これにより、寿命特性に優れた非水電解質二次電池用の負極10を提供することができる。
(2)また、上記の負極10において、バインダを構成する高分子は、エチレン性不飽和カルボン酸化合物からなる高分子である。このような構成によれば、不可逆結合と可逆結合による架橋処理において、カルボン酸基を結合サイトとして用いることができる。
(3)また、上記の負極10において、バインダは、主バインダと補助バインダとを有する。主バインダは、分子量100万以上500万以下のエチレン性不飽和カルボン酸からなる高分子からなる。補助バインダは、分子量1000以上1万以下の、柔軟性を有するモノマーとエチレン性不飽和カルボン酸化合物との共重合体からなる。
 このような構成によれば、主バインダにより、合剤層3の形状を保持することができる。また、補助バインダにより、繰り返し充放電に伴う継続的なSEIの破壊と生成を抑制することができる。
(4)また、上記の負極10において、バインダを構成する高分子の可逆結合による架橋処理には、2価以上の金属カチオン(例えば、カルシウムイオン)が用いられている。このような構成によれば、架橋処理をより適切に行うことができる。
(5)また、上記の負極10において、バインダを構成する主バインダは、不可逆結合による架橋処理がなされ、補助バインダは、不可逆結合による架橋処理がなされていない。すなわち、主バインダには不可逆結合による架橋と可逆結合による架橋とが混在し、補助バインダは不可逆結合による架橋を含まない。このような構成によれば、合剤層の形状保持のための高い破断強度を有する主バインダと、活物質の体積変化に追随しやすい伸びの高い補助バインダを実現することができる。
(6)また、上記の負極10において、補助バインダは、マレイン酸部位を含んだ共重合体である。このような構成によれば、負極作製工程の中で、マレイン酸部位は脱水縮合されて環を生成する。すなわち、マレイン酸部位の一部が、隣り合うカルボキシル基と分子内酸無水化処理されて環状の炭化水素部位を生成する。この炭化水素部位は、カルボン酸基を含まないので、柔軟性を付与することができる。
(7)また、上記の負極10において、バインダを構成する主バインダの不可逆結合による架橋処理密度は、主バインダの架橋結合できる反応基の全数に対し、0.01mol%~3.0mol%に相当する反応基が架橋に関与する密度である。このような構成によれば、バインダをより適切に形成できる。
(8)また、上記の負極10において、主バインダ及び補助バインダの可逆結合による架橋に関与した各反応基数の総数は、主バインダの不可逆結合による架橋に関与した反応基数の1倍以上9倍以下である。このような構成によれば、バインダをより適切に形成できる。
(9)また、上記の負極10において、バインダを構成する主バインダの不可逆結合による架橋剤は、アジリジン系化合物である。このような構成によれば、主バインダのカルボキシル基と架橋剤のアジリジン基とが反応して、不可逆な結合を、主バインダに与えることができる。
(10)また、上記の負極10において、主バインダと補助バインダは、一部が2価以上の金属カチオンによる塩となっている。例えば、主バインダと補助バインダに与えられる可逆結合による架橋剤は、カルシウム塩である。このような構成によれば、主バインダと補助バインダのカルボキシル基とカルシウムイオンが金属イオン結合を形成し、主バインダと補助バインダに可逆な結合を与えることができる。
(11)また、上記の負極10において、活物質は、ナノシリコンである。このような構成によれば、活物質の劣化が抑制され、負極のサイクル特性を向上させることができる。
 以下、本発明を実施例によりさらに詳しく説明するが本発明は、実施例により何ら限定されるものではない。
(実施例1)
 水92.54gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)4.96gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.15gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液2.34gを加えてさらに攪拌した。以上により、5%架橋ポリアクリル酸ナトリウム水溶液を作製した。
 作製した5%架橋ポリアクリル酸ナトリウム水溶液を0.5%まで水で希釈し、シャーレに移し、40℃で乾燥した。得られたフィルムを20×50mm角に切り取った。さらに、105℃減圧乾燥を5時間行った。23.3℃および46%の湿度に調整された調湿ブースに3日間保管した。以上により、引張試験用サンプルとしてのバインダを得た。後述するように、このバインダについて引張試験を行った。
(引張試験とその結果)
 本発明者は、実施例1で得られたバインダについて、引張試験を実施した。
 図3(a)は、実施例1で作製したバインダの引張試験結果を示すグラフである。また、図3(b)は、この引張試験により破断した後のバインダを示す写真図である。
 図3(a)に示すように、実施例1では、不可逆結合による架橋に、可逆結合による架橋を加えたことで、伸びが1000%を示した。これは、架橋ムラを抑制していることを示し、バインダ中の局所的な負荷の集中を抑制し、破断しにくいバインダを作製できたことによる。さらに、不可逆結合による架橋も備えることから、図3(b)に示すように、引張試験後のサンプルは、破断前とほぼ同じ形状及び寸法に復帰することができた。
(実施例2)
 実施例1で作製した5%架橋ポリアクリル酸ナトリウム水溶液33.53gに水8.06gを加えてディスパにて攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.18gを加えてさらに攪拌した。次に、Si粒子(2.5μm)5.88gとアセチレンブラック(AB)1.18gと気相成長炭素繊維(VGCF)1.18gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。これを密度が1.0g/cmになるようプレスした。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。得られた電極を用いて、ハーフコインセルを作成してサイクル評価を行った。
(実施例3)
 水94.84gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)2.97gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.09gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液2.10gを加えてさらに攪拌した。以上により、3%架橋ポリアクリル酸ナトリウム水溶液を作製した。
 作製した3%架橋ポリアクリル酸ナトリウム水溶液41.91gに水1.78gを加えてディスパにて攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.13gを加えてさらに攪拌した。次に、Si粒子(2.5μm)4.41gとアセチレンブラック(AB)0.88gと気相成長炭素繊維(VGCF)0.88gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。これを密度が1.0g/cmになるようプレスした。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。
(実施例4)
 水94.32gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)2.96gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.09gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液2.62gを加えてさらに攪拌した。以上により、3%架橋ポリアクリル酸ナトリウム水溶液を作製した。
 作製した3%架橋ポリアクリル酸ナトリウム水溶液41.91gに水1.78gを加えてディスパにて攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.13gを加えてさらに攪拌した。次に、Si粒子(2.5μm)4.41gとアセチレンブラック(AB)0.88gと気相成長炭素繊維(VGCF)0.88gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。これを密度が1.0g/cmになるようプレスした。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。
(実施例5)
 水93.81gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)2.96gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.09gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液3.14gを加えてさらに攪拌した。以上により、3%架橋ポリアクリル酸ナトリウム水溶液を作製した。
 作製した3%架橋ポリアクリル酸ナトリウム水溶液41.91gに水1.78gを加えてディスパにて攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.13gを加えてさらに攪拌した。次に、Si粒子(2.5μm)4.41gとアセチレンブラック(AB)0.88gと気相成長炭素繊維(VGCF)0.88gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。これを密度が1.0g/cmになるようプレスした。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。
(実施例6)
 水94.11gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)4.93gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.67gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液0.29gを加えてさらに攪拌した。以上により、5%架橋ポリアクリル酸ナトリウム水溶液を作製した。
 作製した5%架橋ポリアクリル酸ナトリウム水溶液33.53gに水8.06gを加えてディスパにて攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.18gを加えてさらに攪拌した。次に、Si粒子(2.5μm)5.88gとアセチレンブラック(AB)1.18gと気相成長炭素繊維(VGCF)1.18gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。プレスは行わなかった。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。
(実施例7)
 水93.89gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)4.93gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.59gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液0.58gを加えてさらに攪拌した。以上により、5%架橋ポリアクリル酸ナトリウム水溶液を作製した。
 作製した5%架橋ポリアクリル酸ナトリウム水溶液33.53gに水8.06gを加えてディスパにて攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.18gを加えてさらに攪拌した。次に、Si粒子(2.5μm)5.88gとアセチレンブラック(AB)1.18gと気相成長炭素繊維(VGCF)1.18gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。プレスは行わなかった。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。
(実施例8)
 水93.22gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)4.95gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.37gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液1.48gを加えてさらに攪拌した。以上により、5%架橋ポリアクリル酸ナトリウム水溶液を作製した。
 作製した5%架橋ポリアクリル酸ナトリウム水溶液33.53gに水8.06gを加えてディスパにて攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.18gを加えてさらに攪拌した。次に、Si粒子(2.5μm)5.88gとアセチレンブラック(AB)1.18gと気相成長炭素繊維(VGCF)1.18gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。プレスは行わなかった。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。
(実施例9)
 水92.55gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)4.96gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.15gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液2.34gを加えてさらに攪拌した。以上により、5%架橋ポリアクリル酸ナトリウム水溶液を作製した。
 作製した5%架橋ポリアクリル酸ナトリウム水溶液33.53gに水8.06gを加えてディスパにて攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.18gを加えてさらに攪拌した。次に、Si粒子(2.5μm)5.88gとアセチレンブラック(AB)1.18gと気相成長炭素繊維(VGCF)1.18gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。プレスは行わなかった。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。
(実施例10)
 水92.32gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)4.97gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.07gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液2.64gを加えてさらに攪拌した。以上により、5%架橋ポリアクリル酸ナトリウム水溶液を作製した。
 作製した5%架橋ポリアクリル酸ナトリウム水溶液33.53gに水8.06gを加えてディスパにて攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.18gを加えてさらに攪拌した。次に、Si粒子(2.5μm)5.88gとアセチレンブラック(AB)1.18gと気相成長炭素繊維(VGCF)1.18gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。プレスは行わなかった。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。
(実施例11)
 水92.55gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)4.96gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.15gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液2.34gを加えてさらに攪拌した。以上により、5%架橋ポリアクリル酸ナトリウム水溶液を作製した。
 作製した5%架橋ポリアクリル酸ナトリウム水溶液33.53gに水8.06gを加えてディスパにて攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.18gを加えてさらに攪拌した。次に、Si粒子(100nm)5.88gとアセチレンブラック(AB)1.18gと気相成長炭素繊維(VGCF)1.18gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。
(比較例1)
 水24.00gに、ポリアクリル酸ナトリウム(日本触媒社製)1.00gを加え、ディスパで攪拌した。続いて、この高分子溶液に、アジリジン系化合物(PZ-33)の10%水溶液0.10gを加えて、室温下、20分間攪拌した。続いて、50%アクリル酸マレイン酸共重合体水溶液0.11gを加えて攪拌した。次に、Si粒子(100nm)3.53gとアセチレンブラック(AB)0.71gと気相成長炭素繊維(VGCF)0.71gを加えて攪拌した。続いて、フィルミックスで本分散し、負極スラリを得た。
 得られた負極スラリを集電体に塗布した。集電体としては、厚さ12μmの銅箔を使用した。負極スラリは、1.0mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間予備乾燥した。最後に、105℃で5時間減圧乾燥を行った。これにより、電極(負極)を得た。
(充放電評価とその結果)
(1)コインセルの作製
 本発明者は、実施例2~11、比較例1で得られた電極を用いて、コインセルを作成して繰り返しの充放電評価(すなわち、サイクル評価)を行った。
 具体的には、実施例2~11、比較例1で得られた電極(負極)と、Li極(正極)とを用いて、コインセルを作成した。そして、このコインセルについて、充電1600mA/g、放電1600mA/gで、0.01V~1.0Vの電圧範囲で充放電を繰り返し、サイクル評価を行った。
 放電容量の維持率は、(所定のサイクルでの放電容量)/(1サイクル目での放電容量)×100で算出した。コインセルは2032型を使用した。電極は、直径15mmの円板に打ち抜き、Li極は、直径18mmの円板に打ち抜いて、評価を行なった。コインセルは、電極及びLi極、セパレータ(旭化成社、ハイポア ND525)を基本構成とした。電解液は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とが3:7(wt/wt)の混合溶液に、LiPFを1Mとなるように加えたものに、フルオロエチレンカーボネート(FEC)10質量%加えたものを使用した。
(2)架橋量と寿命特性との関係について
 本発明者は、実施例2~5で得られたコインセルを用いてサイクル評価を行い、バインダの架橋量と、寿命特性との関係を調査した。
 図4は、実施例2~5のサイクル評価結果であり、バインダの架橋量と寿命特性との関係を示すグラフである(バインダの架橋結合した反応基の割合と、コインセルの寿命との関係を評価した結果を示す図である。)。ここでは、寿命特性として、各サイクルでの放電容量の維持率(%)を算出した。
 実施例2のバインダの架橋量は、バインダの架橋結合できる反応基の全数に対し、0.9mol%に相当する量である。実施例3のバインダの架橋量は、バインダの架橋結合できる反応基の全数に対し、1.3mol%に相当する量である。実施例4のバインダの架橋量は、バインダの架橋結合できる反応基の全数に対し、1.6mol%に相当する量である。実施例5のバインダの架橋量は、バインダの架橋結合できる反応基の全数に対し、1.9mol%に相当する量である。実施例2~5のいずれも良好な維持率を示し、20サイクル後で70%以上の維持率を示した。また、0.01mol%より少ない架橋量であると架橋効果は得られなかった。
(3)可逆結合/不可逆結合の割合と、寿命特性との関係について
 本発明者は、実施例6~10で得られたコインセルを用いてサイクル評価を行い、バインダにおける可逆結合/不可逆結合の割合と、寿命特性との関係を調査した。
 図5は、実施例6~10のサイクル評価結果であり、バインダにおける可逆結合/不可逆結合の割合と、寿命特性との関係を示すグラフである。ここでも、寿命特性として、各サイクルでの放電容量の維持率(%)を算出した。実施例6~10を用いた評価では、架橋量を0.9mol%に固定し、可逆結合と不可逆結合の架橋の比を検討した。
 実施例6では、可逆結合による架橋で消費される主バインダ及び補助バインダの各反応基数の総和は、不可逆結合による架橋で消費される主バインダの反応基数の0.1倍である。つまり、実施例6では、可逆結合による架橋で消費されるバインダの反応基数は、不可逆結合による架橋で消費されるバインダの反応基数の0.1倍である。
 実施例7では、可逆結合による架橋で消費されるバインダの反応基数は、不可逆結合による架橋で消費されるバインダの反応基数の0.3倍である。実施例8では、可逆結合による架橋で消費されるバインダの反応基数は、不可逆結合による架橋で消費されるバインダの反応基数の1倍である。実施例9では、可逆結合による架橋で消費されるバインダの反応基数は、不可逆結合による架橋で消費されるバインダの反応基数の4倍である。実施例10では、可逆結合による架橋で消費されるバインダの反応基数は、不可逆結合による架橋で消費されるバインダの反応基数の9倍である。
 放電容量の維持率は、実施例6~10のいずれも15サイクル後に80%以上の維持率を示した。特に、望ましくは、実施例8および実施例9、実施例10に示す1倍以上の架橋量である。つまり、可逆結合による架橋で消費されるバインダの反応基数が、不可逆結合による架橋で消費されるバインダの反応基数よりも多いときが、特に望ましい。このとき、放電容量の維持率は85%以上となり、寿命特性がより優れることがわかった。
(4)ナノシリコンの有無と寿命との関係について
 本発明者は、実施例11、比較例1で得られたコインセルを用いてサイクル評価を行い、可逆結合による架橋の有無と、寿命特性との関係を調査した。
 図6は、実施例11、比較例1のサイクル評価結果であり、バインダにおける可逆結合の有無と、容量との関係を示すグラフである。ここでは、寿命特性として、各サイクルでの、活物質1gあたりの容量値(mAhg-1)を求めた。
 なお、実施例11では、実施例2と実施例9に相当するバインダを用いた。また、実施例11、比較例1では、負極の活物質にそれぞれナノシリコンを用いた。ナノシリコンを用いることで、寿命試験における活物質の劣化による要素を抑え、バインダの効果を反映しやすい結果になる。
 図6に示すように、実施例11の可逆結合と不可逆結合による架橋は、150サイクルにわたり、安定な容量を得ることができる。一方で、比較例1の不可逆結合のみの架橋は、徐々に容量が低下した。これは、バインダの安定性の差である。
(付記)
 以上、本発明について実施形態及び実施例を用いて説明したが、本発明の技術的範囲は上記実施形態及び実施例に記載の範囲には限定されない。上記実施形態に多様な変更または改良を加えることが可能であり、また、上記実施形態及び実施例を任意に組み合わせてもよい。その様な変更等が加えられた態様も本発明の技術的範囲に含まれ得る。
 本発明に係る非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池は、各種携帯用電子機器の電源、また、高エネルギー密度が求められる電気自動車等の駆動用蓄電池、さらに、ソーラーエネルギーや風力発電等の各種エネルギーの蓄電装置、あるいは家庭用電気器具の蓄電源等の電極に用いられる。
1 集電体
3 合剤層
10 負極(非水電解質二次電池用の負極)
20 非水電解質
30 正極
100 非水電解質二次電池

Claims (14)

  1.  集電体と、
     前記集電体上に形成され、活物質とバインダとを有する合剤層と、を備え、
     前記バインダには、不可逆結合による架橋と可逆結合による架橋とが混在した分子鎖間ネットワークが形成されていることを特徴とする非水電解質二次電池用の負極。
  2.  請求項1において、
     前記バインダは、エチレン性不飽和カルボン酸化合物からなる高分子を含み、
     前記可逆結合は、2価以上の金属カチオンによるイオン結合を含むことを特徴とする非水電解質二次電池用の負極。
  3.  請求項1又は2において、
     前記バインダでは、架橋可能な反応基の全数に対し、0.01mol%以上2.0mol%以下に相当する反応基が架橋に関与することを特徴とする非水電解質二次電池用の負極。
  4.  請求項1~3の何れか一項において、
     前記バインダは、一部が2価以上の金属カチオンによる塩となっていることを特徴とする非水電解質二次電池用の負極。
  5.  請求項1~4の何れか一項において、
     前記バインダは、主バインダと補助バインダとを含み、
     前記主バインダは、分子量100万以上500万以下のエチレン性不飽和カルボン酸化合物からなり、
     前記補助バインダは、分子量1000以上1万以下であり、柔軟性を有するモノマーとエチレン性不飽和カルボン酸化合物との共重合体からなることを特徴とする非水電解質二次電池用の負極。
  6.  請求項5において、
     前記主バインダは、不可逆結合による架橋と可逆結合による架橋とが混在し、
     前記補助バインダは、不可逆結合による架橋を含まないことを特徴とする非水電解質二次電池用の負極。
  7.  請求項5又は6において、
     前記主バインダの不可逆結合による架橋密度は、前記主バインダのカルボン酸基数に対し、0.01mol%以上3.0mol%以下に相当する基が架橋に関与することを特徴とする非水電解質二次電池用の負極。
  8.  請求項5~7の何れか一項において、
     前記主バインダと前記補助バインダに与えられる可逆結合の架橋量の総和は、前記主バインダの不可逆結合による架橋に関与した反応基数の1倍以上9倍以下であることを特徴とする非水電解質二次電池用の負極。
  9.  請求項5~8の何れか一項において、
     前記主バインダと前記補助バインダに与えられる可逆結合が、カルシウムイオンによる金属イオン結合であることを特徴とする非水電解質二次電池用の負極。
  10.  請求項5~9の何れか一項において、
     前記主バインダに与えられる不可逆結合は、架橋剤として、アジリジン系化合物が用いられることを特徴とする非水電解質二次電池用の負極。
  11.  請求項5~10の何れか一項において、
     前記補助バインダは、マレイン酸部位を含んだ共重合体であり、
     前記マレイン酸部位の一部が、隣り合うカルボキシル基と分子内酸無水化処理されていることを特徴とする非水電解質二次電池用の負極。
  12.  請求項1~11の何れか一項において、
     前記活物質は、ナノシリコンであることを特徴とする非水電解質二次電池用の負極。
  13.  集電体と、前記集電体上に形成される合剤層とを備える非水電解質二次電池の、前記合剤層に含まれるバインダであって、
     不可逆結合による架橋と可逆結合による架橋とが混在した分子鎖間ネットワークが形成されていることを特徴とする非水電解質二次電池の負極用バインダ。
  14.  請求項1~12の何れか一項に記載の非水電解質二次電池用の負極と、
     正極と、
     前記負極と前記正極との間に配置された非水電解質と、を備えることを特徴とする非水電解質二次電池。
PCT/JP2017/015336 2016-04-28 2017-04-14 非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池 WO2017188032A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17789317.9A EP3451420B1 (en) 2016-04-28 2017-04-14 Nonaqueous electrolyte secondary battery negative electrode, binder for nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery
CN201780025542.6A CN109075318B (zh) 2016-04-28 2017-04-14 非水电解质二次电池用负极、非水电解质二次电池负极用粘合剂以及非水电解质二次电池
JP2018514503A JP6973382B2 (ja) 2016-04-28 2017-04-14 非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池
US16/168,955 US11101464B2 (en) 2016-04-28 2018-10-24 Nonaqueous electrolyte secondary battery negative electrode, binder for nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016091979 2016-04-28
JP2016-091979 2016-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/168,955 Continuation US11101464B2 (en) 2016-04-28 2018-10-24 Nonaqueous electrolyte secondary battery negative electrode, binder for nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2017188032A1 true WO2017188032A1 (ja) 2017-11-02

Family

ID=60160365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015336 WO2017188032A1 (ja) 2016-04-28 2017-04-14 非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池

Country Status (5)

Country Link
US (1) US11101464B2 (ja)
EP (1) EP3451420B1 (ja)
JP (1) JP6973382B2 (ja)
CN (1) CN109075318B (ja)
WO (1) WO2017188032A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106935A (ja) * 2016-12-27 2018-07-05 凸版印刷株式会社 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池
WO2020026420A1 (ja) * 2018-08-02 2020-02-06 凸版印刷株式会社 非水電解質二次電池用負極バインダ、非水電解質二次電池用負極、非水電解質二次電池
CN116111275A (zh) * 2023-01-11 2023-05-12 河北光兴半导体技术有限公司 复合隔膜及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500228B (zh) * 2020-01-21 2021-03-16 四川茵地乐科技有限公司 电池用粘合剂、锂离子电池负极片以及锂离子电池
US11411221B2 (en) * 2020-02-14 2022-08-09 Uchicago Argonne, Llc Binders for silicon electrodes in lithium-ion batteries
CN116018362A (zh) * 2020-09-30 2023-04-25 富士胶片和光纯药株式会社 二次电池用粘合剂组合物、电极用组合物、电极片及二次电池以及这些电极片及二次电池的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169137A (ja) * 2011-02-14 2012-09-06 Hitachi Maxell Energy Ltd リチウムイオン二次電池
JP2013065494A (ja) * 2011-09-20 2013-04-11 Toyota Industries Corp リチウムイオン二次電池の負極用バインダとその製造方法及びその負極用バインダを用いたリチウムイオン二次電池
WO2014200003A1 (ja) * 2013-06-12 2014-12-18 Tdk株式会社 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
WO2016051811A1 (ja) * 2014-10-03 2016-04-07 凸版印刷株式会社 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803189B1 (ko) * 2005-04-14 2008-02-14 삼성에스디아이 주식회사 전극, 그 제조 방법, 바인더 조성물 및 이들을 채용한 리튬전지
KR100763891B1 (ko) 2005-12-01 2007-10-05 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지
US9853292B2 (en) * 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
CN103155247B (zh) * 2010-10-14 2015-06-10 株式会社吴羽 非水电解质二次电池用负极混合剂、非水电解质二次电池用负极和非水电解质二次电池
KR102237020B1 (ko) * 2012-10-26 2021-04-08 후지필름 와코 준야꾸 가부시키가이샤 리튬 전지용 결착제, 전극 제작용 조성물 및 전극
CN105504169B (zh) * 2016-01-07 2018-05-01 上海交通大学 一种用于锂离子电池的粘结剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169137A (ja) * 2011-02-14 2012-09-06 Hitachi Maxell Energy Ltd リチウムイオン二次電池
JP2013065494A (ja) * 2011-09-20 2013-04-11 Toyota Industries Corp リチウムイオン二次電池の負極用バインダとその製造方法及びその負極用バインダを用いたリチウムイオン二次電池
WO2014200003A1 (ja) * 2013-06-12 2014-12-18 Tdk株式会社 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
WO2016051811A1 (ja) * 2014-10-03 2016-04-07 凸版印刷株式会社 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3451420A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106935A (ja) * 2016-12-27 2018-07-05 凸版印刷株式会社 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池
WO2020026420A1 (ja) * 2018-08-02 2020-02-06 凸版印刷株式会社 非水電解質二次電池用負極バインダ、非水電解質二次電池用負極、非水電解質二次電池
CN116111275A (zh) * 2023-01-11 2023-05-12 河北光兴半导体技术有限公司 复合隔膜及其制备方法和应用
CN116111275B (zh) * 2023-01-11 2023-06-30 河北光兴半导体技术有限公司 复合隔膜及其制备方法和应用

Also Published As

Publication number Publication date
US20190058196A1 (en) 2019-02-21
US11101464B2 (en) 2021-08-24
CN109075318A (zh) 2018-12-21
EP3451420B1 (en) 2021-10-27
CN109075318B (zh) 2022-06-24
JP6973382B2 (ja) 2021-11-24
JPWO2017188032A1 (ja) 2019-03-07
EP3451420A4 (en) 2019-11-27
EP3451420A1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6066021B2 (ja) 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池
WO2017188032A1 (ja) 非水電解質二次電池用の負極、非水電解質二次電池の負極用バインダ及び非水電解質二次電池
JP6801167B2 (ja) 非水電解質二次電池用電極
JP2017004682A (ja) 非水電解質二次電池用負極剤、非水電解質二次電池負極、および非水電解質二次電池
JP6809453B2 (ja) 非水電解質二次電池用負極
JP6787117B2 (ja) 非水電解質二次電池用負極
JP7151060B2 (ja) 非水電解質二次電池用負極バインダ、非水電解質二次電池用負極
JP6634757B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
KR101784646B1 (ko) 비수 전해질 이차 전지용 전극
JP2021182484A (ja) 非水電解質二次電池用負極剤、非水電解質二次電池用負極および非水電解質二次電池
JP6961939B2 (ja) 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池
WO2020026420A1 (ja) 非水電解質二次電池用負極バインダ、非水電解質二次電池用負極、非水電解質二次電池
CN106233508B (zh) 非水电解质二次电池用电极及非水电解质二次电池
JP2021182483A (ja) 非水電解質二次電池用負極剤、非水電解質二次電池用負極および非水電解質二次電池
WO2019208698A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP2017045515A (ja) 二次電池用負極及び二次電池
JP2017199575A (ja) 非水電解質二次電池用電極及び非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514503

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017789317

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017789317

Country of ref document: EP

Effective date: 20181128

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789317

Country of ref document: EP

Kind code of ref document: A1