WO2019208698A1 - 非水電解質二次電池用負極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極及び非水電解質二次電池 Download PDF

Info

Publication number
WO2019208698A1
WO2019208698A1 PCT/JP2019/017647 JP2019017647W WO2019208698A1 WO 2019208698 A1 WO2019208698 A1 WO 2019208698A1 JP 2019017647 W JP2019017647 W JP 2019017647W WO 2019208698 A1 WO2019208698 A1 WO 2019208698A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte secondary
secondary battery
negative electrode
active material
polymer compound
Prior art date
Application number
PCT/JP2019/017647
Other languages
English (en)
French (fr)
Inventor
均 栗原
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2020515563A priority Critical patent/JPWO2019208698A1/ja
Publication of WO2019208698A1 publication Critical patent/WO2019208698A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • lithium (Li) ion secondary batteries which are non-aqueous electrolyte secondary batteries, can be repeatedly charged and discharged with the aim of reducing oil consumption and greenhouse gases, and further diversifying and improving the energy base. Attention has been gathered. In particular, application to electric vehicles, hybrid electric vehicles, and fuel cell vehicles is expected. In an electric vehicle, an improvement in cruising distance is required, and in the future, higher energy density of Li-ion secondary batteries will be further required.
  • a graphite electrode is generally used for the negative electrode of the current Li ion secondary battery. The theoretical capacity of graphite is 372 mAh / g (active material).
  • Si silicon
  • Sn tin
  • Si has a capacity about 11 times that of graphite
  • the volume change accompanying Li occlusion and release is large, and the volume increases by about 4 times that before Li occlusion due to Li occlusion.
  • an electrode using Si, Sn or the like having a large capacity as an active material has a large volume change of the active material accompanying charge / discharge compared to graphite. For this reason, there is a possibility that the conductive path inside the electrode is cut, the active material is broken and pulverized to be detached from the electrode, and the mixture layer (including the active material) is separated from the current collector. This may be a factor that degrades the life characteristics of the Li ion secondary battery.
  • Patent Document 1 in an electrode of a Li ion secondary battery using Si particles as an active material, a high molecular weight binder subjected to crosslinking treatment and a low molecular weight binder not subjected to crosslinking treatment are used in combination.
  • a technique for improving the life characteristics by covering the surface of Si particles with a binder is disclosed.
  • the low molecular weight binder adheres to the surface of the Si particles by hydrogen bonding, and gives a stable film against changes in the volume of the Si particles, thus suppressing contact of the electrolyte solution with the Si particles.
  • SEI Solid Electrolyte Interface: solid electrolyte layer
  • Non-Patent Document 1 discloses a technique for improving the life characteristics by grafting the surface of nano-Si particles as an active material with polyacrylic acid. Since the carboxyl group is imparted to the active material surface side by the polyacrylic acid grafted on the nano-Si surface, the adhesion of the active material particles can be improved. As a result, an electrode that is stable against volume change of the active material particles is formed, and the life characteristics of the Li ion secondary battery can be improved.
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery including a negative electrode for a non-aqueous electrolyte secondary battery and a negative electrode for a non-aqueous electrolyte secondary battery capable of improving life characteristics.
  • a negative electrode for a non-aqueous electrolyte secondary battery according to one embodiment of the present invention is a negative electrode for a non-aqueous electrolyte secondary battery including a mixture layer, wherein the mixture layer includes at least an active material and a surface of the active material.
  • a nonaqueous electrolyte secondary battery includes the negative electrode for a nonaqueous electrolyte secondary battery according to one embodiment of the invention.
  • a nonaqueous electrolyte secondary battery including a negative electrode for a nonaqueous electrolyte secondary battery and a negative electrode for a nonaqueous electrolyte secondary battery capable of improving life characteristics.
  • the electrode used in the present embodiment includes a mixture layer, and is a first polymer that is an auxiliary binder that covers a negative electrode active material and at least a part of the surface of the active material. And a compound.
  • the average molecular weight of the first polymer compound is in the range of 1,000 to 1,000,000, and the first polymer compound is covalently bonded to the active material on the surface of the active material.
  • the first polymer compound has a carboxylic acid group, and part of the carboxylic acid group is an alkyl carboxylic acid in which the alkyl moiety (C n H 2n + 1 ) has a carbon number n in the range of 1 to 10.
  • the “maintenance rate” refers to an amount defined by “(discharge capacity at 100 cycles) / (discharge capacity at one cycle) ⁇ 100”.
  • “Coulomb efficiency” refers to an amount defined by “(discharge capacity / charge capacity) ⁇ 100”.
  • the negative electrode 10 for a nonaqueous electrolyte secondary battery includes a current collector 1 and a mixture layer 2 formed on the current collector 1.
  • a material conventionally used as a negative electrode current collector material for a nonaqueous electrolyte secondary battery may be appropriately employed.
  • aluminum, nickel, copper, iron, stainless steel (SUS), titanium, etc. are mentioned.
  • copper is particularly preferable from the viewpoints of electronic conductivity and battery operating potential.
  • the general thickness of the current collector 1 is about 10 to 30 ⁇ m.
  • the mixture layer 2 includes at least a negative electrode active material (hereinafter also simply referred to as “active material”) 4, a binder 5, and a conductive additive (not shown).
  • the binder 5 includes at least an auxiliary binder 5a, a main binder 5b, and a crosslinking agent (not shown).
  • the auxiliary binder 5 a covers at least a part of the surface of the active material 4.
  • the active materials 4 whose surfaces are at least partially covered with the auxiliary binder 5a are bonded to each other through the main binder 5b.
  • a binder 5b is schematically shown.
  • the active material 4 used in the present embodiment is not particularly limited as long as it can reversibly absorb and release Li.
  • a known material can be used as the active material, but it is desirable to use a material alloyed with Li. In particular, if the material has a larger theoretical capacity than graphite, the effect of the present embodiment can be obtained remarkably.
  • a material to be alloyed with Li for example, one or more metals selected from the group consisting of Si, Ge, Sn, Pb, Al, Ag, Zn, Hg, and Au, or alloys thereof can be used.
  • SiOx is preferable, and more preferably, x is in the range of 0 to 1.5. When x is larger than 1.5, it may not be possible to secure a sufficient amount of occlusion and release of Li. Further, not only the active material 4 described above but also graphite may be added as the active material 4.
  • a bromoethyl group may be introduced into a part of the surface of the active material 4.
  • a method for introducing, for example, a bromoethyl group into a part of the surface of the active material 4 there are the following methods. First, 6.00 g of Si particles (average primary particle size 200 nm) is added to 30.00 g of 2-isopropyl alcohol. Next, 0.4 g of p-styryltrimethoxysilane is added and stirred. Subsequently, 0.60 g of water is added dropwise and stirred overnight. Thereafter, filtration is performed while washing with 2-isopropyl alcohol. The obtained powder is dried under reduced pressure at 80 ° C. for 3 hours.
  • the obtained Si particles are added to a 48% HBr aqueous solution and refluxed at 130 ° C. for 24 hours. After the reaction, the Si particles having bromoethyl groups on the surface are recovered by filtration. Thus, Si particles having a bromoethyl group on a part of the surface of the active material 4 can be obtained.
  • a material in which a 1- (1-hydroxyethyl) benzyl group is introduced into a part of the surface of the active material 4 is a reaction intermediate that is not bonded to an auxiliary binder. That is, the 1- (1-hydroxyethyl) benzyl group is a substitution reaction of the 1- (1-bromoethyl) benzyl group with water during the reaction or in the process of preparing the electrode.
  • the surface of the active material 4 used in this embodiment is bonded to the auxiliary binder 5a by a covalent bond, and at least a part of the surface of the remaining active material 4 is a styrene group, 1- (1-bromoethyl) benzyl. And at least one group selected from the group and 1- (1-hydroxyethyl) benzyl group.
  • the polymer compound used for the auxiliary binder 5a that is, the first polymer compound covers at least a part of the surface of the active material 4, and the average molecular weight thereof is 1,000 to 1,000,000. Within range.
  • the “average molecular weight of the auxiliary binder 5a” can be obtained by a known method, for example, GPC can be used. If the average molecular weight of the auxiliary binder 5a is 1000 or more, it is possible to prevent the auxiliary binder 5a not forming a covalent bond with the active material 4 from being dissolved into the electrolytic solution. Moreover, since the viscosity is suppressed low because the average molecular weight of the auxiliary binder 5a is 1 million or less, partial esterification of the first polymer compound as the precursor, that is, the auxiliary binder 5a is facilitated.
  • the auxiliary binder 5 a is covalently bonded to the active material 4 on the surface of the active material 4.
  • FIG. 3 schematically shows an example of a state in which the auxiliary binder 5 a is covalently bonded to the active material 4 on the surface of the active material 4.
  • the auxiliary binder 5a has a carboxylic acid group, and a part of the carboxylic acid group is an alkyl carboxylic acid ester group in which the carbon number n of the alkyl moiety (C n H 2n + 1 ) is in the range of 1 to 10. It is desirable. Thereby, while controlling the amount of active protons, the remaining carboxylic acid group can form a covalent bond with the active material 4.
  • the auxiliary binder 5a is preferably an alkylcarboxylic acid having a carboxylic acid group, wherein a part of the carboxylic acid group has a carbon number n of 1 to 10 in the alkyl moiety (C n H 2n + 1 ).
  • the polymer is an acid ester group, and a part of the carboxylic acid group of alginic acid, polyacrylic acid, or polymethacrylic acid may be substituted with an alkyl carboxylic acid ester group.
  • the carbon number n is 10 or less, partial esterification of the first polymer as a precursor is facilitated by dissolving in the reaction solvent.
  • the auxiliary binder 5a has a repeating unit derived from an ethylenically unsaturated carboxylic acid compound, and a part of the carboxyl group may be esterified.
  • the esterification rate is preferably in the range of 10% to 90%.
  • a covalent bond that is a strong bond is formed between the auxiliary binder 5 a obtained by esterifying a part of the carboxyl group of polyacrylic acid and the surface of the active material 4.
  • the maintenance rate of the electrolyte secondary battery was improved.
  • the active proton part (carboxyl group) of the auxiliary binder 5a is partially esterified, thereby suppressing the amount of active protons contained in the auxiliary binder 5a and improving the coulomb efficiency of the nonaqueous electrolyte secondary battery. It was.
  • the esterification rate of the auxiliary binder 5a can be adjusted by the amount of the reagent reacted with the auxiliary binder 5a.
  • the “esterification rate” is determined by measuring the 1H NMR of the auxiliary binder 5a after the esterification treatment, and from the peak area ratio of the ⁇ hydrogen of the carboxyl group and the methylene site of the alkyl site in the obtained spectrum. Can be calculated.
  • the amount of active protons can be suppressed and the Coulomb efficiency of a non-aqueous electrolyte secondary battery can be improved by making the esterification rate 10% or more.
  • the covalent bond reaction with the active material 4 can be promoted by setting the esterification rate to 90% or less.
  • the auxiliary binder 5a is included in the mixture layer 2 in the range of 0.1 parts by mass or more and 2 parts by mass or less when the active material 4 is 100 parts by mass. If the addition amount of the auxiliary binder 5a is 0.1 parts by mass or more, the adhesion with the active material 4 is improved, so that the maintenance rate of the nonaqueous electrolyte secondary battery is improved. Moreover, battery resistance will reduce that the addition amount of the auxiliary binder 5a is 2 mass parts or less, and battery capacity will increase.
  • Main binder The polymer compound used for the main binder 5b, that is, the second polymer compound has a repeating unit derived from an ethylenically unsaturated carboxylic acid compound, and the average molecular weight of the main binder 5b is It may be within the range of 1 million to 5 million.
  • alginate, polyacrylate, and polyacrylic acid are desirable as the main binder.
  • the main binder 5b includes a polyacrylate that is cross-linked by at least one of a covalent bond and a metal ion bond, a mixture layer accompanying charging / discharging of the lithium ion secondary battery with a strong cross-linked structure
  • the volume change of 2 can be suppressed, which is more desirable for improving the maintenance rate.
  • Sodium alginate is preferably used as the alginate
  • sodium polyacrylate is preferably used as the polyacrylate.
  • the “average molecular weight of the main binder 5b” can be obtained by a known method, and for example, GPC can be used.
  • the average molecular weight of the main binder 5b is 1,000,000 or more, sufficient mechanical strength can be imparted to the mixture layer 2. Further, when the average molecular weight of the main binder 5b is 5 million or less, the viscosity of the coating liquid is lowered, and the dispersibility of the active material 4 is improved, so that the mixture layer 2 is easily formed.
  • the main binder 5b is a compound that contains a large amount of carboxyl groups, improves the conductivity of Li ions, and can suppress swelling with respect to the electrolytic solution. Thereby, reductive decomposition of electrolyte solution can be controlled.
  • the main binder 5b is included in the range of 10 parts by mass or more and 100 parts by mass or less when the active material 4 is 100 parts by mass.
  • the addition amount of the main binder 5b is 10 parts by mass or more, sufficient mechanical strength can be imparted to the mixture layer 2.
  • the addition amount of the main binder 5b is 100 parts by mass or less, the battery capacity per mass of the mixture layer 2 increases.
  • Cross-linking agent A cross-linking agent that reacts with a carboxylic acid to form a cross-link can be used.
  • the cross-linking agent is not particularly limited as long as it is a water-based cross-linking agent that reacts with carboxylic acid.
  • a carbodiimide compound or an aziridine compound that can be reacted in a few minutes at room temperature is preferably used.
  • an aziridine-based compound is desirable because a crosslink can be formed satisfactorily.
  • the cross-linking agent one that forms a cross-linkage with a carboxylic acid through a metal ion bond can be used.
  • a crosslinking agent is not particularly limited as long as it contains a metal ion capable of binding a carboxylic acid to a metal ion.
  • calcium chloride is desirable in this embodiment.
  • the addition amount of the crosslinking agent is such that the functional group to which the crosslinking agent crosslinks is within the range of 0.5 mol% or more and 3.0 mol% or less with respect to the carboxyl group of the main binder 5b which is a high molecular weight polymer compound. Is desirable. When the amount is less than 0.5 mol%, there are too few crosslinks and no effect is obtained. If it is larger than 3.0 mol%, the conductive additive and the active material 4 cannot be sufficiently dispersed, which is not desirable.
  • Conductive aid for example, carbon black, natural graphite, artificial graphite, metal oxides such as titanium oxide and ruthenium oxide, metal fibers, and the like can be used. Among these, carbon black exhibiting a structure structure is preferable, and furnace black, ketjen black, and acetylene black (AB), which are one type thereof, are particularly preferably used. A mixed system of carbon black and other conductive agent such as vapor grown carbon fiber (VGCF) is also preferably used.
  • VGCF vapor grown carbon fiber
  • FIG. 4 is a cross-sectional view schematically showing a configuration example of the nonaqueous electrolyte secondary battery 100 according to the embodiment of the present invention.
  • the non-aqueous electrolyte secondary battery 100 includes a non-aqueous electrolyte secondary battery negative electrode 10, a non-aqueous electrolyte secondary battery positive electrode 30, a non-aqueous electrolyte secondary battery negative electrode 10 and a non-aqueous electrolyte secondary battery negative electrode 10. And an electrolyte layer 20 filled between the positive electrode 30 for a water electrolyte secondary battery.
  • the electrolyte layer 20 is a liquid electrolyte (that is, an electrolytic solution)
  • a separator may be provided between the negative electrode 10 for a nonaqueous electrolyte secondary battery and the positive electrode 30 for a nonaqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery includes, for example, a nonaqueous electrolyte secondary battery negative electrode 10, an electrolyte layer 20, a separator, an electrolyte layer 20, and a nonaqueous electrolyte secondary battery positive electrode 30 in this order.
  • the electrolyte layer 20 is an electrolytic solution
  • the positive electrode 30 for a nonaqueous electrolyte secondary battery will also be briefly described.
  • solvent of the electrolytic solution used in the non-aqueous electrolyte secondary battery 100 examples include low-viscosity chain carbonates such as dimethyl carbonate and diethyl carbonate, and high dielectrics such as ethylene carbonate, propylene carbonate, and butylene carbonate. Cyclic carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, methylpropionate, vinylene carbonate, dimethylformamide, sulfolane and mixed solvents thereof Etc.
  • low-viscosity chain carbonates such as dimethyl carbonate and diethyl carbonate
  • high dielectrics such as ethylene carbonate, propylene carbonate, and butylene carbonate.
  • Electrolyte The electrolyte contained in the electrolytic solution is not particularly limited.
  • it is a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 .
  • the positive electrode 30 for a non-aqueous electrolyte secondary battery includes a positive electrode current collector (not shown) and a positive electrode active material layer (not shown) formed on one surface side of the positive electrode current collector.
  • a known material can be used as the current collector material of the negative electrode 10 for a non-aqueous electrolyte secondary battery described above. That is, the positive electrode current collector may be formed of, for example, aluminum, nickel, copper, iron, stainless steel (SUS), titanium, or the like.
  • the positive electrode current collector is particularly preferably aluminum from the viewpoints of electronic conductivity and battery operating potential.
  • the thickness of the positive electrode current collector is, for example, 10 to 30 ⁇ m.
  • the positive electrode active material layer includes at least a positive electrode active material and a binder, and is in direct contact with the positive electrode current collector. Further, the positive electrode active material layer may contain a conductive additive.
  • the positive electrode active material contained in the positive electrode active material layer is not particularly limited as long as it is a material capable of occluding and releasing lithium, and a positive electrode active material usually used in a lithium ion secondary battery which is a nonaqueous electrolyte secondary battery is appropriately selected. Can be adopted.
  • lithium-manganese composite oxide such as LiMn 2 O 4
  • lithium-nickel composite oxide such as LiNiO 2
  • lithium-cobalt composite oxide such as LiCoO 2
  • lithium- Iron complex oxide such as LiFeO 2
  • lithium-nickel-manganese complex oxide such as LiNi 0.5 Mn 0.5 O 2
  • lithium-nickel-cobalt complex oxide LiNi 0.8 Co 0.2 O 2
  • lithium-transition metal phosphate compounds such as LiFePO 4
  • lithium-transition metal sulfate compounds such as LixFe 2 (SO 4 ) 3
  • These positive electrode active materials may be included alone in the positive electrode active material layer, or may be included in the form of a mixture of two or more.
  • the negative electrode 10 for a nonaqueous electrolyte secondary battery includes a mixture layer 2 including an active material 4 and a partially esterified auxiliary binder 5a that covers at least a part of the surface of the active material 4.
  • the average molecular weight of the auxiliary binder 5a is in the range of 1,000 to 1,000,000, and the auxiliary binder 5a is covalently bonded to the active material 4 on the surface of the active material 4.
  • a covalent bond which is a strong bond, is formed between the auxiliary binder 5a and the surface of the active material 4, so that the maintenance rate of the nonaqueous electrolyte secondary battery 100 can be improved. it can.
  • the auxiliary binder 5a of the negative electrode 10 for a nonaqueous electrolyte secondary battery according to the present embodiment has a carboxylic acid group, and a part of the carboxylic acid group is an alkyl moiety (C n H 2n + 1 ).
  • the alkylcarboxylic acid ester group has a carbon number n in the range of 1 or more and 10 or less.
  • the auxiliary binder 5a of the negative electrode 10 for a nonaqueous electrolyte secondary battery according to the present embodiment has a repeating unit derived from an ethylenically unsaturated carboxylic acid compound, and the esterification rate thereof is 10% or more. It may be within a range of 90% or less. With such a configuration, the amount of active protons can be suppressed, so that the Coulomb efficiency of the nonaqueous electrolyte secondary battery can be further improved.
  • At least a part of the surface of the active material 4 in the negative electrode 10 for a non-aqueous electrolyte secondary battery according to the present embodiment is a styrene group, 1- (1-bromoethyl) benzyl group, and 1- (1- It may have at least one group among hydroxyethyl) benzyl groups.
  • the auxiliary binder 5a of the negative electrode 10 for a nonaqueous electrolyte secondary battery according to the present embodiment is within a range of 0.1 parts by mass or more and 2 parts by mass or less when the active material 4 is 100 parts by mass. It may be combined with the active material 4. With such a configuration, the amount of the covalent bond between the auxiliary binder 5a and the surface of the active material 4 is sufficient, and the maintenance rate of the nonaqueous electrolyte secondary battery 100 can be improved.
  • the mixture layer 2 of the negative electrode 10 for a nonaqueous electrolyte secondary battery according to the present embodiment further includes a main binder 5b, and the main binder 5b is a repeating unit derived from an ethylenically unsaturated carboxylic acid compound.
  • the average molecular weight may be in the range of 1 million or more and 5 million or less.
  • the main binder 5b of the negative electrode 10 for a non-aqueous electrolyte secondary battery according to the present embodiment may be a polyacrylate. With such a configuration, since the main binders 5b are reliably cross-linked, the mechanical strength of the negative electrode 10 for a nonaqueous electrolyte secondary battery can be further increased.
  • the main binder 5b of the negative electrode 10 for nonaqueous electrolyte secondary batteries according to the present embodiment may be cross-linked by at least one of a covalent bond and a metal ion bond. With such a configuration, the main binders 5b are more reliably cross-linked, so that the mechanical strength of the negative electrode 10 for a nonaqueous electrolyte secondary battery can be further increased.
  • the mixture layer 2 of the negative electrode 10 for a nonaqueous electrolyte secondary battery according to this embodiment is 10 parts by mass or more and 100 parts by mass or less when the main binder 5b is 100 parts by mass of the active material 4. It may be included within the range. With such a configuration, sufficient mechanical strength can be imparted to the negative electrode 10 for a nonaqueous electrolyte secondary battery.
  • the active material 4 of the negative electrode 10 for a nonaqueous electrolyte secondary battery according to the present embodiment may include SiOx (0 ⁇ x ⁇ 1.5). With such a configuration, a covalent bond can be formed between the auxiliary binder 5 a and the surface of the active material 4.
  • the nonaqueous electrolyte secondary battery 100 includes the above-described negative electrode 10 for a nonaqueous electrolyte secondary battery. With such a configuration, a covalent bond, which is a strong bond, is formed between the auxiliary binder 5a and the surface of the active material 4, so that the maintenance rate of the nonaqueous electrolyte secondary battery 100 can be improved. it can.
  • Example 1 Partial esterification of polyacrylic acid 10 g of polyacrylic acid (number average molecular weight 5000) was dissolved in 90 ml of DMSO (dimethyl sulfoxide). 32 g of 1,1,3,3-tetramethylguanidine was added and stirred. Ethane iodide (2.2 g) was added, and the mixture was refluxed at 130 ° C. for 1 hour. Thereafter, polyacrylic acid ethyl ester having an esterification rate of 10% was recovered by precipitation with water and acetone.
  • DMSO dimethyl sulfoxide
  • Si particles bonded with polyacrylic acid ethyl ester 0.5 g of polyacrylic acid ethyl ester and 35.3 g of surface-treated Si particles were added to 300 ml of DMSO and stirred well. Subsequently, 0.7 g of 1,1,3,3-tetramethylguanidine was added and stirred for 1 hour. Then, Si particle
  • acetylene black and 0.71 g of vapor grown carbon fiber were stirred.
  • the mixed liquid was finally dispersed with a fill mix to obtain a negative electrode slurry.
  • the obtained slurry was applied to a current collector.
  • the current collector was a copper foil having a thickness of 12 ⁇ m.
  • the slurry was applied with a doctor blade so as to have a basis weight of 2.8 mg / cm 2 .
  • Example 2 Partial esterification of polyacrylic acid
  • 10 g of polyacrylic acid (number average molecular weight 5000) was dissolved in 90 ml of DMSO (dimethyl sulfoxide). 32 g of 1,1,3,3-tetramethylguanidine was added and stirred. 10 g of ethane iodide was added and the mixture was refluxed at 130 ° C. for 1 hour. Thereafter, polyacrylic acid ethyl ester having an esterification rate of 50% was recovered by precipitation with water and acetone.
  • Si particles bonded with polyacrylic acid ethyl ester 0.5 g of polyacrylic acid ethyl ester and 35.3 g of surface-treated Si particles were added to 300 ml of DMSO and stirred well. Subsequently, 0.7 g of 1,1,3,3-tetramethylguanidine was added and stirred for 1 hour. Then, Si particle
  • acetylene black and 0.71 g of vapor grown carbon fiber were stirred.
  • the mixed liquid was finally dispersed with a fill mix to obtain a negative electrode slurry.
  • the obtained slurry was applied to a current collector.
  • the current collector was a copper foil having a thickness of 12 ⁇ m.
  • the slurry was applied with a doctor blade so as to have a basis weight of 2.8 mg / cm 2 .
  • Example 3 Partial esterification of polyacrylic acid
  • 10 g of polyacrylic acid (number average molecular weight 5000) was dissolved in 90 ml of DMSO (dimethyl sulfoxide).
  • 32 g of 1,1,3,3-tetramethylguanidine was added and stirred.
  • 13.2 g of ethane iodide the mixture was refluxed at 130 ° C. for 1 hour. Thereafter, polyacrylic acid ethyl ester having an esterification rate of 90% was recovered by precipitation with water and acetone.
  • Si particles bonded with polyacrylic acid ethyl ester 0.5 g of polyacrylic acid ethyl ester and 35.3 g of surface-treated Si particles were added to 300 ml of DMSO and stirred well. Subsequently, 0.2 g of 1,1,3,3-tetramethylguanidine was added and stirred for 1 hour. Then, Si particle
  • acetylene black and 0.71 g of vapor grown carbon fiber were stirred.
  • the mixed liquid was finally dispersed with a fill mix to obtain a negative electrode slurry.
  • the obtained slurry was applied to a current collector.
  • the current collector was a copper foil having a thickness of 12 ⁇ m.
  • the slurry was applied with a doctor blade so as to have a basis weight of 2.8 mg / cm 2 .
  • Example 4 Partial esterification of polyacrylic acid 10 g of polyacrylic acid (number average molecular weight 5000) was dissolved in 90 ml of DMSO. 32 g of 1,1,3,3-tetramethylguanidine was added and stirred. 12 g of butane iodide was added and refluxed at 130 ° C. for 1 hour. Thereafter, polyacrylic acid butyl ester having an esterification rate of 50% was recovered by precipitation with water and acetone.
  • Si particles bonded with poly (butyl acrylate) 0.5 g of polyacrylic acid butyl ester and 35.3 g of surface-treated Si particles were added to 300 ml of DMSO and stirred well. Subsequently, 0.6 g of 1,1,3,3-tetramethylguanidine was added and stirred for 1 hour. Then, Si particle
  • acetylene black and 0.71 g of vapor grown carbon fiber were stirred.
  • the mixed liquid was finally dispersed with a fill mix to obtain a negative electrode slurry.
  • the obtained slurry was applied to a current collector.
  • the current collector was a copper foil having a thickness of 12 ⁇ m.
  • the slurry was applied with a doctor blade so as to have a basis weight of 2.8 mg / cm 2 .
  • Example 5 Partial esterification of polyacrylic acid 10 g of polyacrylic acid (number average molecular weight 5000) was dissolved in 90 ml of DMSO. 32 g of 1,1,3,3-tetramethylguanidine was added and stirred. 16 g of octane iodide was added and refluxed at 130 ° C. for 1 hour. Then, it precipitated with water and acetone, and polyacrylic acid octyl ester with an esterification rate of 50% was collect
  • Si particles bonded with poly (acrylic acid octyl ester) 0.5 g of polyacrylic acid octyl ester and 35.3 g of surface-treated Si particles were added to 300 ml of DMSO and stirred well. Subsequently, 0.5 g of 1,1,3,3-tetramethylguanidine was added and stirred for 1 hour. Then, Si particle
  • a negative electrode slurry 20.12 g of a 5% sodium polyacrylate (weight average molecular weight 5 million) aqueous solution was added and further stirred. Subsequently, 0.71 g of acetylene black and 0.71 g of vapor grown carbon fiber were stirred. The mixed liquid was finally dispersed with a fill mix to obtain a negative electrode slurry. The obtained slurry was applied to a current collector.
  • the current collector was a copper foil having a thickness of 12 ⁇ m.
  • the slurry was applied with a doctor blade so as to have a basis weight of 2.8 mg / cm 2 . Subsequently, it was pre-dried at 80 ° C. for 30 minutes. This was dried under reduced pressure at 105 ° C. for 5 hours to obtain a negative electrode.
  • Example 6 Partial esterification of polyacrylic acid
  • 10 g of polyacrylic acid (weight average molecular weight 5000) was dissolved in 90 ml of DMSO.
  • 32 g of 1,1,3,3-tetramethylguanidine was added and stirred.
  • 10 g of ethane iodide was added and the mixture was refluxed at 130 ° C. for 1 hour. Thereafter, polyacrylic acid ethyl ester having an esterification rate of 50% was recovered by precipitation with water and acetone.
  • Si particles bonded with polyacrylic acid ethyl ester 0.5 g of polyacrylic acid ethyl ester and 35.3 g of surface-treated Si particles were added to 300 ml of DMSO and stirred well. Subsequently, 0.7 g of 1,1,3,3-tetramethylguanidine was added and stirred for 1 hour. Then, Si particle
  • Si particles bonded with polyacrylic acid ethyl ester 0.5 g of polyacrylic acid ethyl ester and 35.3 g of surface-treated Si particles were added to 300 ml of DMSO and stirred well. Subsequently, 0.7 g of 1,1,3,3-tetramethylguanidine was added and stirred for 1 hour. Then, Si particle
  • acetylene black and 0.71 g of vapor grown carbon fiber were stirred.
  • the mixed liquid was finally dispersed with a fill mix to obtain a negative electrode slurry.
  • the obtained slurry was applied to a current collector.
  • the current collector was a copper foil having a thickness of 12 ⁇ m.
  • the slurry was applied with a doctor blade so as to have a basis weight of 2.8 mg / cm 2 .
  • the esterification rate was calculated using 1H NMR (400 MHz, d-DMSO). It calculated from the peak area ratio of the alpha hydrogen ((delta) 2.2 (1H)) of the carboxyl group of polyacrylic acid, and the methylene part ((delta) 4.0 (2H)) of an alkyl site
  • the esterification rate was not determined. Therefore, for Comparative Examples 5 to 7, the esterification rate as a theoretical value is shown in parentheses in the column of “Esterification rate” in Table 1.
  • the electrode was punched into a disk with a diameter of 15 mm, and the Li electrode was punched into a disk with a diameter of 18 mm for evaluation.
  • the coin cell was basically composed of an electrode, a Li electrode, and a separator (Asahi Kasei Corporation, Hypore ND525).
  • the electrolyte was a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in a ratio of 3: 7 (wt / wt) to which LiPF 6 was added to a concentration of 1 mol / dm 3. What added 10 mass parts of ethylene carbonate (FEC) was used.
  • Example 1 the esterified auxiliary binder 5a of Comparative Example 1 was bonded to Si as the active material 4. By doing so, both the coulomb efficiency and the maintenance rate were improved.
  • Example 3 that is, when a covalent bond is formed by combining polyacrylic acid ethyl ester having an esterification rate of 10%, 50%, and 90% and surface-treated Si, Since active protons decrease in order of increasing esterification rate, the Coulomb efficiency is improved, and it is considered that some of the remaining carboxyl groups are consumed by covalent bonds, so that the maintenance rate decreases.
  • the ester of Example 2 is a butyl ester and an octyl ester.
  • Example 6 the main binder 5b of Example 2 is cross-linked sodium polyacrylate.
  • the combination of the cross-linked main binder 5b and the auxiliary binder 5a bonded to Si has good coulomb efficiency and maintenance rate.
  • Comparative Examples 4 to 6 are obtained by changing the molecular weight of the auxiliary binder 5a in Examples 1 to 3 from 5000 to 2 million. As shown in Comparative Examples 5 and 6, the auxiliary binder 5a having a molecular weight of 2 million having an esterification rate of 50% and 90% could not be produced by the method of this example. When Example 1 and Comparative Example 4 were compared, Example 1 was better in both coulomb efficiency and maintenance rate. As a result, the lower the molecular weight, the co-bonding reaction between the auxiliary binder 5a and the Si particles was able to proceed uniformly, so that the decomposition of the electrolyte was suppressed and the Si particles were prevented from falling off from the auxiliary binder 5a. It seems to have been able to suppress it.
  • the negative electrode for a non-aqueous electrolyte secondary battery is a power source for various portable electronic devices, a storage battery for driving an electric vehicle or the like that requires a high energy density, and various energy sources such as solar energy and wind power generation. It is used for an electrode such as a power storage device or a storage power source of household electric appliances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、寿命特性、特に維持率を向上させることができる非水電解質二次電池用負極及び非水電解質二次電池用負極を備えた非水電解質二次電池を提供することを目的とする。本実施形態に係る非水電解質二次電池用負極(10)は、合剤層(2)を備える非水電解質二次電池用負極であって、合剤層(2)は活物質(4)と、活物質(4)の表面の少なくとも一部を覆う補助バインダ(5a)と、を含み、補助バインダ(5a)の平均分子量は、1000以上100万以下の範囲内であり、補助バインダ(5a)は、活物質(4)と共有結合しているとともに、補助バインダ(5a)は、カルボン酸基を有し、そのカルボン酸基の一部は、アルキル部位(C2n+1)の炭素数nが1以上10以下の範囲内であるアルキルカルボン酸エステル基である。

Description

非水電解質二次電池用負極及び非水電解質二次電池
 本発明は、非水電解質二次電池用負極及び非水電解質二次電池に関する。
 近年、石油使用量や温室効果ガスの削減、エネルギー基盤のさらなる多様化や効率化を目指し、繰り返し充放電可能な二次電池として、非水電解質二次電池であるリチウム(Li)イオン二次電池に注目が集まっている。特に、電気自動車やハイブリッド電気自動車、燃料電池車への用途展開が見込まれている。電気自動車においては、航続距離の向上が要求され、今後、Liイオン二次電池の高エネルギー密度化が一層要求されていくことになる。
 現状のLiイオン二次電池の負極には一般的に黒鉛電極が用いられている。黒鉛の理論容量は、372mAh/g(活物質)である。これに対し、近年では、黒鉛を上回る容量を示す活物質として、ケイ素(Si)や錫(Sn)が注目されている。Siの理論容量は、4200mAh/g(活物質)であり、Snは、990mAh/g(活物質)である。
 Siは、黒鉛の約11倍の容量を持っているために、Li吸蔵放出に伴う体積変化も大きく、Li吸蔵により体積がLi吸蔵前の約4倍に増加する。例えば、大きな容量を有するSiやSn等を活物質として用いた電極は、黒鉛と比べると充放電に伴う活物質の体積変化が大きい。そのため、電極内部の導電パスが切断する、活物質が破壊され微粉化した結果電極から脱離する、集電体から合剤層(活物質を含む)が剥離するなどのおそれがある。このことは、Liイオン二次電池の寿命特性を低下させる要因となる可能性がある。
 Si粒子を活物質に使用したLiイオン二次電池では、充放電に伴う活物質の体積変化が大きいため、電極に損傷を与える。これを抑える目的で、Si粒子をナノサイズ化する提案がある。しかしながら、ナノSi粒子を用いても、十分な電池の寿命特性を得ることができなかった。
 特許文献1には、Si粒子を活物質に用いるLiイオン二次電池の電極において、架橋処理を施された高分子量のバインダと、架橋処理されていない低分子量のバインダとを併用し、低分子量のバインダでSi粒子の表面を覆うことで寿命特性を向上させる技術が開示されている。低分子量のバインダはSi粒子の表面に水素結合によって付着し、Si粒子の体積変化にも安定な膜を与えるため、Si粒子への電解液の接触を抑制する。その結果、繰り返し充放電での継続的なSEI(Solid Electrolyte Interphase:固体電解質層)の生成を抑制し、Liイオン二次電池の寿命特性を向上することができる。
 また、非特許文献1には、活物質であるナノSi粒子の表面をポリアクリル酸でグラフト化し、寿命特性を向上させる技術が開示されている。ナノSi表面にグラフト化したポリアクリル酸により、活物質表面側へカルボキシル基が付与されるため、活物質粒子の接着性を向上させることができる。その結果、活物質粒子の体積変化にも安定な電極が形成され、Liイオン二次電池の寿命特性を向上することができる。
特許第6066021号
Journal of Power Sources,2017,345,190-201.
 本発明は、寿命特性を向上させることができる非水電解質二次電池用負極及び非水電解質二次電池用負極を備えた非水電解質二次電池を提供することを目的とする。
 本発明者は、平均分子量が1000以上100万以下であり、且つ部分エステル化された高分子化合物と、活物質表面とを共有結合することで、寿命特性が向上することを見出した。
 本発明の一態様に係る非水電解質二次電池用負極は、合剤層を備える非水電解質二次電池用負極であって、前記合剤層は活物質と、前記活物質の表面の少なくとも一部を覆う第一の高分子化合物と、を含み、前記第一の高分子化合物の平均分子量は、1000以上100万以下の範囲内であり、前記第一の高分子化合物は、前記活物質と共有結合しているとともに、前記第一の高分子化合物は、カルボン酸基を有し、前記カルボン酸基の一部は、アルキル部位(C2n+1)の炭素数nが1以上10以下の範囲内であるアルキルカルボン酸エステル基である。
 また、本発明の一態様に係る非水電解質二次電池は、発明の一態様に係る非水電解質二次電池用負極を備えている。
 本発明の一態様であれば、寿命特性を向上させることができる非水電解質二次電池用負極及び非水電解質二次電池用負極を備えた非水電解質二次電池を提供することができる。
本発明の実施形態に係る非水電解質二次電池用負極の構成を模式的に示した図である。 本発明の実施形態に係る合剤層の構成を模式的に示した図である。 本発明の実施形態に係る、第一の高分子化合物と活物質とが共有結合した状態の一例を模式的に示した図である。 本発明の実施形態に係る非水電解質二次電池の構成を模式的に示した図である。
 以下、本発明の実施の形態に係る非水電解質二次電池用負極及びその非水電解質二次電池用負極を備えた非水電解質二次電池について説明する。
 なお、本発明の実施の形態は、以下に記載する実施の形態に限定されるものではなく、当業者の知識に基づいて設計の変更などを加えることも可能であり、そのような変更が加えられた実施の形態も本発明の実施の形態の範囲に含まれるものである。
 本実施形態で用いられる電極、即ち非水電解質二次電池用負極は、合剤層を備え、負極活物質と、その活物質の表面の少なくとも一部を覆う補助バインダである第一の高分子化合物とを備えている。また、第一の高分子化合物の平均分子量は、1000以上100万以下の範囲内であり、その第一の高分子化合物は、活物質の表面においてその活物質と共有結合している。また、第一の高分子化合物は、カルボン酸基を有し、そのカルボン酸基の一部は、アルキル部位(C2n+1)の炭素数nが1以上10以下の範囲内であるアルキルカルボン酸エステル基である。
 以下、上述の各層の詳細について説明する。なお、本実施形態において、「維持率」とは、「(100サイクルでの放電容量)/(1サイクルでの放電容量)×100」で規定される量をいう。また、「クーロン効率」とは、「(放電容量/充電容量)×100」で規定される量をいう。
(非水電解質二次電池用負極)
 本実施形態の非水電解質二次電池用負極10は、図1に示すように、集電体1と、集電体1上に形成された合剤層2を備えている。
[集電体1]
 集電体1としては、非水電解質二次電池用の負極集電体材料として従来用いられている材料を適宜採用すればよい。例えば、アルミニウム、ニッケル、銅、鉄、ステンレス鋼(SUS)、チタン等が挙げられる。特に、電子伝導性、電池作動電位という観点から、銅が特に好ましい。こうした集電体1の一般的な厚さは、10~30μm程度である。
[合剤層2]
 合剤層2は、負極活物質(以下、単に「活物質」とも称する)4と、バインダ5と、導電助剤(図示せず)とを少なくとも含んでいる。また、バインダ5は、補助バインダ5aと、主バインダ5bと、架橋剤(図示せず)とを少なくとも含んでいる。
 本実施形態において、補助バインダ5aは、活物質4の表面の少なくとも一部を覆っている。そして、補助バインダ5aによって表面の少なくとも一部が覆われた活物質4同士は、主バインダ5bを介して接着している。図2では、合剤層2中に備わる、活物質4と、活物質4の表面を覆う補助バインダ5aと、補助バインダ5aによって表面の少なくとも一部が覆われた活物質4同士を接着させる主バインダ5bとを模式的に示している。
 以下、これら活物質4、補助バインダ5a、主バインダ5b、架橋剤及び導電助剤について説明する。
(1)活物質
 本実施形態で用いられる活物質4は、Liを可逆的に吸蔵及び放出できるものであれば特に制限されない。活物質としては公知のものも使用することができるが、Liと合金化する材料を使用することが望ましい。特に、黒鉛よりも理論容量が大きい材料であれば、本実施形態の効果が顕著に得られる。Liと合金化する材料としては、例えば、Si、Ge、Sn、Pb、Al、Ag、Zn、Hg及びAuからなる群から選択された1つ以上の金属またはその合金を使用できる。好ましくはSiOxであり、より好ましくは、xは0以上1.5以下の範囲内である。xが1.5より大きいと、十分なLi量の吸蔵及び放出量を確保することができないことがある。また、上述した活物質4のみならず、黒鉛も活物質4として加えてもよい。
 また、活物質4の表面の一部にブロモエチル基を導入してもよい。なお、活物質4の表面の一部に、例えばブロモエチル基を導入する方法としては、以下の方法がある。まず、Si粒子(平均一次粒子径200nm)6.00gを2-イソプロピルアルコール30.00gに加える。次に、p-スチリルトリメトキシシラン0.4gを加えて、攪拌する。続いて、水0.60gを滴下し、一晩攪拌する。その後、2-イソプロピルアルコールで洗浄しながら、ろ過を行う。得られた粉体を、80℃で3時間、減圧乾燥を行う。次に、得られたSi粒子を48%のHBr水溶液に加え、130℃で24時間還流させる。反応後、ろ過することで、表面にブロモエチル基を備えたSi粒子を回収する。こうして、活物質4の表面の一部にブロモエチル基を備えたSi粒子を得ることができる。
 ここで、活物質4の表面の一部に、1-(1-ヒドロキシエチル)ベンジル基が導入されたものは、補助バインダとの結合がなされなかった反応中間物である。つまり、1-(1-ヒドロキシエチル)ベンジル基は、反応中または電極作成過程で、水によって、1-(1-ブロモエチル)ベンジル基が置換反応したものである。本実施形態で用いられる活物質4の表面は、補助バインダ5aと共有結合により、結合されており、残りの活物質4の表面の少なくとも一部は、スチレン基、1-(1-ブロモエチル)ベンジル基、及び1-(1-ヒドロキシエチル)ベンジル基のうち、少なくとも1種類の基を有している。
(2)補助バインダ
 補助バインダ5aに用いられる高分子化合物、即ち第一の高分子化合物は、活物質4の表面の少なくとも一部を覆うものであり、その平均分子量は、1000以上100万以下の範囲内である。なお、本実施形態では、「補助バインダ5aの平均分子量」は、公知の方法で求めることができ、例えばGPCを用いることができる。補助バインダ5aの平均分子量が1000以上であれば、活物質4と共有結合を形成していない補助バインダ5aが電解液中に溶け出すことを防止することができる。また、補助バインダ5aの平均分子量が100万以下とすることで、粘度が低く抑えられるので、前駆体である第一の高分子化合物、即ち補助バインダ5aの部分エステル化が行い易くなる。
 補助バインダ5aは、活物質4の表面において活物質4と共有結合している。図3は、この補助バインダ5aが活物質4の表面において活物質4と共有結合している状態の一例を模式的に示したものである。補助バインダ5aは、カルボン酸基を有し、そのカルボン酸基の一部は、アルキル部位(C2n+1)の炭素数nが1以上10以下の範囲内であるアルキルカルボン酸エステル基であることが望ましい。これにより、活性プロトン量を制御するとともに、残るカルボン酸基により活物質4との共有結合を形成することができる。特に、補助バインダ5aとして望ましいのは、カルボン酸基を有し、前記カルボン酸基の一部が、アルキル部位(C2n+1)の炭素数nが1以上10以下の範囲内であるアルキルカルボン酸エステル基である高分子であり、アルギン酸やポリアクリル酸、ポリメタクリル酸のカルボン酸基の一部をアルキルカルボン酸エステル基に置換してもよい。上記炭素数nが10以下であることで、反応溶媒に溶解し、前駆体である第一の高分子の部分エステル化が容易になる。
 また、補助バインダ5aは、エチレン性不飽和カルボン酸化合物に由来する繰り返し単位を有しており、そのカルボキシル基の一部がエステル化されていてもよい。エステル化率は、10%以上90%以下の範囲内であることが好ましい。補助バインダ5aは、活性プロトンが多いと、活物質4の表面との静電相互作用による結合(水素結合)が増えるので接着性が増すが、非水電解質二次電池のクーロン効率が低下する場合がある。一方で、活性プロトンを減らすために、上記補助バインダ5aのエステル化率を高めると、活物質4と活性プロトンとの間で生じていた静電相互作用が相対的に減少するため、活物質4と補助バインダ5aとの間の接着性が低下し、非水電解質二次電池の維持率が低下する場合がある。
 この点について、本実施形態では、ポリアクリル酸のカルボキシル基の一部をエステル化した補助バインダ5aと活物質4の表面との間に強固な結合である共有結合を形成することで、非水電解質二次電池の維持率を向上させた。また、本実施形態では、補助バインダ5aの活性プロトン部位(カルボキシル基)を部分エステル化することで、補助バインダ5aに含まれる活性プロトン量を抑え、非水電解質二次電池のクーロン効率を向上させた。
 補助バインダ5aのエステル化率は、補助バインダ5aと反応させる試薬の量で調整することができる。なお、本実施形態では、「エステル化率」を、エステル化処理後に補助バインダ5aの1H NMRを測定し、得られたスペクトルにおける、カルボキシル基のα水素とアルキル部位のメチレン部位のピーク面積比より、算出することができる。また、上記エステル化率を10%以上とすることで、活性プロトン量を抑制することができ、非水電解質二次電池のクーロン効率を向上させることができる。また、上記エステル化率を90%以下とすることで、活物質4との共有結合反応を促進することができる。なお、補助バインダ5aは、合剤層2において、活物質4を100質量部とした場合に0.1質量部以上2質量部以下の範囲内で含まれていることが望ましい。補助バインダ5aの添加量が0.1質量部以上であれば、活物質4との接着性が向上するため、非水電解質二次電池の維持率が向上する。また、補助バインダ5aの添加量が2質量部以下であると、電池抵抗が低減し、電池容量が増加する。
(3)主バインダ
 主バインダ5bに用いられる高分子化合物、即ち第二の高分子化合物は、エチレン性不飽和カルボン酸化合物に由来する繰り返し単位を有しており、主バインダ5bの平均分子量は、100万以上500万以下の範囲内であってもよい。特に、アルギン酸塩、やポリアクリル酸塩、ポリアクリル酸が主バインダとして望ましい。また、主バインダ5bが、共有結合及び金属イオン結合の少なくとも一方により架橋されているポリアクリル酸塩を含むものであれば、強固な架橋構造によりリチウムイオン二次電池の充放電に伴う合剤層2の体積変化を抑えることができ、維持率向上のためさらに望ましい。アルギン酸塩としてはアルギン酸ナトリウムが、ポリアクリル酸塩としてはポリアクリル酸ナトリウムが好ましく用いられる。なお、本実施形態では、「主バインダ5bの平均分子量」は、公知の方法で求めることができ、例えばGPCを用いることができる。なお、主バインダ5bの平均分子量が100万以上の場合には、合剤層2に十分な機械的強度を付与することができる。また、主バインダ5bの平均分子量が500万以下の場合には、塗液の粘度が低くなり、活物質4の分散性が向上するため合剤層2を形成しやすくなる。
 また、主バインダ5bは、カルボキシル基を多く含み、Liイオンの伝導性を向上させるとともに、電解液に対する膨潤を抑えることができる化合物である。これにより、電解液の還元分解を抑制することができる。
 本実施形態の合剤層2において、主バインダ5bは、活物質4を100質量部とした場合に10質量部以上100質量部以下の範囲内で含まれている。主バインダ5bの添加量が10質量部以上の場合には、合剤層2に十分な機械的強度を付与することができる。また、主バインダ5bの添加量が100質量部以下の場合には、合剤層2の質量当たりの電池容量が増加する。
(4)架橋剤
 架橋剤は、カルボン酸と反応して架橋形成するものを用いることができる。架橋剤は、カルボン酸と反応する水系架橋剤であれば、特に制限がないが、例えば、室温下、数分で反応させることができるカルボジイミド系化合物やアジリジン系化合物が望ましく用いられる。特に、本実施形態では、架橋を良好に形成できるため、アジリジン系化合物が望ましい。
 また、架橋剤は、カルボン酸と金属イオン結合を介して架橋形成するものを用いることができる。このような架橋剤は、カルボン酸が金属イオン結合できる金属イオンを含むものであれば、特に制限はないが、例えば、カルシウム塩やマグネシウム塩、アルミニウム塩が望ましく用いられる。特に、本実施形態では、塩化カルシウムが望ましい。また、架橋剤の添加量は、高分子量の高分子化合物である主バインダ5bのカルボキシル基に対し、架橋剤の架橋結合する官能基が、0.5mol%以上3.0mol%以下の範囲内となる量であることが望ましい。0.5mol%より少ないと架橋が少なすぎて効果が得られない。3.0mol%より大きいと、導電助剤や活物質4を十分に分散することができず望ましくない。
(5)導電助剤
 導電助剤は、例えば、カーボンブラックや天然黒鉛、人造黒鉛、さらには、酸化チタンや酸化ルテニウムなどの金属酸化物、金属ファイバーなどが使用できる。それらの中でも、ストラクチャー構造を呈するカーボンブラックが好ましく、特にその一種であるファーネスブラックやケッチェンブラック、アセチレンブラック(AB)が好ましく用いられる。なお、カーボンブラックとその他の導電剤、例えば、気相成長炭素繊維(VGCF)との混合系も好ましく用いられる。
(非水電解質二次電池)
 図4は、本発明の実施形態に係る非水電解質二次電池100の構成例を模式的に示す断面図である。図4に示すように、この非水電解質二次電池100は、非水電解質二次電池用負極10と、非水電解質二次電池用正極30と、非水電解質二次電池用負極10と非水電解質二次電池用正極30との間に充填された電解質層20と、を備える。また、電解質層20が液体電解質(すなわち、電解液)の場合、非水電解質二次電池用負極10と非水電解質二次電池用正極30との間にはセパレータがあってもよい。この場合、非水電解質二次電池は、例えば非水電解質二次電池用負極10、電解質層20、セパレータ、電解質層20、非水電解質二次電池用正極30をこの順で備える。以下、電解質層20が電解液の場合について説明する。また、非水電解質二次電池用正極30についても簡単に説明する。
[電解液]
(1)溶媒
 非水電解質二次電池100に用いる電解液の溶媒には、例えば、ジメチルカーボネート、ジエチルカーボネートなどの低粘度の鎖状炭酸エステルと、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの高誘電率の環状炭酸エステル、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、メチルアセテート、メチルプロピオネート、ビニレンカーボネート、ジメチルホルムアミド、スルホラン及びこれらの混合溶媒等を挙げることができる。
(2)電解質
 電解液に含まれる電解質は、特に制限がなく、例えば、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiN(CFSO、LiI、LiAlCl等及びそれらの混合物等が挙げられる。好ましくは、LiBF、LiPFのうちの1種または2種以上を混合したリチウム塩である。
[非水電解質二次電池用正極]
 非水電解質二次電池用正極30は、正極集電体(図示せず)と、正極集電体の一方の面側に形成された正極活物質層(図示せず)とを備える。正極集電体には、上述した非水電解質二次電池用負極10の集電体材料として公知のものを用いることができる。つまり、正極集電体は、例えば、アルミニウム、ニッケル、銅、鉄、ステンレス鋼(SUS)、チタン等で形成されていてもよい。正極集電体は、特に、電子伝導性、電池作動電位という観点から、アルミニウムであることが好ましい。また、正極集電体の厚さは、例えば10~30μmである。
 正極活物質層は、正極活物質とバインダとを少なくとも含み、正極集電体と直に接している。また、正極活物質層は、導電助剤を含んでいてもよい。正極活物質層に含まれる正極活物質は、特にリチウムの吸蔵放出が可能な材料であれば限定されず、非水電解質二次電池であるリチウムイオン二次電池に通常用いられる正極活物質を適宜採用することができる。具体的には、正極活物質として、リチウム-マンガン複合酸化物(LiMnなど)、リチウム-ニッケル複合酸化物(LiNiOなど)、リチウム-コバルト複合酸化物(LiCoOなど)、リチウム-鉄複合酸化物(LiFeOなど)、リチウム-ニッケル-マンガン複合酸化物(LiNi0.5Mn0.5など)、リチウム-ニッケル-コバルト複合酸化物(LiNi0.8Co0.2など)、リチウム-遷移金属リン酸化合物(LiFePOなど)、又は、リチウム-遷移金属硫酸化合物(LixFe(SOなど)が挙げられる。これら正極活物質は、それぞれ単独で正極活物質層に含まれても、あるいは2種以上の混合物の形態で含まれてもよい。
(本実施形態の効果)
 本実施形態によれば、部分エステル化した補助バインダ5aと活物質4の表面との間に強固な結合である共有結合を形成することで、非水電解質二次電池100の寿命特性、特に維持率を向上させることが可能である。より詳細に説明すると、本実施形態は以下の効果を奏する。
(1)本実施形態に係る非水電解質二次電池用負極10は、活物質4と、活物質4の表面の少なくとも一部を覆う部分エステル化した補助バインダ5aと、を含む合剤層2を備え、補助バインダ5aの平均分子量は、1000以上100万以下の範囲内であり、補助バインダ5aは、活物質4の表面において活物質4と共有結合している。このような構成であれば、補助バインダ5aと活物質4の表面との間に強固な結合である共有結合が形成されているため、非水電解質二次電池100の維持率を向上させることができる。
(2)また、本実施形態に係る非水電解質二次電池用負極10の補助バインダ5aは、カルボン酸基を有し、そのカルボン酸基の一部は、アルキル部位(C2n+1)の炭素数nが1以上10以下の範囲内であるアルキルカルボン酸エステル基である。このような構成であれば、活性プロトン量を制御するとともに、残るカルボン酸基による活物質4への接着を行うことができる。その結果、非水電解質二次電池の維持率及びクーロン効率を共に向上させることができる。
(3)また、本実施形態に係る非水電解質二次電池用負極10の補助バインダ5aは、エチレン性不飽和カルボン酸化合物に由来する繰り返し単位を有し、そのエステル化率は、10%以上90%以下の範囲内であってもよい。このような構成であれば、活性プロトン量を抑えることができるので、非水電解質二次電池のクーロン効率をさらに向上させることができる。
(4)また、本実施形態に係る非水電解質二次電池用負極10における活物質4の表面の少なくとも一部は、スチレン基、1-(1-ブロモエチル)ベンジル基、及び1-(1-ヒドロキシエチル)ベンジル基のうち、少なくとも1種類の基を有していてもよい。
(5)また、本実施形態に係る非水電解質二次電池用負極10の補助バインダ5aは、活物質4を100質量部とした場合に0.1質量部以上2質量部以下の範囲内で活物質4と結合していてもよい。このような構成であれば、補助バインダ5aと活物質4の表面との間に共有結合の量は十分であり、非水電解質二次電池100の維持率を向上させることができる。
(6)また、本実施形態に係る非水電解質二次電池用負極10の合剤層2は、主バインダ5bをさらに含み、主バインダ5bは、エチレン性不飽和カルボン酸化合物に由来する繰り返し単位を有し、その平均分子量は、100万以上500万以下の範囲内であってもよい。このような構成であれば、非水電解質二次電池用負極10の機械的強度を高めることができる。
(7)また、本実施形態に係る非水電解質二次電池用負極10の主バインダ5bは、ポリアクリル酸塩であってもよい。このような構成であれば、主バインダ5b同士が確実に架橋するため、非水電解質二次電池用負極10の機械的強度をさらに高めることができる。
(8)また、本実施形態に係る非水電解質二次電池用負極10の主バインダ5bは、共有結合及び金属イオン結合の少なくとも一方により架橋されていてもよい。このような構成であれば、主バインダ5b同士がさらに確実に架橋するため、非水電解質二次電池用負極10の機械的強度をさらに高めることができる。
(9)また、本実施形態に係る非水電解質二次電池用負極10の合剤層2は、主バインダ5bを、活物質4を100質量部とした場合に10質量部以上100質量部以下の範囲内で含んでもよい。このような構成であれば、非水電解質二次電池用負極10に十分な機械的強度を付与することができる。
(10)また、本実施形態に係る非水電解質二次電池用負極10の活物質4は、SiOx(0≦x≦1.5)を含んでもよい。このような構成であれば、補助バインダ5aと活物質4の表面との間に共有結合を形成することができる。このため、非水電解質二次電池100の維持率をさらに向上させることができる。
(11)また、本実施形態に係る非水電解質二次電池100は、上述の非水電解質二次電池用負極10を備えている。このような構成であれば、補助バインダ5aと活物質4の表面との間に強固な結合である共有結合が形成されているため、非水電解質二次電池100の維持率を向上させることができる。
[実施例]
 以下、本発明を実施例によりさらに詳しく説明するが、本発明は、実施例により何ら限定されるものではない。
(Siの表面処理)
 Si粒子(平均一次粒子径200nm)6.00gを2-イソプロピルアルコール30.00gに加えた。次に、p-スチリルトリメトキシシラン0.4gを加えて、攪拌した。続いて、水0.60gを滴下し、一晩攪拌した。その後、2-イソプロピルアルコールで洗浄しながら、ろ過を行なった。得られた粉体は、80℃で3時間、減圧乾燥を行なった。
 次に、得られたSi粒子を48%のHBr水溶液に加え、130℃で24時間還流させた。反応後、ろ過により、表面処理したSi粒子を回収した。
(実施例1)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(数平均分子量5000)10gをDMSO(ジメチルスルホキシド)90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン2.2gを加え、1時間130℃で還流した。その後、水、アセトンにて、析出させてエステル化率10%のポリアクリル酸エチルエステルを回収した。
(ポリアクリル酸エチルエステルが結合したSi粒子)
 ポリアクリル酸エチルエステル0.5gと表面処理したSi粒子35.3gをDMSO300ml中に加え、良く攪拌した。続いて、1,1,3,3-テトラメチルグアニジン0.7gを加え、1時間攪拌した。その後、ろ過により、ポリアクリル酸エチルエステルが結合したSi粒子を得た。ポリアクリル酸エチルエステルが結合したSi粒子3.58gを、水4.86に攪拌した。次に、ポリアクリル酸ナトリウム(重量平均分子量500万)水溶液20.12gを加え、さらに攪拌した。続いて、アセチレンブラック0.71gと気相成長炭素繊維0.71gを攪拌した。該混合液をフィルミックスで本分散し、負極スラリを得た。得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、2.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、プレ乾燥した。これを105℃、5時間の減圧乾燥を行い、負極を得た。
(実施例2)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(数平均分子量5000)10gをDMSO(ジメチルスルホキシド)90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン10gを加え、1時間130℃で還流した。その後、水、アセトンにて、析出させてエステル化率50%のポリアクリル酸エチルエステルを回収した。
(ポリアクリル酸エチルエステルが結合したSi粒子)
 ポリアクリル酸エチルエステル0.5gと表面処理したSi粒子35.3gをDMSO300ml中に加え、良く攪拌した。続いて、1,1,3,3-テトラメチルグアニジン0.7gを加え、1時間攪拌した。その後、ろ過により、ポリアクリル酸エチルエステルが結合したSi粒子を得た。ポリアクリル酸エチルエステルが結合したSi粒子3.58gを、水4.86に攪拌した。次に、ポリアクリル酸ナトリウム(重量平均分子量500万)水溶液20.12gを加え、さらに攪拌した。続いて、アセチレンブラック0.71gと気相成長炭素繊維0.71gを攪拌した。該混合液をフィルミックスで本分散し、負極スラリを得た。得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、2.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、プレ乾燥した。これを105℃、5時間の減圧乾燥を行い、負極を得た。
(実施例3)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(数平均分子量5000)10gをDMSO(ジメチルスルホキシド)90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン13.2gを加え、1時間130℃で還流した。その後、水、アセトンにて、析出させてエステル化率90%のポリアクリル酸エチルエステルを回収した。
(ポリアクリル酸エチルエステルが結合したSi粒子)
 ポリアクリル酸エチルエステル0.5gと表面処理したSi粒子35.3gをDMSO300ml中に加え、良く攪拌した。続いて、1,1,3,3-テトラメチルグアニジン0.2gを加え、1時間攪拌した。その後、ろ過により、ポリアクリル酸エチルエステルが結合したSi粒子を得た。ポリアクリル酸エチルエステルが結合したSi粒子3.58gを、水4.86に攪拌した。次に、ポリアクリル酸ナトリウム(重量平均分子量500万)水溶液20.12gを加え、さらに攪拌した。続いて、アセチレンブラック0.71gと気相成長炭素繊維0.71gを攪拌した。該混合液をフィルミックスで本分散し、負極スラリを得た。得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、2.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、プレ乾燥した。これを105℃、5時間の減圧乾燥を行い、負極を得た。
(実施例4)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(数平均分子量5000)10gをDMSO90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化ブタン12gを加え、1時間130℃で還流した。その後、水、アセトンにて、析出させてエステル化率50%のポリアクリル酸ブチルエステルを回収した。
(ポリアクリル酸ブチルエステルが結合したSi粒子)
 ポリアクリル酸ブチルエステル0.5gと表面処理したSi粒子35.3gをDMSO300ml中に加え、良く攪拌した。続いて、1,1,3,3-テトラメチルグアニジン0.6gを加え、1時間攪拌した。その後、ろ過により、ポリアクリル酸ブチルエステルが結合したSi粒子を得た。ポリアクリル酸ブチルエステルが結合したSi粒子3.58gを、水4.86に攪拌した。次に、ポリアクリル酸ナトリウム(重量平均分子量500万)水溶液20.12gを加え、さらに攪拌した。続いて、アセチレンブラック0.71gと気相成長炭素繊維0.71gを攪拌した。該混合液をフィルミックスで本分散し、負極スラリを得た。得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、2.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、プレ乾燥した。これを105℃、5時間の減圧乾燥を行い、負極を得た。
(実施例5)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(数平均分子量5000)10gをDMSO90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化オクタン16gを加え、1時間130℃で還流した。その後、水、アセトンにて、析出させてエステル化率50%のポリアクリル酸オクチルエステルを回収した。
(ポリアクリル酸オクチルエステルが結合したSi粒子)
 ポリアクリル酸オクチルエステル0.5gと表面処理したSi粒子35.3gをDMSO300ml中に加え、良く攪拌した。続いて、1,1,3,3-テトラメチルグアニジン0.5gを加え、1時間攪拌した。その後、ろ過により、ポリアクリル酸オクチルエステルが結合したSi粒子を得た。ポリアクリル酸オクチルエステルが結合したSi粒子3.58gを、水4.86に攪拌した。次に、5%ポリアクリル酸ナトリウム(重量平均分子量500万)水溶液20.12gを加え、さらに攪拌した。続いて、アセチレンブラック0.71gと気相成長炭素繊維0.71gを攪拌した。該混合液をフィルミックスで本分散し、負極スラリを得た。得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、2.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、プレ乾燥した。これを105℃、5時間の減圧乾燥を行い、負極を得た。
(実施例6)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(重量平均分子量5000)10gをDMSO90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン10gを加え、1時間130℃で還流した。その後、水、アセトンにて、析出させてエステル化率50%のポリアクリル酸エチルエステルを回収した。
(ポリアクリル酸エチルエステルが結合したSi粒子)
 ポリアクリル酸エチルエステル0.5gと表面処理したSi粒子35.3gをDMSO300ml中に加え、良く攪拌した。続いて、1,1,3,3-テトラメチルグアニジン0.7gを加え、1時間攪拌した。その後、ろ過により、ポリアクリル酸エチルエステルが結合したSi粒子を得た。
(5%架橋ポリアクリル酸ナトリウム水溶液)
 水92.54gに、ポリアクリル酸ナトリウム(日本触媒社製、分子量500万)4.96gを加え、ディスパにて攪拌した。続いて、この高分子溶液に、アジリジン系化合物(日本触媒社製、PZ-33)の10倍希釈水溶液0.15gを加えて、20分間攪拌した。続いて、塩化カルシウムの100倍希釈水溶液2.34gを加えてさらに攪拌した。ポリアクリル酸エステルが結合したSi粒子3.58gを、水4.86に攪拌した。次に、5%架橋ポリアクリル酸ナトリウム水溶液20.12gを加え、さらに攪拌した。続いて、アセチレンブラック0.71gと気相成長炭素繊維0.71gを攪拌した。該混合液をフィルミックスで本分散し、負極スラリを得た。得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、2.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、プレ乾燥した。これを105℃、5時間の減圧乾燥を行い、負極を得た。
(比較例1)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(重量平均分子量5000)10gをDMSO90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン2.2gを加え、1時間130℃で還流した。その後、水、アセトンにて、析出させてエステル化率10%のポリアクリル酸エチルエステルを回収した。表面処理をしていないSi粒子(平均一次粒子径200nm)3.53gとポリアクリル酸エチルエステル0.05gを、水4.86に攪拌した。次に、ポリアクリル酸ナトリウム(重量平均分子量500万)水溶液20.12gを加え、さらに攪拌した。続いて、アセチレンブラック0.71gと気相成長炭素繊維0.71gを加えて攪拌した。該混合液をフィルミックスで本分散し、負極スラリを得た。得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、2.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、プレ乾燥した。これを105℃、5時間の減圧乾燥を行い、負極を得た。
(比較例2)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(重量平均分子量5000)10gをDMSO90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン10gを加え、1時間130℃で還流した。その後、水、アセトンにて、析出させてエステル化率50%のポリアクリル酸エチルエステルを回収した。表面処理をしていないSi粒子(平均一次粒子径200nm)3.53gとポリアクリル酸エチルエステル0.05gを、水4.86に攪拌した。次に、ポリアクリル酸ナトリウム(重量平均分子量500万)水溶液20.12gを加え、さらに攪拌した。続いて、アセチレンブラック0.71gと気相成長炭素繊維0.71gを加えて攪拌した。該混合液をフィルミックスで本分散し、負極スラリを得た。得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、2.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、プレ乾燥した。これを105℃、5時間の減圧乾燥を行い、負極を得た。
(比較例3)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(重量平均分子量5000)10gをDMSO90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン14gを加え、1時間130℃で還流した。その後、水、アセトンにて、析出させてエステル化率100%のポリアクリル酸エチルエステルを回収した。表面処理をしていないSi粒子(平均一次粒子径200nm)3.53gとポリアクリル酸エチルエステル0.05gを、2-プロパノール4.86に攪拌した。次に、ポリアクリル酸ナトリウム(重量平均分子量500万)水溶液20.12gを加え、さらに攪拌した。続いて、アセチレンブラック0.71gと気相成長炭素繊維0.71gを加えて攪拌した。該混合液をフィルミックスで本分散し、負極スラリを得た。得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、2.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、プレ乾燥した。これを105℃、5時間の減圧乾燥を行い、負極を得た。
(比較例4)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(数平均分子量200万)10gをDMSO(ジメチルスルホキシド)90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン2.2gを加え、1時間130℃で還流した。その後、水、アセトンにて、析出させてエステル化率10%のポリアクリル酸エチルエステルを回収した。
(ポリアクリル酸エチルエステルが結合したSi粒子)
 ポリアクリル酸エチルエステル0.5gと表面処理したSi粒子35.3gをDMSO300ml中に加え、良く攪拌した。続いて、1,1,3,3-テトラメチルグアニジン0.7gを加え、1時間攪拌した。その後、ろ過により、ポリアクリル酸エチルエステルが結合したSi粒子を得た。ポリアクリル酸エチルエステルが結合したSi粒子3.58gを、水4.86に攪拌した。次に、ポリアクリル酸ナトリウム(重量平均分子量500万)水溶液20.12gを加え、さらに攪拌した。続いて、アセチレンブラック0.71gと気相成長炭素繊維0.71gを攪拌した。該混合液をフィルミックスで本分散し、負極スラリを得た。得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、2.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、プレ乾燥した。これを105℃、5時間の減圧乾燥を行い、負極を得た。
(比較例5)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(数平均分子量200万)10gをDMSO(ジメチルスルホキシド)90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン10gを加え、130℃で還流した。還流処理中に、ポリアクリル酸エチルエステルが析出してしまい、以降の操作を断念した。そのため、エステル化率50%のポリアクリル酸エチルエステルを作製することができなかった。
(比較例6)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(数平均分子量200万)10gをDMSO(ジメチルスルホキシド)90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン13.2gを加え、130℃で還流した。還流処理中に、ポリアクリル酸エチルエステルが析出してしまい、以降の操作を断念した。そのため、エステル化率90%のポリアクリル酸エチルエステルを作製することができなかった。
(比較例7)
(ポリアクリル酸の部分エステル化)
 ポリアクリル酸(数平均分子量500万)10gをDMSO(ジメチルスルホキシド)90mlに溶かした。1,1,3,3-テトラメチルグアニジン32gを加え攪拌した。ヨウ化エタン2.2gを加え、130℃で還流した。還流処理中に、ポリアクリル酸エチルエステルが析出してしまい、以降の操作を断念した。そのため、エステル化率10%のポリアクリル酸エチルエステルを作製することができなかった。
(エステル化率の測定)
 エステル化率は、1H NMR(400 MHz、d-DMSO)を用いて算出した。ポリアクリル酸のカルボキシル基のα水素(δ 2.2(1H))とアルキル部位のメチレン部位(δ 4.0(2H))のピーク面積比より算出した。なお、比較例5~7については、ポリアクリル酸エチルエステルがDMSO(ジメチルスルホキシド)に不溶のため、エステル化率は求めなかった。そのため、比較例5~7については、表1の「エステル化率」の欄に理論値としてのエステル化率をかっこ書で示した。
(セル作成と評価)
 得られた電極とLi極を用いて、コインセルを作成し、実施例1~6及び比較例1~4の充放電評価を行なった。充電1600mA/g、放電1600mA/gで、0.03V~1.0Vの電圧範囲で充放電を繰り返し、サイクル評価を行った。維持率は、(100サイクルでの放電容量)/(1サイクルでの放電容量)×100で算出した。つまり、維持率は、1サイクル目の放電容量に対する100サイクル後の放電容量の割合を百分率で示したものである。コインセルは2032型を使用した。電極は、直径15mmの円板に打ち抜き、Li極は、直径18mmの円板に打ち抜いて、評価を行なった。コインセルは、電極及びLi極、セパレータ(旭化成社、ハイポア ND525)を基本構成とした。電解液は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とが3:7(wt/wt)の混合溶液に、LiPFを1mol/dmとなるように加えたもの100質量部に、フルオロエチレンカーボネート(FEC)10質量部を加えたものを使用した。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の比較例1~3では、補助バインダ5aのエステル化率が上がると、クーロン効率は向上し、維持率は低下した。つまり、活物質4であるSiと補助バインダ5aとの間に共有結合が生じていない場合には、補助バインダ5aの部分エステル化によってエステル化率が高くなると、活性プロトンの量が減るのでクーロン効率が向上する傾向がある。その一方で、静電結合の量が減るので維持率が低下する傾向がある。逆に言うと、上記エステル化率が低くなると、活性プロトンの量が増えるのでクーロン効率が低下する傾向がある。その一方で、静電結合の量が増えるので維持率が向上する傾向がある。また、上記エステル化率が100%の場合には、補助バインダ5aと活物質4との間で共有結合が無いので維持率低下するが、活性プロトンも無いのでクーロン効率は向上する。
 実施例1では、比較例1のエステル化した補助バインダ5aを活物質4であるSiに結合させた。こうすることで、クーロン効率及び維持率ともに向上した。また、実施例1~3の結果、即ち10%、50%、90%のエステル化率のポリアクリル酸エチルエステルと、表面処理済のSiとを組み合わせて共有結合を形成させた場合には、エステル化率が高い順に活性プロトンが減るのでクーロン効率が向上し、残ったカルボキシル基の幾分かは共有結合に消費されるため維持率が低下すると考えられる。また、実施例4及び5では、実施例2のエステルをブチルエステルとオクチルエステルとしたものである。いずれのアルキルでも維持率が良好の値を示した。実施例6は、実施例2の主バインダ5bを架橋ポリアクリル酸ナトリウムとしたものである。架橋した主バインダ5bと、Siに結合した補助バインダ5aとの組み合わせは、クーロン効率と維持率ともに良好であった。
 比較例4~6は、実施例1~3における、補助バインダ5aの分子量を5000から200万にそれぞれ変更したものである。比較例5及び6に示すように、エステル化率50%と90%である分子量200万の補助バインダ5aは、本実施例の手法では作製することができなかった。実施例1と比較例4を比較したところ、実施例1の方が、クーロン効率及び維持率ともに良好であった。この結果は、分子量が低い方が、補助バインダ5aとSi粒子の共有結合反応を、均一に進行させることができたため、電解液の分解を抑制するとともに、Si粒子の補助バインダ5aからの脱落を抑制できたと思われる。
 比較例7は、実施例1の補助バインダ5aの分子量を500万に変更したものである。500万の分子量では、エステル化率10%でも、本実施例の手法では作製することができなかった。
 なお、比較例5~7については、補助バインダ5aを作製することができず、充放電評価をすることができなったため、表1の「寿命特性/クーロン効率」及び「寿命特性/維持率」の各欄の記載を「-」とした。
 本発明に係る非水電解質二次電池用負極は、各種携帯用電子機器の電源、また、高エネルギー密度が求められる電気自動車等の駆動用蓄電池、さらに、ソーラーエネルギーや風力発電等の各種エネルギーの蓄電装置、あるいは家庭用電気器具の蓄電源等の電極に用いられる。
1  集電体
2  合剤層
4  活物質
5  バインダ
5a 補助バインダ
5b 主バインダ
10 非水電解質二次電池用負極
20 電解質層
30 非水電解質二次電池用正極
100非水電解質二次電池

Claims (10)

  1.  合剤層を備える非水電解質二次電池用負極であって、前記合剤層は活物質と、前記活物質の表面の少なくとも一部を覆う第一の高分子化合物と、を含み、
     前記第一の高分子化合物の平均分子量は、1000以上100万以下の範囲内であり、
     前記第一の高分子化合物は、前記活物質と共有結合しているとともに、
     前記第一の高分子化合物は、カルボン酸基を有し、
     前記カルボン酸基の一部は、アルキル部位(C2n+1)の炭素数nが1以上10以下の範囲内であるアルキルカルボン酸エステル基であることを特徴とする非水電解質二次電池用負極。
  2.  前記第一の高分子化合物は、エチレン性不飽和カルボン酸化合物に由来する繰り返し単位を有し、
     前記第一の高分子化合物が有するカルボン酸基のエステル化率は、繰り返し単位である前記エチレン性不飽和カルボン酸化合物あたり、10%以上90%以下の範囲内であることを特徴とする請求項1に記載の非水電解質二次電池用負極。
  3.  前記活物質の表面の少なくとも一部は、スチレン基、1-(1-ブロモエチル)ベンジル基、及び1-(1-ヒドロキシエチル)ベンジル基のうち、少なくとも1種類の基を有することを特徴とする請求項1または請求項2に記載の非水電解質二次電池用負極。
  4.  前記合剤層は、前記第一の高分子化合物を、前記活物質100質重部に対し、0.1質重部以上2質重部以下の範囲内で含むことを特徴とする請求項1から請求項3のいずれか1項に記載の非水電解質二次電池用負極。
  5.  前記合剤層は、第二の高分子化合物をさらに含み、
     前記第二の高分子化合物は、エチレン性不飽和カルボン酸化合物に由来する繰り返し単位を有し、前記第二の高分子化合物の平均分子量は、100万以上500万以下の範囲内であることを特徴とする請求項1から請求項4のいずれか1項に記載の非水電解質二次電池用負極。
  6.  前記第二の高分子化合物は、ポリアクリル酸塩であることを特徴とする請求項5に記載の非水電解質二次電池用負極。
  7.  前記第二の高分子化合物は、共有結合及び金属イオン結合の少なくとも一方により架橋されているポリアクリル酸塩を含むことを特徴とする請求項5または請求項6に記載の非水電解質二次電池用負極。
  8.  前記合剤層は、前記第二の高分子化合物を、前記活物質100質量部に対し、10質量部以上100質量部以下の範囲内で含むことを特徴とする請求項5から請求項7のいずれか1項に記載の非水電解質二次電池用負極。
  9.  前記活物質は、SiOx(0≦x≦1.5)を含むことを特徴とする請求項1から請求項8のいずれか1項に記載の非水電解質二次電池用負極。
  10.  請求項1から請求項9のいずれか1項に記載の非水電解質二次電池用負極を備えたことを特徴とする非水電解質二次電池。
PCT/JP2019/017647 2018-04-27 2019-04-25 非水電解質二次電池用負極及び非水電解質二次電池 WO2019208698A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515563A JPWO2019208698A1 (ja) 2018-04-27 2019-04-25 非水電解質二次電池用負極及び非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-087630 2018-04-27
JP2018087630 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208698A1 true WO2019208698A1 (ja) 2019-10-31

Family

ID=68294047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017647 WO2019208698A1 (ja) 2018-04-27 2019-04-25 非水電解質二次電池用負極及び非水電解質二次電池

Country Status (2)

Country Link
JP (1) JPWO2019208698A1 (ja)
WO (1) WO2019208698A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196338A (ja) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2011049046A (ja) * 2009-08-27 2011-03-10 Nissan Motor Co Ltd 電池用電極およびその製造方法
JP2014010998A (ja) * 2012-06-29 2014-01-20 Hitachi Ltd リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2015517190A (ja) * 2012-04-17 2015-06-18 ユミコア 向上したサイクル性能を有する低コストSi系負極
WO2016051811A1 (ja) * 2014-10-03 2016-04-07 凸版印刷株式会社 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196338A (ja) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2011049046A (ja) * 2009-08-27 2011-03-10 Nissan Motor Co Ltd 電池用電極およびその製造方法
JP2015517190A (ja) * 2012-04-17 2015-06-18 ユミコア 向上したサイクル性能を有する低コストSi系負極
JP2014010998A (ja) * 2012-06-29 2014-01-20 Hitachi Ltd リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2016051811A1 (ja) * 2014-10-03 2016-04-07 凸版印刷株式会社 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIE, Y. T. ET AL.: "A facile 3D binding approach for high Si loading anodes", ELECTROCHIMICA ACTA, vol. 212, 29 June 2016 (2016-06-29), pages 141 - 146, XP029695331, DOI: 10.1016/j.electacta.2016.06.152 *

Also Published As

Publication number Publication date
JPWO2019208698A1 (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
KR101304868B1 (ko) 리튬 이차전지용 양극 활물질
WO2016051811A1 (ja) 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池
US10411263B2 (en) Electrode for secondary battery, and secondary battery
JP2015069878A (ja) 二次電池用電極活物質、二次電池用電極
JP2016219370A (ja) 非水電解質二次電池用電極
JP6809453B2 (ja) 非水電解質二次電池用負極
JP6787117B2 (ja) 非水電解質二次電池用負極
JP7151060B2 (ja) 非水電解質二次電池用負極バインダ、非水電解質二次電池用負極
JP6634757B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
KR101784646B1 (ko) 비수 전해질 이차 전지용 전극
WO2020026420A1 (ja) 非水電解質二次電池用負極バインダ、非水電解質二次電池用負極、非水電解質二次電池
WO2019208698A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP2021182484A (ja) 非水電解質二次電池用負極剤、非水電解質二次電池用負極および非水電解質二次電池
US10529976B2 (en) Electrode for a non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6961939B2 (ja) 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池
JP2021182483A (ja) 非水電解質二次電池用負極剤、非水電解質二次電池用負極および非水電解質二次電池
JP2017199575A (ja) 非水電解質二次電池用電極及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515563

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792632

Country of ref document: EP

Kind code of ref document: A1