WO2019039399A1 - リチウムイオン二次電池用負極およびこれを含むリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極およびこれを含むリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019039399A1
WO2019039399A1 PCT/JP2018/030511 JP2018030511W WO2019039399A1 WO 2019039399 A1 WO2019039399 A1 WO 2019039399A1 JP 2018030511 W JP2018030511 W JP 2018030511W WO 2019039399 A1 WO2019039399 A1 WO 2019039399A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
secondary battery
ion secondary
alloy
Prior art date
Application number
PCT/JP2018/030511
Other languages
English (en)
French (fr)
Inventor
川崎 大輔
卓哉 長谷川
大塚 隆
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201880054338.1A priority Critical patent/CN111095617B/zh
Priority to JP2019537601A priority patent/JP7140125B2/ja
Priority to US16/638,824 priority patent/US11387442B2/en
Publication of WO2019039399A1 publication Critical patent/WO2019039399A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery including the same, and the like.
  • Lithium ion secondary batteries have been commercialized in notebook computers, mobile phones and the like because of their advantages such as high energy density, low self-discharge, and excellent long-term reliability. Furthermore, in recent years, in addition to the advancement of electronic devices, the expansion of the market for motor-driven vehicles such as electric vehicles and hybrid vehicles, and the acceleration of development of home and industrial storage systems have led to batteries such as cycle characteristics and storage characteristics. There is a demand for the development of high-performance lithium ion secondary batteries that have excellent properties and further improved capacity and energy density.
  • Patent Document 1 describes an electrode including a negative electrode active material containing silicon oxide and a binder such as alginate.
  • a lithium ion secondary battery having a higher energy density than the electrode described in Patent Document 1 is required.
  • silicon has a large volume change due to insertion and extraction of lithium, there is still a problem that if the content of silicon in the negative electrode is large, the cycle characteristics of charge and discharge will be degraded, and further improvement is required.
  • One aspect of this embodiment relates to the following matters.
  • the negative electrode active material includes an alloy containing silicon (Si alloy), The Si alloy is crystalline and has a median diameter (D50 particle diameter) of 1.2 ⁇ m or less.
  • the negative electrode for lithium ion secondary batteries whose content of the negative electrode binder with respect to the weight of a negative mix layer is 12 weight% or more and 50 weight% or less.
  • FIG. 1 is a cross-sectional view of a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a structure of a laminate type secondary battery according to an embodiment of the present invention. It is a disassembled perspective view which shows the basic structure of a film-clad battery. It is sectional drawing which shows typically the cross section of the battery of FIG. It is a figure which shows the relationship of the number of charging / discharging cycles of Example 13, the comparative example 1, and the comparative example 2, and a capacity
  • cycle characteristics shall mean characteristics, such as a capacity
  • the negative electrode can have a structure in which a negative electrode mixture layer containing a negative electrode active material is formed on a negative electrode current collector.
  • the negative electrode of the present embodiment has, for example, a negative electrode current collector made of metal foil or the like, and a negative electrode mixture layer formed on one side or both sides of the negative electrode current collector.
  • the negative electrode mixture layer is formed to cover the negative electrode current collector with a negative electrode binder.
  • the negative electrode current collector is configured to have an extension portion connected to the negative electrode terminal, and the negative electrode mixture layer is not formed on this extension portion.
  • the “negative electrode mixture layer” refers to a part of the constituent elements of the negative electrode excluding the negative electrode current collector, and includes a negative electrode active material and a negative electrode binder, as necessary. And additives such as a conductive aid.
  • the negative electrode active material is a material capable of inserting and extracting lithium.
  • a substance that does not occlude and release lithium, such as a binder, for example, is not included in the negative electrode active material.
  • the negative electrode for a lithium secondary battery is A negative electrode mixture layer containing a negative electrode active material and a negative electrode binder, and a negative electrode current collector,
  • the negative electrode active material contains a Si alloy,
  • the Si alloy has crystallinity, and its median diameter (D50 particle diameter) is 1.2 ⁇ m or less.
  • the content of the negative electrode binder relative to the total weight of the negative electrode mixture layer is 12% by weight or more and 50% by weight or less.
  • the negative electrode active material includes an alloy containing silicon (also described as “Si alloy” or “silicon alloy”).
  • the alloy containing silicon may be an alloy of silicon and a metal other than silicon (non-silicon metal).
  • silicon, Li, B, Al, Ti, Fe, Pb, Sn, In, Bi, Alloys with at least one selected from the group consisting of Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, Ni and P are preferred, and silicon and Li, B, Ti, Fe, Ni, Al And an alloy with at least one selected from the group consisting of and P is more preferred.
  • the content of non-silicon metal in the alloy of silicon and non-silicon metal is not particularly limited, but is preferably, for example, 0.1 to 5% by mass.
  • Examples of a method of producing an alloy of silicon and non-silicon metal include a method of mixing and melting single silicon and non-silicon metal, and a method of coating non-silicon metal on the surface of single silicon by vapor deposition or the like.
  • the Si alloy preferably has crystallinity.
  • the discharge capacity can be increased by the crystallinity of the Si alloy.
  • the crystallinity of the Si alloy can be confirmed by powder XRD analysis. Even in the case of silicon particles in the electrode, not in the powdery state, crystallinity can be confirmed by electron beam diffraction analysis by applying an electron beam.
  • the crystallinity of the particles of the Si alloy is high, the active material capacity and the charge and discharge efficiency tend to be large. On the other hand, when the crystallinity is low, cycle characteristics of the lithium ion secondary battery may be improved. However, in the amorphous state, there may be a plurality of crystal phases of the negative electrode in the charged state, and the variation of the negative electrode potential becomes large.
  • the crystallinity can be determined from the calculation by Scherrer equation using FWHM (Full Width Half Maximum).
  • the approximate crystallite size to be crystalline is not particularly limited, but is preferably 50 nm or more and 500 nm or less, and more preferably 70 nm or more and 200 nm or less.
  • the median diameter (D50 particle size) of the Si alloy is preferably 1.2 ⁇ m or less, more preferably 1 ⁇ m or less, still more preferably 0.7 ⁇ m or less, still more preferably 0.6 ⁇ m or less, still more preferably 0.5 ⁇ m or less .
  • the lower limit of the median diameter of the Si alloy is not particularly limited, but is preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the median diameter (D50) is based on the volume-based particle size distribution by laser diffraction / scattering type particle size distribution measurement.
  • the silicon alloy having a median diameter of 1.2 ⁇ m or less may be prepared by a chemical synthesis method, or may be obtained by crushing a coarse silicon compound (eg, a silicon alloy of about 10 to 100 ⁇ m). Grinding can be carried out by using a conventional method, for example, a conventional grinder such as a ball mill or a hammer mill or pulverizing means.
  • a conventional grinder such as a ball mill or a hammer mill or pulverizing means.
  • the negative electrode of the present embodiment preferably contains a silicon alloy having crystallinity and a median diameter of 1.2 ⁇ m or less, and such a silicon alloy is referred to as “Si alloy (a)” in the present specification. Also stated.
  • Si alloy (a) a silicon alloy having crystallinity and a median diameter of 1.2 ⁇ m or less
  • a lithium ion secondary battery with high capacity and excellent cycle characteristics can be configured.
  • the specific surface area (CS) of the Si alloy (a) is preferably 1 m 2 / cm 3 or more, more preferably 5 m 2 / cm 3 or more, and still more preferably 10 m 2 / cm 3 or more.
  • the specific surface area (CS) of the Si alloy (a) is preferably 300 m 2 / cm 3 or less.
  • CS Calculated Specific Surfaces Area
  • CS means a specific surface area (unit: m 2 / cm 3 ) when particles are assumed to be spheres.
  • the Si alloy (a) may be coated with silicon oxide in part or all of its surface.
  • Si alloy (a) may contain 1 type individually, and may use 2 or more types together.
  • the content of the Si alloy (a) based on the total weight of the negative electrode active material is preferably 65% by weight or more, more preferably 80% by weight or more, and still more preferably 90% by weight or more. It is even more preferable that the content is at least% by weight, and it may be 100% by weight.
  • a high negative electrode capacity can be obtained by containing 65% by weight or more of the Si alloy (a).
  • the content of the negative electrode binder is 12% by weight or more, preferably By making it 15 weight% or more, it discovered that it could be set as the secondary battery which is excellent in cycling characteristics.
  • the negative electrode active material may include graphite (also described as an “additive material”) in addition to the Si alloy (a).
  • the type of graphite in the negative electrode active material is not particularly limited, and examples thereof include natural graphite and artificial graphite, and may include two or more of these.
  • the shape of the graphite may be, for example, spherical, massive or the like.
  • Graphite has high electrical conductivity, and is excellent in adhesion to a current collector made of metal and in voltage flatness.
  • the inclusion of the graphite may improve the cycle characteristics of the lithium ion secondary battery by reducing the effects of expansion and contraction of the Si alloy during charge and discharge of the lithium ion secondary battery.
  • the median diameter (D50) of graphite is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more, and preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the specific surface area of the graphite is not particularly limited.
  • the BET specific surface area is preferably 0.5 to 9 m 2 / g, and more preferably 0.8 to 5 m 2 / g.
  • the crystal structure of the graphite particles is not particularly limited as long as lithium ions can be occluded and released.
  • the interplanar spacing d (002) may be preferably about 0.3354 to 0.34 nm, more preferably about 0.3354 to 0.338 nm.
  • a Raman band of graphite by Raman spectroscopy of graphite particles As a Raman band of graphite by Raman spectroscopy of graphite particles, a G band (in the vicinity of 1580 to 1600 cm -1 ) corresponding to the in-plane vibration mode and a D band (in the vicinity of 1360 cm -1 ) derived from in-plane defects are observed. Ru. Assuming that these peak intensities are I G and I D respectively, it means that the higher the peak intensity ratio I G / I D , the higher the degree of graphitization.
  • the Raman spectral characteristics of the graphite particles used in the present embodiment are not particularly limited, but it is preferable that, for example, I G / I D be 2 or more and 11 or less.
  • the content of graphite based on the total weight of the negative electrode active material is not particularly limited, but is preferably 2% by weight or more, more preferably 5% by weight or more, and preferably 35% by weight or less, more preferably 25 It is at most weight%, more preferably at most 15 weight%, and may be 0 weight%.
  • the negative electrode active material may contain other negative electrode active materials other than the above as long as the effects of the present invention can be obtained.
  • Other negative electrode active materials include, for example, a material containing silicon as a constituent element (however, it also includes a crystalline silicon alloy having a median diameter of 1.2 ⁇ m or less and hereinafter referred to as “other silicon materials”).
  • other silicon materials metal silicon (silicon alone), silicon oxide represented by a composition formula SiO x (0 ⁇ x ⁇ 2), and the like can be mentioned.
  • the median diameter of the other silicon materials is not particularly limited, but is preferably 0.1 ⁇ m to 10 ⁇ m, and more preferably 0.2 ⁇ m to 8 ⁇ m.
  • silicon oxide as another silicon material.
  • the inclusion of silicon oxide can alleviate local stress concentration in the negative electrode, as in, for example, Japanese Patent No. 3982230.
  • the content of the silicon oxide may be about several ppm with respect to the total weight of the negative electrode active material, but is preferably 0.2% by weight or more, and preferably 5% by weight or less. It is more preferably 2% by weight or less, and may be 0% by weight.
  • the median diameter of the silicon oxide is not particularly limited, but is preferably, for example, about 0.5 to 9 ⁇ m. If the particle size is too small, the reactivity with the electrolytic solution or the like may be increased, and the life characteristics may be reduced. If the particle size is too large, cracking of the particles is likely to occur at the time of Li absorption and release, and the life may be reduced.
  • silicon alloys other than Si alloy (a) that is, silicon alloys having a median diameter of more than 1.2 ⁇ m or amorphous silicon alloys may be included as long as the effects of the present invention can be obtained.
  • the content thereof in the negative electrode active material is preferably 5% by weight or less, more preferably 3% by weight or less, and may be 0% by weight.
  • carbon materials other than graphite may be included as long as the effects of the present invention are not impaired.
  • the carbon material include amorphous carbon, graphene, diamond-like carbon, and a composite thereof, and the like, which is preferably 5% by weight or less in the negative electrode active material, and may be 0% by weight .
  • Other negative electrode active materials also include metals other than silicon and metal oxides.
  • the metal include Li, Al, Ti, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, an alloy of two or more of these, and the like.
  • these metals or alloys may contain one or more nonmetallic elements.
  • a metal oxide aluminum oxide, a tin oxide, an indium oxide, a zinc oxide, lithium oxide, or these composites etc. are mentioned, for example.
  • one or two or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide, for example, 0.1 to 5% by mass. By doing this, it may be possible to improve the electrical conductivity of the metal oxide.
  • the content of the negative electrode active material in the negative electrode mixture layer is preferably 45% by weight or more, more preferably 50% by weight or more, still more preferably 55% by weight or more, and preferably 88% by weight or less, 80% or less preferable.
  • the negative electrode active material may contain one kind alone, or may contain two or more kinds.
  • the negative electrode binder is not particularly limited.
  • polyacrylic acid also described as “PAA”
  • SBR styrene butadiene rubber
  • polyvinylidene fluoride vinylidene fluoride-hexafluoropropylene copolymer
  • vinylidene fluoride -Tetrafluoroethylene copolymer vinylidene fluoride -Tetrafluoroethylene copolymer
  • polytetrafluoroethylene polypropylene
  • polyethylene polyimide, polyamideimide, polystyrene, polyacrylonitrile, etc.
  • thickeners such as carboxymethylcellulose (CMC) can also be used in combination.
  • CMC carboxymethylcellulose
  • the content of the negative electrode binder is preferably 12% by weight or more, more preferably 15% by weight or more, further preferably 20% by weight or more, and still more preferably 25% by weight or more, based on the total weight of the negative electrode mixture layer. 30 weight% or more is more preferable, 35 weight% or more is further more preferable, 40 weight% or more is particularly preferable, 50 weight% or less is preferable, and 45 weight% or less is more preferable.
  • a Si alloy (a) having crystallinity and a median diameter of 1.2 ⁇ m or less is used as the negative electrode active material, but the content of the small particle Si alloy (a) is large.
  • the content of the Si alloy in the negative electrode active material is 65% by weight or more.
  • the content of the negative electrode binder is 12% by weight or more, preferably 15% by weight or more, powdering of the Si alloy can be suppressed, and therefore, deterioration of the cycle characteristics of the secondary battery can be suppressed.
  • the fall of the energy density of a negative electrode can be suppressed as content of a negative electrode binder is 50 weight% or less.
  • PAA polyacrylic acid
  • Polyacrylic acid contains a (meth) acrylic acid monomer unit represented by the following formula (11).
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • R 1 is a hydrogen atom or a methyl group.
  • the carboxylic acid in the monomer unit represented by Formula (11) may be a carboxylic acid salt such as a carboxylic acid metal salt.
  • the metal is preferably a monovalent metal.
  • monovalent metals include alkali metals (eg, Na, Li, K, Rb, Cs, Fr etc.), and noble metals (eg, Ag, Au, Cu etc.) etc. Na and K are preferable, Na is preferred. Is more preferred.
  • polyacrylic acid contains a carboxylate in at least a part of the monomer units, adhesion to the constituent material of the electrode mixture layer may be further improved.
  • the polyacrylic acid may contain other monomer units. There are cases where the peel strength between the electrode mixture layer and the current collector can be improved by the polyacrylic acid further containing a monomer unit other than the (meth) acrylic acid monomer unit.
  • Other monomer units include, for example, monocarboxylic acid compounds such as crotonic acid and pentenoic acid, dicarboxylic acid compounds such as itaconic acid and maleic acid, sulfonic acid compounds such as vinyl sulfonic acid, and phosphonic acids such as vinyl phosphonic acid Acids having an ethylenically unsaturated group such as compounds; aromatic olefins having an acid group such as styrene sulfonic acid and styrene carboxylic acid; alkyl (meth) acrylates; acrylonitrile; aliphatic olefins such as ethylene, propylene and butadiene; Monomer units derived from monomers such as aromatic olefins such as
  • At least one hydrogen atom in the main chain and side chain may be substituted with halogen (fluorine, chlorine, boron, iodine or the like) or the like.
  • polyacrylic acid is a copolymer containing two or more monomer units
  • the copolymer is a random copolymer, an alternating copolymer, a block copolymer, a graft copolymer, etc., and It may be any of these combinations.
  • the molecular weight of the polyacrylic acid is not particularly limited, but the weight average molecular weight is preferably 1,000 or more, more preferably in the range of 10,000 to 5,000,000, and in the range of 300,000 to 350,000. Being particularly preferred.
  • the weight average molecular weight is in the above range, good dispersibility of the active material and the conductive additive can be maintained, and an excessive increase in slurry viscosity can be suppressed.
  • a large specific surface area active material requires a large amount of a binder, but polyacrylic acid has high binding ability even at a small amount. Therefore, when polyacrylic acid is used as the negative electrode binder, the increase in resistance due to the binder is small even in the case of an electrode using an active material with a large specific surface area.
  • the specific surface area is increased by containing the negative electrode active material of the small particle size Si alloy, it is preferable to use polyacrylic acid as the negative electrode binder.
  • the binder containing polyacrylic acid is excellent also in that the irreversible capacity of the battery can be reduced, the capacity of the battery can be increased, and the cycle characteristics can be improved.
  • the negative electrode may contain a conductive aid for the purpose of reducing the impedance.
  • a conductive aid for the purpose of reducing the impedance.
  • the conductive auxiliary scaly, fibrous carbonaceous fine particles and the like, for example, graphite, carbon black, acetylene black, ketjen black, vapor-grown carbon fiber and the like can be mentioned.
  • the content of the conductive aid may be 0% by weight in the negative electrode mixture layer, but is preferably 0.5 to 5% by weight, for example.
  • the negative electrode current collector aluminum, nickel, stainless steel, chromium, copper, silver, iron, manganese, molybdenum, titanium, niobium, and their alloys are preferable from the viewpoint of electrochemical stability.
  • shape, foil, flat form, mesh form is mentioned.
  • stainless steel foils, electrolytic copper foils, and high-strength current collector foils such as rolled copper foils and clad current collector foils are particularly preferable.
  • the clad current collector foil preferably contains copper.
  • the capacity per mass of the negative electrode mixture layer (the initial lithium storage amount at 0 V to 1 V with lithium metal as the counter electrode) is preferably 1500 mAh / g or more, and is not particularly limited, but 4200 mAg It is preferable that the ratio is less than or equal to. In the present specification, the capacity of the negative electrode mixture layer is calculated based on the theoretical capacity of the negative electrode active material.
  • the density of the negative electrode mixture layer of the negative electrode of the present embodiment is not particularly limited, but is preferably 0.4 g / cm 3 or more, more preferably 1 g / cm 3 or more, 1.2 g / cm 3 More preferably, it is 1.4 g / cm 3 or less, and more preferably less than 1.35 g / cm 3 .
  • a lithium ion secondary battery having high energy density and excellent cycle characteristics can be obtained.
  • the negative electrode can be produced according to a conventional method.
  • a negative electrode active material, a negative electrode binder, a conductive auxiliary agent as an optional component, and the like are mixed in a solvent to prepare a slurry.
  • the slurry is prepared by mixing in a V-type mixer (V blender), mechanical milling, or the like.
  • V blender V blender
  • the prepared slurry is applied to a negative electrode current collector and dried to prepare a negative electrode having a negative electrode mixture layer formed on the negative electrode current collector, and then compression molding using a roll press or the like as necessary. I do.
  • Coating can be performed by a doctor blade method, a die coater method, a reverse coater method or the like.
  • the positive electrode can have a configuration in which a positive electrode mixture layer containing a positive electrode active material is formed on a positive electrode current collector.
  • the positive electrode of the present embodiment includes, for example, a positive electrode current collector made of a metal foil or the like, and a positive electrode mixture layer formed on one side or both sides of the positive electrode current collector.
  • the positive electrode mixture layer is formed to cover the positive electrode current collector with a positive electrode binder.
  • the positive electrode current collector is configured to have an extension portion connected to the positive electrode terminal, and the positive electrode mixture layer is not formed in this extension portion.
  • the “positive electrode mixture layer” refers to a part of the components of the positive electrode excluding the positive electrode current collector, and includes a positive electrode active material and a positive electrode binder, as necessary. And additives such as a conductive aid.
  • the positive electrode active material is a material capable of absorbing and desorbing lithium.
  • a substance that does not occlude and release lithium, such as a binder, for example, is not included in the positive electrode active material.
  • the positive electrode active material is not particularly limited as long as it can absorb and release lithium, and can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-volume compound.
  • high-capacity compounds include lithium-rich composite oxides in which a lithium-rich layered positive electrode, lithium nickelate (LiNiO 2 ) or a part of Ni of lithium nickelate is substituted with another metal element, and the following formula (A1) It is preferable that the lithium-rich layered positive electrode represented by the formula (I), and the layered lithium nickel composite oxide represented by the following formula (A2) be used.
  • Li (Li x M 1-x -z Mn z) O 2 (A1) (In the formula (A1), 0.1 ⁇ x ⁇ 0.3, 0.4 ⁇ z ⁇ 0.8, M is at least one of Ni, Co, Fe, Ti, Al and Mg).
  • Li y Ni (1-x) M x O 2 (A2) (In the formula (A2), 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, M is at least one element selected from the group consisting of Li, Co, Al, Mn, Fe, Ti and B.)
  • the content of Ni is high, that is, in the formula (A2), x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 LiNi 0.8 Co 0.1 Al 0.1 O 2 and the like can be preferably used.
  • the content of Ni does not exceed 0.5, that is, x in the formula (A2) is 0.5 or more. It is also preferred that the specific transition metals do not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM 433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM 532), etc. (however, the content of each transition metal in these compounds fluctuates by about 10%) Can also be mentioned.
  • two or more of the compounds represented by the formula (A2) may be used as a mixture, for example, NCM532 or NCM523 and NCM433 in the range of 9: 1 to 1: 9 (typical examples: 2 It is also preferable to use it by mixing it in: 1).
  • a material having a high content of Ni (x is 0.4 or less) and a material having a content of Ni not exceeding 0.5 (x is 0.5 or more, for example, NCM 433) are mixed By doing this, it is possible to construct a battery with high capacity and high thermal stability.
  • a positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides is more than stoichiometric composition And those having an olivine structure such as LiFePO 4 .
  • materials in which these metal oxides are partially substituted by Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. can also be used.
  • Each of the positive electrode active materials described above can be used singly or in combination of two or more.
  • the positive electrode binder is not particularly limited, and polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide Imide, polyacrylic acid and the like can be used.
  • styrene butadiene rubber (SBR) or the like may be used.
  • SBR styrene butadiene rubber
  • a thickener such as carboxymethyl cellulose (CMC) can also be used.
  • the above-mentioned positive electrode binder can also be used in mixture of 2 or more types.
  • the amount of the positive electrode binder to be used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoint of "sufficient binding ability" and "high energy" which are in a trade-off relationship.
  • a conductive aid may be added to the coating layer containing the positive electrode active material for the purpose of lowering the impedance.
  • the conductive auxiliary scaly, fibrous carbonaceous fine particles and the like, for example, graphite, carbon black, acetylene black, vapor grown carbon fiber and the like can be mentioned.
  • the positive electrode current collector aluminum, nickel, copper, silver, iron, chromium, manganese, molybdenum, titanium, niobium and their alloys are preferable in terms of electrochemical stability.
  • shape, foil, flat form, mesh form is mentioned.
  • a current collector using aluminum, an aluminum alloy, or an iron-nickel-chromium-molybdenum stainless steel is preferable.
  • the positive electrode can be manufactured by forming a positive electrode mixture layer containing a positive electrode active material and a positive electrode binder on a positive electrode current collector.
  • Examples of the method of forming the positive electrode mixture layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a positive electrode current collector.
  • the capacity ratio represented by (capacitance per unit area of negative electrode / capacity per unit area of positive electrode) between the negative electrode and the positive electrode disposed opposite to each other via the separator is more than 1.1. Is preferable, and it may be preferable that it is 2 or less. When the capacity ratio is in the above range, a secondary battery excellent in cycle characteristics can be obtained.
  • Electrode solution Although it does not specifically limit as an electrolyte solution (non-aqueous electrolyte solution), for example, the solution which melt
  • a non-aqueous solvent stable at the operating potential of the battery is preferable.
  • the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), fluoroethylene carbonate (FEC), butylene carbonate (BC); dimethyl carbonate (DMC), diethyl carbonate (DEC), Linear carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC); propylene carbonate derivatives, aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; diethyl ether, ethyl propyl ether and the like
  • aprotic organic solvents such as ethers, and fluorinated aprotic organic solvents in which at least a part of hydrogen atoms of these compounds are substituted with a fluorine atom.
  • cyclics such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC) and dipropyl carbonate (DPC) Or, it is preferable to contain linear carbonates.
  • the non-aqueous solvents can be used alone or in combination of two or more.
  • the supporting salt is not particularly limited except that it contains Li.
  • the supporting salt for example, LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 2 , LiB 10 Cl 10 , And the following formula (b): LiN (SO 2 C n F 2n + 1 ) 2 (n is an integer of 0 or more) Formula (b) The compound represented by these is mentioned.
  • examples of the supporting salt include lithium lower aliphatic carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl and the like. Of these, oxidation resistance, reduction resistance, stability, LiPF 6, LiFSI preferably the like ease of dissolution, LiPF 6 in view of low cost are preferred.
  • the supporting salts can be used singly or in combination of two or more.
  • the content of the supporting salt (the total content of multiple supporting salts, if any) is preferably 0.4 mol or more and 1.5 mol or less, more preferably 0.5 mol or more, per 1 L of the non-aqueous solvent. .2 mol or less.
  • the electrolytic solution may further contain other additives, and is not particularly limited, and examples thereof include fluorinated cyclic carbonates such as 4-fluoro-1,3-dioxolan-2-one (FEC).
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • Addition of additives may further improve the cycle characteristics of the battery. It is presumed that this is because these additives are decomposed during charge and discharge of the lithium ion secondary battery to form a film on the surface of the electrode active material and to suppress the decomposition of the electrolytic solution and the supporting salt.
  • the content of these additives in the electrolytic solution (the content of the total of the additives if they are contained in plural types) is not particularly limited and may be 0% by weight, but 0.01% by weight or more relative to the total weight of the electrolytic solution It is preferable that it is not more than% by weight. When the content is 0.01% by weight or more, a sufficient film effect can be obtained. In addition, when the content is 10% by weight or less, it is possible to suppress an increase in the viscosity of the electrolytic solution and an increase in the resistance associated therewith.
  • the separator may be any as long as it suppresses the conduction of the positive electrode and the negative electrode, does not inhibit the permeation of the charged body, and has durability to the electrolytic solution.
  • Specific materials include polyolefins such as polypropylene and polyethylene, cellulose, polyethylene terephthalate, polyimide, polyvinylidene fluoride, polymetaphenylene isophthalamide, polyparaphenylene terephthalamide and copolyparaphenylene-3,4'-oxydiphenylene terephthal And aromatic polyamides such as amides (aramids). These can be used as porous films, woven fabrics, non-woven fabrics and the like.
  • An insulating layer may be formed on at least one surface of the positive electrode, the negative electrode, and the separator.
  • the method for forming the insulating layer include a doctor blade method, a dip coating method, a die coater method, a CVD method, and a sputtering method.
  • the insulating layer can also be formed simultaneously with the formation of the positive electrode, the negative electrode, and the separator.
  • a material for forming the insulating layer a mixture of aluminum oxide, barium titanate or the like and SBR or PVDF can be mentioned.
  • FIG. 1 shows a laminate type secondary battery as an example of the secondary battery according to the present embodiment.
  • a separator 5 is sandwiched between a positive electrode formed of a positive electrode mixture layer 1 containing a positive electrode active material and a positive electrode current collector 3 and a negative electrode formed of the negative electrode mixture layer 2 and a negative electrode current collector 4.
  • the positive electrode current collector 3 is connected to the positive electrode lead terminal 8
  • the negative electrode current collector 4 is connected to the negative electrode lead terminal 7.
  • An exterior laminate 6 is used for the exterior body, and the inside of the secondary battery is filled with an electrolytic solution.
  • the electrode element also referred to as "battery element” or “electrode laminate” has a configuration in which a plurality of positive electrodes and a plurality of negative electrodes are stacked via a separator.
  • a lamination resin film used for a lamination type aluminum, aluminum alloy, titanium foil etc. are mentioned, for example.
  • a material of the heat welding part of a metal laminate resin film thermoplastic polymer materials, such as polyethylene, a polypropylene, a polyethylene terephthalate, are mentioned, for example.
  • a metal lamination resin layer and a metal foil layer are not limited to one layer, respectively, Two or more layers may be sufficient.
  • the secondary battery includes a battery element 20, a film case 10 containing the battery element together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter, these are simply referred to as "electrode tabs"). .
  • the battery element 20 is one in which a plurality of positive electrodes 30 and a plurality of negative electrodes 40 are alternately stacked with the separator 25 interposed therebetween.
  • the electrode material 32 is applied to both surfaces of the metal foil 31, and similarly, the electrode material 42 is applied to both surfaces of the metal foil 41 in the negative electrode 40.
  • the present invention can be applied not only to stacked batteries but also to wound batteries and the like.
  • the electrode tabs were pulled out on both sides of the package, but in the secondary battery to which the present invention can be applied, the electrode tabs were pulled out on one side of the package as shown in FIG. It may be a configuration.
  • the metal foil of the positive electrode and the negative electrode has an extension part in a part of outer periphery, respectively.
  • the extensions of the negative metal foil are collected into one and connected to the negative electrode tab 52, and the extensions of the positive metal foil are collected into one and connected with the positive electrode tab 51 (see FIG. 4).
  • a portion collected into one in the stacking direction of the extension portions in this manner is also called a "current collecting portion" or the like.
  • the film case 10 is composed of two films 10-1 and 10-2 in this example.
  • the films 10-1 and 10-2 are heat-sealed to each other at the periphery of the battery element 20 and sealed.
  • the positive electrode tab 51 and the negative electrode tab 52 are drawn in the same direction from one short side of the film package 10 sealed in this manner.
  • FIGS. 3 and 4 show an example in which the cup portion is formed on one film 10-1 and the cup portion is not formed on the other film 10-2.
  • a configuration (not shown) in which the cup portion is formed on both films a configuration (not shown) in which both are not formed the cup portion may be employed.
  • the lithium ion secondary battery according to the present embodiment can be manufactured according to a conventional method.
  • An example of a method of manufacturing a lithium ion secondary battery will be described by taking a laminate type lithium ion secondary battery as an example.
  • the positive electrode and the negative electrode are disposed opposite to each other via a separator to form an electrode element.
  • the electrode element is housed in an outer package (container), and an electrolytic solution is injected to impregnate the electrode with the electrolytic solution. Thereafter, the opening of the outer package is sealed to complete the lithium ion secondary battery.
  • a plurality of lithium ion secondary batteries according to this embodiment can be combined to form a battery pack.
  • the assembled battery can be, for example, a configuration in which two or more lithium ion secondary batteries according to the present embodiment are used and connected in series, in parallel, or both. By connecting in series and / or in parallel, it is possible to freely adjust the capacity and voltage.
  • the number of lithium ion secondary batteries included in the assembled battery can be appropriately set according to the battery capacity and the output.
  • the lithium ion secondary battery or the assembled battery thereof according to the present embodiment can be used in a vehicle.
  • Vehicles according to the present embodiment include hybrid vehicles, fuel cell vehicles, electric vehicles (all are four-wheeled vehicles (cars, trucks, commercial vehicles such as trucks, buses, mini-vehicles, etc.), as well as two-wheeled vehicles (bikes) and three-wheeled vehicles. Can be mentioned.
  • the vehicle which concerns on this embodiment is not necessarily limited to a motor vehicle, It can also be used as various power supplies of other vehicles, for example, mobile bodies, such as a train.
  • SBR styrene butadiene rubber
  • PAA polyacrylic acid
  • CB carbon black flake: flaky graphite KB: ketjen black
  • CNT carbon nanotube
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • MEC methyl ethyl carbonate
  • FEC fluoroethylene carbonate (4-fluoro -1,3-dioxolan-2-one)
  • SUS foil Stainless steel foil High strength Cu foil: High strength copper clad foil
  • Example 1 The production of the battery of this example will be described.
  • (Negative electrode) Crystalline silicon alloy (alloy of silicon and boron, weight ratio: silicon: boron 99: 1, median diameter 1 ⁇ m, crystallite size 100 nm) as a negative electrode active material and SBR as a negative electrode binder
  • the mixture was weighed to give a ratio of 85:15, and the mixture was kneaded with distilled water to obtain a slurry for the negative electrode mixture layer.
  • the prepared negative electrode slurry was coated on a 10 ⁇ m thick SUS foil as a current collector at a coating amount of 1 mg / cm 2 on one side, dried, cut and pressed, and then punched into a circle with a diameter of 12 mm to obtain a negative electrode .
  • the density of the negative electrode mixture layer was 1.3 g / cc.
  • the 1 C current value when this negative electrode is used is about 3 mAh.
  • the capacity of the negative electrode mixture layer can be calculated as follows.
  • the initial charge capacity when the electrode is punched into a circle with a diameter of 12 mm and the negative electrode active material is coated on one side at 1 mg / cm 2 is as follows.
  • the negative electrode active material capacity is, for example, 3000 mAh / g and the content of the negative electrode active material in the negative electrode mixture layer is 85% by weight
  • the negative electrode capacity excluding the binder that is, the capacity of the negative electrode mixture layer
  • Examples 2 to 21 and Comparative Examples 1 to 5 A battery was produced and evaluated in the same manner as in Example 1 except that the compositions of the negative electrode and the electrolytic solution were changed as described in Tables 1 and 2.
  • Tables 1 and 2 for the negative electrode active material, the type of doping element in the Si alloy, the median diameter of the Si alloy, the content of SiO particles (median diameter: 5 ⁇ m), and the particle diameter of graphite as an auxiliary material The content was changed. All Si alloys have crystallinity. Further, the type and content of the negative electrode binder, the type and content of the negative electrode conductive auxiliary, the type of the negative electrode current collector, and the additive of the electrolytic solution were changed as shown in Table 1 and Table 2.
  • spherical artificial graphite particles (d (002) value: 0.336 nm, G / D ratio 9 9) having a particle diameter (median diameter) of 10 ⁇ m or 5 ⁇ m were used.
  • the content of each material constituting the negative electrode active material represents the content with respect to the total weight of the negative electrode active material, and "the content of the negative electrode active material in the negative electrode mixture layer"
  • the weight ratio of the negative electrode active material to the total weight of the agent layer that is, the total weight of the negative electrode active material, the negative electrode binder, and the negative electrode conductive additive
  • the content of the negative electrode binder and the content of the negative electrode conductive auxiliary represent the content of each material with respect to the total weight of the negative electrode mixture layer.
  • Tables 1 and 2 show the evaluation results of the batteries produced in the respective examples and comparative examples. Moreover, the relationship of the capacity
  • Comparative Examples 1 to 3 since the median diameter of the Si alloy was large, the capacity retention rate was low. This is because when the median diameter of the Si alloy is large, the volume change due to lithium absorption and release is large, the reaction in the negative electrode active material becomes nonuniform, and problems such as grain boundaries and defects easily occur. It is presumed that it has fallen. In Comparative Example 4, since the amount of the negative electrode binder was too large, it is inferred that the capacity retention rate was lowered due to the lack of electron conductivity in the electrode mixture. In Comparative Examples 2 and 5, the content of the negative electrode binder is small, the adhesion between the negative electrode active materials is insufficient, and the powder retention and the like are easily caused.
  • the negative electrode active material includes an alloy containing silicon (Si alloy), The Si alloy is crystalline and has a median diameter (D50 particle diameter) of 1.2 ⁇ m or less.
  • the negative electrode for lithium ion secondary batteries whose content of the negative electrode binder with respect to the weight of a negative mix layer is 12 weight% or more and 50 weight% or less.
  • the negative electrode for a lithium ion secondary battery according to any one of appendices 1 to 4, wherein the negative electrode current collector is a stainless steel foil, a rolled copper foil, or a clad current collector foil.
  • Appendix 9 A battery assembly including the lithium ion secondary battery according to Appendix 7 or 8.
  • the lithium ion secondary battery according to the present invention can be used, for example, in any industrial field requiring a power source, and in the industrial field related to transport, storage and supply of electrical energy.
  • power supplies for mobile devices such as mobile phones and laptop computers
  • power supplies for moving and transporting vehicles such as electric vehicles, hybrid cars, electric bikes, electrically assisted bicycles, etc., trains, satellites, submarines, etc .
  • It can be used for backup power supplies such as UPS; storage equipment for storing electric power generated by solar power generation, wind power generation, etc .;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

エネルギー密度が高く、かつ、サイクル特性に優れたリチウムイオン二次電池を提供する。本発明は、負極活物質および負極結着剤を含む負極合剤層と、負極集電体とを含み、前記負極活物質は、シリコンを含む合金(Si合金)を含み、前記Si合金は、結晶性を有し、そのメジアン径(D50粒径)は1.2μm以下であり、負極合剤層の重量に対する負極結着剤の含有量が、12重量%以上50重量%以下である、リチウムイオン二次電池用負極に関する。

Description

リチウムイオン二次電池用負極およびこれを含むリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極、および、これを含むリチウムイオン二次電池等に関する。
 リチウムイオン二次電池は、エネルギー密度が高い、自己放電が小さい、長期信頼性に優れている等の利点により、ノート型パソコンや携帯電話などにおいて実用化が進められている。さらに近年では、電子機器の高機能化に加え、電気自動車やハイブリッド車等のモータ駆動の車両の市場の拡大、家庭用及び産業用蓄電システムの開発の加速により、サイクル特性や保存特性等の電池特性に優れ、かつ、容量やエネルギー密度をさらに向上した、高性能のリチウムイオン二次電池の開発が求められている。
 高容量のリチウムイオン二次電池を与える負極活物質として、シリコン、スズ、それらを含む合金および金属酸化物等の金属系の活物質が注目を集めている。しかしながら、これらの金属系の負極活物質は、高容量を与える一方で、リチウムイオンが吸蔵放出される際の活物質の膨張収縮が大きい。膨張収縮の体積変化によって、充放電を繰り返すと負極活物質粒子が崩壊して、新たな活性面が露出する。この活性面が電解液の溶媒を分解し、電池のサイクル特性を低減させてしまうという問題があった。リチウムイオン二次電池の電池特性を改良するために、様々な検討が行われている。例えば、特許文献1にはシリコン酸化物を含む負極活物質とアルギン酸塩等のバインダとを含む電極が記載されている。
国際公開第2015/141231号
 特許文献1に記載の電極よりさらに高エネルギー密度のリチウムイオン二次電池が求められている。しかしながら、シリコンはリチウムの吸蔵と放出に伴う体積変化が大きいことから、負極中のシリコンの含有量が大きいと充放電のサイクル特性を低下させてしまうという問題が依然としてあり、さらなる改善が求められていた。
 本実施形態の一態様は以下の事項に関する。
 負極活物質および負極結着剤を含む負極合剤層と、負極集電体とを含み、
 前記負極活物質は、シリコンを含む合金(Si合金)を含み、
 前記Si合金は、結晶性を有し、そのメジアン径(D50粒径)は1.2μm以下であり、
 負極合剤層の重量に対する負極結着剤の含有量が、12重量%以上50重量%以下である、リチウムイオン二次電池用負極。
 本実施形態によれば、エネルギー密度が高く、かつ、サイクル特性に優れたリチウムイオン二次電池を提供することができる。
本発明の一実施形態に係るリチウムイオン二次電池の断面図である。 本発明の一実施形態に係る積層ラミネート型の二次電池の構造を示す模式的断面図である。 フィルム外装電池の基本的構造を示す分解斜視図である。 図3の電池の断面を模式的に示す断面図である。 実施例13、比較例1、比較例2の充放電サイクル数と容量維持率との関係を示す図である。
 以下、本実施形態の負極およびこれを含むリチウムイオン二次電池(単に「二次電池」とも記載する)について、構成ごとに詳細を説明する。なお、本明細書において「サイクル特性」とは、充放電を繰り返した後の容量維持率等の特性のことを意味するものとする。
 <負極>
 負極は、負極集電体上に、負極活物質を含む負極合剤層が形成された構成とすることができる。本実施形態の負極は、例えば、金属箔等で形成される負極集電体と、負極集電体の片面又は両面に形成された負極合剤層とを有する。負極合剤層は負極結着剤によって負極集電体を覆うように形成される。負極集電体は、負極端子と接続する延長部を有するように構成され、この延長部には負極合剤層は形成されない。ここで、本明細書において、「負極合剤層」とは、負極の構成要素のうち、負極集電体を除く部分のことをいい、負極活物質および負極結着剤を含み、必要に応じて導電助剤等の添加剤等を含んでもよい。また、負極活物質は、リチウムを吸蔵放出し得る物質である。本明細書において、例えば結着剤など、リチウムを吸蔵放出しない物質は、負極活物質には含まれない。
 本実施形態の一態様のリチウム二次電池用負極は、
 負極活物質および負極結着剤を含む負極合剤層と、負極集電体とを含み、
 該負極活物質は、Si合金を含み、
 該Si合金は、結晶性を有し、そのメジアン径(D50粒径)は1.2μm以下であり、
 負極合剤層の総重量に対する負極結着剤の含有量が、12重量%以上50重量%以下である。
 (負極活物質)
 本実施形態において、負極活物質は、シリコンを含む合金(「Si合金」または「シリコン合金」とも記載する)を含む。シリコンを含む合金は、シリコンと、シリコン以外の金属(非シリコン金属)との合金であればよいが、例えば、シリコンと、Li、B、Al、Ti、Fe、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、NiおよびPからなる群より選択される少なくとも一種との合金が好ましく、シリコンと、Li、B、Ti、Fe、Ni、AlおよびPからなる群より選択される少なくとも一種との合金がより好ましい。シリコンと非シリコン金属との合金中の非シリコン金属の含有量は、特に限定されないが、例えば、0.1~5質量%であるのが好ましい。シリコンと非シリコン金属との合金の製造方法としては、例えば、単体シリコンと非シリコン金属を混合および溶融する方法、単体シリコンの表面に非シリコン金属を蒸着等により被覆する方法が挙げられる。
 Si合金は、結晶性を有するのが好ましい。Si合金が結晶性を有することにより、放電容量を高くできる。Si合金が結晶性であることは、粉末XRD解析によって確認することができる。粉末状態ではなく、電極中のシリコン粒子であっても、電子線を当てることによる電子線回折解析によって、結晶性を確認することができる。
 Si合金の粒子の結晶性が高いと、活物質容量や充放電効率が大きくなる傾向にある。一方、結晶性が低いと、リチウムイオン二次電池のサイクル特性が向上する場合がある。ただし、非晶質状態になると、充電状態における負極の結晶相が複数になる場合があり、負極電位のバラツキが大きくなる。結晶性は、FWHM(Full Width Half Maximum)を用いたシェラーの式(Scherrer equation)による計算から判断することが出来る。結晶性となるおよその結晶子サイズとしては、特に限定されないが、好ましくは、50nm以上500nm以下であり、より好ましくは70nm以上200nm以下である。
 Si合金のメジアン径(D50粒径)は、1.2μm以下が好ましく、1μm以下がより好ましく、0.7μm以下がさらに好ましく、0.6μm以下がよりさらに好ましく、0.5μm以下がよりさらに好ましい。Si合金のメジアン径の下限は特に限定されないが、0.05μm以上が好ましく、0.1μm以上がより好ましい。結晶性シリコンのメジアン径が1.2μm以下であることにより、リチウムイオン二次電池の充放電において、Si合金の粒子ごとの体積の膨張収縮を小さくすることができ、結晶粒界や欠陥といった不均一性に起因する劣化がおきにくくなる。これにより、リチウムイオン二次電池の容量維持率等のサイクル特性が向上する。また、シリコン合金のメジアン径が大きすぎると粒界界面が多くなるため、粒子内不均一反応が増えること以外にも副反応生成物の偏析などが多く確認されるようになってしまう。なお、本発明において、メジアン径(D50)は、レーザー回折/散乱式粒度分布測定による体積基準粒径分布によるものである。
 メジアン径が1.2μm以下のシリコン合金は、化学的合成法により調製してもよく、粗大ケイ素化合物(例えば、10~100μm程度のシリコン合金)を粉砕することにより得てもよい。粉砕は、慣用の方法、例えば、ボールミル、ハンマーミルなどの慣用の粉砕機又は微粉末化手段が利用できる。
 本実施形態の負極は、結晶性を有し、かつ、メジアン径が1.2μm以下のシリコン合金を含むのが好ましく、このようなシリコン合金を、本明細書において、「Si合金(a)」とも記載する。負極がSi合金(a)を含むことにより、高容量で、かつ、サイクル特性に優れたリチウムイオン二次電池を構成することができる。
 Si合金(a)の比表面積(CS)は、好ましくは1m/cm以上、より好ましくは5m/cm以上、さらに好ましくは10m/cm以上である。また、Si合金(a)の比表面積(CS)は、好ましくは300m/cm以下である。ここで、CS(Calculated Specific Surfaces Area)は、粒子を球と仮定した時の比表面積(単位:m/cm)を意味する。
 Si合金(a)は、その表面の一部または全部が酸化シリコンで被覆されていてもよい。Si合金(a)は、1種を単独で含んでもよいし2種以上を併用してもよい。
 負極活物質の全重量に対するSi合金(a)の含有量は、65重量%以上であるのが好ましく、80重量%以上であるのがより好ましく、90重量%以上であるのがさらに好ましく、93重量%以上であるのがよりさらに好ましく、100重量%であってもよい。Si合金(a)を65重量%以上含むことにより、高い負極容量を得られる。メジアン径の小さいシリコン合金の含有量が多いと、シリコン合金の凝集が発生しやすくなり、一部のシリコン合金が充放電に寄与しなくなり、サイクル特性が低下する場合がある。しかしながら、本発明者らは、メジアン径が1.2μm以下の小さいSi合金(a)を負極活物質中65重量%以上用いる場合でも、負極結着剤の含有量を12重量%以上、好ましくは15重量%以上とすることで、サイクル特性に優れる二次電池とすることができることを見出した。
 本実施形態の一態様として、負極活物質は、上記Si合金(a)に加えて、黒鉛(「副材」とも記載する)を含んでもよい。負極活物質中の黒鉛の種類は、特に限定はされないが、例えば、天然黒鉛および人造黒鉛が挙げられ、これらのうち2種以上を含んでもよい。黒鉛の形状は、例えば、球状、塊状等であってもよい。黒鉛は、電気伝導性が高く、金属からなる集電体との接着性および電圧平坦性が優れている。また、黒鉛を含むことにより、リチウムイオン二次電池の充放電時におけるSi合金の膨張および収縮の影響を緩和して、リチウムイオン二次電池のサイクル特性を改善することができる場合がある。
 黒鉛のメジアン径(D50)は、特に限定されないが、好ましくは1μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上であり、また、好ましくは20μm以下、より好ましくは15μm以下である。
 黒鉛の比表面積は、特に限定されないが、例えば、BET比表面積が0.5~9m/gであることが好ましく、0.8~5m/gであることがより好ましい。
 黒鉛粒子の結晶構造はリチウムイオンの吸蔵、放出が可能であれば特に限定されない。例えば、面間隔d(002)は、好ましくは0.3354~0.34nm程度、より好ましくは0.3354~0.338nm程度であってもよい。
 黒鉛粒子のラマン分光による黒鉛のラマンバンドとしては、面内振動モードに対応するGバンド(1580~1600cm-1付近)と、面内の欠陥に由来したDバンド(1360cm-1付近)が観測される。これらのピーク強度をそれぞれI及びIとすると、ピーク強度比I/Iが高いほど黒鉛化度が高いことを意味する。本実施形態に用いる黒鉛粒子のラマン分光特性は、特に限定されないが、例えば、I/Iが2以上、11以下であるのが好ましい。
 負極活物質の総重量に対する黒鉛の含有量は、特に限定されないが、好ましくは2重量%以上、より好ましくは5重量%以上であり、また、好ましくは35重量%以下であり、より好ましくは25重量%以下であり、さらに好ましくは15重量%以下であり、0重量%であってもよい。
 負極活物質は、本願発明の効果が得られる範囲で上記以外のその他の負極活物質を含んでもよい。その他の負極活物質として、例えば、構成元素としてシリコンを含む材料(ただし、結晶性でメジアン径が1.2μm以下のシリコン合金を除く。以下、「その他のケイ素材料」とも呼ぶ。)を含んでもよく、その他のケイ素材料として、金属シリコン(シリコン単体)、組成式SiO(0<x≦2)で表されるシリコン酸化物などが挙げられる。その他のケイ素材料のメジアン径は、特に限定されないが、0.1μm以上10μm以下が好ましく、0.2μm以上8μm以下がより好ましい。
 本実施形態の一態様においては、その他のケイ素材料として、シリコン酸化物を含むのが好ましい。シリコン酸化物を含むと、例えば特許第3982230号にあるように、負極における局所的応力集中を緩和することができる。シリコン酸化物の含有量は、負極活物質の総重量に対して、数ppm程度であってもよいが、0.2重量%以上であるのが好ましく、5重量%以下であるのが好ましく、2重量%以下であるのがより好ましく、0重量%であってもよい。シリコン酸化物のメジアン径は、特に限定されないが、例えば、0.5~9μm程度であるのが好ましい。粒径が小さすぎると、電解液などとの反応性が高くなり、寿命特性が低下する場合がある。粒径が大きすぎると、Li吸蔵放出時に粒子の割れが発生しやすくなり、寿命が低下する場合がある。
 その他の負極活物質として、本願発明の効果が得られる範囲で、Si合金(a)以外のシリコン合金、すなわちメジアン径が1.2μm超えのシリコン合金または非晶質のシリコン合金を含んでもよいが、これらの含有量は負極活物質中、5重量%以下であるのが好ましく、3重量%以下であるのがより好ましく、0重量%であってもよい。
 その他の負極活物質として、本願発明の効果を損なわない範囲で黒鉛以外の他の炭素材料を含んでもよい。炭素材料としては非晶質炭素、グラフェン、ダイヤモンド状炭素、またはこれらの複合物等が挙げられるが、これらは負極活物質中5重量%以下であるのが好ましく、0重量%であってもよい。
 その他の負極活物質として、シリコン以外の金属、金属酸化物も挙げられる。金属としては、例えば、Li、Al、Ti、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらうちの2種以上の合金等が挙げられる。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。金属酸化物としては、例えば、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。また、金属酸化物に、窒素、ホウ素および硫黄の中から選ばれる一種または2種以上の元素を、例えば0.1~5質量%添加してもよい。こうすることで、金属酸化物の電気伝導性を向上させることができる場合がある。
 負極合剤層中の負極活物質の含有量は45重量%以上が好ましく、50重量%以上がより好ましく、55重量%以上がさらに好ましく、また、88重量%以下が好ましく、80%以下がより好ましい。
 負極活物質は一種を単独で含んでも、二種以上を含んでもよい。
(負極結着剤)
 負極結着剤は、特に限定されないが、例えば、ポリアクリル酸(「PAA」とも記載する)、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリスチレン、ポリアクリロニトリル等を用いることができ、一種を単独で用いても二種以上を組み合わせて用いてもよい。また、カルボキシメチルセルロース(CMC)等の増粘剤を組み合わせて使用することもできる。これらのうち、結着性に優れるという観点から、SBRとCMCの組合せ、ポリアクリル酸およびポリイミドからなる群から選ばれる少なくとも一種を含むことが好ましく、ポリアクリル酸を含むことがより好ましい。
 負極結着剤の含有量は、負極合剤層の総重量に対し、12重量%以上が好ましく、15重量%以上がより好ましく、20重量%以上がさらに好ましく、25重量%以上がさらに好ましく、30重量%以上がさらに好ましく、35重量%以上がよりさらに好ましく、40重量%以上が特に好ましく、また、50重量%以下が好ましく、45重量%以下がより好ましい。本実施形態の一態様においては、負極活物質として、結晶性を有しメジアン径が1.2μm以下のSi合金(a)を用いるが、小粒径のSi合金(a)の含有量が大きい(例えば、負極活物質中のSi合金の含有量が65重量%以上である。)と、通常、粉落ちが増えて、二次電池のサイクル特性が低下しやすいという問題がある。しかしながら、負極結着剤の含有量が12重量%以上、好ましくは15重量%以上であると、Si合金の粉落ちを抑制できるため、二次電池のサイクル特性の低下を抑制することができる。一方、負極結着剤の含有量が50重量%以下であると、負極のエネルギー密度の低下を抑制することができる。
 以下、本実施形態の好ましい一態様として、負極結着剤としてのポリアクリル酸(PAA)について詳説するが、本発明はこれに限定されるものではない。
 ポリアクリル酸は、下記式(11)で表される(メタ)アクリル酸単量体単位を含む。なお、本明細書において、用語「(メタ)アクリル酸」は、アクリル酸及び/又はメタクリル酸を意味する。
Figure JPOXMLDOC01-appb-C000001
(式(11)中、Rは、水素原子又はメチル基である。)
 式(11)で表される単量体単位におけるカルボン酸は、カルボン酸金属塩などのカルボン酸塩であってよい。金属は好ましくは一価金属である。一価金属としては、アルカリ金属(例えば、Na、Li、K、Rb、Cs、Fr等)、及び、貴金属(例えば、Ag、Au、Cu等)等が挙げられ、NaおよびKが好ましく、Naがより好ましい。ポリアクリル酸が、少なくとも一部の単量体単位にカルボン酸塩を含むことにより、電極合剤層の構成材料との密着性をさらに向上させることができる場合がある。
 ポリアクリル酸は、その他の単量体単位を含んでいてもよい。ポリアクリル酸が、(メタ)アクリル酸単量体単位以外の単量体単位をさらに含むことで、電極合剤層と集電体との剥離強度を改善できる場合がある。その他の単量体単位としては、例えば、クロトン酸、ペンテン酸等のモノカルボン酸化合物、イタコン酸、マレイン酸等のジカルボン酸化合物、ビニルスルホン酸等のスルホン酸化合物、ビニルホスホン酸等のホスホン酸化合物等のエチレン性不飽和基を有する酸;スチレンスルホン酸、スチレンカルボン酸等の酸性基を有する芳香族オレフィン;(メタ)アクリル酸アルキルエステル;アクリロニトリル;エチレン、プロピレン、ブタジエン等の脂肪族オレフィン;スチレン等の芳香族オレフィン等のモノマーに由来する単量体単位が挙げられる。また、その他の単量体単位は、二次電池の結着剤として使用される公知のポリマーを構成する単量体単位であってもよい。これらの単量体単位においても、存在する場合、酸が塩となっていてもよい。
 さらに、ポリアクリル酸は、主鎖および側鎖の少なくとも1つの水素原子が、ハロゲン(フッ素、塩素、ホウ素、ヨウ素等)等で置換されていてもよい。
 なお、ポリアクリル酸が2種以上の単量体単位を含む共重合体である場合、共重合体は、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等、及びこれらの組合せのいずれであってもよい。
 ポリアクリル酸の分子量は、特に限定されるものではないが、重量平均分子量が1000以上であることが好ましく、1万~500万の範囲であることがより好ましく、30万~35万の範囲であることが特に好ましい。重量平均分子量が上記範囲内であると、活物質や導電助剤の良好な分散性を維持でき、かつ、スラリー粘度の過度の上昇を抑制できる。
 一般に、大きな比表面積の活物質には多くの量の結着剤を必要とするが、ポリアクリル酸は少量であっても高い結着性を有する。このため、負極結着剤としてポリアクリル酸を使用した場合、大きな比表面積の活物質を使用する電極であっても、結着剤による抵抗の上昇が少ない。本実施形態の負極においては小粒径のSi合金の負極活物質を含むことにより比表面積が大きくなるため、負極結着剤としてポリアクリル酸を用いるのが好ましい。さらに、ポリアクリル酸を含む結着剤は、電池の不可逆容量を低減し、電池を高容量化でき、サイクル特性を向上できる点においても優れている。
 負極は、インピーダンスを低下させる目的で、導電助剤を含んでもよい。導電助剤としては、鱗片状、線維状の炭素質微粒子等、例えば、グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラック、気相法炭素繊維等が挙げられる。導電助剤の含有量は、負極合剤層中、0重量%であってもよいが、例えば0.5~5重量%であるのが好ましい。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、鉄、マンガン、モリブデン、チタン、ニオブおよびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。これらのうち、特に、ステンレス箔、電解銅箔、ならびに、圧延銅箔およびクラッド集電箔等の高強度集電箔が好ましい。クラッド集電箔は、銅を含むのが好ましい。
 本実施形態において、負極合剤層の質量あたりの容量(リチウム金属を対極にして0V~1Vにおける初回のリチウム吸蔵量)が、1500mAh/g以上であるのが好ましく、また、特に限定されないが4200mAg/以下であるのが好ましい。本明細書において、負極合剤層の容量は、負極活物質の理論容量に基づいて算出される。
 本実施形態の負極の負極合剤層の密度は、特に限定されないが、0.4g/cm以上であるのが好ましく、1g/cm以上であるのがより好ましく、1.2g/cm以上であるのがさらに好ましく、また、1.4g/cm以下であるのが好ましく、1.35g/cm未満であるのがより好ましい。負極合剤層の密度が上記範囲内にあると、エネルギー密度が高く、かつサイクル特性に優れるリチウムイオン二次電池を得ることができる。負極の負極合剤層の密度を上記範囲内にするために、負極の製造工程において、ロールプレス等して圧縮成形する工程を行わなくてよい場合もあり、この場合は負極の製造コストを削減できる。
 負極は、通常の方法に従って作製することができる。一態様として、まず、負極活物質と、負極結着剤と、任意成分としての導電助剤等とを溶剤に混合しスラリーを調整する。好ましくは、段階的に、各工程において、V型混合器(Vブレンダ―)やメカニカルミリング等により混合して、スラリーを調製する。続いて、調製したスラリーを負極集電体に塗布し、乾燥することで、負極集電体上に負極合剤層が形成された負極を作製し、その後必要に応じてロールプレス等で圧縮成形を行う。塗布は、ドクターブレード法、ダイコーター法、リバースコーター法等によって実施できる。
 <正極>
 正極は、正極集電体上に、正極活物質を含む正極合剤層が形成された構成とすることができる。本実施形態の正極は、例えば、金属箔等で形成される正極集電体と、正極集電体の片面又は両面に形成された正極合剤層とを有する。正極合剤層は正極結着剤によって正極集電体を覆うように形成される。正極集電体は、正極端子と接続する延長部を有するように構成され、この延長部には正極合剤層は形成されない。ここで、本明細書において、「正極合剤層」とは、正極の構成要素のうち、正極集電体を除く部分のことをいい、正極活物質および正極結着剤を含み、必要に応じて導電助剤等の添加剤等を含んでもよい。また、正極活物質は、リチウムを吸蔵放出し得る物質である。本明細書において、例えば結着剤など、リチウムを吸蔵放出しない物質は、正極活物質には含まれない。
 正極活物質としては、リチウムを吸蔵放出し得る材料であれば特に限定されず、いくつかの観点から選ぶことができる。高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、Li過剰系層状正極、ニッケル酸リチウム(LiNiO)またはニッケル酸リチウムのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A1)で表されるLi過剰系層状正極、下式(A2)で表される層状リチウムニッケル複合酸化物が好ましい。
 Li(Li1-x-zMn)O   (A1)
(式(A1)中、0.1≦x<0.3、0.4≦z≦0.8、MはNi、Co、Fe、Ti、Al及びMgのうちの少なくとも一種である。);
 LiNi(1-x)   (A2)
(式(A2)中、0≦x<1、0<y≦1、MはLi、Co、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
 高容量の観点では、Niの含有量が高いこと、即ち式(A2)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、α+β+γ+δ=2、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、α+β+γ+δ=2、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20、β+γ+δ=1)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A2)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、α+β+γ+δ=2、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。
 また、式(A2)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A2)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。
 正極結着剤としては、特に限定されないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリアクリル酸等を用いることができる。また、スチレンブタジエンゴム(SBR)等を用いてもよい。SBR系エマルジョンのような水系の結着剤を用いる場合、カルボキシメチルセルロース(CMC)等の増粘剤を用いることもできる。上記の正極結着剤は、2種以上を混合して用いることもできる。使用する正極結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。
 正極活物質を含む塗工層には、インピーダンスを低下させる目的で、導電助剤を添加してもよい。導電助剤としては、鱗片状、線維状の炭素質微粒子等、例えば、グラファイト、カーボンブラック、アセチレンブラック、気相法炭素繊維等が挙げられる。
 正極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、鉄、クロム、マンガン、モリブデン、チタン、ニオブおよびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。特に、アルミニウム、アルミニウム合金、鉄・ニッケル・クロム・モリブデン系のステンレスを用いた集電体が好ましい。
 正極は、正極集電体上に、正極活物質と正極結着剤を含む正極合剤層を形成することで作製することができる。正極合剤層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法等が挙げられる。予め正極合剤層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、正極集電体としてもよい。
 本実施形態においては、セパレータを介して対向配置された負極と正極とにおいて(負極の単位面積あたりの容量/正極の単位面積あたりの容量)で表される容量比が、1.1超えであるのが好ましく、2以下であるのが好ましい場合がある。容量比が上記範囲内にあることで、サイクル特性に優れた二次電池を得ることができる。
 <電解液>
 電解液(非水電解液)としては、特に限定されないが、例えば支持塩を非水溶媒に溶解した溶液を用いることができる。
 電解液の溶媒としては、電池の動作電位において安定な非水溶媒が好ましい。非水溶媒の例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、フルオロエチレンカーボネート(FEC)、ブチレンカーボネート(BC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;ジエチルエーテル、エチルプロピルエーテル等のエーテル類等の非プロトン性有機溶媒、及び、これらの化合物の水素原子の少なくとも一部をフッ素原子で置換したフッ素化非プロトン性有機溶媒等が挙げられる。
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の環状または鎖状カーボネート類を含むことが好ましい。
 非水溶媒は、1種を単独で、または2種以上を組み合わせて使用することができる。
(支持塩)
 支持塩は、Liを含有すること以外は特に限定されない。支持塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiB10Cl10、および下記式(b):
  LiN(SO2n+1(nは0以上の整数) 式(b)
で表される化合物が挙げられる。
 式(b)で表される化合物としては、例えば、LiN(FSO(略称:LiFSI)、LiN(CFSO、LiN(CSOが挙げられる。また、支持塩としては、他にも、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl等が挙げられる。これらのうち、耐酸化性、耐還元性、安定性、溶解のしやすさなどからLiPF、LiFSIが好ましく、低コストの観点からLiPFが好ましい。支持塩は、一種を単独で、または二種以上を組み合わせて用いることができる。支持塩の含有量(複数種の支持塩を含む場合はそれらの合計含有量)は、非水溶媒1Lに対して、好ましくは0.4mol以上1.5mol以下、より好ましくは0.5mol以上1.2mol以下である。
 電解液は、さらにその他の添加剤を含んでもよく、特に限定はされないが、例えば4-フルオロ-1,3-ジオキソラン-2-オン(FEC)等のフッ素化環状カーボネートが挙げられる。添加剤を添加することにより、電池のサイクル特性をさらに改善することができる場合がある。これは、これらの添加剤がリチウムイオン二次電池の充放電時に分解して電極活物質の表面に皮膜を形成し、電解液や支持塩の分解を抑制するためと推定される。
 電解液中のこれら添加剤の含有量(複数種含む場合はその合計の含有量)は、特に限定されず0重量%でもよいが、電解液の総重量に対し、0.01重量%以上10重量%以下であるのが好ましい。含有量が0.01重量%以上であることにより、十分な皮膜効果を得ることができる。また、含有量が10重量%以下であると電解液の粘性の上昇、およびそれに伴う抵抗の増加を抑制することができる。
 <セパレータ>
 セパレータは、正極および負極の導通を抑制し、荷電体の透過を阻害せず、電解液に対して耐久性を有するものであれば、いずれであってもよい。具体的な材質としては、ポリプロピレンおよびポリエチレン等のポリオレフィン、セルロース、ポリエチレンテレフタレート、ポリイミド、ポリフッ化ビニリデンならびにポリメタフェニレンイソフタルアミド、ポリパラフェニレンテレフタルアミドおよびコポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド等の芳香族ポリアミド等(アラミド)が挙げられる。これらは、多孔質フィルム、織物、不織布等として用いることができる。
 <絶縁層>
 正極、負極、およびセパレータの少なくとも1つの表面に絶縁層を形成してもよい。絶縁層の形成方法としては、ドクターブレード法、ディップコーティング法、ダイコーター法、CVD法、スパッタリング法等が挙げられる。正極、負極、セパレータの形成と同時に絶縁層を形成することもできる。絶縁層を形成する物質としては、酸化アルミニウムやチタン酸バリウムなどとSBRやPVDFとの混合物などが挙げられる。
 <リチウムイオン二次電池の構造>
 図1に、本実施形態に係る二次電池の一例として、ラミネートタイプの二次電池を示す。正極活物質を含む正極合剤層1と正極集電体3とからなる正極と、負極合剤層2と負極集電体4とからなる負極との間に、セパレータ5が挟まれている。正極集電体3は正極リード端子8と接続され、負極集電体4は負極リード端子7と接続されている。外装体には外装ラミネート6が用いられ、二次電池内部は電解液で満たされている。なお、電極素子(「電池要素」又は「電極積層体」ともいう)は、図2に示すように、複数の正極及び複数の負極がセパレータを介して積層された構成とすることも好ましい。
 ラミネート型に用いるラミネート樹脂フィルムとしては、例えば、アルミニウム、アルミニウム合金、チタン箔等が挙げられる。金属ラミネート樹脂フィルムの熱溶着部の材質としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の熱可塑性高分子材料が挙げられる。また、金属ラミネート樹脂層や金属箔層はそれぞれ1層に限定されるものではなく、2層以上であってもよい。
 さらに、別の態様としては、図3および図4のような構造の二次電池としてもよい。この二次電池は、電池要素20と、それを電解質と一緒に収容するフィルム外装体10と、正極タブ51および負極タブ52(以下、これらを単に「電極タブ」ともいう)とを備えている。
 電池要素20は、図4に示すように、複数の正極30と複数の負極40とがセパレータ25を間に挟んで交互に積層されたものである。正極30は、金属箔31の両面に電極材料32が塗布されており、負極40も、同様に、金属箔41の両面に電極材料42が塗布されている。なお、本発明は、必ずしも積層型の電池に限らず捲回型などの電池にも適用しうる。
 図1の二次電池は電極タブが外装体の両側に引き出されたものであったが、本発明を適用しうる二次電池は図3のように電極タブが外装体の片側に引き出された構成であってもよい。詳細な図示は省略するが、正極および負極の金属箔は、それぞれ、外周の一部に延長部を有している。負極金属箔の延長部は一つに集められて負極タブ52と接続され、正極金属箔の延長部は一つに集められて正極タブ51と接続される(図4参照)。このように延長部どうし積層方向に1つに集めた部分は「集電部」などとも呼ばれる。
 フィルム外装体10は、この例では、2枚のフィルム10-1、10-2で構成されている。フィルム10-1、10-2どうしは電池要素20の周辺部で互いに熱融着されて密閉される。図3では、このように密閉されたフィルム外装体10の1つの短辺から、正極タブ51および負極タブ52が同じ方向に引き出されている。
 当然ながら、異なる2辺から電極タブがそれぞれ引き出されていてもよい。また、フィルムの構成に関し、図3、図4では、一方のフィルム10-1にカップ部が形成されるとともに他方のフィルム10-2にはカップ部が形成されていない例が示されているが、この他にも、両方のフィルムにカップ部を形成する構成(不図示)や、両方ともカップ部を形成しない構成(不図示)なども採用しうる。
 <リチウムイオン二次電池の製造方法>
 本実施形態によるリチウムイオン二次電池は、通常の方法に従って作製することができる。積層ラミネート型のリチウムイオン二次電池を例に、リチウムイオン二次電池の製造方法の一例を説明する。まず、乾燥空気または不活性雰囲気において、正極および負極を、セパレータを介して対向配置して、電極素子を形成する。次に、この電極素子を外装体(容器)に収容し、電解液を注入して電極に電解液を含浸させる。その後、外装体の開口部を封止してリチウムイオン二次電池を完成する。
 <組電池>
 本実施形態に係るリチウムイオン二次電池を複数組み合わせて組電池とすることができる。組電池は、例えば、本実施形態に係るリチウムイオン二次電池を2つ以上用い、直列、並列又はその両方で接続した構成とすることができる。直列および/または並列接続することで容量および電圧を自由に調節することが可能になる。組電池が備えるリチウムイオン二次電池の個数については、電池容量や出力に応じて適宜設定することができる。
 <車両>
 本実施形態に係るリチウムイオン二次電池またはその組電池は、車両に用いることができる。本実施形態に係る車両としては、ハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バス等の商用車、軽自動車等)のほか、二輪車(バイク)や三輪車を含む)が挙げられる。なお、本実施形態に係る車両は自動車に限定されるわけではなく、他の車両、例えば電車等の移動体の各種電源として用いることもできる。
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下の実施例で用いた化合物の略号について説明する。
SBR:スチレンブタジエンラバー
PAA:ポリアクリル酸
CB:カーボンブラック
鱗片:鱗片状黒鉛
KB:ケッチェンブラック
CNT:カーボンナノチューブ
EC:エチレンカーボネート
DEC:ジエチルカーボネート
MEC:メチルエチルカーボネート
FEC:フルオロエチレンカーボネート(4-フルオロ-1,3-ジオキソラン-2-オン)
SUS箔:ステンレス箔
高強度Cu箔:高強度銅クラッド箔
<実施例1>
 本実施例の電池の作製について説明する。
(負極)
 負極活物質としての結晶性シリコン合金(シリコンとホウ素との合金、重量比は、シリコン:ホウ素=99:1、メジアン径1μm、結晶子サイズ100nm)と、負極結着剤としてのSBRとを重量比85:15となるように計量し、それらを蒸留水にて混練し、負極合剤層用のスラリーとした。調製した負極スラリーを、集電体としての厚み10μmのSUS箔に片面1mg/cmの目付け量にて塗布、乾燥し、切断し、さらにプレスし、直径12mmの円形に打ち抜いて負極を得た。負極合剤層の密度は、1.3g/ccとした。この負極を用いた場合の1C電流値は、約3mAhである。
 負極合剤層の容量は以下のようにして算出できる。電極を直径12mmの円形に打ち抜き、上記負極活物質を1mg/cmで片面に塗工したときの初回充電容量は以下のとおりである。負極活物質容量が例えば3000mAh/gで負極合剤層中の負極活物質の含有量が85重量%のとき、バインダを除いた負極容量(すなわち負極合剤層の容量)は、3000(mAh/g)×85/100=2550(mAh/g)である。よって、初回充電容量は2550(mAh/g)×1mg/cm×(12mm×0.5)×π=2.9(mAh)となる。
(電池の作製)
 得られた負極を用いて、金属リチウムを対極としたハーフセルを作製した。電解液には、1.0mol/lのLiPFを含むECとDECとMECとの混合溶媒(体積比:EC/DEC/MEC=3/5/2)を用いた。
(電池の評価)
 温度25℃において、充電として、0.5C電流値で0VまでCCCV充電を行い、放電として0.5C電流値で1VまでCC放電を行った。充放電を50回繰り返し、50サイクル後の容量維持率を、下記式:
{(50サイクル後の放電容量)/(1サイクル後の放電容量)}×100(単位:%)
により算出した。結果を表1に示す。
<実施例2~21、比較例1~5>
 負極および電解液の組成を表1および表2に記載のとおりに変更した以外は、実施例1と同様にして電池を作製し、その評価を行った。表1および表2のとおり、負極活物質については、Si合金中のドープ元素の種類とSi合金のメジアン径、SiO粒子(メジアン径:5μm)の含有量、副材としての黒鉛の粒径とその含有量を変更した。Si合金はいずれも結晶性を有するものである。また、負極結着剤の種類とその含有量、負極導電助剤の種類とその含有量、負極集電体の種類、電解液の添加剤を、表1および表2のとおりに変えた。炭素副材としての黒鉛は、粒径(メジアン径)が10μmまたは5μmの球状の人造黒鉛粒子(d(002)値:0.336nm、G/D比≧9)を用いた。
 表1および表2中、負極活物質を構成する各材料の含有量は、負極活物質の総重量に対する含有量を表し、「負極合剤層中の負極活物質の含有量」は、負極合剤層の総重量(すなわち負極活物質と負極結着剤と負極導電助剤の合計重量)に対する負極活物質の重量割合を表す。負極結着剤の含有量および負極導電助剤の含有量は、負極合剤層の総重量に対する、各材料の含有量を表す。
 各実施例および比較例の電池の負極の作製において、SiO粒子、副材としての黒鉛、および/または導電助剤を含む場合は、これらを、シリコン合金と負極結着剤と一緒に、表1および表2に記載の組成になるように混合して、負極合剤層用のスラリーを調製した。電解液が添加剤のFECを含む場合は、上記実施例1の電解液中FECが10重量%になるようにFECを添加した。
 表1および表2に、各実施例、比較例で作製した電池の評価結果を示す。また、図5に実施例13、比較例1および比較例2の電池それぞれについて、充放電サイクル数に対する容量維持率の関係を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 比較例1~3においては、Si合金のメジアン径が大きいため、容量維持率が低かった。これは、Si合金のメジアン径が大きいとリチウムの吸蔵と放出に伴う体積変化量が大きく、負極活物質内での反応が不均一となり結晶粒界、欠陥等の問題がおきやすく容量維持率が低下したものと推察される。比較例4は負極結着剤の量が多すぎたため、電極合剤中の電子伝導性が不足したことにより、容量維持率が低下したと推察される。比較例2および5は、負極結着剤の含有量が少なく、負極活物質間の接着が不十分で粉落ち等しやすいため、容量維持率が低下したものと推察される。一方、実施例1~21では、Si合金のメジアン径が小さく、かつ、負極結着剤の含有量が表1に示す範囲内であることにより、比較例1~5に比べて容量維持率は顕著に高かった。また、表1に示すように負極を構成する材料の種類やそれらの含有量の変更、電解液中への添加剤の添加等を行っても比較例に比べて良好な結果が得られた。
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、本出願の開示事項は以下の付記に限定されない。
(付記1)
 負極活物質および負極結着剤を含む負極合剤層と、負極集電体とを含み、
 前記負極活物質は、シリコンを含む合金(Si合金)を含み、
 前記Si合金は、結晶性を有し、そのメジアン径(D50粒径)は1.2μm以下であり、
 負極合剤層の重量に対する負極結着剤の含有量が、12重量%以上50重量%以下である、リチウムイオン二次電池用負極。
(付記2)
 前記負極合剤層の容量が、1500mAh/g以上である、付記1に記載のリチウムイオン二次電池用負極。
(付記3)
 負極活物質中の前記Si合金の含有量が65重量%以上である、付記1または2に記載のリチウムイオン二次電池用負極。
(付記4)
 前記負極結着剤が、ポリアクリル酸およびスチレンブタジエンゴムから選ばれる少なくとも一種である、付記1~3のいずれかに記載のリチウムイオン二次電池用負極。
(付記5)
 前記負極集電体がステンレス箔、圧延銅箔、またはクラッド集電箔である、付記1~4のいずれかに記載のリチウムイオン二次電池用負極。
(付記6)
 前記負極合剤層の密度が1.35g/cc未満である付記1~5のいずれかに記載のリチウムイオン二次電池用負極。
(付記7)
 付記1~6のいずれかに記載のリチウムイオン二次電池用負極を備えたリチウムイオン二次電池。
(付記8)
 さらに電解液を含み、
 前記電解液が、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)を含む、付記7に記載のリチウムイオン二次電池。
(付記9)
 付記7または8に記載のリチウムイオン二次電池を含む組電池。
(付記10)
 付記7または8に記載のリチウムイオン二次電池を備えた車両。
(付記11)
 付記1~6のいずれかに記載のリチウムイオン二次電池用負極と、正極とを、セパレータを介して積層して電極素子を製造する工程と、
 前記電極素子と電解液とを外装体内に封入する工程と、
を含むリチウムイオン二次電池の製造方法。
 この出願は、2017年8月24日に出願された日本出願特願2017-161133を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態(および実施例)を参照して本願発明を説明したが、本願発明は、上記実施形態(および実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明によるリチウムイオン二次電池は、例えば、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野において利用することができる。具体的には、携帯電話、ノートパソコン等のモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車等を含む電動車両、電車、衛星、潜水艦等の移動・輸送用媒体の電源;UPS等のバックアップ電源;太陽光発電、風力発電等で発電した電力を貯める蓄電設備;等に、利用することができる。
1  正極合剤層
2  負極合剤層
3  正極集電体
4  負極集電体
5  セパレータ
6  外装ラミネート
7  負極リード端子
8  正極リード端子
10 フィルム外装体
20 電池要素
25 セパレータ
30 正極
40 負極

Claims (11)

  1.  負極活物質および負極結着剤を含む負極合剤層と、負極集電体とを含み、
     前記負極活物質は、シリコンを含む合金(Si合金)を含み、
     前記Si合金は、結晶性を有し、そのメジアン径(D50粒径)は1.2μm以下であり、
     負極合剤層の重量に対する負極結着剤の含有量が、12重量%以上50重量%以下である、リチウムイオン二次電池用負極。
  2.  前記負極合剤層の容量が、1500mAh/g以上である、請求項1に記載のリチウムイオン二次電池用負極。
  3.  負極活物質中の前記Si合金の含有量が65重量%以上である、請求項1または2に記載のリチウムイオン二次電池用負極。
  4.  前記負極結着剤が、ポリアクリル酸およびスチレンブタジエンゴムから選ばれる少なくとも一種である、請求項1~3のいずれか一項に記載のリチウムイオン二次電池用負極。
  5.  前記負極集電体がステンレス箔、圧延銅箔、またはクラッド集電箔である、請求項1~4のいずれか一項に記載のリチウムイオン二次電池用負極。
  6.  前記負極合剤層の密度が1.35g/cc未満である請求項1~5のいずれか一項に記載のリチウムイオン二次電池用負極。
  7.  請求項1~6のいずれか一項に記載のリチウムイオン二次電池用負極を備えたリチウムイオン二次電池。
  8.  さらに電解液を含み、
     前記電解液が、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)を含む、請求項7に記載のリチウムイオン二次電池。
  9.  請求項7または8に記載のリチウムイオン二次電池を含む組電池。
  10.  請求項7または8に記載のリチウムイオン二次電池を備えた車両。
  11.  請求項1~6のいずれか1項に記載のリチウムイオン二次電池用負極と、正極とを、セパレータを介して積層して電極素子を製造する工程と、
     前記電極素子と電解液とを外装体内に封入する工程と、
    を含むリチウムイオン二次電池の製造方法。
     
PCT/JP2018/030511 2017-08-24 2018-08-17 リチウムイオン二次電池用負極およびこれを含むリチウムイオン二次電池 WO2019039399A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880054338.1A CN111095617B (zh) 2017-08-24 2018-08-17 锂离子二次电池用负极和包含所述负极的锂离子二次电池
JP2019537601A JP7140125B2 (ja) 2017-08-24 2018-08-17 リチウムイオン二次電池用負極およびこれを含むリチウムイオン二次電池
US16/638,824 US11387442B2 (en) 2017-08-24 2018-08-17 Negative electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-161133 2017-08-24
JP2017161133 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019039399A1 true WO2019039399A1 (ja) 2019-02-28

Family

ID=65438943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030511 WO2019039399A1 (ja) 2017-08-24 2018-08-17 リチウムイオン二次電池用負極およびこれを含むリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US11387442B2 (ja)
JP (1) JP7140125B2 (ja)
CN (1) CN111095617B (ja)
WO (1) WO2019039399A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3582295B1 (en) * 2017-10-25 2022-11-30 LG Energy Solution, Ltd. One-sided electrode with reduced twisting for a secondary battery, and method for producing same
US20220102712A1 (en) * 2020-09-30 2022-03-31 GM Global Technology Operations LLC Methods of forming lithium-silicon alloys for electrochemical cells
US11824186B2 (en) * 2021-04-02 2023-11-21 GM Global Technology Operations LLC Prelithiated negative electrodes including Li—Si alloy particles and methods of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110846A (ja) * 2007-10-31 2009-05-21 Sony Corp 負極活物質、負極および電池
JP2010092830A (ja) * 2008-09-11 2010-04-22 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011154901A (ja) * 2010-01-27 2011-08-11 Sony Corp リチウムイオン二次電池およびリチウムイオン二次電池用負極
JP2016115635A (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
WO2017150311A1 (ja) * 2016-02-29 2017-09-08 日本電気株式会社 負極活物質およびそれを用いたリチウムイオン二次電池
WO2017179429A1 (ja) * 2016-04-15 2017-10-19 日本電気株式会社 リチウム二次電池用負極およびリチウム二次電池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366101B2 (ja) * 2003-03-31 2009-11-18 キヤノン株式会社 リチウム二次電池
JP5016276B2 (ja) 2005-08-29 2012-09-05 パナソニック株式会社 非水電解質二次電池用負極およびその製造方法、ならびに非水電解質二次電池
JP5162825B2 (ja) 2005-12-13 2013-03-13 パナソニック株式会社 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
JP2009252348A (ja) 2008-04-01 2009-10-29 Panasonic Corp 非水電解質電池
JP5593663B2 (ja) * 2009-09-29 2014-09-24 住友ベークライト株式会社 リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP5790282B2 (ja) * 2010-09-30 2015-10-07 大同特殊鋼株式会社 リチウム二次電池用負極活物質およびリチウム二次電池用負極
JP5884573B2 (ja) * 2011-09-30 2016-03-15 大同特殊鋼株式会社 リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極
US9123955B2 (en) * 2012-04-06 2015-09-01 Samsung Sdi Co., Ltd. Negative active material, lithium battery including the material, and method for manufacturing the material
CN104837768B (zh) * 2012-10-12 2017-05-17 宾夕法尼亚州研究基金会 微米尺寸的互连Si‑C复合材料的合成
JP6006662B2 (ja) * 2013-03-05 2016-10-12 信越化学工業株式会社 珪素含有粒子の製造方法、非水電解質二次電池の負極材の製造方法、および、非水電解質二次電池の製造方法
WO2014200003A1 (ja) * 2013-06-12 2014-12-18 Tdk株式会社 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
KR20150014216A (ko) * 2013-07-29 2015-02-06 주식회사 엘지화학 에너지 밀도가 향상된 리튬 이차전지
WO2015118849A1 (ja) * 2014-02-04 2015-08-13 三井化学株式会社 リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法
JP6583263B2 (ja) 2014-03-19 2019-10-02 凸版印刷株式会社 非水電解質二次電池用電極
JP6438287B2 (ja) * 2014-12-05 2018-12-12 株式会社東芝 非水電解質電池用活物質、非水電解質電池用電極、非水電解質二次電池および電池パック
EP3386022B1 (en) 2015-11-30 2023-10-25 Nec Corporation Lithium ion secondary battery
JP7120005B2 (ja) 2016-05-26 2022-08-17 日本電気株式会社 リチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110846A (ja) * 2007-10-31 2009-05-21 Sony Corp 負極活物質、負極および電池
JP2010092830A (ja) * 2008-09-11 2010-04-22 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011154901A (ja) * 2010-01-27 2011-08-11 Sony Corp リチウムイオン二次電池およびリチウムイオン二次電池用負極
JP2016115635A (ja) * 2014-12-17 2016-06-23 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
WO2017150311A1 (ja) * 2016-02-29 2017-09-08 日本電気株式会社 負極活物質およびそれを用いたリチウムイオン二次電池
WO2017179429A1 (ja) * 2016-04-15 2017-10-19 日本電気株式会社 リチウム二次電池用負極およびリチウム二次電池

Also Published As

Publication number Publication date
JP7140125B2 (ja) 2022-09-21
CN111095617B (zh) 2024-05-17
JPWO2019039399A1 (ja) 2020-07-30
US20200194776A1 (en) 2020-06-18
CN111095617A (zh) 2020-05-01
US11387442B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
JP5748193B2 (ja) 二次電池
JP6474548B2 (ja) 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
JP6919646B2 (ja) リチウムイオン二次電池
JP5709024B2 (ja) 非水電解液二次電池および該二次電池用集電体
JP6301619B2 (ja) 非水電解質二次電池、電池パック及び車
JP7014169B2 (ja) リチウム二次電池
WO2011040443A1 (ja) 二次電池
JP6984584B2 (ja) 負極活物質およびそれを用いたリチウムイオン二次電池
JP6297991B2 (ja) 非水電解質二次電池
CN110036521B (zh) 锂离子二次电池
JP6048147B2 (ja) 非水電解液二次電池
WO2017204213A1 (ja) リチウムイオン二次電池
WO2019107242A1 (ja) リチウムイオン二次電池
WO2019044491A1 (ja) 蓄電デバイス用電極及びその製造方法
JP7136092B2 (ja) リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
JPWO2016194733A1 (ja) リチウムイオン二次電池
JP7140125B2 (ja) リチウムイオン二次電池用負極およびこれを含むリチウムイオン二次電池
WO2012049889A1 (ja) 二次電池およびそれに用いる二次電池用電解液
JP6812966B2 (ja) リチウムイオン二次電池用負極および二次電池
JP6556886B2 (ja) 非水電解質二次電池、電池パック及び車
JPWO2019088171A1 (ja) リチウムイオン二次電池
US20230216045A1 (en) Positive Electrode for Secondary Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847702

Country of ref document: EP

Kind code of ref document: A1