WO2014196835A1 - 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법 - Google Patents

내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법 Download PDF

Info

Publication number
WO2014196835A1
WO2014196835A1 PCT/KR2014/005023 KR2014005023W WO2014196835A1 WO 2014196835 A1 WO2014196835 A1 WO 2014196835A1 KR 2014005023 W KR2014005023 W KR 2014005023W WO 2014196835 A1 WO2014196835 A1 WO 2014196835A1
Authority
WO
WIPO (PCT)
Prior art keywords
water treatment
formula
antioxidant
membrane
independently
Prior art date
Application number
PCT/KR2014/005023
Other languages
English (en)
French (fr)
Inventor
고영훈
김재홍
송근원
신정규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/387,470 priority Critical patent/US9833751B2/en
Priority to JP2016518276A priority patent/JP6608811B2/ja
Priority to EP14766382.7A priority patent/EP2835175B1/en
Priority to CN201480000954.0A priority patent/CN104379243A/zh
Publication of WO2014196835A1 publication Critical patent/WO2014196835A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21834Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/007Modular design

Definitions

  • the present invention relates to a polyamide-based water treatment membrane, and more particularly, to a polyamide-based water treatment membrane including an antioxidant in the polyamide layer to improve the oxidation resistance and chlorine resistance characteristics, and a method for producing the same. will be.
  • Liquid separation is classified into Micro Filtration, Ultra Filtration, Nano Filtration, Reverse Osmosis, Sedimentation, Active Transport and Electrodialysis depending on the pore of the membrane.
  • the reverse osmosis method refers to a process of desalting using a semipermeable membrane that transmits water but is impermeable to salts. When the high pressure water in which the salt is dissolved flows into one side of the semipermeable membrane, the pure water from which the salt is removed comes out to the other side at low pressure.
  • the polyamide composite membrane a polysulfone layer is formed on the nonwoven fabric to form a microporous support, and the microporous support is immersed in an m-phenylenediamine (mPD) aqueous solution to form an mPD layer.
  • mPD m-phenylenediamine
  • it is manufactured by a method of forming a polyamide layer by immersing or coating a trimethoyl chloride (TMC) organic solvent and contacting the mPD layer with TMC to perform interfacial polymerization.
  • TMC trimethoyl chloride
  • the polyamide-based composite membrane has high stability against pH change, can be operated at low pressure, and has excellent salt rejection rate, compared to existing cellulose-based asymmetric membranes.
  • the polyamide-based composite membrane has a problem that the replacement cycle of the membrane is short due to a rapid decrease in chlorine resistance with time. Therefore, a method for increasing the specific surface area of the active layer has been proposed in order to slow down the reduction of the chlorine resistance of the water treatment membrane. Specifically, it is disclosed that the surface of the skin layer is lumped or wrinkled after forming the active layer to increase the specific surface area of the skin layer of the water treatment membrane, and the surface of the skin layer is post-treated with strong acid after the reverse osmosis composite membrane is manufactured to increase the surface roughness. A method of making is disclosed.
  • the conventional polyamide-based membrane is very sensitive to the oxidizing material, the oxidizing material significantly lowers the performance of the membrane even at a relatively low concentration, and rapidly reduces the salt removal rate of the membrane.
  • the water resources may be acid treated wastewater, and raw water treated using a separator always contains a large amount of oxidizing fungicide.
  • conventional separators used for such raw water treatment are generally short in life and need to be replaced frequently, resulting in reduced membrane efficiency while increased treatment costs.
  • the present invention is to solve the above problems, to provide a polyamide-based water treatment membrane excellent in oxidation resistance and chlorine resistance by introducing an antioxidant into the organic solution containing an acyl halide compound to polymerize the polyamide layer. .
  • the present invention relates to a water treatment separator comprising (1) a porous support and (2) a polyamide layer formed on the porous support, and (3) the polyamide layer has a solubility parameter value of 9 (J / cm 3 ) 1/2 to 22 (J / cm 3 ) 1/2 to provide a water treatment separation membrane comprising an antioxidant.
  • the antioxidant is composed of a phenolic antioxidant, amine antioxidant, phosphorus antioxidant, sulfur-based antioxidant or a mixture thereof.
  • the phenolic antioxidant is preferably selected from the compounds represented by the following formula (1) and (2).
  • R 1 is a C 1 to C 20 Alkyl group.
  • R 2 is a C 1 to C 20 Alkyl group, or Wherein a, b, c, d, and e are each independently an integer of 1 to 10, and R 3 , R 4 , R 4 ′, and R 4 ′′ each independently have a structure having the structure of Formula 3
  • X 1 and X 2 are each independently -O- or -N-.
  • the phosphorus antioxidant is preferably selected from the compounds represented by the following formulas (3) and (4).
  • R 5 to R 10 are each independently a hydrogen atom or an alkyl group of C 1 to C 9 .
  • R 11 to R 16 are each independently a hydrogen atom or an alkyl group of C 1 to C 9 .
  • the polyamide active layer is formed by interfacial polymerization by contacting an aqueous solution containing an amine compound and an acyl halide compound, and the antioxidant is based on 100 parts by weight of the acyl halide compound solids of the organic solution from 0.02 to It is preferably included in an amount of 5 parts by weight.
  • the water treatment membrane preferably has a salt removal rate of 99.10% or more after being immersed in ultrapure water for 14 days, and a salt removal rate of 98.50% or more after storing for 16 days under light blocking conditions, and an aqueous sodium chloride solution having a concentration of 32,000 ppm And a salt removal rate after passing a mixed aqueous sodium hypochlorite solution at a concentration of 2,000 ppm for 12 hours is preferably 98.50% or more.
  • the water treatment membrane, the salt removal rate change rate after passing through a 32,000ppm sodium chloride solution and 2,000ppm sodium hypochlorite mixed aqueous solution for 12 hours is preferably 0.5% or less than the initial salt removal rate
  • the permeation flow rate is the initial permeation rate It is preferable that it is 10% or less with respect to flow volume.
  • the present invention provides a water treatment module including at least one or more of the water treatment separation membrane and a water treatment apparatus including at least one of the water treatment modules.
  • the present invention comprises the steps of forming an aqueous solution layer comprising an amine compound on a porous support; And contacting an organic solution containing an acyl halide compound and an antioxidant having a solubility parameter value of 9 (J / cm 3 ) 1/2 to 22 (J / cm 3 ) 1/2 on the aqueous solution layer. It provides a water treatment separation membrane manufacturing method comprising the step of forming.
  • the antioxidant is made of an amount of 0.02 to 5 parts by weight based on 100 parts by weight of the acyl halide compound solids of the organic solution.
  • the water treatment membrane of the present invention includes an antioxidant having a solubility parameter value of 9 (J / cm 3 ) 1/2 to 22 (J / cm 3 ) 1/2 in the polyamide layer, thereby providing excellent effects of both oxidation and chlorine resistance. There is.
  • a water treatment membrane having excellent oxidation resistance and chlorine resistance can be prepared without a separate post-treatment process. Can be.
  • the present inventors conducted the research in order to develop the water-processing separator which is excellent in both oxidation resistance and chlorine resistance, without degrading water purification performance, As a result, by including an antioxidant in a polyamide layer, the above objective can be achieved.
  • the present invention was completed.
  • the water treatment separator of the present invention relates to a water treatment separator comprising (1) a porous support and (2) a polyamide layer formed on the porous support, wherein the (3) polyamide layer has a solubility parameter value of 9 (J / cm). 3 ) 1/2 to 22 (J / cm 3 ) 1/2 is characterized by including an antioxidant.
  • polysulfone polysulfone, polyether sulfone, polycarbonate, polyethylene oxide, polyimide, poly Etherimide, polyetheretherketone, polypropylene, polymethylpentene, polymethylchloride and polyvinylidene fluoride may be used, but are not necessarily limited thereto.
  • polysulfone is particularly preferable.
  • the polyamide layer formed on the porous support may be formed by interfacial polymerization of an amine compound and an acyl halide compound, and specifically, an aqueous solution containing an amine compound is coated on the porous support to form a layer. Thereafter, the organic solution containing the acyl halide compound may be contacted to form a polyamide layer.
  • the amine compound is not limited thereto, but, for example, m-phenylenediamine, p-phenylenediamine, 1,3,6-benzenetriamine, 4-chloro-1,3-phenylenediamine, Preference is given to 6-chloro-1,3-phenylenediamine, 3-chloro-1,4-phenylene diamine or mixtures thereof.
  • the acyl halide compound is an aromatic compound having 2 to 3 carboxylic acid halides, but is not limited thereto, for example, trimezoyl chloride, isophthaloyl chloride, terephthaloyl chloride or a mixture thereof. It is preferable.
  • the polyamide layer (3) of the water treatment separation membrane of the present invention contains an antioxidant having a solubility parameter value of 9 (J / cm 3 ) 1/2 to 22 (J / cm 3 ) 1/2 .
  • the polyamide layer including the antioxidant is formed as described above, the phenomenon in which the polymerization of the polyamide is decomposed by the oxidation reaction and the radical decomposition phenomenon are suppressed, and the oxidation resistance in water and in the air is improved.
  • radicals are formed by light when exposed to a small amount of OH- group in water or water in the air or in the air, whereby the polyamide bond is gradually decomposed.
  • the antioxidant is included as described above, since the antioxidant inhibits the generation of such radicals, it can confirm the effect of improving the oxidation resistance.
  • polyamide is gradually degraded by N-chlorination by hypochlorous acid (HClO) followed by ring-chlorination by Orton Rearrangement, an irreversible reaction.
  • HCVO hypochlorous acid
  • Orton Rearrangement ring-chlorination by Orton Rearrangement
  • the antioxidant inhibits the N-chlorination phenomenon, thereby improving the chlorine resistance.
  • the antioxidant of the present invention has a solubility parameter value of about 9 (J / cm 3 ) 1/2 to 22 (J / cm 3 ) 1/2 , preferably 12 (J / cm 3 ) 1/2 to More preferably, it is about 20 (J / cm 3 ) 1/2 .
  • antioxidants are very difficult to dissolve in solvents and are not easily dissolved, and have a range of solubility parameter values depending on the type of antioxidant.
  • an aliphatic hydrocarbon solvent is generally used as an organic solvent including an acyl halide compound, and the solvent has a solubility parameter value of about 13 to 16 (J / cm 3 ) 1/2 .
  • the solubility parameter value of the antioxidant does not satisfy the above range, the antioxidant is not dissolved in most of the solvent, it is not uniformly formed in the polyamide layer formed by the interfacial polymerization, it is bound together or washed off during the washing process I will go. As a result, the initial performance of the separator is degraded, or it is difficult to improve oxidation resistance and contamination resistance.
  • solubility parameter in the present specification means a Hansen Solubility Parameter as a solubility constant of each compound or solvent, and may be defined by Hansen's equation as shown in Equation 1 below.
  • solubility parameter
  • ⁇ d solubility parameter by disperdipon force to solubility parameter
  • ⁇ p dilution moment of dipole moment to solubility parameter intermolecular force
  • ⁇ h solubility parameter by hydrogen bonding force
  • the antioxidants include primary antioxidants such as phenolic antioxidants and amine antioxidants; Secondary antioxidants such as phosphorus antioxidants and sulfur-based antioxidants; Or mixtures thereof may be used.
  • Phenolic antioxidants used in the present invention are not limited thereto, but may be, for example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acryl Rate, 2- [1- (2-hydroxy-3,5-di-t-pentylphenyl) ethyl] -4,6-di-t-pentylphenyl acrylate, 1,6-hexanediolbis- [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thiodiethylenebis- [3- (3,5-di-t-butyl-4-hydroxy Phenyl) propionate], 3,5-di-t-butyl-4-hydroxybenzylphosphonate diethyl ester, tris (2,6-dimethyl-3-hydroxy-4-t-butylbenzyl) iso Cyanurate, tris (3,5-di-t-
  • the phenolic antioxidant may be selected from the compounds represented by the following formula (1) and (2).
  • R 1 is a C 1 to C 20 Alkyl group.
  • R 2 is a C 1 to C 20 Alkyl group, or Wherein a, b, c, d, and e are each independently an integer of 1 to 10, and R 3 , R 4 , R 4 ′, and R 4 ′′ each independently have a structure having the structure of Formula 3
  • X 1 and X 2 are each independently -O- or -N-.
  • a, b, c, d and e are the same integer from 1 to 10, wherein R 3 , R 4 , R 4 'and R 4 "also have the same structure of Formula 3, wherein X 1 and X 2 It is more preferable for the symmetry of the compound to also have the same -O- or -N-.
  • a commercial item can also be used as a phenolic antioxidant.
  • phenolic antioxidants include, but are not limited to, Irganox 1010 (manufactured by Ciba Specialty Chemicals), Irganox 1098 (manufactured by Ciba Specialty Chemicals), Irga Knox 1076 [manufactured by Ciba Specialty Chemicals], Irganox 1330 [manufactured by Ciba Specialty Chemicals], Irganox 3114 [manufactured by Ciba Specialty Chemicals], Irganox 3125 [manufactured by Ciba Specialty Chemicals], Cyanox 1790 (manufactured by Ciba Specialty Chemicals) Cyanox 1790) [manufactured by Cytech Products, Inc.], Tinuvin 120 [manufactured by BASF Corporation], Tinuvin 326 [manufactured by BASF Corporation], Tinuvin 327 [manuvin
  • the amine antioxidant used in the present invention is not limited thereto, but for example, N, N'-bis (1-ethyl-3-methylpentyl) -p-phenylenediamine, N, N'-bis (1-methylheptyl) -p-phenylenediamine, N, N'-dicyclohexyl-p-phenylenediamine, N, N'-bis (2-naphthyl) -p-phenylenediamine, N-iso Propyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N- (1-methylheptyl) -N'-phenyl-p -Phenylenediamine, 1,2-bis [(2-methylphenyl) amino] ethane, 1,2-bis (phenyl-amino) propane, (o-tolyl) biguanide,
  • the phosphorus-based antioxidant used in the present invention is not limited thereto, for example, bis (dialkylphenyl) pentaerythritol diphosphite ester, phosphite ester, trioctyl phosphite, trilauryl phosphite, tri Decyl phosphite, (octyl) diphenyl phosphite, tris (2,4-di-t-butylphenyl) phosphite, triphenyl phosphite, tris (butoxyethyl) phosphite, tris (nonylphenyl) phosphite, Distearylpentaerythritol diphosphite, tetra (tridecyl) -1,1,3-tris (2-methyl-5-t-butyl-4-hydroxy-phenyl) butane diphosphite, tetra (C 12
  • the bis (dialkylphenyl) pentaerythritol diphosphite ester may be a spiro type represented by the following formula (4), or a cage type represented by the following formula (5).
  • R 5 to R 10 are each independently a hydrogen atom or an alkyl group of C 1 to C 9 .
  • R 11 to R 16 are each independently a hydrogen atom or an alkyl group of C 1 to C 9 .
  • R 4 to R 9 is an alkyl group
  • a branched alkyl group is preferable, and t-butyl group is most preferred among them.
  • the bis (dialkylphenyl) pentaerythritol diphosphite ester is bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4 Compounds such as -methylphenyl) pentaerythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, or tetrakis (2,4-di-t-butylphenyl) -4,4'-biphenylene diphosphonite Can be.
  • a commercial product can also be used as said phosphorus antioxidant.
  • examples of such commercial phosphorus antioxidants include Irgafos 168 (manufactured by Ciba Specialty Chemicals), Irgafos 12 (manufactured by Ciba Specialty Chemicals), Irgafos 38 (manufactured by Ciba Specialty Chemicals), and ADKSTAB 329K.
  • Sulfur-based antioxidants used in the present invention are, but are not limited to, dialkylthiodipropions such as, for example, dilaurylthiodipropionate, dimyristylthiodipropionate and distearylthiodipropionate. Cypionate; Polyhydric alcohols of alkylthiopropionic acids such as butylthiopropionic acid, octylthiopropionic acid, laurylthiopropionic acid and stearylthiopropionic acid (e.g.
  • Ester pentaerythryl tetrakis-3-laurylthiopropionate
  • Ester pentaerythryl tetrakis-3-laurylthiopropionate
  • More specific examples include dilaurylthiodipropionate, dimyristylthiodipropionate, distearylthiodipropionate, laurylstearylthiodipropionate, distearylthiodibutyrate, and the like.
  • a commercial product can also be used as a sulfur type antioxidant.
  • sulfur-based antioxidants include a water millizer TPS [manufactured by Sumitomo Chemical], a water millizer TPL-R [manufactured by Sumitomo Chemical], a water millizer TPM [manufactured by Sumitomo Chemical] or a water millizer TP-D [manufactured by Sumitomo Chemical].
  • TPS water millizer
  • TPL-R manufactured by Sumitomo Chemical
  • TPM manufactured by Sumitomo Chemical
  • TP-D water millizer
  • the polyamide active layer is formed by interfacial polymerization by contact between an aqueous solution containing an amine compound and an organic solution containing an acyl halide compound, and the antioxidant is based on 100 parts by weight of the acyl halide compound solids of the organic solution at 0.02 to 5 weight. It is preferably included in an amount of about 0.05 to 3.5 parts by weight. When the above range is satisfied, performances such as oxidation resistance and chlorine resistance are remarkably improved without lowering the initial salt removal rate and permeation flow rate of the separator.
  • the reverse osmosis membrane of the present invention in which the polyamide layer including the antioxidant is formed as described above has an initial salt removal rate of 99.00% or more and an initial flow rate of 28.0 gallon / ft 2 ⁇ day or more.
  • the salt removal rate is 99.10% or more, preferably 99.20% or more, and the permeate flow rate has a value of about 28 to 35 gallon / ft 2 ⁇ day.
  • the salt removal rate is 98.50% or more, preferably 99.00% or more, more preferably 99.20% or more, and the transmission flow rate is largely about 30.0 to 39.0 gallon / ft 2 ⁇ day even after storing for 16 days under light blocking conditions. It did not appear to fall.
  • the salt removal rate was 98.50% or more after 12 hours after the mixed aqueous solution containing 32,000 ppm of sodium chloride (NaCl) and 2,000 ppm of sodium hypochlorite (NaOCl) was added at 800 psi pressure. Is at least 99.00%, more preferably at least 99.20%, and the permeate flow rate has not been significantly reduced in the water purification function of about 25.0 to 35.0 gallon / ft 2 ⁇ day.
  • the removal rate is 0.5% or less, preferably 0.2% or less or 0.1% or less.
  • the rate of change of the permeate flow rate is 10% or less, preferably 5% or less or 3% or less relative to the initial permeate flow rate. desirable.
  • the water treatment separation membrane of the present invention is very excellent in oxidation resistance and chlorine resistance compared to the conventional separation membrane.
  • the water treatment separation membrane including the component may be used for micro filtration membrane, ultra filtration membrane, ultra filtration membrane, nano filtration membrane or reverse osmosis membrane, and is preferably used for reverse osmosis membrane.
  • the invention also relates to a water treatment module comprising at least one water treatment separation membrane according to the invention described above.
  • the specific kind of the water treatment module of the present invention is not particularly limited, and examples thereof include a plate & frame module, a tubular module, a hollow & fiber module or a spiral wound module. Included.
  • the water treatment module of the present invention includes the water treatment separation membrane of the present invention described above, other configurations and manufacturing methods are not particularly limited, and any general means known in the art may be employed without limitation.
  • the water treatment module of the present invention is excellent in oxidation resistance and fouling resistance, and excellent in chemical stability, it can be usefully used in water treatment devices such as household / industrial water purification equipment, sewage treatment equipment, seawater treatment equipment.
  • the water treatment membrane of the present invention comprises the steps of forming an aqueous layer containing an amine compound on the porous support; And contacting an organic solution containing an acyl halide compound and an antioxidant having a solubility parameter value of 9 (J / cm 3 ) 1/2 to 22 (J / cm 3 ) 1/2 on the aqueous solution layer. It can be prepared including the step of forming.
  • the amine compound may be used as the amine compound in the step of forming an aqueous solution layer containing the amine compound without limitation, for example, cyclohexanediamine, piperazine and piperazine derivatives, etc.
  • Aromatic polyfunctional amines such as; N, N-dimethyl-1, 3-phenylenediamine, xylenediamine, benzidine, benzidine derivatives or mixtures thereof can be used.
  • aromatic polyfunctional amines are preferable, and m-phenylenediamine, p-phenylenediamine, 1,3,6-benzenetriamine, 4-chloro-1,3-phenylenediamine, and 6-chloro- Preference is given to 1,3-phenylenediamine, 3-chloro-1,4-phenylene diamine or mixtures thereof.
  • the solvent of the aqueous amine solution is preferably a polar solvent such as water
  • the amine aqueous solution may further include a participant such as triethylamine and camphorsulphonic acid, if necessary.
  • the method of forming the aqueous amine layer on the porous support does not exclude any method as long as it can form an aqueous solution on the support.
  • any method such as spraying, coating, dipping and dropping can be used.
  • a step of selectively removing the aqueous solution including the excess amine compound may be additionally performed.
  • the excess aqueous solution is removed in this way, the interfacial polymerization layer can be safely formed on the support, and can form a uniform layer. Removal of the excess aqueous solution may be performed using a sponge, air knife, nitrogen gas blowing, natural drying, or a compression roll, but is not particularly limited thereto.
  • the acyl halide compound and the solubility parameter value are 9 (J / cm 3 ) 1/2 to 22 (J / cm 3 ) 1 on the amine aqueous solution layer. / 2 in contact with the organic solution containing an oxidizing agent to form a polyamide layer.
  • the amine compound coated on the surface and the acyl halide compound react to form a polyamide by interfacial polymerization, and adsorbed onto the microporous support to form a thin film.
  • the polyamide layer may be formed through a method such as dipping, spraying or coating.
  • the acyl halide compound is an aromatic compound having 2 to 3 carboxylic acid halides, but is not limited thereto.
  • the acyl halide compound is preferably trimezoyl chloride, isophthaloyl chloride, terephthaloyl chloride or a mixture thereof. Do.
  • the antioxidant is the same as the above, so the detailed description will be omitted.
  • the organic solvent of the solution containing the acyl halide compound it is preferable to use a solvent that does not participate in the interfacial polymerization reaction, does not cause chemical bonding with the acyl halide compound, and does not damage the porous support layer.
  • the organic solvent may be an aliphatic hydrocarbon solvent, for example, a hydrophobic liquid which is not mixed with freons and water such as hexane, cyclohexane, heptane, and alkanes having 5 to 12 carbon atoms, for example, alkanes having 5 to 12 carbon atoms. And mixtures thereof such as Isol-C (Exxon Cor.) And Isol-G (Exxon Cor.) May be used.
  • the acyl halide compound is preferably included in 0.05 to 1% by weight based on the total organic solvent. This is because when the content of acyl halide compound is within the above range, excellent salt removal rate and permeate flow rate characteristics can be obtained.
  • the antioxidant is contained in an amount of 0.02 to 5 parts by weight, preferably 0.05 to 3.5 parts by weight based on 100 parts by weight of the acyl halide compound solids of the organic solution.
  • the antioxidant exceeds the content range, the salt and water molecules do not pass through the membrane due to the effect of blocking the fine pores in the polyamide polymer, so that the permeate flow rate and the initial performance value of the membrane are greatly reduced. If less, it is difficult to expect oxidation and chlorine resistance effects.
  • the contact time may be about 1 minute to 5 hours, more preferably about 1 minute to 3 hours. If the contact time is less than 1 minute, the coating layer is not sufficiently formed, if the contact time exceeds 5 hours, the coating layer thickness is too thick has a negative effect of reducing the permeate flow rate of the water treatment membrane.
  • the polyamide layer when the polyamide layer is formed on the porous support through the above method it can be optionally carried out the process of drying and washing it.
  • the drying is preferably performed for 1 to 10 minutes in the oven at 45 °C to 80 °C.
  • the washing is not particularly limited, but may be, for example, washed in a basic aqueous solution.
  • the basic aqueous solution that can be used is not particularly limited, but for example, an aqueous sodium carbonate solution can be used, and specifically, it is preferably carried out in an aqueous sodium carbonate solution at 20 ° C. to 30 ° C. for 1 hour to 24 hours.
  • porous polysulfone support prepared by the above method was soaked for 2 minutes in an aqueous solution containing 2% by weight of metaphenylenediamine, 1% by weight of triethylamine and 2.3% by weight of camphorsulphonic acid, followed by excess on the support.
  • the aqueous solution of was removed using a 25 psi roller, and dried at room temperature for 1 minute.
  • the water treatment membrane obtained by the above method was immersed in 0.2 wt% sodium carbonate aqueous solution for 2 hours or more, and then washed again with distilled water for 1 minute to prepare a water treatment separator having a polyamide layer.
  • Irganox1098 N, N'-hexane-1,6-diylbis (3- (3,5-di-tert.-butyl) based on 100 parts by weight of the trimezoylchloroide (TMC) solids as the antioxidant -4-hydroxyphenylpropionamide)
  • TMC trimezoylchloroide
  • PEP36 N, N'-hexane-1,6-diylbis (3- (3,5-di-tert.-butyl) based on 100 parts by weight of the trimezoylchloroide (TMC) solids as the antioxidant -4-hydroxyphenylpropionamide)
  • TMC trimezoylchloroide
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 1 part by weight of Irganox1098 and 1 part by weight of PEP36 were used as the antioxidant based on 100 parts by weight of the trimesoylchloroide (TMC) solid.
  • TMC trimesoylchloroide
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 1 part by weight of Irganox1010 was used as the antioxidant based on 100 parts by weight of the trimesoylchloroide (TMC) solid.
  • TMC trimesoylchloroide
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 3 parts by weight of Irganox1010 was used as the antioxidant based on 100 parts by weight of the trimesoylchloroide (TMC) solid.
  • TMC trimesoylchloroide
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that the organic solution was prepared without an antioxidant and included only 0.2% by volume of trimezoylchloroide (TMC).
  • TMC trimezoylchloroide
  • Example 1 except that 2 parts by weight of BHA (butylated hydroxyanisole, solubility parameter 25.4 (J / cm 3 ) 1/2 ) based on 100 parts by weight of the trimezoyl chloroide (TMC) solids as the antioxidant A water treatment separator was prepared in the same manner.
  • BHA butylated hydroxyanisole, solubility parameter 25.4 (J / cm 3 ) 1/2
  • TMC trimezoyl chloroide
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 15 parts by weight of Irganox1010 was used as the antioxidant based on 100 parts by weight of the trimesoylchloroide (TMC) solid.
  • TMC trimesoylchloroide
  • the initial salt removal rate and initial permeation flux of the water treatment membranes prepared in Examples 1 to 6 and Comparative Examples 1 to 3 were evaluated in the following manner.
  • the initial salt removal rate and initial permeate flow rate were measured while supplying a 32,000 ppm aqueous sodium chloride solution at 25 ° C. at a flow rate of 4500 mL / min.
  • the water treatment membrane cell apparatus used for the membrane evaluation was equipped with a flat plate permeation cell, a high pressure pump, a storage tank and a cooling device, and the structure of the flat plate permeation cell was 28 cm 2 in a cross-flow manner.
  • the washed water treatment membrane was installed in a permeation cell, and then preliminarily operated for about 1 hour using tertiary distilled water to stabilize the evaluation equipment. Subsequently, the equipment was operated for about 1 hour until the pressure and permeate flow rate reached normal state by replacing with 32,000ppm aqueous sodium chloride solution, and then the flow rate was calculated by measuring the amount of water permeated for 10 minutes. The salt removal rate was calculated by analyzing the salt concentration before and after permeation. The measurement results are shown in [Table 1].
  • Oxidation resistance of the water treatment membranes prepared in Examples 1 to 6 and Comparative Examples 1 and 3 was evaluated in the following manner. After measuring the initial salt rejection rate and the initial permeate flow rate at 800 psi in an aqueous solution of 32,000 ppm sodium chloride, some of the membranes were evaluated the next day after preparation, and some were immersed in ultrapure water and stored for 14 days, and the salt removal rate and Permeate flow rate was measured. In addition, the prepared membrane was stored for 8 days and 16 days in a light-blocked container and the salt removal rate and permeate flow rate were measured. The measurement results are shown in [Table 1].
  • Chlorine resistance of the water treatment membranes prepared in Examples 1 and 2 and Comparative Example 1 was evaluated in the following manner. After the initial salt removal rate and initial permeate flow rate were measured at 800 psi using a mixed aqueous solution containing 32,000 ppm sodium chloride solution and 2,000 ppm sodium hypochlorite (NaOCl), the salt removal rate and initial permeate flow rate after 12 hours were measured. The change rate after 12 hours was measured in comparison with the initial salt removal rate and the permeate flow rate. The results are shown in [Table 2].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Dispersion Chemistry (AREA)

Abstract

본 발명은 다공성 지지체 및 상기 다공성 지지체 상에 형성된 폴리아미드층을 포함하는 수처리 분리막으로, 상기 폴리아미드층은 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2인 산화방지제를 포함하는 수처리 분리막 및 그 제조방법에 관한 것이다.

Description

내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
본 발명은 폴리아미드계 수처리 분리막 및 그 제조방법에 관한 것으로, 보다 상세하게는, 폴리아미드층에 산화방지제를 포함하여 내산화성 및 내염소성 특성을 향상시킨 폴리아미드계 수처리 분리막 및 그 제조방법에 관한 것이다.
최근 수질환경의 심각한 오염과 물부족으로 인해 새로운 수자원 공급원을 개발하는 것이 시급한 당면 과제로 대두되고 있다. 수질환경 오염에 대한 연구는 양질의 생활 및 공업용수, 각종 생활하수 및 산업폐수 처리를 목표로 하고 있으며, 에너지 절약의 장점을 지닌 분리막을 이용한 수 처리 공정에 대한 관심이 고조되고 있다. 또한, 가속화되고 있는 환경 규제의 강화는 분리막 기술의 활성화를 앞당길 것으로 예상된다. 전통적인 수처리 공정으로는 강화되는 규제에 부합하기 힘드나, 분리막 기술의 경우 우수한 처리효율과 안정적인 처리를 보증하기 때문에 향후 수처리 분야의 주도적인 기술로 자리매김할 것으로 예상된다.
액체분리는 막의 기공에 따라 정밀여과(Micro Filtration), 한외여과(Ultra Filtration), 나노여과(Nano Filtration), 역삼투(Reverse Osmosis), 침석, 능동수송 및 전기투석 등으로 분류된다. 그 중에서 역삼투 방법은 물은 투과하지만, 염에 대해서는 불투과성을 보이는 반투막을 사용하여 탈염작업을 하는 공정을 말한다. 염이 녹아 있는 고압수가 반투막의 한쪽 면에 유입될 때, 염이 제거된 순수가 낮은 압력으로 다른 쪽 면으로 나오게 된다.
근래에 들어 전 세계적으로 대략 10억 gal/day 규모의 물이 역삼투법을 통해 탈염화 공정을 거치고 있으며, 1930년대 최초의 역삼투를 이용한 탈염화 공정이 발표된 이후, 이 분야의 반투막 물질에 대한 많은 연구가 수행되었다. 그 중에서도 상업적 성공으로 주류를 이루게 된 것은 셀루로오스계 비대칭막(Asymetric membrane)과 폴리아미드계 복합막(Composite membrane)이다. 역삼투막 초기에 개발된 셀룰로오스계막은 운전 가능한 pH 범위가 좁다는 점, 고온에서의 변형, 높은 압력을 사용하여 운전에 필요한 비용이 많이 든다는 점, 그리고 미생물에 취약하다는 점 등 여러 가지 단점으로 인해 근래에 들어서는 거의 사용되지 않는 추세이다.
한편, 폴리아미드계 복합막은, 부직포 위에 폴리설폰층을 형성하여 미세 다공성 지지체를 형성하고, 이 미세 다공성 지지체를 m-페닐렌디아민(m-Phenylene Diamine, mPD) 수용액에 침지시켜 mPD층을 형성하고, 이를 다시 트리메조일클로라이드(TriMesoyl Chloride, TMC) 유기용매에 침지 혹은 코팅시켜 mPD층을 TMC와 접촉시켜 계면 중합시킴으로써 폴리아미드층을 형성하는 방법으로 제조되고 있다. 비극성 용액과 극성 용액을 접촉시킴으로써 상기 중합은 그 계면에서만 일어나 매우 두께가 얇은 폴리아미드층을 형성한다. 상기 폴리아미드계 복합막은 기존 셀룰로오스 계열의 비대칭 막에 비하여, pH 변화에 대해 안정성이 높고, 낮은 압력에서 운전 가능하며, 염 배제율이 우수하여, 현재 수처리 분리막의 주종을 이루고 있다.
그러나 상기 폴리아미드계 복합막은 시간에 따른 내염소성의 감소 정도가 빨라 막의 교체 주기가 짧은 문제점이 있다. 따라서 수처리 분리막의 내염소성의 감소 정도를 늦추기 위하여 활성층의 비표면적을 늘리기 위한 방법이 제시되었다. 구체적으로 수처리 분리막의 스킨층의 비표면적을 크게 하도록 활성층 형성 후 산성 용액에 담가 스킨층의 표면을 울퉁불퉁하게 하거나 주름을 넣는 것이 개시되었으며, 역삼투 복합막 제조후 강산으로 후처리하여 표면 조도를 증가시키는 방법이 개시되었다.
그러나, 산성 용액에 활성층이 형성된 분리막을 침지시키면 분리막의 표면이 음전하를 띠게 되어, 양전하를 띤 오염 물질이 분리막에 부착됨으로써 분리막의 투과율을 낮추는 문제점이 있으므로 전기적으로 중성을 띤 고분자로 분리막 표면을 코팅하는 별도의 후처리 공정을 거쳐야 하는 단점이 있다.
또한, 종래 폴리아미드계 분리막은 산화성 물질에 매우 민감한데, 상기 산화성 물질은 상대적으로 낮은 농도 만으로도 막의 성능을 현저하게 저하시키며 막의 염제거율을 빠르게 감소시킨다. 대부분의 수자원이 오염됨에 따라, 상기 수자원은 산처리된 폐수일 수 있고, 분리막을 사용하여 처리되는 원수는 항상 다량의 산화성 살균제를 포함한다. 결과적으로, 이러한 원수 처리에 사용되는 종래 분리막은 일반적으로 수명이 짧고, 자주 교체될 필요가 있어서, 막의 효율은 감소하는 반면 처리 비용은 증가하게 된다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 아실 할라이드 화합물을 포함하는 유기용액에 산화방지제를 도입하여 폴리아미드층을 중합함으로써, 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막을 제공하고자 한다.
일 측면에서, 본 발명은 (1) 다공성 지지체 및 (2) 상기 다공성 지지체 상에 형성된 폴리아미드층을 포함하는 수처리 분리막에 관한 것으로, (3) 상기 폴리아미드층은 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2인 산화방지제를 포함하는 수처리 분리막을 제공한다.
이때, 상기 산화방지제는 페놀계 산화방지제, 아민계 산화방지제, 인계 산화방지제, 유황계 산화방지제 또는 이들의 혼합물로 이루어진다.
이때, 상기 페놀계 산화방지제는 하기 화학식 1 및 2로 표시되는 화합물 중에서 선택된 것이 바람직하다.
[화학식1]
Figure PCTKR2014005023-appb-I000001
상기 화학식1에서, R1은 C1 내지 C20의 알킬기이다.
[화학식 2]
Figure PCTKR2014005023-appb-I000002
상기 화학식 2에서,
R2는 C1 내지 C20의 알킬기,
Figure PCTKR2014005023-appb-I000003
또는
Figure PCTKR2014005023-appb-I000004
이고, 여기서 a, b, c, d 및 e는 각각 독립적으로 1 내지 10의 정수이고, R3, R4, R4' 및 R4" 각각 독립적으로 하기 화학식 3의 구조를 갖는 물질이며,
[화학식 3]
Figure PCTKR2014005023-appb-I000005
상기 화학식 2 및 3에서, X1 및 X2는 각각 독립적으로 -O- 또는 -N-이다.
또한, 상기 인계 산화방지제는 다음 화학식 3 및 4로 표시되는 화합물 중에서 선택된 것이 바람직하다.
[화학식 4]
Figure PCTKR2014005023-appb-I000006
상기 화학식 4에서, R5 내지 R10은 각각 독립적으로 수소 원자 또는 C1 내지 C9의 알킬기이다.
[화학식 5]
Figure PCTKR2014005023-appb-I000007
상기 화학식 5에서, R11 내지 R16은 각각 독립적으로 수소 원자 또는 C1 내지 C9의 알킬기이다.
이때, 상기 폴리아미드 활성층은 아민 화합물이 포함된 수용액과 아실 할라이드 화합물이 포함된 유기용액이 접촉하여 계면 중합에 의해 형성되며, 상기 산화방지제는 유기용액의 아실 할라이드 화합물 고형분 100 중량부를 기준으로 0.02 내지 5 중량부의 함량으로 포함되는 것이 바람직하다.
한편, 상기 수처리 분리막은 초순수에 14일 동안 침지시킨 후의 염제거율이 99.10% 이상인 것이 바람직하고, 광 차단 조건 하에서 16일 동안 보관한 후의 염제거율이 98.50% 이상인 것이 바람직하며, 32,000ppm 농도의 염화나트륨 수용액과 2,000ppm 농도의 차아염소산나트륨 혼합 수용액을 12시간 동안 통과시킨 후의 염제거율이 98.50% 이상인 것이 바람직하다.
또한, 상기 수처리 분리막은 32,000ppm 농도의 염화나트륨 수용액과 2,000ppm 농도의 차아염소산나트륨 혼합 수용액을 12시간 동안 통과시킨 후의 염제거율 변화율이 초기 염제거율 대비 0.5% 이하인 것이 바람직하고, 투과유량 변화율이 초기 투과유량 대비 10% 이하인 것이 바람직하다.
다른 측면에서, 본 발명은 상기 수처리 분리막을 적어도 하나 이상 포함하는 수처리 모듈 및 상기 수처리 모듈을 적어도 하나 이상 포함하는 수처리 장치를 제공한다.
다른 측면에서, 본 발명은 다공성 지지체 상에 아민 화합물을 포함하는 수용액층을 형성하는 단계; 및 상기 수용액층 상에 아실 할라이드 화합물 및 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2인 산화방지제를 포함하는 유기용액을 접촉시켜 폴리아미드층을 형성하는 단계를 포함하는 수처리 분리막 제조방법을 제공한다.
이때, 상기 산화방지제는 유기용액의 아실 할라이드 화합물 고형분 100 중량부를 기준으로 0.02 내지 5 중량부의 함량으로 이루어진다.
본 발명의 수처리 분리막은 폴리아미드층 내에 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2인 산화방지제를 포함함으로써 내산화성 및 내염소성이 모두 우수한 효과가 있다.
또한, 본 발명의 수처리 분리막 제조방법에 따르면, 아실 할라이드를 포함하는 유기용액에 산화방지제를 도입하여 폴리아미드층을 중합함으로써, 별도의 후처리 공정없이 내산화성 및 내염소성이 우수한 수처리 분리막을 제조할 수 있다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 발명자들은 정수 성능을 저하시키지 않으면서도 내산화성 및 내염소성이 모두 우수한 수처리 분리막을 개발하기 위해, 연구를 거듭한 결과, 폴리아미드층 내에 산화방지제를 포함시킴으로써, 상기와 같은 목적을 달성할 수 있음을 알아내고, 본 발명을 완성하였다.
본 발명의 수처리 분리막은 (1) 다공성 지지체 및 (2) 상기 다공성 지지체 상에 형성된 폴리아미드층을 포함하는 수처리 분리막에 관한 것으로, 상기 (3) 폴리아미드층은 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2인 산화방지제를 포함하는 것을 그 특징으로 한다.
상기 (1) 다공성 지지체로는, 부직포 상에 고분자 재료의 코팅층이 형성된 것을 사용할 수 있으며, 상기 고분자 재료로는, 예를 들면, 폴리설폰, 폴리에테르설폰, 폴리카보네이트, 폴리에틸렌옥사이드, 폴리이미드, 폴리에테르이미드, 폴리에테르에테르케톤, 폴리프로필렌, 폴리메틸펜텐, 폴리메틸클로라이드 및 폴리비닐리젠플루오라이드 등이 사용될 수 있으나, 반드시 이들로 제한되는 것은 아니다. 이 중에서도 특히 폴리설폰이 바람직하다.
한편, 상기 (2) 상기 다공성 지지체 상에 형성된 폴리아미드층은 아민 화합물과 아실 할라이드 화합물의 계면 중합에 의해 형성될 수 있으며, 구체적으로 아민 화합물을 포함하는 수용액을 다공성 지지체 상에 코팅하여 층을 형성한 후, 아실 할라이드 화합물을 포함하는 유기용액을 접촉시켜 폴리아미드층을 형성할 수 있다.
이때 상기 아민 화합물은, 이로써 제한되는 것은 아니나, 예를 들면, m-페닐렌디아민, p-페닐렌디아민, 1,3,6-벤젠트리아민, 4-클로로-1,3-페닐렌디아민, 6-클로로-1,3-페닐렌디아민, 3-클로로-1,4-페닐렌 디아민 또는 이들의 혼합물인 것이 바람직하다. 또한, 상기 아실 할라이드 화합물은 2~3개의 카르복실산 할라이드를 갖는 방향족 화합물로서, 이로써 제한 되는 것은 아니나, 예를 들면, 트리메조일클로라이드, 이소프탈로일클로라이드, 테레프탈로일클로라이드 또는 이들의 혼합물인 것이 바람직하다.
다음으로, 본 발명의 수처리 분리막의 (3) 폴리아미드층은 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2인 산화방지제를 포함한다.
상기와 같이 산화방지제를 포함하여 폴리아미드층이 형성되면, 산화반응에 의해 폴리아미드의 중합이 분해되는 현상 및 라디칼 분해 현상을 억제하게 되어, 수중 및 공기 중에서 내산화성이 향상된다.
구체적으로, 산화방지제가 포함되지 않는 폴리아마이드층의 경우, 물 또는 공기 중 수분에 있는 미량의 OH- 기 또는 대기 중에 노출되었을 경우 빛에 의해 라디칼이 형성되어 폴리아마이드 결합이 점차적으로 분해되게 되는데, 상기와 같이 산화방지제가 포함되는 경우 산화방지제가 이러한 라디칼의 생성을 억제해 주므로 내산화성이 향상되는 효과를 확인할 수 있다.
또한, 폴리아마이드는 차아염소산(HClO)에 의해 N-염소화(N-chlorination)가 일어나고 이어서 비가역 반응인 Orton Rearrangement에 의해 고리-염소화(Ring-Chlorination)가 일어나면서 점차적으로 분해(degradation)가 일어나게 된다. 이에 반해, 상기와 같이 산화방지제가 첨가되는 경우 산화방지제가 N-염소화(N-chlorination) 현상을 억제하여 내염소성이 향상되게 된다.
이때, 본 발명의 산화방지제는 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2 정도이고, 바람직하게는 12(J/cm3)1/2 내지 20(J/cm3)1/2 정도인 것이 더욱 바람직하다.
일반적으로, 산화방지제는 용매에 대한 용해도가 매우 작아 쉽게 녹지 않으며, 산화방지제의 종류에 따라 다양한 범위의 용해도 파라미터 값을 가진다. 하기의 제조방법에서 살펴볼 바와 같이, 일반적으로 아실 할라이드 화합물을 포함하는 유기용매로는 지방족 탄화수소 용매를 사용하게 되며, 상기 용매는 13 내지 16(J/cm3)1/2 정도의 용해도 파라미터 값을 갖는다. 따라서, 상기 산화방지제의 용해도 파라미터 값이 상기 범위를 만족하지 못하는 경우, 산화방지제가 용매에 대부분 녹지 못하게 되어, 계면 중합에 의해 형성된 폴리아마이드 층에 균일하게 형성되지 않고 뭉쳐있거나 세척 과정에서 모두 씻겨 내려가게 된다. 결국, 분리막의 초기 성능이 저하되거나, 내산화성 및 내오염성을 향상시키기 어려워진다.
한편, 본 명세서에서 용해도 파라미터라 함은 각 화합물 혹은 용매가 가지고 있는 용해도 상수로서 Hansen Solubility Parameter를 의미하는 것이고, 하기 식1과 같이 한센(Hansen)식에 의해 정의될 수 있다.
[식 1]
Figure PCTKR2014005023-appb-I000008
상기 식에서, δ= 용해도 파라미터(solubility parameter)이고, δd=용해도 파라미터에 대한 디스퍼션 포스의 기여분(solubility parameter by disperdipon force)이며, δp=용해도 파라미터에 대한 쌍극자 모멘트의 기여분(solubility parameter by dipolar intermolecular force)이고, δh=용해도 파라미터에 대한 수소결합의 기여분(solubility parameter by hydrogen bonding force)이다.
본 발명에 있어서, 상기 산화방지제로는 페놀계 산화방지제, 아민계 산화방지제와 같은 1차 산화방지제; 인계 산화방지제, 유황계 산화방지제와 같은 2차 산화방지제; 또는 이들의 혼합물 등이 사용될 수 있다.
본 발명에서 사용되는 페놀계 산화방지제는 이로써 제한되는 것은 아니나, 예를 들어, 2-t-부틸-6-(3-t-부틸-2-하이드록시-5-메틸벤질)-4-메틸페닐 아크릴레이트, 2-[1-(2-하이드록시-3,5-디-t-펜틸페닐)에틸]-4,6-디-t-펜틸페닐 아크릴레이트, 1,6-헥산디올비스-[3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트], 2,2-티오디에틸렌비스-[3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트], 3,5-디-t-부틸-4-하이드록시벤질포스포네이트디에틸 에스테르, 트리스(2,6-디메틸-3-하이드록시-4-t-부틸벤질)이소시아누레이트, 트리스(3,5-디-t-부닐-4-하이드록시벤질)이소시아누레이트, 트리스[(3,5-디-t-부틸-4-하이드록시페닐)프로피오닐옥시에틸]이소시아누레이트, 트리스(4-t-부틸-2,6-디메틸-3-하이드록시벤질)이소시아누레이트, 2,2'-메틸렌비스(4-메틸-6-t-부틸페놀)테레프탈레이트, 1,3,5-트리메틸-2,4,6-트리스(3,5-디-t-부틸-4-하이드록시벤질)벤젠, 3,9-비스[1,1-디메틸-2-{β-(3-t-부틸-4-하이드록시-5-메틸-페닐)프리피오닐옥시}에틸]-2,4,8,10-테트라옥사스피로[5,5]운데칸, 2,2-비스[4-(2-3,5-디-t-부틸-4-하이드록시하이드로신나모일옥시)에톡시페닐]프로판, β-(3,5-디-t-부틸-4-하이드록시페닐)프로피온산 스테아릴 에스테르를 들 수 있다.
또한, 상기 페놀 산화방지제는 하기 화학식 1 및 2로 표시되는 화합물 중에서 선택된 것일 수 있다.
[화학식1]
Figure PCTKR2014005023-appb-I000009
상기 화학식1에서, R1은 C1 내지 C20의 알킬기이다.
[화학식 2]
Figure PCTKR2014005023-appb-I000010
상기 화학식 2에서,
R2는 C1 내지 C20의 알킬기,
Figure PCTKR2014005023-appb-I000011
또는
Figure PCTKR2014005023-appb-I000012
이고, 여기서 a, b, c, d 및 e는 각각 독립적으로 1 내지 10의 정수이고, R3, R4, R4' 및 R4" 각각 독립적으로 하기 화학식 3의 구조를 갖는 물질이며,
[화학식 3]
Figure PCTKR2014005023-appb-I000013
상기 화학식 2 및 3에서, X1 및 X2는 각각 독립적으로 -O- 또는 -N-이다.
이때, 상기 a, b, c, d 및 e는 동일한 1 내지 10의 정수이고, 상기 R3, R4, R4' 및 R4"도 동일한 화학식 3의 구조를 갖으며, 상기 X1 및 X2 또한 동일한 -O- 또는 -N- 을 갖는 것이 화합물의 대칭성에 있어서 더욱 바람직하다.
한편, 페놀계 산화방지제로는 시판 제품을 사용할 수도 있다. 이로써 제한되는 것은 아니나, 시판되는 페놀계 산화방지제의 예로는 이르가녹스 1010(Irganox 1010)[시바 스페셜티 케미칼스(Ciba Specialty Chemicals) 제조], 이르가녹스 1098[시바 스페셜티 케미칼스 제조], 이르가녹스 1076[시바 스페셜티 케미칼스 제조], 이르가녹스 1330[시바 스페셜티 케미칼스 제조], 이르가녹스 3114[시바 스페셜티 케미칼스 제조], 이르가녹스 3125[시바 스페셜티 케미칼스 제조], 시아녹스 1790(Cyanox 1790)[사이테크 프로덕트사(Cytech Products, Inc.) 제조], Tinuvin 120[바스프사(Basf) 제조], Tinuvin 326[바스프사 제조], Tinuvin 327[바스프사 제조], Tinuvin 328[바스프사 제조] 등을 들 수 있다.
또한, 본 발명에서 사용되는 아민계 산화방지제는 이로써 제한되는 것은 아니나, 예를 들어 N,N'-비스(1-에틸-3-메틸펜틸)-p-페닐렌디아민, N,N'-비스(1-메틸헵틸)-p-페닐렌디아민, N,N'-디시클로헥실-p-페닐렌디아민, N,N'-비스(2-나프틸)-p-페닐렌디아민, N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, N-(1-메틸헵틸)-N'-페닐-p-페닐렌디아민, 1,2-비스[(2-메틸페닐)아미노]에탄, 1,2-비스(페닐-아미노)프로판, (o-톨릴)바이구아니드, 비스[4-(1',3'-디메틸부틸)페닐]아민, tert-옥틸화된 N-페닐-1-나프틸아민, 모노- 및 디-알킬화된 tert-부틸/tert-옥틸디페닐-아민의 혼합물, 모노- 및 디-알킬화된 노닐디페닐아민의 혼합물, 모노- 및 디-알킬화된 도데실디페닐아민의 혼합물, 모노- 및 디-알킬화된 이소프로필/이소헥실-디페닐아민의 혼합물, 모노- 및 디-알킬화된 tert-부틸디페닐아민의 혼합물, 2,3-디히드로-3,3-디메틸-4H-1,4-벤조티아진, 페노티아진, 모노- 및 디-알킬화된 tert-부틸/tert-옥틸페노티아진의 혼합물, 모노- 또는 디-알킬화된 tert-옥틸-페노티아진의 혼합물, N-알릴페노티아진, N,N,N',N'-테트라페닐-1,4-디아미노부트-2-엔 등이 있다.
또한, 본 발명에서 사용되는 인계 산화방지제는 이로써 제한되는 것은 아니나, 예를 들어, 비스(디알킬페닐)펜타에리트리톨 디포스파이트 에스테르, 포스파이트 에스테르, 트리옥틸 포스파이트, 트리라우릴 포스파이트, 트리데실 포스파이트, (옥틸)디페닐 포스파이트, 트리스(2,4-디-t-부틸페닐) 포스파이트, 트리페닐 포스파이트, 트리스(부톡시에틸) 포스파이트, 트리스(노닐페닐) 포스파이트, 디스테아릴펜타에리트리톨 디포스파이트, 테트라(트리데실)-1,1,3-트리스(2-메틸-5-t-부틸-4-하이드록시-페닐)부탄 디포스파이트, 테트라(C12-C15 혼합 알킬)-4,4'-이소프로필리덴디페닐 디포스파이트, 테트라(트리데실)-4,4'-부틸리덴비스(3-메틸-6-t-부닐페놀)디포스파이트, 트리스(모노- 및 디-혼합 노닐페닐)포스파이트, 수소화-4,4'-이소프로필리덴디페놀 폴리포스파이트, 페닐(4,4'-이소프로필리덴디페놀)펜타에 리트리톨 디포스파이트, 디스테아릴펜타에리트리톨 디포스파이트, 트리스[4,4'-이소프로필리덴비스(2-t-부틸페놀)] 포스파이트, 디(이소데실)페닐 포스파이트, 4,4'-이소프로필리덴비스(2-t-부틸페놀)비스(노닐페닐) 포스파이트, 비스(2,4-디-t-부틸-6-메틸페닐)에틸 포스파이트, 2-[{2,4,8,10-테트라-t-부틸디벤즈[d,f][1.3.2]-디옥사-포스페핀-6-일}옥시]-N,N-비스[2-[{2,4,8,10-테트라-t-부틸-디벤즈[d,f][1.3.2]-디옥사포스페핀-6-일}옥시]에틸]-에탄아민, 또는 6-[3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로폭시]-2,4,8,10-테트라-t-부틸디벤즈[d,f][1.3.2]-디옥사포스페핀을 들 수 있다. 특히, 바람직하게는, 비스(디알킬페닐)펜타에리트리톨 디포스파이트 에스테르 또는 포스파이트 에스테르일 수 있다.
한편, 상기 비스(디알킬페닐)펜타에리트리톨 디포스파이트 에스테르는, 하기 화학식 4로 표시되는 스피로형, 또는, 하기 화학식 5로 표시되는 케이지형일 수 있다.
[화학식 4]
Figure PCTKR2014005023-appb-I000014
상기 화학식 4에서, R5 내지 R10은 각각 독립적으로 수소 원자 또는 C1 내지 C9의 알킬기이다.
[화학식 5]
Figure PCTKR2014005023-appb-I000015
상기 화학식 5에서, R11 내지 R16은 각각 독립적으로 수소 원자 또는 C1 내지 C9의 알킬기이다. 이때, 상기 R4 내지 R9이 알킬기의 경우, 분지가 있는 알킬기가 바람직하고, 그 중에서도 t-부틸기가 가장 바람직하다.
구체적으로는, 상기 비스(디알킬페닐)펜타에리트리톨 디포스파이트 에스테르는 비스(2,4-디-t-부틸페닐)펜타에리트리톨 디포스파이트, 비스(2,6-디-t-부틸-4-메틸페닐)펜타에리트리톨 디포스파이트, 비스(노닐페닐)펜타에리트리톨 디포스파이트, 또는 테트라키스(2,4-디-t-부틸페닐)-4,4'-비페닐렌 디포스포나이트 등과 같은 화합물일 수 있다.
한편, 상기 인계 산화방지제로는 시판 제품을 사용할 수도 있다. 이러한 시판 인계 산화방지제의 예로는 이르가포스 168(Irgafos 168)[시바 스페셜티 케미칼스 제조], 이르가포스 12[시바 스페셜티 케미칼스 제조], 이르가포스 38[시바 스페셜티 케미칼스 제조], ADKSTAB 329K[아사히 덴카 코교사(Asahi Denka Kogyo K.K.) 제조], ADK STAB PEP36[아사히 덴카 코교사 제조], ADK STAB PEP-8[아사히 덴카 코교사 제조], 샌드스태브 P-EPQ(Sandstab P-EPQ)[클라리언트(Clariant) 제조], 웨스톤 618(Weston 618)[GE 제조], 웨스톤 619G[GE 제조], 울트라녹스 626(Ultranox 626)[GE 제조], 또는 수밀라이저 GP[스미토모 화학 제조]를 들 수 있다.
본 발명에서 사용되는 유황계 산화방지제는 이로써 제한되는 것은 아니나, 예를 들어 디라우릴티오디프로피오네이트, 디미리스틸티오디프로피오네이트 및 디스테아릴티오디프로피오네이트와 같은 디알킬티오디프로피오네이트; 부틸티오프로피온산, 옥틸티오프로피온산, 라우릴티오프로피온산 및 스테아릴티오프로피온산과 같은 알킬티오프로피온산의 다가 알콜(예, 글리세린, 트리메틸올에탄, 트리메틸올프로판, 펜타에리트리톨 또는 트리스하이드록시에틸 이소시아누레이트) 에스테르(펜타에리트릴테트라키스-3-라우릴티오프로피오네이트)를 들 수 있다. 더욱 구체적인 예로서는 디라우릴티오디프로피오네이트, 디미리스틸티오디프로피오네이트, 디스테아릴티오디프로피오네이트, 라우릴스테아릴티오디프로피오네이트 또는 디스테아릴티오디부티레이트 등을 들 수 있다.
한편, 유황계 산화방지제로는 시판 제품을 사용할 수도 있다. 이러한 시판 유황계 산화방지제의 예로는 수밀라이저 TPS[스미토모 화학 제조], 수밀라이저 TPL-R[스미토모 화학 제조], 수밀라이저 TPM[스미토모 화학 제조] 또는 수밀라이저 TP-D[스미토모 화학 제조]를 들 수 있다.
상기 폴리아미드 활성층은 아민 화합물이 포함된 수용액과 아실 할라이드 화합물이 포함된 유기용액이 접촉하여 계면 중합에 의해 형성되며, 상기 산화방지제는 유기용액의 아실 할라이드 화합물 고형분 100 중량부를 기준으로 0.02 내지 5 중량부 정도, 바람직하게는 0.05 내지 3.5 중량부 정도의 함량으로 포함되는 것이 바람직하다. 상기 범위를 만족하는 경우, 분리막의 초기 염제거율 및 투과유량의 저하 없이 내산화성 및 내염소성 등의 성능이 현저하게 개선된다.
본 발명자의 실험에 따르면, 상기와 같이 산화방지제가 포함된 폴리아미드층이 형성된 본 발명의 역삼투막의 경우, 초기 염제거율이 99.00% 이상, 초기 유량이 28.0 gallon/ft2·day 이상으로 종래 역삼투막과 동등하거나 우수한 성능을 가진다. 또한, 초순수에 침지하여 14일간 보관한 후에도 염제거율이 99.10% 이상, 바람직하게는 99.20% 이상이고, 투과유량이 28 내지 35 gallon/ft2·day 정도의 값을 갖는다. 또한, 광 차단 조건 하에서 16일간 보관한 후에도 염제거율이 98.50% 이상, 바람직하게는 99.00% 이상 더욱 바람직하게는 99.20% 이상이고, 투과유량이 30.0 내지 39.0 gallon/ft2·day 정도로 정수 기능이 크게 떨어지지 않는 것으로 나타났다.
뿐만 아니라, 상기 수처리 분리막이 32,000ppm 농도의 염화나트륨(NaCl)과 2,000ppm 농도의 차염소산나트륨(NaOCl)을 함유하는 혼합수용액을 800psi 압력으로 투입하고 12시간 경과 후에도 염제거율이 98.50% 이상, 바람직하게는 99.00%이상, 더욱 바람직하게는 99.20% 이상이고, 투과유량이 25.0 내지 35.0 gallon/ft2·day 정도로 정수 기능이 크게 떨어지지 않는 것으로 나타났다.
보다 구체적으로, 본 발명의 수처리 분리막은 32,000ppm 농도의 염화나트륨(NaCl)과 2,000ppm 농도의 차염소산나트륨(NaOCl)을 함유하는 혼합수용액을 800psi 압력으로 투입하고 12시간 경과 후의 염제거율 변화율이 초기 염제거율 대비 0.5% 이하, 바람직하게는 0.2% 이하 또는 0.1% 이하이다.
마찬가지로 상기와 동일한 조건의 차염소산나트륨(NaOCl)을 함유하는 혼합수용액을 800psi 압력으로 투입하고 12시간 경과 후 투과유량 변화율이 초기 투과유량 대비 10% 이하, 바람직하게는 5% 이하 또는 3% 이하인 것이 바람직하다.
즉, 본 발명의 수처리 분리막은 종래의 분리막에 비해 내산화성 및 내염소성이 매우 우수하다.
상기 구성요소를 포함한 수처리 분리막은 정밀 여과막(Micro Filtration), 한외 여과막(Ultra Filtration), 나노 여과막(Nano Filtration) 또는 역삼투막(Reverse Osmosis)에 이용될 수 있으며, 바람직하게는 역삼투막에 이용된다.
본 발명은 또한, 전술한 본 발명에 따른 수처리 분리막을 적어도 하나 이상 포함하는 수처리 모듈에 관한 것이다.
상기 본 발명의 수처리 모듈의 구체적인 종류는 특별히 제한되지 않으며, 그 예에는 판형(plate & frame) 모듈, 관형(tubular) 모듈, 중공사형(Hollow & Fiber) 모듈 또는 나권형(spiral wound) 모듈 등이 포함된다. 또한, 본 발명의 수처리 모듈은 전술한 본 발명의 수처리 분리막을 포함하는 한, 그 외의 기타 구성 및 제조 방법 등은 특별히 한정되지 않고, 이 분야에서 공지된 일반적인 수단을 제한 없이 채용할 수 있다.
한편, 본 발명의 수처리 모듈은 내산화성 및 내오염성이 우수하며, 화학적 안정성이 우수하여 가정용/산업용 정수 장치, 하수 처리 장치, 해담수 처리 장치 등과 같은 수처리 장치에 유용하게 사용될 수 있다.
다음으로 본 발명의 수처리 분리막의 제조방법에 대해 설명한다.
보다 구체적으로는, 본 발명의 수처리 분리막은 다공성 지지체 상에 아민 화합물을 포함하는 수용액층을 형성하는 단계; 및 상기 수용액층 상에 아실 할라이드 화합물 및 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2인 산화방지제를 포함하는 유기용액을 접촉시켜 폴리아미드층을 형성하는 단계를 포함하여 제조될 수 있다.
이때, 상기 아민 화합물을 포함하는 수용액층을 형성하는 단계에서 상기 아민 화합물로는 수처리 분리막 제조에 사용되는 아민 화합물들을 제한 없이 사용할 수 있으며, 예를 들면, 시클로헥산디아민, 피페라진 및 피페라진 유도체 등과 같은 방향족 다관능성 아민; N, N-디메틸-1, 3-페닐렌디아민, 크시렌디아민, 벤지딘, 벤지딘 유도체 또는 이들의 혼합물들을 사용할 수 있다. 이중에서도 방향족 다관능 아민이 바람직하며, 있으며, m-페닐렌디아민, p-페닐렌디아민, 1,3,6-벤젠트리아민, 4-클로로-1,3-페닐렌디아민, 6-클로로-1,3-페닐렌디아민, 3-클로로-1,4-페닐렌 디아민 또는 이들의 혼합물인 것이 바람직하다.
한편, 상기 아민 수용액의 용매는 물과 같은 극성 용매인 것이 바람직하며, 상기 아민 수용액에는 필요에 따라, 트리에틸아민 및 캄포설포닉에시드와 같은 참가제가 추가로 포함될 수 있다.
또한, 다공성 지지체 상에 아민 수용액층을 형성하는 방법은 지지체 위에 수용액을 형성할 수 있는 방법이라면 어떠한 방법도 제외하지 않는다. 예를 들면, 분무, 도포, 침지, 적하 등의 어떠한 방법이라도 사용 가능하다.
상기 수용액층을 형성한 후, 선택적으로 과잉의 아민 화합물을 포함하는 수용액을 제거하는 단계를 추가적으로 거칠 수 있다. 이와 같이 과잉의 수용액을 제거하게 되면, 계면 중합 층이 지지체 상에 안전하게 형성되며, 균일한 층을 형성 할 수 있다. 상기 과잉의 수용액의 제거는 스펀지, 에어나이프, 질소 가스 블로잉, 자연건조, 또는 압축 롤 등을 이용하여 행할 수 있으나 특별히 이에 한정되는 것은 아니다.
상기와 같은 과정을 거쳐 다공성 지지체 상에 아민 수용액층이 형성되면, 그 아민 수용액층 상에 아실 할라이드 화합물 및 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2인 산화방지제를 함유하는 유기용액을 접촉하여 폴리아미드층을 형성한다.
이때, 표면에 코팅된 아민 화합물과 아실 할라이드 화합물이 반응하면서 계면 중합에 의해 폴리아미드를 생성하고, 미세 다공성 지지체에 흡착되어 박막이 형성된다. 상기 접촉 방법에 있어서, 침지, 스프레이 또는 코팅 등의 방법을 통해 폴리아미드층을 형성할 수도 있다.
상기 아실 할라이드 화합물은 2~3개의 카르복실산 할라이드를 갖는 방향족 화합물로서, 이로써 제한 되는 것은 아니나, 예를 들면, 트리메조일클로라이드, 이소프탈로일클로라이드, 테레프탈로일클로라이드 또는 이들의 혼합물인 것이 바람직하다.
한편, 상기 산화방지제는 앞에서 살펴본 내용과 동일하므로, 자세한 설명은 생략하기로 한다.
한편, 아실 할라이드 화합물을 포함하는 용액의 유기용매로는 계면 중합 반응에 참가하지 않고, 아실 할라이드 화합물과 화학적 결합을 일으키지 않으며, 다공성 지지층에 손상을 입히지 않는 용매를 사용하는 것이 바람직하다. 상기 유기용매로는 지방족탄화수소 용매, 예를 들면, 프레온류와 탄소수가 5~12인 헥산, 사이클로헥산, 헵탄, 알칸과 같은 물과 섞이지 않는 소수성 액체, 예를 들면, 탄소수가 5~12인 알칸과 그 혼합물인 Isol-C(Exxon Cor.), Isol-G(Exxon Cor.)등이 사용될 수 있다.
이때, 아실 할라이드 화합물은 전체 유기용매를 기준으로 0.05 내지 1 중량%로 포함하는 것이 바람직하다. 아실 할라이드 화합물의 함량이 상기 범위 내일 때, 우수한 염제거율과 투과 유량 특성을 얻을 수 있기 때문이다.
한편, 상기 산화방지제는 유기용액의 상기 아실 할라이드 화합물 고형분 100 중량부를 기준으로 0.02 내지 5 중량부, 바람직하게는 0.05 내지 3.5 중량부의 함량으로 포함된다. 산화방지제가 상기 함량 범위를 초과하는 경우, 폴리아마이드 중합체 내의 미세 공극을 막아버리는 효과에 의해 염뿐만 아니라 물 분자도 분리막을 통과하지 못하여 투과유량 및 분리막의 초기 성능 값이 크게 저하되며, 상기 함량 범위 미만인 경우, 내산화성 및 내염소성 효과를 기대하기 어렵다.
또한, 상기 접촉시간은 1분 내지 5시간 정도, 보다 바람직하게는 1분 내지 3시간 정도인 것이 좋다. 접촉시간이 1분 미만일 경우, 코팅층이 충분히 형성되지 않으며, 접촉시간이 5시간을 초과할 경우에는, 코팅층 두께가 너무 두꺼워져 수처리 분리막의 투과유량이 감소되는 부정적인 영향이 있다.
한편, 상기와 같은 방법을 통해 다공성 지지체 상에 폴리아미드층이 형성되면 선택적으로 이를 건조하고 세척하는 과정을 수행할 수 있다. 이때 상기 건조는 45℃ 내지 80℃의 오븐에서 1분 내지 10분 정도 수행되는 것이 바람직하다. 또한, 상기 세척은, 특별히 제한되는 것은 아니나, 예를 들면, 염기성 수용액에서 세척할 수 있다. 사용 가능한 염기성 수용액은, 특별히 제한되는 것은 아니나, 예를 들면, 탄산나트륨 수용액을 사용할 수 있으며, 구체적으로는, 20℃ 내지 30℃의 탄산나트륨 수용액에서 1시간 내지 24시간 동안 수행되는 것이 바람직하다.
<실시예 1>
DMF(N,N-디메틸포름아미드) 용액에 18중량%의 폴리술폰 고형분을 넣고 80℃ ~ 85℃에서 12시간 이상 녹여 균일한 액상이 얻었다. 이 용액을 폴리에스테르 재질의 95 ~ 100㎛ 두께의 부직포 위에 45 ~ 50㎛ 두께로 캐스팅한다. 그런 다음, 캐스팅된 부직포를 물에 넣어 다공성 폴리술폰 지지체를 제조하였다.
상기 방법으로 제조된 다공성 폴리술폰 지지체를 2중량%의 메타페닐렌디아민, 1중량%의 트리에틸아민 및 2.3중량%의 캄포설포닉 애시드를 포함하는 수용액에 2분 동안 담갔다 꺼낸 후, 지지체 상의 과잉의 수용액을 25psi 롤러를 이용하여 제거하고, 상온에서 1분간 건조하였다.
그런 다음, Hexane 용매(Sigma Aldrich 제조)에 0.2부피%의 트리메조일클로로이드(TMC) 및 산화방지제로 상기 트리메조일클로로이드(TMC) 고형분 100 중량부를 기준으로 2 중량부의 Irganox1010(Pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate), 용해도 파라미터: 18.5(J/cm3)1/2)을 포함하는 유기용액을 상기 코팅된 지지체 표면에 도포함으로써 계면 중합 반응을 시켰다.
상기 방법으로 얻어진 수처리 분리막을 0.2중량% 탄산나트륨 수용액에서 2시간 이상 침지한 후, 증류수로 다시 1분간 세척하여 폴리아미드층을 갖는 수처리 분리막을 제조하였다.
<실시예 2>
상기 산화방지제로 상기 트리메조일클로로이드(TMC) 고형분 100 중량부를 기준으로 2 중량부의 Irganox1098(N,N’-hexane-1,6-diylbis(3-(3,5-di-tert.-butyl-4-hydroxyphenylpropionamide)), 용해도 파라미터: 19.8(J/cm3)1/2)을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
<실시예 3>
상기 산화방지제로 상기 트리메조일클로로이드(TMC) 고형분 100 중량부를 기준으로 2 중량부의 PEP36(N,N’-hexane-1,6-diylbis(3-(3,5-di-tert.-butyl-4-hydroxyphenylpropionamide)), 용해도 파라미터 : 19.0(J/cm3)1/2)을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
<실시예 4>
상기 산화방지제로 상기 트리메조일클로로이드(TMC) 고형분 100 중량부를 기준으로 1 중량부의 Irganox1098와 1 중량부의 PEP36을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
<실시예 5>
상기 산화방지제로 상기 트리메조일클로로이드(TMC) 고형분 100 중량부를 기준으로 1 중량부의 Irganox1010을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
<실시예 6>
상기 산화방지제로 상기 트리메조일클로로이드(TMC) 고형분 100 중량부를 기준으로 3 중량부의 Irganox1010을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
<비교예 1>
유기용액 제조시 산화방지제를 포함하지 아니하고, 0.2부피%의 트리메조일클로로이드(TMC)만을 포함한다는 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
<비교예 2>
상기 산화방지제로 상기 트리메조일클로로이드(TMC) 고형분 100 중량부를 기준으로 2 중량부의 BHA(butylated hydroxyanisole, 용해도 파라미터 25.4(J/cm3)1/2)사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
<비교예 3>
상기 산화방지제로 상기 트리메조일클로로이드(TMC) 고형분 100 중량부를 기준으로 15 중량부의 Irganox1010을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
<실험예 1 - 초기 염제거율 및 초기 투과유량 측정>
실시예 1 내지 6 및 비교예 1 내지 3에 의해 제조된 수처리 분리막의 초기 염제거율과 초기 투과유량을 다음과 같은 방법으로 평가하였다. 초기 염제거율과 초기 투과유량은 25℃에서 32,000ppm의 염화나트륨 수용액을 4500mL/min의 유량으로 공급하면서 측정하였다. 막 평가에 사용한 수처리 분리막 셀 장치는 평판형 투과셀과 고압펌프, 저장조 및 냉각 장치를 구비하였으며, 평판형 투과 셀의 구조는 크로스-플로우(cross-flow) 방식으로 유효 투과면적은 28cm2이다. 세척한 수처리 분리막을 투과셀에 설치한 다음, 평가 장비의 안정화를 위하여 3차 증류수를 이용하여 1시간 정도 충분히 예비 운전을 실시하였다. 그런 다음, 32,000ppm의 염화나트륨 수용액으로 교체하여 압력과 투과유량이 정상 상태에 이를 때까지 1시간 정도 장비 운전을 실시한 후, 10분간 투과되는 물의 양을 측정하여 유량을 계산하고, 전도도 미터(Conductivity Meter)를 사용하여 투과 전후 염 농도를 분석하여 염제거율을 계산하였다. 측정 결과는 [표 1]에 나타내었다.
<실험예 2 - 시간에 따른 내산화성 평가>
실시예 1 내지 6 및 비교예 1 및 3에 의해 제조된 수처리 분리막의 내산화성을 다음과 같은 방법으로 평가하였다. 32,000ppm의 염화나트륨 수용액에서 800psi에서 초기 염 배제율 및 초기 투과유량을 측정한 후, 상기 분리막 일부는 제조 후 익일 평가 하였으며, 일부는 초순수에 침지하여 14일간 보관한 뒤 상기와 같은 방법으로 염제거율 및 투과유량을 측정하였다. 또한 제조된 분리막 일부는 빛이 차단된 용기에서 8일 및 16일간 보관한 뒤 염제거율 및 투과유량을 측정하였다. 측정 결과는 [표 1]에 나타내었다.
표 1
산화방지제의 종류 및 함량 (TMC 고형분 대비 중량부) 익일 평가 14일간 DIW 보관 후 평가 8일간 빛이 차단된 용기에 보관 후 평가 16일간 빛이 차단된 용기에 보관 후 평가
염제거율 (%) 투과유량 (GFD) 염제거율 (%) 투과유량 (GFD) 염제거율 (%) 투과유량 (GFD) 염제거율 (%) 투과유량 (GFD)
실시예 1 Irganox1010 (2) 99.53 31.92 99.43 30.87 99.40 35.71 99.34 36.53
실시예 2 Irganox1098 (2) 99.48 31.81 99.37 29.69 99.36 35.94 99.29 37.12
실시예 3 PEP36 (2) 99.55 30.35 99.27 29.52 99.15 34.06 98.98 38.81
실시예 4 Irganox1098(1)+ PEP36(1) 99.46 29.82 99.27 31.58 99.31 33.47 99.27 34.18
실시예 5 Irganox1010(1) 99.50 31.99 99.28 33.72 99.39 31.99 99.29 35.91
실시예 6 Irganox1010(3) 99.53 31.01 99.50 31.86 99.42 31.00 99.38 33.78
비교예 1 - 99.46 33.35 99.04 35.12 99.01 34.88 98.34 35.35
비교예 2 BHA(2) 87.42 22.89 - - - - - -
비교예 3 Irganox1010(15) 99.54 7.21 99.52 7.55 99.42 9.66 99.40 10.02
[표 1]의 결과를 보면, 실시예 1 내지 6과 같이 산화방지제가 포함된 경우, 비교예 1의 분리막에 비해 염제거율 감소 폭이 매우 적어 내산화성이 향상된 것을 알 수 있었다. 다만, 비교예 2에서 확인할 수 있듯이, 본 발명의 용해도 파라미터를 만족시키지 못하는 산화방지제를 사용하는 경우, 염제거율 및 투과유량이 크게 떨어지며, 비교예 3에서 확인할 수 있듯이, 산화방지제의 함량이 아실 할라이드 고형분 100 중량부를 기준으로 15 중량부를 포함하는 경우, 초기 투과유량이 매우 적어 분리막으로 사용하기 어려움을 알 수 있었다.
<실험예 3 - 시간에 따른 내염소성 평가>
실시예 1 내지 2 및 비교예 1에 의해 제조된 수처리 분리막의 내염소성을 다음과 같은 방법으로 평가하였다. 32,000ppm의 염화나트륨 수용액과 2,000ppm의 차아염소산나트륨(NaOCl)을 함유하는 혼합 수용액을 사용하여 800psi에서 초기 염제거율 및 초기 투과유량을 측정한 후, 12시간 경과 후의 염제거율 및 초기 투과유량을 측정하였고, 초기 염제거율 및 투과유량과 대비하여 12시간 경과 후의 변화율을 측정하였다. 결과는 [표 2]에 나타내었다.
표 2
구분 염제거율 (%) 투과유량 (GFD) 변화율 (%)
NaOCl 투입 직후 NaOCl 노출 12시간 후 NaOCl 투입 직후 NaOCl 노출 12시간 후 12시간 노출 후 염제거율 12시간 노출 후 투과유량
실시예 1 99.57 99.50 34.18 33.82 0.07 1.05
실시예 2 99.45 99.43 30.76 30.77 0.02 0.33
비교예 1 99.44 98.12 32.29 38.22 1.33 18.36
[표 2]의 결과를 보면, 실시예 1 및 2의 염제거율 및 투과유량은 NaOCl에 12시간 노출된 후에도 크게 변화가 없었다. 같은 시간동안 1.33% 정도의 염제거율이 감소하고 투과유량이 급격히 증가한 비교예 1과 대비해 볼 때, 우수한 내염소성의 특성을 확인할 수 있었다.
이상에서 본 명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.

Claims (17)

  1. 다공성 지지체 및 상기 다공성 지지체 상에 형성된 폴리아미드층을 포함하는 수처리 분리막으로,
    상기 폴리아미드층은 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2인 산화방지제를 포함하는 수처리 분리막.
  2. 제1항에 있어서,
    상기 산화방지제는 페놀계 산화방지제, 아민계 산화방지제, 인계 산화방지제, 유황계 산화방지제 또는 이들의 혼합물인 수처리 분리막.
  3. 제2항에 있어서,
    상기 페놀계 산화방지제는 하기 화학식 1 및 2로 표시되는 화합물 중에서 선택된 것인 수처리 분리막.
    [화학식1]
    Figure PCTKR2014005023-appb-I000016
    상기 화학식1에서, R1은 C1 내지 C20의 알킬기이다.
    [화학식 2]
    Figure PCTKR2014005023-appb-I000017
    상기 화학식 2에서,
    R2는 C1 내지 C20의 알킬기,
    Figure PCTKR2014005023-appb-I000018
    또는
    Figure PCTKR2014005023-appb-I000019
    이고, 여기서 a, b, c, d 및 e는 각각 독립적으로 1 내지 10의 정수이고, R3, R4, R4' 및 R4" 각각 독립적으로 하기 화학식 3의 구조를 갖는 물질이며,
    [화학식 3]
    Figure PCTKR2014005023-appb-I000020
    상기 화학식 2 및 3에서, X1 및 X2는 각각 독립적으로 -O- 또는 -N-이다.
  4. 제2항에 있어서,
    상기 인계 산화방지제는 다음 화학식 4 및 5로 표시되는 화합물 중에서 선택된 것인 수처리 분리막.
    [화학식 4]
    Figure PCTKR2014005023-appb-I000021
    상기 화학식 4에서, R5 내지 R10은 각각 독립적으로 수소 원자 또는 C1 내지 C9의 알킬기이다.
    [화학식 5]
    Figure PCTKR2014005023-appb-I000022
    상기 화학식 5에서, R11 내지 R16은 각각 독립적으로 수소 원자 또는 C1 내지 C9의 알킬기이다.
  5. 제1항에 있어서,
    상기 폴리아미드 활성층은 아민 화합물이 포함된 수용액과 아실 할라이드 화합물이 포함된 유기용액이 접촉하여 계면 중합에 의해 형성되며, 상기 산화방지제는 유기용액의 아실 할라이드 화합물 고형분 100 중량부를 기준으로 0.02 내지 5 중량부의 함량으로 포함되는 것인 수처리 분리막.
  6. 제1항에 있어서,
    상기 수처리 분리막은 초순수에 14일 동안 침지시킨 후의 염제거율이 99.10% 이상인 수처리 분리막.
  7. 제1항에 있어서,
    상기 수처리 분리막은 광 차단 조건 하에서 16일 동안 보관한 후의 염제거율이 98.50% 이상인 수처리 분리막.
  8. 제1항에 있어서,
    상기 수처리 분리막은 32,000ppm 농도의 염화나트륨 수용액과 2,000ppm 농도의 차아염소산나트륨 혼합 수용액을 12 시간 동안 통과시킨 후의 염제거율이 98.50% 이상인 수처리 분리막.
  9. 제1항에 있어서,
    상기 수처리 분리막은 32,000ppm 농도의 염화나트륨 수용액과 2,000ppm 농도의 차아염소산나트륨 혼합 수용액을 12시간 동안 통과시킨 후의 염제거율 변화율이 초기 염제거율 대비 0.5% 이하인 수처리 분리막.
  10. 제1항에 있어서,
    상기 수처리 분리막은 32,000ppm 농도의 염화나트륨 수용액과 2,000ppm 농도의 차아염소산나트륨 혼합 수용액을 12시간 동안 통과시킨 후의 투과유량 변화율이 초기 투과유량 대비 10% 이하인 수처리 분리막.
  11. 제1항 내지 제10항 중 어느 한 항의 수처리 분리막을 적어도 하나 이상 포함하는 수처리 모듈.
  12. 제11항에 따른 수처리 모듈을 적어도 하나 이상 포함하는 수처리 장치.
  13. 다공성 지지체 상에 아민 화합물을 포함하는 수용액층을 형성하는 단계; 및
    상기 수용액층 상에 아실 할라이드 화합물 및 용해도 파라미터 값이 9(J/cm3)1/2 내지 22(J/cm3)1/2인 산화방지제를 포함하는 유기용액을 접촉시켜 폴리아미드층을 형성하는 단계;
    를 포함하는 수처리 분리막 제조방법.
  14. 제 13항에 있어서,
    상기 산화방지제는 유기용액의 아실 할라이드 화합물 고형분 100 중량부를 기준으로 0.02 내지 5 중량부의 함량으로 포함되는 수처리 분리막 제조방법.
  15. 제13항에 있어서,
    상기 산화방지제는 페놀계 산화방지제, 아민계 산화방지제, 인계 산화방지제, 유황계 산화방지제 또는 이들의 혼합물인 수처리 분리막 제조방법.
  16. 제15항에 있어서,
    상기 페놀계 산화방지제는 하기 화학식 1 및 2로 표시되는 화합물 중에서 선택된 것인 수처리 분리막 제조방법.
    [화학식1]
    Figure PCTKR2014005023-appb-I000023
    상기 화학식1에서, R1은 C1 내지 C20의 알킬기이다.
    [화학식 2]
    Figure PCTKR2014005023-appb-I000024
    상기 화학식 2에서,
    R2는 C1 내지 C20의 알킬기,
    Figure PCTKR2014005023-appb-I000025
    또는
    Figure PCTKR2014005023-appb-I000026
    이고, 여기서 a, b, c, d 및 e는 각각 독립적으로 1 내지 10의 정수이고, R3, R4, R4' 및 R4" 각각 독립적으로 하기 화학식 3의 구조를 갖는 물질이며,
    [화학식 3]
    Figure PCTKR2014005023-appb-I000027
    상기 화학식 2 및 3에서, X1 및 X2는 각각 독립적으로 -O- 또는 -N-이다.
  17. 제15항에 있어서,
    상기 인계 산화방지제는 다음 화학식 4 및 5로 표시되는 화합물 중에서 선택된 것인 수처리 분리막 제조방법.
    [화학식 4]
    Figure PCTKR2014005023-appb-I000028
    상기 화학식 4에서, R5 내지 R10은 각각 독립적으로 수소 원자 또는 C1 내지 C9의 알킬기이다.
    [화학식 5]
    Figure PCTKR2014005023-appb-I000029
    상기 화학식 5에서, R11 내지 R16은 각각 독립적으로 수소 원자 또는 C1 내지 C9의 알킬기이다.
PCT/KR2014/005023 2013-06-07 2014-06-05 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법 WO2014196835A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/387,470 US9833751B2 (en) 2013-06-07 2014-06-05 Polyamide water-treatment separation membrane having superior oxidation resistance and chlorine resistance properties, and method of manufacturing the same
JP2016518276A JP6608811B2 (ja) 2013-06-07 2014-06-05 耐酸化性及び耐塩素性に優れたポリアミド系水処理分離膜及びその製造方法
EP14766382.7A EP2835175B1 (en) 2013-06-07 2014-06-05 Polyamide-based water treatment separation membrane having excellent oxidation resistance and chlorine resistance and manufacturing method therefor
CN201480000954.0A CN104379243A (zh) 2013-06-07 2014-06-05 具有优异的抗氧化性和耐氯性的聚酰胺水处理分离膜及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130065439 2013-06-07
KR10-2013-0065439 2013-06-07
KR1020140068409A KR101752525B1 (ko) 2013-06-07 2014-06-05 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
KR10-2014-0068409 2014-06-05

Publications (1)

Publication Number Publication Date
WO2014196835A1 true WO2014196835A1 (ko) 2014-12-11

Family

ID=52183100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005023 WO2014196835A1 (ko) 2013-06-07 2014-06-05 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법

Country Status (6)

Country Link
US (1) US9833751B2 (ko)
EP (1) EP2835175B1 (ko)
JP (1) JP6608811B2 (ko)
KR (1) KR101752525B1 (ko)
CN (1) CN104379243A (ko)
WO (1) WO2014196835A1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261589A (ja) * 1985-09-10 1987-03-18 Fuji Oil Co Ltd グリセリド油脂の加工法
JP2015116539A (ja) * 2013-12-19 2015-06-25 東レ株式会社 複合半透膜およびその製造方法
CN105617888B (zh) * 2014-11-05 2018-11-06 天津大学 一种高通量高截留率复合纳滤膜的制备方法
KR101995351B1 (ko) * 2015-05-07 2019-07-02 두산중공업 주식회사 막 세정용 비산화성 살균제 및 이를 이용한 수처리 방법과 막 세정방법
WO2017052256A1 (ko) * 2015-09-23 2017-03-30 주식회사 엘지화학 수처리 분리막 및 이의 제조방법
CN109689186A (zh) * 2016-09-07 2019-04-26 欧赛斯水务有限公司 有可替代的选择性层的膜
KR102220117B1 (ko) * 2017-03-24 2021-02-24 도레이첨단소재 주식회사 유량이 향상된 내산성 나노분리막 및 이의 제조방법
KR102169846B1 (ko) * 2017-11-01 2020-10-26 주식회사 엘지화학 수처리 분리막 세정방법 및 세정장치
CN108722190B (zh) * 2018-05-28 2020-09-29 四川大学 一种耐氯型聚酰胺反渗透复合膜及其制备方法
KR102369779B1 (ko) * 2018-08-09 2022-03-03 주식회사 엘지화학 수처리 모듈의 보관 방법 및 이를 이용한 수처리 모듈팩
CN109603587A (zh) * 2018-11-16 2019-04-12 蓝星(杭州)膜工业有限公司 一种抗氧化不变色复合反渗透膜的制备方法
KR102080849B1 (ko) * 2019-03-22 2020-02-24 지에스건설 주식회사 압력지연삼투 공정의 성능 개선방법
CN110358122B (zh) * 2019-08-23 2022-02-08 仲恺农业工程学院 一种半纤维素-酯复合薄膜、制备方法及其应用
CN110756061B (zh) * 2019-10-12 2022-01-07 万华化学集团股份有限公司 一种耐氧化高通量反渗透膜及其制备方法及应用
CN113908696A (zh) * 2020-07-07 2022-01-11 沃顿科技股份有限公司 反渗透膜的制备方法和由此制得的反渗透膜
CN115253707A (zh) * 2021-04-29 2022-11-01 天津膜天膜科技股份有限公司 一步法中空纤维纳滤膜成型组合物及使用方法
CN113491962B (zh) * 2021-09-09 2022-02-22 北京宝盛通国际电气工程技术有限公司 正渗透膜及其制备方法
CN114307686B (zh) * 2021-11-16 2022-11-15 中国科学院生态环境研究中心 一种基于醚类自由基的聚酰胺复合膜高通量改性方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051888A1 (en) * 2004-11-15 2006-05-18 Toray Industries, Inc. Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and treatment method for boron-containing water using the same
KR20070085522A (ko) * 2004-10-29 2007-08-27 도레이 가부시끼가이샤 복합 반투막, 이의 제조방법, 및 이를 사용한 엘리먼트,유체 분리장치 및 수처리 방법
US20080312349A1 (en) * 2007-02-22 2008-12-18 General Electric Company Method of making and using membrane
WO2013057492A1 (en) * 2011-10-18 2013-04-25 Imperial Innovations Limited Membranes for separation
US20130139691A1 (en) * 2011-12-02 2013-06-06 W.L. Gore & Associates, Inc. Heat stabilized composite filter media and method of making the filter media

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256718A (en) * 1990-02-14 1993-10-26 Mitsui Petrochemical Industries, Ltd. Flame retardant polyamide thermoplastic resin composition
AU632686B2 (en) * 1990-04-23 1993-01-07 Union Carbide Chemicals & Plastics Technology Corporation Suspensions of polymer additives in functional fluids and thermoplastic resin compositions containing same
JPH07268209A (ja) 1994-03-30 1995-10-17 Mitsubishi Chem Corp フィルム成形用ポリアミド樹脂組成物及びそれよりなる二軸延伸ポリアミドフィルム
US6337018B1 (en) 2000-04-17 2002-01-08 The Dow Chemical Company Composite membrane and method for making the same
WO2001093994A1 (de) 2000-06-03 2001-12-13 Membrana Gmbh Polyamidmembran mit erhöhter hydrolysestabilität und verfahren zu ihrer herstellung
EP1641768A2 (en) * 2003-05-27 2006-04-05 Ciba SC Holding AG Aminoaryl-1-3-5 triazines and their use as uv absorbers
JP4525296B2 (ja) * 2003-12-03 2010-08-18 東レ株式会社 複合半透膜の製造方法
US8394155B2 (en) * 2007-11-09 2013-03-12 Anil Kohli Thermally stabilized bag house filters and media
JP2010174099A (ja) * 2009-01-28 2010-08-12 Shin-Etsu Chemical Co Ltd 環状オレフィン付加重合体及びその製造方法
KR20120116387A (ko) 2009-08-27 2012-10-22 폴리머스 씨알씨 리미티드 나노 은-산화아연 조성물
JP5465987B2 (ja) 2009-11-20 2014-04-09 ユニチカ株式会社 耐熱水性ポリアミドフィルムおよびその製造方法
JP2011142052A (ja) * 2010-01-08 2011-07-21 Hitachi Chem Co Ltd 銅導体インク及び導電性基板及びその製造方法
CN101829508A (zh) * 2010-05-11 2010-09-15 杭州水处理技术研究开发中心有限公司 一种新型聚酰胺纳滤膜及制备方法
DE102010034700A1 (de) 2010-08-18 2012-02-23 Merck Patent Gmbh Membran mit selektiv permeabler Polymerschicht
KR101440968B1 (ko) 2011-06-17 2014-09-17 주식회사 엘지화학 초친수성 보호층을 포함하는 역삼투막 및 이의 제조방법
CN103111195A (zh) * 2013-03-13 2013-05-22 株洲时代新材料科技股份有限公司 一种耐高温聚酰胺复合膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070085522A (ko) * 2004-10-29 2007-08-27 도레이 가부시끼가이샤 복합 반투막, 이의 제조방법, 및 이를 사용한 엘리먼트,유체 분리장치 및 수처리 방법
WO2006051888A1 (en) * 2004-11-15 2006-05-18 Toray Industries, Inc. Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and treatment method for boron-containing water using the same
US20080312349A1 (en) * 2007-02-22 2008-12-18 General Electric Company Method of making and using membrane
WO2013057492A1 (en) * 2011-10-18 2013-04-25 Imperial Innovations Limited Membranes for separation
US20130139691A1 (en) * 2011-12-02 2013-06-06 W.L. Gore & Associates, Inc. Heat stabilized composite filter media and method of making the filter media

Also Published As

Publication number Publication date
JP2016529086A (ja) 2016-09-23
EP2835175B1 (en) 2020-09-23
EP2835175A4 (en) 2015-11-04
JP6608811B2 (ja) 2019-11-20
CN104379243A (zh) 2015-02-25
EP2835175A1 (en) 2015-02-11
US20150375178A1 (en) 2015-12-31
KR20140143721A (ko) 2014-12-17
KR101752525B1 (ko) 2017-06-29
US9833751B2 (en) 2017-12-05

Similar Documents

Publication Publication Date Title
WO2014196835A1 (ko) 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
WO2015137678A1 (ko) 산화그래핀 코팅층을 포함하는 복합막, 이를 포함하는 다공성 고분자 지지체 및 이의 제조방법
WO2015016683A1 (ko) 내구성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
WO2014204218A2 (ko) 염제거율 및 투과유량 특성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2013180517A1 (ko) 카보디이미드계 화합물을 포함하는 고투과 역삼투막 및 이를 제조하는 방법
WO2017010718A1 (en) Chemical additives for water flux enhancement
WO2013176524A1 (ko) 역삼투 분리막
WO2019209010A1 (ko) 방향족 탄화수소를 이용한 우수한 용질 제거 성능을 가진 분리막 제조 기술
WO2011136465A2 (ko) 해수담수용 정삼투막 및 그 제조방법
KR102117151B1 (ko) 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름
WO2014069786A1 (ko) 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2014081230A1 (ko) 내염소성이 우수한 고유량 수처리 분리막 및 그 제조방법
WO2013176523A1 (ko) 역삼투 분리막 제조방법 및 이에 의해 제조된 역삼투 분리막
WO2013103257A1 (ko) 내오염성이 우수한 역삼투막 및 그 제조방법
WO2019143225A1 (ko) 용매 후처리를 통한 고성능 박막 복합체 분리막의 제조 방법
WO2012173417A2 (ko) 초친수성 보호층을 포함하는 역삼투막 및 이의 제조방법
KR20120083363A (ko) 붕소 제거용 역삼투 복합체 막
WO2020017729A1 (ko) 정삼투 성능이 개선된 멤브레인 장치 및 이를 이용하는 용액 분리 방법
WO2017150885A1 (en) Methods of enhancing water flux of a tfc membrane using oxidizing and reducing agents
WO2011105828A2 (ko) 고다공성 중공사막 및 이의 제조방법
WO2017039112A2 (ko) 수처리 분리막의 제조방법, 이를 이용하여 제조된 수처리 분리막, 및 수처리 분리막을 포함하는 수처리 모듈
JP2017202479A (ja) ポリイミド系樹脂膜洗浄液、ポリイミド系樹脂膜を洗浄する方法、ポリイミド膜を製造する方法、フィルタ、フィルターメディア又はフィルターデバイスを製造する方法、及びリソグラフィー用薬液の製造方法
WO2009157693A2 (ko) 수처리막의 친수화 방법 및 수처리막
JP7119147B2 (ja) 液体の精製方法、及び多孔質膜の製造方法
WO2020262816A1 (ko) 분리막 활성층 형성용 조성물, 분리막의 제조 방법, 분리막 및 수처리 모듈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014766382

Country of ref document: EP

Ref document number: 14387470

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14766382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016518276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE