WO2017052256A1 - 수처리 분리막 및 이의 제조방법 - Google Patents

수처리 분리막 및 이의 제조방법 Download PDF

Info

Publication number
WO2017052256A1
WO2017052256A1 PCT/KR2016/010634 KR2016010634W WO2017052256A1 WO 2017052256 A1 WO2017052256 A1 WO 2017052256A1 KR 2016010634 W KR2016010634 W KR 2016010634W WO 2017052256 A1 WO2017052256 A1 WO 2017052256A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
water treatment
group
unsubstituted
same
Prior art date
Application number
PCT/KR2016/010634
Other languages
English (en)
French (fr)
Inventor
이진국
최성열
박성경
전형준
최형삼
신정규
곽봉주
길형배
김상곤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160121637A external-priority patent/KR102141265B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680035599.XA priority Critical patent/CN107708846B/zh
Priority to EP16848981.3A priority patent/EP3354333B1/en
Priority to JP2017561406A priority patent/JP6642860B2/ja
Publication of WO2017052256A1 publication Critical patent/WO2017052256A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms

Definitions

  • the present specification relates to a water treatment membrane and a method of manufacturing the same.
  • Liquid separation is classified into Micro Filtration, Ultra Filtration, Nano Filtration, Reverse Osmosis, Sedimentation, Active Transport and Electrodialysis depending on the pore of the membrane.
  • the reverse osmosis method refers to a process of desalting using a semipermeable membrane that transmits water but is impermeable to salt. When the high pressure water in which the salt is dissolved flows into one side of the semipermeable membrane, the pure water is removed. Will come out on the other side at low pressure.
  • a polysulfone layer is formed on a nonwoven fabric to form a microporous support, and the microporous support is immersed in an aqueous solution of m-phenylenediamine (mPD) to form an mPD layer.
  • mPD m-phenylenediamine
  • TMC trimesoyl chloride
  • the present specification is to provide a water treatment membrane having an improved filtration performance and a method for manufacturing the same.
  • One embodiment of the present specification is a porous support; And a polyamide active layer provided on the porous support.
  • a water treatment separation membrane represented by the following formula (1) on the inside or surface of the polyamide active layer, the polymer having a weight average molecular weight of 100g / mol to 1200g / mol.
  • R1 and R2 are the same as or different from each other, and each independently hydrogen, deuterium, a halogen group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group , Or a substituted or unsubstituted heterocyclic group,
  • Z1 to Z3 are the same as or different from each other, and each independently N (R3), O, or S,
  • A1 and A2 are the same as or different from each other, and each independently O, S, N (R4), N (R5) 2 + , O (R6) + , S (R7) + , O (R8) (R9) 2+ Or S (R9) (R10) 2+ ,
  • R3 to R10 are hydrogen, deuterium, a halogen group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted hetero ring Qi
  • A1 and A2 are N (R5) 2 + , O (R6) + , S (R7) + , O (R8) (R9) 2+ or S (R9) (R10) 2+ , then Y is from the group consisting of - HSO 4 -, SO 4 2- , NO 3 -, CO 3 2-, HCO 3 -, H 2 PO 4 -, HPO 4 2 -, PO 4 3-, Cl -, Br - and F Selected,
  • n is an integer from 1 to 10
  • n 1 to 60
  • p is an integer from 0 to 4,
  • n, m and p are each 2 or more, the structures in parentheses are the same or different from each other.
  • Porous support And a polyamide active layer provided on the porous support.
  • a water treatment separation membrane represented by the formula (1) on the inside or surface of the polyamide active layer, and comprising a structure derived from a polymer having a weight average molecular weight of 100g / mol to 1200g / mol.
  • the aqueous solution or the organic solution is represented by the formula (1), and provides a method for producing a water treatment separation membrane comprising a polymer having a weight average molecular weight of 100g / mol to 1200g / mol.
  • an exemplary embodiment of the present specification provides a water treatment module including the aforementioned water treatment separation membrane.
  • Figure 1 shows the results of the turbidity and precipitation of the aqueous amine solution containing PHB having a high weight average molecular weight as a boron removal rate improver.
  • Figure 2 shows a decrease in fairness due to contamination of the manufacturing equipment when using a PHB having a high weight average molecular weight as a boron removal rate improver.
  • Figure 4 shows that the aqueous solution of the amine in the preparation of the polyamide active layer using PBB according to one embodiment of the present specification as a boron removal rate improver slightly less than 10 °C.
  • One embodiment of the present specification is a porous support; And a polyamide active layer provided on the porous support.
  • a water treatment separation membrane represented by the following formula (1) on the inside or surface of the polyamide active layer, the polymer having a weight average molecular weight of 100g / mol to 1200g / mol.
  • R1 and R2 are the same as or different from each other, and each independently hydrogen, deuterium, a halogen group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group , Or a substituted or unsubstituted heterocyclic group,
  • Z1 to Z3 are the same as or different from each other, and each independently N (R3), O, or S,
  • A1 and A2 are the same as or different from each other, and each independently O, S, N (R4), N (R5) 2 + , O (R6) + , S (R7) + , O (R8) (R9) 2+ Or S (R9) (R10) 2+ ,
  • R3 to R10 are hydrogen, deuterium, a halogen group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted hetero ring Qi
  • A1 and A2 are N (R5) 2 + , O (R6) + , S (R7) + , O (R8) (R9) 2+ or S (R9) (R10) 2+ , then Y is from the group consisting of - HSO 4 -, SO 4 2- , NO 3 -, CO 3 2-, HCO 3 -, H 2 PO 4 -, HPO 4 2 -, PO 4 3-, Cl -, Br - and F Selected,
  • n is an integer from 1 to 10
  • n 1 to 60
  • p is an integer from 0 to 4,
  • n, m and p are each 2 or more, the structures in parentheses are the same or different from each other.
  • the conventional boron removal rate improver has a weight average molecular weight of 1300 g / mol or more, when an amount of 0.1% or more is added, the aqueous solution of amine containing PHB becomes turbid, or precipitation occurs, which causes a problem in that it is not dissolved. As a result, when 0.1 wt% or more of PHB is added to the aqueous amine solution, it does not dissolve, and thus, there is a problem in that a certain boron removal rate cannot be secured.
  • the turbidity and precipitation phenomenon that occurs when the PHB is added more than 0.1 wt% may cause contamination of the manufacturing equipment of the water treatment membrane.
  • the inventors have developed a polymer that can improve the processability and improve the boron removal rate by preventing turbidity and precipitation phenomenon in the aqueous amine solution through the boron removal rate improver with improved water solubility compared to the conventional PHB It came to the following.
  • the present invention introduces a polymer having a low molecular weight of about 100 g / mol to 1200 g / mol or a polymer having a short length of an alkyl chain, compared to a conventional PHB having a high molecular weight, and introducing a polymer having a short length in the polyamide active layer of the water treatment separation membrane.
  • the copolymer has a weight average molecular weight of 100 g / mol to 1200 g / mol, preferably 200 g / mol to 1000 g / mol, and more preferably 400 g / mol to 950 g / mol.
  • the copolymer when the weight average molecular weight of the copolymer is 100 g / mol or more, the copolymer may not be remaining in the membrane and may be prevented from being reduced in boron removal rate according to the use time of the separator due to the washing out little by little. In the case of 1200g / mol or less, the water solubility is lowered due to the increase in molecular weight, thereby preventing dispersing in the aqueous phase, and having an effective boron removal rate due to remaining in the active layer. .
  • the copolymer has higher water solubility than PHB having a conventional high molecular weight.
  • Z1 to Z3 is NH.
  • Z1 to Z3 is O.
  • Z1 to Z3 is S.
  • A1 and A2 are the same as or different from each other, and each independently NH, or NH 2 + .
  • A1 and A2 are the same as or different from each other, and are each independently O or OH + .
  • A1 and A2 are the same as or different from each other, and each independently S or SH + .
  • Z1 to Z3 is NH
  • A1 and A2 are the same as or different from each other, and each independently NH, or NH 2 + .
  • Z1 to Z3 is O
  • A1 and A2 are the same as or different from each other, and each independently O or OH + .
  • Z1 to Z3 are S, and A1 and A2 are the same as or different from each other, and each independently S or SH + .
  • the absolute value of the value of the ion number of Y multiplied by p may be equal to the absolute value of the sum of the ion number of A1 and the ion number of A2.
  • the R3 to R10 are each hydrogen; heavy hydrogen; Halogen group; An alkyl group; Cycloalkyl group; Alkenyl groups; Aryl group; Or a heterocyclic group.
  • the R3 to R10 are each hydrogen; heavy hydrogen; Halogen group; An alkyl group having 1 to 5 carbon atoms; Or a cycloalkyl group having 3 to 20 carbon atoms.
  • the R3 to R10 are each hydrogen; heavy hydrogen; Halogen group; Or an alkyl group having 1 to 10 carbon atoms.
  • the R3 to R10 are each hydrogen; heavy hydrogen; Or a halogen group.
  • the R3 to R10 are each hydrogen; Or deuterium.
  • the R3 to R10 is hydrogen.
  • n 1 to 9.
  • n 1 to 8.
  • n 2 to 6.
  • n 1
  • n is 2.
  • n 3.
  • n 4.
  • n is 5.
  • n 6
  • n 7.
  • n 8.
  • n 9.
  • n 10.
  • m is 1 to 60.
  • m is 1 to 40.
  • m is 1 to 30.
  • Porous support And a polyamide active layer provided on the porous support.
  • a water treatment separation membrane represented by the formula (1) on the inside or surface of the polyamide active layer, and comprising a structure derived from a polymer having a weight average molecular weight of 100g / mol to 1200g / mol.
  • the structure derived from the above-described polymer may mean that the structure of the polymer is bonded to or inside the polyamide active layer.
  • the structure derived from the polymer may mean that some functional groups of the polymer are bonded to the inside or the surface of the polyamide active layer.
  • the polymer may be bound to the polymer matrix of the polyamide active layer, or may be in a form dispersed in the polymer matrix of the polyamide active layer.
  • the polymer matrix may mean a network structure of a polyamide polymer.
  • the polymer may be added in the formation of the polyamide active layer through interfacial polymerization, and may be bonded by crosslinking to the polyamide polymer.
  • the polymer represented by Formula 1 may be physically bonded to the empty space in the polymer matrix of the polyamide active layer.
  • the polymer may be located in an empty space in the polymer matrix of the polyamide active layer, and may be fixed by the chain and intermolecular attraction of the polymer matrix.
  • the polymer content in the water treatment membrane, may be 0.001 wt% or more and 5 wt% or less, preferably 0.01 wt% or more and 5 wt% or less, more preferably based on the polyamide active layer. Preferably it may be 0.01 wt% or more and 1 wt% or less.
  • an effect of securing the appropriate polymer content in the polyamide active layer to expect the effect of boron removal rate In the case of 5 wt% or less, it is possible to prevent the polymer from saturating in the active layer and to improve the boron removal rate.
  • NaCl removal rate of the water treatment membrane may be 95% or more, preferably 98% or more, more preferably 99% or more, and more preferably 99.3% or more.
  • the boron removal rate of the water treatment membrane may be 80% or more, more specifically 80% or more and 99.9% or less, and more preferably 89% or more and 96% or less in raw water at pH 8.
  • the flux of the water treatment membrane may be 7gfd or more, preferably 15gfd or more, more preferably 18gfd or more, and more preferably 19gfd or more.
  • the thickness of the water treatment membrane may be 100 ⁇ m or more and 250 ⁇ m or less, and when the thickness of the water treatment membrane is 100 ⁇ m or more, a phenomenon in which the permeate flow rate and salt removal rate of the membrane may be reduced may be prevented. If there is an effect, and less than 250 ⁇ m has the effect of preventing the phenomenon that the salt removal rate of the membrane is reduced.
  • the aqueous solution or the organic solution is represented by the formula (1), and provides a method for producing a water treatment separation membrane comprising a polymer having a weight average molecular weight of 100g / mol to 1200g / mol.
  • the content of the polymer may be 0.001 wt% or more and 5 wt% or less with respect to the aqueous solution or the organic solution, preferably 0.01 wt% or more and 5 wt% or less, more preferably 0.1
  • the wt% may be 1 wt% or more.
  • the content of the polymer is 0.001 wt% or more with respect to the aqueous solution or the organic solution, an effect of securing the appropriate polymer content in the polyamide active layer to expect the effect of boron removal rate is expected.
  • an opaque state is formed with respect to the aqueous solution or the organic solution, so that precipitation may occur and contaminate the membrane manufacturing equipment.
  • the aqueous solution including the amine compound may include the aforementioned polymer.
  • the content of the polymer may be 0.001 wt% or more and 5 wt% or less, preferably 0.01 wt% or more and 5 wt% or less, more preferably based on the aqueous solution containing the amine compound. Preferably it may be 0.1 wt% or more and 1 wt% or less.
  • the content of the polymer when the content of the polymer is 0.001 wt% or more with respect to the aqueous solution, it is possible to secure an appropriate polymer content in the polyamide active layer and to expect the effect of boron removal rate, which is 5 wt% or less. In this case, an opaque state is formed with respect to the aqueous solution or the organic solution, so that precipitation may occur to prevent the problem of contaminating the membrane manufacturing equipment.
  • a coating layer of a polymer material may be used on a nonwoven fabric.
  • the polymer material include polysulfone, polyethersulfone, polycarbonate, polyethylene oxide, polyimide, polyetherimide, polyether ether ketone, polypropylene, polymethylpentene, polymethyl chloride and polyvinylidene fluorine. Ride or the like may be used, but is not necessarily limited thereto.
  • polysulfone may be used as the polymer material.
  • the thickness of the porous support may be 60 ⁇ m to 100 ⁇ m, but is not limited thereto and may be adjusted as necessary.
  • the pore size of the porous support is preferably 1 nm to 500 nm, but is not limited thereto.
  • the polyamide active layer may include forming an aqueous solution layer including an amine compound on a porous support; And an organic solution including an acyl halide compound and an organic solvent on the aqueous solution layer including the amine compound, to form a polyamide active layer.
  • the step of forming the aqueous solution layer including the amine compound is not particularly limited, and any method capable of forming the aqueous solution layer on the porous support may be used without limitation. Specifically, the method of forming the aqueous solution layer containing an amine compound on the porous support may be sprayed, applied, immersed, dripping and the like.
  • the contact may form an active layer through a method such as dipping, spraying or coating.
  • the aqueous solution layer may be additionally subjected to a step of removing an aqueous solution including an excess amine compound as necessary.
  • the aqueous solution layer formed on the porous support may be unevenly distributed when there are too many aqueous solutions present on the support.
  • a non-uniform active layer may be formed by subsequent interfacial polymerization. Therefore, it is preferable to remove excess aqueous solution after forming an aqueous solution layer on the said support body.
  • the removal of the excess aqueous solution is not particularly limited, but may be performed using, for example, a sponge, air knife, nitrogen gas blowing, natural drying, or a compression roll.
  • the amine compound in the aqueous solution containing the polymer and the amine compound is not limited if the amine compound used in the water treatment separation membrane manufacturing, if specific examples, m-phenylenediamine , p-phenylenediamine, 1,3,6-benzenetriamine, 4-chloro-1,3-phenylenediamine, 6-chloro-1,3-phenylenediamine, 3-chloro-1,4-phenyl It is preferable that it is lene diamine or a mixture thereof.
  • the acyl halide compound is not particularly limited, but is, for example, an aromatic compound having 2 to 3 carboxylic acid halides, trimezoyl chloride, isophthaloyl chloride and terephthal It may be at least one mixture selected from the group consisting of loyl chloride.
  • the content of the acyl halide compound may be 0.1 parts by weight or more and 0.5 parts by weight or less with respect to 100 parts by weight of the organic solution.
  • the content of the acyl halide compound when the content of the acyl halide compound is 0.1 parts by weight or more based on 100 parts by weight of the organic solution, it is possible to prevent a phenomenon in which the salt removal rate and permeate flow rate of the final prepared membrane are reduced. If the effect is 0.5 parts by weight or less, there is an effect that can prevent the salt removal rate of the final prepared membrane is reduced.
  • the organic solution may further include an organic solvent
  • the organic solvent may be an aliphatic hydrocarbon solvent, for example, freons and hexane having 5 to 12 carbon atoms, and cyclohexane.
  • Hydrophobic liquids that are not mixed with water, such as heptane, alkanes, for example alkanes having 5 to 12 carbon atoms and mixtures thereof, IsoPar (Exxon), ISOL-C (SK Chem), ISOL-G (Exxon), etc.
  • IsoPar Exxon
  • ISOL-C ISOL-C
  • ISOL-G Exxon
  • the organic solvent may include 80 parts by weight or more and 99.499 parts by weight or less based on 100 parts by weight of the organic solution.
  • the organic solvent is 80 parts by weight or more based on 100 parts by weight of the organic solution, there is an effect of preventing the reduction of the salt removal rate and the permeate flow rate of the finally prepared separation membrane, and when the amount is 99.499 parts by weight or less, the final separation membrane There is an effect that can prevent the phenomenon that the salt removal rate is reduced.
  • the water treatment separation membrane may be used as a micro filtration membrane, an ultra filtration membrane, an ultra filtration membrane, a nano filtration membrane, a reverse osmosis membrane, or a reverse osmosis membrane. Can be used.
  • Another embodiment of the present specification provides a water treatment module including the aforementioned water treatment separation membrane.
  • a specific kind of the water treatment module is not particularly limited, and examples thereof include a plate & frame module, a tubular module, a hollow & fiber module or a spiral wound module.
  • the water treatment module includes the water treatment separation membrane according to one embodiment of the present specification described above, other configurations and manufacturing methods are not particularly limited, and general means known in the art may be employed without limitation. have.
  • the water treatment module according to one embodiment of the present specification has excellent salt removal rate and permeation flow rate, and has excellent chemical stability, and thus may be usefully used for water treatment devices such as household / industrial water purification devices, sewage treatment devices, seawater treatment devices, and the like. have.
  • Slot coating method containing 4 wt% of metaphenylenediamine (mPD), 0.1 wt% of surfactant, 0.1 wt% of poly (hexamethylene biguanide) (PHB) having a molecular weight of 900 g / mol, and 0.07 wt% of permeation flux enhancer (slot coating) was applied to the porous polysulfone support. At this time, the aqueous solution was colorless or transparent yellow.
  • mPD metaphenylenediamine
  • PHB poly (hexamethylene biguanide)
  • a solution containing 95.91 wt% of Isopar G, 4 wt% of mesitylene, and 0.19 wt% of trimezoylchloroide (TMC) was prepared. It was applied to form a film. The membrane thus formed was dried at 95 ° C. until all of the liquid components evaporated and then washed under a DIW bath.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 0.2 wt% of PHB having a molecular weight of 900 g / mol was used.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 0.5 wt% of PHB having a molecular weight of 900 g / mol was used.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 0.1 wt% of PEB ((poly (ehthylene biguanide)) having a molecular weight of 600 g / mol was used instead of PHB having a molecular weight of 900 g / mol.
  • PEB poly (ehthylene biguanide)
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 0.2 wt% of PEB ((poly (ehthylene biguanide)) having a molecular weight of 600 g / mol was used instead of PHB having a molecular weight of 900 g / mol.
  • PEB poly (ehthylene biguanide)
  • a water treatment membrane was manufactured in the same manner as in Example 1, except that 0.5 wt% of PEB ((poly (ehthylene biguanide)) having a molecular weight of 600 g / mol was used instead of PHB having a molecular weight of 900 g / mol.
  • PEB poly (ehthylene biguanide)
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 0.5 wt% of PBB (Poly (n-butylene biguanide)) having a molecular weight of 750 g / mol was used instead of PHB having a molecular weight of 900 g / mol.
  • PBB Poly (n-butylene biguanide)
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 0.1 wt% of PHB having a molecular weight of 1300 g / mol was used instead of PHB having a molecular weight of 900 g / mol.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that 0.2 wt% of PHB having a molecular weight of 1300 g / mol was used instead of PHB having a molecular weight of 900 g / mol.
  • the water treatment separators prepared according to Examples 1 to 3, Comparative Examples 1 and 2 were evaluated under a pressure of 800 psi in an aqueous solution containing 3,200 ppm NaCl and 5 ppm boron.
  • the NaCl removal rate was measured by measuring the difference in electrical conductivity between the produced water and the raw water, and the permeate flow rate was calculated by measuring the volume of produced water secured per unit time (5 minutes).
  • ICP-OES was used to measure the difference in the amount of boron produced and raw water, and the boron removal rate was calculated.
  • Example 6 PEB 600 0.5 99.8 95.6 19
  • Example 7 PBB 750 0.5 99.5 91.2 22 Comparative Example 1 PHB 1300 0.1 99.1 82.1 21 Comparative Example 2 PHB 1300 0.2 99 82.2 21
  • FIG. 3A is the experimental result of Example 1
  • FIG. 3B is the experimental result of Example 2
  • FIG. 3C is the experimental result of Example 3.
  • the aqueous amine solution used in the preparation of the polyamide active layer showed slight turbidity at less than 10 ° C, and this property is shown in FIG. 4. However, it was transparent above 10 ° C. and no contamination of the water treatment membrane production equipment occurred.

Abstract

본 발명은 다공성 지지체; 및 상기 다공성 지지체 상에 구비된 폴리아미드 활성층을 포함하는 수처리 분리막에 있어서, 상기 폴리아미드 활성층의 내부 또는 표면에 하기 화학식 1로 표시되고, 중량 평균 분자량이 100g/mol 내지 1200g/mol인 중합체를 포함하는 수처리 분리막 및 이의 제조방법에 관한 것입니다.

Description

수처리 분리막 및 이의 제조방법
본 출원은 2015년 09월 23일에 한국특허청에 제출된 한국 특허 출원 제10-2015-0134785호, 2015년 09월 23일에 한국특허청에 제출된 한국 특허 출원 제10-2015-0134791호 및 2016년 9월 22일에 한국특허청에 제출된 한국 특허 출원 제10-2016-0121637호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 수처리 분리막 및 이의 제조방법에 관한 것이다.
최근 수질환경의 심각한 오염과 물 부족으로 인해 새로운 수자원 공급원을 개발하는 것이 시급한 당면 과제로 대두되고 있다. 수질환경 오염에 대한 연구는 양질의 생활 및 공업용수, 각종 생활하수 및 산업폐수 처리를 목표로 하고 있으며, 에너지 절약의 장점을 지닌 분리막을 이용한 수 처리 공정에 대한 관심이 고조되고 있다. 또한, 가속화되고 있는 환경 규제의 강화는 분리막 기술의 활성화를 앞당길 것으로 예상된다. 전통적인 수처리 공정으로는 강화되는 규제에 부합하기 힘드나, 분리막 기술의 경우 우수한 처리효율과 안정적인 처리를 보증하기 때문에 향후 수처리 분야의 주도적인 기술로 자리매김할 것으로 예상된다.
액체분리는 막의 기공에 따라 정밀여과(Micro Filtration), 한외여과(Ultra Filtration), 나노여과(Nano Filtration), 역삼투(Reverse Osmosis), 침석, 능동수송 및 전기투석 등으로 분류된다. 그 중에서 역삼투 방법은 물은 투과하지만, 염에 대해서는 불투과성을 보이는 반투막을 사용하여 탈염작업을 하는 공정을 말하는 것으로 염이 녹아 있는 고압수가 반투막의 한쪽 면에 유입될 때, 염이 제거된 순수가 낮은 압력으로 다른 쪽 면으로 나오게 된다.
근래에 들어 전 세계적으로 대략 10억 gal/day 규모의 물이 역삼투법을 통해 탈염화 공정을 거치고 있으며, 1930년대 최초의 역삼투를 이용한 탈염화 공정이 발표된 이후, 이 분야의 반투막 물질에 대한 많은 연구가 수행되었다. 그 중에서도 상업적 성공으로 주류를 이루게 된 것은 셀룰로오스계 비대칭막(Asymetric membrane)과 폴리아미드계 복합막(Composite membrane)이다. 역삼투막 초기에 개발된 셀룰로오스계막은 운전 가능한 pH 범위가 좁다는 점, 고온에서 변형된다는 점, 높은 압력을 사용하여 운전에 필요한 비용이 많이 든다는 점, 그리고 미생물에 취약하다는 점 등 여러 가지 단점으로 인해 근래에 들어서는 거의 사용되지 않는 추세이다.
한편, 폴리아미드계 복합막은, 부직포 위에 폴리설폰층을 형성하여 미세 다공성 지지체를 형성하고, 이 미세 다공성 지지체를 m-페닐렌디아민(m-Phenylene Diamine, 이하, mPD) 수용액에 침지시켜 mPD층을 형성하고, 이를 다시 트리메조일클로라이드(TriMesoyl Chloride, 이하, TMC) 유기용매에 침지 혹은 코팅시켜 mPD층을 TMC와 접촉시켜 계면 중합시킴으로써 폴리아미드층을 형성하는 방법으로 제조되고 있다. 비극성 용액과 극성 용액을 접촉시킴으로써 상기 중합은 그 계면에서만 일어나 매우 두께가 얇은 폴리아미드층을 형성한다. 상기 폴리아미드계 복합막은 기존 셀룰로오스 계열의 비대칭 막에 비하여, pH 변화에 대해 안정성이 높고, 낮은 압력에서 운전 가능하며, 염 배제율이 우수하여, 현재 수처리 분리막의 주종을 이루고 있다.
한편, 이러한 수처리 분리막이 상업적으로 사용되기 위해서는 몇 가지 갖추어야 할 조건이 있는데, 그 중 하나는 높은 염제거율을 갖는 것이다. 상업적으로 요구되는 수처리 분리막의 염제거율은 반염수에 대해 적어도 97% 이상이다. 수처리 분리막의 또 다른 중요한 성질로는 비교적 낮은 압력에서도 상대적으로 많은 물을 통과시킬 수 있는 능력, 즉 고유량 특성을 들 수 있다. 그러나, 염제거율과 투과유량 특성은 서로 상충되는 성질을 갖기 때문에, 염제거율과 투과유량이 모두 우수한 수처리 분리막을 제조하는 것은 현실적으로 많은 어려움이 있다.
본 명세서는 개선된 여과 성능을 가지는 수처리 분리막 및 이의 제조방법에 대하여 제공하고자 한다.
본 명세서의 일 실시상태는 다공성 지지체; 및 상기 다공성 지지체 상에 구비된 폴리아미드 활성층을 포함하는 수처리 분리막에 있어서,
상기 폴리아미드 활성층의 내부 또는 표면에 하기 화학식 1로 표시되고, 중량 평균 분자량이 100g/mol 내지 1200g/mol인 중합체를 포함하는 수처리 분리막을 제공한다.
[화학식 1]
Figure PCTKR2016010634-appb-I000001
상기 화학식 1에 있어서,
R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로고리기이고,
Z1 내지 Z3는 서로 같거나 상이하고, 각각 독립적으로 N(R3), O, 또는 S이며,
A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 O, S, N(R4), N(R5)2 +, O(R6)+, S(R7)+, O(R8)(R9)2+ 또는 S(R9)(R10)2+이고,
R3 내지 R10은 수소, 중수소, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로고리기이며,
A1 및 A2 중 적어도 하나가 N(R5)2 +, O(R6)+, S(R7)+, O(R8)(R9)2+ 또는 S(R9)(R10)2+인 경우, Y는 HSO4 -, SO4 2-, NO3 -, CO3 2-, HCO3 -, H2PO4 -, HPO4 2 -, PO4 3-, Cl-, Br- 및 F-로 이루어진 군으로부터 선택되고,
n은 1 내지 10의 정수이며,
m은 1 내지 60의 정수이고,
p는 0 내지 4의 정수이며,
n, m 및 p가 각각 2 이상인 경우, 괄호 안의 구조는 서로 같거나 상이하다.
또한, 본 명세서의 일 실시상태는
다공성 지지체; 및 상기 다공성 지지체 상에 구비된 폴리아미드 활성층을 포함하는 수처리 분리막에 있어서,
상기 폴리아미드 활성층의 내부 또는 표면에 상기 화학식 1로 표시되고, 중량 평균 분자량이 100g/mol 내지 1200g/mol인 중합체로부터 유래된 구조를 포함하는 수처리 분리막을 제공한다.
또한, 본 명세서의 일 실시상태는
다공성 지지체를 준비하는 단계; 및
아민 화합물을 포함하는 수용액 및 아실 할라이드를 포함하는 유기용액의 계면중합을 이용하여, 상기 다공성 지지체 상에 폴리아미드 활성층을 형성하는 단계를 포함하고,
상기 수용액 또는 상기 유기용액은, 상기 화학식 1로 표시되고, 중량 평균 분자량이 100g/mol 내지 1200g/mol인 중합체를 포함하는 것인 수처리 분리막의 제조방법을 제공한다.
또한, 본 명세서의 일 실시상태는 전술한 수처리 분리막을 포함하는 수처리 모듈을 제공한다.
본 명세서의 일 실시상태에 따르면, 분자량 조절 또는 친수성을 향상시킨 중합체를 도입함으로써 수용액 상의 혼탁 또는 침전 현상을 억제하며 보론 제거율을 향상시킬 수 있다.
또한, 본 명세서의 일 실시상태에 따르면, 수처리 분리막의 제조 공정에 있어서 오염을 방지할 수 있다.
또한, 본 명세서의 일 실시상태에 따르면, 최종 제조된 수처리 분리막의 보론 제거율을 향상시킬 수 있는 효과가 있다.
또한, 본 명세서의 일 실시상태에 따르면, 기존의 방법으로 제조된 수처리 분리막 대비 염제거율 및/또는 투과유량 특성을 향상시킬 수 있는 효과가 있다.
도 1은 보론 제거율 향상제로서 기존에 높은 중량 평균 분자량을 가지는 PHB를 포함하는 아민 수용액의 혼탁 및 침전이 발생한 실험결과를 나타낸 것이다.
도 2는 보론 제거율 향상제로서 기존에 높은 중량 평균 분자량을 가지는 PHB를 사용하는 경우의 제조 설비의 오염으로 인한 공정성 저하를 나타낸 것이다.
도 3의 (a) 내지 (c)는 실시예 1 내지 3에 따른 아민 수용액의 혼탁 또는 투명 여부를 확인한 실험결과를 나타낸 것이고, 도 3의 (d) 및 (e)는 비교예 1과 2에 따른 아민 수용액의 혼탁 또는 투명 여부를 확인한 실험결과를 나타낸 것이다.
도 4는 보론 제거율 향상제로서 본 명세서의 일 실시상태에 따른 PBB를 사용하여 폴리아미드 활성층의 제조 시, 아민 수용액이 10℃ 미만에서 경미한 혼탁을 띈 것을 나타낸 것이다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 명세서의 일 실시상태는 다공성 지지체; 및 상기 다공성 지지체 상에 구비된 폴리아미드 활성층을 포함하는 수처리 분리막에 있어서,
상기 폴리아미드 활성층의 내부 또는 표면에 하기 화학식 1로 표시되고, 중량 평균 분자량이 100g/mol 내지 1200g/mol인 중합체를 포함하는 수처리 분리막을 제공한다.
[화학식 1]
Figure PCTKR2016010634-appb-I000002
상기 화학식 1에 있어서,
R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로고리기이고,
Z1 내지 Z3는 서로 같거나 상이하고, 각각 독립적으로 N(R3), O, 또는 S이며,
A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 O, S, N(R4), N(R5)2 +, O(R6)+, S(R7)+, O(R8)(R9)2+ 또는 S(R9)(R10)2+이고,
R3 내지 R10은 수소, 중수소, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로고리기이며,
A1 및 A2 중 적어도 하나가 N(R5)2 +, O(R6)+, S(R7)+, O(R8)(R9)2+ 또는 S(R9)(R10)2+인 경우, Y는 HSO4 -, SO4 2-, NO3 -, CO3 2-, HCO3 -, H2PO4 -, HPO4 2 -, PO4 3-, Cl-, Br- 및 F-로 이루어진 군으로부터 선택되고,
n은 1 내지 10의 정수이며,
m은 1 내지 60의 정수이고,
p는 0 내지 4의 정수이며,
n, m 및 p가 각각 2 이상인 경우, 괄호 안의 구조는 서로 같거나 상이하다.
기존의 역삼투막의 경우, 역삼투막의 제조과정에서 보론 제거율 향상제로서 높은 분자량을 가지는 PHB(Poly(hexamethylene biguanide))를 사용 시, 80% 내지 85% 정도의 보론 제거율을 보인다.
그러나, 이러한 기존의 보론 제거율 향상제는 중량 평균 분자량이 1300 g/mol이상이므로, 0.1% 이상 투입하게 되면 PHB를 포함하는 아민 수용액이 혼탁해지거나, 침전이 발생하여 용해되지 않는 문제점이 발생한다. 결과적으로, 아민 수용액에 PHB를 0.1 wt% 이상 첨가 시에는 용해되지 않으며, 이로 인해 일정 이상의 보론 제거율을 확보할 수 없는 문제가 있다.
또한, PHB를 0.1 wt% 이상 첨가 시에 발생하는 혼탁 및 침전 현상에 의해 수처리 분리막의 제조 설비 오염 문제가 발생할 수 있다.
이러한 문제점들을 해결하기 위해, 본 발명자들은 기존에 사용하던 PHB 대비 수용성이 향상된 보론 제거율 향상제를 통해 아민 수용액에서의 혼탁 및 침전 현상을 방지하여 공정성을 향상시키고, 보론 제거율을 향상시킬 수 있는 중합체를 개발하기에 이르렀다.
즉, 본 발명은 기존의 높은 분자량을 가지는 PHB 대비 중량 평균 분자량이 100g/mol 내지 1200g/mol 정도의 낮은 분자량을 가지는 중합체 또는 알킬 체인의 길이가 짧은 중합체를 도입하여, 수처리 분리막의 폴리아미드 활성층 내 전술한 중합체의 분산 및 안정성을 향상시키고, 수처리 분리막의 여과 성능을 향상시킬 수 있는 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 공중합체는 중량 평균 분자량이 100g/mol 내지 1200g/mol이고, 바람직하게는 200g/mol 내지 1000g/mol, 보다 바람직하게는 400g/mol 내지 950g/mol이다.
본 명세서의 일 실시상태에 따르면, 상기 공중합체의 중량 평균 분자량이 100g/mol 이상인 경우에는 공중합체가 막에 잔류하지 않고 조금씩 씻겨 나감으로 인해 분리막의 사용 시간에 따른 보론 제거율 감소 현상을 방지할 수 있고, 1200g/mol 이하인 경우에는 분자량이 높아짐에 따른 수용성이 낮아짐 현상으로 인해 수용액 상에서 분산되지 않는 현상을 방지할 수 있는 효과가 있고, 활성층 내에 잔류함으로 인해 적당한 보론 제거율을 확보할 수 있는 효과가 있다.
즉, 본 명세서의 일 실시상태에 따르면, 상기 공중합체는 기존의 높은 분자량을 갖는 PHB에 비하여 높은 수용성을 가진다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 내지 Z3는 NH이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 내지 Z3는 O 이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 내지 Z3는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 NH, 또는 NH2 +이다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 O 또는 OH+이다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 S 또는 SH+이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 내지 Z3는 NH이고, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 NH, 또는 NH2 +이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 내지 Z3는 O이고, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 O 또는 OH+이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 내지 Z3는 S이고, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 S 또는 SH+이다.
본 명세서의 일 실시상태에 따르면, 상기 Y의 이온수와 p를 곱한 값의 절대값은 A1의 이온수와 A2의 이온수를 합한 값의 절대값과 같을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 R3 내지 R10은 각각 수소; 중수소; 할로겐기; 알킬기; 시클로알킬기; 알케닐기; 아릴기; 또는 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, 상기 R3 내지 R10은 각각 수소; 중수소; 할로겐기; 탄소수 1 내지 5의 알킬기; 또는 탄소수 3 내지 20의 시클로알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 R3 내지 R10은 각각 수소; 중수소; 할로겐기; 또는 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 R3 내지 R10은 각각 수소; 중수소; 또는 할로겐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R3 내지 R10은 각각 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 따르면, 상기 R3 내지 R10은 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 1 내지 9이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 1 내지 8이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 2 내지 6이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 1이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 2이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 3이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 4이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 5이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 6이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 7이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 8이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 9이다.
본 명세서의 일 실시상태에 따르면, 상기 n은 10이다.
본 명세서의 일 실시상태에 따르면, 상기 m은 1 내지 60이다.
본 명세서의 일 실시상태에 따르면, 상기 m은 1 내지 40이다.
본 명세서의 일 실시상태에 따르면, 상기 m은 1 내지 30이다.
또한, 본 명세서의 일 실시상태는
다공성 지지체; 및 상기 다공성 지지체 상에 구비된 폴리아미드 활성층을 포함하는 수처리 분리막에 있어서,
상기 폴리아미드 활성층의 내부 또는 표면에 상기 화학식 1로 표시되고, 중량 평균 분자량이 100g/mol 내지 1200g/mol인 중합체로부터 유래된 구조를 포함하는 수처리 분리막을 제공한다.
본 명세서에 있어서, 상기 중합체에 관한 설명은 전술한 내용이 동일하게 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전술한 중합체로부터 유래된 구조란, 상기 중합체의 구조를 유지하며 폴리아미드 활성층 내부 또는 표면에 결합된 것을 의미할 수 있다. 또한, 상기 중합체로부터 유래된 구조란, 상기 중합체의 일부 작용기가 폴리아미드 활성층 내부 또는 표면에 치환되어 결합된 것을 의미할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 상기 폴리아미드 활성층의 고분자 매트릭스에 결합된 것일 수도 있고, 상기 폴리아미드 활성층의 고분자 매트릭스에 분산된 형태일 수 있다.
상기 고분자 매트릭스란, 폴리아미드 중합체의 그물망 구조를 의미하는 것일 수 있다.
구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 중합체는 계면 중합을 통한 상기 폴리아미드 활성층의 형성 시 첨가되어, 폴리아미드 중합체에 가교하여 결합된 것일 수 있다.
또한, 상기 화학식 1로 표시되는 중합체는 상기 폴리아미드 활성층의 고분자 매트릭스 내의 빈 공간에 물리적으로 결합할 수 있다. 또한, 상기 중합체는 상기 폴리아미드 활성층의 고분자 매트릭스 내의 빈 공간에 위치하고, 고분자 매트릭스의 사슬과 분자간 인력으로 고정될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수처리 분리막에 있어서, 상기 중합체의 함량은 폴리아미드 활성층에 대하여 0.001 wt% 이상 5 wt% 이하일 수 있고, 바람직하게는 0.01 wt% 이상 5 wt% 이하, 보다 바람직하게는 0.01 wt% 이상 1 wt% 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수처리 분리막에 있어서, 상기 중합체의 함량이 폴리아미드 활성층에 대하여 0.001 wt% 이상인 경우에는 폴리아미드 활성층 내의 적절한 중합체 함유량을 확보하여 보론 제거율의 효과를 기대할 수 있는 효과가 있고, 5 wt% 이하인 경우에는 활성층 내에 중합체가 포화되는 것을 방지하여 보론 제거율의 향상을 기대할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수처리 분리막의 NaCl 제거율은 95% 이상, 바람직하게는 98% 이상, 보다 바람직하게는 99% 이상, 보다 바람직하게는 99.3% 이상일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수처리 분리막의 보론 제거율은 pH 8의 원수에서 80% 이상, 보다 구체적으로는 80% 이상 99.9% 이하이고, 보다 바람직하게는 89% 이상 96%이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수처리 분리막의 투과유량(flux)은 7gfd 이상, 바람직하게는 15gfd 이상, 보다 바람직하게는 18gfd 이상, 보다 바람직하게는 19gfd 이상일 수 있다.
또한, 본 명세서의 일 실시상태에 따르면, 상기 수처리 분리막의 두께는 100 μm 이상 250μm 이하일 수 있고, 상기 수처리 분리막의 두께가100μm 이상인 경우에는 분리막의 투과유량 및 염제거율이 감소되는 현상을 방지할 수 있는 효과가 있고, 250μm 이하인 경우에는 분리막의 염제거율이 감소되는 현상을 방지할 수 있는 효과가 있다.
또한, 본 명세서의 일 실시상태는
다공성 지지체를 준비하는 단계; 및
아민 화합물을 포함하는 수용액 및 아실 할라이드를 포함하는 유기용액의 계면중합을 이용하여, 상기 다공성 지지체 상에 폴리아미드 활성층을 형성하는 단계를 포함하고,
상기 수용액 또는 상기 유기용액은, 상기 화학식 1로 표시되고, 중량 평균 분자량이 100g/mol 내지 1200g/mol인 중합체를 포함하는 것인 수처리 분리막의 제조방법을 제공한다.
본 명세서에 있어서, 상기 중합체에 관한 설명은 전술한 내용이 동일하게 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체의 함량은 상기 수용액 또는 상기 유기용액에 대하여 0.001 wt% 이상 5 wt% 이하일 수 있고, 바람직하게는 0.01 wt% 이상 5 wt% 이하, 보다 바람직하게는 0.1 wt% 이상 1 wt% 이하일 수 있다.
즉, 본 명세서의 일 실시상태에 따르면, 상기 중합체의 함량이 상기 수용액 또는 상기 유기용액에 대하여 0.001 wt% 이상인 경우에는 폴리아미드 활성층 내의 적절한 중합체 함유량을 확보하여 보론 제거율의 효과를 기대할 수 있는 효과가 있고, 5 wt% 이하인 경우에는 수용액 또는 유기용액에 대하여 불투명한 상태를 형성하게 되어 침전이 발생하여 막 제조 설비를 오염시키는 문제를 방지할 수 있는 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 아민 화합물을 포함하는 수용액은 전술한 중합체를 포함할 수 있다.
즉, 본 명세서의 일 실시상태에 따르면, 상기 중합체의 함량은 상기 아민 화합물을 포함하는 수용액에 대하여 0.001 wt% 이상 5 wt% 이하일 수 있고, 바람직하게는 0.01 wt% 이상 5 wt% 이하, 보다 바람직하게는 0.1 wt% 이상 1 wt% 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체의 함량이 상기 수용액에 대하여 0.001 wt% 이상인 경우에는 폴리아미드 활성층 내의 적절한 중합체 함유량을 확보하여 보론 제거율의 효과를 기대할 수 있는 효과가 있고, 5 wt% 이하인 경우에는 수용액 또는 유기용액에 대하여 불투명한 상태를 형성하게 되어 침전이 발생하여 막 제조 설비를 오염시키는 문제를 방지할 수 있는 효과가 있다.
본 명세서에 있어서, 상기 중합체에 관한 설명은 전술한 내용이 동일하게 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 다공성 지지체로는, 부직포 상에 고분자 재료의 코팅층이 형성된 것을 사용할 수 있다. 상기 고분자 재료로는, 예를 들면, 폴리설폰, 폴리에테르설폰, 폴리카보네이트, 폴리에틸렌옥사이드, 폴리이미드, 폴리에테르이미드, 폴리에테르에테르케톤, 폴리프로필렌, 폴리메틸펜텐, 폴리메틸클로라이드 및 폴리비닐리덴플루오라이드 등이 사용될 수 있으나, 반드시 이들로 제한되는 것은 아니다. 구체적으로, 상기 고분자 재료로서 폴리설폰을 사용할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 다공성 지지체의 두께는 60 μm 내지 100 μm일 수 있으나, 이에 한정되는 것은 아니고 필요에 따라 조절될 수 있다. 또한, 상기 다공성 지지체의 기공 크기는 1 nm 내지 500 nm인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 폴리 아미드 활성층은 다공성 지지체 상에 아민 화합물을 포함하는 수용액층을 형성하는 단계; 및 상기 아민 화합물을 포함하는 수용액층 상에 아실 할라이드 화합물과 유기용매를 포함하는 유기용액을 접촉시켜 폴리아미드 활성층을 형성하는 단계를 통하여 형성될 수 있다.
즉, 본 명세서의 일 실시상태에 따르면, 상기 아민 화합물을 포함하는 수용액층을 형성하는 단계는 특별히 한정하지 않으며, 다공성 지지체 위에 수용액층을 형성할 수 있는 방법이라면 제한하지 않고 사용할 수 있다. 구체적으로, 상기 다공성 지지체 상에 아민 화합물을 포함하는 수용액층을 형성하는 방법은 분무, 도포, 침지, 적하 등을 들 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 아민 화합물을 포함하는 수용액층과 상기 아실 할라이드 화합물을 포함하는 유기용액의 접촉시, 표면에 코팅된 아민 화합물과 아실 할라이드 화합물이 반응하면서 계면 중합에 의해 폴리아미드를 생성하고, 미세 다공성 지지체에 흡착되어 박막이 형성된다. 또한, 본 명세서의 일 실시상태에 따르면, 상기 접촉은 침지, 스프레이 또는 코팅 등의 방법을 통해 활성층을 형성할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수용액층은 필요에 따라 과잉의 아민 화합물을 포함하는 수용액을 제거하는 단계를 추가적으로 거칠 수 있다. 상기 다공성 지지체 상에 형성된 수용액층은 지지체 상에 존재하는 수용액이 지나치게 많은 경우에는 불균일하게 분포할 수 있는데, 수용액이 불균일하게 분포하는 경우에는 이후의 계면 중합에 의해 불균일한 활성층이 형성될 수 있다. 따라서, 상기 지지체 상에 수용액층을 형성한 후에 과잉의 수용액을 제거하는 것이 바람직하다. 상기 과잉의 수용액 제거는 특별히 제한되지는 않으나, 예를 들면, 스펀지, 에어나이프, 질소 가스 블로잉, 자연건조, 또는 압축 롤 등을 이용하여 행할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체 및 아민 화합물을 포함하는 수용액에서 상기 아민 화합물은 수처리 분리막 제조에 사용되는 아민 화합물이라면 그 종류를 제한하지 않으나, 구체적인 예를 든다면, m-페닐렌디아민, p-페닐렌디아민, 1,3,6-벤젠트리아민, 4-클로로-1,3-페닐렌디아민, 6-클로로-1,3-페닐렌디아민, 3-클로로-1,4-페닐렌 디아민 또는 이들의 혼합물인 것이 바람직하다.
본 명세서의 일 실시상태에 따르면, 상기 아실 할라이드 화합물은, 특별히 한정되는 것은 아니나, 예를 들면, 2 내지 3개의 카르복실산 할라이드를 갖는 방향족 화합물로서, 트리메조일클로라이드, 이소프탈로일클로라이드 및 테레프탈로일클로라이드로 이루어진 화합물군으로부터 선택되는 1종 이상의 혼합물일 수 있다.
또한, 본 명세서의 일 실시상태에 따르면, 상기 아실 할라이드 화합물의 함량은 유기용액 100 중량부에 대하여 0.1 중량부 이상 0.5 중량부 이하일 수 있다.
즉, 본 명세서의 일 실시상태에 따르면, 상기 아실 할라이드 화합물의 함량이 유기용액 100 중량부에 대하여 0.1 중량부 이상인 경우에는 최종 제조된 분리막의 염제거율 및 투과유량이 감소되는 현상을 방지할 수 있는 효과가 있고, 0.5 중량부 이하인 경우에는 최종 제조된 분리막의 염제거율이 감소되는 것을 방지할 수 있는 효과가 있다.
또한, 본 명세서의 일 실시상태에 따르면, 상기 유기 용액은 유기용매를 더 포함할 수 있고, 상기 유기용매로는 지방족 탄화수소 용매, 예를 들면, 프레온류와 탄소수가 5 내지 12인 헥산, 사이클로헥산, 헵탄, 알칸과 같은 물과 섞이지않는 소수성 액체, 예를 들면, 탄소수가 5 내지 12인 알칸과 그 혼합물인 IsoPar(Exxon), ISOL-C(SK Chem), ISOL-G(Exxon)등이 사용될 수 있으나, 이로써 제한되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 유기용매는 유기용액 100 중량부를 기준으로 80 중량부 이상 99.499 중량부 이하 포함할 수 있다. 상기 유기용매가 유기용액 100 중량부를 기준으로 80 중량부 이상인 경우에는 최종 제조된 분리막의 염제거율 및 투과유량이 감소되는 현상을 방지할 수 있는 효과가 있고, 99.499 중량부 이하인 경우에는 최종 제조된 분리막의 염제거율이 감소되는 현상을 방지할 수 있는 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 수처리 분리막은 정밀 여과막(Micro Filtration), 한외 여과막(Ultra Filtration), 나노 여과막(Nano Filtration) 또는 역삼투막(Reverse Osmosis) 등으로 이용될 수 있으며, 구체적으로 역삼투막으로 이용될 수 있다.
본 명세서의 또 하나의 실시상태는 전술한 수처리 분리막을 포함하는 수처리 모듈을 제공한다.
상기 수처리 모듈의 구체적인 종류는 특별히 제한되지 않으며, 그 예에는 판형(plate & frame) 모듈, 관형(tubular) 모듈, 중공사형(Hollow & Fiber) 모듈 또는 나권형(spiral wound) 모듈 등이 포함된다. 또한, 상기 수처리 모듈은 전술한 본 명세서의 일 실시상태에 따른 수처리 분리막을 포함하는 한, 그 외의 기타 구성 및 제조 방법 등은 특별히 한정되지 않고, 이 분야에서 공지된 일반적인 수단을 제한 없이 채용할 수 있다.
한편, 본 명세서의 일 실시상태에 따른 수처리 모듈은 염제거율 및 투과유량이 우수하며, 화학적 안정성이 우수하여 가정용/산업용 정수 장치, 하수 처리 장치, 해담수 처리 장치 등과 같은 수처리 장치에 유용하게 사용될 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세히 설명한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지는 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
< 실시예 > 수처리 분리막의 제조방법
< 실시예 1>
DMF(N,N-디메틸포름아미드) 용액에 18 wt%의 폴리술폰 고형분을 넣고 80℃ 내지 85℃에서 12시간 이상 녹여 균일한 액상이 얻었다. 이 용액을 폴리에스테르 재질의 95㎛ 내지 100㎛ 두께의 부직포 위에 45㎛ 내지 50㎛ 두께로 캐스팅한다. 그런 다음, 캐스팅된 부직포를 물에 넣어 다공성 폴리술폰 지지체를 제조하였다.
메타페닐렌디아민(mPD) 4 wt%, 계면활성제 0.1 wt%, 분자량이 900 g/mol인 PHB (Poly(hexamethylene biguanide)) 0.1 wt%, 투과유량 향상제 0.07 wt%를 함유한 수용액을 스롯 코팅법(slot coating)을 이용하여 상기 다공성 폴리술폰 지지체에 도포하였다. 이때, 수용액은 무색 투명하거나, 투명한 황색을 띄었다. 상기 수용액을 다공성 폴리술폰 지지체 상에 도포시 발생한 과량의 수용액층을 에어 나이프로 제거한 뒤에 Isopar G 95.91 wt%, 메시틸렌 4 wt%, 트리메조일클로로이드(TMC) 0.19 wt%를 포함하는 용액을 도포하여 막을 형성하였다. 이렇게 형성된 막은 95℃에서 액상 성분이 모두 증발할 때까지 건조 후, DIW 배스(bath) 하에서 세척되었다.
< 실시예 2>
분자량이 900 g/mol인 PHB를 0.2 wt% 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
< 실시예 3>
분자량이 900 g/mol인 PHB를 0.5 wt% 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
< 실시예 4>
분자량이 900 g/mol인 PHB 대신 분자량이 600 g/mol인 PEB((Poly(ehthylene biguanide)) 0.1 wt%를 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
< 실시예 5>
분자량이 900 g/mol인 PHB 대신 분자량이 600 g/mol인 PEB((Poly(ehthylene biguanide)) 0.2 wt%를 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
< 실시예 6>
분자량이 900 g/mol인 PHB 대신 분자량이 600 g/mol인 PEB((Poly(ehthylene biguanide)) 0.5 wt%를 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
< 실시예 7>
분자량이 900 g/mol인 PHB 대신 분자량이 750 g/mol인 PBB(Poly(n-butylene biguanide)) 0.5 wt%를 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
< 비교예 1>
분자량이 900 g/mol인 PHB 대신 분자량이 1300 g/mol인 PHB를 0.1 wt% 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
< 비교예 2>
분자량이 900 g/mol인 PHB 대신 분자량이 1300 g/mol인 PHB를 0.2 wt% 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.
< 실험예 > 수처리 분리막의 성능 평가
실시예 1 내지 3, 비교예 1 및 2에 따라 제조된 수처리 분리막은 3,200ppm NaCl과 5ppm의 보론을 함유하는 수용액에서 800 psi의 압력 하에서 평가되었다. 이 때, 생산수와 원수의 전기전도도 차이를 측정하여 NaCl 제거율을 측정하였으며, 단위 시간(5분)당 확보된 생산수의 부피를 측정하여 투과유량을 산출하였다. 생산수와 원수를 ICP-OES를 이용하여 보론의 함량 차이를 측정하였고, 이를 통해 보론 제거율을 계산하였다.
전술한 실시예 1 내지 3 및 비교예 1, 2에 따라 제조된 수처리 분리막의 NaCl 제거율, 보론 제거율 및 투과유량을 측정한 실험결과를 하기 표 1에 나타내었다.
구분 보론 제거 향상제 NaCl 제거율(%) 보론 제거율(%) 투과유량(GFD)
종류 분자량(g/mol) 함량(wt%)
실시예 1 PHB 900 0.1 99.3 91.2 22
실시예 2 PHB 900 0.2 99.7 93.6 21
실시예 3 PHB 900 0.5 99.8 95.2 20
실시예 4 PEB 600 0.1 99.5 90.3 23
실시예 5 PEB 600 0.2 99.7 92.4 20
실시예 6 PEB 600 0.5 99.8 95.6 19
실시예 7 PBB 750 0.5 99.5 91.2 22
비교예 1 PHB 1300 0.1 99.1 82.1 21
비교예 2 PHB 1300 0.2 99 82.2 21
*PEB: Poly(ehthylene biguanide)
*PBB: Poly(n-butylene biguanide)
*PHB: Poly(hexamethylene biguanide)
전술한 바와 같이, 실시예 1 내지 3과 같이 분자량이 900 g/mol인 PHB를 사용한 경우에는 폴리아미드 활성층의 제조 시 사용되는 아민 수용액이 투명함을 확인하였고, 이를 도 3의 (a) 내지 (c)에 나타내었다. 즉, 도 3의 (a)는 실시예 1의 실험결과이고, 도 3의 (b)는 실시예 2의 실험결과이며, 도 3의 (c)는 실시예 3의 실험결과이다.
또한, 실시예 7과 같이 PBB를 사용한 경우에는 폴리아미드 활성층의 제조 시 사용되는 아민 수용액이 10℃ 미만에서 경미한 혼탁을 띄었으며, 이러한 성상을 도 4에 나타내었다. 그러나, 10℃ 이상에서는 투명하였고, 수처리 분리막 제조 설비의 오염은 발생하지 않았다.
이에 비하여, 비교예 1 및 2와 같이 기존의 분자량이 1300 g/mol인 PHB를 사용한 경우에는 폴리아미드 활성층의 제조 시 사용되는 아민 수용액이 혼탁해지면서 침전이 발생하는 것을 확인하였으며, 비교예 1의 경우를 도 3의 (d)에 나타내었고, 비교예 2의 경우를 도 3의 (e)에 나타내었다.
이러한 실험결과를 통해 비교예 1 및 2와 같이 기존의 분자량이 1300 g/mol인 PHB를 사용한 경우에는 수처리 분리막 제조 설비의 오염 문제를 야기시킬 수 있는 문제가 있음을 확인하였고, 이를 도 2에 나타내었다.
또한, 상기 표 1을 살펴보면, 중량 평균 분자량이 1300 g/mol인 PHB를 사용한 수처리 분리막의 경우(비교예 1 및 2)에 비하여 본원 발명에 따라 제조된 수처리 분리막(실시예 1 내지 7)의 경우 보다 높은 염 제거율을 나타냄을 확인하였으며, 보론 제거율 또한 보다 높음을 확인하였다.

Claims (17)

  1. 다공성 지지체; 및 상기 다공성 지지체 상에 구비된 폴리아미드 활성층을 포함하는 수처리 분리막에 있어서,
    상기 폴리아미드 활성층의 내부 또는 표면에 하기 화학식 1로 표시되고, 중량 평균 분자량이 100g/mol 내지 1200g/mol인 중합체를 포함하는 수처리 분리막:
    [화학식 1]
    Figure PCTKR2016010634-appb-I000003
    상기 화학식 1에 있어서,
    R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로고리기이고,
    Z1 내지 Z3는 서로 같거나 상이하고, 각각 독립적으로 N(R3), O, 또는 S이며,
    A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 O, S, N(R4), N(R5)2 +, O(R6)+, S(R7)+, O(R8)(R9)2+ 또는 S(R9)(R10)2+이고,
    R3 내지 R10은 수소, 중수소, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로고리기이며,
    A1 및 A2 중 적어도 하나가 N(R5)2 +, O(R6)+, S(R7)+, O(R8)(R9)2+ 또는 S(R9)(R10)2+인 경우, Y는 HSO4 -, SO4 2-, NO3 -, CO3 2-, HCO3 -, H2PO4 -, HPO4 2 -, PO4 3-, Cl-, Br- 및 F-로 이루어진 군으로부터 선택되고,
    n은 1 내지 10의 정수이며,
    m은 1 내지 60의 정수이고,
    p는 0 내지 4의 정수이며,
    n, m 및 p가 각각 2 이상인 경우, 괄호 안의 구조는 서로 같거나 상이하다.
  2. 다공성 지지체; 및 상기 다공성 지지체 상에 구비된 폴리아미드 활성층을 포함하는 수처리 분리막에 있어서,
    상기 폴리아미드 활성층의 내부 또는 표면에 하기 화학식 1로 표시되고, 중량 평균 분자량이 100g/mol 내지 1200g/mol인 중합체로부터 유래된 구조를 포함하는 수처리 분리막:
    [화학식 1]
    Figure PCTKR2016010634-appb-I000004
    상기 화학식 1에 있어서,
    R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로고리기이고,
    Z1 내지 Z3는 서로 같거나 상이하고, 각각 독립적으로 N(R3), O, 또는 S이며,
    A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 O, S, N(R4), N(R5)2 +, O(R6)+, S(R7)+, O(R8)(R9)2+ 또는 S(R9)(R10)2+이고,
    R3 내지 R10은 수소, 중수소, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로고리기이며,
    A1 및 A2 중 적어도 하나가 N(R5)2 +, O(R6)+, S(R7)+, O(R8)(R9)2+ 또는 S(R9)(R10)2+인 경우, Y는 HSO4 -, SO4 2-, NO3 -, CO3 2-, HCO3 -, H2PO4 -, HPO4 2 -, PO4 3-, Cl-, Br- 및 F-로 이루어진 군으로부터 선택되고,
    n은 1 내지 10의 정수이며,
    m은 1 내지 60의 정수이고,
    p는 0 내지 4의 정수이며,
    n, m 및 p가 각각 2 이상인 경우, 괄호 안의 구조는 서로 같거나 상이하다.
  3. 청구항 1 또는 2에 있어서, 상기 Z1 내지 Z3는 NH인 것인 수처리 분리막.
  4. 청구항 1 또는 2에 있어서, 상기 Z1 내지 Z3는 O인 것인 수처리 분리막.
  5. 청구항 1 또는 2에 있어서, 상기 Z1 내지 Z3는 S인 것인 수처리 분리막.
  6. 청구항 1 또는 2에 있어서, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 NH, 또는 NH2 +인 것인 수처리 분리막.
  7. 청구항 1 또는 2에 있어서, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 O 또는 OH+인 것인 수처리 분리막.
  8. 청구항 1 또는 2에 있어서, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 S 또는 SH+인 것인 수처리 분리막.
  9. 청구항 1 또는 2에 있어서, 상기 Z1 내지 Z3는 NH이고, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 NH, 또는 NH2 +인 것인 수처리 분리막.
  10. 청구항 1 또는 2에 있어서, 상기 Z1 내지 Z3는 O이고, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 O 또는 OH+인 것인 수처리 분리막.
  11. 청구항 1 또는 2에 있어서, 상기 Z1 내지 Z3는 S이고, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 S 또는 SH+인 것인 수처리 분리막.
  12. 청구항 1 또는 2에 있어서, 상기 중합체의 함량은 폴리아미드 활성층에 대하여 0.001 wt% 이상 5 wt% 이하인 것인 수처리 분리막.
  13. 청구항 1 또는 2에 있어서, 상기 수처리 분리막의 보론 제거율은 pH 8의 원수에서 80% 이상인 것인 수처리 분리막.
  14. 다공성 지지체를 준비하는 단계; 및
    아민 화합물을 포함하는 수용액 및 아실 할라이드를 포함하는 유기용액의 계면중합을 이용하여, 상기 다공성 지지체 상에 폴리아미드 활성층을 형성하는 단계를 포함하고,
    상기 수용액 또는 상기 유기용액은, 하기 화학식 1로 표시되고, 중량 평균 분자량이 100g/mol 내지 1200g/mol인 중합체를 포함하는 것인 수처리 분리막의 제조방법:
    [화학식 1]
    Figure PCTKR2016010634-appb-I000005
    상기 화학식 1에 있어서,
    R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로고리기이고,
    Z1 내지 Z3는 서로 같거나 상이하고, 각각 독립적으로 N(R3), O, 또는 S이며,
    A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 O, S, N(R4), N(R5)2 +, O(R6)+, S(R7)+, O(R8)(R9)2+ 또는 S(R9)(R10)2+이고,
    R3 내지 R10은 수소, 중수소, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로고리기이며,
    A1 및 A2 중 적어도 하나가 N(R5)2 +, O(R6)+, S(R7)+, O(R8)(R9)2+ 또는 S(R9)(R10)2+인 경우, Y는 HSO4 -, SO4 2-, NO3 -, CO3 2-, HCO3 -, H2PO4 -, HPO4 2 -, PO4 3-, Cl-, Br- 및 F-로 이루어진 군으로부터 선택되고,
    n은 1 내지 10의 정수이며,
    m은 1 내지 60의 정수이고,
    p는 0 내지 4의 정수이며,
    n, m 및 p가 각각 2 이상인 경우, 괄호 안의 구조는 서로 같거나 상이하다.
  15. 청구항 14에 있어서, 상기 중합체의 함량은 상기 수용액 또는 상기 유기용액에 대하여 0.001 wt% 이상 5 wt% 이하인 것인 수처리 분리막의 제조방법.
  16. 청구항 14에 있어서, 상기 수용액은 상기 중합체를 포함하는 것인 수처리 분리막의 제조방법.
  17. 청구항 1 또는 2의 수처리 분리막을 포함하는 수처리 모듈.
PCT/KR2016/010634 2015-09-23 2016-09-23 수처리 분리막 및 이의 제조방법 WO2017052256A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680035599.XA CN107708846B (zh) 2015-09-23 2016-09-23 水处理膜和用于制造其的方法
EP16848981.3A EP3354333B1 (en) 2015-09-23 2016-09-23 Water treatment membrane and method for manufacturing same
JP2017561406A JP6642860B2 (ja) 2015-09-23 2016-09-23 水処理分離膜およびその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0134785 2015-09-23
KR10-2015-0134791 2015-09-23
KR20150134791 2015-09-23
KR20150134785 2015-09-23
KR1020160121637A KR102141265B1 (ko) 2015-09-23 2016-09-22 수처리 분리막 및 이의 제조방법
KR10-2016-0121637 2016-09-22

Publications (1)

Publication Number Publication Date
WO2017052256A1 true WO2017052256A1 (ko) 2017-03-30

Family

ID=58386304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010634 WO2017052256A1 (ko) 2015-09-23 2016-09-23 수처리 분리막 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2017052256A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194354A3 (ko) * 2017-04-19 2019-01-03 주식회사 엘지화학 수처리 분리막 및 이의 제조방법
EP3689442A4 (en) * 2018-05-10 2020-11-04 Lg Chem, Ltd. REVERSE OSMEMBRANE, MANUFACTURING METHOD FOR IT AND WATER TREATMENT MODULE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009657B1 (ko) * 1994-10-12 1997-06-17 제일합섬 주식회사 항균성 및 소취성이 우수한 폴리프로필렌 부직포의 제조방법
KR20070086268A (ko) * 2004-11-15 2007-08-27 도레이 가부시끼가이샤 복합 반투막, 이의 제조방법, 및 이를 사용한 엘리먼트,유체 분리장치 및 붕소 함유 물의 처리 방법
US20110284458A1 (en) * 2010-05-24 2011-11-24 Mickols William E Composite membrane with coating comprising polyalkylene oxide and biguanide-type compounds
KR20130076498A (ko) * 2011-12-28 2013-07-08 주식회사 엘지화학 초친수층을 포함하는 역삼투막 및 그 제조방법
KR20140143721A (ko) * 2013-06-07 2014-12-17 주식회사 엘지화학 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009657B1 (ko) * 1994-10-12 1997-06-17 제일합섬 주식회사 항균성 및 소취성이 우수한 폴리프로필렌 부직포의 제조방법
KR20070086268A (ko) * 2004-11-15 2007-08-27 도레이 가부시끼가이샤 복합 반투막, 이의 제조방법, 및 이를 사용한 엘리먼트,유체 분리장치 및 붕소 함유 물의 처리 방법
US20110284458A1 (en) * 2010-05-24 2011-11-24 Mickols William E Composite membrane with coating comprising polyalkylene oxide and biguanide-type compounds
KR20130076498A (ko) * 2011-12-28 2013-07-08 주식회사 엘지화학 초친수층을 포함하는 역삼투막 및 그 제조방법
KR20140143721A (ko) * 2013-06-07 2014-12-17 주식회사 엘지화학 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194354A3 (ko) * 2017-04-19 2019-01-03 주식회사 엘지화학 수처리 분리막 및 이의 제조방법
US11173455B2 (en) 2017-04-19 2021-11-16 Lg Chem, Ltd. Water treatment membrane and method for manufacturing same
EP3689442A4 (en) * 2018-05-10 2020-11-04 Lg Chem, Ltd. REVERSE OSMEMBRANE, MANUFACTURING METHOD FOR IT AND WATER TREATMENT MODULE
US11883785B2 (en) 2018-05-10 2024-01-30 Lg Chem, Ltd. Reverse osmosis membrane, manufacturing method therefor, and water treatment module

Similar Documents

Publication Publication Date Title
WO2014204218A2 (ko) 염제거율 및 투과유량 특성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2013176524A1 (ko) 역삼투 분리막
WO2013183969A1 (ko) 표면 처리된 제올라이트를 포함하는 고투과 유량 역삼투막 및 이를 제조하는 방법
WO2014137049A1 (ko) 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2011136465A2 (ko) 해수담수용 정삼투막 및 그 제조방법
WO2013180517A1 (ko) 카보디이미드계 화합물을 포함하는 고투과 역삼투막 및 이를 제조하는 방법
WO2019209010A1 (ko) 방향족 탄화수소를 이용한 우수한 용질 제거 성능을 가진 분리막 제조 기술
WO2013176523A1 (ko) 역삼투 분리막 제조방법 및 이에 의해 제조된 역삼투 분리막
WO2015016683A1 (ko) 내구성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
WO2017116009A1 (ko) 듀얼(이중층)-슬롯코팅 기술을 이용한 박막 복합 분리막의 단일 제조공정
WO2014196835A1 (ko) 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
WO2014084661A1 (ko) 내염소성 고투과 수처리 분리막 및 그 제조 방법
WO2010082710A1 (en) Method for preparing a highly durable reverse osmosis membrane
WO2017010718A1 (en) Chemical additives for water flux enhancement
WO2019143225A1 (ko) 용매 후처리를 통한 고성능 박막 복합체 분리막의 제조 방법
WO2017039112A2 (ko) 수처리 분리막의 제조방법, 이를 이용하여 제조된 수처리 분리막, 및 수처리 분리막을 포함하는 수처리 모듈
WO2017146457A2 (ko) 열전환 폴리(벤즈옥사졸-이미드) 공중합체 기반의 초박형 복합막 및 그 제조방법
WO2012173417A2 (ko) 초친수성 보호층을 포함하는 역삼투막 및 이의 제조방법
WO2017171474A1 (ko) 폴리아미드 계면중합용 조성물 및 이를 이용한 역삼투막의 제조방법
WO2017150885A1 (en) Methods of enhancing water flux of a tfc membrane using oxidizing and reducing agents
WO2022124554A1 (ko) 내구성 및 내오염성이 우수한 폴리아미드 역삼투막 및 이의 제조방법
WO2014069786A1 (ko) 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
KR102141265B1 (ko) 수처리 분리막 및 이의 제조방법
WO2012161483A2 (ko) 역삼투 분리막의 제조 방법 및 이에 의해 제조된 역삼투 분리막
WO2017052256A1 (ko) 수처리 분리막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE