WO2014192056A1 - ダイオキシン類の分画方法 - Google Patents

ダイオキシン類の分画方法 Download PDF

Info

Publication number
WO2014192056A1
WO2014192056A1 PCT/JP2013/064614 JP2013064614W WO2014192056A1 WO 2014192056 A1 WO2014192056 A1 WO 2014192056A1 JP 2013064614 W JP2013064614 W JP 2013064614W WO 2014192056 A1 WO2014192056 A1 WO 2014192056A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silica gel
solvent
dioxins
path
Prior art date
Application number
PCT/JP2013/064614
Other languages
English (en)
French (fr)
Inventor
寛之 藤田
中村 裕史
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Priority to EP13885973.1A priority Critical patent/EP2871476B1/en
Priority to CN201380003034.XA priority patent/CN104487840B/zh
Priority to PCT/JP2013/064614 priority patent/WO2014192056A1/ja
Priority to JP2013544598A priority patent/JP5490332B1/ja
Priority to CA2900970A priority patent/CA2900970C/en
Priority to US14/768,327 priority patent/US9696290B2/en
Publication of WO2014192056A1 publication Critical patent/WO2014192056A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/03Edible oils or edible fats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/12Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the preparation of the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1864Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns
    • B01D15/1871Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • B01D15/206Packing or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28052Several layers of identical or different sorbents stacked in a housing, e.g. in a column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Definitions

  • the present invention relates to a method for fractionating dioxins, and more particularly to a method for fractionating dioxins contained in an aliphatic hydrocarbon solvent solution of dioxins.
  • Dioxins are a general term for polychlorinated dibenzopararadioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (DL-PCBs).
  • PCDDs polychlorinated dibenzopararadioxins
  • PCDFs polychlorinated dibenzofurans
  • DL-PCBs dioxin-like polychlorinated biphenyls
  • PCBs PCBs having the same toxicity as PCDDs and PCDFs among 209 types of polychlorinated biphenyls (PCBs), and include non-ortho PCBs and mono-ortho PCBs.
  • dioxins are extracted from the solid by, for example, a Soxhlet extraction method.
  • the sample is a fluid such as air or beverage
  • a collector such as a filter
  • the collector is washed or the Soxhlet extracted from the collector
  • the extract of dioxins thus obtained is quantitatively analyzed as an analysis sample using an analyzer such as a gas chromatograph mass spectrometer (GC / MS).
  • Dioxins are extracted from various contaminants that may affect the analysis results, for example, PCBs other than polychlorinated diphenyl ether (PCDE) and DL-PCBs that have similar chemical structure and chemical behavior to dioxins.
  • PCDE polychlorinated diphenyl ether
  • DL-PCBs that have similar chemical structure and chemical behavior to dioxins.
  • the polychlorinated polycyclic aromatic hydrocarbons are sometimes referred to as non-DL-PCBs below), and are usually concentrated after being purified and applied to the analyzer.
  • Patent Document 1 discloses a chromatograph equipped with a first column packed with silica gel sulfate and silver nitrate silica gel as a purification agent, and a second column packed with activated carbon-containing silica gel or graphite carbon as an adsorbent.
  • activated carbon silica gel or graphite carbon can be selectively used as the adsorbent for the latter column, and when both are used in combination, they should be used in a stacked or mixed state. Can do.
  • an extract of dioxins is injected into the former column, and then a hydrocarbon solvent is supplied to the former column.
  • This hydrocarbon solvent dissolves dioxins in the injected extract and passes through the front column and the rear column.
  • the dioxins dissolved in the hydrocarbon solvent pass through the purification agent in the former column and are adsorbed by the adsorbent in the latter column.
  • contaminating components contained in the extract are dissolved in a hydrocarbon solvent together with dioxins, and partly decomposed and partly adsorbed when passing through the purification agent in the preceding column.
  • those that are not adsorbed by the purification agent pass through the adsorbent of the subsequent column in a state dissolved in the hydrocarbon solvent, and are discharged from the column.
  • alkylbenzene capable of dissolving dioxins is supplied to the latter column. And if the alkylbenzene which passes a back
  • This alkylbenzene solution can be used as a sample for analysis of dioxins, and after being concentrated as appropriate, it is analyzed by an analyzer such as GC / MS.
  • Patent Document 2 describes a method in which graphite-like carbon or a mixture of graphite-like carbon and other materials such as silica gel, activated carbon-containing silica gel, activated carbon, alumina, or zeolite is used as an adsorbent for dioxins.
  • a purified dioxin solution is supplied to a column packed with an adsorbent, and the dioxins are adsorbed on the adsorbent. Then, several types of solvents are sequentially supplied to the column to prepare several types of dioxins solutions.
  • three types of dioxin solutions can be prepared by such a method, for example, a solution containing PCBs other than DL-PCBs, a solution containing monoortho PCBs, and a solution containing non-ortho PCBs, PCDDs and PCDFs. .
  • this method adsorbs all kinds of dioxins to the adsorbent as in the method described in Patent Document 1, it is difficult to precisely fractionate dioxins.
  • a part of PCDDs or PCDFs may be mixed in a solution containing mono-ortho PCBs, and a part of mono-ortho PCBs may be mixed in a solution containing non-ortho PCBs, PCDDs, and PCDFs.
  • the present invention is intended to enable high-precision fractionation of dioxins into dioxin groups including non-ortho PCBs, PCDDs and PCDFs and mono-ortho PCBs.
  • the method for fractionating dioxins according to the present invention includes a step of passing an aliphatic hydrocarbon solvent solution of dioxins through an activated carbon-containing silica gel layer and a graphite-containing silica gel layer in this order.
  • the dioxin group including non-ortho PCBs, PCDDs, and PCDFs among dioxins is contained. Adsorbed on the activated carbon-containing silica gel layer or the graphite-containing silica gel layer.
  • monoortho PCBs among dioxins remain in the aliphatic hydrocarbon solvent solution and pass through the activated carbon-containing silica gel layer and the graphite-containing silica gel layer.
  • dioxins in the aliphatic hydrocarbon solvent solution remain in the aliphatic hydrocarbon solvent solution and the dioxin group including non-ortho PCBs, PCDDs, and PCDFs adsorbed on the activated carbon-containing silica gel layer or the graphite-containing silica gel layer. Fractionated into mono-ortho PCBs.
  • the aliphatic hydrocarbon solvent solution that has passed through the graphite-containing silica gel layer is further passed through the alumina layer.
  • the dioxins in the aliphatic hydrocarbon solvent solution are divided into a dioxin group including non-ortho PCBs, PCDDs and PCDFs adsorbed on the activated carbon-containing silica gel layer or graphite-containing silica gel layer, and mono-ortho PCBs adsorbed on the alumina layer.
  • a solvent capable of dissolving dioxins is supplied to the activated carbon-containing silica gel layer and the graphite-containing silica gel layer through which the aliphatic hydrocarbon solvent solution has passed, and the activated carbon-containing silica gel layer and the graphite-containing silica gel layer are separated.
  • a step of securing the solvent that has passed through, and a step of securing the solvent that has passed through the alumina layer by supplying a solvent capable of dissolving dioxins to the alumina layer through which the aliphatic hydrocarbon solvent solution has passed. You may go out.
  • the dioxin group including non-ortho PCBs, PCDDs and PCDFs adsorbed on the activated carbon-containing silica gel layer or graphite-containing silica gel layer, and mono-ortho PCBs adsorbed on the alumina layer are extracted by dissolving in the supplied solvent. And obtained as separate extracts.
  • the present invention according to another aspect relates to a method for preparing a sample for analyzing dioxins contained in a dioxin solution, and the preparation method includes a dioxin in a purification layer including a silver nitrate silica gel layer and a sulfate silica gel layer.
  • a step of adding an organic solution a step of supplying an aliphatic hydrocarbon solvent to the purified layer to which the dioxin solution is added, an activated hydrocarbon-containing silica gel layer and a graphite-containing silica gel containing the aliphatic hydrocarbon solvent that has passed through the purified layer.
  • the step of passing through the layers in this order the step of passing the aliphatic hydrocarbon solvent that has passed through the graphite-containing silica gel layer through the alumina layer, and the dioxins can be dissolved in the alumina layer through which the aliphatic hydrocarbon solvent has passed.
  • a solvent capable of dissolving dioxins is supplied to the activated carbon-containing silica gel layer and the graphite-containing silica gel layer through which the hydrocarbon solvent has passed, and the solvent that has passed through the activated carbon-containing silica gel layer and the graphite-containing silica gel layer is used as the second analytical sample. And securing the process.
  • the aliphatic hydrocarbon solvent passes through the purified layer.
  • dioxins and impurities contained in the dioxins solution are dissolved in the aliphatic hydrocarbon solvent.
  • a part of the contaminating components reacts with the silver nitrate silica gel layer or the sulfuric acid silica gel layer of the purification layer and decomposes. Further, a part of the contaminating components and decomposition products are adsorbed on the silver nitrate silica gel layer or the sulfate silica gel layer.
  • dioxins pass through the purification layer in a state dissolved in an aliphatic hydrocarbon solvent. As a result, dioxins are separated from some of the contaminating components.
  • the dioxin group containing non-ortho PCBs, PCDDs, and PCDFs among dioxins when the aliphatic hydrocarbon solvent in which the dioxins are dissolved and passed through the purification layer passes through the activated carbon-containing silica gel layer and the graphite-containing silica gel layer in this order. Is adsorbed on the activated carbon-containing silica gel layer or the graphite-containing silica gel layer, and monoortho PCBs of dioxins are adsorbed on the alumina layer when passing through the alumina layer.
  • the first analysis sample is a monoortho PCBs analysis sample
  • the second analysis sample is a dioxin group analysis sample containing non-ortho PCBs, PCDDs, and PCDFs. That is, according to this preparation method, the sample for analyzing monoortho PCBs and the sample for analyzing the dioxin group including non-ortho PCBs, PCDDs, and PCDFs can be prepared separately.
  • the present invention according to still another aspect relates to a method for analyzing dioxins contained in a dioxin solution, and this analytical method was prepared by a gas chromatography method or a bioassay method according to the preparation method of the present invention. Analyzing the first analytical sample and the second analytical sample.
  • This analysis method can analyze mono-ortho PCBs with high accuracy by analyzing the first analytical sample, and can analyze non-ortho PCBs, PCDDs and PCDFs with high accuracy by analyzing the second analytical sample. Can do.
  • a preparation device 100 is for preparing a sample for analysis of dioxins from a dioxin solution.
  • a dioxin fractionation instrument 200, a heating device 300, a solvent supply device 400, a solvent outflow path 500, A first extraction path 600 and a second extraction path 700 are mainly provided.
  • the fractionation device 200 includes a tube body 210.
  • the tube body 210 is made of a material having at least solvent resistance, chemical resistance and heat resistance, for example, glass, resin or metal having these characteristics, and has an opening 211 at one end and an opening 212 at the other end. It is formed in a series of cylindrical shapes having both ends open.
  • the tube body 210 includes a large-diameter portion 213 having a relatively large diameter formed on the opening 211 side, and a small-diameter portion 214 having a relatively small diameter formed on the opening 212 side. And have.
  • the small-diameter portion 214 has two branch paths as openings, that is, a first branch path 215 and a second branch path 216 that are provided at an interval.
  • the pipe body 210 is held in an upright state, and is filled with a purification layer 220 and an adsorption layer 230 inside.
  • the purified layer 220 is filled in the large-diameter portion 213, and a multilayer silica gel layer in which a silver nitrate silica gel layer 221, a first active silica gel layer 223, a sulfuric acid silica gel layer 222, and a second active silica gel layer 224 are arranged in this order from the opening 211 side. It is.
  • the silver nitrate silica gel layer 221 is made of silver nitrate silica gel, and is for decomposing or adsorbing a part of contaminant components mixed in the dioxins solution.
  • the silver nitrate silica gel used here has an aqueous silver nitrate solution uniformly added to the surface of granular silica gel having a particle size of about 40 to 210 ⁇ m (usually activated silica gel whose activity has been increased by heating), and then water is removed by heating under reduced pressure. It was prepared by removing.
  • the amount of silver nitrate aqueous solution added to the silica gel is usually preferably set to 5 to 20% of the weight of the silica gel.
  • the packing density of the silver nitrate silica gel in the silver nitrate silica gel layer 221 is not particularly limited, but is usually preferably set to 0.3 to 0.8 g / cm 3, and preferably 0.4 to 0.7 g / cm 3. It is more preferable to set to.
  • the sulfated silica gel layer 222 is made of sulfated silica gel, and is for decomposing or adsorbing a part of contaminating components other than dioxins mixed in the dioxins solution.
  • the sulfuric acid silica gel used here was prepared by uniformly adding concentrated sulfuric acid to the surface of granular silica gel having a particle size of about 40 to 210 ⁇ m (usually activated silica gel whose activity was increased by heating). .
  • the amount of concentrated sulfuric acid added to the silica gel is usually preferably set to 10 to 130% of the weight of the silica gel.
  • the packing density of the silica gel layer 222 in the sulfuric acid silica gel layer 222 is not particularly limited, but it is usually preferably set to 0.3 to 1.1 g / cm 3, and preferably 0.5 to 1.0 g / cm 3. It is more preferable to set to.
  • the first active silica gel layer 223 is disposed to avoid a chemical reaction between the silver nitrate silica gel layer 221 and the sulfuric acid silica gel layer 222 that are in direct contact with each other.
  • the first active silica gel layer 223 has a particle size of about 40 to 210 ⁇ m.
  • the silica gel used here may be one whose activity is appropriately increased by heating.
  • the second active silica gel layer 224 is made of the same silica gel as the first active silica gel layer 223, and includes a part of the contaminated components decomposed by reacting with the sulfate silica gel layer 222, decomposition products, and the sulfate silica gel layer 222. This is to adsorb the eluted sulfuric acid and prevent them from moving to the adsorption layer 230.
  • the ratio of the silver nitrate silica gel layer 221 and the sulfated silica gel layer 222 is preferably set to 1.0 to 50 times the weight ratio of the sulfated silica gel layer 222 to the silver nitrate silica gel layer 221; It is more preferable to set to double.
  • the weight ratio of the sulfuric acid silica gel layer 222 exceeds 50 times, since the ratio of the silver nitrate silica gel layer 221 is relatively small, the purification layer 220 has insufficient adsorbability for the impurities contained in the dioxin solution. there is a possibility.
  • the weight ratio of the sulfuric acid silica gel layer 222 is less than 1.0 times, the resolution of the contaminating components contained in the dioxin solution may be insufficient in the purification layer 220.
  • the adsorption layer 230 is for fractionating dioxins contained in the dioxin solution, and includes a first adsorption layer 240 including an activated carbon-containing silica gel layer 241 and a graphite-containing silica gel layer 242, and a second adsorption layer including an alumina layer 251.
  • the first adsorbing layer 240 and the second adsorbing layer 250 are filled in the small diameter portion 214 with a space therebetween. More specifically, the first adsorption layer 240 is filled in the small diameter portion 214 between the first branch path 215 and the second branch path 216, and the second adsorption layer 250 is filled with the second branch path 216. And the opening 212 is filled in the small diameter portion 214.
  • the activated carbon-containing silica gel layer 241 of the first adsorption layer 240 is disposed on the purification layer 220 side in the first adsorption layer 240 and is made of a mixture of activated carbon and granular silica gel.
  • a mixture may be an activated carbon-dispersed silica gel obtained by simply mixing activated carbon and silica gel, or obtained by reacting a mixture of sodium silicate (water glass) and activated carbon with mineral acid.
  • Activated carbon embedded silica gel may be used.
  • the activated carbon various commercially available ones can be used.
  • the activated carbon is granular or powdery having a particle size of about 40 to 100 ⁇ m, and has a specific surface area measured by the BET method of 100 to 1,200 m 2 / g, Particularly preferred is 500 to 1,000 m 2 / g.
  • the silica gel in the activated carbon dispersed silica gel the same silica gel as the first active silica gel layer 223 is used.
  • the proportion of activated carbon in the mixture of activated carbon and silica gel is preferably 0.013 to 5.0% by weight, more preferably 0.1 to 3.0% by weight.
  • activated carbon is less than 0.013% by weight or more than 5.0% by weight, the adsorption capacity of PCDDs having a large number of chlorine or PCDFs having a large number of chlorine may be reduced in the first adsorption layer 240.
  • the packing density of the activated carbon-containing silica gel layer 241 is not particularly limited, but is usually preferably set to 0.3 to 0.8 g / cm 3 and set to 0.45 to 0.6 g / cm 3 . More preferably.
  • the graphite-containing silica gel layer 242 of the first adsorption layer 240 is disposed adjacent to the activated carbon-containing silica gel layer 241 in the first adsorption layer 240, and is a mixture obtained by simply mixing graphite and granular silica gel. It consists of Various commercially available graphites can be used, but they are usually granular or powdery having a particle size of about 40 to 200 ⁇ m, and have a specific surface area measured by the BET method of 10 to 500 m 2 / g, especially 50. Those of up to 200 m 2 / g are preferred. Further, the same silica gel as the first active silica gel layer 223 is used.
  • the ratio of graphite in the mixture of graphite and silica gel is preferably 2.5 to 50% by weight, and more preferably 5 to 25% by weight.
  • the adsorptivity of non-ortho PCBs may be reduced in the first adsorption layer 240.
  • the graphite content exceeds 50 wt%, non-DL-PCBs, particularly non-DL-PCBs having 1 to 2 chlorine atoms, may be easily adsorbed in the first adsorption layer 240.
  • the packing density of the graphite-containing silica gel layer 242 is not particularly limited, but is usually preferably set to 0.2 to 0.6 g / cm 3, and preferably set to 0.3 to 0.5 g / cm 3 . More preferably.
  • the ratio of the activated carbon-containing silica gel layer 241 and the graphite-containing silica gel layer 242 is such that the volume ratio (A: B) of the latter (B) to the former (A) is 1: 1 to 1:12. It is preferable to set so that 1: 1 to 1: 9 is more preferable.
  • the ratio of the activated carbon-containing silica gel layer 241 is smaller than the volume ratio, the adsorption capacity of a part of PCDDs and PCDFs, particularly PCDDs and PCDFs having 8 chlorine atoms, may be lowered in the first adsorption layer 240.
  • the ratio of the activated carbon-containing silica gel layer 241 is large, the mono-ortho PCBs may be easily adsorbed in the first adsorption layer 240.
  • the alumina layer 251 of the second adsorption layer 250 is made of granular alumina.
  • the alumina used here may be any of basic alumina, neutral alumina, and acidic alumina. Further, the activity of alumina is not particularly limited.
  • the preferred particle size of alumina is usually 40 to 300 ⁇ m.
  • the packing density of alumina in the alumina layer 251 is not particularly limited, but is usually preferably set to 0.5 to 1.2 g / cm 3, and set to 0.8 to 1.1 g / cm 3 . More preferably.
  • the size of the fractionating device 200 can be appropriately set according to the amount of the dioxin solution to be processed by the preparation apparatus 100, and is not particularly limited.
  • the dioxin solution amount is 1
  • the large diameter portion 213 is set such that the size of the portion that can be filled with the purification layer 220 is set to an inner diameter of 10 to 20 mm and a length of about 100 to 300 mm.
  • the inner diameter is 3 to 10 mm
  • the length of the portion that can be filled with the first adsorption layer 240 is set to about 20 to 80 mm
  • the length of the portion that can be filled with the second adsorption layer 250 is set to about 20 to 80 mm. It is preferable.
  • the heating device 300 is arranged so as to surround the outer periphery of the large-diameter portion 213, and the silver nitrate silica gel layer 221 and the first active silica gel layer 223 of the purification layer 220 and a part of the sulfate silica gel layer 222, that is, the silver nitrate silica gel layer. It is for heating the part near 221.
  • the solvent supply device 400 has a first solvent supply path 420 extending from the first solvent container 410 to the tube body 210.
  • the first solvent supply path 420 can be attached to and detached from the opening 211 of the tube body 210, and can be hermetically closed when attached to the opening 211.
  • the first solvent supply path 420 includes, in order from the first solvent container 410 side, an air introduction valve 423, a first pump 421 for supplying the solvent stored in the first solvent container 410 to the tube body 210, and a first pump 421. It has a valve 422.
  • the air introduction valve 423 is a three-way valve having an air introduction path 424 that is open at one end, and is for switching the flow path to either the air introduction path 424 side or the first solvent container 410 side.
  • the first valve 422 is a two-way valve and is for switching between opening and closing of the first solvent supply path 420.
  • the solvent stored in the first solvent container 410 is capable of dissolving dioxins, and is usually an aliphatic hydrocarbon solvent, preferably an aliphatic saturated hydrocarbon solvent having 5 to 8 carbon atoms.
  • an aliphatic hydrocarbon solvent preferably an aliphatic saturated hydrocarbon solvent having 5 to 8 carbon atoms.
  • n-pentane, n-hexane, n-heptane, n-octane, isooctane or cyclohexane may be appropriately mixed and used.
  • the solvent outflow path 500 has a flow path 510 that is airtightly connected to the opening 212 of the tube body 210.
  • the flow path 510 has a second valve 520.
  • the second valve 520 is a three-way valve, and a disposal path 531 for discarding the solvent from the tube body 210 and a second solvent supply path 541 for supplying the solvent to the tube body 210 communicate with each other.
  • the flow path 510 is for switching so as to communicate with either the disposal path 531 or the second solvent supply path 541.
  • the second solvent supply path 541 has a second pump 542 and communicates with a second solvent container 543 that stores a solvent for extracting dioxins captured by the fractionation device 200.
  • the extraction solvent stored in the 2nd solvent container 543 can be selected according to the analysis method of the dioxins mentioned later.
  • a solvent suitable for the method for example, toluene or benzene can be used.
  • a mixed solvent obtained by adding an aliphatic hydrocarbon solvent or an organic chlorine solvent to toluene or benzene can also be used.
  • the ratio of toluene or benzene is set to 50% by weight or more.
  • Examples of the aliphatic hydrocarbon solvent used in the mixed solvent include n-pentane, n-hexane, n-heptane, n-octane, isooctane, and cyclohexane.
  • examples of the organic chlorine-based solvent include dichloromethane, trichloromethane, tetrachloromethane, and the like. Of these extraction solvents, toluene is particularly preferable because dioxins can be extracted from the fractionation device 200 with a small amount of use.
  • a suitable solvent for example, a hydrophilic solvent such as dimethyl sulfoxide (DMSO) or methanol is used.
  • DMSO dimethyl sulfoxide
  • the first extraction path 600 has a first recovery path 610 extending from the first branch path 215.
  • One end of the first recovery path 610 is in airtight communication with the first branch path 215, and the other end is airtightly inserted into the first recovery container 620 for recovering the solvent.
  • one end of the first ventilation path 630 is inserted into the first recovery container 620 in an airtight manner.
  • the first ventilation path 630 includes a third valve 631 at the other end.
  • the third valve 631 is a three-way valve, and an open path 632 having one end opened and an air supply path 634 including a compressor 633 for sending compressed air to the first ventilation path 630 communicate with each other. This is for switching the path 630 to communicate with either the open path 632 or the air supply path 634.
  • the second extraction path 700 has a second recovery path 710 extending from the second branch path 216.
  • One end of the second recovery path 710 is in airtight communication with the second branch path 216, and the other end is airtightly inserted into the second recovery container 720 for recovering the solvent.
  • one end of the second ventilation path 730 is inserted into the second recovery container 720 in an airtight manner.
  • the second ventilation path 730 includes a fourth valve 731.
  • the fourth valve 731 is a two-way valve and is for switching between opening and closing of the second ventilation path 730.
  • the first valve 422, the air introduction valve 423, the second valve 520, the third valve 631, and the fourth valve 731 are set to a predetermined initial state. That is, the first valve 422 is set to an open state, and the air introduction valve 423 is set to communicate with the first solvent container 410 side.
  • the second valve 520 is set so that the flow path 510 communicates with the discard path 531.
  • the third valve 631 is set so that the first ventilation path 630 and the air supply path 634 communicate with each other, and the fourth valve 731 is set in a closed state.
  • the preparation method of the sample for analysis mainly includes the following fractionation step and extraction step.
  • a dioxin solution is injected into the fractionating device 200.
  • the first solvent supply path 420 is removed from the tube body 210, and a dioxin solution is injected into the purified layer 220 from the opening 211.
  • the heating device 300 is operated, and a part of the purification layer 220, that is, the entire silver nitrate silica gel layer 221 and the first active silica gel layer 223, and the sulfuric acid silica gel layer. A part of 222 is heated.
  • the dioxin solution injected here is, for example, an extract obtained by extracting dioxins using a solvent from a sample that may contain dioxins such as environmental samples such as air and soil, and food samples. Oily food itself such as fish oil (fish oil) may be included.
  • dioxin solutions have similar chemical structure and chemical behavior to dioxins, and polychlorinated polycyclic aromatic hydrocarbons such as PCDE and non-DL-PCBs that may affect the analysis results of dioxins. Etc. are often included as impurities.
  • this extract often contains paraffins (linear hydrocarbon compounds) that are abundant in the soil as contaminated components. Paraffins are easily adsorbed on carbon-based adsorbents together with PCDDs, PCDFs, and non-ortho PCBs, and are easily extracted with PCDDs, PCDFs, and non-ortho PCBs from the adsorbents.
  • -HRMS method it is known as a causative substance of rock mass fluctuation affecting analysis accuracy.
  • the extract of dioxins can be directly injected into the fractionation device 200 as long as it normally uses an aliphatic hydrocarbon solvent.
  • the extract is obtained by extraction using an organic solvent other than the aliphatic hydrocarbon solvent, for example, an aromatic hydrocarbon solvent such as toluene
  • the extract is the aromatic hydrocarbon solvent used for extraction.
  • the aliphatic hydrocarbon solvent used for extraction or solvent replacement is usually preferably an aliphatic hydrocarbon solvent having 5 to 10 carbon atoms, and examples thereof include n-hexane, isooctane, nonane and decane. In particular, inexpensive n-hexane is preferable.
  • the amount of dioxin solution injected into the fractionator 200 is usually preferably about 1 to 10 mL.
  • the solution to be injected can be concentrated by distilling off a part of the solvent.
  • the dioxin solution When the dioxin solution is oily, such as fish oil, the dioxin solution can be injected into the fractionation device 200 together with an aliphatic hydrocarbon solvent that can dissolve the dioxin solution or as a solution previously dissolved in the solvent. .
  • the total amount of the dioxin solution and the aliphatic hydrocarbon solvent is set to be the above injection amount.
  • the injected dioxin solution penetrates into the upper part of the silver nitrate silica gel layer 221 and is heated together with a part of the purified layer 220 by the heating device 300.
  • the heating temperature by the heating device 300 is set to 35 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher.
  • the heating temperature is less than 35 ° C., the reaction between the contaminating component and the purified layer 220 is difficult to proceed, and part of the contaminating component may easily remain in the dioxin analysis sample.
  • the upper limit of heating temperature is not specifically limited, Usually, below boiling temperature is preferable from a safety viewpoint.
  • the silver nitrate silica gel layer 221 and the sulfuric acid silica gel layer 222 are laminated with the first active silica gel layer 223 interposed therebetween, so that mutual reaction is suppressed.
  • the solvent is supplied from the solvent supply device 400 to the fractionation device 200 after 10 to 60 minutes have elapsed from the start of heating.
  • the heating device 300 may remain operated or may be stopped.
  • the first valve 422 is set to an open state, the first pump 421 is operated, and an appropriate amount of solvent stored in the first solvent container 410 is passed through the first solvent supply path 420 from the opening 211 into the tube body 210. Supply.
  • This solvent dissolves the dioxins contained in the dioxin solution, the decomposition products of the contaminated components, and the contaminated components remaining without being decomposed (the contaminated components include non-DL-PCBs). It passes through the purification layer 220 as an aliphatic hydrocarbon solvent solution containing dioxins.
  • the decomposition products and some of the contaminating components are adsorbed on the silver nitrate silica gel layer 221, the first active silica gel layer 223, the sulfuric acid silica gel layer 222 and the second active silica gel layer 224.
  • the solvent that passes through the purification layer 220 is naturally cooled when it passes through the non-heated portion in the heating device 300, that is, the lower part of the sulfuric acid silica gel layer 222 and the second active silica gel layer 224.
  • the solvent that has passed through the purification layer 220 flows to the adsorption layer 230, passes through the first adsorption layer 240 and the second adsorption layer 250, flows from the opening 212 to the flow path 510, and is discarded through the disposal path 531.
  • dioxins contained in the solvent from the purification layer 220 are adsorbed by the adsorption layer 230 and separated from the solvent.
  • non-ortho PCBs, PCDDs, and PCDFs among dioxins are adsorbed by the first adsorption layer 240, and mono-ortho PCBs are adsorbed by the second adsorption layer 250. Therefore, dioxins contained in the solvent are fractionated into a dioxin group containing non-ortho PCBs, PCDDs, and PCDFs and mono-ortho PCBs in the adsorption layer 230.
  • a part of the contaminating components contained in the solvent that has passed through the purification layer 220 passes through the adsorption layer 230 together with the solvent and is discarded, and a part thereof is adsorbed by the adsorption layer 230.
  • non-DL-PCBs and PCDE are adsorbed by the second adsorption layer 250 together with monoortho PCBs.
  • Paraffins pass through the adsorption layer 230 and are discarded through the disposal path 531.
  • ⁇ Dioxin extraction process> dioxins adsorbed on the adsorption layer 230 are extracted with a solvent to prepare a sample for analysis of dioxins.
  • the purification layer 220 and the adsorption layer 230 are dried.
  • the air introduction valve 423 of the solvent supply apparatus 400 is switched to the air introduction path 424 side.
  • the first pump 421 is operated to suck air from the air introduction path 424.
  • the air sucked from the air introduction path 424 is supplied from the opening 211 into the tube body 210 through the first solvent supply path 420, passes through the purification layer 220 and the adsorption layer 230, flows from the opening 212 to the flow path 510, and is discarded. It is discharged through the path 531. At this time, the solvent remaining in the purification layer 220 is compressed by the passing air, passes through the adsorption layer 230, and is discharged from the disposal path 531 together with the air. As a result, the purified layer 220 is dried.
  • the first pump 421 is stopped, the first valve 422 is switched to the closed state, and the compressor 633 is operated in the first extraction path 600.
  • Compressed air is supplied from the air supply path 634 to the first branch path 215 through the first ventilation path 630, the first recovery container 620, and the first recovery path 610 by the operation of the compressor 633.
  • the compressed air passes through the adsorption layer 230, flows from the opening 212 to the flow path 510, and is discharged through the disposal path 531.
  • the solvent remaining in each layer of the adsorption layer 230 is compressed by the compressed air and discharged from the disposal path 531 together with the compressed air. As a result, each layer of the adsorption layer 230 is dried.
  • the compressor 633 is stopped and the fourth valve 731 of the second extraction path 700 is switched to an open state.
  • the second valve 520 is switched so that the flow path 510 communicates with the second solvent supply path 541, and the second pump 542 is operated. Accordingly, an appropriate amount of the solvent stored in the second solvent container 543 is supplied from the opening 212 into the tube body 210 through the second solvent supply path 541 and the flow path 510.
  • the solvent supplied into the pipe body 210 passes through the second adsorption layer 250 and flows to the second branch path 216, and is recovered in the second recovery container 720 through the second recovery path 710 of the second extraction path 700. At this time, the solvent is recovered in the second recovery container 720 as a solution obtained by dissolving the mono-ortho PCBs and non-DL-PCBs adsorbed on the second adsorption layer 250 and extracting these PCBs, that is, as a first analysis sample.
  • the second adsorption layer 250 can be heated.
  • the heating temperature of the second adsorption layer 250 is preferably controlled to 95 ° C. or lower.
  • the third valve 631 is switched so that the first ventilation path 630 and the open path 632 communicate with each other.
  • the fourth valve 731 of the second extraction path 700 is switched to the closed state.
  • the second pump 542 is operated with the second valve 520 maintained so that the flow path 510 communicates with the second solvent supply path 541. Accordingly, an appropriate amount of the solvent stored in the second solvent container 543 is supplied from the opening 212 into the tube body 210 through the second solvent supply path 541 and the flow path 510.
  • the solvent supplied into the pipe body 210 passes through the second adsorption layer 250 and the first adsorption layer 240 in this order, flows to the first branch path 215, and passes through the first recovery path 610 of the first extraction path 600 to the first recovery path 610. It is recovered in the recovery container 620. At this time, the solvent dissolves the dioxin group containing non-ortho PCBs, PCDDs, and PCDFs adsorbed on the first adsorption layer 240, and a solution obtained by extracting these dioxin groups, that is, the first recovery container as the second analysis sample. Collected at 620.
  • the first adsorption layer 240 can be heated.
  • a dioxin group containing non-ortho PCBs, PCDDs, and PCDFs can be extracted from the first adsorption layer 240 with a smaller amount of solvent.
  • the heating temperature of the first adsorption layer 240 is preferably set to 80 ° C. or more and 95 ° C. or less.
  • the monoortho PCBs analysis sample and the non-ortho PCBs, PCDDs, and PCDFs analysis samples are obtained separately.
  • a GC / MS method such as GC-HRMS, GC-MSMS, GC-QMS, or ion trap GC / MS is usually used depending on the type of solvent used to extract dioxins from the adsorption layer 230.
  • a gas chromatography method such as GC / ECD method or a bioassay method can be employed.
  • the monoortho PCBs can be accurately obtained without being affected by these dioxin groups. It can be quantified.
  • this analytical sample contains non-DL-PCBs together with monoortho PCBs, the non-DL-PCBs contained in the dioxin solution can be quantified with high accuracy.
  • EU European Union
  • Food Regulation Standard COMPONENT REGULATION
  • Non-DL-PCBs IUPAC numbers # 28, # 52, # 101, # 138, # 153, and six types of PCBs with 3 to 7 chlorine atoms
  • the analysis sample is substantially free of mono-ortho PCBs and non-DL-PCBs. Therefore, the non-ortho PCBs, PCDDs are not affected by these PCBs. And PCDFs can be quantified with high accuracy.
  • GC-TOFMS can also be used as the GC / MS method. In this case, two types of analytical samples can be mixed and analyzed simultaneously.
  • the second extraction path 700 can be changed as shown in FIG.
  • the modified second extraction path 700 has a solvent path 740 extending from the second branch 216.
  • One end of the solvent path 740 is in airtight communication with the second branch path 216, and a fourth valve 741 is provided at the other end.
  • the fourth valve 741 is a three-way valve, and the solvent recovery path 742 and the third solvent supply path 743 communicate with each other, and the solvent path 740 communicates with either the solvent recovery path 742 or the third solvent supply path 743. It is for switching to do.
  • the solvent recovery path 742 communicates with the second recovery container 744 for recovering the solvent.
  • the second collection container 744 has a vent pipe 745 that passes through the inside and the outside of the second collection container 744.
  • the third solvent supply path 743 communicates with the third solvent container 746 and has a third pump 747 for sending out the solvent stored in the third solvent container 746.
  • the second solvent container 543 stores a solvent capable of extracting dioxins (mono-ortho PCBs and non-DL-PCBs) adsorbed on the second adsorption layer 250
  • the third solvent container 746 A solvent capable of extracting dioxins (non-ortho PCBs, PCDDs, and PCDFs) adsorbed on one adsorption layer 240 is stored.
  • the solvent stored in each container 543, 746 can be selected according to the analysis method of dioxins.
  • toluene or benzene can be used as the solvent stored in the third solvent container 746.
  • a mixed solvent obtained by adding an aliphatic hydrocarbon solvent or an organic chlorine solvent to toluene or benzene can also be used.
  • the ratio of toluene or benzene is set to 50% by weight or more.
  • the aliphatic hydrocarbon solvent used in the mixed solvent include n-pentane, n-hexane, n-heptane, n-octane, isooctane, and cyclohexane.
  • examples of the organic chlorine-based solvent include dichloromethane, trichloromethane, tetrachloromethane, and the like. Of these extraction solvents, toluene is particularly preferred because dioxins can be extracted with a small amount of use.
  • the solvent stored in the second solvent container 543 is the same as that stored in the third solvent container 746, an organic chlorine solvent, a mixed solvent of an organic chlorine solvent and an aliphatic hydrocarbon solvent, or a fat.
  • a mixed solvent in which a small amount of toluene is added to the group hydrocarbon solvent can be used.
  • a hydrophilic solvent such as dimethyl sulfoxide (DMSO) or methanol can be used as a solvent stored in the second solvent container 543 and the third solvent container 746.
  • the fourth valve 741 is set so that the solvent path 740 communicates with the third solvent supply path 743 in the initial state. Then, after performing the dioxin fractionation step as described above, the dioxin extraction step is performed.
  • the compressor 633 is stopped, and in the second extraction path 700, the solvent path 740 is connected to the solvent recovery path 742.
  • the fourth valve 741 is switched to communicate.
  • the second valve 520 is switched so that the flow path 510 communicates with the second solvent supply path 541, and the second pump 542 is operated. Accordingly, an appropriate amount of the solvent stored in the second solvent container 543 is supplied from the opening 212 into the tube body 210 through the second solvent supply path 541 and the flow path 510.
  • the solvent supplied into the pipe body 210 passes through the second adsorption layer 250 and flows to the second branch path 216, and is collected in the second collection container 744 through the solvent path 740 of the second extraction path 700. At this time, the solvent dissolves the mono-ortho PCBs and non-DL-PCBs adsorbed on the second adsorption layer 250 and is collected in the second collection container 744 as a solution of these PCBs, that is, a first analysis sample.
  • the third valve 631 is switched so that the first ventilation path 630 and the open path 632 communicate with each other.
  • the fourth valve 741 is switched so that the solvent path 740 communicates with the third solvent supply path 743.
  • the third pump 747 is operated, and an appropriate amount of the solvent stored in the third solvent container 746 is supplied from the second branch path 216 into the tube body 210 through the third solvent supply path 743 and the solvent path 740.
  • the solvent supplied into the pipe body 210 passes through the first adsorption layer 240, flows to the first branch path 215, and is recovered in the first recovery container 620 through the first recovery path 610 of the first extraction path 600.
  • the solvent dissolves dioxin groups including non-ortho PCBs, PCDDs, and PCDFs adsorbed on the first adsorption layer 240, and a solution of these dioxin groups, that is, a second analysis sample, is stored in the first recovery container 620. Collected. Since the second analytical sample is prepared without the solvent passing through the second adsorption layer 250, the second analytical sample is fractionated from mono-ortho PCBs and non-DL-PCBs with higher accuracy.
  • the obtained first analysis sample and second analysis sample are applied to the analysis of dioxins as described above.
  • the preparation apparatus 100 can prepare an analytical sample suitable for analysis by a gas chromatography method, and includes a fractionation instrument 200, a heating apparatus 300, a solvent supply apparatus 400, a solvent outflow path 550, and an extraction path. 650 is mainly provided.
  • the fractionation instrument 200 is different from the fractionation instrument 200 described in the first embodiment in the structure of the small diameter portion 214 and the adsorption layer 230 of the tube body 210. Specifically, the small diameter portion 214 has only the first branch path 215 as a branch path. Further, in the adsorption layer 230, the first adsorption layer 240 and the second adsorption layer 250 are in close contact. For this reason, the small diameter part 214 is shortened compared with the thing of the fractionation instrument 200 demonstrated in the 1st form.
  • the heating device 300 and the solvent supply device 400 are as described in the first embodiment.
  • the solvent outflow path 550 has a flow path 551 that is airtightly connected to the opening 212 of the tube body 210.
  • the flow path 551 has a second valve 552.
  • the second valve 552 is a four-way valve, and supplies the solvent to the discard path 553 for discarding the solvent from the pipe body 210, the recovery path 554 for recovering the solvent from the pipe body 210, and the pipe body 210.
  • the supply path 555 for communication is in communication, and the flow path 551 is switched to communicate with any one of the discard path 553, the recovery path 554, and the supply path 555.
  • the recovery path 554 has a solvent recovery container 556, and the recovery container 556 has a vent pipe 557 that passes through the inside and the outside thereof.
  • the supply path 555 has a second pump 558 and communicates with a second solvent container 559 for storing the extraction solvent for dioxins captured by the fractionating device 200.
  • the extraction solvent stored in the second solvent container 559 can dissolve dioxins, and toluene or benzene can be used.
  • a mixed solvent obtained by adding an aliphatic hydrocarbon solvent or an organic chlorine solvent to toluene or benzene can also be used.
  • the ratio of toluene or benzene is set to 50% by weight or more.
  • the aliphatic hydrocarbon solvent used in these mixed solvents include n-pentane, n-hexane, n-heptane, n-octane, isooctane, and cyclohexane.
  • organic chlorine-based solvent examples include dichloromethane, trichloromethane, tetrachloromethane, and the like.
  • toluene is particularly preferable because dioxins can be extracted from the fractionation device 200 with a small amount of use.
  • the extraction path 650 has a solvent path 651 extending from the first branch path 215.
  • One end of the solvent path 651 is in airtight communication with the first branch path 215, and the other end includes a third valve 652.
  • the third valve 652 is a four-way valve, and is a solvent for the air supply path 653 having a compressor 654 for sending compressed air, the recovery path 655 for recovering the solvent from the first branch path 215, and the tube body 210.
  • the supply path 656 for supplying water is in communication, and the solvent path 651 is switched so as to communicate with any one of the air supply path 653, the recovery path 655, and the supply path 656.
  • the recovery path 655 has a recovery container 657 for recovering the solvent, and the recovery container 657 has a vent pipe 658 that passes through the inside and the outside thereof.
  • the supply path 656 has a third pump 659 and communicates with a third solvent container 660 for storing the extraction solvent for dioxins captured by the fractionating device 200.
  • the extraction solvent stored in the third solvent container 660 does not substantially dissolve the dioxin group including non-ortho PCBs, PCDDs, and PCDFs, and has excellent solubility for mono-ortho PCBs and non-DL-PCBs.
  • Examples of the organic chlorine-based solvent used here include dichloromethane, trichloromethane, and tetrachloromethane.
  • the aliphatic hydrocarbon solvent is, for example, n-pentane, n-hexane, n-heptane, n-octane, isooctane or cyclohexane.
  • the first valve 422, the air introduction valve 423, the second valve 552, and the third valve 652 are set to predetermined initial states. That is, the first valve 422 is set to an open state, and the air introduction valve 423 is set to communicate with the first solvent container 410 side.
  • the second valve 552 is set so that the flow path 551 communicates with the disposal path 553.
  • the third valve 652 is set so that the solvent path 651 communicates with the air supply path 653.
  • the purification layer 220 and the adsorption layer 230 are dried, and the dioxin extraction step is performed.
  • purification layer 220 can be performed similarly to a 1st form.
  • the first valve 422 of the solvent supply device 400 is switched to the closed state.
  • the compressor 654 is operated in the extraction path 650.
  • each layer of the adsorption layer 230 is dried.
  • the second valve 552 is switched so that the flow path 551 communicates with the recovery path 554.
  • the third valve 652 is switched so that the solvent path 651 communicates with the supply path 656, and the third pump 659 is operated. Accordingly, an appropriate amount of the solvent stored in the third solvent container 660 is supplied from the first branch path 215 into the tube body 210 through the supply path 656 and the solvent path 651.
  • the solvent supplied into the tube body 210 passes through the adsorption layer 230, flows from the opening 212 through the flow path 551 and the recovery path 554, and is recovered in the recovery container 556. At this time, the solvent dissolves and extracts the mono-ortho PCBs and non-DL-PCBs adsorbed on the second adsorbing layer 250, and is recovered in the recovery container 556 as a solution of these PCBs, that is, the first analysis sample. .
  • the third pump 659 is stopped, and the third valve 652 is switched so that the solvent path 651 communicates with the recovery path 655 in the extraction path 650. Then, in the solvent outflow path 550, the second valve 552 is switched so that the flow path 551 communicates with the supply path 555, and the second pump 558 is operated. Accordingly, an appropriate amount of the solvent stored in the second solvent container 559 is supplied from the opening 212 into the tube body 210 through the supply path 555 and the flow path 551.
  • the solvent supplied into the tube body 210 passes through the second adsorption layer 250 and the first adsorption layer 240 in this order and flows to the first branch path 215, and is collected in the recovery container through the solvent path 651 and the recovery path 655 of the extraction path 650. Recovered at 657.
  • the solvent dissolves and extracts a dioxin group containing non-ortho PCBs, PCDDs, and PCDFs adsorbed on the first adsorption layer 240, and a solution of these dioxin groups, that is, a recovery container 657 as a second analysis sample. To be recovered.
  • the monoortho PCBs analysis sample and the non-ortho PCBs, PCDDs, and PCDFs analysis samples are obtained separately, and each analysis sample is applied to the analysis by the gas chromatography method.
  • the fractionation device 200 includes a tube body 210 having a large-diameter portion 213 and a small-diameter portion 214 as in the fractionation device 200 used in the preparation apparatus 100 of the second example, but the large-diameter portion 213.
  • the small-diameter portion 214 and the small-diameter portion 214 are separated, and the large-diameter portion 213 and the small-diameter portion 214 are detachably coupled by the connector 800 to form a series of tubular bodies 210.
  • the large-diameter portion 213 is formed in a cylindrical shape having both ends opened, and has a neck portion 217 whose outer diameter and inner diameter are set to be the same as those of the small-diameter portion 214 at the end portion on the silica gel sulfate layer 222 side. .
  • the small-diameter portion 214 is formed in a cylindrical shape with both ends opened, and the first adsorption layer 240 and the second adsorption layer 250 are in close contact with each other in the adsorption layer 230.
  • the connector 800 is formed in a cylindrical shape formed using, for example, a resin material having resistance to various organic solvents, particularly hydrocarbon solvents, and other materials, and the neck 217 of the large-diameter portion 213 and The large-diameter portion 213 and the small-diameter portion 214 are liquid-tightly connected by inserting the end portion of the small-diameter portion 214 on the first adsorption layer 240 side.
  • the dioxins are analyzed in the same manner as in the first embodiment with the large-diameter portion 213 and the small-diameter portion 214 connected in the fractionation instrument 200. Perform the fractionation process. This fractionation process can also be performed manually. Then, after the fractionation step, the purified layer 220 and the adsorption layer 230 are dried, and then the small diameter portion 214 is separated from the connector 800.
  • the dioxin group including non-ortho PCBs, PCDDs, and PCDFs is not substantially dissolved as in the case of the second embodiment, and the solubility of mono-ortho PCBs and non-DL-PCBs is increased.
  • mono-ortho PCBs and non-DL-PCBs adsorbed on the second adsorption layer 250 are extracted to obtain a first analytical sample. .
  • a group is extracted to obtain a second sample for analysis.
  • Such an extraction operation can be executed manually but can also be executed mechanically.
  • FIG. 5 shows a part of a modification of the fractionation instrument 200 of this example.
  • the small-diameter portion 214 of the fractionating device 200 according to this modified example is divided into a first part 260 filled with the first adsorption layer 240 and a second part 270 filled with the second adsorption layer 250.
  • the first portion 260 and the second portion 270 are integrated by being detachably coupled by the connector 810.
  • the connector 810 is the same as the connector 800 that connects the large diameter portion 213 and the small diameter portion 214.
  • the fractionation instrument 200 of this modified example can separate the small diameter part 214 from the large diameter part 213 and further separate the small diameter part 214 into the first part 260 and the second part 270. For this reason, when dioxins are extracted from the adsorption layer 230, dioxins are separately extracted from the first adsorption layer 240 in the first part 260 and the second adsorption layer 250 in the second part 270. Therefore, it is possible to fractionate the analysis sample of mono-ortho PCBs and non-DL-PCBs and the analysis sample of the dioxin group including non-ortho PCBs, PCDDs, and PCDFs with higher accuracy.
  • Embodiments (1) The fractionating device 200 described in each of the above embodiments is arranged in the purification layer 220 so that the silver nitrate silica gel layer 221 is positioned on the opening 211 side.
  • the order with the sulfuric acid silica gel layer 222 can be changed.
  • the non-DL-PCBs having a small number of chlorines react with the sulfuric acid silica gel layer 222, and the recovery rate of the non-DL-PCBs having a small number of chlorines in the analytical sample is increased. May be reduced. For this reason, when it is necessary to analyze non-DL-PCBs, particularly non-DL-PCBs with a low chlorine number, together with dioxins (for example, when analyzing dioxins in food according to EU food regulation standards).
  • the silver nitrate silica gel layer 221 it is preferable to arrange the silver nitrate silica gel layer 221 so as to be positioned on the opening 211 side.
  • the fractionation instrument 200 described in each of the above-described embodiments can omit the first active silica gel layer 223 and the second active silica gel layer 224 in the purification layer 220.
  • the large-diameter portion 213 of the fractionating device 200 can be divided into a filling portion of the silver nitrate silica gel layer 221 and a filling portion of the sulfate silica gel layer 222, and both can be connected at the time of use. By doing so, there is a possibility that the recovery rate of dioxins can be increased.
  • the purification layer 220 is heated by the heating device 300, but each preparation method is performed even when the purification layer 220 is not heated. Can be implemented similarly.
  • the drying treatment of the purification layer 220 and the adsorption layer 230 is performed by any one of air suction and compressed air supply using a compressor. It can be changed arbitrarily. Further, the purification layer 220 and the adsorption layer 230 can be dried by supplying nitrogen gas. Furthermore, the drying process of the purification layer 220 and the adsorption layer 230 can be omitted.
  • Dioxin standard substance for fish oil (trade name “Fish oil, from menhaden” of Sigma-Aldrich) that has been confirmed to be substantially free of dioxins by the method described in Japanese Industrial Standard JIS K 0311 (2005) (Wellington Laboratories trade name “DF-LCS-A”) and PCBs reference material (Wellington Laboratories trade name “PCB-LCS-A1”).
  • Fish oil contains a trace amount of PCDE as a contaminant component.
  • Dioxins reference material, PCDDs labeled by 13 C 12 is intended to include PCDFs and DL-PCBs.
  • PCBs reference materials include the following 8 non-DL-PCBs labeled with 13 C 12 having 1 to 8 chlorine atoms (IUPAC number in parentheses).
  • non-DL-PCBs are the six types of PCBs isomers (PCs with 3 to 7 chlorine atoms) # 28, # 52, # 101, # 138, # 153 and # 180, which are subject to EU food regulation. Isomer)), which includes four types of isomers # 28, # 52, # 153 and # 180, but two types of isomers # 101 (chlorine number 5) and # 138 (chlorine number 6) are included. Not included.
  • EU food regulations allow other isomers with the same chlorine number to be measured instead of the target isomers, and the above eight types of non-DL-PCBs are # 101 and # 138, respectively. Since it includes # 118 and # 153 of the same chlorine number, it includes six types of PCBs that are substantially subject to EU food regulation.
  • Liquid paraffin samples The same dioxin as that used in the preparation of fish oil samples for liquid paraffin (manufactured by Kanto Chemical Co., Inc.) that was confirmed to be substantially free of dioxins by the method described in Japanese Industrial Standard JIS K 0311 (2005) A standard substance and PCBs standard substance added.
  • the filler of each layer with which the fractionation instrument was filled is as follows.
  • Silver nitrate silica gel layer To 100 g of active silica gel (manufactured by Kanto Chemical Co., Inc.), after adding the entire amount of an aqueous solution in which 11.2 g of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 30 mL of distilled water, this active silica gel Silver nitrate silica gel prepared by heating and drying at 70 ° C. under reduced pressure using a rotary evaporator was used.
  • Sulfuric acid silica gel layer Concentrated sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) 78.7 g was uniformly added to 100 g of active silica gel (manufactured by Kanto Chemical Co., Ltd.), and then dried by using a silica gel prepared by drying.
  • Activated carbon-containing silica gel layer Activated silica gel (manufactured by Kanto Chemical Co., Inc.) was used to add activated carbon (Kuraray Chemical Co., Ltd., trade name “Kuraray Coal PK-DN”) and uniformly mixed to obtain activated carbon-containing silica gel.
  • Graphite-containing silica gel layer Graphite-containing silica gel obtained by adding graphite (trade name “ENVI-Carb” of Sigma-Aldrich) to active silica gel (manufactured by Kanto Chemical Co., Inc.) and mixing them uniformly was used.
  • Activated carbon layer Activated carbon (Kuraray Chemical Co., Ltd., trade name “Kuraray Coal PK-DN” was used.
  • Graphite layer Graphite (trade name “ENVI-Carb” from Sigma-Aldrich) was used.
  • Alumina layer The product name “Aluminium Oxide 90 active basic-(activity stage I) for column chromatography” (particle size: 0.063 to 0.200 mm) manufactured by Merck was used.
  • Examples 1-6 Dioxins contained in a fish oil sample were extracted using a dioxin analysis sample preparation apparatus shown in FIG.
  • the specifications of the fractionation instrument used in the preparation apparatus are as follows.
  • Purified layer As shown in FIG. 1, silver nitrate silica gel is placed on 8.5 g of sulfated silica gel (filling height 80 mm) in the large diameter portion of the tube set to an outer diameter of 18.5 mm, an inner diameter of 12.5 mm, and a length of 200 mm. 4.4 g (filling height 60 mm) was formed by laminating (lamination of the first active silica gel layer and the second active silica gel layer was omitted).
  • Adsorption layer In the small diameter part of the tube set to an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 30 mm, as shown in FIG. 1, it is an upper layer on 0.22 g of graphite-containing silica gel (filling height of 25 mm) as the lower layer. It was formed by laminating and filling 0.06 g of activated carbon-containing silica gel (filling height 5 mm). In the small diameter portion, filling with alumina was omitted.
  • Table 1 shows the ratio of activated carbon contained in the activated carbon-containing silica gel, the ratio of graphite contained in the graphite-containing silica gel, and the lamination ratio (volume ratio) of the activated carbon-containing silica gel layer and the graphite-containing silica gel layer.
  • Table 2 shows the results of quantitative analysis of dioxins contained in the collected toluene by the HRGC / HRMS method and calculation of the recovery rate of dioxins.
  • the recovery rate of dioxins refers to the ratio (%) of the amount of dioxins contained in the solvent from which dioxins are extracted to the initial amount of dioxins added to the sample.
  • the recovered toluene contains PCDDs, PCDFs, and non-ortho PCBs at a high recovery rate (50% or more stipulated in various regulatory standards for dioxins), and does not substantially contain mono-ortho PCBs.
  • Comparative Examples 1-5 In the sample preparation apparatus for analyzing dioxins, only the specification of the adsorption layer of the fractionation device was changed, and dioxins contained in the fish oil sample were extracted in the same manner as in Examples 1-6. The extract was quantitatively analyzed by the HRGC / HRMS method, and the recovery rate of dioxins was calculated. The specifications of the adsorption layer are as shown in Table 3. The results are shown in Table 4.
  • the extract has a low recovery rate of some of the PCDDs and PCDFs that have a large number of chlorine, and also contains a large amount of mono-ortho PCBs.
  • This result shows that in Comparative Examples 1 to 5, the dioxin group containing non-ortho PCBs, PCDDs and PCDFs could not be separated from mono-ortho PCBs.
  • Examples 7-8 In the same manner as in Examples 1 to 6, dioxins contained in the liquid paraffin sample were extracted with toluene. At this time, in the adsorption layer, the ratio of the activated carbon contained in the activated carbon-containing silica gel, the ratio of the graphite contained in the graphite-containing silica gel, and the lamination ratio (volume ratio) between the activated carbon-containing silica gel layer and the graphite-containing silica gel layer are as shown in Table 5. Set to.
  • Table 6 shows the results of quantitative analysis of dioxins contained in the toluene extract by the HRGC / HRMS method and calculation of the recovery rate of dioxins.
  • PCDDs, PCDFs, and non-ortho PCBs were quantitatively analyzed, and their recovery rates were calculated. The rock mass fluctuation was also confirmed.
  • Examples 9-12 Dioxins contained in a fish oil sample were analyzed using a device for preparing a sample for analysis of dioxins shown in FIG.
  • the specifications of the fractionation device used in the preparation apparatus are the same as those in Examples 1 to 6 for the purification layer, and are as follows for the adsorption layer.
  • Adsorption layer As shown in FIG. 1, 0.25 g of graphite-containing silica gel (filling height of 25 mm) and 0.065 g of activated carbon-containing silica gel (filling height of 5 mm) are used in the small diameter portion of the tube similar to that used in Examples 1 to 6. ) was formed, and the second adsorption layer was formed by filling 0.77 g of alumina (filling height 30 mm).
  • Table 7 shows the ratio of the activated carbon contained in the activated carbon-containing silica gel, the ratio of graphite contained in the graphite-containing silica gel, and the lamination ratio (volume ratio) of the activated carbon-containing silica gel layer and the graphite-containing silica gel layer in the first adsorption layer. .
  • the first analysis sample and the second analysis sample were individually quantitatively analyzed by the HRGC / HRMS method, and the recoveries of dioxins and non-DL-PCBs were calculated. The results are shown in Table 8.
  • Example 13 Example 12 with the exception of using a fractionation device in which the order of lamination of the silver nitrate silica gel layer and the sulfuric acid silica gel layer was reversed in the purified layer, and maintaining the temperature of the purified layer at room temperature (20 ° C.). Similarly, dioxins contained in the fish oil sample were extracted to obtain a first analytical sample and a second analytical sample. The first analysis sample and the second analysis sample were individually quantitatively analyzed by the HRGC / HRMS method, respectively, and the recovery rates of dioxins and non-DL-PCBs were calculated. The results are shown in Table 8.
  • Example 14 The dioxins contained in the fish oil sample were analyzed using a dioxin analysis sample preparation apparatus shown in FIG.
  • the specifications of the fractionation device used in the preparation apparatus are the same as those in Examples 1 to 6 for the purification layer, and are as follows for the adsorption layer.
  • Adsorption layer As shown in FIG. 3, 0.25 g of graphite-containing silica gel (filling height 25 mm) and 0.065 g of activated carbon-containing silica gel (filling) are shown in FIG. 5 mm) and 0.77 g of alumina (filling height 30 mm).
  • the ratio of activated carbon contained in the activated carbon-containing silica gel, the ratio of graphite contained in the graphite-containing silica gel, and the lamination ratio (volume ratio) between the activated carbon-containing silica gel layer and the graphite-containing silica gel layer were set as shown in Table 7.
  • the activated carbon-containing silica gel layer and the graphite-containing silica gel layer of the adsorption layer are heated to 90 ° C., 1.5 mL of toluene is supplied to the adsorption layer from the alumina layer side, and the toluene that has passed through the adsorption layer is recovered through the first branch. As a result, a second sample for analysis was obtained.
  • the first analysis sample and the second analysis sample were individually quantitatively analyzed by the HRGC / HRMS method, and the recoveries of dioxins and non-DL-PCBs were calculated. The results are shown in Table 8.
  • the second analytical sample contains PCDDs, PCDFs, and non-ortho PCBs with a high recovery rate.
  • the first sample for analysis contains mono-ortho PCBs with a high recovery rate.
  • the first analytical samples obtained in Examples 9 to 14 are non-DL-PCBs subject to EU food regulation, and the recovery rate (60 to 120%) within an appropriate range under the same regulation.
  • non-DL-PCBs subject to EU food regulation can be quantitatively analyzed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 ダイオキシン類を分画する分画器具(200)の内部は精製層(220)および吸着層(230)が充填されたものであり、吸着層(230)は、活性炭含有シリカゲル層(241)とグラファイト含有シリカゲル層(242)とを含む第1吸着層(240)と、アルミナ層(251)を含む第2吸着層(250)とを備えている。精製層(220)へダイオキシン類溶液を注入し、脂肪族炭化水素溶媒を供給すると、この溶媒はダイオキシン類溶液中のダイオキシン類を溶解し、精製層(220)および吸着層(230)を通過する。この際、ダイオキシン類のうちのノンオルソPCBs、PCDDsおよびPCDFsが第1吸着層(240)に吸着され、ダイオキシン類のうちのモノオルソPCBsが第2吸着層(250)に吸着される。これにより、ダイオキシン類は、ノンオルソPCBs、PCDDsおよびPCDFsを含む群とモノオルソPCBsとに分画される。

Description

ダイオキシン類の分画方法
 本発明は、ダイオキシン類の分画方法、特に、ダイオキシン類の脂肪族炭化水素溶媒溶液に含まれるダイオキシン類を分画するための方法に関する。
 毒性の強い物質であるダイオキシン類による環境汚染の懸念から、各国において、廃棄物焼却施設からの排気ガス、大気、工場排水や河川水などの水、廃棄物焼却施設において発生する飛灰(フライアッシュ)および土壌などのダイオキシン類による汚染状況の分析および評価が求められている。また、食品についても、同様の分析および評価を求められることが多い。
 ダイオキシン類は、一般に、ポリ塩化ジベンゾパラジオキシン(PCDDs)、ポリ塩化ジベンゾフラン(PCDFs)およびダイオキシン様ポリ塩化ビフェニル(DL-PCBs)を総称する用語である。DL-PCBsは、209種類のポリ塩化ビフェニル類(PCBs)のうち、PCDDsおよびPCDFsと同様の毒性を示すPCBsであり、ノンオルソPCBsおよびモノオルソPCBsを含む。
 大気や土壌等の環境試料や食品試料等の試料についてダイオキシン類による汚染を評価する際には、先ず、試料からダイオキシン類を抽出し、分析用試料を確保する必要がある。試料が土壌や固形食品等の固形物の場合、例えば、ソックスレー抽出法により固形物からダイオキシン類を抽出する。また、試料が大気や飲料等の流体の場合、例えば、フイルタ等の採取器を用いて流体中のダイオキシン類を捕捉して採取した後、採取器を洗浄したり、採取器に対してソックスレー抽出法を適用したりすることで、採取器に採取されたダイオキシン類を抽出する。そして、このようにして得られたダイオキシン類の抽出液は、分析用試料として、ガスクロマトグラフ質量分析装置(GC/MS)等の分析装置を用いて定量分析される。
 ダイオキシン類の抽出液は、分析結果に影響する可能性のある様々な夾雑成分、例えば、ダイオキシン類と化学構造や化学挙動が類似する、ポリ塩素化ジフェニルエーテル(PCDE)やDL-PCBs以外のPCBs(以下、非DL-PCBsと称することがある。)等のポリ塩化多環芳香族炭化水素類を含むため、通常、精製処理された後に適宜濃縮され、分析装置へ適用されている。抽出液の精製処理方法として、特許文献1には、精製剤としての硫酸シリカゲルおよび硝酸銀シリカゲルを充填した前段カラムと、吸着剤としての活性炭含有シリカゲルやグラファイトカーボンを充填した後段カラムとを備えたクロマトグラフカラムを用いる方法が記載されている。この方法において、後段カラムの吸着剤としては、活性炭シリカゲルまたはグラファイトカーボンを選択的に用いることができ、また、両者を併用する場合においては、各充填剤を積層した状態または混合した状態で用いることができる。
 このクロマトグラフカラムを用いた精製処理方法では、先ず、ダイオキシン類の抽出液を前段カラムに注入し、続いて前段カラムに対して炭化水素溶媒を供給する。この炭化水素溶媒は、注入された抽出液中のダイオキシン類を溶解して前段カラムおよび後段カラムを通過する。このとき、炭化水素溶媒に溶解したダイオキシン類は、前段カラムの精製剤を通過し、後段カラムの吸着剤に吸着される。一方、抽出液に含まれる夾雑成分は、ダイオキシン類とともに炭化水素溶媒に溶解し、前段カラムの精製剤を通過するときに一部が分解され、また、一部が吸着される。そして、夾雑成分またはその分解生成物のうち、精製剤において吸着されないものは、炭化水素溶媒に溶解した状態で後段カラムの吸着剤を通過し、カラムから排出される。
 次に、前段カラムと後段カラムとを分離し、後段カラムに対してダイオキシン類を溶解可能なアルキルベンゼンを供給する。そして、後段カラムを通過するアルキルベンゼンを確保すると、夾雑成分が除去された、ダイオキシン類のアルキルベンゼン溶液が得られる。このアルキルベンゼン溶液は、ダイオキシン類の分析用試料として用いることができ、適宜濃縮した後、GC/MS等の分析装置により分析される。
 このような精製処理方法では、抽出液に含まれる全種類のダイオキシン類を後段カラムの吸着剤に吸着し、そのダイオキシン類をアルキルベンゼンで抽出することになる。したがって、分析装置においては、アルキルベンゼン溶液に含まれる全種類のダイオキシン類を同時に分析することになる。
 ところが、全種類のダイオキシン類を同時に含むアルキルベンゼン溶液を分析したとき、その結果は信頼性を欠く可能性がある。例えば、高分解能GC/MSによりアルキルベンゼン溶液を分析する場合、モノオルソPCBsがPCDDsおよびPCDFsの定量分析結果に影響し、逆に、PCDDsおよびPCDFsがモノオルソPCBsの定量分析結果に影響することが知られている。
 そこで、ダイオキシン類の分析においては、ダイオキシン類を数種類に分画して分析用試料を調製することが試みられている。例えば、特許文献2には、グラファイト状炭素またはグラファイト状炭素とシリカゲル、活性炭含有シリカゲル、活性炭、アルミナ若しくはゼオライトなどの他の材料との混合物をダイオキシン類の吸着剤として用いる方法が記載されている。
 この方法では、吸着剤を充填したカラムに対して精製したダイオキシン類溶液を供給し、吸着剤にダイオキシン類を吸着させる。そして、カラムに対して数種類の溶媒を順次供給し、数種類のダイオキシン類溶液を調製する。特許文献2は、このような方法により、例えば、DL-PCBs以外のPCBsを含む溶液、モノオルソPCBsを含む溶液並びにノンオルソPCBs、PCDDsおよびPCDFsを含む溶液の3種類のダイオキシン類溶液を調製できるとしている。
 しかし、この方法は、特許文献1に記載の方法と同じく吸着剤に対して全種類のダイオキシン類を吸着させることになるため、ダイオキシン類の精密な分画が困難である。例えば、モノオルソPCBsを含む溶液にはPCDDsやPCDFsの一部が混入する可能性があり、また、ノンオルソPCBs、PCDDsおよびPCDFsを含む溶液にはモノオルソPCBsの一部が混入する可能性がある。
特開2002-40007号公報 特開2006-297368号公報
 本発明は、ダイオキシン類をノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群とモノオルソPCBsとに高精度に分画できるようにしようとするものである。
 本発明に係るダイオキシン類の分画方法は、ダイオキシン類の脂肪族炭化水素溶媒溶液を活性炭含有シリカゲル層とグラファイト含有シリカゲル層とにこの順に通過させる工程を含む。
 この分画方法において、ダイオキシン類の脂肪族炭化水素溶媒溶液は、活性炭含有シリカゲル層とグラファイト含有シリカゲル層とをこの順に通過するとき、ダイオキシン類のうちのノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群が活性炭含有シリカゲル層またはグラファイト含有シリカゲル層に吸着される。一方、ダイオキシン類のうちのモノオルソPCBsは、脂肪族炭化水素溶媒溶液中に残留し、活性炭含有シリカゲル層およびグラファイト含有シリカゲル層を通過する。結果的に、脂肪族炭化水素溶媒溶液中のダイオキシン類は、活性炭含有シリカゲル層またはグラファイト含有シリカゲル層に吸着したノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群と、脂肪族炭化水素溶媒溶液中に残留するモノオルソPCBsとに分画される。
 本発明の分画方法の一形態では、グラファイト含有シリカゲル層を通過した脂肪族炭化水素溶媒溶液をさらにアルミナ層に通過させる。
 この場合、活性炭含有シリカゲル層およびグラファイト含有シリカゲル層を通過した脂肪族炭化水素溶媒溶液は、アルミナ層を通過するとき、残留するモノオルソPCBsがアルミナ層に吸着される。結果的に、脂肪族炭化水素溶媒溶液中のダイオキシン類は、活性炭含有シリカゲル層またはグラファイト含有シリカゲル層に吸着したノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群と、アルミナ層に吸着したモノオルソPCBsとに分画される。
 この形態の分画方法は、脂肪族炭化水素溶媒溶液が通過した活性炭含有シリカゲル層およびグラファイト含有シリカゲル層に対してダイオキシン類を溶解可能な溶媒を供給し、活性炭含有シリカゲル層およびグラファイト含有シリカゲル層を通過した当該溶媒を確保する工程と、脂肪族炭化水素溶媒溶液が通過したアルミナ層に対してダイオキシン類を溶解可能な溶媒を供給し、アルミナ層を通過した当該溶媒を確保する工程とをさらに含んでいてもよい。
 これらの工程を含む場合、活性炭含有シリカゲル層またはグラファイト含有シリカゲル層に吸着したノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群並びにアルミナ層に吸着したモノオルソPCBsは、それぞれ供給された溶媒に溶解することで抽出され、別々の抽出液として得られる。
 他の観点に係る本発明は、ダイオキシン類溶液に含まれるダイオキシン類を分析するための試料の調製方法に関するものであり、この調製方法は、硝酸銀シリカゲル層と硫酸シリカゲル層とを含む精製層にダイオキシン類溶液を添加する工程と、ダイオキシン類溶液が添加された精製層に対し、脂肪族炭化水素溶媒を供給する工程と、精製層を通過した脂肪族炭化水素溶媒を活性炭含有シリカゲル層とグラファイト含有シリカゲル層とにこの順に通過させる工程と、グラファイト含有シリカゲル層を通過した脂肪族炭化水素溶媒をアルミナ層に通過させる工程と、脂肪族炭化水素溶媒が通過したアルミナ層に対してダイオキシン類を溶解可能な溶媒を供給し、アルミナ層を通過した当該溶媒を第1の分析用試料として確保する工程と、脂肪族炭化水素溶媒が通過した活性炭含有シリカゲル層およびグラファイト含有シリカゲル層に対してダイオキシン類を溶解可能な溶媒を供給し、活性炭含有シリカゲル層およびグラファイト含有シリカゲル層を通過した当該溶媒を第2の分析用試料として確保する工程とを含む。
 この調製方法において、ダイオキシン類溶液を添加した精製層に対して脂肪族炭化水素溶媒を供給すると、この脂肪族炭化水素溶媒は精製層を通過する。この際、ダイオキシン類溶液に含まれるダイオキシン類および夾雑成分は脂肪族炭化水素溶媒に溶解する。そして、夾雑成分の一部は、精製層の硝酸銀シリカゲル層または硫酸シリカゲル層と反応して分解する。また、夾雑成分の一部および分解生成物は、硝酸銀シリカゲル層または硫酸シリカゲル層に吸着する。一方、ダイオキシン類は、脂肪族炭化水素溶媒に溶解した状態で精製層を通過する。この結果、ダイオキシン類は、夾雑成分の一部から分離されることになる。
 精製層を通過した、ダイオキシン類の溶解した脂肪族炭化水素溶媒は、活性炭含有シリカゲル層とグラファイト含有シリカゲル層とをこの順に通過するときにダイオキシン類のうちのノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群が活性炭含有シリカゲル層またはグラファイト含有シリカゲル層に吸着し、アルミナ層を通過するときにダイオキシン類のうちのモノオルソPCBsがアルミナ層に吸着する。このため、第1の分析用試料はモノオルソPCBsの分析用試料となり、第2の分析用試料はノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群の分析用試料となる。つまり、この調製方法によれば、モノオルソPCBsの分析用試料と、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群の分析用試料とを別々に調製することができる。
 この調製方法では、通常、精製層の硝酸銀シリカゲル層に対してダイオキシン類溶液を添加するのが好ましい。
 さらに他の観点に係る本発明は、ダイオキシン類溶液に含まれるダイオキシン類の分析方法に関するものであり、この分析方法は、ガスクロマトグラフィー法またはバイオアッセイ法により、本発明の調製方法により調製された第1の分析用試料と第2の分析用試料とを分析する工程を含む。
 この分析方法は、第1の分析用試料の分析によってモノオルソPCBsを高精度に分析することができ、また、第2の分析用試料の分析によってノンオルソPCBs、PCDDsおよびPCDFsを高精度に分析することができる。
 本発明の他の目的および効果は、以下の詳細な説明において触れる。
本発明に係る分析用試料の調製方法を実施するための装置の第1例の概要の部分断面図。 図1に示す装置の変更例の概要の部分断面図。 本発明に係る分析用試料の調製方法を実施するための装置の第2例の概要の部分断面図。 本発明に係る分析用試料の調製方法を実施するための分画器具の一例の概要を示す断面図。 図4に示す分画器具の変更例の一部の概要を示す断面図。
 図を参照して、本発明に係る分析用試料の調製方法の実施の形態を以下に説明する。各図は、本発明の調製方法を実施するために用いられる装置または分画器具の例の概要を示したものであり、各部の構造、形状および大きさ等を正確に反映したものではない。
第1の形態
 図1を参照して、本発明に係る分析用試料の調製方法を実施可能な装置の第1例を説明する。図1において、調製装置100は、ダイオキシン類溶液からダイオキシン類の分析用試料を調製するためのものであり、ダイオキシン類の分画器具200、加熱装置300、溶媒供給装置400、溶媒流出経路500、第1抽出経路600および第2抽出経路700を主に備えている。
 分画器具200は、管体210を備えている。管体210は、少なくとも耐溶媒性、耐薬品性および耐熱性を有する材料、例えば、これらの特性を備えたガラス、樹脂または金属等からなり、一端に開口211を有し、他端に開口212を有する、両端が開放した一連の円筒状に形成されている。また、管体210は、開口211側に形成された、径が相対的に大きく設定された大径部213と、開口212側に形成された、径が相対的に小さく設定された小径部214とを有している。小径部214は、開口としての2本の分岐路、すなわち、間隔をおいて設けられた第1分岐路215と第2分岐路216とを有している。
 管体210は、起立状態で保持されており、内部に精製層220と吸着層230とが充填されている。
 精製層220は、大径部213内に充填されており、開口211側から順に硝酸銀シリカゲル層221、第1活性シリカゲル層223、硫酸シリカゲル層222および第2活性シリカゲル層224を配置した多層シリカゲル層である。
 硝酸銀シリカゲル層221は、硝酸銀シリカゲルからなるものであり、ダイオキシン類溶液に混入している夾雑成分の一部を分解または吸着するためのものである。ここで用いられる硝酸銀シリカゲルは、粒径が40~210μm程度の粒状のシリカゲル(通常は加熱により活性度を高めた活性シリカゲル)の表面に硝酸銀の水溶液を均一に添加した後、減圧加熱により水分を除去することで調製されたものである。シリカゲルに対する硝酸銀水溶液の添加量は、通常、シリカゲルの重量の5~20%に設定するのが好ましい。
 硝酸銀シリカゲル層221における硝酸銀シリカゲルの充填密度は、特に限定されるものではないが、通常、0.3~0.8g/cmに設定するのが好ましく、0.4~0.7g/cmに設定するのがより好ましい。
 硫酸シリカゲル層222は、硫酸シリカゲルからなるものであり、ダイオキシン類溶液に混入しているダイオキシン類以外の夾雑成分の一部を分解または吸着するためのものである。ここで用いられる硫酸シリカゲルは、粒径が40~210μm程度の粒状のシリカゲル(通常は加熱により活性度を高めた活性シリカゲル)の表面に濃硫酸を均一に添加することで調製されたものである。シリカゲルに対する濃硫酸の添加量は、通常、シリカゲルの重量の10~130%に設定するのが好ましい。
 硫酸シリカゲル層222における硫酸シリカゲルの充填密度は、特に限定されるものではないが、通常、0.3~1.1g/cmに設定するのが好ましく、0.5~1.0g/cmに設定するのがより好ましい。
 第1活性シリカゲル層223は、硝酸銀シリカゲル層221と硫酸シリカゲル層222とが直接的に接触することで相互に化学反応するのを避けるために配置されており、粒径が40~210μm程度の粒状のシリカゲルからなるものである。ここで用いられるシリカゲルは、加熱することで活性度を適宜に高めたものであってもよい。
 第2活性シリカゲル層224は、第1活性シリカゲル層223と同様のシリカゲルからなるものであり、硫酸シリカゲル層222と反応して分解された夾雑成分の一部、分解生成物および硫酸シリカゲル層222から溶出する硫酸を吸着し、これらが吸着層230へ移動するのを防止するためのものである。
 精製層220において、硝酸銀シリカゲル層221と硫酸シリカゲル層222との比率は、硝酸銀シリカゲル層221に対する硫酸シリカゲル層222の重量比を1.0~50倍に設定するのが好ましく、3.0~30倍に設定するのがより好ましい。硫酸シリカゲル層222の重量比が50倍を超えるときは、硝酸銀シリカゲル層221の割合が相対的に小さくなるため、精製層220において、ダイオキシン類溶液に含まれる夾雑成分の吸着能が不十分になる可能性がある。逆に、硫酸シリカゲル層222の重量比が1.0倍未満のときは、精製層220において、ダイオキシン類溶液に含まれる夾雑成分の分解能が不十分になる可能性がある。
 吸着層230は、ダイオキシン類溶液に含まれるダイオキシン類を分画するためのものであり、活性炭含有シリカゲル層241およびグラファイト含有シリカゲル層242を含む第1吸着層240と、アルミナ層251を含む第2吸着層250とを備えている。第1吸着層240と第2吸着層250とは、間隔を設けて小径部214内に充填されている。より具体的には、第1吸着層240は、第1分岐路215と第2分岐路216との間において小径部214内に充填されており、第2吸着層250は、第2分岐路216と開口212との間において小径部214内に充填されている。
 第1吸着層240の活性炭含有シリカゲル層241は、第1吸着層240において精製層220側に配置されており、活性炭と粒状のシリカゲルとの混合物からなるものである。このような混合物は、活性炭とシリカゲルとを単純に混合することで得られる活性炭分散シリカゲルであってもよいし、珪酸ナトリウム(水ガラス)と活性炭との混合物を鉱酸と反応させることで得られる活性炭埋蔵シリカゲルであってもよい。活性炭は、市販の各種のものを用いることができるが、通常、粒径が40~100μm程度の粒状または粉末状であって、BET法により測定した比表面積が100~1,200m/g、特に500~1,000m/gのものが好ましい。活性炭分散シリカゲルにおけるシリカゲルは、第1活性シリカゲル層223と同様のものが用いられる。
 活性炭とシリカゲルとの混合物における活性炭の割合は、0.013~5.0重量%が好ましく、0.1~3.0重量%がより好ましい。活性炭が0.013重量%未満の場合または5.0重量%を超える場合は、第1吸着層240において、塩素数の多いPCDDsまたは塩素数の多いPCDFsの吸着能が低下する可能性がある。
 活性炭含有シリカゲル層241の充填密度は、特に限定されるものではないが、通常、0.3~0.8g/cmに設定するのが好ましく、0.45~0.6g/cmに設定するのがより好ましい。
 第1吸着層240のグラファイト含有シリカゲル層242は、第1吸着層240において、活性炭含有シリカゲル層241に隣接して配置されており、グラファイトと粒状のシリカゲルとを単純に混合することで得られる混合物からなるものである。グラファイトは、市販の各種のものを用いることができるが、通常、粒径が40~200μm程度の粒状または粉末状であって、BET法により測定した比表面積が10~500m/g、特に50~200m/gのものが好ましい。また、シリカゲルは、第1活性シリカゲル層223と同様のものが用いられる。
 グラファイトとシリカゲルとの混合物におけるグラファイトの割合は、2.5~50重量%が好ましく、5~25重量%がより好ましい。グラファイトが2.5重量%未満の場合は、第1吸着層240において、ノンオルソPCBsの吸着能が低下する可能性がある。逆に、グラファイトが50重量%を超える場合は、第1吸着層240において、非DL-PCBs、特に、塩素数が1~2の非DL-PCBsが吸着されやすくなる可能性がある。
 グラファイト含有シリカゲル層242の充填密度は、特に限定されるものではないが、通常、0.2~0.6g/cmに設定するのが好ましく、0.3~0.5g/cmに設定するのがより好ましい。
 第1吸着層240において、活性炭含有シリカゲル層241とグラファイト含有シリカゲル層242との割合は、前者(A)に対する後者(B)の体積比(A:B)が1:1~1:12になるよう設定するのが好ましく、1:1~1:9になるよう設定するのがより好ましい。この体積比よりも活性炭含有シリカゲル層241の割合が少ない場合、第1吸着層240においてPCDDsおよびPCDFsの一部、特に、塩素数が8のPCDDsおよびPCDFsの吸着能が低下する可能性がある。逆に、活性炭含有シリカゲル層241の割合が多い場合は、第1吸着層240において、モノオルソPCBsが吸着されやすくなる可能性がある。
 第2吸着層250のアルミナ層251は、粒状のアルミナからなるものである。ここで用いられるアルミナは、塩基性アルミナ、中性アルミナおよび酸性アルミナのいずれのものであってもよい。また、アルミナの活性度は、特に限定されるものではない。アルミナの好ましい粒径は、通常、40~300μmである。
 アルミナ層251におけるアルミナの充填密度は、特に限定されるものではないが、通常、0.5~1.2g/cmに設定するのが好ましく、0.8~1.1g/cmに設定するのがより好ましい。
 分画器具200の大きさは、調製装置100により処理するダイオキシン類溶液の量に応じて適宜設定することができるものであり、特に限定されるものではないが、例えば、ダイオキシン類溶液量が1~20mL程度の場合、大径部213は、精製層220を充填可能な部分の大きさが内径10~20mmで長さが100~300mm程度に設定されているのが好ましく、また、小径部214は、内径3~10mmで、第1吸着層240を充填可能な部分の長さが20~80mm程度に、また、第2吸着層250を充填可能な部分の長さが20~80mm程度に設定されているのが好ましい。
 加熱装置300は、大径部213の外周を囲むように配置されており、精製層220の硝酸銀シリカゲル層221および第1活性シリカゲル層223と、硫酸シリカゲル層222の一部、すなわち、硝酸銀シリカゲル層221近傍部分とを加熱するためのものである。
 溶媒供給装置400は、第1溶媒容器410から管体210へ延びる第1溶媒供給路420を有している。第1溶媒供給路420は、管体210の開口211に対して着脱可能であり、開口211へ装着されたときに開口211を気密に閉鎖可能である。また、第1溶媒供給路420は、第1溶媒容器410側から順に、空気導入弁423、第1溶媒容器410に貯留された溶媒を管体210へ供給するための第1ポンプ421および第1弁422を有している。空気導入弁423は、一端が開放した空気導入路424を有する三方弁であり、流路を空気導入路424側または第1溶媒容器410側のいずれかに切換えるためのものである。第1弁422は、二方弁であり、第1溶媒供給路420の解放と閉鎖とを切換えるためのものである。
 第1溶媒容器410に貯留される溶媒は、ダイオキシン類を溶解可能なものであり、通常、脂肪族炭化水素溶媒、好ましくは炭素数が5~8個の脂肪族飽和炭化水素溶媒である。例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタンまたはシクロヘキサンなどである。これらの溶媒は、適宜混合して用いられてもよい。
 溶媒流出経路500は、管体210の開口212に対して気密に接続された流路510を有している。流路510は、第2弁520を有している。第2弁520は三方弁であり、管体210からの溶媒を廃棄するための廃棄経路531と、管体210に対して溶媒を供給するための第2溶媒供給路541とが連絡しており、流路510が廃棄経路531または第2溶媒供給路541のいずれか一方に連絡するよう切換えるためのものである。
 第2溶媒供給路541は、第2ポンプ542を有しており、分画器具200で捕捉されたダイオキシン類を抽出するための溶媒を貯留する第2溶媒容器543に連絡している。第2溶媒容器543に貯留する抽出溶媒は、後述するダイオキシン類の分析方法に応じて選択することができる。分析方法としてガスクロマトグラフィー法を採用する場合は、それに適した溶媒、例えば、トルエンまたはベンゼンを用いることができる。また、トルエンまたはベンゼンに対して脂肪族炭化水素溶媒または有機塩素系溶媒を添加した混合溶媒を用いることもできる。混合溶媒を用いる場合、トルエンまたはベンゼンの割合は50重量%以上に設定する。混合溶媒において用いられる脂肪族炭化水素溶媒としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタンまたはシクロヘキサンなどが挙げられる。また、有機塩素系溶媒としては、例えば、ジクロロメタン、トリクロロメタンまたはテトラクロロメタンなどが挙げられる。これらの抽出溶媒のうち、少量の使用で分画器具200からダイオキシン類を抽出できることから、トルエンが特に好ましい。
 分析方法としてバイオアッセイ法を採用する場合は、それに適した溶媒、例えば、ジメチルスルホキシド(DMSO)やメタノール等の親水性溶媒が用いられる。
 第1抽出経路600は、第1分岐路215から延びる第1回収経路610を有している。第1回収経路610は、一端が第1分岐路215に気密に連絡しており、他端が溶媒を回収するための第1回収容器620内に気密に挿入されている。第1回収容器620には、第1回収経路610とは別に第1通気経路630の一端が気密に挿入されている。第1通気経路630は、他端に第3弁631を備えている。第3弁631は三方弁であり、一端が開放した開放路632と、第1通気経路630へ圧縮空気を送るためのコンプレッサー633を備えた空気供給経路634とが連絡しており、第1通気経路630が開放路632または空気供給経路634のいずれか一方に連絡するよう切換えるためのものである。
 第2抽出経路700は、第2分岐路216から延びる第2回収経路710を有している。第2回収経路710は、一端が第2分岐路216に気密に連絡しており、他端が溶媒を回収するための第2回収容器720内に気密に挿入されている。第2回収容器720には、第2回収経路710とは別に第2通気経路730の一端が気密に挿入されている。第2通気経路730は、第4弁731を備えている。第4弁731は二方弁であり、第2通気経路730の開放と閉鎖とを切換えるためのものである。
 次に、上述の調製装置100を用いたダイオキシン類の分析用試料の調製方法を説明する。先ず、調製装置100において、第1弁422、空気導入弁423、第2弁520、第3弁631および第4弁731を所定の初期状態に設定する。すなわち、第1弁422は開放状態に設定し、空気導入弁423は第1溶媒容器410側に連絡するよう設定する。また、第2弁520は流路510が廃棄経路531と連絡するよう設定する。さらに、第3弁631は第1通気経路630と空気供給経路634とが連絡するよう設定し、第4弁731は閉鎖状態に設定する。
 分析用試料の調製方法は、主に、次のような分画工程と抽出工程とを含む。
<ダイオキシン類の分画工程>
 初期状態への設定後、分画器具200にダイオキシン類溶液を注入する。ここでは、管体210から第1溶媒供給路420を取り外し、開口211から精製層220に対してダイオキシン類溶液を注入する。そして、管体210に第1溶媒供給路420を装着した後、加熱装置300を作動させ、精製層220の一部、すなわち、硝酸銀シリカゲル層221および第1活性シリカゲル層223の全体並びに硫酸シリカゲル層222の一部を加熱する。
 ここで注入するダイオキシン類溶液は、例えば、大気や土壌等の環境試料や食品試料等のダイオキシン類を含む可能性のある試料から溶媒を用いてダイオキシン類を抽出した抽出液であるが、ダイオキシン類を含む可能性のある魚油(フィッシュオイル)等の油状の食品そのものでもよい。このようなダイオキシン類溶液は、ダイオキシン類と化学構造や化学挙動が類似し、ダイオキシン類の分析結果に影響を与える可能性があるPCDEや非DL-PCBs等のポリ塩化多環芳香族炭化水素類などを夾雑成分として含むことが多い。
 また、土壌試料からの抽出液の場合、この抽出液は、土壌に多く含まれるパラフィン類(直鎖炭化水素化合物類)を夾雑成分として含むことが多い。パラフィン類は、PCDDs、PCDFsおよびノンオルソPCBsとともに炭素系の吸着剤に吸着されやすく、また、当該吸着剤からPCDDs、PCDFsおよびノンオルソPCBsとともに抽出されやすいため、ダイオキシン類をGC/MS法(特に、GC-HRMS法)により分析する場合において、分析精度に影響するロックマス変動の原因物質として知られている。
 ダイオキシン類の抽出液は、通常、脂肪族炭化水素溶媒を用いたものであれば、そのまま分画器具200へ注入することができる。また、抽出液が脂肪族炭化水素溶媒以外の有機溶媒、例えばトルエンなどの芳香族炭化水素溶媒を用いた抽出により得られたものの場合、当該抽出液は、抽出用に用いた芳香族炭化水素溶媒を脂肪族炭化水素溶媒に置換することで分画器具200へ注入することができる。抽出あるいは溶媒置換に用いられる脂肪族炭化水素溶媒は、通常、炭素数が5~10の脂肪族炭化水素溶媒が好ましく、例えば、n-ヘキサン、イソオクタン、ノナンおよびデカンなどを挙げることができる。特に、安価なn-ヘキサンが好ましい。
 分画器具200へのダイオキシン類溶液の注入量は、通常、1~10mL程度が好ましい。注入する溶液は、溶媒の一部を留去することで濃縮しておくこともできる。
 ダイオキシン類溶液が魚油等の油状のものの場合、このダイオキシン類溶液は、それを溶解可能な脂肪族炭化水素溶媒とともに、または、当該溶媒に予め溶解した溶液として分画器具200に注入することもできる。この場合、ダイオキシン類溶液と脂肪族炭化水素溶媒との合計量が上記注入量になるよう設定する。
 注入したダイオキシン類溶液は、硝酸銀シリカゲル層221の上部に浸透し、加熱装置300により精製層220の一部とともに加熱される。加熱装置300による加熱温度は、35℃以上、好ましくは50℃以上、より好ましくは60℃以上に設定する。この加熱により、溶液に含まれるダイオキシン類以外の夾雑成分の一部が精製層220と反応し、分解される。加熱温度が35℃未満の場合は、夾雑成分と精製層220との反応が進行しにくくなり、ダイオキシン類の分析用試料に夾雑成分の一部が残留しやすくなる可能性がある。加熱温度の上限は、特に限定されるものではないが、通常は安全性の観点から沸騰温度以下が好ましい。
 加熱時において、硝酸銀シリカゲル層221および硫酸シリカゲル層222は、第1活性シリカゲル層223を挟んで積層されているため、相互の反応が抑制される。
 次に、加熱開始から10~60分経過後に溶媒供給装置400から分画器具200に溶媒を供給する。この際、加熱装置300は、作動させたままでもよいし、停止してもよい。この工程では、第1弁422を開放状態に設定して第1ポンプ421を作動させ、第1溶媒容器410に貯留した適量の溶媒を第1溶媒供給路420を通じて開口211から管体210内へ供給する。この溶媒は、ダイオキシン類溶液に含まれるダイオキシン類、夾雑成分の分解生成物および分解されずに残留している夾雑成分(この夾雑成分には、非DL-PCBsが含まれる。)を溶解し、ダイオキシン類を含む脂肪族炭化水素溶媒溶液として精製層220を通過する。この際、分解生成物および夾雑成分の一部は、硝酸銀シリカゲル層221、第1活性シリカゲル層223、硫酸シリカゲル層222および第2活性シリカゲル層224に吸着する。また、精製層220を通過する溶媒は、加熱装置300での非加熱部分、すなわち、硫酸シリカゲル層222の下部および第2活性シリカゲル層224を通過するときに自然に冷却される。
 精製層220を通過した溶媒は、吸着層230へ流れて第1吸着層240と第2吸着層250とを通過し、開口212から流路510へ流れて廃棄経路531を通じて廃棄される。この際、精製層220からの溶媒に含まれるダイオキシン類は、吸着層230に吸着され、溶媒から分離される。吸着層230において、ダイオキシン類のうちのノンオルソPCBs、PCDDsおよびPCDFsは第1吸着層240に吸着され、また、モノオルソPCBsは第2吸着層250に吸着される。したがって、溶媒に含まれるダイオキシン類は、吸着層230において、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群と、モノオルソPCBsとに分画される。
 精製層220を通過した溶媒に含まれる夾雑成分は、一部が溶媒とともに吸着層230を通過して廃棄され、また、一部が吸着層230に吸着される。例えば、非DL-PCBsおよびPCDEは、モノオルソPCBsとともに第2吸着層250に吸着される。また、パラフィン類は、吸着層230を通過し、廃棄経路531を通じて廃棄される。
<ダイオキシン類の抽出工程>
 次に、吸着層230に吸着されたダイオキシン類を溶媒で抽出し、ダイオキシン類の分析用試料を調製する。この調製の前に、調製装置100では、精製層220および吸着層230を乾燥処理する。ここでは、先ず、溶媒供給装置400の空気導入弁423を空気導入路424側に切換える。そして、第1ポンプ421を作動させ、空気導入路424から空気を吸引する。
 空気導入路424から吸引された空気は、第1溶媒供給路420を通じて開口211から管体210内へ供給され、精製層220および吸着層230を通過して開口212から流路510へ流れ、廃棄経路531を通じて排出される。この際、精製層220に残留する溶媒は、通過する空気により圧し出され、吸着層230を通過して空気とともに廃棄経路531から排出される。この結果、精製層220は乾燥処理される。
 次に、第1ポンプ421を停止するとともに第1弁422を閉鎖状態に切換え、第1抽出経路600においてコンプレッサー633を作動させる。
 コンプレッサー633の作動により、第1通気経路630、第1回収容器620および第1回収経路610を通じて空気供給経路634から第1分岐路215に圧縮空気が供給される。この圧縮空気は、吸着層230を通過して開口212から流路510へ流れ、廃棄経路531を通じて排出される。この際、吸着層230の各層に残留する溶媒は圧縮空気により圧し出され、圧縮空気とともに廃棄経路531から排出される。この結果、吸着層230の各層は乾燥処理される。
 ダイオキシン類の分析用試料を調製するための最初の工程では、コンプレッサー633を停止するとともに、第2抽出経路700の第4弁731を開放状態に切換える。また、溶媒流出経路500において、流路510が第2溶媒供給路541と連絡するよう第2弁520を切換え、第2ポンプ542を作動する。これにより、第2溶媒供給路541および流路510を通じ、第2溶媒容器543に貯留された溶媒の適量を開口212から管体210内に供給する。
 管体210内に供給された溶媒は、第2吸着層250を通過して第2分岐路216へ流れ、第2抽出経路700の第2回収経路710を通じて第2回収容器720に回収される。この際、溶媒は、第2吸着層250に吸着したモノオルソPCBsおよび非DL-PCBsを溶解し、これらのPCBsを抽出した溶液、すなわち、第1の分析用試料として第2回収容器720に回収される。
 この工程では、第2吸着層250を加熱することができる。第2吸着層250を加熱した場合、より少量の溶媒でモノオルソPCBsおよび非DL-PCBsを第2吸着層250から抽出することができる。第2吸着層250の加熱温度は、通常、95℃以下に制御するのが好ましい。
 分析用試料を調製するための次の工程では、第2ポンプ542を停止した後、第1抽出経路600において、第1通気経路630と開放路632とが連絡するよう第3弁631を切換え、第2抽出経路700の第4弁731を閉鎖状態に切換える。そして、溶媒流出経路500において、流路510が第2溶媒供給路541と連絡するよう第2弁520を維持した状態で第2ポンプ542を作動する。これにより、第2溶媒供給路541および流路510を通じ、第2溶媒容器543に貯留された溶媒の適量を開口212から管体210内に供給する。
 管体210内に供給された溶媒は、第2吸着層250および第1吸着層240をこの順に通過して第1分岐路215へ流れ、第1抽出経路600の第1回収経路610を通じて第1回収容器620に回収される。この際、溶媒は、第1吸着層240に吸着したノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を溶解し、これらのダイオキシン群を抽出した溶液、すなわち、第2の分析用試料として第1回収容器620に回収される。
 この工程では、第1吸着層240を加熱することができる。第1吸着層240を加熱した場合、より少量の溶媒でノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を第1吸着層240から抽出することができる。第1吸着層240の加熱温度は、通常、80℃以上95℃以下に設定するのが好ましい。
 以上の抽出工程により、モノオルソPCBsの分析用試料と、ノンオルソPCBs、PCDDsおよびPCDFsの分析用試料とが分別して得られる。
 このようにして調製された2種類の分析用試料は、それぞれ別々にダイオキシン類の分析に適用される。分析方法としては、吸着層230からダイオキシン類を抽出するために用いた溶媒の種類に応じ、通常、GC-HRMS、GC-MSMS、GC-QMS若しくはイオントラップGC/MS等のGC/MS法またはGC/ECD法等のガスクロマトグラフィー法またはバイオアッセイ法を採用することができる。
 モノオルソPCBsの分析用試料の分析では、この分析用試料がノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を実質的に含まないことから、これらのダイオキシン群による影響を受けずにモノオルソPCBsを高精度に定量することができる。また、この分析用試料は、モノオルソPCBsとともに非DL-PCBsを含むため、ダイオキシン類溶液に含まれていた非DL-PCBsを併せて高精度に定量することができる。例えば、欧州連合(EU)の食品規制基準(COMMISSION REGULATION (EU) No 1259/2011)では、牛肉や豚肉等の食肉並びに卵などの食品に含まれる有害物質の分析対象として、ダイオキシン類とともに所定の非DL-PCBs(IUPAC番号が#28、#52、#101、#138、#153および#180である、塩素数が3~7の6種類のPCBs)を定めているが、これらのPCBsは、この分析用試料の分析により定量することができる。
 一方、ノンオルソPCBs、PCDDsおよびPCDFsの分析用試料の分析では、この分析用試料がモノオルソPCBsおよび非DL-PCBsを実質的に含まないことから、これらのPCBsによる影響を受けずにノンオルソPCBs、PCDDsおよびPCDFsを高精度に定量することができる。
 なお、GC/MS法としてGC-TOFMSを用いることもでき、この場合、2種類の分析用試料を混合することで同時に分析することができる。
 調製装置100において、第2抽出経路700は、図2に示すように変更することができる。変更された第2抽出経路700は、第2分岐路216から延びる溶媒経路740を有している。溶媒経路740は、一端が第2分岐路216に気密に連絡しており、他端に第4弁741を備えている。第4弁741は、三方弁であって溶媒回収経路742と第3溶媒供給路743とが連絡しており、溶媒経路740が溶媒回収経路742または第3溶媒供給路743のいずれか一方に連絡するよう切換えるためのものである。
 溶媒回収経路742は、溶媒を回収するための第2回収容器744に連絡している。第2回収容器744は、その内部と外部とを通じる通気管745を有している。第3溶媒供給路743は、第3溶媒容器746に連絡しており、第3溶媒容器746に貯留された溶媒を送り出すための第3ポンプ747を有している。
 この変形例において、第2溶媒容器543は、第2吸着層250に吸着したダイオキシン類(モノオルソPCBsおよび非DL-PCBs)を抽出可能な溶媒を貯留し、また、第3溶媒容器746は、第1吸着層240に吸着したダイオキシン類(ノンオルソPCBs、PCDDsおよびPCDFs)を抽出可能な溶媒を貯留する。各容器543、746に貯留する溶媒は、ダイオキシン類の分析方法に応じて選択することができる。
 具体的には、分析方法としてガスクロマトグラフィー法を採用する場合、第3溶媒容器746に貯留する溶媒としては、例えば、トルエンまたはベンゼンを用いることができる。また、トルエンまたはベンゼンに対して脂肪族炭化水素溶媒または有機塩素系溶媒を添加した混合溶媒を用いることもできる。混合溶媒を用いる場合、トルエンまたはベンゼンの割合は50重量%以上に設定する。混合溶媒において用いられる脂肪族炭化水素溶媒としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタンまたはシクロヘキサンなどが挙げられる。また、有機塩素系溶媒としては、例えば、ジクロロメタン、トリクロロメタンまたはテトラクロロメタンなどが挙げられる。これらの抽出溶媒のうち、少量の使用でダイオキシン類を抽出できることから、トルエンが特に好ましい。一方、第2溶媒容器543に貯留する溶媒としては、第3溶媒容器746に貯留するものと同様のものの他、有機塩素系溶媒、有機塩素系溶媒と脂肪族炭化水素溶媒との混合溶媒または脂肪族炭化水素溶媒に対して少量のトルエンを添加した混合溶媒を用いることができる。
 また、分析方法としてバイオアッセイ法を採用する場合は、第2溶媒容器543および第3溶媒容器746に貯留する溶媒として、ジメチルスルホキシド(DMSO)やメタノール等の親水性溶媒を用いることができる。
 第2抽出経路700を変更した調製装置100を用いたダイオキシン類の分析用試料の調製方法では、初期状態において、溶媒経路740が第3溶媒供給路743と連絡するよう第4弁741を設定する。そして、既述のようにダイオキシン類の分画工程を実行した後、ダイオキシン類の抽出工程を実行する。
 ダイオキシン類の抽出工程では、既述のように精製層220および吸着層230の各層を乾燥処理した後、コンプレッサー633を停止するとともに、第2抽出経路700において、溶媒経路740が溶媒回収経路742と連絡するよう第4弁741を切換える。また、溶媒流出経路500において、流路510が第2溶媒供給路541と連絡するよう第2弁520を切換え、第2ポンプ542を作動する。これにより、第2溶媒供給路541および流路510を通じ、第2溶媒容器543に貯留された溶媒の適量を開口212から管体210内に供給する。
 管体210内に供給された溶媒は、第2吸着層250を通過して第2分岐路216へ流れ、第2抽出経路700の溶媒経路740を通じて第2回収容器744に回収される。この際、溶媒は、第2吸着層250に吸着したモノオルソPCBsおよび非DL-PCBsを溶解し、これらのPCBsの溶液、すなわち、第1の分析用試料として第2回収容器744に回収される。
 分析用試料を調製するための次の工程では、第2ポンプ542を停止した後、第1抽出経路600において、第1通気経路630と開放路632とが連絡するよう第3弁631を切換え、また、第2抽出経路700において、溶媒経路740が第3溶媒供給路743と連絡するよう第4弁741を切換える。そして、第3ポンプ747を作動し、第3溶媒供給路743および溶媒経路740を通じ、第3溶媒容器746に貯留された溶媒の適量を第2分岐路216から管体210内へ供給する。
 管体210内へ供給された溶媒は、第1吸着層240を通過して第1分岐路215へ流れ、第1抽出経路600の第1回収経路610を通じて第1回収容器620に回収される。この際、溶媒は、第1吸着層240に吸着したノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を溶解し、これらのダイオキシン群の溶液、すなわち、第2の分析用試料として第1回収容器620に回収される。この第2の分析用試料は、溶媒が第2吸着層250を通過せずに調製されるものであるため、より高精度にモノオルソPCBsおよび非DL-PCBsから分画されたものになる。
 得られた第1の分析用試料および第2の分析用試料は、既述のように、ダイオキシン類の分析に適用される。
 第2抽出経路700を図2のように変更した調製装置100では、ダイオキシン類の抽出工程において、第1吸着層240からのノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群の抽出と、第2吸着層250からのモノオルソPCBsおよび非DL-PCBsの抽出との順序を入れ替えることもできる。すなわち、第1吸着層240からノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を最初に抽出した後、第2吸着層250からモノオルソPCBsおよび非DL-PCBsを抽出することもできる。
第2の形態
 図3を参照して、本発明に係る分析用試料の調製方法を実施可能な装置の第2例を説明する。図3において、調製装置100は、ガスクロマトグラフィー法による分析に適した分析用試料を調製可能なものであり、分画器具200、加熱装置300、溶媒供給装置400、溶媒流出経路550および抽出経路650を主に備えている。
 分画器具200は、管体210の小径部214および吸着層230の構造において、第1の形態で説明した分画器具200と相違する。具体的には、小径部214は、分岐路として第1分岐路215のみを有している。また、吸着層230は、第1吸着層240と第2吸着層250とが密接している。このため、小径部214は、第1の形態で説明した分画器具200のものに比べて長さが短縮されている。
 加熱装置300および溶媒供給装置400は、第1の形態で説明したとおりである。
 溶媒流出経路550は、管体210の開口212に対して気密に接続された流路551を有している。流路551は、第2弁552を有している。第2弁552は四方弁であり、管体210からの溶媒を廃棄するための廃棄経路553、管体210からの溶媒を回収するための回収経路554および管体210に対して溶媒を供給するための供給経路555が連絡しており、流路551が廃棄経路553、回収経路554および供給経路555のうちのいずれか一つに連絡するよう切換えるためのものである。
 回収経路554は、溶媒の回収容器556を有しており、この回収容器556は、その内部と外部とを通じる通気管557を有している。供給経路555は、第2ポンプ558を有しており、分画器具200で捕捉されたダイオキシン類の抽出溶媒を貯留するための第2溶媒容器559に連絡している。
 第2溶媒容器559に貯留される抽出溶媒は、ダイオキシン類を溶解可能なものであり、トルエンまたはベンゼンを用いることができる。また、トルエンまたはベンゼンに対して脂肪族炭化水素溶媒または有機塩素系溶媒を添加した混合溶媒を用いることもできる。混合溶媒を用いる場合、トルエンまたはベンゼンの割合は50重量%以上に設定する。これらの混合溶媒において用いられる脂肪族炭化水素溶媒としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタンまたはシクロヘキサンなどが挙げられる。また、有機塩素系溶媒としては、例えば、ジクロロメタン、トリクロロメタンまたはテトラクロロメタンなどが挙げられる。これらの抽出溶媒のうち、少量の使用で分画器具200からダイオキシン類を抽出できることから、トルエンが特に好ましい。
 抽出経路650は、第1分岐路215から延びる溶媒経路651を有している。溶媒経路651は、一端が第1分岐路215に気密に連絡しており、他端が第3弁652を備えている。第3弁652は四方弁であり、圧縮空気を送るためのコンプレッサー654を備えた空気供給経路653、第1分岐路215からの溶媒を回収するための回収経路655および管体210に対して溶媒を供給するための供給経路656が連絡しており、溶媒経路651が空気供給経路653、回収経路655および供給経路656のうちのいずれか一つに連絡するよう切換えるためのものである。
 回収経路655は、溶媒を回収するための回収容器657を有しており、この回収容器657は、その内部と外部とを通じる通気管658を有している。供給経路656は、第3ポンプ659を有しており、分画器具200で捕捉されたダイオキシン類の抽出溶媒を貯留するための第3溶媒容器660に連絡している。
 第3溶媒容器660に貯留される抽出溶媒は、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を実質的に溶解せず、モノオルソPCBsおよび非DL-PCBsの溶解性に優れたものであり、例えば、有機塩素系溶媒、有機塩素系溶媒に対して脂肪族炭化水素溶媒を添加した混合溶媒または脂肪族炭化水素溶媒に対してトルエンを添加した混合溶媒(トルエンの含有割合は、通常、10~15重量%程度。)等である。ここで用いられる有機塩素系溶媒は、例えば、ジクロロメタン、トリクロロメタンまたはテトラクロロメタンなどである。また、脂肪族炭化水素溶媒は、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタンまたはシクロヘキサンなどである。
 次に、上述の調製装置100を用いたダイオキシン類の分析用試料の調製方法を説明する。先ず、調製装置100において、第1弁422、空気導入弁423、第2弁552および第3弁652を所定の初期状態に設定する。すなわち、第1弁422は開放状態に設定し、空気導入弁423は第1溶媒容器410側に連絡するよう設定する。また、第2弁552は、流路551が廃棄経路553に連絡するよう設定する。さらに、第3弁652は、溶媒経路651が空気供給経路653と連絡するよう設定する。
 次に、第1の形態と同様にダイオキシン類の分画工程を実行した後に精製層220および吸着層230の各層を乾燥処理し、ダイオキシン類の抽出工程を実行する。精製層220の乾燥処理は、第1の形態と同様に実行することができる。続く吸着層230の乾燥処理では、溶媒供給装置400の第1弁422を閉鎖状態に切換える。そして、抽出経路650において、コンプレッサー654を作動させる。
 コンプレッサー654の作動により、空気供給経路653および溶媒経路651を通じて第1分岐路215に圧縮空気が供給される。この圧縮空気は、吸着層230を通過して開口212から流路551へ流れ、廃棄経路553を通じて排出される。この際、吸着層230の各層に残留する溶媒は圧縮空気により圧し出され、圧縮空気とともに廃棄経路553から排出される。この結果、吸着層230の各層は乾燥処理される。
 ダイオキシン類の抽出工程では、先ず、溶媒流出経路550において、流路551が回収経路554と連絡するよう第2弁552を切換える。また、抽出経路650において、溶媒経路651が供給経路656と連絡するよう第3弁652を切換え、第3ポンプ659を作動する。これにより、供給経路656および溶媒経路651を通じ、第3溶媒容器660に貯留された溶媒の適量を第1分岐路215から管体210内に供給する。
 管体210内に供給された溶媒は、吸着層230を通過し、開口212から流路551および回収経路554を流れ、回収容器556に回収される。この際、溶媒は、第2吸着層250に吸着したモノオルソPCBsおよび非DL-PCBsを溶解して抽出し、これらのPCBsの溶液、すなわち、第1の分析用試料として回収容器556に回収される。
 ダイオキシン類を抽出するための次の工程では、第3ポンプ659を停止し、抽出経路650において、溶媒経路651が回収経路655と連絡するよう第3弁652を切換える。そして、溶媒流出経路550において、流路551が供給経路555と連絡するよう第2弁552を切換え、第2ポンプ558を作動する。これにより、供給経路555および流路551を通じ、第2溶媒容器559に貯留された溶媒の適量を開口212から管体210内に供給する。
 管体210内に供給された溶媒は、第2吸着層250および第1吸着層240をこの順に通過して第1分岐路215へ流れ、抽出経路650の溶媒経路651および回収経路655を通じて回収容器657に回収される。この際、溶媒は、第1吸着層240に吸着したノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を溶解して抽出し、これらのダイオキシン群の溶液、すなわち、第2の分析用試料として回収容器657に回収される。
 以上の工程により、モノオルソPCBsの分析用試料と、ノンオルソPCBs、PCDDsおよびPCDFsの分析用試料とが分別して得られ、各分析用試料は、ガスクロマトグラフィー法での分析に適用される。
第3の形態
 図4を参照して、本発明に係る分析用試料の調製方法を実施可能な他の分画器具の例を説明する。図において、分画器具200は、第2例の調製装置100において用いられる分画器具200と同様に大径部213と小径部214とを有する管体210を備えているが、大径部213と小径部214とに分割されており、大径部213と小径部214とを連結具800により分離可能に結合することで一連の管体210を形成している。
 大径部213は、両端が開口した円筒状に形成されており、硫酸シリカゲル層222側の端部において、小径部214と外径および内径が同じに設定された頸部217を有している。小径部214は、両端が開口した円筒状に形成されており、吸着層230において、第1吸着層240と第2吸着層250とが密接している。連結具800は、例えば、各種の有機溶媒、特に炭化水素溶媒への耐性を有する樹脂材料やその他の材料を用いて形成された円筒状に形成されており、大径部213の頸部217と小径部214の第1吸着層240側の端部とを挿入することで大径部213と小径部214とを液密に連結する。
 この例の調製装置100を用いてダイオキシン類の分析用試料を調製するときは、分画器具200において大径部213と小径部214とを連結した状態で第1の形態と同様にダイオキシン類の分画工程を実行する。この分画工程は、手作業により実行することもできる。そして、分画工程に続いて精製層220および吸着層230を乾燥処理した後、連結具800から小径部214を分離する。
 吸着層230からのダイオキシン類の抽出では、第2の形態の場合と同様に、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を実質的に溶解せず、モノオルソPCBsおよび非DL-PCBsの溶解性に優れた溶媒を小径部214の第1吸着層240側の端部から供給することで第2吸着層250に吸着されたモノオルソPCBsおよび非DL-PCBsを抽出し、第1の分析用試料を得る。その後、小径部214の第2吸着層250側の端部(開口212)からダイオキシン類を溶解可能な溶媒を供給することで第1吸着層240に吸着されたノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を抽出し、第2の分析用試料を得る。
 このような抽出操作は、手作業により実行することができるが、機械的に実行することもできる。
 この例の分画器具200の変更例の一部を図5に示す。この変更例に係る分画器具200の小径部214は、第1吸着層240が充填された第1部位260と第2吸着層250が充填された第2部位270とに分割されており、第1部位260と第2部位270とは連結具810により分離可能に結合することで一体化されている。連結具810は、大径部213と小径部214とを連結する連結具800と同様のものである。
 この変更例の分画器具200は、小径部214を大径部213から分離するとともに、小径部214を第1部位260と第2部位270とにさらに分離することができる。このため、吸着層230からダイオキシン類を抽出するときに、第1部位260の第1吸着層240と第2部位270の第2吸着層250とに対してダイオキシン類の抽出操作を個別に実行することができ、モノオルソPCBsおよび非DL-PCBsの分析用試料と、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群の分析用試料とをより高精度に分画することができる。
他の形態例
(1)上述の各実施の形態において説明した分画器具200は、精製層220において、硝酸銀シリカゲル層221が開口211側に位置するよう配置されているが、硝酸銀シリカゲル層221と硫酸シリカゲル層222との順序は入れ替えることもできる。
 但し、硝酸銀シリカゲル層221と硫酸シリカゲル層222とを入れ替えた場合、塩素数の少ない非DL-PCBsが硫酸シリカゲル層222と反応し、分析用試料において塩素数の少ない非DL-PCBsの回収率が低下する可能性がある。このため、ダイオキシン類とともに非DL-PCBs、特に、塩素数の少ない非DL-PCBsを分析する必要がある場合(例えば、EUの食品規制基準により食品のダイオキシン類を分析する場合。)においては、精製層220において、硝酸銀シリカゲル層221が開口211側に位置するよう配置するのが好ましい。
(2)上述の各実施の形態において説明した分画器具200は、精製層220において、第1活性シリカゲル層223および第2活性シリカゲル層224を省くことができる。
(3)分画器具200の大径部213は、硝酸銀シリカゲル層221の充填部分と硫酸シリカゲル層222の充填部分とに分割しておき、使用時に両者を連結することもできる。このようにすることで、ダイオキシン類の回収率を高めることのできる可能性がある。
(4)上述の各実施の形態に係るダイオキシン類の分析用試料の調製方法では、加熱装置300により精製層220を加熱しているが、精製層220を加熱しない場合であっても各調製方法を同様に実施することができる。
(5)上述の各実施の形態に係るダイオキシン類の分析用試料の調製方法において、精製層220および吸着層230の乾燥処理は、空気の吸引およびコンプレッサーによる圧縮空気の供給のいずれかの方法により任意に変更することができる。また、窒素ガスの供給により精製層220および吸着層230を乾燥処理することもできる。さらに、精製層220および吸着層230の乾燥処理は、省略することもできる。
 以下に実施例等を挙げ、本発明を具体的に説明するが、本発明は、これら実施例等によって限定されるものではない。
 以下の実施例等では、ダイオキシン類溶液として下記の魚油試料または流動パラフィン試料を用いた。
魚油試料:
 日本工業規格JIS K 0311(2005)に記載の方法により実質的にダイオキシン類を含まないことが確認された魚油(シグマアルドリッチ社の商品名「Fish oil, from menhaden」)に対し、ダイオキシン類標準物質(Wellington Laboratories社の商品名「DF-LCS-A」)およびPCBs標準物質(Wellington Laboratories社の商品名「PCB-LCS-A1」)を添加したもの。魚油は、夾雑成分として微量のPCDEを含むものである。ダイオキシン類標準物質は、1312によりラベルされたPCDDs、PCDFsおよびDL-PCBsを含むものである。PCBs標準物質は、塩素数が1~8の、1312によりラベルされた次の8種類の非DL-PCBs(括弧内はIUPAC番号)を含む。
1312-4-MoCB(#3)
1312-4,4’-DiCB(#15)
1312-2,4,4’-TrCB(#28)
1312-2,2’,5,5’-TeCB(#52)
1312-2,3’,4,4’,5-PeCB(#118)
1312-2,2’,4,4’,5,5’-HxCB(#153)
1312-2,2’,3,4,4’,5,5’-HpCB(#180)
1312-2,2’,3,3’,4,4’,5,5’-OcCB(#194)
 この8種類の非DL-PCBsは、EUの食品規制対象である#28、#52、#101、#138、#153および#180の6種類のPCBs異性体(塩素数が3~7のPCBs異性体)のうち、#28、#52、#153および#180の4種類の異性体を含むものであるが、#101(塩素数5)および#138(塩素数6)の2種類の異性体を含まない。但し、EUの食品規制は対象の異性体に代えて同じ塩素数の他の異性体を測定対象にすることを許容しており、上記8種類の非DL-PCBsは#101および#138とそれぞれ同じ塩素数の#118および#153を含むことから、実質的にEUの食品規制対象となる6種類のPCBsを包含するものである。
流動パラフィン試料:
 日本工業規格JIS K 0311(2005)に記載の方法により実質的にダイオキシン類を含まないことが確認された流動パラフィン(関東化学株式会社製)に対し、魚油試料の調製において用いたものと同じダイオキシン類標準物質およびPCBs標準物質を添加したもの。
 また、以下の実施例等において、分画器具に充填した各層の充填剤は次の通りである。
硝酸銀シリカゲル層:
 活性シリカゲル(関東化学株式会社製)100gに対し、30mLの蒸留水に硝酸銀(和光純薬工業株式会社製)11.2gを溶解した水溶液の全量を添加して均一に混合した後、この活性シリカゲルをロータリーエバポレーターを用いて減圧下で70℃に加熱して乾燥することで調製した硝酸銀シリカゲルを用いた。
硫酸シリカゲル層:
 活性シリカゲル(関東化学株式会社製)100gに対して濃硫酸(和光純薬工業株式会社製)78.7gを均一に添加した後に乾燥することで調製された硫酸シリカゲルを用いた。
活性炭含有シリカゲル層:
 活性シリカゲル(関東化学株式会社製)に対して活性炭(クラレケミカル株式会社の商品名「クラレコールPK-DN」)を添加して均一に混合することで得られた活性炭含有シリカゲルを用いた。
グラファイト含有シリカゲル層:
 活性シリカゲル(関東化学株式会社製)に対してグラファイト(シグマアルドリッチ社の商品名「ENVI-Carb」)を添加して均一に混合することで得られたグラファイト含有シリカゲルを用いた。
活性炭層:
 活性炭(クラレケミカル株式会社の商品名「クラレコールPK-DN」を用いた。
グラファイト層:
 グラファイト(シグマアルドリッチ社の商品名「ENVI-Carb」を用いた。
アルミナ層:
 Merck社製の商品名「Aluminium Oxide 90 active basic - (activity stage I) for column chromatography」(粒径0.063~0.200mm)を用いた。
実施例1~6
 図1に示す、ダイオキシン類の分析用試料の調製装置を用い、魚油試料に含まれるダイオキシン類を抽出した。調製装置で用いた分画器具の仕様は次の通りである。
精製層:
 外径18.5mm、内径12.5mm、長さ200mmに設定された、管体の大径部内において、図1に示すように、硫酸シリカゲル8.5g(充填高さ80mm)の上に硝酸銀シリカゲル4.4g(充填高さ60mm)を積層することで形成した(第1活性シリカゲル層および第2活性シリカゲル層の積層は省いた。)。
吸着層:
 外径8mm、内径6mm、長さ30mmに設定された、管体の小径部内において、図1に示すように、下層であるグラファイト含有シリカゲル0.22g(充填高さ25mm)の上に上層である活性炭含有シリカゲル0.06g(充填高さ5mm)を積層して充填することで形成した。小径部において、アルミナの充填は省略した。活性炭含有シリカゲルに含まれる活性炭の割合、グラファイト含有シリカゲルに含まれるグラファイトの割合および活性炭含有シリカゲル層とグラファイト含有シリカゲル層との積層比(体積比)は、表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 ダイオキシン類の抽出操作では、精製層の硝酸銀シリカゲル層へ魚油試料溶液約4mLを添加し、精製層を60℃に加熱した。そして、精製層へn-ヘキサン85mLを徐々に供給し、このn-ヘキサンを精製層と吸着層とに通過させた。n-ヘキサンが吸着層を通過した後、圧縮空気を通過させることで吸着層を乾燥処理した。そして、吸着層を90℃に加熱後、吸着層の下層側からトルエン1.5mLを供給し、吸着層を通過したトルエンを第1分岐路を通じて回収した。
 回収したトルエンに含まれるダイオキシン類をHRGC/HRMS法により定量分析し、ダイオキシン類の回収率を算出した結果を表2に示す。ダイオキシン類の回収率とは、試料に添加した当初のダイオキシン類量に対する、ダイオキシン類を抽出した溶媒に含まれるダイオキシン類量の割合(%)をいう。
Figure JPOXMLDOC01-appb-T000002
 表2によると、回収したトルエンは、PCDDs、PCDFsおよびノンオルソPCBsを高回収率(ダイオキシン類の各種規制基準において規定されている50%以上)で含み、モノオルソPCBsを実質的に含まない。この結果は、実施例1~6において、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群をモノオルソPCBsから高精度に分離できたことを示している。
 また、HRGC/HRMS法による定量においてPCDEによる実質的な妨害ピークは見られなかったことから、実施例1~6において、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群はPCDEから効果的に分離されたことが判明した。
比較例1~5
 ダイオキシン類の分析用試料の調製装置において、分画器具の吸着層の仕様のみを変更し、実施例1~6と同様にして魚油試料に含まれるダイオキシン類を抽出した。そして、抽出液をHRGC/HRMS法により定量分析し、ダイオキシン類の回収率を算出した。吸着層の仕様は表3の通りである。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4によると、抽出液は、PCDDsおよびPCDFsのうちの塩素数の多いものの一部の回収率が低く、また、多量のモノオルソPCBsを含む。この結果は、比較例1~5において、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群とモノオルソPCBsとを分離できなかったことを示している。
 また、比較例2~5は、HRGC/HRMS法での測定結果においてPCDEによる妨害ピークが見られたことから、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群にPCDEの混入していることが判明した。
実施例7~8
 実施例1~6と同様にして、流動パラフィン試料に含まれるダイオキシン類をトルエンで抽出した。この際、吸着層において、活性炭含有シリカゲルに含まれる活性炭の割合、グラファイト含有シリカゲルに含まれるグラファイトの割合および活性炭含有シリカゲル層とグラファイト含有シリカゲル層との積層比(体積比)は、表5のように設定した。
Figure JPOXMLDOC01-appb-T000005
 トルエン抽出液に含まれるダイオキシン類をHRGC/HRMS法により定量分析し、ダイオキシン類の回収率を算出した結果を表6に示す。ここでは、PCDDs、PCDFsおよびノンオルソPCBsが流動パラフィンの影響を受けずに吸着層から抽出され得ることを確認するため、PCDDs、PCDFsおよびノンオルソPCBsのみを定量分析し、それらの回収率を算出した。また、ロックマス変動についても確認した。
Figure JPOXMLDOC01-appb-T000006
 表6によると、PCDDs、PCDFsおよびノンオルソPCBsの回収率は高い。また、ロックマスの実質的な変動は見られなかった。この結果は、流動パラフィンが吸着層に吸着されずに吸着層を通過して廃棄され、これらのダイオキシン類の抽出および定量を阻害していないことを示している。
実施例9~12
 図1に示す、ダイオキシン類の分析用試料の調製装置を用い、魚油試料に含まれるダイオキシン類を分析した。調製装置で用いた分画器具の仕様は、精製層については実施例1~6と同じであり、吸着層については次の通りである。
吸着層:
 実施例1~6で用いたものと同様の管体の小径部において、図1に示すように、グラファイト含有シリカゲル0.25g(充填高さ25mm)および活性炭含有シリカゲル0.065g(充填高さ5mm)を充填することで第1吸着層を形成し、また、アルミナ0.77g(充填高さ30mm)を充填することで第2吸着層を形成した。活性炭含有シリカゲルに含まれる活性炭の割合、グラファイト含有シリカゲルに含まれるグラファイトの割合および第1吸着層における活性炭含有シリカゲル層とグラファイト含有シリカゲル層との積層比(体積比)は、表7の通りである。
 ダイオキシン類の抽出操作では、精製層の硝酸銀シリカゲル層へ魚油試料溶液約4mLを添加し、精製層を60℃に加熱した。そして、精製層へn-ヘキサン85mLを徐々に供給し、このn-ヘキサンを精製層と吸着層とに通過させた。n-ヘキサンが吸着層を通過した後、圧縮空気を通過させることで吸着層を乾燥処理した。そして、第2吸着層のアルミナ層を90℃に加熱後、第2吸着層側から吸着層へトルエン1.0mLを供給し、第2吸着層を通過したトルエンを第2分岐路を通じて回収することで第1の分析用試料を得た。次に、第1吸着層を90℃に加熱後、第2吸着層側から吸着層へトルエン1.5mLを供給し、第2吸着層および第1吸着層をこの順に通過したトルエンを第1分岐路を通じて回収することで第2の分析用試料を得た。魚油試料の添加から第2の分析用試料が得られるまでに要した時間は約2時間であった。これは、以下の実施例13および14についても同様である。
 第1の分析用試料および第2の分析用試料をそれぞれHRGC/HRMS法により個別に定量分析し、ダイオキシン類および非DL-PCBsの回収率を算出した。結果を表8に示す。
実施例13
 精製層において、硝酸銀シリカゲル層と硫酸シリカゲル層との積層順序を逆にした分画器具を用いた点、および、精製層の温度を室温(20℃)に維持した点を除き、実施例12と同様にして魚油試料に含まれるダイオキシン類を抽出し、第1の分析用試料および第2の分析用試料を得た。そして、第1の分析用試料および第2の分析用試料をそれぞれHRGC/HRMS法により個別に定量分析し、ダイオキシン類および非DL-PCBsの回収率を算出した。結果を表8に示す。
実施例14
 図3に示す、ダイオキシン類の分析用試料の調製装置を用い、魚油試料に含まれるダイオキシン類を分析した。調製装置で用いた分画器具の仕様は、精製層については実施例1~6と同じであり、吸着層については次の通りである。
吸着層:
 外径8mm、内径6mm、長さ30mmに設定された、管体の小径部において、図3に示すように、グラファイト含有シリカゲル0.25g(充填高さ25mm)、活性炭含有シリカゲル0.065g(充填高さ5mm)およびアルミナ0.77g(充填高さ30mm)を充填することで形成した。活性炭含有シリカゲルに含まれる活性炭の割合、グラファイト含有シリカゲルに含まれるグラファイトの割合および活性炭含有シリカゲル層とグラファイト含有シリカゲル層との積層比(体積比)は、表7に示すように設定した。
 ダイオキシン類の抽出操作では、精製層の硝酸銀シリカゲル層へ魚油試料溶液約4mLを添加し、精製層を60℃に加熱した。そして、精製層へn-ヘキサン85mLを徐々に供給し、このn-ヘキサンを精製層と吸着層とに通過させた。n-ヘキサンが吸着層を通過した後、圧縮空気を通過させることで吸着層を乾燥処理した。そして、吸着層のアルミナ層を室温(25℃)に維持した状態で吸着層の活性炭含有シリカゲル層側からジクロロメタン50重量%含有n-ヘキサン混合溶媒1.5mLを供給し、吸着層のアルミナ層を通過した当該混合溶媒を回収することで第1の分析用試料を得た。次に、吸着層の活性炭含有シリカゲル層およびグラファイト含有シリカゲル層を90℃に加熱し、アルミナ層側からトルエン1.5mLを吸着層へ供給し、吸着層を通過したトルエンを第1分岐路を通じて回収することで第2の分析用試料を得た。
 第1の分析用試料および第2の分析用試料をそれぞれHRGC/HRMS法により個別に定量分析し、ダイオキシン類および非DL-PCBsの回収率を算出した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表8によると、第2の分析用試料は、PCDDs、PCDFsおよびノンオルソPCBsを高回収率で含んでいる。一方、第1の分析用試料は、モノオルソPCBsを高回収率で含んでいる。この結果は、実施例9~14において、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群をモノオルソPCBsから高精度に分離できたことを示している。
 また、表8によると、実施例9~14で得られた第1の分析用試料は、EUの食品規制対象の非DL-PCBsを同規制での適正範囲の回収率(60~120%)で含むことを示しており、モノオルソPCBsとともにEUの食品規制対象の非DL-PCBsを定量分析可能である。
 第2の分析用試料は、HRGC/HRMS法での定量においてPCDEによる実質的な妨害ピークが見られなかったことから、PCDEが効果的に分離されているものと考えられる。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態若しくは実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は、請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。

Claims (6)

  1.  ダイオキシン類の脂肪族炭化水素溶媒溶液を活性炭含有シリカゲル層とグラファイト含有シリカゲル層とにこの順に通過させる工程を含む、
    ダイオキシン類の分画方法。
  2.  前記グラファイト含有シリカゲル層を通過した前記脂肪族炭化水素溶媒溶液をさらにアルミナ層に通過させる、請求項1に記載のダイオキシン類の分画方法。
  3.  前記脂肪族炭化水素溶媒溶液が通過した前記活性炭含有シリカゲル層および前記グラファイト含有シリカゲル層に対してダイオキシン類を溶解可能な溶媒を供給し、前記活性炭含有シリカゲル層および前記グラファイト含有シリカゲル層を通過した当該溶媒を確保する工程、および、
     前記脂肪族炭化水素溶媒溶液が通過した前記アルミナ層に対してダイオキシン類を溶解可能な溶媒を供給し、前記アルミナ層を通過した当該溶媒を確保する工程、
    をさらに含む請求項2に記載のダイオキシン類の分画方法。
  4.  ダイオキシン類溶液に含まれるダイオキシン類を分析するための試料の調製方法であって、
     硝酸銀シリカゲル層と硫酸シリカゲル層とを含む精製層に前記ダイオキシン類溶液を添加する工程と、
     前記ダイオキシン類溶液が添加された前記精製層に対し、脂肪族炭化水素溶媒を供給する工程と、
     前記精製層を通過した前記脂肪族炭化水素溶媒を活性炭含有シリカゲル層とグラファイト含有シリカゲル層とにこの順に通過させる工程と、
     前記グラファイト含有シリカゲル層を通過した前記脂肪族炭化水素溶媒をアルミナ層に通過させる工程と、
     前記脂肪族炭化水素溶媒が通過した前記アルミナ層に対してダイオキシン類を溶解可能な溶媒を供給し、前記アルミナ層を通過した当該溶媒を第1の分析用試料として確保する工程と、
     前記脂肪族炭化水素溶媒が通過した前記活性炭含有シリカゲル層および前記グラファイト含有シリカゲル層に対してダイオキシン類を溶解可能な溶媒を供給し、前記活性炭含有シリカゲル層および前記グラファイト含有シリカゲル層を通過した当該溶媒を第2の分析用試料として確保する工程と、
    を含むダイオキシン類の分析用試料の調製方法。
  5.  前記精製層の前記硝酸銀シリカゲル層に対して前記ダイオキシン類溶液を添加する、請求項4に記載のダイオキシン類の分析用試料の調製方法。
  6.  ダイオキシン類溶液に含まれるダイオキシン類の分析方法であって、
     ガスクロマトグラフィー法またはバイオアッセイ法により、請求項4または5に記載のダイオキシン類の分析用試料の調製方法により調製された第1の分析用試料と第2の分析用試料とを分析する工程を含む、
    ダイオキシン類の分析方法。
PCT/JP2013/064614 2013-05-27 2013-05-27 ダイオキシン類の分画方法 WO2014192056A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13885973.1A EP2871476B1 (en) 2013-05-27 2013-05-27 Fractionation method for dioxins
CN201380003034.XA CN104487840B (zh) 2013-05-27 2013-05-27 二噁英类的分级分离方法
PCT/JP2013/064614 WO2014192056A1 (ja) 2013-05-27 2013-05-27 ダイオキシン類の分画方法
JP2013544598A JP5490332B1 (ja) 2013-05-27 2013-05-27 ダイオキシン類の分画方法
CA2900970A CA2900970C (en) 2013-05-27 2013-05-27 Method for fractionating dioxins
US14/768,327 US9696290B2 (en) 2013-05-27 2013-05-27 Method for fractionating dioxins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064614 WO2014192056A1 (ja) 2013-05-27 2013-05-27 ダイオキシン類の分画方法

Publications (1)

Publication Number Publication Date
WO2014192056A1 true WO2014192056A1 (ja) 2014-12-04

Family

ID=50792258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064614 WO2014192056A1 (ja) 2013-05-27 2013-05-27 ダイオキシン類の分画方法

Country Status (6)

Country Link
US (1) US9696290B2 (ja)
EP (1) EP2871476B1 (ja)
JP (1) JP5490332B1 (ja)
CN (1) CN104487840B (ja)
CA (1) CA2900970C (ja)
WO (1) WO2014192056A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033404A1 (ja) * 2019-08-22 2021-02-25 三浦工業株式会社 油類の精製方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2900963C (en) * 2013-08-23 2016-09-06 Miura Co., Ltd. Solute extracting apparatus
CN106662571B (zh) * 2014-05-20 2020-04-07 帝肯样品制备股份有限公司 具有微洗脱床设计的样品提取装置
CN105974001A (zh) * 2016-04-21 2016-09-28 广州普诺环境检测技术服务有限公司 土壤或沉积物样品的预处理方法及二噁英的测定方法
CN106950301B (zh) * 2017-03-15 2020-07-31 广州普诺环境检测技术服务有限公司 一种沉积物中二噁英的测定方法及沉积物的快速预处理方法
JP7218584B2 (ja) * 2019-01-18 2023-02-07 三浦工業株式会社 ダイオキシン類の分画方法
CN111795862A (zh) * 2020-07-14 2020-10-20 江苏理工学院 一种带有自动萃取功能的水中二噁英采样装置与方法
CN112834669A (zh) * 2020-12-31 2021-05-25 中国农业科学院农业质量标准与检测技术研究所 一种适用于质谱法的二噁英高效样品净化分离柱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330597A (ja) * 2000-05-22 2001-11-30 Satake Corp 膨張化グラファイトをクリンアップカラムの充填剤として用いる分析法
JP2002040007A (ja) 2000-07-28 2002-02-06 Kawasaki Steel Corp クロマトグラフカラムおよびダイオキシン類抽出液の分析前処理方法
JP2005172758A (ja) * 2003-12-15 2005-06-30 Miura Co Ltd ダイオキシン類の分析用試料調製方法および調製装置
JP2005214816A (ja) * 2004-01-29 2005-08-11 Mitsubishi Materials Corp ダイオキシン類の簡易分析方法および簡易分析装置
JP2006297368A (ja) 2004-11-15 2006-11-02 Osaka Gas Co Ltd 疎水性有機化合物の吸着剤及びその製造方法
JP2007225283A (ja) * 2006-02-21 2007-09-06 Fukuoka Prefecture ダイオキシン類の分析方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920813B2 (ja) 2000-04-21 2012-04-18 関東化学株式会社 ダイオキシン類分析用活性炭含有充填剤
CA2410626C (en) 2000-06-02 2010-03-16 Xenobiotic Detection Systems International, Inc. Methods for separating and detecting specific polyhalogenated diaromatic hydrocarbons
JP4277748B2 (ja) 2004-06-29 2009-06-10 三浦工業株式会社 ダイオキシン類分析用試料の調製方法および調製装置
JP4605357B2 (ja) 2004-09-15 2011-01-05 三浦工業株式会社 ダイオキシン類分析用試料の調製方法
US20090107213A1 (en) * 2005-06-07 2009-04-30 Katsuhisa Honda Method for preparing sample for analysis of dioxins
JP2008297388A (ja) 2007-05-30 2008-12-11 Toyobo Co Ltd 変性ポリイミド系樹脂組成物、該組成物を含有するペースト及び該ペーストから得られる電子部品
CN102062762B (zh) 2010-10-26 2013-04-03 浙江大学 快速预处理用于二恶英检测的土壤样品的方法
CN102539548B (zh) * 2011-12-02 2014-06-04 环境保护部华南环境科学研究所 一段法纯化环境基质萃取液中二恶英类物质的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330597A (ja) * 2000-05-22 2001-11-30 Satake Corp 膨張化グラファイトをクリンアップカラムの充填剤として用いる分析法
JP2002040007A (ja) 2000-07-28 2002-02-06 Kawasaki Steel Corp クロマトグラフカラムおよびダイオキシン類抽出液の分析前処理方法
JP2005172758A (ja) * 2003-12-15 2005-06-30 Miura Co Ltd ダイオキシン類の分析用試料調製方法および調製装置
JP2005214816A (ja) * 2004-01-29 2005-08-11 Mitsubishi Materials Corp ダイオキシン類の簡易分析方法および簡易分析装置
JP2006297368A (ja) 2004-11-15 2006-11-02 Osaka Gas Co Ltd 疎水性有機化合物の吸着剤及びその製造方法
JP2007225283A (ja) * 2006-02-21 2007-09-06 Fukuoka Prefecture ダイオキシン類の分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871476A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033404A1 (ja) * 2019-08-22 2021-02-25 三浦工業株式会社 油類の精製方法
EP4019930A4 (en) * 2019-08-22 2023-09-13 Miura Co., Ltd. METHOD FOR PURIFYING OILS

Also Published As

Publication number Publication date
CN104487840B (zh) 2017-09-12
EP2871476B1 (en) 2019-06-26
EP2871476A1 (en) 2015-05-13
EP2871476A4 (en) 2016-04-27
US20160011163A1 (en) 2016-01-14
US9696290B2 (en) 2017-07-04
CA2900970C (en) 2016-08-30
JP5490332B1 (ja) 2014-05-14
CN104487840A (zh) 2015-04-01
JPWO2014192056A1 (ja) 2017-02-23
CA2900970A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
JP5490332B1 (ja) ダイオキシン類の分画方法
JP5574135B1 (ja) ダイオキシン類の分画器具
US20220082534A1 (en) Method for fractionating dioxins
WO2010073818A1 (ja) ポリ塩化ビフェニル類含有油性液体の精製剤
JP5574136B1 (ja) 溶質抽出装置
JP5900757B2 (ja) ポリ塩化ビフェニル類の分画方法
JP5900758B2 (ja) ポリ塩化ビフェニル類の分画方法および分画器具
WO2019035311A1 (ja) ハロゲン化有機化合物の抽出方法
JP5891816B2 (ja) ダイオキシン類の抽出方法
JP5691120B2 (ja) 高濃度硫酸含有シリカゲルの製造法
WO2023119935A1 (ja) モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具
WO2022176252A1 (ja) 有機ハロゲン化合物の抽出方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544598

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885973

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013885973

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14768327

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2900970

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE