WO2023119935A1 - モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具 - Google Patents

モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具 Download PDF

Info

Publication number
WO2023119935A1
WO2023119935A1 PCT/JP2022/041949 JP2022041949W WO2023119935A1 WO 2023119935 A1 WO2023119935 A1 WO 2023119935A1 JP 2022041949 W JP2022041949 W JP 2022041949W WO 2023119935 A1 WO2023119935 A1 WO 2023119935A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
activated carbon
aliphatic hydrocarbon
hydrocarbon solvent
ortho
Prior art date
Application number
PCT/JP2022/041949
Other languages
English (en)
French (fr)
Inventor
祐子 松平
健治 稲葉
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2023119935A1 publication Critical patent/WO2023119935A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a treatment apparatus for a mono-ortho-polychlorinated biphenyls-containing aliphatic hydrocarbon solvent solution, and more particularly to a treatment apparatus for separating mono-ortho-polychlorinated biphenyls and paraffinic contaminants contained in the aliphatic hydrocarbon solvent solution.
  • Dioxins is a generic term that generally refers to polychlorinated dibenzoparadioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (DL-PCBs).
  • PCDDs polychlorinated dibenzoparadioxins
  • PCDFs polychlorinated dibenzofurans
  • DL-PCBs dioxin-like polychlorinated biphenyls
  • DL-PCBs is the term used to denote PCBs among 209 congeners of polychlorinated biphenyls (PCBs) that exhibit toxicity similar to PCDDs and PCDFs. (mono-ortho PCBs).
  • dioxins When evaluating contamination by dioxins in environmental samples such as air and soil, extract dioxins from the samples and secure samples for analysis.
  • the sample is solid matter such as soil
  • dioxins are extracted from the solid matter by, for example, the Soxhlet extraction method, and this is used as a sample for analysis.
  • the sample is a fluid such as air or industrial wastewater
  • a filter suitable for collecting dioxins is used to capture and collect dioxins in the fluid.
  • the dioxins collected on the filter are extracted with a solvent, and this is used as an analytical sample.
  • an analytical device such as a gas chromatograph/mass spectrometer (GC/MS)
  • GC/MS gas chromatograph/mass spectrometer
  • Patent Document 1 describes a device for fractionating dioxins in which a tubular body with both ends open is filled with an adsorption layer containing an activated carbon-containing silica gel layer, a graphite-containing silica gel layer, and an alumina layer in this order.
  • the analysis sample is injected into the activated carbon-containing silica gel layer, and then dioxins can be dissolved in the activated carbon-containing silica gel layer.
  • Supply an aliphatic hydrocarbon solvent The supplied aliphatic hydrocarbon solvent dissolves dioxins in the analytical sample and passes through the adsorption layer.
  • the dioxin group including non-ortho-PCBs, PCDDs and PCDFs is adsorbed on the activated carbon-containing silica gel layer or the graphite-containing silica gel layer, and mono-ortho-PCBs are adsorbed on the alumina layer, so they are included in the sample for analysis.
  • Dioxins are divided into the dioxin group, which includes non-ortho-PCBs, PCDDs and PCDFs, and mono-ortho-PCBs.
  • Dioxins analysis samples are contaminated with various contaminants during the preparation process.
  • environmental samples often contain paraffinic contaminants, which often contaminate samples for analysis.
  • paraffinic contaminants When a sample for analysis containing paraffinic contaminants is fractionated using the above-described fractionation instrument, the paraffinic contaminants pass through the activated carbon-containing silica gel layer and the graphite-containing silica gel layer together with the aliphatic hydrocarbon solvent, and then into the alumina layer. captured in Therefore, it is difficult to avoid contamination of paraffinic contaminants in the mono-ortho-PCBs extract from the alumina layer. Paraffinic contaminants mixed in the extract of mono-ortho-PCBs may impair the analytical accuracy of mono-ortho-PCBs.
  • the present invention seeks to separate mono-ortho-PCBs and paraffinic contaminants contained in an aliphatic hydrocarbon solvent solution.
  • the present invention relates to a processing instrument for separating mono-ortho-PCBs and paraffinic contaminants contained in an aliphatic hydrocarbon solvent solution.
  • the treatment tool includes a tubular body with both ends open, and a treatment layer filled in the tubular body containing activated carbon and a dispersion medium for the activated carbon.
  • the treatment layer includes a plurality of dispersion medium layers having different concentrations of activated carbon sequentially arranged in the opening direction of the tubular body.
  • the mono-ortho PCBs in the aliphatic hydrocarbon solvent solution are adsorbed by the activated carbon of the treatment layer and remain in the treatment layer.
  • Paraffinic contaminants in the aliphatic hydrocarbon solvent solution pass through the treatment bed and are discharged from the treatment equipment. This separates mono-ortho-PCBs and paraffinic contaminants in the aliphatic hydrocarbon solvent solution.
  • the activated carbon in the treatment layer is usually granular activated carbon having a specific surface area of 700-1,600 m 2 /g and an average micropore diameter of 0.5-1.0 nm.
  • one form of the treatment layer is a first dispersion medium layer having an activated carbon concentration of 0.13 to 0.2% by mass and a second dispersion medium layer having an activated carbon concentration of 2.0 to 3.0% by mass. including.
  • the dispersion medium of the processing layer is at least one of silica gel and magnesium silicate, for example.
  • Another aspect of the present invention relates to a treatment method for separating mono-ortho-polychlorinated biphenyls and paraffinic contaminants contained in an aliphatic hydrocarbon solvent solution.
  • This processing method includes the step of passing an aliphatic hydrocarbon solvent solution through a processing layer of a processing device according to the present invention.
  • the processing tool according to the present invention includes a first dispersion medium layer having an activated carbon concentration of 0.13 to 0.2% by mass in the processing layer, and an activated carbon concentration of 2.0 to 2.0%.
  • a first dispersion medium layer having an activated carbon concentration of 0.13 to 0.2% by mass in the processing layer, and an activated carbon concentration of 2.0 to 2.0%.
  • the present invention according to still another aspect relates to a method for fractionating dioxins contained in a dioxin solution.
  • This fractionation method includes a step of adding a dioxin solution to a purification layer containing a silver nitrate silica gel layer and a sulfate silica gel layer, and a step of supplying an aliphatic hydrocarbon solvent to the purification layer to which the dioxin solution has been added and passing it through.
  • the activated carbon-containing adsorption layer one containing activated carbon having a larger average micropore diameter than the activated carbon contained in the treatment layer of the treatment tool is used.
  • the dioxin solution added to the purification layer is supplied with an aliphatic hydrocarbon solvent, and some of the contaminants are decomposed or captured when passing through the purification layer, and the aliphatic hydrocarbon Dioxins dissolved in the solvent pass through the activated carbon-containing adsorption layer and the treatment layer in this order.
  • dioxins contained in the aliphatic hydrocarbon solvent dioxins including non-ortho PCBs, PCDDs and PCDFs are captured by the activated carbon-containing adsorption layer, and mono-ortho PCBs are captured by the treatment layer.
  • Paraffinic contaminants contained in the dioxins solution pass through the activated carbon-containing adsorption layer and treatment layer in a state of being dissolved in the aliphatic hydrocarbon solvent, and are separated from the dioxins.
  • the activated carbon-containing adsorption layer used in one embodiment of the fractionation method according to the present invention comprises granular activated carbon having a specific surface area of 700 to 1,600 m 2 /g and an average micropore diameter of 1.0 to 2.0 nm,
  • the activated carbon concentration is set to 0.75 to 1.0% by mass, including a dispersion medium for the activated carbon.
  • the processing tool according to the present invention includes a first dispersion medium layer having an activated carbon concentration of 0.13 to 0.2% by mass in the processing layer, and an activated carbon concentration of 2.0.
  • Aliphatic carbonization that passes through the activated carbon-containing adsorption layer in the order of the first dispersion medium layer and the second dispersion medium layer of the treatment layer using the above-described form containing the second dispersion medium layer of ⁇ 3.0% by mass.
  • a hydrogen solvent solution is passed through.
  • the processing equipment and processing method of the present invention can separate mono-ortho-PCBs and paraffinic contaminants contained in an aliphatic hydrocarbon solvent solution.
  • the method for fractionating dioxins according to the present invention comprises fractionating dioxins contained in a dioxin solution into dioxin groups including non-ortho-PCBs, PCDDs and PCDFs, and mono-ortho-PCBs containing less paraffinic contaminants. can be done.
  • FIG. 1 is a schematic longitudinal sectional view of one form of a fractionator for dioxins using a treatment device for a mono-ortho-PCBs-containing aliphatic hydrocarbon solvent solution according to the present invention.
  • 4 is a graph showing the recovery rate of non-ortho-PCBs in Experimental Example 13.
  • dioxins contained in a dioxin solution prepared from an environmental sample are classified into dioxins including non-ortho PCBs, PCDDs and PCDFs and mono-ortho PCBs in order to analyze and evaluate the state of contamination by dioxins in environmental samples. It is for fractionating into
  • Environmental samples are those that require evaluation of the state of contamination by dioxins. These include wastewater such as domestic wastewater, electrical insulating oil, incineration ash produced in incineration facilities, and exhaust gases discharged from the ambient air and incineration facilities.
  • wastewater such as domestic wastewater, electrical insulating oil, incineration ash produced in incineration facilities, and exhaust gases discharged from the ambient air and incineration facilities.
  • the dioxin solution can be prepared from the target environmental sample by appropriately selecting an extraction method from various solid-liquid extraction methods and liquid-liquid extraction methods.
  • the target dioxins solution can be prepared by collecting the contents in the gas with a filter or the like and applying the solid-liquid extraction method to the filter or the like.
  • the extraction solvent for preparing the dioxins solution is not particularly limited as long as it can dissolve dioxins, and is usually an organic solvent.
  • organic solvents include aliphatic hydrocarbon solvents, particularly nonpolar aliphatic hydrocarbon solvents having 5 to 10 carbon atoms such as n-hexane, isooctane, nonane and decane; aromatic hydrocarbon solvents such as toluene and xylene; Hydrogen solvents or polar organic solvents such as acetone, diethyl ether or dichloromethane are used.
  • the extract obtained by using the aromatic hydrocarbon solvent is preferably used as a dioxin solution after replacing the solvent with the above-described aliphatic hydrocarbon solvent.
  • Dioxins solutions usually contain various contaminants derived from environmental samples that require evaluation of dioxin contamination, such as polycyclic aromatic hydrocarbons such as halogenated diphenyl ethers (PCDEs) and paraffinic Includes substances with dioxins.
  • PCDEs are contaminants that affect the analytical results of PCDFs
  • paraffinic substances especially hydrocarbons with 20 or more carbon atoms
  • mono-ortho-PCBs are contaminants that affect the analytical results of mono-ortho-PCBs.
  • the fractionator 1 mainly consists of a first column 10, a second column 20 connected to the first column 10 so as to form a series of flow paths, and a It is equipped with a third column 30 (one form of processing equipment for the mono-ortho-PCBs-containing aliphatic hydrocarbon solvent solution according to the present invention) connected so as to form a series of channel systems, and is placed in an upright state. is set up.
  • the first column 10 is a cylindrical member with both ends open, and is made of a material having at least solvent resistance, chemical resistance and heat resistance, such as glass, resin or metal having these properties. is.
  • the first column 10 has a threaded portion (not shown) for connecting to the second column 20 on the outer peripheral surface of the lower end portion of the figure, and the purification layer 100 is filled inside.
  • the purification layer 100 is for treating some of the contaminants contained in the dioxin solution, for example, for decomposing the contaminants or capturing the contaminants or their decomposition products. It is a multi-layered silica gel layer in which a silver nitrate silica gel layer 110 and a sulfate silica gel layer 120 are arranged in this order downward in one column 10 .
  • the silver nitrate silica gel layer 110 is a layer formed by silver nitrate silica gel.
  • the silver nitrate silica gel used here is a granular silica gel having a particle size of about 40 to 210 ⁇ m (usually an activated silica gel whose activity is increased by heating). After uniformly adding an aqueous solution of silver nitrate to the surface of the silica gel, the moisture is removed by heating under reduced pressure. prepared by removing
  • the amount of silver nitrate supported on silica gel is preferably set to 5 to 20% based on the mass of silica gel. If the supported amount is less than 5%, the effect of treating impurities in the silver nitrate silica gel layer 110 may decrease. Conversely, if it exceeds 20%, the amount of silver ions in the silver nitrate silica gel layer 110 increases, so dioxins are likely to be captured, and some of the dioxins contained in the dioxin solution may be lost.
  • the water content of the silver nitrate silica gel layer 110 is generally preferably set to 2 to 10%, more preferably 3.5 to 5%, based on the mass of silica gel.
  • the water content is 2% or less, the activity of silver ions in the silver nitrate silica gel layer 110 is increased, so dioxins are likely to be captured, and some of the dioxins contained in the dioxin solution may be lost.
  • the moisture content exceeds 10%, the effect of treating contaminants in the silver nitrate silica gel layer 110 may decrease.
  • the packing density of the silver nitrate silica gel in the silver nitrate silica gel layer 110 is not particularly limited, but it is usually preferably set to 0.3 to 0.8 g/cm 3 , more preferably 0.4 to 0.7 g/cm 3 . is more preferable. If this density is less than 0.3 g/cm 3 , there is a possibility that the efficiency of treating contaminants will decrease. Conversely, if this density exceeds 0.8 g/cm 3 , it becomes difficult for the aliphatic hydrocarbon solvent, which will be described later, to pass through the purification layer 100 .
  • the sulfate silica gel layer 120 is a layer formed by sulfate silica gel.
  • the sulfuric acid silica gel used here is prepared by uniformly adding concentrated sulfuric acid to the surface of granular silica gel having a particle size of about 40 to 210 ⁇ m (usually activated silica gel whose activity is increased by heating). .
  • the amount of concentrated sulfuric acid added to silica gel is preferably set to 10 to 60% of the mass of silica gel.
  • the packing density of the sulfated silica gel in the sulfated silica gel layer 120 is not particularly limited, but it is usually preferably set to 0.3 to 1.1 g/cm 3 , more preferably 0.5 to 1.0 g/cm 3 . is more preferable. If this density is less than 0.3 g/cm 3 , there is a possibility that the efficiency of treating contaminants will decrease. Conversely, if the density exceeds 1.1 g/cm 3 , it becomes difficult for an aliphatic hydrocarbon solvent, which will be described later, to pass through the refining layer 100 .
  • the ratio of the silver nitrate silica gel layer 110 and the sulfate silica gel layer 120 is preferably set to 1.0 to 50 times the mass ratio of the sulfate silica gel layer 120 to the silver nitrate silica gel layer 110, preferably 3.0 to 30. A double setting is more preferable.
  • the mass ratio of the silica gel sulfate layer 120 exceeds 50 times, the proportion of the silver nitrate silica gel layer 110 is relatively small, so that the purification layer 100 has a reduced ability to treat contaminants contained in the dioxin solution, particularly adsorption of contaminants. may become inadequate.
  • the mass ratio of the sulfate silica gel layer 120 is less than 1.0 times, there is a possibility that the refining layer 100 may have insufficient ability to treat contaminants contained in the dioxin solution, particularly resolution of contaminants. be.
  • an active silica gel layer may be arranged between the silver nitrate silica gel layer 110 and the sulfate silica gel layer 120.
  • This active silica gel layer is intended to avoid chemical reaction between the silver nitrate silica gel layer 110 and the sulfate silica gel layer 120 due to direct contact.
  • the purification layer 100 may have an active silica gel layer arranged below the sulfate silica gel layer 120 .
  • This active silica gel layer adsorbs decomposed products produced by treating contaminants in the dioxin solution in the silver nitrate silica gel layer 110 and the sulfate silica gel layer 120, and sulfuric acid eluted from the sulfate silica gel layer 120. It is for suppressing the migration to the column 20 .
  • the second column 20 is basically a cylindrical member with both ends opened, and is formed using the same material as the first column 10 .
  • a first mounting portion 21 into which the lower end portion of the first column 10 can be inserted is formed on the upper end side of the second column 20 in the figure.
  • a threaded portion (not shown) is formed on the inner peripheral surface of the first mounting portion 21 .
  • the second column 20 has a first branch passage 22 with an opening at the lower end of the first mounting portion 21, and is connected to the third column 30 on the outer peripheral surface of the lower end portion of the figure. It has a threaded portion (not shown).
  • the inside of the second column 20 is filled with an activated carbon-containing adsorption layer 200 below the branch channel 22 .
  • the activated carbon-containing adsorption layer 200 is formed using a uniform mixture of activated carbon capable of adsorbing dioxins including non-ortho-PCBs, PCDDs and PCDFs among dioxins, and its dispersion medium.
  • the dispersion medium used here is one that does not substantially show adsorption ability for dioxins, such as granular silica gel (usually granular activated silica gel whose activity is increased by heating) or granular magnesium silicate (usually is granular activated magnesium silicate whose activity is enhanced by heating, and is described, for example, in Japanese Patent Application Laid-Open No. 2020-115111.).
  • the particle size of silica gel or magnesium silicate is generally preferably about 63 to 212 ⁇ m. Silica gel and magnesium silicate can also be mixed and used.
  • the activated carbon used in the activated carbon-containing adsorption layer 200 may have characteristics such as specific surface area and pore diameter that are typical for adsorbents, but the average micrometer is smaller than the activated carbon used in the treatment layer 300 of the third column 30 described later. It has a large pore size.
  • the activated carbon-containing adsorption layer 200 can selectively adsorb and trap dioxins including non-ortho-PCBs, PCDDs and PCDFs among dioxins.
  • Preferred activated carbons for example, have a specific surface area of 700 to 1,600 m 2 /g, especially 1,500 to 1,600 m 2 /g and an average micropore diameter of 1.0 to 2.0 nm, especially 1.0 nm. It is granular activated carbon of 4 to 1.6 nm.
  • the specific surface area of this activated carbon is a value measured by the BET method using nitrogen.
  • the average micropore diameter means the average pore diameter for micropores with a pore diameter of 2 nm or less among pores of various sizes possessed by activated carbon, and nitrogen adsorption and desorption isotherms at 77 K are measured. It is a measured value obtained by an analysis method called the t-plot method.
  • activated carbon having the preferred specific surface area and average micropore diameter When activated carbon having the preferred specific surface area and average micropore diameter is used in the activated carbon-containing adsorption layer 200, the effect of adsorbing dioxins including non-ortho-PCBs, PCDDs and PCDFs is enhanced in the activated carbon-containing adsorption layer 200, and the dioxins and mono-ortho It is possible to improve the precision of fractionation with PCBs.
  • the concentration of activated carbon in the activated carbon-containing adsorption layer 200 is not particularly limited. preferably set.
  • the packing density of the uniform mixture of activated carbon and its dispersion medium is not particularly limited, but it is usually preferably set to 0.2 to 0.5 g/cm 3 . More preferably, it is set to 0.3 to 0.4 g/cm 3 . If this density is less than 0.2 g/cm 3 , the trapping efficiency of the dioxin group including non-ortho-PCBs, PCDDs and PCDFs may decrease. Conversely, if this density exceeds 0.5 g/cm 3 , it becomes difficult for an aliphatic hydrocarbon solvent, which will be described later, to pass through the activated carbon-containing adsorption layer 200 .
  • the first column 10 is attached to the second column 20 by attaching the screw portion provided on the outer periphery of the lower end thereof to the screw portion provided on the inner peripheral surface of the first attachment portion 21 of the second column 20 . are fluid-tight and detachably connected.
  • the third column 30 is basically a cylindrical member with both ends opened, and is formed using the same material as the first column 10 .
  • a second mounting portion 31 into which the lower end portion of the second column 20 can be inserted is formed on the upper end side of the third column 30 in the figure.
  • a threaded portion (not shown) is formed on the inner peripheral surface of the second mounting portion 31 .
  • the third column 30 has a second branched passage 32 with an open end below the second mounting portion 31 .
  • the interior of the third column 30 is filled with the treatment layer 300 below the first branch 32 .
  • the treated layer 300 is formed using a uniform mixture of activated carbon capable of adsorbing mono-ortho-PCBs and its dispersion medium. are arranged in a stacked state in the opening direction of the third column 30, that is, in the vertical direction in the figure.
  • the dispersion medium used here is the same as that used in the activated carbon-containing adsorption layer 200 of the second column 20 .
  • the activated carbon used in the treatment layer 300 may have characteristics such as specific surface area and pore diameter that are typical for adsorbents, but the average micropore diameter is larger than that of the activated carbon used in the activated carbon-containing adsorption layer 200 of the second column 20. It's small. For example, a specific surface area of 700 to 1,600 m 2 /g, especially 1,500 to 1,600 m 2 /g and an average micropore diameter of 0.5 to 1.0 nm, especially 0.7 to 0.8 nm. Granular activated carbon is preferably used. The specific surface area and average micropore size of this activated carbon are the same as those of the activated carbon used in the activated carbon-containing adsorption layer 200 .
  • the concentration of activated carbon in the second dispersion medium layer 320 on the lower layer side is set higher than the concentration of activated carbon in the first treated layer 310 on the upper layer side.
  • the concentration of activated carbon in the first treatment layer 310 and the second dispersion medium layer 320 is not particularly limited.
  • the activated carbon concentration on the medium layer 310 side is set to 0.13 to 0.2% by mass, particularly 0.13 to 0.15% by mass, and the activated carbon concentration on the second dispersion medium layer 320 side is set to 1.0 to 3.0% by mass. It is preferably set to 0% by mass, particularly 2.0 to 3.0% by mass.
  • the proportion of each layer in the treatment layer 300 is not particularly limited, it is usually preferable to set it to be uniform.
  • the packing density of the uniform mixture of activated carbon and its dispersion medium is not particularly limited, but it is usually preferably set to 0.2 to 0.5 g/cm 3 . More preferably, it is set to 0.3 to 0.4 g/cm 3 . If this density is less than 0.2 g/cm 3 , the trapping efficiency of mono-ortho-PCBs may be reduced. Conversely, if this density exceeds 0.5 g/cm 3 , it becomes difficult for an aliphatic hydrocarbon solvent, which will be described later, to pass through the treatment layer 300 .
  • the second column 20 is attached to the third column 30 by attaching the threaded portion provided on the outer circumference of the lower end thereof to the threaded portion provided on the inner peripheral surface of the second mounting portion 31 of the third column 30 . are fluid-tight and detachably connected.
  • the size of the fractionator 1 can be appropriately set according to the amount of dioxin solution to be treated.
  • the first column 10 has an inner diameter of about 13 to 16 mm and a length of about 180 to 190 mm for the portion that can be filled with the purification layer 100, and the second column 20
  • the length of the part having an inner diameter of 5 to 7 mm and capable of being filled with the activated carbon-containing adsorption layer 200 is about 31 to 33 mm. It is preferable that each of them is set to about 29 to 31 mm.
  • the fractionator 1 is placed in an upright position as shown in FIG. 1, and the dioxin solution is added onto the purification layer 100 in the first column 10 through the opening at the top end. At this time, it is preferable to heat a portion of the purification layer 100, that is, the entire silver nitrate silica gel layer 110 and the upper portion of the sulfate silica gel layer 120.
  • the added dioxin solution permeates the upper portion of the silver nitrate silica gel layer 110 and is heated together with part of the purification layer 100 .
  • the heating temperature of the purification layer 100 is set to 35° C. or higher, preferably 50° C. or higher, more preferably 60° C. or higher. Due to this heating, some of the contaminants other than dioxins contained in the dioxin solution react with the purification layer 100 and are decomposed. If the heating temperature is lower than 35° C., the reaction between the contaminants and the purification layer 100 is difficult to progress, and some of the contaminants may easily remain in the dioxin extract, which will be described later.
  • the upper limit of the heating temperature is not particularly limited, it is usually preferably below the boiling temperature from the viewpoint of safety.
  • an aliphatic hydrocarbon solvent is supplied through the opening at the upper end to the refining layer 100 in the first column 10 and allowed to pass through. At this time, the heating of the purification layer 100 may be maintained or stopped.
  • the aliphatic hydrocarbon solvent to be supplied here is capable of dissolving dioxins, preferably an aliphatic saturated hydrocarbon solvent having 5 to 8 carbon atoms.
  • dioxins preferably an aliphatic saturated hydrocarbon solvent having 5 to 8 carbon atoms.
  • the aliphatic hydrocarbon solvent supplied to the refining layer 100 dissolves the dioxins contained in the dioxin solution that permeates the refining layer 100, decomposition products of contaminants, and contaminants remaining without being decomposed, Pass through purification layer 100 . At this time, some of the decomposition products and contaminants are adsorbed on the silver nitrate silica gel layer 110 and the sulfate silica gel layer 120, but the contaminants paraffinic substances and PCDEs pass through the purification layer 100 together with the aliphatic hydrocarbon solvent. .
  • the aliphatic hydrocarbon solvent passing through the purification layer 100 is naturally cooled when passing through the unheated portion, ie, the lower portion of the sulfated silica gel layer 120 .
  • the aliphatic hydrocarbon solvent that has passed through the purification layer 100 flows from the first column 10 to the second column 20, passes through the activated carbon-containing adsorption layer 200, and flows into the third column 30.
  • dioxin groups including non-ortho-PCBs, PCDDs and PCDFs are adsorbed and captured by the activated carbon-containing adsorption layer 200, and are captured from the aliphatic hydrocarbon solvent. separated.
  • the aliphatic hydrocarbon solvent that has passed through the activated carbon-containing adsorption layer 200 and flowed into the third column 30 passes through the treatment layer 300 of the third column 30, flows out from the opening at the lower end of the third column 30, and is discarded. be.
  • the mono-ortho-PCBs and PCDEs contained in the aliphatic hydrocarbon solvent are adsorbed and captured by the activated carbon of the first dispersion medium layer 310 and the second dispersion medium layer 320 of the treatment layer 300, and are removed from the aliphatic hydrocarbon solvent. separated.
  • paraffinic substances contained in the aliphatic hydrocarbon solvent pass through the treatment layer 300 together with the aliphatic hydrocarbon solvent and are discarded. As a result, the mono-ortho-PCBs trapped in the treatment layer 300 are separated from the paraffinic material.
  • the dioxins contained in the dioxins solution are separated into the fraction of dioxins containing non-ortho-PCBs, PCDDs and PCDFs trapped in the activated carbon-containing adsorption layer 200 of the second column 20, and the treated layer of the third column.
  • 300 fractions of mono-ortho-PCBs captured and each fraction can be extracted by the following procedure.
  • the upper end opening of the first column 10 and the opening of the first branch channel 22 of the second column 20 are airtightly closed, and from the lower end side opening of the third column 30, An extraction solvent for dioxins is supplied and passed through the treatment layer 300 .
  • a solvent such as toluene or benzene
  • suitable for general gas chromatography as a method for analyzing dioxins contained in environmental samples.
  • a mixed solvent in which an aliphatic hydrocarbon solvent or an organic chlorine solvent is added to toluene or benzene can also be used.
  • Aliphatic hydrocarbon solvents used in the mixed solvent are, for example, n-pentane, n-hexane, n-heptane, n-octane, isooctane or cyclohexane.
  • Organic chlorine solvents are, for example, dichloromethane, trichloromethane or tetrachloromethane.
  • a bioassay method can be employed if necessary, and in that case, a hydrophilic solvent such as dimethylsulfoxide (DMSO) or methanol is used as an extraction solvent.
  • DMSO dimethylsulfoxide
  • the extraction solvent supplied to the treatment layer 300 extracts the mono-ortho-PCBs trapped in the treatment layer 300, flows to the second branch 32 of the third column 30, and is discharged from the second branch 32.
  • the extraction solvent discharged from the second branch 32 that is, the extraction solvent that has passed through the treatment layer 300 is secured in this way, an extract of mono-ortho-PCBs, that is, a sample for analysis of mono-ortho-PCBs is obtained.
  • the opening at the upper end of the first column 10 and the opening of the second branch channel 32 of the third column 30 are airtightly closed, and an extraction solvent for dioxins is supplied from the opening on the lower end side of the third column 30 for treatment. It is passed through layer 300 and activated carbon-containing adsorption layer 200 in that order.
  • the extraction solvent used here is the same as described above.
  • the extraction solvent supplied to the activated carbon-containing adsorption layer 200 through the treatment layer 300 extracts the above-mentioned dioxin groups captured by the activated carbon-containing adsorption layer 200, flows into the first branch 22 of the second column 20, and flows into the first branch. It is discharged from the passage 22.
  • the extraction solvent discharged from the first branch 22 that is, the extraction solvent that has passed through the activated carbon-containing adsorption layer 200 is secured in this way, the extract of dioxins trapped in the activated carbon-containing adsorption layer 200, that is, non-ortho-PCBs , PCDDs and PCDFs are obtained for analysis.
  • the fractionator 1 By using the fractionator 1, it is possible to separately obtain a sample for analysis of dioxins containing non-ortho-PCBs, PCDDs and PCDFs and a sample for analysis of mono-ortho-PCBs from the dioxin solution. Moreover, the sample for analysis of the dioxin group is one in which contamination with PCDEs is suppressed, and the sample for analysis of mono-ortho-PCBs is one in which contamination with paraffinic substances is suppressed.
  • each dioxin contained in the dioxin solution can be analyzed with high accuracy by analyzing each analysis sample by GC/MS, particularly by high-resolution GC/MS.
  • the fractionator 1 according to the above embodiment.
  • the order of the silver nitrate silica gel layer 110 and the sulfate silica gel layer 120 may be reversed.
  • contaminants contained in the organic halogen compound solution are mainly decomposed in the sulfate silica gel layer 130 , and some of the decomposition products and contaminants are captured mainly in the silver nitrate silica gel layer 110 .
  • the treated layer 300 of the third column 30 has a concentration of activated carbon in the first dispersion medium layer 310 on the upstream side in the passage direction of the aliphatic hydrocarbon solvent.
  • the activated carbon concentration in the layer 320 is set high, the activated carbon concentration is reversed, that is, the activated carbon concentration in the second dispersion medium layer 320 on the downstream side is set lower than that in the first dispersion medium layer 310 on the upstream side. Even when set, mono-ortho-PCBs and paraffinic materials contained in the aliphatic hydrocarbon solvent solution can be separated.
  • the treated layer 300 may be composed of three or more treated layers having different concentrations of activated carbon.
  • the activated carbon concentration in each treatment layer may be set so that the activated carbon concentration increases in order from the upstream layer toward the downstream layer in the passage direction of the aliphatic hydrocarbon solvent.
  • the activated carbon concentration may be set to decrease in order from the layer toward the downstream layer.
  • the second column 20 and the third column 30 may not have the first branch 22 and the second branch 32, respectively.
  • the dioxin groups and monoortho-PCBs trapped in the activated carbon-containing adsorption layer 200 of the second column 20 and the treatment layer 300 of the third column 30, respectively are separated from the first Extraction by removing the second column 20 from the column 10, removing the third column 30 from the second column 20, and supplying an extraction solvent individually to each of the separated second column 20 and the third column 30 can do.
  • the second column 20 of the above-described embodiment uses the activated carbon-containing adsorption layer 200 for non-ortho-PCBs, PCDDs and PCDFs.
  • Other forms of adsorbent layers that can selectively capture the dioxin group containing them can be modified. For example, using an adsorption layer containing an activated carbon-containing silica gel layer and a graphite-containing silica gel layer described in International Publication No. 2014/192055 (Patent Document 1 cited above) in the second column 20 instead of the activated carbon-containing adsorption layer 200. can be done.
  • FIG. 1 referred to in the above embodiment shows an outline of each part of the fractionator 1, and does not accurately reflect the structure, shape, size, ratio, etc. of each part.
  • a fractionator 1 having the configuration shown in FIG. 1 was manufactured with the specifications of each part set as follows.
  • ⁇ First column 10> Laminating 2.5 g of silver nitrate silica gel (packing height of 32 mm) on top of 8.2 g of sulfate silica gel (packing height of 67 mm) in the first column 10 having an outer diameter of 18 mm, an inner diameter of 15 mm, and a length of 190 mm. to form the purification layer 100.
  • the silica gel sulfate and silver nitrate silica gel used here are as follows.
  • Sulfate silica gel By uniformly adding concentrated sulfuric acid (trade name “concentrated sulfuric acid” 190-04675 of Fuji Film Wako Pure Chemical Co., Ltd., for precision analysis) to activated silica gel (manufactured by Fuji Film Wako Pure Chemical Co., Ltd.) and then drying The prepared silica gel sulfate was used. The amount of concentrated sulfuric acid added to the activated silica gel was set so that the amount of sulfuric acid to the activated silica gel was 44% by mass.
  • concentrated sulfuric acid trade name “concentrated sulfuric acid” 190-04675 of Fuji Film Wako Pure Chemical Co., Ltd.
  • Silver nitrate silica gel Activated silica gel (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added with an aqueous solution of silver nitrate (trade name of FUJIFILM Wako Pure Chemical Industries, Ltd., "Silver Nitrate” 198-00835, reagent special grade) dissolved in distilled water, and the mixture was uniformly mixed. Mixed. Silver nitrate silica gel prepared by heating and drying this mixture at 70° C. under reduced pressure using a rotary evaporator was used.
  • an aqueous silver nitrate solution having a silver nitrate amount set to 10% with respect to the weight of the activated silica gel was used, and the silver nitrate amount in the silver nitrate silica gel was set to 10% based on the weight of the activated silica gel.
  • An activated carbon-containing adsorption layer 200 is formed by filling 0.295 g of activated carbon-mixed activated silica gel to a height of 31.5 mm in a second column 20 having an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 39 mm. .
  • the activated carbon-mixed activated silica gel used here is activated carbon (manufactured by Futamura Chemical Co., Ltd.) having a specific surface area of 1,580 m 2 /g and an average micropore diameter of 1.55 nm. It is uniformly mixed with activated silica gel of 63 to 212 ⁇ m (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.).
  • a third column 30 having an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 38 mm is filled with a treatment layer 300 having a height of 29 mm.
  • the treated layer 300 forms a second dispersion medium layer 320 by filling high-concentration activated carbon-containing magnesium silicate to a height of 25 mm.
  • the first dispersion medium layer 310 is formed by stacking and filling so as to have a height of 5 mm.
  • the magnesium silicate containing high-concentration activated carbon and the magnesium silicate containing low-concentration activated carbon used here are as follows.
  • Magnesium silicate with high concentration of activated carbon Activated carbon (manufactured by Kuraray Co., Ltd.) having a specific surface area of 1,510 m 2 /g and an average micropore diameter of 0.78 nm was used at concentrations of 1.6% by mass (Experimental example 1) and 2.0% by mass (Experimental example 2). Alternatively, it is uniformly mixed with magnesium silicate (trade name “Florisil, 75 to 150 ⁇ m” manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) to 3.0% by mass (Experimental Example 3).
  • Magnesium silicate with low concentration of activated carbon Activated carbon (manufactured by Kuraray Co., Ltd.) having a specific surface area of 1,510 m 2 /g and an average micropore diameter of 0.78 nm was mixed with magnesium silicate (a product of Fujifilm Wako Pure Chemical Industries, Ltd.) so that its concentration was 0.2% by mass. name "Florisil, 75-150 ⁇ m”) and homogeneously mixed.
  • the dioxins contained in the sample liquid were fractionated.
  • the sample solution used here was obtained by extracting dioxins contained in 5 g of soil by the Soxhlet extraction method using toluene, dissolving the extracted dioxins in n-hexane, and concentrating to 2 mL.
  • This sample solution contains trace amounts of PCDEs and paraffin-based substances derived from the soil as contaminants, along with dioxins.
  • the total amount of the sample liquid and a dioxin standard solution labeled with 13 C 12 (trade name of "DFP-LCS-B") was added, and the entire silver nitrate silica gel layer 110 and the upper half of the sulfate silica gel layer 120 were heated to 60°C.
  • 85 mL of n-hexane is supplied from the opening at the upper end of the first column 10, and this n-hexane is passed through the purification layer 100, the activated carbon-containing adsorption layer 200 of the second column 20, and the treatment layer 300 of the third column 30. was discharged from the opening at the lower end of the third column 30 with a
  • the opening at the upper end of the first column 10 and the opening of the first branch channel 22 of the second column 20 were airtightly closed, and 1.4 mL of toluene was supplied from the opening at the lower end of the third column 30 .
  • the total amount of toluene that passed through the treatment layer 300 was recovered through the second branch 32 to obtain a first analysis sample.
  • the opening at the upper end of the first column 10 and the opening of the second branch channel 32 of the third column 30 were closed, and 1.5 mL of toluene was supplied from the opening at the lower end of the third column 30 .
  • the total amount of toluene that passed through the treated layer 300 of the third column 30 and the activated carbon-containing adsorption layer 200 of the second column 20 was recovered through the first branch 22 to obtain a second analytical sample.
  • a dioxin standard solution labeled with 13 C 12 (Wellington's trade name "DF-SS-A") was added to each of the first analysis sample and the second analysis sample, and each analysis sample was subjected to HRGC.
  • the recovery rate of dioxins in each sample for analysis was calculated by performing quantitative analysis individually by the /HRMS method. Calculated recoveries are based on the dioxins in the dioxin standard solution used. Table 1 shows the results. In addition, Table 1 shows the results of calculation of the recovery rate for some of the dioxin groups in order to grasp the tendency of the recovery rate for the second analysis sample.
  • the dioxins contained in the sample liquid are fractionated into the second analysis sample containing non-ortho-PCBs, PCDDs and PCDFs, and the first analysis sample containing mono-ortho-PCBs. Moreover, it can be seen that the recovery rate of mono-ortho-PCBs tends to be improved when the activated carbon concentration in the second dispersion medium layer 320 of the treated layer 300 is 2.0% by mass or more.
  • Filler A activated silica gel containing low-concentration activated carbon: Activated silica (Kanto Chemical Co. , Ltd. made) and uniformly mixed.
  • Filler B activated silica gel containing high-concentration activated carbon: Activated carbon with a specific surface area of 1,510 m 2 /g and an average micropore diameter of 0.78 nm (manufactured by Kuraray Co., Ltd.) is mixed with activated silica gel with a particle size of 63 to 210 ⁇ m (Kanto Chemical Co., Ltd.) so that the concentration becomes 3.0% by mass. made) and uniformly mixed.
  • FIG. 2 shows the recovery rate of mono-ortho-PCBs contained in the extract from the treated layer 300 .
  • FIG. 3 shows a scan chromatogram measured for the extract from the treatment layer 300. As shown in FIG.
  • the treatment layer 300 is formed in a laminated state of filler A (activated silica gel containing low-concentration activated carbon) and filler B (activated silica gel containing high-concentration activated carbon), and filler B (contains high-concentration activated carbon).
  • filler A activated silica gel containing low-concentration activated carbon
  • filler B activated silica gel containing high-concentration activated carbon
  • filler B contains high-concentration activated carbon
  • Experimental Example 4 in which the treated layer 300 was formed only with filler B (activated silica gel containing high-concentration activated carbon) and treated layer 300 were formed with filler A (activated silica gel containing low-concentration activated carbon) and filler B (high-concentration activated carbon).
  • Experimental Example 5 in which the ratio of filler B (activated silica gel containing high-concentration activated carbon) was increased, paraffinic substances were mixed in the extract of mono-ortho-PCBs.
  • the treated layer 300 should be composed of activated silica gel containing low-concentration activated carbon and activated silica gel containing high-concentration activated carbon. It can be seen that it is necessary to suppress the ratio of the activated silica gel containing high-concentration activated carbon, or to suppress the concentration of activated carbon in the activated silica gel containing high-concentration activated carbon.
  • a standard solution of dioxins labeled with 13 C 12 (trade name “DFP-LCS-B” from Wellington) was processed.
  • a dioxin standard solution was added to the silver nitrate silica gel layer 110 through the opening at the top of the first column 10, and the entire silver nitrate silica gel layer 110 and the upper half of the sulfate silica gel layer 120 were heated to 60°C.
  • 85 mL of n-hexane is supplied from the opening at the upper end of the first column 10, and this n-hexane is passed through the purification layer 100, the activated carbon-containing adsorption layer 200 of the second column 20, and the treatment layer 300 of the third column 30.
  • a dioxin standard solution labeled with 13 C 12 (Wellington's trade name "DF-SS-A") is added to the obtained analytical sample, and the analytical sample is quantitatively analyzed by the HRGC/HRMS method. , the recovery rate of dioxins in the analytical sample was calculated. Calculated recoveries are based on the dioxins in the dioxin standard solution used. The results are shown in FIG.
  • the activated carbon-containing adsorption layer 200 adsorbs mono-ortho-PCBs together with dioxins including non-ortho-PCBs, PCDDs and PCDFs. It can be seen that it is preferable to set the activated carbon concentration to 1% by mass or less.
  • the sample liquid prepared from the bottom sediment was processed.
  • the sample solution used here was obtained by extracting dioxins contained in 2 g of bottom sediment by the Soxhlet extraction method using toluene, dissolving the extracted dioxins in n-hexane, and concentrating to 2 mL.
  • the total amount of the sample liquid and a dioxin standard solution labeled with 13 C 12 (trade name of "DFP-LCS-B") was added, and the entire silver nitrate silica gel layer 110 and the upper half of the sulfate silica gel layer 120 were heated to 60°C. Then, 85 mL of n-hexane is supplied from the opening at the upper end of the first column 10, and this n-hexane is passed through the purification layer 100, the activated carbon-containing adsorption layer 200 of the second column 20, and the treatment layer 300 of the third column 30.
  • a dioxin standard solution labeled with 13 C 12 (Wellington's trade name "DF-SS-A") was added to each of the first analysis sample and the second analysis sample, and each analysis sample was subjected to HRGC.
  • the recovery rate of non-ortho-PCBs in each analysis sample was calculated by quantitatively analyzing each by the /HRMS method. Calculated recoveries are based on the dioxins in the dioxin standard solution used.
  • the results of Experimental Example 13 are shown in FIG. 5, and the results of Experimental Example 14 are shown in FIG.
  • the recovery rate results shown in FIGS. 5 and 6 are obtained by adding up the recovery rate of non-ortho-PCBs recovered in the first analysis sample and the recovery rate of non-ortho-PCBs recovered in the second analysis sample. It is a thing.
  • the chromatograms of the first analysis sample and the second analysis sample obtained in Experimental Example 14 are shown in FIG. According to FIG. 7, the detection peak of PCDEs is small in the second analysis sample, whereas the detection peak of PCDEs is large in the first analysis sample. From this, PCDEs contained in the sample liquid pass through the activated carbon-containing adsorption layer 200 of the second column 20 together with n-hexane and are trapped in the treatment layer 300 of the third column 30. Therefore, non-ortho-PCBs, PCDDs and It can be seen that contamination into the second analysis sample containing PCDFs is suppressed.
  • third column 100 purification layer 110 silver nitrate silica gel layer 120 sulfate silica gel layer 200 activated carbon-containing adsorption layer 300 treatment layer 310 first dispersion medium layer 320 second dispersion medium layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

第3カラム(30)に充填された処理層(300)は、モノオルソPCBsを吸着可能な活性炭とその分散媒である活性シリカゲル等との均一な混合物を用いて形成されたものであり、活性炭の濃度が互いに異なる第1分散媒層(310)と第2分散媒層(320)とを積層状態で配置したものである。モノオルソPCBsとパラフィン系物質とを含む脂肪族炭化水素溶媒溶液を第2カラム(20)から処理層(300)に供給して通過させると、脂肪族炭化水素溶媒溶液中のモノオルソPCBsは処理層(300)中の活性炭に吸着され、処理層(300)に残留する。一方、脂肪族炭化水素溶媒溶液中のパラフィン系物質は、処理層(300)を通過し、第3カラム(30)から排出される。この結果、脂肪族炭化水素溶媒溶液中のモノオルソPCBsとパラフィン系夾雑物とが分離される。

Description

モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具
 本発明は、モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具、特に、脂肪族炭化水素溶媒溶液に含まれるモノオルソポリ塩化ビフェニル類とパラフィン系夾雑物とを分離するための処理器具に関する。
 本願は、2021年12月21日に日本に出願された特願2021-207623号に基づき優先権を主張し、その内容をここに援用する。
 毒性の強い物質であるダイオキシン類による環境汚染の懸念から、廃棄物焼却施設からの排気ガス、大気、工場排水、海洋水、河川水、湖沼水、廃棄物焼却施設において発生する飛灰(フライアッシュ)、土壌および浚渫土などについてダイオキシン類による汚染状況の分析および評価が求められている。
 ダイオキシン類は、一般に、ポリ塩化ジベンゾパラジオキシン(PCDDs)、ポリ塩化ジベンゾフラン(PCDFs)およびダイオキシン様ポリ塩化ビフェニル(DL-PCBs)を総称する用語である。DL-PCBsは、ポリ塩化ビフェニル類(PCBs)の209種類の同族体のうち、PCDDsおよびPCDFsと同様の毒性を示すPCBsを示す用語であり、ノンオルソポリ塩化ビフェニル類(ノンオルソPCBs)およびモノオルソポリ塩化ビフェニル類(モノオルソPCBs)を含む。
 大気や土壌等の環境試料についてダイオキシン類による汚染を評価する際には、試料からダイオキシン類を抽出し、分析用試料を確保する。ここで、試料が土壌等の固形物の場合、例えば、ソックスレー抽出法により固形物からダイオキシン類を抽出し、これを分析用試料とする。また、試料が大気や工場排水等の流体の場合、先ず、ダイオキシン類の採取に適したフイルタを用いて流体中のダイオキシン類を捕捉して採取する。そして、フイルタに採取されたダイオキシン類を溶媒により抽出し、これを分析用試料とする。このようにして得られた分析用試料をガスクロマトグラフ質量分析装置(GC/MS)等の分析装置に適用すると、ダイオキシン類による環境試料の汚染状況を定量的に分析・評価することができる。
 ところが、ダイオキシン類の分析用試料をGC/MS、特に、高分解能GC/MSにより分析したとき、モノオルソPCBsがPCDDsおよびPCDFsの定量分析結果に影響し、また、PCDDsおよびPCDFsがモノオルソPCBsの定量分析結果に影響する可能性があることから、分析結果の信頼性に疑いの生じることがある。そこで、ダイオキシン類の分析においては、分析用試料をPCDDsおよびPCDFsを含む画分とモノオルソPCBsを含む画分とに分画し、各画分を個別に分析することが試みられている。 
 例えば、特許文献1は、両端が開放された管体内に、活性炭含有シリカゲル層、グラファイト含有シリカゲル層およびアルミナ層をこの順に含む吸着層を充填したダイオキシン類の分画器具が記載されている。この分画器具を用いてダイオキシン類の分析用試料に含まれるダイオキシン類を分画するときは、活性炭含有シリカゲル層に分析用試料を注入し、続いて活性炭含有シリカゲル層へダイオキシン類を溶解可能な脂肪族炭化水素溶媒を供給する。供給された脂肪族炭化水素溶媒は分析用試料中のダイオキシン類を溶解し、吸着層を通過する。この際、ダイオキシン類のうち、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群が活性炭含有シリカゲル層またはグラファイト含有シリカゲル層に吸着され、モノオルソPCBsがアルミナ層に吸着されることから、分析用試料に含まれるダイオキシン類は、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群とモノオルソPCBsとに分画される。そして、活性炭含有シリカゲル層およびグラファイト含有シリカゲル層に吸着されたノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群の抽出液とアルミナ層に吸着されたモノオルソPCBsの抽出液とを個別に分析すると、分析用試料に含まれるダイオキシン類を高精度に分析可能である。
 ダイオキシン類の分析用試料は、その調製過程において様々な夾雑物が混入する。特に、環境試料はパラフィン系の夾雑物を含むことが多く、それが分析用試料に混入することが多い。パラフィン系夾雑物が混入した分析用試料を上述の分画器具を用いて分画すると、パラフィン系夾雑物は、脂肪族炭化水素溶媒とともに活性炭含有シリカゲル層およびグラファイト含有シリカゲル層を通過し、アルミナ層において捕捉される。したがって、アルミナ層からのモノオルソPCBsの抽出液は、パラフィン系夾雑物の混入を避け難い。モノオルソPCBsの抽出液に混入したパラフィン系夾雑物は、モノオルソPCBsの分析精度を損なう可能性がある。
国際公開第2014/192055
 本発明は、脂肪族炭化水素溶媒溶液に含まれるモノオルソPCBsとパラフィン系夾雑物とを分離しようとするものである。
 本発明は、脂肪族炭化水素溶媒溶液に含まれるモノオルソPCBsとパラフィン系夾雑物とを分離するための処理器具に関するものである。この処理器具は、両端が開口する管体、および、活性炭と、当該活性炭の分散媒とを含む、管体内に充填された処理層を含む。処理層は、管体の開口方向に順に配置された活性炭の濃度が異なる複数の分散媒層を含む。
 この処理器具の処理層へ脂肪族炭化水素溶媒溶液を供給して通過させると、脂肪族炭化水素溶媒溶液中のモノオルソPCBsは処理層の活性炭に吸着され、処理層に残留する。一方、脂肪族炭化水素溶媒溶液中のパラフィン系夾雑物は、処理層を通過し、処理器具から排出される。これにより、脂肪族炭化水素溶媒溶液中のモノオルソPCBsとパラフィン系夾雑物とが分離される。
 本発明の処理器具において、処理層の活性炭は、通常、比表面積が700~1,600m/gでありかつ平均ミクロ孔径が0.5~1.0nmの粒状の活性炭である。この場合、処理層の一形態は、活性炭の濃度が0.13~0.2質量%の第1分散媒層と、活性炭の濃度が2.0~3.0質量%の第2分散媒層とを含む。
 本発明の処理器具において、処理層の分散媒は、例えば、シリカゲルおよびケイ酸マグネシウムのうちの少なくとも一つである。
 他の観点に係る本発明は、脂肪族炭化水素溶媒溶液に含まれるモノオルソポリ塩化ビフェニル類とパラフィン系夾雑物とを分離するための処理方法に関する。この処理方法は、本発明に係る処理器具の処理層に脂肪族炭化水素溶媒溶液を通過させる工程を含む。
 本発明に係る処理方法の一形態は、本発明に係る処理器具として処理層における活性炭の濃度が0.13~0.2質量%の第1分散媒層と、活性炭の濃度が2.0~3.0質量%の第2分散媒層とを含む上述の形態のものを用い、処理層の第1分散媒層と第2分散媒層との順に前記脂肪族炭化水素溶媒溶液を通過させる。
 さらに他の観点に係る本発明は、ダイオキシン類溶液に含まれるダイオキシン類を分画するための方法に関する。この分画方法は、硝酸銀シリカゲル層と硫酸シリカゲル層とを含む精製層にダイオキシン類溶液を添加する工程と、ダイオキシン類溶液を添加した精製層へ脂肪族炭化水素溶媒を供給して通過させる工程と、精製層を通過した脂肪族炭化水素溶媒を活性炭含有吸着層へ供給して通過させる工程と、活性炭含有吸着層を通過した脂肪族炭化水素溶媒を本発明に係る処理器具の処理層へ供給して通過させる工程とを含む。この分画方法では、活性炭含有吸着層として、処理器具の処理層に含まれる活性炭よりも平均ミクロ孔径が大きな活性炭を含むものを用いる。
 この分画方法において、精製層に添加されたダイオキシン類溶液は、脂肪族炭化水素溶媒が供給されることで精製層を通過する際に夾雑物の一部が分解または捕捉され、脂肪族炭化水素溶媒にダイオキシン類が溶解した状態で活性炭含有吸着層および処理層の順に通過する。この際、脂肪族炭化水素溶媒に含まれるダイオキシン類のうちのノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群が活性炭含有吸着層により捕捉され、モノオルソPCBsが処理層において捕捉される。また、ダイオキシン類溶液に含まれるパラフィン系夾雑物は、脂肪族炭化水素溶媒に溶解した状態で活性炭含有吸着層および処理層を通過し、ダイオキシン類から分離される。
 本発明に係る分画方法の一形態において用いられる活性炭含有吸着層は、比表面積が700~1,600m/gでありかつ平均ミクロ孔径が1.0~2.0nmの粒状の活性炭と、当該活性炭の分散媒とを含み、活性炭の濃度が0.75~1.0質量%に設定されている。
 本発明に係る分画方法の一形態では、本発明に係る処理器具として処理層における活性炭の濃度が0.13~0.2質量%の第1分散媒層と、活性炭の濃度が2.0~3.0質量%の第2分散媒層とを含む上述の形態のものを用い、処理層の第1分散媒層と第2分散媒層との順に活性炭含有吸着層を通過した脂肪族炭化水素溶媒溶液を通過させる。
 本発明の処理器具および処理方法は、脂肪族炭化水素溶媒溶液に含まれるモノオルソPCBsとパラフィン系夾雑物とを分離することができる。
 本発明に係るダイオキシン類の分画方法は、ダイオキシン類溶液に含まれるダイオキシン類をノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群と、パラフィン系夾雑物の混入を抑えたモノオルソPCBsとに分画することができる。
本発明に係るモノオルソPCBs含有脂肪族炭化水素溶媒溶液の処理器具を用いたダイオキシン類の分画器の一形態の概要縦断面図。 実験例4~7のそれぞれについて、モノオルソPCBsの回収率を示すグラフ。 実験例4~7のそれぞれについて、モノオルソPCBsの抽出液について測定したスキャンクロマトグラム。 実験例8~12のそれぞれにおけるダイオキシン類の回収率を示すグラフ。 実験例13におけるノンオルソPCBsの回収率を示すグラフ。 実験例14におけるノンオルソPCBsの回収率を示すグラフ。 実験例14で得られた第1分析用試料および第2分析用試料のクロマトグラム。
 以下に、本発明に係るモノオルソPCBs含有脂肪族炭化水素溶媒溶液の処理器具の一形態を用いたダイオキシン類の分画方法を説明する。この分画方法は、環境試料についてダイオキシン類による汚染状況を分析、評価するために、環境試料から調製したダイオキシン類溶液に含まれるダイオキシン類をノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群とモノオルソPCBsとに分画するためのものである。
 環境試料は、ダイオキシン類による汚染状況等の評価を必要とするもの、例えば、底質や土壌等の水圏底部若しくは陸上表面の物質層、河川水、湖沼水および地下水などの環境水、工業排水や生活排水等の排水、電気絶縁油、焼却施設において産出される焼却灰、または、環境大気や焼却施設から排出される排ガス等である。環境試料が固体状や液状の場合、ダイオキシン類溶液は、種々の固液抽出法や液液抽出法から適宜抽出法を選択することで対象の環境試料から調製することができる。また、環境試料が気体状の場合、気体中の含有物をフイルタ等により捕集し、このフイルタ等に対して固液抽出法を適用することで目的のダイオキシン類溶液を調製することができる。
 ダイオキシン類溶液を調製するための抽出用の溶媒は、ダイオキシン類を溶解可能なものであれば特に限定されるものではなく、通常は有機溶媒である。有機溶媒としては、例えば、脂肪族炭化水素溶媒、特に、n-ヘキサン、イソオクタン、ノナン若しくはデカンなどの炭素数が5~10の無極性の脂肪族炭化水素溶媒、トルエン若しくはキシレンなどの芳香族炭化水素溶媒またはアセトン、ジエチルエーテル若しくはジクロロメタンなどの極性有機溶媒が用いられる。なお、芳香族炭化水素溶媒を用いることで得られた抽出液は、溶媒を上述の脂肪族炭化水素溶媒に置換してダイオキシン類溶液として用いるのが好ましい。
 ダイオキシン類溶液は、通常、ダイオキシン類による汚染状況等の評価を必要とする環境試料に由来する種々の夾雑物、例えば、ハロゲン化ジフェニルエーテル類(PCDEs)等の多環芳香族炭化水素類やパラフィン系物質をダイオキシン類とともに含む。PCDEsは、PCDFsの分析結果に影響する夾雑物であり、パラフィン系物質(特に、炭素数が20以上の炭化水素。)はモノオルソPCBsの分析結果に影響する夾雑物である。
 図1を参照し、本発明に係るモノオルソPCBs含有脂肪族炭化水素溶媒溶液の処理器具の一形態を用いたダイオキシン類の分画器を説明する。図において、分画器1は、主に、第1カラム10と、第1カラム10に対して一連の流路系が形成されるように連結された第2カラム20と、第2カラム20に対して一連の流路系が形成されるように連結された第3カラム30(本発明に係るモノオルソPCBs含有脂肪族炭化水素溶媒溶液の処理器具の一形態)とを備えており、起立状態に設置されている。
 第1カラム10は、両端が開口した円筒状の部材であり、少なくとも耐溶媒性、耐薬品性および耐熱性を有する材料、例えば、これらの特性を備えたガラス、樹脂または金属により形成されたものである。第1カラム10は、図の下端部分の外周面に第2カラム20に対して連結するための螺子部(図示省略)を有しており、内部に精製層100が充填されている。精製層100は、ダイオキシン類溶液に含まれる夾雑物の一部を処理するためのもの、例えば、夾雑物を分解したり夾雑物またはその分解生成物を捕捉したりするためのものであり、第1カラム10内において下方に向けて順に硝酸銀シリカゲル層110と硫酸シリカゲル層120とをこの順に積層状態で配置した多層シリカゲル層である。
 硝酸銀シリカゲル層110は、硝酸銀シリカゲルにより形成される層である。ここで用いられる硝酸銀シリカゲルは、粒径が40~210μm程度の粒状のシリカゲル(通常は加熱により活性度を高めた活性シリカゲル)の表面に硝酸銀の水溶液を均一に添加した後、減圧加熱により水分を除去することで調製されたものである。シリカゲルに対する硝酸銀の担持量は、通常、シリカゲルの質量基準で5~20%に設定するのが好ましい。この担持量が5%未満の場合、硝酸銀シリカゲル層110において夾雑物の処理効果が低下する可能性がある。逆に、20%を超える場合、硝酸銀シリカゲル層110において銀イオン量が多くなることからダイオキシン類が捕捉されやすくなり、ダイオキシン類溶液に含まれるダイオキシン類の一部を逸失する可能性がある。
 硝酸銀シリカゲル層110の含水率は、一般にはシリカゲルの質量基準で2~10%に設定するのが好ましく、3.5~5%に設定するのがより好ましい。含水率が2%以下の場合、硝酸銀シリカゲル層110において銀イオンの活性が高まることからダイオキシン類が捕捉されやすくなり、ダイオキシン類溶液に含まれるダイオキシン類の一部を逸失する可能性がある。逆に、含水率が10%を超える場合、硝酸銀シリカゲル層110において夾雑物の処理効果が低下する可能性がある。
 硝酸銀シリカゲル層110における硝酸銀シリカゲルの充填密度は、特に限定されるものではないが、通常、0.3~0.8g/cmに設定するのが好ましく、0.4~0.7g/cmに設定するのがより好ましい。この密度が0.3g/cm未満の場合、夾雑物の処理効率が低下する可能性がある。逆に、この密度が0.8g/cmを超える場合、後記する脂肪族炭化水素溶媒が精製層100を通過しにくくなる。
 硫酸シリカゲル層120は、硫酸シリカゲルにより形成される層である。ここで用いられる硫酸シリカゲルは、粒径が40~210μm程度の粒状のシリカゲル(通常は加熱により活性度を高めた活性シリカゲル)の表面に濃硫酸を均一に添加することで調製されたものである。シリカゲルに対する濃硫酸の添加量は、通常、シリカゲルの質量の10~60%に設定するのが好ましい。
 硫酸シリカゲル層120における硫酸シリカゲルの充填密度は、特に限定されるものではないが、通常、0.3~1.1g/cmに設定するのが好ましく、0.5~1.0g/cmに設定するのがより好ましい。この密度が0.3g/cm未満の場合、夾雑物の処理効率が低下する可能性がある。逆に、この密度が1.1g/cmを超える場合、後記する脂肪族炭化水素溶媒が精製層100を通過しにくくなる。
 精製層100において、硝酸銀シリカゲル層110と硫酸シリカゲル層120との比率は、硝酸銀シリカゲル層110に対する硫酸シリカゲル層120の質量比を1.0~50倍に設定するのが好ましく、3.0~30倍に設定するのがより好ましい。硫酸シリカゲル層120の質量比が50倍を超えるときは、硝酸銀シリカゲル層110の割合が相対的に小さくなるため、精製層100においてダイオキシン類溶液に含まれる夾雑物の処理能、特に夾雑物の吸着能が不十分になる可能性がある。逆に、硫酸シリカゲル層120の質量比が1.0倍未満のときは、精製層100において、ダイオキシン類溶液に含まれる夾雑物の処理能、特に夾雑物の分解能が不十分になる可能性がある。
 精製層100は、硝酸銀シリカゲル層110と硫酸シリカゲル層120との間に活性シリカゲル層が配置されていてもよい。この活性シリカゲル層は、硝酸銀シリカゲル層110と硫酸シリカゲル層120とが直接的に接触することで相互に化学反応するのを避けるためのものである。また、精製層100は、硫酸シリカゲル層120の下側に活性シリカゲル層が配置されていてもよい。この活性シリカゲル層は、ダイオキシン類溶液中の夾雑物が硝酸銀シリカゲル層110および硫酸シリカゲル層120において処理されることで生じた分解物や硫酸シリカゲル層120から溶出する硫酸を吸着し、これらが第2カラム20へ移動するのを抑えるためのものである。
 第2カラム20は、基本的に両端が開口した円筒状の部材であり、第1カラム10と同様の材料を用いて形成されている。第2カラム20の図の上端側には第1カラム10の図の下端部分を挿入可能な第1装着部21が形成されている。第1装着部21の内周面には螺子部(図示省略)が形成されている。また、第2カラム20は、第1装着部21の下方において先端が開口した第1分岐路22を有しており、図の下端部分の外周面に第3カラム30に対して連結するための螺子部(図示省略)を有している。
 第2カラム20の内部は、分岐路22の下方において活性炭含有吸着層200が充填されている。活性炭含有吸着層200は、ダイオキシン類のうち、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を吸着可能な活性炭とその分散媒との均一な混合物を用いて形成されたものである。ここで用いられる分散媒は、ダイオキシン類に対する吸着能を実質的に示さないもの、例えば、粒状のシリカゲル(通常は加熱により活性度を高めた粒状の活性シリカゲル。)または粒状のケイ酸マグネシウム(通常は加熱により活性度を高めた粒状の活性ケイ酸マグネシウムであり、例えば、特開2020-115111号公報に記載されたものである。)である。シリカゲルまたはケイ酸マグネシウムの粒径は、通常、63~212μm程度が好ましい。シリカゲルとケイ酸マグネシウムとは混合して用いることもできる。
 活性炭含有吸着層200において用いられる活性炭は、吸着材として一般的な比表面積や細孔径等の特性を有するものでよいが、後記する第3カラム30の処理層300において用いられる活性炭よりも平均ミクロ孔径が大きいものである。このような活性炭を用いることで、活性炭含有吸着層200において、ダイオキシン類のうちのノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を選択的に吸着して捕捉することができる。活性炭として好ましいものは、例えば、比表面積が700~1,600m/g、特に、1,500~1,600m/gでありかつ平均ミクロ孔径が1.0~2.0nm、特に1.4~1.6nmの粒状の活性炭である。この活性炭の比表面積は、窒素を用いたBET法による測定値である。また、平均ミクロ孔径は、活性炭が有する種々の大きさの細孔のうち、孔径が2nm以下の範囲にあるミクロ孔を対象とした平均孔径を意味し、77Kにおける窒素吸着および脱着等温線を測定してt-plot法という解析方法によって求めた測定値である。
 活性炭含有吸着層200において上述の好ましい比表面積および平均ミクロ孔径を有する活性炭を用いた場合、活性炭含有吸着層200においてノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群の吸着効果が高まり、当該ダイオキシン群とモノオルソPCBsとの分画精度を高めることができる。
 活性炭含有吸着層200における活性炭の濃度は、特に限定されるものではないが、比表面積および平均ミクロ孔径が上述の好ましい範囲にある粒状の活性炭を用いる場合、0.75~1.0質量%に設定するのが好ましい。
 活性炭含有吸着層200において、活性炭とその分散媒との均一な混合物の充填密度は、特に限定されるものではないが、通常、0.2~0.5g/cmに設定するのが好ましく、0.3~0.4g/cmに設定するのがより好ましい。この密度が0.2g/cm未満の場合、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群の捕捉効率が低下する可能性がある。逆に、この密度が0.5g/cmを超える場合、後記する脂肪族炭化水素溶媒が活性炭含有吸着層200を通過しにくくなる。
 第1カラム10は、その下端外周に設けられた螺子部を第2カラム20の第1装着部21の内周面に設けられた螺子部に対して装着することで、第2カラム20に対して液密にかつ脱着可能に連結されている。
 第3カラム30は、基本的に両端が開口した円筒状の部材であり、第1カラム10と同様の材料を用いて形成されている。第3カラム30の図の上端側には第2カラム20の図の下端部分を挿入可能な第2装着部31が形成されている。第2装着部31の内周面には螺子部(図示省略)が形成されている。また、第3カラム30は、第2装着部31の下方において先端が開口した第2分岐路32を有している。
 第3カラム30の内部は、第1分岐路32の下方において処理層300が充填されている。処理層300は、モノオルソPCBsを吸着可能な活性炭とその分散媒との均一な混合物を用いて形成されたものであり、活性炭の濃度が互いに異なる第1分散媒層310と第2分散媒層320とが第3カラム30の開口方向、すなわち、図の上下方向に積層状態で配置されたものである。ここで用いられる分散媒は、第2カラム20の活性炭含有吸着層200において用いられるものと同様のものである。
 処理層300において用いられる活性炭は、吸着材として一般的な比表面積や細孔径等の特性を有するものでよいが、第2カラム20の活性炭含有吸着層200において用いられる活性炭よりも平均ミクロ孔径が小さいものである。例えば、比表面積が700~1,600m/g、特に、1,500~1,600m/gでありかつ平均ミクロ孔径が0.5~1.0nm、特に0.7~0.8nmの粒状の活性炭を用いるのが好ましい。この活性炭の比表面積および平均ミクロ孔径の意義等は、活性炭含有吸着層200において用いられる活性炭と同じである。
 処理層300は、上層側の第1処理層310における活性炭濃度に比べて下層側の第2分散媒層320における活性炭濃度が高く設定されている。第1処理層310および第2分散媒層320における活性炭の濃度は、特に限定されるものではないが、比表面積および平均ミクロ孔径が上述の好ましい範囲にある粒状の活性炭を用いる場合、第1分散媒層310側の活性炭濃度を0.13~0.2質量%、特に、0.13~0.15質量%に設定し、第2分散媒層320側の活性炭濃度を1.0~3.0質量%、特に、2.0~3.0質量%に設定するのが好ましい。
 処理層300に占める各層の割合は、特に限定されるものではないが、通常は均等になるよう設定するのが好ましい。
 処理層300の各層において、活性炭とその分散媒との均一な混合物の充填密度は、特に限定されるものではないが、通常、0.2~0.5g/cmに設定するのが好ましく、0.3~0.4g/cmに設定するのがより好ましい。この密度が0.2g/cm未満の場合、モノオルソPCBsの捕捉効率が低下する可能性がある。逆に、この密度が0.5g/cmを超える場合、後記する脂肪族炭化水素溶媒が処理層300を通過しにくくなる。
 第2カラム20は、その下端外周に設けられた螺子部を第3カラム30の第2装着部31の内周面に設けられた螺子部に対して装着することで、第3カラム30に対して液密にかつ脱着可能に連結されている。
 分画器1の大きさは、処理するダイオキシン類溶液の量に応じて適宜設定することができる。例えばダイオキシン類溶液の量が1~20mL程度の場合、第1カラム10については精製層100を充填可能な部分の内径が13~16mmで長さが180~190mm程度に、第2カラム20については内径が5~7mmで活性炭含有吸着層200を充填可能な部分の長さが31~33mm程度に、第3カラム30については内径が5~7mmで処理層300を充填可能な部分の長さが29~31mm程度にそれぞれ設定されているのが好ましい。
 次に、モノオルソPCBsとパラフィン系物質との分離に触れつつ上述の分画器1を用いてダイオキシン類溶液からダイオキシン類を分画する方法を説明する。この分画方法では、分画器1を図1に示すように起立状態に設置し、上端の開口から第1カラム10内の精製層100上にダイオキシン類溶液を添加する。この際、精製層100の一部、すなわち、硝酸銀シリカゲル層110の全体および硫酸シリカゲル層120の上部を加熱するのが好ましい。
 添加したダイオキシン類溶液は、硝酸銀シリカゲル層110の上部に浸透し、精製層100の一部とともに加熱される。精製層100の加熱温度は、35℃以上、好ましくは50℃以上、より好ましくは60℃以上に設定する。この加熱により、ダイオキシン類溶液に含まれるダイオキシン類以外の夾雑物の一部が精製層100と反応し、分解される。加熱温度が35℃未満の場合は、夾雑物と精製層100との反応が進行しにくくなり、後記するダイオキシン類の抽出液中に夾雑物の一部が残留しやすくなる可能性がある。加熱温度の上限は、特に限定されるものではないが、通常は安全性の観点から沸騰温度以下が好ましい。
 次に、加熱開始から所定時間、例えば10~60分経過後に上端の開口から第1カラム10内の精製層100に脂肪族炭化水素溶媒を供給して通過させる。この際、精製層100の加熱は維持してもよいし、停止してもよい。ここで供給する脂肪族炭化水素溶媒は、ダイオキシン類を溶解可能なものであり、好ましくは炭素数が5~8個の脂肪族飽和炭化水素溶媒である。例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタンまたはシクロヘキサンを用いるのが好ましい。これらの溶媒は、適宜混合して用いることもできる。
 精製層100に供給された脂肪族炭化水素溶媒は、精製層100に浸透したダイオキシン類溶液に含まれるダイオキシン類、夾雑物の分解生成物および分解されずに残留している夾雑物を溶解し、精製層100を通過する。この際、分解生成物および夾雑物の一部は、硝酸銀シリカゲル層110および硫酸シリカゲル層120に吸着するが、夾雑物であるパラフィン系物質およびPCDEsは脂肪族炭化水素溶媒とともに精製層100を通過する。精製層100を通過する脂肪族炭化水素溶媒は、非加熱部分、すなわち、硫酸シリカゲル層120の下部を通過するときに自然に冷却される。
 精製層100を通過した脂肪族炭化水素溶媒は、第1カラム10から第2カラム20へ流れて活性炭含有吸着層200を通過し、第3カラム30内へ流れる。この際、精製層100からの脂肪族炭化水素溶媒に含まれるダイオキシン類のうち、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群が活性炭含有吸着層200に吸着して捕捉され、脂肪族炭化水素溶媒から分離される。一方、精製層100からの脂肪族炭化水素溶媒に含まれる残余のダイオキシン類であるモノオルソPCBs並びに夾雑物であるパラフィン系物質およびPCDEsは、脂肪族炭化水素溶媒とともに活性炭含有吸着層200を通過する。この結果、PCDFsはPCDEsと分離されるとともに、脂肪族炭化水素溶媒は、パラフィン系物質およびPCDEsを夾雑物として含むモノオルソPCBsの脂肪族炭化水素溶媒溶液として第2カラム20から第3カラム30へ流れる。
 活性炭含有吸着層200を通過して第3カラム30内へ流れた脂肪族炭化水素溶媒は、第3カラム30の処理層300を通過し、第3カラム30の下端の開口から流出し、廃棄される。この際、脂肪族炭化水素溶媒に含まれるモノオルソPCBsおよびPCDEsは処理層300の第1分散媒層310および第2分散媒層320のそれぞれの活性炭に吸着して捕捉され、脂肪族炭化水素溶媒から分離される。一方、脂肪族炭化水素溶媒に含まれるパラフィン系物質は脂肪族炭化水素溶媒とともに処理層300を通過し、廃棄される。この結果、処理層300に捕捉されたモノオルソPCBsは、パラフィン系物質と分離される。
 以上の過程により、ダイオキシン類溶液に含まれるダイオキシン類は、第2カラム20の活性炭含有吸着層200に捕捉されたノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群の画分と、第3カラムの処理層300に捕捉されたモノオルソPCBsの画分とに分画され、各画分は次の操作により抽出することができる。
 脂肪族炭化水素溶媒が処理層300を通過後、第1カラム10の上端の開口および第2カラム20の第1分岐路22の開口を気密に閉鎖し、第3カラム30の下端側の開口からダイオキシン類の抽出溶媒を供給して処理層300を通過させる。
 ここで用いる抽出溶媒は、環境試料に含まれるダイオキシン類の分析方法として一般的なガスクロマトグラフィー法に適した溶媒、例えば、トルエンまたはベンゼンを用いるのが好ましい。また、トルエンまたはベンゼンに対して脂肪族炭化水素溶媒または有機塩素系溶媒を添加した混合溶媒を用いることもできる。混合溶媒において用いる脂肪族炭化水素溶媒は、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタンまたはシクロヘキサンである。また、有機塩素系溶媒は、例えば、ジクロロメタン、トリクロロメタンまたはテトラクロロメタンである。なお、ダイオキシン類の分析方法として、必要によりバイオアッセイ法を採用することもでき、その場合は抽出溶媒として、例えば、ジメチルスルホキシド(DMSO)やメタノール等の親水性溶媒が用いられる。
 処理層300へ供給された抽出溶媒は、処理層300に捕捉されたモノオルソPCBsを抽出して第3カラム30の第2分岐路32へ流れ、第2分岐路32から排出される。このように第2分岐路32から排出される抽出溶媒、すなわち、処理層300を通過した抽出溶媒を確保すると、モノオルソPCBsの抽出液、すなわちモノオルソPCBsの分析用試料が得られる。
 次に、第1カラム10の上端の開口および第3カラム30の第2分岐路32の開口を気密に閉鎖し、第3カラム30の下端側の開口からダイオキシン類の抽出溶媒を供給して処理層300および活性炭含有吸着層200の順に通過させる。ここで用いる抽出溶媒は、先述のものと同様である。
 処理層300を通じて活性炭含有吸着層200へ供給された抽出溶媒は、活性炭含有吸着層200に捕捉された先述のダイオキシン群を抽出して第2カラム20の第1分岐路22へ流れ、第1分岐路22から排出される。このように第1分岐路22から排出される抽出溶媒、すなわち、活性炭含有吸着層200を通過した抽出溶媒を確保すると、活性炭含有吸着層200に捕捉されたダイオキシン群の抽出液、すなわち、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群の分析用試料が得られる。
 分画器1を用いると、ダイオキシン類溶液からノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群の分析用試料とモノオルソPCBsの分析用試料とを別々に得ることができる。しかも、上記ダイオキシン群の分析用試料はPCDEsの混入が抑えられたものになり、モノオルソPCBsの分析用試料はパラフィン系物質の混入が抑えられたものになる。また、第2カラム20の活性炭含有吸着層200において比表面積および平均ミクロ孔径が好ましい範囲の先述の活性炭を用いた場合、モノオルソPCBsの分析用試料は上記ダイオキシン群の混入が抑えられたものになる。よって、各分析用試料をGC/MS、特に、高分解能GC/MSにより分析することで、ダイオキシン類溶液に含まれる各ダイオキシン類を高精度に分析することができる。
 上述の実施の形態に係る分画器1は、種々の変更が可能である。例えば、第1カラム10の精製層100は、硝酸銀シリカゲル層110と硫酸シリカゲル層120との順序が入れ替わっていてもよい。この場合、有機ハロゲン化合物溶液に含まれる夾雑物は、主に硫酸シリカゲル層130において分解され、その分解生成物や夾雑物の一部が主に硝酸銀シリカゲル層110において捕捉される。
 また、上述の実施の形態において、第3カラム30の処理層300は、脂肪族炭化水素溶媒の通過方向の上流側の第1分散媒層310における活性炭濃度に比べて下流側の第2分散媒層320における活性炭濃度が高く設定されているが、活性炭濃度をこの逆、すなわち、上流側の第1分散媒層310における活性炭濃度に比べて下流側の第2分散媒層320における活性炭濃度を低く設定した場合においても、脂肪族炭化水素溶媒溶液に含まれるモノオルソPCBsとパラフィン系物質とを分離することができる。また、処理層300は、活性炭濃度が異なる三層以上の処理層からなるものであってもよい。この場合、各処理層における活性炭濃度は、脂肪族炭化水素溶媒の通過方向の上流側の層から下流側の層に向けて順に活性炭濃度が高くなるように設定してもよいし、上流側の層から下流側の層に向けて順に活性炭濃度が低くなるように設定してもよい。
 さらに、第2カラム20および第3カラム30は、それぞれ第1分岐路22および第2分岐路32を有しないものであってもよい。このような第2カラム20および第3カラム30を用いた場合、第2カラム20の活性炭含有吸着層200および第3カラム30の処理層300においてそれぞれ捕捉されたダイオキシン群およびモノオルソPCBsは、第1カラム10から第2カラム20を取り外すとともに第2カラム20から第3カラム30を取り外し、互いに分離された第2カラム20および第3カラム30のそれぞれに対して個別に抽出溶媒を供給することで抽出することができる。
 なお、ダイオキシン類の分画を目的とするとともにモノオルソPCBsとパラフィン系物質とを分離する観点において、上述の実施の形態の第2カラム20は、活性炭含有吸着層200をノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を選択的に捕捉可能な他の形態の吸着層に変更することができる。例えば、国際公開第2014/192055(先に掲げた特許文献1)に記載された活性炭含有シリカゲル層およびグラファイト含有シリカゲル層を含む吸着層を活性炭含有吸着層200に代えて第2カラム20において用いることができる。
 上述の実施の形態において参照した図1は、分画器1の各部の概要を示したものであり、各部の構造、形状および大きさや比率等を正確に反映したものではない。
 以下に実験例等を挙げ、本発明を具体的に説明するが、本発明は、これら実験例等によって限定されるものではない。
[実験例1~3]
 図1に示す形態の分画器1であって、各部の仕様を次のように設定したものを作製した。
<第1カラム10>
 外径18mm、内径15mm、長さ190mmに設定された第1カラム10内において、硫酸シリカゲル8.2g(充填高さ67mm)の上に硝酸銀シリカゲル2.5g(充填高さ32mm)を積層することで精製層100を形成したもの。ここで用いた硫酸シリカゲルおよび硝酸銀シリカゲルは次のとおりである。
硫酸シリカゲル:
 活性シリカゲル(富士フイルム和光純薬株式会社製)に対して濃硫酸(富士フイルム和光純薬株式会社の商品名「濃硫酸」190-04675、精密分析用)を均一に添加した後に乾燥することで調製した硫酸シリカゲルを用いた。活性シリカゲルに対する濃硫酸の添加量は、活性シリカゲルに対する硫酸の量が質量基準で44%になるよう設定した。
硝酸銀シリカゲル:
 活性シリカゲル(富士フイルム和光純薬株式会社製)に対して蒸留水に硝酸銀(富士フイルム和光純薬株式会社の商品名「硝酸銀」198-00835、試薬特級)を溶解した水溶液を添加して均一に混合した。この混合物をロータリーエバポレーターを用いて減圧下で70℃に加熱、乾燥することで調製した硝酸銀シリカゲルを用いた。ここでは、硝酸銀水溶液として活性シリカゲルの質量に対する硝酸銀量が10%に設定されたものを用い、硝酸銀シリカゲルにおける硝酸銀量を活性シリカゲルの質量基準の10%に設定した。
<第2カラム20>
 外径8mm、内径6mm、長さ39mmに設定された第2カラム20内において、活性炭混合活性シリカゲル0.295gを高さ31.5mmになるよう充填することで活性炭含有吸着層200を形成したもの。ここで用いた活性炭混合活性シリカゲルは、比表面積が1,580m/gで平均ミクロ孔径が1.55nmの活性炭(フタムラ化学株式会社製)をその濃度が0.8質量%になるよう粒径63~212μmの活性シリカゲル(富士フイルム和光純薬株式会社製)と均一に混合したものである。
<第3カラム30>
 外径8mm、内径6mm、長さ38mmに設定された第3カラム30内において、高さ29mmの処理層300を充填したもの。処理層300は、高濃度活性炭含有ケイ酸マグネシウムを高さ25mmになるよう充填することで第2分散媒層320を形成し、この第2分散媒層320上に低濃度活性炭含有ケイ酸マグネシウムを高さ5mmになるよう積層充填することで第1分散媒層310を形成したものである。ここで用いた高濃度活性炭含有ケイ酸マグネシウムおよび低濃度活性炭含有ケイ酸マグネシウムは次のとおりである。
高濃度活性炭含有ケイ酸マグネシウム:
 比表面積が1,510m/gで平均ミクロ孔径が0.78nmの活性炭(株式会社クラレ製)をその濃度が1.6質量%(実験例1)、2.0質量%(実験例2)または3.0質量%(実験例3)になるようケイ酸マグネシウム(富士フイルム和光純薬株式会社の商品名「Florisil,75~150μm」)と均一に混合したもの。
低濃度活性炭含有ケイ酸マグネシウム:
 比表面積が1,510m/gで平均ミクロ孔径が0.78nmの活性炭(株式会社クラレ製)をその濃度が0.2質量%になるようケイ酸マグネシウム(富士フイルム和光純薬株式会社の商品名「Florisil,75~150μm」)と均一に混合したもの。
 作製した分画器1を用い、試料液に含まれるダイオキシン類を分画処理した。ここで用いた試料液は、トルエンを用いてソックスレー抽出法により土壌5gに含まれるダイオキシン類を抽出し、抽出したダイオキシン類をn-ヘキサンに転溶して2mLに濃縮したものである。この試料液は、ダイオキシン類とともに土壌に由来の微量のPCDEsおよびパラフィン系物質を夾雑物として含む。
 分画器1による試料液の分画処理では、第1カラム10の上端の開口から硝酸銀シリカゲル層110に対して試料液の全量と1312で標識したダイオキシン類標準溶液(Wellington社の商品名「DFP-LCS-B」)とを添加し、硝酸銀シリカゲル層110の全体と硫酸シリカゲル層120の上半分とを60℃に加熱した。そして、第1カラム10の上端の開口からn-ヘキサン85mLを供給し、このn-ヘキサンを精製層100、第2カラム20の活性炭含有吸着層200および第3カラム30の処理層300に通過させて第3カラム30の下端の開口から排出させた。
 次に、第1カラム10の上端の開口と第2カラム20の第1分岐路22の開口とを気密に閉鎖し、第3カラム30の下端の開口からトルエン1.4mLを供給した。そして、処理層300を通過したトルエンの全量を第2分岐路32を通じて回収し、第1分析用試料を得た。続いて、第1カラム10の上端の開口と第3カラム30の第2分岐路32の開口とを閉鎖し、第3カラム30の下端の開口からトルエン1.5mLを供給した。そして、第3カラム30の処理層300および第2カラム20の活性炭含有吸着層200を通過したトルエンの全量を第1分岐路22を通じて回収し、第2分析用試料を得た。
 第1分析用試料および第2分析用試料のそれぞれに対して1312で標識したダイオキシン類標準溶液(Wellington社の商品名「DF-SS-A」)を添加し、各分析用試料をHRGC/HRMS法により個別に定量分析することで各分析用試料におけるダイオキシン類の回収率を算出した。算出した回収率は、使用したダイオキシン類標準溶液中のダイオキシン類に基づくものである。結果を表1に示す。なお、表1において第2分析用試料については、回収率の傾向を把握するため、ダイオキシン群の一部についての回収率を算出した結果を示している。
Figure JPOXMLDOC01-appb-T000001
 表1によると、試料液に含まれるダイオキシン類は、ノンオルソPCBs、PCDDsおよびPCDFsを含む第2分析用試料と、モノオルソPCBsを含む第1分析用試料とに分画されていることがわかる。また、モノオルソPCBsの回収率は、処理層300の第2分散媒層320における活性炭濃度が2.0質量%以上の場合に改善される傾向にあることがわかる。
[実験例4~7]
 実験例1~3において用いた分画器1について、第3カラム30の処理層300を表2に示すように変更した。表2に示した充填剤AおよびBは次のとおりである。
充填剤A(低濃度活性炭含有活性シリカゲル):
 比表面積が1,510m/gで平均ミクロ孔径が0.78nmの活性炭(株式会社クラレ製)をその濃度が0.13質量%になるよう粒径63~210μmの活性シリカゲル(関東化学株式会社製)と均一に混合したもの。
充填剤B(高濃度活性炭含有活性シリカゲル):
 比表面積が1,510m/gで平均ミクロ孔径が0.78nmの活性炭(株式会社クラレ製)をその濃度が3.0質量%になるよう粒径63~210μmの活性シリカゲル(関東化学株式会社製)と均一に混合したもの。
Figure JPOXMLDOC01-appb-T000002
 処理層300を変更した分画器1を用い、実験例1~3と同様に飛灰から調製した試料液に含まれるダイオキシン類を分画処理した。処理層300からの抽出液に含まれるモノオルソPCBsの回収率を図2に示す。また、処理層300からの抽出液について測定したスキャンクロマトグラムを図3に示す。
 図2によると、処理層300を充填剤A(低濃度活性炭含有活性シリカゲル)のみで形成した実験例7ではモノオルソPCBsの回収率が全体的に低くなるのに対し、処理層300を充填剤A(低濃度活性炭含有活性シリカゲル)と充填剤B(高濃度活性炭含有活性シリカゲル)との積層状態で形成した実験例5~6と充填剤B(高濃度活性炭含有活性シリカゲル)のみで形成した実験例4ではモノオルソPCBsの回収率が全体的に80%を超え、第2カラム20からのn-ヘキサンに含まれるモノオルソPCBsの全体的な捕捉性が高まることがわかる。一方、図3によると、処理層300を充填剤A(低濃度活性炭含有活性シリカゲル)と充填剤B(高濃度活性炭含有活性シリカゲル)との積層状態で形成するとともに充填剤B(高濃度活性炭含有活性シリカゲル)の割合を抑えた実験例6および処理層300を充填剤A(低濃度活性炭含有活性シリカゲル)のみで形成した実験例7ではモノオルソPCBsの抽出液においてパラフィン系物質の混入が抑えられているのに対し、処理層300を充填剤B(高濃度活性炭含有活性シリカゲル)のみで形成した実験例4および処理層300を充填剤A(低濃度活性炭含有活性シリカゲル)と充填剤B(高濃度活性炭含有活性シリカゲル)との積層状態で形成するとともに充填剤B(高濃度活性炭含有活性シリカゲル)の割合を高めた実験例5では、モノオルソPCBsの抽出液にパラフィン系物質が混入している。以上の結果より、処理層300において、モノオルソPCBsの捕捉率を高めるとともにパラフィン系物質が捕捉されるのを抑制するためには、処理層300を低濃度活性炭含有活性シリカゲルと高濃度活性炭含有活性シリカゲルとの積層状態で形成するとともに、高濃度活性炭含有活性シリカゲルの割合を抑えるか、高濃度活性炭含有活性シリカゲルにおける活性炭濃度を抑える必要のあることがわかる。
[実験例8~12]
 実験例1~3において用いた分画器1について、第2カラム20の活性炭含有吸着層200における活性炭濃度を表3に示すように設定した。
Figure JPOXMLDOC01-appb-T000003
 上述のように変更した分画器1を用い、1312で標識したダイオキシン類標準溶液(Wellington社の商品名「DFP-LCS-B」)を処理した。ここでは、第1カラム10の上端の開口から硝酸銀シリカゲル層110に対してダイオキシン類標準溶液を添加し、硝酸銀シリカゲル層110の全体と硫酸シリカゲル層120の上半分とを60℃に加熱した。そして、第1カラム10の上端の開口からn-ヘキサン85mLを供給し、このn-ヘキサンを精製層100および第2カラム20の活性炭含有吸着層200および第3カラム30の処理層300に通過させて第3カラム30の下端の開口から排出させた。次に、第1カラム10の上端の開口を気密に閉鎖し、第3カラム30の下端の開口からトルエン1.4mLを供給した。そして、処理層300を通過したトルエンの全量を第2分岐路32を通じて回収した。続いて、第1カラム10の上端の開口と第3カラム30の第2分岐路32の開口とを閉鎖し、第3カラム30の下端の開口からトルエン1.5mLを供給した。そして、第3カラム30の処理層300および第2カラム20の活性炭含有吸着層200を通過したトルエンの全量を第1分岐路22を通じて回収し、分析用試料を得た。
 得られた分析用試料に対して1312で標識したダイオキシン類標準溶液(Wellington社の商品名「DF-SS-A」)を添加し、分析用試料をHRGC/HRMS法により定量分析することで分析用試料におけるダイオキシン類の回収率を算出した。算出した回収率は、使用したダイオキシン類標準溶液中のダイオキシン類に基づくものである。結果を図4に示す。
 図4によると、活性炭含有吸着層200は、活性炭濃度を高めるとノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群とともにモノオルソPCBsを吸着し、上記ダイオキシン群とモノオルソPCBsとが分画されにくくなることから、活性炭濃度を1質量%以下に設定するのが好ましいことがわかる。
[実験例13~14]
 実験例1~3において用いた分画器1において、第2カラム20の活性炭含有吸着層200における活性炭濃度を表4に示すように設定した。
Figure JPOXMLDOC01-appb-T000004
 上述のように変更した分画器1を用い、底質から調製した試料液を処理した。ここで用いた試料液は、トルエンを用いてソックスレー抽出法により底質2gに含まれるダイオキシン類を抽出し、抽出したダイオキシン類をn-ヘキサンに転溶して2mLに濃縮したものである。
 分画器1による試料液の分画処理では、第1カラム10の上端の開口から硝酸銀シリカゲル層110に対して試料液の全量と1312で標識したダイオキシン類標準溶液(Wellington社の商品名「DFP-LCS-B」)とを添加し、硝酸銀シリカゲル層110の全体と硫酸シリカゲル層120の上半分とを60℃に加熱した。そして、第1カラム10の上端の開口からn-ヘキサン85mLを供給し、このn-ヘキサンを精製層100、第2カラム20の活性炭含有吸着層200および第3カラム30の処理層300に通過させて第3カラム30の下端の開口から排出させた。そして、実験例1~3の場合と同様の手順にて処理層300を通過したトルエンによる第1分析用試料を得、また、活性炭含有吸着層200を通過したトルエンによる第2分析用試料を得た。
 第1分析用試料および第2分析用試料のそれぞれに対して1312で標識したダイオキシン類標準溶液(Wellington社の商品名「DF-SS-A」)を添加し、各分析用試料をHRGC/HRMS法により個別に定量分析することで各分析用試料におけるノンオルソPCBsの回収率を算出した。算出した回収率は、使用したダイオキシン類標準溶液中のダイオキシン類に基づくものである。実験例13の結果を図5に示し、実験例14の結果を図6に示す。なお、図5、6に示した回収率の結果は、第1分析用試料中において回収されたノンオルソPCBsの回収率と、第2分析用試料中において回収されたノンオルソPCBsの回収率とを積み上げたものである。
 図5と図6とを対比すると、活性炭濃度が0.5質量%の実験例13においてはモノオルソPCBsの画分である第1分析用試料中にノンオルソPCBsが比較的多く混入しているのに対し、活性炭濃度が0.75質量%の実験例14においては第1分析用試料中へのノンオルソPCBsの混入が抑えられている。これによると、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群とモノオルソPCBsとの分画精度を高めるためには、第2カラム20の活性炭含有吸着層200における活性炭濃度を少なくとも0.75質量%に設定するのが好ましいことがわかる。
 実験例14で得られた第1分析用試料および第2分析用試料のクロマトグラムを図7に示す。図7によると、第2分析用試料においてPCDEsの検出ピークが小さいのに対し、第1分析用試料においてPCDEsの検出ピークが大きい。これより、試料液に含まれるPCDEsは、n-ヘキサンとともに第2カラム20の活性炭含有吸着層200を通過する一方で第3カラム30の処理層300において捕捉されることから、ノンオルソPCBs、PCDDsおよびPCDFsを含む第2分析用試料への混入が抑えられていることがわかる。
30  第3カラム
100 精製層
110 硝酸銀シリカゲル層
120 硫酸シリカゲル層
200 活性炭含有吸着層
300 処理層
310 第1分散媒層
320 第2分散媒層

Claims (9)

  1.  脂肪族炭化水素溶媒溶液に含まれるモノオルソポリ塩化ビフェニル類とパラフィン系夾雑物とを分離するための処理器具であって、
     両端が開口する管体と、
     活性炭と、前記活性炭の分散媒とを含む、前記管体内に充填された処理層と、を含み、
     前記処理層は、前記管体の開口方向に順に配置された前記活性炭の濃度が異なる複数の分散媒層を含む、
    モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具。
  2.  前記活性炭は比表面積が700~1,600m/gでありかつ平均ミクロ孔径が0.5~1.0nmの粒状の活性炭である、請求項1に記載のモノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具。
  3.  前記処理層は、前記活性炭の濃度が0.13~0.2質量%の第1分散媒層と、前記活性炭の濃度が2.0~3.0質量%の第2分散媒層とを含む、請求項2に記載のモノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具。
  4.  前記分散媒がシリカゲルおよびケイ酸マグネシウムのうちの少なくとも一つである、請求項1から3のいずれかに記載のモノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具。
  5.  脂肪族炭化水素溶媒溶液に含まれるモノオルソポリ塩化ビフェニル類とパラフィン系夾雑物とを分離するための処理方法であって、
     請求項1から4のいずれかに記載の処理器具の処理層に前記脂肪族炭化水素溶媒溶液を通過させる工程を含む、
    モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理方法。
  6.  請求項3に記載の処理器具を用い、前記処理層の第1分散媒層と第2分散媒層との順に前記脂肪族炭化水素溶媒溶液を通過させる、請求項5に記載のモノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理方法。
  7.  ダイオキシン類溶液に含まれるダイオキシン類を分画するための方法であって、
     硝酸銀シリカゲル層と硫酸シリカゲル層とを含む精製層に前記ダイオキシン類溶液を添加する工程と、
     前記ダイオキシン類溶液を添加した前記精製層へ脂肪族炭化水素溶媒を供給して通過させる工程と、
     前記精製層を通過した前記脂肪族炭化水素溶媒を活性炭含有吸着層へ供給して通過させる工程と、
     前記活性炭含有吸着層を通過した前記脂肪族炭化水素溶媒を請求項1から4のいずれかに記載の処理器具の処理層へ供給して通過させる工程と、
    を含み、
     前記活性炭含有吸着層として、前記処理層に含まれる活性炭よりも平均ミクロ孔径が大きな活性炭を含むものを用いる、
    ダイオキシン類の分画方法。
  8.  前記活性炭含有吸着層は、比表面積が700~1,600m/gでありかつ平均ミクロ孔径が1.0~2.0nmの粒状の活性炭と、前記活性炭の分散媒とを含み、前記活性炭の濃度が0.75~1.0質量%に設定されている、請求項7に記載のダイオキシン類の分画方法。
  9.  請求項3に記載の処理器具を用い、前記処理層の第1分散媒層と第2分散媒層との順に前記活性炭含有吸着層を通過した前記脂肪族炭化水素溶媒溶液を通過させる、請求項8に記載のダイオキシン類の分画方法。
PCT/JP2022/041949 2021-12-21 2022-11-10 モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具 WO2023119935A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021207623A JP2023092402A (ja) 2021-12-21 2021-12-21 モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具
JP2021-207623 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023119935A1 true WO2023119935A1 (ja) 2023-06-29

Family

ID=86902121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041949 WO2023119935A1 (ja) 2021-12-21 2022-11-10 モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具

Country Status (2)

Country Link
JP (1) JP2023092402A (ja)
WO (1) WO2023119935A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219454A (ja) * 2000-06-26 2002-08-06 Idemitsu Kosan Co Ltd 水中のダイオキシン類の除去方法
JP2005214816A (ja) * 2004-01-29 2005-08-11 Mitsubishi Materials Corp ダイオキシン類の簡易分析方法および簡易分析装置
WO2006132027A1 (ja) * 2005-06-07 2006-12-14 Miura Co., Ltd. ダイオキシン類の分析用試料調製方法
JP2007225283A (ja) * 2006-02-21 2007-09-06 Fukuoka Prefecture ダイオキシン類の分析方法
JP2008080197A (ja) * 2006-09-26 2008-04-10 Kobelco Eco-Solutions Co Ltd 排ガス処理装置
JP2015190963A (ja) * 2014-03-28 2015-11-02 三浦工業株式会社 ポリ塩化ビフェニル類の分画方法および分画器具
JP2020115111A (ja) * 2019-01-18 2020-07-30 三浦工業株式会社 ダイオキシン類の分画方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219454A (ja) * 2000-06-26 2002-08-06 Idemitsu Kosan Co Ltd 水中のダイオキシン類の除去方法
JP2005214816A (ja) * 2004-01-29 2005-08-11 Mitsubishi Materials Corp ダイオキシン類の簡易分析方法および簡易分析装置
WO2006132027A1 (ja) * 2005-06-07 2006-12-14 Miura Co., Ltd. ダイオキシン類の分析用試料調製方法
JP2007225283A (ja) * 2006-02-21 2007-09-06 Fukuoka Prefecture ダイオキシン類の分析方法
JP2008080197A (ja) * 2006-09-26 2008-04-10 Kobelco Eco-Solutions Co Ltd 排ガス処理装置
JP2015190963A (ja) * 2014-03-28 2015-11-02 三浦工業株式会社 ポリ塩化ビフェニル類の分画方法および分画器具
JP2020115111A (ja) * 2019-01-18 2020-07-30 三浦工業株式会社 ダイオキシン類の分画方法

Also Published As

Publication number Publication date
JP2023092402A (ja) 2023-07-03

Similar Documents

Publication Publication Date Title
JP4465430B2 (ja) ポリ塩化ビフェニル類の抽出方法
JP5490332B1 (ja) ダイオキシン類の分画方法
WO2010073818A1 (ja) ポリ塩化ビフェニル類含有油性液体の精製剤
WO2020149255A1 (ja) ダイオキシン類の分画方法
CA2609740A1 (en) Method for preparing sample for analysis of dioxins
JP5574135B1 (ja) ダイオキシン類の分画器具
JP2007225283A (ja) ダイオキシン類の分析方法
WO2017021883A1 (en) Analytical system based on carbon fibers
WO2023119935A1 (ja) モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具
JP5900757B2 (ja) ポリ塩化ビフェニル類の分画方法
JP5691120B2 (ja) 高濃度硫酸含有シリカゲルの製造法
JP2005180968A (ja) 残留性有機汚染物質の採取方法および分析方法
JP4207787B2 (ja) ダイオキシン類の簡易分析方法および簡易分析装置
JP5900758B2 (ja) ポリ塩化ビフェニル類の分画方法および分画器具
JP5891816B2 (ja) ダイオキシン類の抽出方法
WO2022176252A1 (ja) 有機ハロゲン化合物の抽出方法
JP4764215B2 (ja) ポリ塩化ビフェニル類の定量方法およびこれに用いるアンプル
JP5208371B2 (ja) ポリ塩化ビフェニル類の定量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910654

Country of ref document: EP

Kind code of ref document: A1