JP5691120B2 - 高濃度硫酸含有シリカゲルの製造法 - Google Patents

高濃度硫酸含有シリカゲルの製造法 Download PDF

Info

Publication number
JP5691120B2
JP5691120B2 JP2008135046A JP2008135046A JP5691120B2 JP 5691120 B2 JP5691120 B2 JP 5691120B2 JP 2008135046 A JP2008135046 A JP 2008135046A JP 2008135046 A JP2008135046 A JP 2008135046A JP 5691120 B2 JP5691120 B2 JP 5691120B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
silica gel
sample
concentration
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008135046A
Other languages
English (en)
Other versions
JP2009280453A (ja
Inventor
伊藤 智博
智博 伊藤
正治 黒岡
正治 黒岡
悠一 牧野
悠一 牧野
仁志 上森
仁志 上森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to JP2008135046A priority Critical patent/JP5691120B2/ja
Publication of JP2009280453A publication Critical patent/JP2009280453A/ja
Application granted granted Critical
Publication of JP5691120B2 publication Critical patent/JP5691120B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、ダイオキシン類等の測定用試料中の、ダイオキシン類等の分析に影響を与える可能性のある夾雑物を除去するための前処理(以下、単に「クリーンアップ処理」という場合がある。)等に用いられる硫酸シリカゲルの製造法、及びこれを用いた試料の前処理方法に関する。
環境中の極微量のポリ塩化ビフェニル(PCB)類やダイオキシン類等を高感度かつ高精度に分析するためには、環境から採取した試料から、ソックスレー法や、高速溶媒抽出装置(Accelerated Solvent Extractor、ASE)を用いた抽出法などの、公知の抽出方法でPCB類やダイオキシン類を抽出した後、得られた抽出試料中から多量に含まれる、例えば多環芳香族炭化水素類、着色物質等の夾雑物を効率よく除去(クリーンアップ)処理する必要がある。このクリーンアップ処理の方法としては、従来から多層シリカゲルカラム法や、硫酸で液-液処理を行った後シリカゲルカラムで処理する硫酸処理-シリカゲルカラム法などが行われている。この中で、多層シリカゲルカラム法が最も使用されている方法である。
一方、大気汚染防止法等による近年の規制により、環境中のPCB類やダイオキシン類の濃度が非常に低くなってきている。そのため、分析可能な濃度のPCB類やダイオキシン類を環境から採取するためには、環境から多量の試料を採取して、使用しなくてはならない。しかし、多量の試料を採取した後、続いてその試料の抽出処理を行うと、高濃度の抽出試料が得られることになる。そのため、続いて高濃度の抽出試料をクリーンアップ処理することになるが、高濃度の抽出試料中には、夾雑物も高濃度に存在しているため、多層シリカゲルカラム法のみで高濃度の抽出試料をクリーンアップ処理しようとしても、夾雑物の除去が不完全になる。そこで、多層シリカゲルカラム法のみだけではなく、硫酸処理-シリカゲルカラム法による処理が必要となることが多い。
しかし、硫酸処理-シリカゲルカラム法は、多環芳香族炭化水素類(PAHs)、着色物質、強極性用物質など多くの夾雑物の除去に有効である反面、液-液抽出、カラム処理などの処理が必要なため、操作が煩雑であり、時間の浪費と回収率の低下が懸念される。
そこで、この操作上の繁雑さを改善する試みとして、硫酸を含浸させたシリカゲルが開発され、更にこの硫酸シリカゲルを用いて抽出試料をクリーンアップ処理する方法が開発された(非特許文献1、非特許文献2)。この方法では、多環芳香族炭化水素、着色物質、強極性物質、フェノール類、酸性物質、脂質、タンパク質、含硫黄化合物、脂肪族炭化水素類等の除去が可能である。現在、抽出試料のクリーンアップ処理用として、硫酸含量が22%の硫酸シリカゲル(以下、「22%硫酸シリカゲル」と記載する。他の硫酸含量の硫酸シリカゲルも同様の方法で記載する。)や44%硫酸シリカゲルが上市されている。
しかし、シリカゲル中の硫酸含有量が低いため、これらの硫酸シリカゲルを用いたクロマトグラフィーで硫酸処理と同程度まで抽出試料をクリーンアップ処理するには、多量の硫酸シリカゲルが必要になるという問題点が残されていた。
そこで、本発明者等は、更に検討を行い、硫酸含量が55%の硫酸シリカゲル(55%硫酸シリカゲル)も調製し得ることを見出し商品化している。
しかしながら、この55%硫酸シリカゲルを市販されている高濃度の硫酸(硫酸含量95%以上、JIS K8951に規定する硫酸)を使用して、JIS K0311に記載された方法に準じて調製した場合、使用する硫酸量を増加させても目的の硫酸含量を有するものが得られない場合も多々あり、55%硫酸シリカゲルを歩留まりよく製造する方法の開発が望まれていた。
伊藤智博、山本美穂、黒岡正治ら、2000年、第9回環境化学討論会要旨集、206頁 JIS K0311
本発明は、上記した如き状況に鑑みなされたもので、効果的にPCB類やダイオキシン類等を含有する試料をこれらダイオキシン類測定用試料とするためのクリーンアップ処理に使用できるシリカゲル、及びこれを用いたPCB類やダイオキシン類等の高精度測定方法を提供することを課題とする。
本発明は上記課題を解決する目的で成されたもので、以下の構成よりなる。
(1)シリカゲルを97〜100%の硫酸で処理する、高濃度硫酸含有シリカゲルの製造法。
(2)上記(1)1に記載の製造法で得られた高濃度硫酸含有シリカゲルで処理する、試料の前処理方法。
(3)上記(1)に記載の製造法で得られた高濃度硫酸含有シリカゲルで処理した試料を用いる、環境分析方法。
(4)上記(1)に記載の製造法で得られた高濃度硫酸含有シリカゲルを含んでなるクロマトグラフィー用充填剤。
(5)上記(4)に記載の充填剤を充填してなるクロマトグラフィー用カラム。
本発明者等は、上記した如き課題を解決することを目的として鋭意研究の途上、硫酸をシリカゲルに55%含有させようとしても失敗する要因として、シリカゲルの親水性が強い点にあるのではないかと推測した。すなわち、ダイオキシン類測定方法を規定した、例えばJIS K0311で使用する硫酸の規格はJIS K8951:2006で規定されており、「95.0%(質量分率%)以上(特級)」である。また、通常市販されている高濃度硫酸の規格も同様に硫酸含量95%以上程度である。すなわち、これらの硫酸は、多い場合には5%もの水を含有している。そのため、シリカゲルとこのような高濃度硫酸を接触させた場合、先ず水がシリカゲルに吸着され、その後に硫酸が吸着されるため、硫酸濃度が95%付近の市販品を用いた場合にはシリカゲルに保持される硫酸濃度が55%に達しなくなるのではないか、と推測した。
そこで、市販の硫酸に発煙硫酸を適宜混合し、硫酸中の水分と発煙硫酸中の三酸化硫黄(SO)と反応させて硫酸として硫酸濃度を97%以上に高めたものをシリカゲルと混合してみたところ、目的の55%硫酸シリカゲルを歩留まりよく製造し得ることを見出した。
そして、このようにして得られた高濃度硫酸含有シリカゲルを用い、実際の土壌抽出液をクリーンアップ処理したところ、大変簡易に土壌抽出液の着色成分等の夾雑物を除去できることを見出し、本発明を完成するに到った。
本発明の製造法で得られた高濃度硫酸含有シリカゲルを用いれば、PCB類やダイオキシン類等の分析対象成分を含有する試料を簡便且つ効果的にクリーンアップ処理することが出来る。また、本発明の分析方法によれば、試料中のPCB類やダイオキシン類等の分析対象成分を効率よく高精度に測定することが出来る。
本発明の高濃度硫酸含有シリカゲルの製造法は、「シリカゲルを97〜100%の硫酸で処理する、高濃度硫酸含有シリカゲルの製造法。」である。
また、本発明の高濃度硫酸含有シリカゲルの製造法で得られた高濃度硫酸含有シリカゲルを、以下、「本発明に係る高濃度硫酸含有シリカゲル」と記載する場合がある。
本発明に係る高濃度硫酸含有シリカゲルの原料として用いられるシリカゲルは、試料の前処理に影響を与えるものでなければ、特に限定されない。例えばケイ酸アルカリを中和反応に付す等の自体公知の方法に準じて調製したものでも、市販のシリカゲルを用いてもよい。
但し、例えば、本発明に係る高濃度硫酸含有シリカゲルを調製したときに、塊状のもの(ダマ)が出来ないようなシリカゲルが好ましい。高濃度硫酸含有シリカゲルの一部が塊状になってしまうと、それで試料を処理しても、シリカゲルと試料が均一に接触しなくなるし、また塊状になった高濃度硫酸含有シリカゲルをカラムに充填しても、均一なカラムが得られないため、クリーンアップ処理の対象となる試料が、本発明に係る高濃度硫酸含有シリカゲルと均一に接触できなくなって、クリーンアップ処理が不十分となるからである。
本発明に用いるのに好ましいシリカゲルの粒子径としては通常0.5μm〜1mm、好ましくは0.5〜600μm、より好ましくは75〜500μmのものが挙げられる。比表面積としては、通常300〜800m/g、好ましくは400〜500m/gのものが挙げられる。細孔径は50〜100オングストローム、好ましくは50〜100オングストロームのものが挙げられる。形状は、粉末状、球形、或は破砕形のものが挙げられるが、本発明の方法により高濃度硫酸含有シリカゲルを調製した際に、できあがったものに塊状のものが混ざった状態とならないものであれば、特に問わない。
市販のものの具体例としては例えばWakogelTM C-100(和光純薬工業(株)製、「Wakogel」は和光純薬工業(株)の登録商標)、WakogelTM C-200(和光純薬工業(株)製)、WakogelTM S-1(和光純薬工業(株)製)等が挙げられる。
シリカゲルを97〜100%の硫酸(以下、「本発明に係る高濃度硫酸」と略記する場合がある。)で処理する際に用いられる、97〜100%の硫酸中の硫酸含量は、好ましくは98〜100%、より好ましくは99〜100%、更に好ましくは100%である。市販品でこの用途に用いることが出来る規格のものがあればそれを用いればよい。ただし、この硫酸には、いわゆる発煙硫酸は含まれない。
また、以下のような、硫酸と発煙硫酸で、目的の濃度の硫酸を調製するのが望ましい。
すなわち、例えばガラス製フラスコ等の容器に硫酸を仕込んだ後、氷水で冷やしながら、後述するように、仕込む硫酸の硫酸含量と発煙硫酸のSO含量をもとに常法で計算した量の発煙硫酸を注入した後、氷水で冷却しながら攪拌し、室温まで冷却すれば、理論上100%硫酸が得られる。
硫酸及び発煙硫酸の仕込量は、仕込む硫酸の硫酸含量と発煙硫酸のSO含量から常法に従い、結果的に得られる硫酸溶液中の硫酸含量が97〜100%、好ましくは98〜100%、より好ましくは99〜100%、更に好ましくは100%となるように計算すればよい。
又は、硫酸に対して発煙硫酸を数回に分けて加え、攪拌しながら、随時サンプリングして、硫酸の濃度を、JIS K8951の「7.試験方法」に規定する方法に従い、測定する。濃度測定で約99.9%の濃度の硫酸が得られたことを確認したら、発煙硫酸の添加をやめる、という方法でもよい。
100%硫酸を製造する際に用いられる硫酸、および発煙硫酸は、市販のものでよいが、硫酸の硫酸含量は95%以上、発煙硫酸のSO含量は25〜60%が望ましい。
尚、発煙硫酸のみや、濃度が97%未満程度までの濃度の硫酸を、硫酸含有シリカゲル調製用硫酸として用いるのは好ましくない。なぜなら、発煙硫酸のみで処理して得られた硫酸シリカゲルを用いて試料を処理すると、測定対象である試料中のPCB類が、共存する三酸化硫黄(SO)により分解してしまうからであり、また、硫酸含量の低い硫酸でシリカゲルを処理すると、シリカゲルは吸湿性が高いので、シリカゲルは硫酸中の水分を先に吸収してしまい、本発明の目的に叶う高濃度硫酸含有シリカゲルを得ることが困難になると推測されるからである。
本発明に係る高濃度硫酸含有シリカゲルの硫酸含量としては、51w/w%〜70w/w%、好ましくは51w/w%〜60w/w%、より好ましくは52w/w%〜60w/w%、更に好ましくは55w/w%〜60w/w%である。
シリカゲルを97〜100%の硫酸で処理する方法としては、例えば上記の方法により得られた97〜100%の濃度の高濃度硫酸で本発明に係るシリカゲルを処理させればよい。例えば、本発明に係る高濃度硫酸を用い、バッチ法でシリカゲルを処理する方法が挙げられる。
本発明に係る高濃度硫酸含有シリカゲルを調製する具体的な方法としては、例えば以下の方法が挙げられる。
まず要すればシリカゲルを篩いにかけ、シリカゲルの塊(ダマ)や目視できる夾雑物を除去する。次いで、加熱乾燥処理して、シリカゲルを活性化させた後、混合容器にシリカゲルを仕込む。次いで、本発明に係る高濃度硫酸を、要すれば攪拌しながらシリカゲルが均一状態になるまで攪拌反応させる。
シリカゲルを処理する本発明に係る高濃度硫酸とシリカゲルの使用量(重量)比は、1:0.42〜1:0.96、好ましくは1:0.53〜1:0.96、更に好ましくは1:0.82程度である。
得られた高濃度硫酸含有シリカゲル中の硫酸含量は、滴定法、ICP法、蛍光X線分析法等の常法により測定すればよい。
本発明の環境分析方法に係る具体的な分析対象成分としては、PCB類、ダイオキシン類、臭素系ダイオキシン類、ポリハロゲン化ビフェニル、ポリハロゲン化ビフェニールエーテル、ポリハロゲン化多環芳香族炭化水素類などの有機ハロゲン化物質(臭化物、塩化物、フッ化物)等が挙げられるがこれに限定されるものではない。すなわち、本発明の高濃度硫酸含有シリカゲルを用いた前処理(クリーンアップ処理)で、該シリカゲルに吸着されないものであれば、本発明の硫酸シリカゲルを用いてクリーンアップ処理した試料中の分析対象成分となる。
本発明に於いてダイオキシン類とは、ポリ塩化ジベンゾ-パラ-ジオキシン(PCDD)とポリ塩化ジベンゾフラン(PCDF)とコプラナ−ポリ塩化ビフェニル(Co−PCB)、ならびにそれらの異性体を含む。
本発明に於いてPCB類とは、Co−PCB以外のポリ塩化ビフェニル類、並びにそれらの異性体を含む。
上記した本発明の分析対象成分を含有する、本発明に係る「分析対象試料」としては、環境試料等の、本発明に係る分析対象成分を測定する試料が挙げられる。環境試料としては、土壌、河川等の底質、環境水(河川水、海水、湖沼水、地下水、飲料水、工業用水、排水等)、例えばごみ焼却施設や産業廃棄物焼却施設等から排出される排ガス、焼却灰、飛灰、煤塵、環境大気等が挙げられる。その他、変圧器の中の絶縁オイル等が挙げられる。
尚、本明細書に於いて、単に「試料」という場合、「分析対象試料」と後記の分析対象試料から分析対象成分を抽出処理する方法で得られた「抽出試料」のいずれか、又は両方を意味する場合がある。
本発明に係る、分析対象試料から分析対象成分を抽出処理する方法としては、分析対象試料から、分析対象成分を抽出し得る処理方法であればよい。従来よりこの分野で通常行われている公知の方法、例えば液−液振とう抽出、ソックスレー抽出、還流抽出、超音波抽出、超臨界抽出、高速溶媒抽出などが挙げられる。これらの抽出処理を複数回行ってもよく、また2種以上の抽出処理を組み合わせて抽出処理を行ってもよい。
上記抽出処理に用いられる抽出溶媒としては、分析対象成分の分析に影響を及ぼさない溶媒で、通常この分野で試料の抽出処理に用いられている溶媒であればよい。例えば有機溶媒が挙げられる。具体的には、例えばヘキサン、トルエン、ジメチルスルホキシド、アセトン、ジクロロメタン、酢酸エチル、ベンゼン、酢酸、およびメタノールなどが挙げられる。これらの溶媒を単独で、または2種以上の溶媒を適宜混合した混合溶媒を用いるのは任意である。
本発明の試料の前処理方法としては、試料を、本発明の製造法で得られた高濃度硫酸含有シリカゲルで処理する、クリーンアップ処理法が挙げられる。
具体的な処理方法としては、(1)試料と本発明に係る高濃度硫酸含有シリカゲルとを混合、振とうする方法(バッチ法)、あるいは(2)本発明に係る高濃度硫酸含有シリカゲルを充填したカラムに試料を負荷する方法(カラム法)等が挙げられる。また、カラム法としては、一般の液体クロマトグラフィー法に準じて行われる方法が挙げられる。
より具体的な方法は、例えば以下の通りである。
(1)バッチ法
先ず、試料を本発明に係る高濃度硫酸含有シリカゲルと混合し、振とう吸着処理する。又は、試料を、本発明に係る高濃度硫酸含有シリカゲルを懸濁させた溶媒と混合させ、振とう吸着処理する。これらの操作により芳香族化合物類等の、本発明に係る分析対象成分の測定に影響を及ぼす夾雑物のみが本発明に係る高濃度硫酸含有シリカゲルに吸着される。次いで、試料と高濃度硫酸含有シリカゲルとを分離すればよい。
バッチ処理を行う場合の本発明に係る高濃度硫酸含有シリカゲルの量は、多いほど試料中の夾雑物を十分に除くことができるが、あまり多くても無駄であり、経済的でない。そのため、経済的な量を考慮すると、例えば、本発明に係る高濃度硫酸含有シリカゲルと試料との使用量比は、1:1000〜1:3、好ましくは1:10〜1:3程度であればよい。尚、該比率は、重量比(W/W)、容量比(V/V)、容量/重量比(V/W)のいずれでも良い。
また、試料と本発明に係る高濃度硫酸含有シリカゲルとを接触させる時間は、試料中の夾雑物が該シリカゲルに吸着されるのに十分な時間であれば良く、例えば0.5分〜1日、好ましくは0.5分〜30分であるが、3分程度でも十分である。
試料と本発明に係る高濃度硫酸含有シリカゲルとを分離するには、例えばろ過、デカント等の適当な方法を用いればよい。
(2)カラム法
本発明の製造法で得られた高濃度硫酸含有シリカゲルを充填剤として用いる以外は、従来からこの分野で通常行われていたカラムクロマト法によるクリーンアップ処理を行えばよい。
カラム法に用いられるカラムとしては、「本発明の製造法で得られた高濃度硫酸含有シリカゲル(本発明に係る高濃度硫酸含有シリカゲル)を含んで成る本発明の充填剤」を充填してなる、クロマトグラフィー用カラム(本発明のクロマトグラフィー用カラム)が挙げられる。
本発明の充填剤を構成する本発明に係る高濃度硫酸含有シリカゲル、および本発明のクロマトグラフィー用カラムに充填される、本発明に係る高濃度硫酸含有シリカゲルの好ましい実施形態および具体例は、上記した通りである。
本発明のクロマトグラフィー用カラムは、本発明の充填剤の層を有していれば良い。また、カラムによるクリーンアップ処理は、1段階処理でも、複数段階処理でもよい。すなわち、本発明の充填剤の単層カラムでもよいし、本発明の充填剤の層を含む複層カラム又は多層カラムでも良い。多層カラムは、従来より試料のクリーンアップ処理に用いられていた複層又は多層カラムを構成する充填剤の層のいずれかを本発明の充填剤に換えたものでも良いし、又は、従来の複層又は多層カラムに本発明の充填剤の層を追加したものでも良い。更に、本発明の充填剤の層を含むように新たにデザインされた複層又は多層カラムでもよい。
本発明に係る複層又は多層カラムを構成する、本発明の充填剤以外の充填剤としては、例えばシリカゲル、従来の硫酸濃度の硫酸シリカゲル、硝酸銀シリカゲル、無水硫酸ナトリウム等、従来よりこの分野で通常用いられていたものが挙げられるが、これに限定されない。
複層又は多層カラムを構成する層の積層順番等、どのようなカラムを用いてクリーンアップ処理をするのが好ましいかは、抽出液に含まれる不純物の種類および量等に応じて、適宜選択すればよい。
本発明のカラムは、使い捨ての出来るカートリッジ形態になっていても良い。
また、カラムの大きさは特に限定されず、この分野でダイオキシン類分析用試料やPCB類分析用試料のクリーンアップ処理に通常用いられているカラムの大きさでよい。
分析用試料をクリーンアップ処理する際に液体クロマトグラフィーに用いられる溶出液としては、分析対象成分の分析に影響を及ぼさない溶媒で、通常この分野で試料の抽出処理に用いられている適当な溶媒を単独若しくは適宜組み合わせて用いればよい。溶媒の具体例としては、例えばヘキサン、ヘプタン、イソオクタン、ノナン、デカン、ジクロロメタン等の有機溶媒が挙げられ、中でもヘキサンが好ましい。
溶出液の流速は、用いられるカラムの直径に応じて通常、0.5〜10mL/分、好ましくは1.5〜4mL/分の範囲から適宜選択されるが特にこれに限定されない。
本発明のクロマトグラフィー用カラムは、例えば、内径(φ)5〜30mm、好ましくは10〜20mm、長さ30〜500mm、好ましくは50〜300mmのカラムに、本発明に係る高濃度硫酸含有シリカゲルを湿式充填法等の常法に従って充填することにより得られる。又は本発明に係る高濃度硫酸含有シリカゲルとその他の充填剤を、湿式充填法等、常法に従って層状に充填することにより得られる。
カラム法による試料のクリーンアップ処理方法は、例えば下記のように行えばよい。
まず試料を、本発明の充填剤を充填したカラムに流通させる。この操作により、試料中の、PCB類やダイオキシン類等の本発明に係る分析対象成分の測定に影響を及ぼす夾雑物のみが充填剤に吸着される。そして、これらの夾雑物を含まない試料がカラムから溶出してくる。この溶出液を回収すればよい。
本発明に係る環境分析方法は、本発明に係る高濃度硫酸含有シリカゲルで処理した試料を用いる以外は、各種環境分析方法等の、各分析対象成分を測定するためのそれぞれ公知の測定方法に従い、実施すればよい。
例えば、分析対象成分がダイオキシン類やPCBの場合、これらはJIS K0311(排ガス中のダイオキシン類およびプラナ−PCBの測定方法)JIS K0312(工業用水・工場排水中のダイオキシン類及びコプラナ−PCBの測定方法)等に規定された方法、「ダイオキシン類に係る土壌調査測定マニュアル」(環境省 水・大気環境局土壌環境課)」、「ダイオキシン類に係る底質調査測定マニュアル」(環境省 水・大気環境局水環境課)、「ダイオキシン類に係る大気環境測定マニュアル」(水・大気環境局 総務課ダイオキシン対策室 大気環境課)等に記載された方法等が挙げられる。
また、分析対象成分がダイオキシン類やPCBの場合、ガスクロマトグラフィーおよび質量スペクトル分析の様な物理化学的手段による分析法で、検出される。具体的には、例えば、二重収束型高分解能ガスクロマトグラフ質量分析装置(HRGC−HRMS)を使用する方法(公定法)等が挙げられる。
以下に本発明を実施例によって具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
実施例1.55%硫酸シリカゲルの調製
(1)100%硫酸の調製
ガラス製500mL試薬ビンに硫酸[規格:96+%(容量分析による)精密分析用、和光純薬工業(株)製] 約200gを注入した。次いで、ドラフト内で、硫酸の入っている試薬ビンを氷水で冷やしながら、30%発煙硫酸(JIS試薬特級、和光純薬工業(株)製)を発熱状況を確認しながら注入し、攪拌し、随時サンプリングして、硫酸の濃度を、JIS K8951の「7.試験方法」に規定する方法に従い、測定した。約99.9%の濃度の硫酸が得られたことを確認し、氷水で室温まで冷却した。これを、「100%硫酸」とした。
(2)シリカゲルの前処理
ワコーゲルC-200[シリカゲル、75〜150μm(100〜200mesh)75%以上、カラムクロマトグラフ用、和光純薬工業(株)製] を加熱乾燥器に入れ、130℃で、約18時間乾燥処理した後、高純度窒素を流して冷却した。
(3)シリカゲルの100%硫酸処理
2Lのナス型フラスコに、上記(2)で前処理した乾燥シリカゲル200gを仕込んだ。これに、上記(1)で調製した100%硫酸約245gを、3回に分け注入し、硫酸注入毎に、振とうさせ混合した。全量の100%硫酸を注入後、シリカゲルの固まりが消えるまで混合した。
以上の操作で、約445gの55%硫酸シリカゲルが得られた。
比較例1.
(1)使用する硫酸
JIS K8951に規定する硫酸と同等の品質の硫酸(和光純薬工業(株)製、規格JIS試薬特級 [K8951])の純度の測定を、JIS K8951:2006に規定する方法で行い、質量分率95%の純度であることを確認した。これを用いて、以下の通り、シリカゲルを処理した。
(2)シリカゲルの硫酸処理
従来の方法(JIS K0311法)を改変し、下記の方法でシリカゲルを硫酸処理した。
まず、実施例1(2)と同じシリカゲルを用い、同様の方法でシリカゲルを前処理した。次いで、2Lのナス型フラスコに、前処理した乾燥シリカゲル47gを仕込んだ。上記(1)で調製した硫酸約53gを、3回に分け注入し、硫酸注入毎に、振とうさせ混合した。全量の100%硫酸を注入後、シリカゲルの固まりが消えるまで混合した。
以上の操作で、約100gの約53%硫酸シリカゲルが得られた。
(3)結果
図1に、実施例1(本発明の製造法)で得られた本発明の55%硫酸シリカゲル(図1(1)右及び(2))と、比較例1(従来法)で得られた53%硫酸シリカゲル(図1(1)左及び(3))の写真を示す。図1から明らかな如く、従来法で得られた硫酸シリカゲルは、水分が含まれてしまうため、塊状物が出来ている(図1左及び(3))が、本発明の製造法で得られた55%硫酸シリカゲルは、塊状物のないさらさらの状態となっている(図1右及び(2))。すなわち、本発明の55%硫酸シリカゲルは、ダイオキシン測定用抽出試料のバッチ処理によるクリーンアップ処理を行う場合に、抽出試料と均一に接触できるので、均一に処理できることがわかる。また、この55%硫酸シリカゲルを充填したカラムは、均一の層のカラムになるので、同様の理由から、抽出試料を均一に処理できることが判る。
実施例2.バッチ処理による色素成分の除去効果
(1)抽出試料の調製
626.60gの土壌を採取し、乾燥させ、異物を除いた後、1Lのトルエンで5時間還流抽出後、熱時ろ過した。得られたろ液をほぼ乾固させ、ヘキサン200mLに転溶し、抽出試料とした。
(2)55%硫酸シリカゲルによる抽出試料のクリーンアップ処理
上記(1)で得られた抽出試料の10mLを50mL比色管にとり、実施例1で得られた本発明の55%硫酸シリカゲル3gを加え、30秒間、tube mixerで攪拌した後、ガラス繊維ろ紙でろ過し、ろ液を回収した。
(3)結果
図2に、それぞれの段階で得られた試料の写真を示す。図2において、(A)は、上記(1)で得られた、ヘキサンに溶解させた抽出試料、(B)は、(A)の抽出試料に55%硫酸シリカゲルを加えた直後の試料、(C)は、上記(2)で得られた、クリーンアップ処理後の試料の写真をそれぞれ示す。
図2から明らかな如く、トルエン抽出後ヘキサンに溶解させた抽出試料は、まだ色素成分を含有しているが(図2(A))、本発明の55%硫酸シリカゲルをその抽出試料に加えると、色素成分がある程度除去され(図2(B))、更に攪拌を行ってクリーンアップ処理を続行した後、ろ過処理を行うことにより、試料が透明になり、色素成分が除去されたことがわかる(図2(C))。
以上のことから、本発明の55%硫酸シリカゲルを抽出試料に加え攪拌するだけで、硫酸処理のように液-液抽出などの煩雑な操作を必要とせず、非常に簡便に色素成分を除去することが出来ることがわかる。
実施例3.バッチ処理による夾雑物の除去効果の検討
(1)ガスクロマトグラフ分析
実施例2で得られたクリーンアップ処理前の抽出試料(図2の(A))と、クリーンアップ処理後の試料(図2の(C))中の夾雑物を、下記の条件によるガスクロマトグラフィー(FID−GC)で分析した。
ガスクロマトグラフ装置: HP-5890(横川アナリティカルシステムズ(株)製)
カラム: BP−5(SGE Analytical Science Pty Ltd.製)(30m×0.32mm i.d.)1.0μm(膜厚)
キャリアーガス:1.5mL/分 He
注入方法:スプリット
測定試料注入:3μL
流速:50mL/分
注入口温度:280℃
初期温度:80℃、1分、
昇温1:15℃/分、温度:220℃
昇温2:10℃/分、最終温度:310℃、10分
検出器:水素炎イオン化型検出装置(FID)
(2)結果
得られたクロマトグラムを図3に示す。図3において、(1)は実施例2で得られたクリーンアップ処理前の抽出試料(図2の(A))のクロマトグラムを示す。(2)はクリーンアップ処理後の試料(図2の(C))のクロマトグラムを示す。
図3から明らかな如く、クリーンアップ処理前の抽出試料は多くの夾雑物を含有しているが(図3(1))、本発明の55%硫酸シリカゲルを用いてバッチ処理によるクリーンアップ処理を行うと、多くの夾雑物が除去されたことが判る(図3(2))。
以上のことから、本発明の55%硫酸シリカゲルを用いて抽出試料を処理すれば、該試料の色素成分を含む夾雑物を簡便、迅速に除去できることが判る。
実施例4.55%硫酸シリカゲルと他の硫酸シリカゲルとのクリーンアップ処理能力の比較
(1)PAHs溶液の調製
100mgアントラセンと100mgピレンと100mgクリセンを1Lのヘキサンに溶解し、PAHs(多環芳香族炭化水素類)溶液とした。
(2)積層カラムの調製
ガラス製クロマト管(10mm径)に、下記表1記載の順で、充填剤を積層して、A、B、Cの3種類の積層カラムを調製した。
Figure 0005691120
・無水硫酸ナトリウム:ダイオキシン類分析用、和光純薬工業(株)製
・55%硫酸シリカゲル:実施例1で調製した本発明の55%硫酸シリカゲル
・44%硫酸シリカゲル:ダイオキシン類分析用、和光純薬工業(株)製
・22%硫酸シリカゲル:ダイオキシン類分析用、和光純薬工業(株)製
(3)多層カラムを用いたPAHs溶液のクリーンアップ処理
上記(2)で調製した3種類のカラムそれぞれをヘキサンで予備洗浄した後、それぞれのカラムに(i) PAHs溶液を1mL注入(チャージ)し、次いで(ii)ヘキサン10mLを通液し、処理液を回収した。(i)〜(ii)の操作を20回繰り返し、その都度、処理液を回収した。
(4)クリセン残量の測定
上記(3)で回収した各PAHs溶液の処理液中に残留するクリセンの量を、実施例3と同じ装置を用い、同様の測定条件で、FID−GC分析で測定した。また、上記(1)で調製したPAHs溶液についても同様にFID−GC分析を行い、溶液中のクリセンの量を測定した。
(5)結果
上記(1)で調製したPAHs溶液のクリセン濃度に対する、クリーンアップ処理後の各PAHs溶液のクリセン濃度の割合を計算し、その値から各処理液のクリセン除去率を求めた。また、クリーンアップカラムへのクリセンチャージ量(累積量)に対して、各処理液のクリセン除去率をプロットしたグラフを図4に示す。図4において、―◆―はカラムAでクリーンアップ処理した場合、―□―はカラムBでクリーンアップ処理した場合、―△―はカラムCでクリーンアップ処理した場合の結果をそれぞれ示す。
すなわち、硫酸シリカゲル1mL当りのクリセン除去性能は、22%硫酸シリカゲルカラム(―△―)は数μgレベル未満、44%硫酸シリカゲルカラム(―□―)は20μg程度であった。一方、55%硫酸シリカゲルカラム(―◆―)は300μgのクリセンをほぼ完全に除去できることが判明した。
さらに、55%硫酸シリカゲルを用いた場合について、アントラセンやピレンの除去率も同様に求めたところ、これらについてはmgレベルのクリーンアップ処理が可能であった。
この結果から、55%硫酸シリカゲルの層を有するカラムでクリーンアップ処理を行えば、クリセン、アントラセン、ピレン等を効果的に除去できることが判る。
実施例5.
(1)抽出試料の調製
農園土壌を採取、風乾させた後、高速溶媒抽出装置 ASE-200(日本ダイオネクス(株))でトルエン抽出し、次いでヘキサンで溶媒置換し、抽出試料を得た(5g土壌/mL溶媒)。
(2)積層カラムの調製
プレセップTM多層シリカゲル(ダイオキシン類分析用、和光純薬工業(株)製、「プレセップ」は和光純薬工業(株)の登録商標)用ガラスカラムを用い、そのフィルター上にダイオキシン類分析用シリカゲル(ダイオキシン類分析用、和光純薬工業(株)製)2g、実施例1で調製した本発明の55%硫酸シリカゲル3g、無水硫酸シリカゲル3gを順に積層し、積層シリカゲルカラムを調製した。このカラムをヘキサン150mLで予備洗浄した。
(3)抽出試料のクリーンアップ処理
上記(2)で調製した積層カラムに、上記(1)で調製した抽出試料10mL(すなわち50g相当土壌の抽出試料)を注入した後、ヘキサン150mLを通液し、処理液をエバポレータ―で、1mLまで濃縮した。
(4)GC/MS分析
上記(1)で得られた抽出試料と、上記(3)で得られたクリーンアップ処理後の濃縮液を、それぞれ下記の条件で、GC/MS(四重極)で分析した。
装置 :Agilent 7890GC/5975MSD(Agilent Technologies製)
カラム :DB-5ms(0.32mm i.d.×30m,0.25μm film thickness)
注入方法 :パルスドスプリットレス
キャリアーガス:He 0.5mL/分
気化室温度:260℃
カラム温度:80℃(1min)→120℃(40℃/min、2min)→310℃(10℃/min,20min)
高圧注入 :100kPa(1min)
注入量 :1.0μL
イオン化モード:EI
インターフェイス温度:325℃
イオン源温度:230℃
測定モード :Scanモード
測定質量範囲:m/z40-550
(5)結果
抽出試料のクロマトグラムを図5に、クリーンアップ処理後の濃縮液のクロマトグラムを図6にそれぞれ示す。尚、図5および図6中に数字を付したピークは、それぞれ下記表2に記載の化合物のピークを示す。また、図6では、クロマトグラムの一部を拡大した図も併せて示す。
Figure 0005691120
図5から明らかな如く、土壌の抽出試料中には農薬類や芳香族系化合物など種々の夾雑物を含有しているが、図6から明らかな如く、本発明の55%硫酸シリカゲルの層を備えた積層カラムを用いてその抽出試料を処理すると、これらの夾雑物のうち、芳香族化合物類、農薬類(塩素系)、多環芳香族炭化水素類、フタル酸ジエチルヘキシル、及びテルペン類については、その大部分が除去(クリーンアップ)されたことが判る。また、図6から、クリーンアップ処理後の濃縮液中には、GC/MS測定によるPCB類やダイオキシン類の分析に妨害をおよぼさない飽和炭化水素類のみ(ピーク7)が高濃度に検出されることも判る。
これらのことから、多層シリカゲルカラムに55%硫酸シリカゲルを積層し処理することで、PCB類やダイオキシン類の分析に影響を及ぼす試料中成分を効率良くクリーンアップ処理できることが実証された。
比較例2.
(1)抽出試料
実施例5で用いたのと同じ土壌の抽出試料を用いた。
(2)積層カラムの調製
従来からダイオキシン類分析用試料のクリーンアップ処理に用いられているプレセップTM多層シリカゲル(ダイオキシン類分析用、和光純薬工業(株)製)をヘキサン150mLで予備洗浄した。
尚、プレセップTM多層シリカゲルの層は、シリカゲル、2%水酸化カリウムシリカゲル、44%硫酸シリカゲル、22%硫酸シリカゲル、シリカゲル、10%硝酸シリカゲル、硫酸ナトリウムを順にガラスカラムに積層したものである。
(3)抽出試料のクリーンアップ処理
上記(2)で調製したプレセップTM多層シリカゲルのカラムに、抽出試料10mLを注入した後、ヘキサン150mLを通液し、処理液をエバポレータ―で、1mLまで濃縮した。
(4)GC/MS分析
上記(3)で得られたクリーンアップ処理後の濃縮液を、実施例5(4)と同じ条件で、GC/MS(四重極)で分析した。
(5)結果
プレセップTM多層シリカゲルカラムでクリーンアップ処理後の濃縮液のクロマトグラムを図7に示す。尚、図7中に数字を付したピークは、上記表2に記載の化合物のピークを示す。また、図7では、クロマトグラムの、図6で拡大したのと同じ部分を拡大した図も併せて示す。
図7から明らかな如く、本発明に係る高濃度硫酸シリカゲルを積層していない、従来の多層シリカゲルカラムで処理した場合、GC/MS測定によるPCB類やダイオキシン類の分析に妨害をおよぼす芳香族化合物がクリーンアップ処理後も濃縮液中に残留してしまう(ピーク2)ことがわかる。
実施例6.
(1)抽出試料の調製
i)土壌抽出試料の調製
A小学校農園の土壌を採取し、トルエン還流抽出した抽出液を土壌抽出試料として用いた(3.5g土壌/mL溶媒)。
ii)飛灰抽出試料の調製
廃棄物焼却施設の煙道飛灰を採取し、トルエン還流抽出した抽出液を、飛灰抽出試料として用いた(0.05g飛灰/mL溶媒)。
(2)抽出試料のクリーンアップ処理
上記(1)で得られた土壌抽出試料および飛灰抽出試料それぞれのクリーンアップ処理を、それぞれ以下の通り、バッチ処理(バッチ法)及びカラムクロマトグラフィー(カラム法)により行った。
i)バッチ法
上記(1)で得られた2種の抽出試料10mL(すなわち、土壌抽出試料は、35g相当土壌の抽出試料、飛灰抽出試料は、0.5g相当飛灰の抽出試料)を、それぞれ50mLガラス製比色管に採り、13C−標準物質(CAMBRIDGE ISOTOPE LABORATOTRIES,INC.製)100pgを加えた。次いで実施例1で得られた本発明の55%硫酸シリカゲル3.5gをそれぞれ加え、30秒間、tube mixerで攪拌した後、ガラス繊維ろ紙でろ過し、ろ液を回収した。
ii)カラム法
ガラス製クロマト管(2cm径)に、実施例1で得られた本発明の55%硫酸シリカゲル5gを充填した後、ヘキサン50mLで予備洗浄した。上記(1)で得られた2種の抽出試料10mLのそれぞれに13C−標準物質100pgを加えた後、それぞれをカラムに注入し、ヘキサン60mLを通液した(流速2mL/min)。処理液を回収し、エバポレータ―で0.1mLにまで濃縮した。
(3)ダイオキシン類の測定
i)ダイオキシン類測定の前処理
上記(2)のi)又はii)で得られた溶液の0.1mLを、プレセップTM活性炭埋蔵シリカゲル(リバースカラム、ダイオキシン類分析用、和光純薬工業(株)製)に注入し、25%(V/V)ジクロロメタン−ヘキサン溶液100mLを通液し、次いでトルエン200mLを通液した。各画分を回収し、それぞれエバポレータで濃縮し、測定試料とした。
ii)ダイオキシン類の測定
上記(3)i)で得られた測定試料中のダイオキシン類量を、JIS K0311に従い、GC/MSで測定した。
(4)結果
結果を下記表3に示す。
Figure 0005691120
表3から明らかな通り、土壌試料、飛灰試料共に、55%硫酸シリカゲルのバッチ法とカラム法によるクリーンアップ処理との間に、ダイオキシン測定の実測値の差はなかった。
また、同じ試料について、第三者機関で従来の公定法によるクリーンアップ処理とダイオキシン測定を行った。その結果、土壌試料中のダイオキシン濃度は30pgTEQ/g、飛灰試料中のダイオキシン濃度は996pgTEQ/gであり、55%硫酸シリカゲルを用いてクリーンアップ処理を行った場合の測定値と一致した。
以上の結果から、本発明に係る高濃度硫酸シリカゲルを用いたクリーンアップ処理は、ダイオキシン濃度の測定に影響を及ぼすことがないことが判った。
本発明の製造法で得られた高濃度硫酸含有シリカゲルを用いれば、PCB類やダイオキシン類等の分析対象成分を含有する測定用試料を簡便且つ効果的にクリーンアップ処理することが出来るので、測定用試料中の分析対象成分を効率よく高精度に測定することが出来る。
実施例1(本発明の製造法)及び比較例1(従来法)で得られた各濃度の硫酸シリカゲルの写真であり、(1)は本発明の製造法で得られた55%硫酸シリカゲル(右)と従来法で得られた53%硫酸シリカゲル(左)の写真、(2)は55%硫酸シリカゲルの拡大写真、(3)は53%硫酸シリカゲルの拡大写真をそれぞれ示す。 実施例2で得られた試料の写真であり、 (A)は、ヘキサンに溶解させた抽出試料、(B)は、(A)の抽出試料に55%硫酸シリカゲルを加えた直後の試料、(C)は、試料(A)をクリーンアップ処理した後の写真をそれぞれ示す。 実施例3で得られたクロマトグラムであり、(1)はクリーンアップ処理前の抽出試料(図2の(A))のクロマトグラムを示し、(2)はクリーンアップ処理後の試料(図2の(C))のクロマトグラムをそれぞれ示す。 実施例4で得られたクリーンアップカラムへのクリセンチャージ量(累計数)に対して、各処理液のクリセン除去率をプロットしたグラフである。 実施例5で得られた、抽出試料のクロマトグラムである。 実施例5で得られた、本発明の55%硫酸シリカゲルの層を有する多層シリカゲルカラムを用いてクリーンアップ処理後の濃縮液のクロマトグラムである。 比較例2で得られた、従来の多層シリカゲルカラムを用いてクリーンアップ処理後の濃縮液のクロマトグラムである。
符号の説明
図4において、―◆―はカラムAでクリーンアップ処理した場合、―□―はカラムBでクリーンアップ処理した場合、―△―はカラムCでクリーンアップ処理した場合の結果をそれぞれ示す。

Claims (10)

  1. 予め得られた51w/w%〜70w/w%の高濃度硫酸含有シリカゲルで処理する、環境中のPCB類、ダイオキシン類、臭素系ダイオキシン類、ポリハロゲン化ビフェニル、ポリハロゲン化ビフェニールエーテル、又はポリハロゲン化多環芳香族炭化水素類を分析するための抽出試料の前処理方法。
  2. 予め得られた55w/w%〜70w/w%の高濃度硫酸含有シリカゲルで処理する、請求項1に記載の前処理方法。
  3. 高濃度硫酸含有シリカゲルが、シリカゲルを、硫酸と発煙硫酸で調製された97〜100%の硫酸と撹拌又は振とうして得られたものである、請求項1に記載の前処理方法。
  4. シリカゲルの粒子径が0.5μm〜1mmである、請求項1に記載の前処理方法。
  5. シリカゲルの比表面積が300〜800m/gである、請求項1に記載の前処理方法。
  6. 請求項1に記載の前処理方法で処理した試料を用いる、環境分析方法。
  7. 予め得られた51w/w%〜70w/w%の高濃度硫酸含有シリカゲルを含んでなるクロマトグラフィー用充填剤。
  8. 予め得られた55w/w%〜70w/w%の高濃度硫酸含有シリカゲルを含んでなる、請求項7に記載のクロマトグラフィー用充填剤。
  9. 請求項7に記載の充填剤を充填してなるクロマトグラフィー用カラム。
  10. シリカゲルを、硫酸と発煙硫酸で調製された97〜100%の高濃度硫酸と撹拌又は振とうする、51w/w%〜70w/w%の高濃度硫酸含有シリカゲルの製造方法。
JP2008135046A 2008-05-23 2008-05-23 高濃度硫酸含有シリカゲルの製造法 Active JP5691120B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135046A JP5691120B2 (ja) 2008-05-23 2008-05-23 高濃度硫酸含有シリカゲルの製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135046A JP5691120B2 (ja) 2008-05-23 2008-05-23 高濃度硫酸含有シリカゲルの製造法

Publications (2)

Publication Number Publication Date
JP2009280453A JP2009280453A (ja) 2009-12-03
JP5691120B2 true JP5691120B2 (ja) 2015-04-01

Family

ID=41451334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135046A Active JP5691120B2 (ja) 2008-05-23 2008-05-23 高濃度硫酸含有シリカゲルの製造法

Country Status (1)

Country Link
JP (1) JP5691120B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957276A1 (fr) * 2010-03-15 2011-09-16 Francois Parmentier Monolithe multicapillaire
WO2019163245A1 (ja) * 2018-02-26 2019-08-29 株式会社島津製作所 キノン類分析方法とその方法を実施するためのオンラインsfe-sfcシステム
KR102087611B1 (ko) * 2019-10-11 2020-03-11 대한민국 가속용매추출장치를 이용한 해양퇴적토 또는 수산물 생체시료내의 HBCDs와 TBBPA 동시분석을 위한 원스텝 추출 및 정제방법
CN113945650A (zh) * 2021-09-09 2022-01-18 国家粮食和物资储备局科学研究院 一种谷物中持久性有机污染物的同时分析方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653798B2 (ja) * 1995-05-17 2005-06-02 和光純薬工業株式会社 新規な変性シリカゲル
JP3670909B2 (ja) * 1999-10-25 2005-07-13 株式会社荏原製作所 サンプルの前処理方法
JP2005082582A (ja) * 2003-09-11 2005-03-31 Tokuyama Corp 2−アダマンタノンの製造方法
JP2005140522A (ja) * 2003-11-04 2005-06-02 Sumika Chemical Analysis Service Ltd ポリ塩化ビフェニル類を含む油性試料の前処理方法

Also Published As

Publication number Publication date
JP2009280453A (ja) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4465430B2 (ja) ポリ塩化ビフェニル類の抽出方法
TWI425983B (zh) 用以精製含有多氯聯苯類物質之油性液體之製劑
JP5490332B1 (ja) ダイオキシン類の分画方法
WO2020149255A1 (ja) ダイオキシン類の分画方法
JP5691120B2 (ja) 高濃度硫酸含有シリカゲルの製造法
CN107064395A (zh) 复合硅胶柱和用于分析样品中有机污染物的前处理方法
JP5574135B1 (ja) ダイオキシン類の分画器具
Musty et al. Extractants for organochlorine insecticides and polychlorinated biphenyls from water
De Castro et al. Soxhlet extraction
JPS62216911A (ja) 活性炭埋蔵シリカゲルをクリンアップカラムの充填剤として用いる分析法
JP6864265B2 (ja) ハロゲン化有機化合物の抽出方法
JP5891816B2 (ja) ダイオキシン類の抽出方法
JP2006342091A (ja) ポリハロゲン化ビフェニル類の分離精製方法
JP2005214816A (ja) ダイオキシン類の簡易分析方法および簡易分析装置
Rossetti et al. Development of a new automated clean-up system for the simultaneous analysis of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and ‘dioxin-like’polychlorinated biphenyls (dl-PCB) in flue gas emissions by GPC-SPE
WO2023119935A1 (ja) モノオルソポリ塩化ビフェニル類含有脂肪族炭化水素溶媒溶液の処理器具
WO2022064749A1 (ja) 有機ハロゲン化合物の抽出方法
Ren et al. Determination of 2, 3, 7, 8-substitituted polychlorinated dibenzo-p-dioxins-dibenzofurans and dioxin-like polychlorinated biphenyls in environmental samples by gas chromatography/high resolution mass spectrometry
JP2005140522A (ja) ポリ塩化ビフェニル類を含む油性試料の前処理方法
JP2015190963A (ja) ポリ塩化ビフェニル類の分画方法および分画器具
양정수 et al. Analytical Method for Dioxin and Organo-Chlorinated Compounds:(I) Pretreatment of Milk Samples for Dioxin Analysis
WO2022176252A1 (ja) 有機ハロゲン化合物の抽出方法
Green et al. Joint Assessment and Monitoring Programme (JAMP) Overview of Norwegian analytical methods 1981-2007
Zhao et al. Rapid analysis of dechloranes in sediment and soil by selective pressurized liquid extraction using Mg–Al layered double oxides as sorbents
Khatmullina et al. Chromatographic determination of polycyclic aromatic hydrocarbons in oil sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140131

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250