WO2021033404A1 - 油類の精製方法 - Google Patents

油類の精製方法 Download PDF

Info

Publication number
WO2021033404A1
WO2021033404A1 PCT/JP2020/024026 JP2020024026W WO2021033404A1 WO 2021033404 A1 WO2021033404 A1 WO 2021033404A1 JP 2020024026 W JP2020024026 W JP 2020024026W WO 2021033404 A1 WO2021033404 A1 WO 2021033404A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silica gel
oils
aliphatic hydrocarbon
hydrocarbon solvent
Prior art date
Application number
PCT/JP2020/024026
Other languages
English (en)
French (fr)
Inventor
寛之 藤田
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Priority to EP20854335.5A priority Critical patent/EP4019930A4/en
Priority to CN202080054839.7A priority patent/CN114158273A/zh
Publication of WO2021033404A1 publication Critical patent/WO2021033404A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/001Refining fats or fatty oils by a combination of two or more of the means hereafter
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/02Refining fats or fatty oils by chemical reaction
    • C11B3/08Refining fats or fatty oils by chemical reaction with oxidising agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/10Refining fats or fatty oils by adsorption

Definitions

  • the present invention relates to a method for refining oils, in particular, a method for refining the oils in order to analyze an organic halogenated substance contained in the oils.
  • the present application claims priority based on Japanese Patent Application No. 2019-152402 filed in Japan on August 22, 2019, the contents of which are incorporated herein by reference.
  • the Act on Special Measures concerning Countermeasures against Dioxins in Japan states that emissions from waste incineration facilities, fly ash generated in waste incineration facilities, factory wastewater, air, and soil.
  • environmental samples such as environmental water such as groundwater, seawater, lake water and river water.
  • a sample is usually taken from the evaluation target, and a sample for analysis of the organic halogenated substance is prepared from this sample.
  • the evaluation target is an oily substance such as animal fat or vegetable oil
  • the collected sample can be used as an analytical sample as it is or by appropriately dissolving it in an oily solvent.
  • an organic halogenated substance is extracted from the solid substance by a Soxhlet extraction method using an oily solvent, and this oily solvent solution is used as a sample for analysis.
  • an organic halide substance in the fluid is captured and collected using a sampler such as a filter, and then the sampler is washed with an oil-based solvent.
  • a socksley extraction method using an oil-based solvent to the sampler, the organic halide collected in the sampler is extracted, and this oil-based solvent solution is used as a sample for analysis.
  • an analyzer such as a gas chromatograph mass spectrometer (GC / MS)
  • GC / MS gas chromatograph mass spectrometer
  • the above-mentioned sample for analysis contains various organic substances derived from the evaluation target as contaminants together with the organic halogenated substance to be analyzed, and these contaminants may contaminate the analyzer and are organic. It may affect the analysis results of halogenated substances. Therefore, the above-mentioned analytical sample is usually subjected to a purification treatment for removing contaminants in the preparation process.
  • Patent Document 1 discloses a method for purifying an oily liquid containing polychlorinated biphenyls.
  • an oily liquid is added to the heated silica gel sulfate layer, and then an aliphatic hydrocarbon solvent is supplied to the silica gel sulfate layer, and the aliphatic hydrocarbon solvent that has passed through the silica gel sulfate layer is applied to the silver nitrate silica gel layer.
  • the contaminants contained in the oily liquid are decomposed by the reaction with the silica gel sulfate layer.
  • This decomposition product is retained in the silica gel sulfate layer together with the polychlorinated biphenyls.
  • an aliphatic hydrocarbon solvent is supplied to the silica gel sulfate layer, the aliphatic hydrocarbon solvent passes through the sulfuric acid silicic gel layer, is supplied to the silver nitrate silicic gel layer, and passes through the silver nitrate silicic gel layer. ..
  • the polychlorinated biphenyls and decomposition products retained in the silica gel sulfate layer are dissolved in the aliphatic hydrocarbon solvent supplied to the silica gel sulfate layer and supplied from the silica gel sulfate layer to the silver nitrate silica gel layer. ..
  • a part of the decomposition products contained in the aliphatic hydrocarbon solvent is adsorbed and retained on the silver nitrate silica gel layer.
  • the polychlorinated biphenyls contained in the aliphatic hydrocarbon solvent pass through the silver nitrate silica gel layer in a state of being dissolved in the aliphatic hydrocarbon solvent.
  • an aliphatic hydrocarbon solvent that has passed through the silver nitrate silica gel layer that is, an aliphatic hydrocarbon solvent in which polybiphenyl chloride is dissolved is supplied to the alumina layer and passed through, it is dissolved in the aliphatic hydrocarbon solvent.
  • Polybiphenyl chlorides are trapped in the alumina layer.
  • a hydrophobic solvent capable of dissolving polybiphenyls is supplied to and passed through the alumina layer through which the aliphatic hydrocarbon solvent has passed, the polybiphenyls trapped in the alumina layer become a hydrophobic solvent. It dissolves and is extracted from the alumina layer and secured as a hydrophobic solvent solution. This hydrophobic solvent solution is used as a sample for analysis of polychlorinated biphenyls.
  • the above-mentioned purification method can effectively separate the polybiphenyl chlorides contained in the oily liquid from the contaminants, and can secure the polybiphenyl chlorides as an analytical solution converted into a hydrophobic solvent.
  • sulfur oxide gas SOx gas
  • nitrogen oxide gas that affect the human body and the environment in the purification process due to the sulfuric acid and silver nitrate contained in these layers, respectively.
  • NOx gas nitrogen oxide gas
  • Patent Document 2 the order of the silica gel sulfate layer and the silver nitrate silica gel layer in Patent Document 1 was reversed as a method for purifying the dioxin solution in the case of preparing a sample for analysis of dioxin contained in the dioxin solution.
  • the method that is, a step of supplying an aliphatic hydrocarbon solvent to the silver nitrate silica gel layer after adding an oily liquid to the silver nitrate silica gel layer, and supplying the aliphatic hydrocarbon solvent that has passed through the silver nitrate silica gel layer to the sulfuric acid silica gel layer. It discloses a method including a step of passing through.
  • This purification method can purify the dioxin solution without substantially generating SOx gas or NOx gas, but if the amount of the dioxin solution added to the silver nitrate silica gel layer is increased, the dioxin in the sample for analysis can be recovered. Since the rate is significantly reduced, the amount of dioxins solution that can be purified is limited.
  • the present invention uses SOx gas and NOx gas that may be generated in the purification process when the oils are purified using a silica gel sulfate layer and a silver nitrate silica gel layer in order to analyze the organic halogenated substances contained in the oils. It is intended to be consumed during the purification process.
  • the present invention relates to a method for refining oils in order to analyze organic halogenated substances contained in the oils.
  • This purification method includes a step of adding oils to the silica gel sulfate layer, a step of supplying an aliphatic hydrocarbon solvent to the silica gel sulfate layer after adding the oils, and a carrier layer on which permanganate is fixed.
  • the treatment layer including the silver nitrate silica gel layer includes a step of passing an aliphatic hydrocarbon solvent that has passed through the sulfuric acid silica gel layer.
  • the contaminants contained in the oils added to the silica gel sulfate layer are decomposed by the reaction with the silica gel sulfate layer.
  • the aliphatic hydrocarbon solvent supplied to the silica gel sulfate layer dissolves a part of the decomposition products in the silica gel sulfate layer and the organic halogenated substance in the oils and passes through the silica gel sulfate layer, followed by Passes through the processing layer.
  • the decomposition product dissolved in the aliphatic hydrocarbon solvent is captured by the treated layer, particularly the silver nitrate silica gel layer in the treated layer, and separated from the aliphatic hydrocarbon solvent.
  • the organic halogenated substance contained in the aliphatic hydrocarbon solvent that has passed through the treatment layer is purified by removing contaminants.
  • SOx gas and NOx gas may be generated in the sulfuric acid silica gel layer and the treatment layer, but these gases are dissolved in the aliphatic hydrocarbon solvent and treated by the aliphatic hydrocarbon solvent. It is consumed by the reaction with the hydrocarbonate immobilized on the carrier layer as it passes through the layer.
  • the carrier layer used in this purification method is, for example, an aluminum oxide layer on which permanganate is immobilized.
  • the carrier layer and the silver nitrate silica gel layer are passed through the aliphatic hydrocarbon solvent that has passed through the sulfuric acid silica gel layer in this order.
  • Another form of this purification method further comprises a step of passing the aliphatic hydrocarbon solvent that has passed through the sulfuric acid silica gel layer through the active silica gel layer before passing it through the treatment layer.
  • the present invention relating to another viewpoint relates to an instrument for refining oils in order to analyze organic halogenated substances contained in the oils.
  • This purification instrument includes a cylinder with both ends open, a silica gel sulfate layer filled in the cylinder, a carrier layer on which permanganate is fixed, and a silver nitrate silica gel layer, which are filled separately from the silica gel sulfate layer in the cylinder. It is provided with a processing layer containing.
  • oils When refining oils using this device, add oils to the silica gel sulfate layer filled in the cylinder.
  • the contaminants contained in the added oils are decomposed by the reaction with the silica gel sulfate layer.
  • an aliphatic hydrocarbon solvent is supplied to the sulfuric acid silica gel layer and the aliphatic hydrocarbon solvent is passed through the sulfuric acid silica gel layer and the treated layer in this order, the aliphatic hydrocarbon solvent is a decomposition product in the sulfuric acid silica gel layer. It dissolves some organic halogenated substances in oils and passes through the sulfuric acid silica gel layer, and then passes through the treated layer.
  • the decomposition product dissolved in the aliphatic hydrocarbon solvent is captured by the treated layer, particularly the silver nitrate silica gel layer in the treated layer, and separated from the aliphatic hydrocarbon solvent.
  • the organic halogenated substance contained in the aliphatic hydrocarbon solvent that has passed through the treatment layer is purified by removing contaminants.
  • SOx gas and NOx gas may be generated in the sulfuric acid silica gel layer and the treatment layer, but these gases are dissolved in the aliphatic hydrocarbon solvent and treated by the aliphatic hydrocarbon solvent. It is consumed by the reaction with the hydrocarbonate immobilized on the carrier layer as it passes through the layer.
  • the carrier layer used in this purification instrument is, for example, an aluminum oxide layer on which permanganate is immobilized.
  • the treated layer contains a carrier layer so as to be located between the silica gel sulfate layer and the silver nitrate silica gel layer.
  • the tubular body is divided into a first portion filled with a silica gel sulfate layer and a second portion filled with a treatment layer, and the first portion and the second portion are combined. Is formed by.
  • Yet another form of this purification instrument further comprises an active silica gel layer filled between the sulfuric acid silica gel layer and the treated layer in the cylinder.
  • the method for refining oils according to the present invention uses a carrier layer on which permanganate is fixed, the oils are subjected to silica gel sulfate layer and silver nitrate in order to analyze organic halogenated substances contained in the oils.
  • silica gel sulfate layer In the case of purification using a silica gel layer, SOx gas and NOx gas that can be generated in the purification process can be consumed in the purification process.
  • the oil refining apparatus contains a sulfuric acid silica gel layer, a carrier layer on which permanganate is fixed, and a treatment layer containing a silver nitrate silica gel layer, and thus is included in the oils.
  • SOx gas and NOx gas that can be generated in the refining process can be consumed in the refining process.
  • FIG. 2 of the refining instrument which concerns on a modification.
  • FIG. 2 of the refining instrument which concerns on another modification.
  • FIG. 2 of the comparative refining instrument prepared in the comparative example 1.
  • FIG. 1 The figure which shows the result of the evaluation 6 about the sample for the 1st analysis and the sample for the 2nd analysis by Example 1.
  • FIG. 3 The figure which shows the result of the evaluation 6 about the sample for the 1st analysis and the sample for the 2nd analysis by Example 3.
  • FIG. 7 The figure which shows the result of the evaluation 7 of an Example.
  • the present invention relates to the refining of the oils when analyzing the organic halogenated substances contained in the oils.
  • the organic halogenated substance to be analyzed include dioxins, polychlorinated biphenyls that do not belong to dioxins, and polybrominated diphenyl ethers.
  • the oils to which the present invention is applied that can contain such an organic halogenated substance include animal hoofs such as pigs and cows, poultry such as chickens, and animal products derived from edible animals such as fish. Examples thereof include fats and oils, edible fats and oils such as vegetable oils such as olive oil and sunflower oil, mineral oils used as electrically insulating oils, and extracts from environmental samples using oily solvents.
  • the extracted oil obtained by applying an extraction operation using an oily solvent to meat and eggs is usually the oil to which the present invention is applied.
  • Environmental samples include, for example, solids such as fly ash and soil generated in waste incineration facilities, exhaust gas from waste incineration facilities, factory wastewater, air, blood, breast milk, groundwater, seawater, lakes and marshes. It is a fluid such as environmental water such as water and river water.
  • the extract from the environmental sample can be obtained by applying an extraction method such as Soxhlet extraction from the solid substance using an oil-based solvent.
  • the environmental sample is a fluid, it can be obtained by capturing and collecting organic halides in the fluid using a sampler and applying an extraction method such as Soxhlet extraction using an oil-based solvent from this sampler. is there.
  • a sampler for collecting organic halogenated substances from a fluid for example, a device or a filter using a glass impinger described in Japanese Industrial Standards JIS K 0311 (2005) "Measuring method of dioxins in exhaust gas”. Etc. are used.
  • the filter include those described in Japanese Patent No. 3273796, International Publication No. 01/91883, Japanese Patent Application Laid-Open No. 2004-53388, and the like.
  • the oil-based solvent used for extracting the organic halogenated substance from the environmental sample is not particularly limited as long as it can dissolve the organic halogenated substance, and is usually an organic solvent.
  • the organic solvent is usually an aliphatic hydrocarbon solvent, particularly a non-polar aliphatic hydrocarbon solvent having 5 to 10 carbon atoms such as n-hexane, isooctane, nonane or decane, and aromatic hydrocarbons such as toluene or xylene.
  • a hydrogen solvent or a polar organic solvent such as acetone, diethyl ether or dichloromethane is used.
  • the refining instrument 10 includes a tubular body 100 divided into a first portion 110 and a second portion 120.
  • the first portion 110 and the second portion 120 are both cylindrical members having both ends open, and are materials having at least solvent resistance, chemical resistance, and heat resistance, for example, glass and resin having these characteristics. Or it is made of metal.
  • the first portion 110 has a protrusion 111 at the lower end of FIG.
  • the outer diameter of the protrusion 111 substantially coincides with the inner diameter of the second portion 120, and the protrusion 111 can be fitted airtightly and liquid-tightly to the upper end portion of FIG. 1 of the second portion 120.
  • the first portion 110 is provided with a silica gel sulfate layer 130 inside.
  • the silica gel sulfate layer 130 is filled with silica gel sulfate.
  • the sulfuric acid silica gel used here is prepared by uniformly adding concentrated sulfuric acid to the surface of granular silica gel having a particle size of about 30 ⁇ m to 1 mm (usually active silica gel whose activity has been increased by heating). ..
  • the amount of sulfuric acid supported on silica gel is usually preferably set to 20 to 55% based on the weight of silica gel, and more preferably set to 30 to 50%. If the loading amount is less than 20%, the decomposition efficiency of the contaminants contained in the oils may decrease, and it may be difficult to separate the organic halogenated substances in the oils from the contaminants. On the contrary, when the supported amount exceeds 55%, when oils are added to the sulfuric acid silica gel layer 130, the reaction between the sulfuric acid supported at the addition site and the contaminants proceeds locally, and the aliphatic hydrocarbon described later. Since the hydrogen solvent is less likely to pass through the sulfuric acid silica gel layer 130, the refining efficiency of oils may decrease.
  • the density of silica gel sulfate in the silica gel sulfate layer 130 is not particularly limited, but is usually preferably set to 0.3 to 1.1 g / cm 3, and is usually set to 0.5 to 1.0 g / cm 3 . It is more preferable to set. If this density is less than 0.3 g / cm 3 , the added oils may quickly pass through the sulfuric acid silica gel layer 130, and the decomposition efficiency of contaminants may decrease. On the contrary, when this density exceeds 1.1 g / cm 3 , the added oils are difficult to permeate into the sulfuric acid silica gel layer 130, the decomposition efficiency of contaminants is lowered, and the decomposition may take a long time. is there.
  • the second portion 120 has a spiral portion 121 for connecting to the catcher 200 used in the preparation device 1 described later on the outer peripheral portion of the lower end of FIG. 1, and a processing layer 140 is provided inside. There is.
  • the treated layer 140 includes a carrier layer 141 on which permanganate is immobilized and a silver nitrate silica gel layer 142 arranged under the carrier layer 141 in FIG.
  • the carrier layer 141 is overloaded with granular carriers such as crystalline aluminosilicates such as aluminum oxide, silica gel (usually activated silica gel whose activity has been increased by heating), zeolites, or mixtures of any combination thereof. It is a layer composed of fixed manganate.
  • the permanganate used here is not particularly limited as long as it is used as an oxidizing agent, for example, potassium permanganate, sodium permanganate, silver permanganate, magnesium permanganate, and permanganate. Included are calcium manganate, barium permanganate and ammonium permanganate. As the permanganate, one type may be used alone, or two or more types may be used in combination.
  • the carrier layer 141 is prepared by uniformly adding an aqueous permanganate solution to the surface of a granular carrier having a particle size of about 10 to 500 ⁇ m and removing water by heating under reduced pressure so that a certain water content is maintained. It was done.
  • the amount of permanganate fixed to the carrier is usually preferably set to at least 3%, more preferably at least 4%, based on the weight of the carrier. If the fixed amount is less than 3%, the consumption capacity of SOx gas and NOx gas generated in the oil refining process may decrease.
  • the water content of the carrier layer 141 is generally preferably set to 3 to 10% based on the weight of the carrier, and more preferably set to 4 to 6%.
  • the water content is 3% or less, the consumption capacity of SOx gas and NOx gas generated in the oil refining process may be significantly reduced.
  • the water content exceeds 10%, the water content may act on the silver nitrate silica gel layer 142 simultaneously contained in the treatment layer 140 to increase the water content, and as a result, the purification effect of oils is improved. May decrease.
  • the water content of the carrier layer 141 is preferably set appropriately according to the carrier.
  • the carrier is aluminum oxide
  • the water content of the carrier layer 141 is preferably set to 4 to 6%, more preferably 4.5 to 5%.
  • the carrier is silica gel
  • the water content of the carrier layer 141 is preferably set to 3 to 20%, which is higher than that of the carrier when aluminum oxide is used, and more preferably 4 to 10%.
  • the carrier layer 141 it is preferable to use aluminum oxide as a carrier and potassium permanganate immobilized on the carrier because it has excellent processing ability for contaminants and is suitable for refining a larger amount of oils. For example, water and attached organic substances are removed by firing aluminum oxide at 450 to 600 ° C. for about 1 to 12 hours, and this aluminum oxide is added to an aqueous potassium permanganate solution prepared using ion-exchanged water or distilled water. After uniformly mixing the mixture, it is preferable to use an evaporator that has been dried so that the water content is within the above range.
  • an aqueous solution of potassium permanganate in which 3 to 5% of potassium permanganate is dissolved with respect to the weight of aluminum oxide to be added is used, and the fixed amount of potassium permanganate is 3 to 3 to 3 based on the weight of aluminum oxide. It is preferable to use the one adjusted to 5%.
  • the density of the carrier on which the permanganate is immobilized is not particularly limited, but is usually preferably set to 1.0 to 1.4 g / cm 3 , and 1.1 to 1 It is more preferable to set it to .2 g / cm 3. If this density is less than 1.0 g / cm 3 , the consumption capacity of SOx gas and NOx gas generated in the oil refining process may decrease. On the contrary, when this density exceeds 1.4 g / cm 3 , it becomes difficult for the aliphatic hydrocarbon solvent described later to pass through the carrier layer 141, and the purification efficiency of oils may decrease.
  • the silver nitrate silica gel layer 142 is filled with silver nitrate silica gel.
  • the silver nitrate silica gel used here is obtained by uniformly adding an aqueous solution of silver nitrate to the surface of granular silica gel having a particle size of about 40 to 210 ⁇ m (usually active silica gel whose activity has been increased by heating), and then heating under reduced pressure to remove water. It was prepared by removing it.
  • the amount of silver nitrate supported on silica gel is usually preferably set to 5 to 20% based on the weight of silica gel.
  • the amount carried is less than 5%, contaminants and their decomposition products are less likely to be captured in the silver nitrate silica gel layer 142, which may reduce the refining effect of oils.
  • it exceeds 20% the amount of silver ions in the silver nitrate silica gel layer 142 increases, so that the organic halogenated substance is easily adsorbed and captured, and a part of the organic halogenated substance is recovered in the oil refining process. It can be difficult.
  • the water content of the silver nitrate silica gel layer 142 is generally preferably set to 2 to 10%, more preferably 3.5 to 5%, based on the weight of the silica gel.
  • the water content is 2% or less, the activity of silver ions is increased in the silver nitrate silica gel layer 142, so that the organic halogenated substance is easily adsorbed and captured, and a part of the organic halogenated substance is recovered in the oil refining process. It can be difficult.
  • the water content exceeds 10%, the refining effect of oils may decrease.
  • the packing density of silver nitrate silica gel in the silver nitrate silica gel layer 142 is not particularly limited, but is usually preferably set to 0.3 to 0.8 g / cm 3 , and 0.4 to 0.7 g / cm 3 It is more preferable to set to. If this density is less than 0.3 g / cm 3 , the consumption capacity of SOx gas and NOx gas generated in the oil refining process may decrease. On the contrary, when this density exceeds 0.8 g / cm 3 , it becomes difficult for the aliphatic hydrocarbon solvent described later to pass through the carrier layer 141 at the time of refining the oils, and the refining efficiency of the oils may decrease. is there.
  • the first portion 110 and the second portion 120 are liquid-tight and airtightly integrated by fitting the protrusion 111 of the first portion 110 into the inside of the upper end side of FIG. 1 of the second portion 120.
  • the refiner 10 is formed into a series of cylinders 100 having openings 150 and 160 at the upper end of the first portion 110 and the lower end of the second portion 120, respectively.
  • the size of the refining instrument 10 can be appropriately set according to the amount of oils to be refined, and is not particularly limited.
  • the amount of oils is about 1 to 20 mL
  • Both the first portion 110 and the second portion 120 are preferably set to have an inner diameter of 10 to 20 mm and a length of about 100 to 300 mm for a portion capable of filling the required layer.
  • the preparer of this example is for preparing a sample for analysis of dioxins from oils which may contain dioxins, which is an example of an organic halogenated substance.
  • Dioxins are a general term for polychlorinated dibenzoparadioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (DL-PCBs).
  • DL-PCBs are PCBs showing toxicity similar to PCDDs and PCDFs among 209 kinds of polychlorinated biphenyls (PCBs), and include non-ortho PCBs and mono-ortho PCBs.
  • the preparation device 1 mainly includes a purification device 10 and a dioxin trap 200, and the purification device 10 is attached to the trap 200.
  • the catcher 200 includes a tube 210.
  • the tubular body 210 is formed of the same material as the tubular body 100 of the refining instrument 10, and is formed in a series of cylindrical shapes having an opening 211 at one end and an opening 212 at the other end. Has been done.
  • a mounting portion 220 of the refining instrument 10 is formed on the opening 211 side of the tubular body 210, and a spiral portion 221 corresponding to the spiral portion 121 of the second portion 120 is formed on the inner peripheral surface of the mounting portion 220.
  • the pipe body 210 has two branch paths having an open tip, that is, a first branch path 215 and a second branch path 216 provided at intervals.
  • the tube body 210 is filled with a capture layer 230.
  • the capture layer 230 is for fractionating and capturing dioxins contained in oils into a group of dioxins including non-ortho PCBs, PCDDs and PCDFs and mono-ortho PCBs, and is for capturing the first layer 240 and the second layer 250. And have.
  • the first layer 240 and the second layer 250 are filled in the pipe body 210 at intervals. More specifically, the first layer 240 is filled in the pipe body 210 between the first branch path 215 and the second branch path 216, and the second layer 250 is opened with the second branch path 216. It is filled in the pipe body 210 between and from 212.
  • the first layer 240 includes an activated carbon-containing silica gel layer 241 and a graphite-containing silica gel layer 242 arranged below the activated carbon-containing silica gel layer 241.
  • the activated carbon-containing silica gel layer 241 is made of a mixture of activated carbon and granular silica gel. Such a mixture may be activated carbon dispersed silica gel obtained by simply mixing activated carbon and silica gel, or may be obtained by reacting a mixture of sodium silicate (water glass) and activated carbon with a mineral acid. It may be silica gel embedded in activated carbon.
  • the activated carbon is in the form of particles or powder having a particle size of about 40 to 100 ⁇ m, and the specific surface area measured by the BET method is 100 to 1,200 m 2 / g. In particular, those of 500 to 1,000 m 2 / g are preferable.
  • the silica gel used in the activated carbon-dispersed silica gel is usually granular with a particle size of about 40 to 210 ⁇ m. The silica gel may be appropriately increased in activity by heating.
  • the ratio of activated carbon in the mixture of activated carbon and silica gel is preferably 0.013 to 5.0% by weight, more preferably 0.1 to 3.0% by weight. If the amount of activated carbon is less than 0.013% by weight or more than 5.0% by weight, the adsorption capacity of high-chlorine PCDDs or high-chlorine PCDFs may decrease in the first layer 240.
  • the packing density of the activated carbon-containing silica gel layer 241 is not particularly limited, but is usually preferably set to 0.3 to 0.8 g / cm 3, and is usually set to 0.45 to 0.6 g / cm 3 . It is more preferable to do so.
  • the graphite-containing silica gel layer 242 is arranged adjacent to the activated carbon-containing silica gel layer 241 in the first layer 240, and is composed of a mixture obtained by simply mixing graphite and granular silica gel.
  • Various commercially available graphites can be used, but usually, the graphite is in the form of particles or powder having a particle size of about 40 to 200 ⁇ m, and the specific surface area measured by the BET method is 10 to 500 m 2 / g, particularly 50. The one of about 200 m 2 / g is preferable.
  • the silica gel the same silica gel as the activated carbon-containing silica gel layer 241 is used.
  • the ratio of graphite in the mixture of graphite and silica gel is preferably 2.5 to 50% by weight, more preferably 5 to 25% by weight. If the amount of graphite is less than 2.5% by weight, the adsorption capacity of non-ortho-PCBs may decrease in the first adsorption layer 240. On the contrary, when graphite exceeds 50% by weight, non-DL-PCBs, particularly non-DL-PCBs having a chlorine number of 1 to 2, may be easily adsorbed in the first layer 240.
  • the packing density of the graphite-containing silica gel layer 242 is not particularly limited, but is usually preferably set to 0.2 to 0.6 g / cm 3, and is usually set to 0.3 to 0.5 g / cm 3 . It is more preferable to do so.
  • the ratio of the activated carbon-containing silica gel layer 241 to the graphite-containing silica gel layer 242 is such that the volume ratio (A: B) of the latter (B) to the former (A) is 1: 1 to 1:12. It is preferable to set it, and it is more preferable to set it to be 1: 1 to 1: 9.
  • the ratio of the activated carbon-containing silica gel layer 241 is smaller than this volume ratio, the adsorption capacity of some of the PCDDs and PCDFs in the first layer 240, particularly the PCDDs and PCDFs having a chlorine number of 8, may decrease.
  • the ratio of the activated carbon-containing silica gel layer 241 is large, the monoortho PCBs may be easily adsorbed in the first layer 240.
  • the second layer 250 is made of granular aluminum oxide.
  • the aluminum oxide used here may be basic, neutral or acidic. Further, the activity of aluminum oxide is not particularly limited.
  • the preferred particle size of aluminum oxide is usually 40 to 300 ⁇ m.
  • the packing density of aluminum oxide in the second layer 250 is not particularly limited, but is usually preferably set to 0.5 to 1.2 g / cm 3 , and 0.8 to 1.1 g / cm 3 It is more preferable to set to.
  • the size of the tubular body 210 can be appropriately set according to the amount of oils to be refined by the refining instrument 10, and is not particularly limited, but the refining instrument 10 has the above-mentioned size.
  • the inner diameter is set to 3 to 10 mm
  • the length of the portion capable of filling the first layer 240 is set to about 20 to 80 mm
  • the length of the portion capable of filling the second layer 250 is set to about 20 to 80 mm. It is preferable to have it.
  • the catcher 200 is airtightly and liquid-tightly connected to the refining instrument 10 by attaching the spiral portion 221 of the mounting portion 220 to the spiral portion 121 of the refining instrument 10.
  • This preparation method mainly includes a step of refining oils, a step of fractionating dioxins, and a step of extracting dioxins.
  • the regulator 1 is installed in an upright state so that the refining instrument 10 is on the upper side, and oils are added to the sulfuric acid silica gel layer 130 from the opening 150 of the refining instrument 10.
  • the oils to be injected here are usually the above-mentioned edible oils and fats, mineral oils, extracts from environmental samples, and the like.
  • the oils are extracts from environmental samples, if the extracts use an aliphatic hydrocarbon solvent, an appropriate amount thereof can be added to the sulfuric acid silica gel layer 130 as it is.
  • the extract is obtained by extraction using an organic solvent other than the aliphatic hydrocarbon solvent, for example, an aromatic hydrocarbon solvent such as toluene
  • the extract is the aromatic hydrocarbon solvent used for the extraction.
  • oils are edible oils and fats and mineral oils
  • the aliphatic hydrocarbon solvent for dilution it is preferable to use the same aliphatic hydrocarbon solvent to be supplied to the purification apparatus 10 as described later.
  • the amount of oil added to the sulfuric acid silica gel layer 130 is usually preferably about 1 to 10 mL.
  • the extract may be concentrated by distilling off a part of the extraction solvent or the substitution solvent, and the amount of the concentrate added may be set as described above. Further, in the case of edible oils and fats and mineral oils, it is preferable to set the addition amount after dilution to be near the upper limit of the above range.
  • the silica gel sulfate layer 130 to which oils have been added is heated.
  • the heating temperature is preferably set to 60 ° C. or higher, and more preferably 80 ° C. or higher.
  • the contaminants contained in the oils that have permeated the silica gel sulfate layer 130 react with the silica gel sulfate layer 130 and decompose.
  • the heating condition is less than 60 ° C., the reaction between the contaminant and the silica gel sulfate layer 130 becomes difficult to proceed, so that a part of the contaminant remains in the analysis sample, and the reliability of the analysis result by the analysis sample is high. It can be compromised.
  • the upper limit of the heating temperature is not particularly limited, but it is usually preferable to control the heating temperature to a boiling temperature or lower of the added oil from the viewpoint of safety. Further, the heating time is preferably set to at least 30 minutes in order to sufficiently secure the reaction time between the contaminant and the silica gel sulfate layer 130.
  • SOx gas may be generated by the reaction between the silica gel sulfate layer 130 and the contaminants and the thermal decomposition of sulfuric acid.
  • an aliphatic hydrocarbon solvent is supplied to the sulfuric acid silica gel layer 130.
  • the aliphatic hydrocarbon solvent supplied here is capable of dissolving dioxins, and is preferably an aliphatic saturated hydrocarbon solvent having 5 to 8 carbon atoms.
  • n-pentane, n-hexane, n-heptane, n-octane, isooctane or cyclohexane may be appropriately mixed and used.
  • the supply of the aliphatic hydrocarbon solvent may be started during the heating of the sulfuric acid silica gel layer 130, or may be started after the heating is stopped.
  • the aliphatic hydrocarbon solvent is supplied from the opening 150 into the first portion 110.
  • the supplied aliphatic hydrocarbon solvent penetrates into the sulfuric acid silica gel layer 130 and passes through the same layer.
  • the aliphatic hydrocarbon solvent includes dioxins contained in oils, decomposition products of contaminants, and contaminants remaining undecomposed (the contaminants usually contain non-DL-PCBs).
  • SOx gas it flows from the first site 110 to the second site 120 as an aliphatic hydrocarbon solvent solution containing dioxins and passes through the treatment layer 140.
  • the SOx gas contained in the aliphatic hydrocarbon solvent from the first site 110 reacts with the permanganate when the aliphatic hydrocarbon solvent passes through the carrier layer 141 and is consumed.
  • this reaction is considered to be as follows. Water (H 2 O) that are involved in this reaction is water comprising a carrier layer 141.
  • the decomposition products and contaminants contained in the aliphatic hydrocarbon solvent from the first site 110 are oxidized by the permanganate when the aliphatic hydrocarbon solvent passes through the carrier layer 141.
  • decomposition products and contaminants are, for example, unsaturated fatty acids and alkenes (hydrogens with double bonds), these are carbonylated through glycolification by the oxidizing action of permanganate, and some are oxidized to carboxylic acid. If the carboxylic acid produced is formic acid, it is further oxidized and decomposed into water and carbon dioxide.
  • Degradation products and contaminants remaining in the aliphatic hydrocarbon solvent that have passed through the carrier layer 141 are captured in the layer when the aliphatic hydrocarbon solvent passes through the silver nitrate silica gel layer 142.
  • the aliphatic hydrocarbon solvent that has passed through the treatment layer 140 preserves and contains dioxins contained in the oils, consumes SOx gas, and significantly removes decomposition products and contaminants. It is a purified solution of dioxins.
  • the aliphatic hydrocarbon solvent can be supplied to the sulfuric acid silica gel layer 130 while pressurizing if necessary.
  • the decomposition product of the reaction between the silica gel sulfate layer 130 and the contaminants in the oils may cause the silica gel sulfate layer 130 to be clogged.
  • the aliphatic hydrocarbon solvent is supplied under pressure. By doing so, it passes through the sulfuric acid silica gel layer 130 stably and smoothly.
  • ⁇ Dioxins fractionation process> The aliphatic hydrocarbon solvent that has passed through the treatment layer 140 flows from the opening 160 at the lower end of the second portion 120 into the trap 200 through the opening 211 at the upper end of the trap 200, passes through the trap layer 230, and is discharged from the opening 212. To. At this time, the dioxins contained in the aliphatic hydrocarbon solvent from the treatment layer 140 are captured by the capture layer 230 and separated from the aliphatic hydrocarbon solvent. More specifically, in the capture layer 230, non-ortho PCBs, PCDDs and PCDFs among dioxins are adsorbed on the first layer 240, and mono-ortho PCBs among dioxins are adsorbed on the second layer 250. Therefore, the dioxins contained in the aliphatic hydrocarbon solvent are fractionated into the dioxin group containing non-ortho PCBs, PCDDs and PCDFs and the mono-ortho PCBs in the capture layer 230.
  • Part of the contaminants remaining in the aliphatic hydrocarbon solvent that has passed through the treatment layer 140 passes through the capture layer 230 together with the aliphatic hydrocarbon solvent and is discarded, and a part is captured by the capture layer 230.
  • non-DL-PCBs and PCDEs are adsorbed on layer 250 along with mono-ortho PCBs.
  • contaminants such as paraffins pass through the capture layer 230 together with the aliphatic hydrocarbon solvent and are discharged from the opening 212.
  • an air flow is introduced from the opening 150 into the purification instrument 10 to dry the silica gel sulfate layer 130, the treatment layer 140 and the capture layer 230.
  • the air flow introduced into the purification instrument 10 from the opening 150 flows through the silica gel sulfate layer 130 and the treatment layer 140 to the trap 200, passes through the trap layer 230, and is discharged from the opening 212.
  • the aliphatic hydrocarbon solvent remaining in the silica gel sulfate layer 130 and the treatment layer 140 is pushed out by the passing air flow and moves to the capture layer 230, and is opened together with the aliphatic hydrocarbon solvent remaining in the capture layer 230. It is discharged from 212.
  • the silica gel sulfate layer 130, the treated layer 140 and the trapping layer 230 are dried.
  • ⁇ Extraction process of dioxins> dioxins adsorbed on the capture layer 230 are extracted.
  • the opening 150 of the purification instrument 10 and the first branch path 215 of the trap 200 are airtightly closed, and a solvent capable of dissolving dioxins is supplied from the opening 212 into the trap 200.
  • the solvent supplied into the trap 200 passes through the second layer 250, flows to the second branch path 216, and is discharged from the end of the second branch path 216.
  • the solvent extracts the PCBs adsorbed on the second layer 250 and becomes an extraction solution. Therefore, if the extraction solution discharged from the end of the second branch path 216 is secured, a sample for analysis of mono-ortho PCBs and non-DL-PCBs (sample for first analysis) can be obtained.
  • the solvent capable of dissolving the dioxins supplied from the opening 212 into the trap 200 can be selected according to the method for analyzing dioxins described later.
  • a suitable solvent such as toluene or benzene can be used.
  • a mixed solvent obtained by adding an aliphatic hydrocarbon solvent or an organic chlorine solvent to toluene or benzene can also be used.
  • the proportion of toluene or benzene is set to 50% by weight or more.
  • the aliphatic hydrocarbon solvent used in the mixed solvent is, for example, n-pentane, n-hexane, n-heptane, n-octane, isooctane or cyclohexane.
  • the organochlorine solvent is, for example, dichloromethane, trichloromethane or tetrachloromethane.
  • toluene is particularly preferable because dioxins can be extracted from the fractionator 200 by using a small amount.
  • a solvent suitable for it for example, a hydrophilic solvent such as dimethyl sulfoxide (DMSO) or methanol is used.
  • DMSO dimethyl sulfoxide
  • the second layer 250 may be heated from the outside of the tube 210.
  • the heating temperature of the second layer 250 is usually preferably controlled from about 50 ° C. to less than the boiling point of the extraction solvent, particularly 95 ° C. or lower.
  • the first branch passage 215 is opened and the second branch passage 216 is airtightly closed while maintaining the airtight chain state of the opening 150 of the purification instrument 10. Then, a solvent capable of dissolving dioxins is supplied again from the opening 212 into the trap 200.
  • the solvent supplied into the trap 200 passes through the second layer 250 and the first layer 240 in this order, flows to the first branch path 215, and is discharged from the end of the first branch path 215.
  • the solvent is an extraction solution obtained by dissolving a group of dioxins containing non-ortho-PCBs, PCDDs and PCDFs adsorbed on the first layer 240 and extracting these dioxins. Therefore, if the extraction solution discharged from the end of the first branch path 215 is secured, a sample for analysis of non-ortho PCBs, PCDDs and PCDFs (sample for second analysis) can be obtained.
  • the same solvent as that used for preparing the first analysis sample is usually used according to the method for analyzing dioxins described later. ..
  • the first layer 240 may be heated from the outside of the tube body 210.
  • the dioxin group containing non-ortho-PCBs, PCDDs and PCDFs can be efficiently extracted from the first layer 240 by suppressing the amount of the solvent used for extraction.
  • the heating temperature of the first layer 240 is usually preferably controlled from about 50 ° C. to less than the boiling point of the solvent for extraction, particularly 80 ° C. or higher and 95 ° C. or lower.
  • the first analysis sample and the second analysis sample which are separately obtained by the above operation, are separately applied to the analysis of dioxins.
  • the analysis method is usually GC / HRMS, GC-MSMS, GC-QMS, ion trap GC / MS or the like, depending on the type of solvent used to extract the dioxin captured in the trap 200.
  • a gas chromatography method such as an MS method or a GC / ECD method or a bioassay method can be adopted.
  • GC-MSMS or GC-TOFMS can also be used as the GC / MS method, and in this case, two types of analytical samples can be mixed for simultaneous analysis.
  • the arrangement of the carrier layer 141 and the silver nitrate silica gel 142 can be exchanged in the treatment layer 140 of the second site 120. That is, as shown in FIG. 4, in the treated layer 140, the silver nitrate silica gel layer 142 can be arranged on the upper layer side, and the carrier layer 141 can be arranged on the lower layer side.
  • the decomposition products and contaminants are, for example, unsaturated fatty acids and alkenes (hydrocarbons having a double bond), these are decomposed through the oxidation process as described above under the action of permanganate.
  • unsaturated fatty acids and alkenes hydrocarbons having a double bond
  • these are decomposed through the oxidation process as described above under the action of permanganate.
  • a part of this decomposition product and other contaminants remains in the carrier layer 141, and the residue is discharged from the opening 212 as an aliphatic hydrocarbon solvent.
  • the SOx gas and NOx gas contained in the aliphatic hydrocarbon solvent from the silver nitrate silica gel layer 142 react with the permanganate when the aliphatic hydrocarbon solvent passes through the carrier layer 141, and are consumed. ..
  • the NO produced in the reaction (i) is consumed and NO 2 is generated.
  • the generated NO 2 is to be consumed in the reaction (i). Therefore, the NOx gas is consumed more by repeating the reactions (i) and (ii) in this order in the carrier layer 141, or by proceeding with the reactions (i) and (ii) in parallel. It is thought that it will gradually decrease and disappear.
  • the aliphatic hydrocarbon solvent that has passed through the treatment layer 140 preserves and contains dioxins contained in the oils, and consumes SOx gas and NOx gas, and the decomposition products and contaminants are significant. It becomes a purified solution of dioxins removed in.
  • the purification instrument 10 may further include an active silica gel layer between the sulfuric acid silica gel layer 130 and the treated layer 140.
  • the active silica gel layer 131 may be arranged adjacent to the lower part of the sulfuric acid silica gel layer 130 in the first portion 110.
  • the active silica gel forming the active silica gel layer 131 is obtained by heating granular silica gel to increase its activity.
  • the active silica gel it is usually preferable to use one having a particle size of about 30 to 210 ⁇ m.
  • the aliphatic hydrocarbon solvent that has passed through the sulfuric acid silica gel layer 130 is supplied to the treatment layer 140 of the second site 120 after passing through the active silica gel layer 131.
  • the aliphatic hydrocarbon solvent supplied to the treatment layer 140 passes through the active silica gel layer 131, some of the contaminants and decomposition products in the sulfuric acid silica gel layer 130 are captured and removed, so that the treatment layer is removed.
  • the degree of purification after passing through the treatment layer 140 is likely to increase. Therefore, when an analytical sample prepared by using the purification instrument 10 of this form is used, more reliable analytical results can be expected.
  • the active silica gel layer 131 may be arranged in the first portion 110 with a space between it and the lower part of the sulfuric acid silica gel layer 130. Further, the active silica gel layer 131 may be arranged in the second portion 120 adjacent to the upper part of the treated layer 140 or with a space provided between the upper part of the treated layer 140. Further, the active silica gel layer 131 can be arranged both in the first site 110 and in the second site 120.
  • Each figure referred to in the above-described embodiment shows an outline of the refining instrument 10 and the preserving instrument 1, and does not accurately reflect the structure, shape, size, ratio, etc. of each part.
  • Silica gel sulfate prepared by uniformly adding concentrated sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) to active silica gel (manufactured by Kanto Chemical Co., Inc.) and then drying was used. The amount of concentrated sulfuric acid added to the active silica gel was set so that the amount of sulfuric acid to the active silica gel was 44% on a weight basis.
  • Silver nitrate silica gel An aqueous solution prepared by dissolving silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) in distilled water was added to active silica gel (manufactured by Kanto Chemical Co., Inc.) and mixed uniformly. The mixture was heated to 70 ° C. under reduced pressure using a rotary evaporator and dried, and the resulting silver nitrate silica gel was used.
  • an aqueous silver nitrate solution in which the amount of silver nitrate was set to 10% with respect to the weight of the active silica gel was used, and the amount of silver nitrate in the silver nitrate silica gel was set to 10% of the weight standard of the active silica gel.
  • Potassium permanganate fixed aluminum oxide Aluminum oxide (trade name "Aluminium Oxide 90 active basic-(activity stage I) for column chromatography” (particle size 0.063 to 0.200 mm) manufactured by Merck) is baked at 450 ° C for 4 hours to obtain moisture and adhesion. The organic matter was removed, and this calcined aluminum oxide was added to an aqueous potassium permanganate solution prepared using distilled water to mix uniformly, and then dried using an evaporator so that the water content was 5% on a weight basis. Was used.
  • potassium permanganate aqueous solution four types of potassium permanganate aqueous solutions in which the amounts of potassium permanganate with respect to the weight of the calcined aluminum oxide charged therein are set to 2%, 3%, 4% and 5%, respectively, are used.
  • Four types of potassium permanganate-fixed aluminum oxide were used, in which the fixed amounts of potassium manganate were set to 2%, 3%, 4%, and 5%, respectively, based on the weight of aluminum oxide.
  • Potassium permanganate fixed silica gel Moisture and attached organic substances are removed by firing active silica gel (manufactured by Kanto Chemical Co., Inc.) at 450 ° C. for 4 hours, and this calcined active silica gel is put into an aqueous potassium permanganate solution prepared using distilled water to make it uniform. Was mixed with silica gel and then dried using an evaporator so that the water content was 10% on a weight basis.
  • the potassium permanganate aqueous solution one in which the amount of potassium permanganate is set to 5% with respect to the weight of the calcined active silica gel charged therein is used, and the fixed amount of potassium permanganate is based on the weight of the active silica gel. It was set to 5%.
  • Silica gel containing activated carbon Activated carbon-containing silica gel obtained by adding activated carbon (trade name "Kuraraycol PK-DN" of Kuraray Chemical Co., Ltd.) to active silica gel (manufactured by Kanto Chemical Co., Inc.) and mixing them uniformly was used. The content of activated carbon was set to 0.13% by weight.
  • Graphite-containing silica gel obtained by adding graphite (trade name "ENVI-Carb” manufactured by Sigma-Aldrich) to active silica gel (manufactured by Kanto Chemical Co., Inc.) and mixing them uniformly was used.
  • the graphite content was set to 12.5% by weight.
  • Aluminum oxide The trade name "Aluminium Oxide 90 active basic-(activity stage I) for column chromatography” (particle size 0.063 to 0.200 mm) manufactured by Merck & Co., Ltd. was used.
  • Active silica gel A commercially available product (manufactured by Kanto Chemical Co., Inc.) was used.
  • Dioxins standard solution 1 mL of dioxin standard substance (trade name "DF-LCS-A” of Wellington Laboratories) with known concentration and PCBs standard substance of known concentration (trade name “PCB-LCS-H” of Wellington Laboratories) with respect to 100 mL of n-hexane ”) 1 mL was added and dissolved to prepare a standard solution for dioxins.
  • Dioxins reference material, PCDDs labeled by 13 C 12 is intended to include PCDFs and DL-PCBs.
  • PCBs reference materials are six types of non-DL-PCBs (chlorine numbers 3-7) labeled by 13 C 12 with IUPAC numbers # 28, # 52/69, # 101, # 138, # 153 and # 180. PCBs) are included. These PCBs are subject to EU food regulations.
  • Sunflower oil Commercially available mixed vegetable oil: Commercial olive oil: Commercial rapeseed oil: Commercial grape oil: Commercial item
  • Pork oil Minced pork (commercially available) was placed on the tray of the freeze-dryer evenly to a thickness of about 2 cm, and the pork sample was frozen at ⁇ 40 ° C. in the freeze-dryer. After about 3 to 6 hours, the pressure in the chamber of the freeze-dryer was lowered to about 20 Pa to start drying the pork sample, and the drying was finished when the temperature of the pork sample reached about 20 to 30 ° C.
  • the pork sample that had undergone the above treatment was placed in a cylindrical filter paper for soxhlet extraction, and soxhlet was extracted for 16 hours using a mixed organic solvent having a ratio (A: B) of toluene (A) and acetone (B) of 7: 3. ..
  • the obtained extract was dehydrated and filtered using anhydrous sodium sulfate, and the oily residue after removing the mixed organic solvent from the filtrate using a rotary evaporator was used as pork oil.
  • Chicken oil instead of minced pork, minced chicken (commercially available) was used, and the oily residue obtained through the same steps as the preparation step of pork oil was used as chicken oil.
  • Chicken egg oil instead of minced pork, a commercially available chicken egg was used, and the oily residue obtained through the same steps as the pork oil preparation step was used as chicken egg oil.
  • Beef tallow oil Minced beef (commercially available) was used instead of minced pork, and the oily residue obtained through the same steps as the pork oil preparation step was used as beef tallow oil.
  • Example 1 A refining instrument 10 having the form shown in FIG. 1 was prepared.
  • sulfuric acid is formed by filling 23 g of silica gel sulfate into a cylinder having an outer diameter of 20 mm, an inner diameter of 17.6 mm, and a length of 120 mm, excluding the protrusion 111, so as to have a height of 105 mm.
  • the silica gel layer 130 was formed to prepare the first site 110. Further, after filling 2.5 g of silver nitrate silica gel into a cylinder having the same outer diameter, inner diameter and length as the main body portion of the first portion 110 so as to have a height of 22 mm, potassium permanganate-fixed aluminum oxide is placed therein.
  • the first site is in the order of the silica gel sulfate layer 130, the carrier layer 141 (potassium permanganate fixed aluminum oxide layer), and the silver nitrate silica gel layer 142 from the first site 110 to the second site 120. 110 and the second site 120 were connected.
  • Example 2 The first part 110 and the second part 120 similar to those prepared in Example 1 were prepared except that potassium permanganate-fixed silica gel was used instead of the potassium permanganate-fixed aluminum oxide when the second part was prepared. did. Then, from the first site 110 to the second site 120, the first site 110 and the second site 120 are arranged in the order of the silica gel sulfate layer 130, the carrier layer 141 (potassium permanganate fixed oxide silica gel layer), and the silver nitrate silica gel layer 142. The purification device 10 was created by connecting and integrating them.
  • Example 3 Examples except that a layer filled with potassium permanganate-fixed aluminum oxide was first formed at the time of preparing the second site, and a treated layer 140 was formed by laminating a layer filled with silver nitrate silica gel on the layer. The same first part 110 and second part 120 as those made in 1 were made. Then, the first site 110 and the second site 120 are connected and integrated, and the silica gel sulfate layer 130, the silver nitrate silica gel layer 142 and the carrier layer 141 (potassium permanganate-fixed aluminum oxide) are integrated from the first site 110 to the second site 120. A refiner 10 in which layers) were arranged in this order was prepared.
  • Example 4 Using potassium permanganate-fixed aluminum oxide having a different fixed amount of potassium permanganate, a purification instrument 10 similar to that prepared in Example 1 was prepared. Table 1 shows the fixed amount of potassium permanganate on the weight basis of aluminum oxide in the potassium permanganate fixed aluminum oxide used in each example.
  • Examples 7 to 10 A refining instrument 10 similar to that prepared in Example 1 was prepared except that the active silica gel layer 131 was arranged under the sulfuric acid silica gel layer 130 as the first site 110 as shown in FIG.
  • the first site 110 used here is created by filling the inside of the cylinder with active silica gel and then filling it with silica gel sulfate.
  • the filling amount and filling height of the active silica gel and the sulfuric acid silica gel are shown in Table 2.
  • FIG. 6 is a diagram corresponding to FIG. 2 of this comparative example, and the first comparative purification instrument 300 has 11.5 g of silver nitrate silica gel in the first portion 110 of the tubular body 100 used in Example 1.
  • the height of 13 g of silica gel sulfate is 90 mm in the first part equivalent product 310 in which the silica gel nitrate layer 330 is formed by filling the mixture so as to be 110 mm and in the second part 120 of the tubular body 100 used in Example 1.
  • a second site equivalent product 320 having a sulfuric acid silica gel layer 340 formed by filling was prepared, and the first site equivalent product 310 and the second site equivalent product 320 were integrated in the same manner as in the purification apparatus 10 of Example 1. It is a thing.
  • Example 2 The first part 110 and the second part 120 similar to those prepared in Example 1 were prepared except that the treated layer 140 was formed only with silver nitrate silica gel in the second part. Then, the first site 110 and the second site 120 are connected and integrated, and the silica gel sulfate layer 130 and the silver nitrate silica gel layer 142 are arranged in this order from the first site 110 to the second site 120 for the second comparative purification. I made an instrument.
  • FIG. 7 A photograph of the refining instrument 10 created in Example 1 is shown in FIG.
  • the refining instrument 10 has a first site 110 on the upper side and a second site 120 on the lower side.
  • the portion corresponding to the carrier layer 141 exhibits a dark color due to potassium permanganate.
  • An oil sample was added to the sulfuric acid silica gel layer 130 from the opening 150 of the first portion 110 of the refining instrument 10 prepared in Example 1.
  • the oil sample added here is obtained by adding n-hexane to 6 g of sunflower oil and diluting it to 10 mL.
  • the silica gel sulfate layer 130 to which the oil sample was added was heated and held at 80 ° C. for 30 minutes, and then 130 mL of n-hexane was gradually supplied from the opening 150 into the first site 110 while pressurizing to 50 kPa. This n-hexane was passed through each layer of the first site 110 and the second site 120 and discharged from the opening 160 of the second site 120.
  • FIG. 8 shows a photograph of the refining instrument 10 after the passage of n-hexane (that is, after refining the oil sample).
  • FIG. 8 shows that the vicinity of the upper part of the carrier layer 141 (potassium permanganate fixed aluminum oxide layer), which was initially dark due to potassium permanganate, changed to light color. This indicates that the potassium permanganate in the carrier layer 141 reacted with the SOx gas generated in the silica gel sulfate layer 130 and consumed the SOx gas.
  • FIG. 9 shows that substantially the entire carrier layer 141 changed to bright color
  • SOx in which potassium permanganate of the carrier layer 141 was generated in the silica gel sulfate layer 130 also in the purification instrument 10 of Example 2 It is evaluated that it has reacted with the gas and consumed the SOx gas.
  • FIG. 10 shows that only the vicinity of the upper part of the carrier layer 141 changed to a slightly light color.
  • Evaluation 2 Using the refining instruments 10 prepared in Examples 1 and 4 to 6, respectively, 6 g of pork oil and 6 g of chicken oil were refined by the same operation as in Evaluation 1.
  • FIG. 11 shows a photograph of the carrier layer 141 portion of the second portion 120 of the purification instrument 10 according to each example after the purification treatment.
  • the preparation device 1 shown in FIG. 3 was prepared using the refining instruments 10 of Example 1 and Example 3, respectively.
  • the trap 200 used in this preparatory device 1 was created as follows.
  • the first layer 240 was formed between the first branch path 215 and the second branch path 216 of the pipe body 210 having an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 30 mm of the main body portion.
  • the first layer 240 forms a graphite-containing silica gel layer 242 filled with 0.6 g of graphite-containing silica gel so as to have a height of 25 mm, and is filled with 0.25 g of activated carbon-containing silica gel so as to have a height of 5 mm.
  • the activated carbon-containing silica gel layer 241 was formed.
  • the second layer 250 was formed by filling 0.8 g of aluminum oxide between the second branch path 216 and the lower end so as to have a height of 30 mm.
  • a sample for analysis of dioxins was prepared from oils containing dioxins.
  • the test oils used in the preparation operation of the sample for analysis were obtained by collecting 5 g of dioxins-containing oils in a test tube and adding n-hexane to the test oil to dilute it to 10 mL.
  • the dioxin-containing oils are other than the dioxin standard solution, 0.02 mL each of the dioxin standard substance and the PCBs standard substance used in the preparation of the dioxin standard solution with respect to the dioxin-containing oil collected in the test tube.
  • n-hexane was added to prepare test oils.
  • the entire amount of the test oils was added to the sulfuric acid silica gel layer 130 from the opening 150 of the first site 110 of the purification instrument 10 using a disposable syringe made of resin. After the entire amount of the added test oil has permeated into the sulfuric acid silica gel layer 130, the inside of the used syringe is washed once with 2 to 4 mL of n-hexane, and the washing liquid is also added to the sulfuric acid silica gel layer 130 and permeated. It was.
  • the silica gel sulfate layer 130 was heated to 80 ° C. and held at that temperature for 30 minutes. After that, the heating temperature of the sulfuric acid silica gel layer 130 is changed to 60 ° C., 130 mL of n-hexane is supplied to the sulfuric acid silica gel layer 130 from the opening 150, and this n-hexane is passed through the purification instrument 10 and the trap 200. It was discharged from the opening 212 of the trap 200. During this period, the supply pressure required for stable passage of n-hexane was approximately 50 to 70 kPa, but a supply pressure exceeding 500 kPa was sometimes required at one time.
  • the second layer 250 of the trap 200 is heated to 90 ° C. and the opening 150 and the first branch passage 215 are closed airtightly.
  • 2.5 mL of toluene is introduced into the trap 200 from the opening 212.
  • the toluene that passed through the second layer 250 was recovered through the second branch passage 216 to obtain a sample for the first analysis.
  • the first layer 240 of the trap 200 was heated to 90 ° C., the opening 150 and the second branch passage 216 were closed airtightly, and 2.5 mL of toluene was supplied into the trap 200 from the opening 212 in this state. ..
  • toluene that passed through the second layer 250 and the first layer 240 in this order was recovered through the first branch path 215 to obtain a second analysis sample.
  • the first analysis sample and the second analysis sample were individually quantitatively analyzed by the HRGC / HRMS method, and the recovery rates of dioxins and non-DL-PCBs were calculated.
  • the results are shown in Table 3.
  • HRGC / HRMS method GC-MS manufactured by Agilent Technologies was used, and DB-5 ms (however, 60 m in length) manufactured by Agilent Technologies was used as the capillary column. This also applies to the following other evaluations that employ the HRGC / HRMS method.
  • the samples for the first analysis and the samples for the second analysis obtained by using the purification equipment 10 of Example 1 and Example 3 have individual recovery rates of dioxins in the range of 60 to 120%. Yes, it can be used as a sample for evaluation of EU food regulation standards.
  • Evaluation 4 Using the first comparative purification instrument 300 of Comparative Example 1, a preparation device corresponding to the preparation device 1 shown in FIG. 3, that is, only the purification instrument 10 of the preparation device 1 was replaced with the first comparison purification instrument 300. did. Then, using this preparative device, a sample for analysis of dioxins was prepared from oils containing dioxins.
  • sunflower oil was collected in a test tube, and 0.02 mL each of the dioxin standard substances and PCBs standard substances used in the preparation of the dioxin standard solution was added thereto. , N-hexane was added and diluted to 10 mL.
  • Two types of test oils were prepared, one in which the amount of sunflower oil used was 3.5 g and the other in which the amount of sunflower oil used was 4 g. Each test oil uses less dioxin-containing oil (sunflower oil) than the one used in Evaluation 2.
  • the entire amount of the test oils was added to the silver nitrate silica gel layer 330 from the opening 150 of the product 310 corresponding to the first part of the first comparative purification instrument 300 using a disposable resin syringe. After the entire amount of the added test oil permeates into the silver nitrate silica gel layer 330, the inside of the used syringe is washed once with 2 to 4 mL of n-hexane, and the washing liquid is also added to the silver nitrate silica gel layer 330 and permeated. It was.
  • the silver nitrate silica gel layer 330 was heated to 60 ° C. and held at that temperature for 10 minutes. Then, 90 mL of n-hexane was gradually supplied from the opening 150 to the silver nitrate silica gel layer 330, and this n-hexane was passed through the purification instrument 300 and the trap 200 and discharged from the opening 212 of the trap 200. .. During this period, the supply pressure of n-hexane was set to 50 kPa or more. After the discharge of n-hexane from the opening 212 was completed, compressed air was supplied from the opening 150 into the first comparative purification instrument 300, and each layer in the first comparative purification instrument 300 and the trap 200 was dried. ..
  • the recovery rate of a part of PCBs contained in the first analysis sample is less than 60%, and when the amount of the oil used is 4 g. Since the recovery rate of all PCBs contained in the first analysis sample was much less than 60%, the test oils in which a large amount of dioxin-containing oils were used were applied to the first comparative refining instrument 300. In some cases, purification is incomplete and it is difficult to prepare analytical samples that can be used as evaluation samples for EU food regulatory standards.
  • Evaluation 5 In Evaluation 3, the retention time (Retention) obtained at the time of measurement by the HRGC / HRMS method was obtained for the first analytical sample prepared from sunflower oil using the preparation device 1 which adopted the purification instruments 10 of Examples 1 and 3, respectively.
  • the time) is approximately 24 to 35 minutes (the range in which the chromatogram of PCBs with 5 chlorine numbers appears) and the retention time is approximately 16 to 24 minutes (the range in which the chromatograms of PCBs with 3 chlorine numbers appear).
  • the results of rock mass detection noise of perfluorokerosenes used for mass calibration, which are measured at the same time during analysis) are shown in FIG. 12 with respect to the sample for the first analysis according to Example 1, and the first according to Example 3.
  • the samples for analysis are shown in FIG. 13, respectively.
  • the rock mass is stable in the sample for the first analysis according to Example 1, and the detection peaks of PCBs having a chlorine number of 5 and PCBs having a chlorine number of 3 appear sharply and with high intensity. ..
  • the rock mass is relatively unstable in the sample for the first analysis according to Example 3, and the intensity of the detection peaks of PCBs having a chlorine number of 5 and PCBs having a chlorine number of 3 is high. It appears relatively low. Since the contaminants contained in the sample for analysis interfere with the ionization of perfluorokerocene and destabilize the rock mass, the purification instrument 10 of Example 1 has more dioxins than the purification instrument 10 of Example 3. This means that the oils contained can be refined to a higher degree.
  • Evaluation 6 In evaluation 3, the mass of m / z of 50 to 500 was obtained for the first analysis sample and the second analysis sample prepared from sunflower oil using the preparation device 1 which adopted the purification instruments 10 of Examples 1 and 3, respectively. GC-MS was measured in a scan mode for detecting a range of compounds. The results of the analytical sample obtained by using the purification instrument 10 of Example 1 are shown in FIG. 14, and the results of the analytical sample obtained by using the purification instrument of Example 3 are shown in FIG.
  • Evaluation 7 In evaluation 3, 5 g of sunflower oil was refined using the refiner 10 of Example 1. The purification operation here was the same as in the case of evaluation 3 except that the trap 200 was not connected to the purification instrument 10. The obtained purified solution was concentrated using a rotary evaporator, and GC-MS was measured in the concentrated solution in a scan mode in which compounds in the mass range of 50 to 500 m / z were detected. On the other hand, 5 g of sunflower oil was refined by the same operation using the second comparative refiner according to Comparative Example 2 instead of the refiner 10 of Example 1. The obtained purified solution was concentrated using a rotary evaporator, and GC-MS was measured in the concentrated solution in a scan mode in which compounds in the mass range of 50 to 500 m / z were detected. The results are shown in FIG.
  • the measurement result of the purified solution prepared by using the purification instrument 10 of Example 1 has a smaller peak area than the measurement result of the purified solution prepared by using the second comparative purification instrument of Comparative Example 2. .. This is because the amount of contaminants in the purification solution prepared using the purification instrument 10 of Example 1 is smaller than the amount of the same substance in the purification solution prepared using the second comparison purification instrument of Comparative Example 2. That is, it is shown that the refining apparatus 10 of Example 1 has a higher refining effect of dioxin-containing oils than the second comparative refining instrument of Comparative Example 2.
  • Evaluation 8 The preparation device 1 shown in FIG. 3 was prepared using the refining device 10 of Examples 4 to 6. Then, the same operation as in the case of evaluation 3 was executed using this preparer 1, and a sample for the first analysis and a sample for the second analysis were obtained. However, in this evaluation, 6 g of chicken meat was collected in a test tube, 0.02 mL each of the dioxin standard substance and PCBs standard substance used in the preparation of the dioxin standard solution was added, and then n-hexane was added. Test oils were diluted to 10 mL.
  • FIG. 17 shows the results of rock mass in the range of approximately 24 to 33 minutes for the retention time when the obtained second analysis sample was analyzed by the HRGC / HRMS method.
  • the rock mass is stabilized in the order of Examples 4, 5 and 6, and the peak of the chromatogram is clarified. This indicates that the refining effect of dioxins-containing oils increases as the amount of potassium permanganate fixed on the carrier aluminum oxide in the carrier layer 141 of the refining instrument 10 increases.
  • Evaluation 9 The preparator 1 shown in FIG. 3 was prepared using the refining instrument 10 of Examples 7 to 10. Then, the same operation as in the case of evaluation 3 was executed using this preparer 1, and a sample for the first analysis and a sample for the second analysis were obtained. However, in this evaluation, 6 g of chicken egg oil and 6 g of beef oil were collected in individual test tubes, and 0.02 mL each of the dioxin standard substance and PCBs standard substance used in the preparation of the dioxin standard solution were added to these. , N-Hexane was added and diluted to 10 mL, and two kinds of test oils were used.
  • chicken egg oil is an oil containing a large amount of unsaturated fatty acids
  • beef tallow oil is an oil containing a large amount of saturated fatty acids.
  • the supply pressure required for stable passage of n-hexane is approximately 50 to 70 kPa even when any of the purification instruments 10 of Examples 7 to 10 is used. It was stable. It is considered that this is because the decomposition product in the sulfuric acid silica gel layer 130 was captured by the active silica gel layer 131, and the clogging of the treated layer 140 by the decomposition product was suppressed.
  • the time required from the start of supply of n-hexane to the completion of discharge of n-hexane was about 52 minutes, which was almost the same as in the case of evaluation 3.
  • FIGS. 18 and 19 Chromatograms obtained by analyzing the first analysis sample and the second analysis sample obtained from each test oil by the HRGC / HRMS method are shown in FIGS. 18 (in the case of test oils prepared from chicken egg oil) and FIG. (In the case of test oils prepared from beef oil).
  • FIGS. 18 and 19 the baseline rises in the order of Example 7, Example 8, Example 9, and Example 10. This is because the higher the amount of silica gel sulfate used and the smaller the amount of active silica gel used, the higher the refining effect of the test oils, and the smaller amount of active silica gel used is n-hexane (aliphatic hydrocarbon). It is shown that the supply pressure of (solvent) can be stabilized.

Abstract

硫酸シリカゲル層(130)に有機ハロゲン化物質を含む油類を添加し、油類中の夾雑物質を硫酸シリカゲル層(130)において分解する。そして、硫酸シリカゲル層(130)へ脂肪族炭化水素溶媒を供給し、硫酸シリカゲル層(130)を通過した脂肪族炭化水素溶媒を過マンガン酸塩を固定した担体層(141)と硝酸銀シリカゲル層(142)とを含む処理層(140)に通過させる。硫酸シリカゲル層(130)において発生したSOxガスは脂肪族炭化水素溶媒が担体層(141)を通過するときに過マンガン酸塩により消費され、硫酸シリカゲル層(130)において生成した分解生成物は硝酸銀シリカゲル層(141)において捕捉される。

Description

油類の精製方法
 本発明は、油類の精製方法、特に、油類に含まれる有機ハロゲン化物質を分析するために当該油類を精製するための方法に関する。本願は、2019年8月22日に日本に出願された特願2019-152402号に基づき優先権を主張し、その内容をここに援用する。
 食品、大気および土壌等は、毒性が懸念される有機ハロゲン化物質、例えば、ダイオキシン類やポリ塩化ビフェニル類により汚染されている可能性がある。そこで、各国は、食品や大気等において許容される有機ハロゲン化物質について、独自の規制を設けている。例えば、欧州連合(EU)の食品規制基準(COMMISSION REGULATION (EU) No 1259/2011)は、牛肉や豚肉等の食肉、動物性油脂、卵およびオリーブ油等の植物油などの食品についてダイオキシン類やダイオキシン類に属さない所定のポリ塩化ビフェニル類を規制対象の有機ハロゲン化物質として指定し、これらについての規制値を定めている。また、本邦のダイオキシン類対策特別措置法(平成11年法律第105号)は、廃棄物焼却施設からの排出ガス、廃棄物焼却施設において発生する飛灰(フライアッシュ)、工場廃水、大気、土壌並びに地下水、海水、湖沼水および河川水等の環境水等の環境試料に含まれるダイオキシン類を定期的に分析することを義務付けている。
 食品等の評価対象物における有機ハロゲン化物質による汚染を評価する際は、通常、評価対象物から試料を採取し、この試料から有機ハロゲン化物質の分析用試料を調製する。評価対象物が動物性油脂や植物油のような油状のものの場合、採取した試料をそのままで或いは油性溶剤に適宜溶解することで分析用試料として用いることができる。一方、評価対象物が土壌や固形食品等の固形物の場合、例えば、油性溶剤を用いたソックスレー抽出法により固形物から有機ハロゲン化物質を抽出し、この油性溶剤溶液を分析用試料として用いる。また、試料が大気や飲料等の流体の場合、例えば、フイルタ等の採取器を用いて流体中の有機ハロゲン化物質を捕捉して採取した後、油性溶剤を用いて採取器を洗浄したり、採取器に対して油性溶剤を用いたソックスレー抽出法を適用したりすることで採取器に採取された有機ハロゲン化物質を抽出し、この油性溶剤溶液を分析用試料として用いる。以上のようにして得られた分析用試料をガスクロマトグラフ質量分析装置(GC/MS)等の分析装置に適用することで得られる結果に基づき、評価対象物は有機ハロゲン化物質による汚染を評価することができる。
 上述の分析用試料は分析対象となる有機ハロゲン化物質とともに評価対象物に由来する種々の有機物質を夾雑物質として含むものであり、この夾雑物質は、分析装置を汚損するおそれがあるとともに、有機ハロゲン化物質の分析結果に影響を与える可能性がある。そこで、上述の分析用試料は、通常、その調製過程において夾雑物質を除去するための精製処理が施される。
 この種の精製処理方法の例として、特許文献1は、ポリ塩化ビフェニル類を含む油性液体の精製方法を開示している。この精製方法は、加熱した硫酸シリカゲル層に油性液体を添加した後、当該硫酸シリカゲル層に脂肪族炭化水素溶媒を供給する工程と、硫酸シリカゲル層を通過した脂肪族炭化水素溶媒を硝酸銀シリカゲル層に供給して通過させる工程と、硝酸銀シリカゲル層を通過した脂肪族炭化水素溶媒をアルミナ層に通過させる工程と、アルミナ層に対してポリ塩化ビフェニル類を溶解可能な疎水性溶媒を供給して通過させ、アルミナ層を通過した疎水性溶媒を確保する工程とを含む。この精製方法において、油性液体に含まれる夾雑物質は硫酸シリカゲル層との反応により分解される。この分解生成物は、ポリ塩化ビフェニル類とともに硫酸シリカゲル層に保持される。硫酸シリカゲル層に対して脂肪族炭化水素溶媒を供給すると、この脂肪族炭化水素溶媒は、硫酸シリ力ゲル層を通過して硝酸銀シリ力ゲル層へ供給され、この硝酸銀シリ力ゲル層を通過する。この際、硫酸シリカゲル層に保持されたポリ塩化ビフェニル類および分解生成物の一部は、硫酸シリカゲル層へ供給された脂肪族炭化水素溶媒に溶解し、硫酸シリカゲル層から硝酸銀シリカゲル層へ供給される。ここで、脂肪族炭化水素溶媒に含まれる分解生成物の一部は、硝酸銀シリカゲル層に吸着されて保持される。一方、脂肪族炭化水素溶媒に含まれるポリ塩化ビフェニル類は、脂肪族炭化水素溶媒に溶解された状態で硝酸銀シリカゲル層を通過する。次に、硝酸銀シリカゲル層を通過した脂肪族炭化水素溶媒、すなわち、ポリ塩化ビフェニル類を溶解した脂肪族炭化水素溶媒をアルミナ層へ供給して通過させると、脂肪族炭化水素溶媒に溶解しているポリ塩化ビフェニル類はアルミナ層において捕捉される。そして、脂肪族炭化水素溶媒が通過したアルミナ層に対してポリ塩化ビフェニル類を溶解可能な疎水性溶媒を供給して通過させると、アルミナ層に捕捉されたポリ塩化ビフェニル類は、疎水性溶媒に溶解してアルミナ層から抽出され、疎水性溶媒溶液として確保される。この疎水性溶媒溶液がポリ塩化ビフェニル類の分析用試料として用いられる。
 上述の精製方法は、油性液体に含まれるポリ塩化ビフェニル類と夾雑物質とを効果的に分離することができ、ポリ塩化ビフェニル類を疎水性溶媒に転溶した分析用溶液として確保することができるが、硫酸シリカゲル層と硝酸銀シリカゲル層とを用いることから、これらの層がそれぞれ含む硫酸および硝酸銀のために精製過程において人体や環境に影響を及ぼす硫黄酸化物ガス(SOxガス)や窒素酸化物ガス(NOxガス)を発生し得る。これらのガスの発生機序は次の化学反応によるものと考えられる。
Figure JPOXMLDOC01-appb-C000001
 上述の精製方法を適用する油性液体は、そのポリ塩化ビフェニル類濃度が比較的に高濃度の場合、硫酸シリカゲル層に対して少量を添加すれば足り、結果的に上述のガスの発生量は人体や環境への影響を無視できる程度の微量に抑えられる。一方、GC/MSでの検出限界(定量限界)に近いポリ塩化ビフェニル類等の含有量を規制基準とするEUの食品規制基準に照らし、ポリ塩化ビフェニル類濃度が微量の油性液体を精製対象とする場合、精製過程におけるポリ塩化ビフェニル類の消失等を考慮し、硫酸シリカゲル層に対する当該油性液体の添加量を増加する必要があるが、添加量の増加に従って上述のガスの発生量が人体や環境への影響を無視できない程度に増加する可能性がある。
 なお、特許文献2は、ダイオキシン類溶液に含まれるダイオキシン類の分析用試料を調製する場合におけるダイオキシン類溶液の精製方法として、特許文献1における硫酸シリカゲル層と硝酸銀シリカゲル層との順序を逆にした方法、すなわち、硝酸銀シリカゲル層に油性液体を添加した後、当該硝酸銀シリカゲル層に脂肪族炭化水素溶媒を供給する工程と、硝酸銀シリカゲル層を通過した脂肪族炭化水素溶媒を硫酸シリカゲル層に供給して通過させる工程とを含む方法を開示している。この精製方法は、SOxガスやNOxガスを実質的に発生させずにダイオキシン類溶液を精製することができるが、硝酸銀シリカゲル層に対するダイオキシン類溶液の添加量を増加すると分析用試料におけるダイオキシン類の回収率が顕著に低下することから、精製処理可能なダイオキシン類溶液の量が制限される。
国際公開2008/123393 国際公開2014/192055
 本発明は、油類に含まれる有機ハロゲン化物質を分析するために当該油類を硫酸シリカゲル層と硝酸銀シリカゲル層とを用いて精製する場合において、精製過程において発生し得るSOxガスやNOxガスを精製過程内で消費しようとするものである。
 本発明は、油類に含まれる有機ハロゲン化物質を分析するために当該油類を精製するための方法に関するものである。この精製方法は、硫酸シリカゲル層へ油類を添加する工程と、油類を添加後の硫酸シリカゲル層に対して脂肪族炭化水素溶媒を供給する工程と、過マンガン酸塩を固定した担体層と硝酸銀シリカゲル層とを含む処理層に硫酸シリカゲル層を通過した脂肪族炭化水素溶媒を通過させる工程とを含む。
 この精製方法において、硫酸シリカゲル層へ添加された油類に含まれる夾雑物質は、硫酸シリカゲル層との反応により分解される。そして、硫酸シリカゲル層に対して供給された脂肪族炭化水素溶媒は、硫酸シリカゲル層での分解生成物の一部および油類中の有機ハロゲン化物質を溶解して硫酸シリカゲル層を通過し、続いて処理層を通過する。この際、脂肪族炭化水素溶媒に溶解した分解生成物は、処理層、特に、処理層中の硝酸銀シリカゲル層により捕捉され、脂肪族炭化水素溶媒から分離される。この結果、処理層を通過した脂肪族炭化水素溶媒に含まれる有機ハロゲン化物質は、夾雑物質が除去され、精製されたものとなる。このような油類の精製過程では、硫酸シリカゲル層および処理層においてSOxガスやNOxガスが発生し得るが、これらのガスは、脂肪族炭化水素溶媒中に溶解し、脂肪族炭化水素溶媒が処理層を通過するときに担体層に固定された過マンガン酸塩との反応により消費される。
 この精製方法において用いられる担体層は、例えば、過マンガン酸塩を固定した酸化アルミニウム層である。
 この精製方法の一形態では、処理層において、担体層と硝酸銀シリカゲル層との順に硫酸シリカゲル層を通過した脂肪族炭化水素溶媒を通過させる。
 この精製方法の他の一形態は、硫酸シリカゲル層を通過した脂肪族炭化水素溶媒を処理層に通過させる前に活性シリカゲル層に通過させる工程をさらに含む。
 他の観点に係る本発明は、油類に含まれる有機ハロゲン化物質を分析するために油類を精製するための器具に関するものである。この精製器具は、両端が開口した筒体と、筒体内に充填された硫酸シリカゲル層と、筒体内において硫酸シリカゲル層とは別に充填された、過マンガン酸塩を固定した担体層および硝酸銀シリカゲル層を含む処理層とを備えている。
 この器具を用いて油類を精製する場合、筒体内に充填された硫酸シリカゲル層に対して油類を添加する。添加された油類に含まれる夾雑物質は、硫酸シリカゲル層との反応により分解される。この硫酸シリカゲル層に対して脂肪族炭化水素溶媒を供給し、この脂肪族炭化水素溶媒を硫酸シリカゲル層および処理層の順に通過させると、脂肪族炭化水素溶媒は硫酸シリカゲル層での分解生成物の一部および油類中の有機ハロゲン化物質を溶解して硫酸シリカゲル層を通過し、続いて処理層を通過する。この際、脂肪族炭化水素溶媒に溶解した分解生成物は、処理層、特に、処理層中の硝酸銀シリカゲル層により捕捉され、脂肪族炭化水素溶媒から分離される。この結果、処理層を通過した脂肪族炭化水素溶媒に含まれる有機ハロゲン化物質は、夾雑物質が除去され、精製されたものとなる。このような油類の精製過程では、硫酸シリカゲル層および処理層においてSOxガスやNOxガスが発生し得るが、これらのガスは、脂肪族炭化水素溶媒中に溶解し、脂肪族炭化水素溶媒が処理層を通過するときに担体層に固定された過マンガン酸塩との反応により消費される。
 この精製器具において用いられる担体層は、例えば、過マンガン酸塩を固定した酸化アルミニウム層である。
 この精製器具の一形態において、処理層は、硫酸シリカゲル層と硝酸銀シリカゲル層との間に位置するよう担体層を含んでいる。
 この精製器具の他の一形態は、筒体が硫酸シリカゲル層を充填した第1部位と処理層を充填した第2部位とに分割されており、第1部位と第2部位とを結合することで形成される。
 この精製器具のさらに他の一形態は、筒体内において硫酸シリカゲル層と処理層との間に充填された活性シリカゲル層をさらに備えている。
 本発明に係る油類の精製方法は、過マンガン酸塩を固定した担体層を用いていることから、油類に含まれる有機ハロゲン化物質を分析するために当該油類を硫酸シリカゲル層と硝酸銀シリカゲル層とを用いて精製する場合において、精製過程で発生し得るSOxガスやNOxガスを精製過程内において消費することができる。
 本発明に係る油類の精製器具は、硫酸シリカゲル層と、過マンガン酸塩を固定した担体層および硝酸銀シリカゲル層を含む処理層とを筒体内に充填したものであることから、油類に含まれる有機ハロゲン化物質の分析のために当該油類の精製用として用いると、精製過程において発生し得るSOxガスやNOxガスを精製過程内において消費することができる。
本発明に係る油類の精製器具の一形態を分割した状態の概略縦断面図。 一体化された前記一形態に係る精製器具の概略縦断面図。 前記一形態に係る精製器具を採用した分析用試料の調製器の概略縦断面図。 変形例に係る精製器具の図2に相当する図。 他の変形例に係る精製器具の図2に相当する図。 比較例1において作成した比較用精製器具の図2に相当する図。 実施例の評価1において撮影した、実施例1に係る精製器具を使用前に撮影した写真。 実施例の評価1において撮影した、実施例1に係る精製器具を油類試料の精製処理のために使用した後に撮影した写真。 実施例の評価1において撮影した、実施例2に係る精製器具を油類試料の精製処理のために使用した後に撮影した写真。 実施例の評価1において撮影した、実施例3に係る精製器具を油類試料の精製処理のために使用した後に撮影した写真。 実施例の評価2において撮影した、実施例1および実施例4~6に係る精製器具を油類試料の精製処理のために使用した後の部分写真。 実施例1による第1分析用試料についての評価5の結果を示す図。 実施例3による第1分析用試料についての評価5の結果を示す図。 実施例1による第1分析用試料および第2分析用試料についての評価6の結果を示す図。 実施例3による第1分析用試料および第2分析用試料についての評価6の結果を示す図。 実施例の評価7の結果を示す図。 実施例の評価8の結果を示す図。 鶏卵油から調製した試験油類を実施例7~10に適用した場合の評価9の結果を示す図。 牛脂油から調製した試験油類を実施例7~10に適用した場合の評価9の結果を示す図。
 本発明は、油類に含まれる有機ハロゲン化物質を分析する場合における当該油類の精製に関するものである。分析対象となる有機ハロゲン化物質としては、例えば、ダイオキシン類、ダイオキシン類に属さないポリ塩化ビフェニル類およびポリ臭化ジフェニルエーテル類などが挙げられる。このような有機ハロゲン化物質を含有し得る、本発明の適用対象となる油類としては、例えば、豚や牛等の偶蹄類、鶏等の家禽類および魚類などの食用動物に由来の動物性油脂類並びにオリーブ油やヒマワリ油等の植物油などの食用油脂類、電気絶縁油等として用いられる鉱油類および油性溶剤を用いた環境試料からの抽出液などが挙げられる。動物性油脂類は、通常、食肉や卵に対して油性溶剤を用いた抽出操作を適用することで得られる抽出油が本発明の適用対象の油類となる。環境試料は、例えば、廃棄物焼却施設において発生する飛灰(フライアッシュ)や土壌等の固形物や、廃棄物焼却施設からの排出ガス、工場廃水、大気、血液、母乳並びに地下水、海水、湖沼水および河川水等の環境水等の流体である。環境試料からの抽出液は、環境試料が固形物の場合、当該固形物から油性溶剤を用いてソックスレー抽出などの抽出法を適用することで得られるものである。また、環境試料が流体の場合、採取器を用いて流体中の有機ハロゲン化物を捕捉・採取し、この採取器から油性溶剤を用いてソックスレー抽出などの抽出法を適用することで得られるものである。
 流体から有機ハロゲン化物質を採取するための採取器としては、例えば、日本工業規格JIS K 0311(2005) 「排ガス中のダイオキシン類の測定方法」に記載のガラス製インピンジャーを用いた装置やフイルタ等が用いられる。フイルタとしては、例えば、特許第3273796号公報、国際公開01/91883号および特開2004-53388号公報等に記載のものが挙げられる。
 環境試料から有機ハロゲン化物質を抽出するために用いられる油性溶剤は、有機ハロゲン化物質を溶解可能なものであれば特に限定されるものではなく、通常は有機溶媒である。有機溶媒としては、通常、脂肪族炭化水素溶媒、特に、n-ヘキサン、イソオクタン、ノナン若しくはデカンなどの炭素数が5~10の無極性の脂肪族炭化水素溶媒、トルエン若しくはキシレンなどの芳香族炭化水素溶媒またはアセトン、ジエチルエーテル若しくはジクロロメタンなどの極性有機溶媒が用いられる。なお、芳香族炭化水素溶媒による抽出液は、本発明の精製方法に適用する際、溶媒を上述の脂肪族炭化水素溶媒に置換するのが好ましい。
 図を参照し、本発明に係る油類の精製器具の一形態を説明する。
 図1において、精製器具10は、第1部位110と第2部位120とに分割された筒体100を備えている。第1部位110および第2部位120は、いずれも両端が開口した円筒状の部材であり、少なくとも耐溶媒性、耐薬品性および耐熱性を有する材料、例えば、これらの特性を備えたガラス、樹脂または金属により形成されたものである。第1部位110は、図1の下端に突起部111を有している。突起部111は、その外径が第2部位120の内径と略一致しており、第2部位120の図1の上端部に対して気密・液密に嵌め込み可能である。
 第1部位110は、内部に硫酸シリカゲル層130が設けられている。硫酸シリカゲル層130は、硫酸シリカゲルを充填したものである。ここで用いられる硫酸シリカゲルは、粒径が30μm~1mm程度の粒状のシリカゲル(通常は加熱により活性度を高めた活性シリカゲル)の表面に濃硫酸を均一に添加することで調製されたものである。
 シリカゲルにおける硫酸の担持量は、通常、シリカゲルの重量基準で20~55%に設定するのが好ましく、30~50%に設定するのがより好ましい。担持量が20%未満の場合、油類に含まれる夾雑物質の分解効率が低下し、油類中の有機ハロゲン化物質を夾雑物質から分離するのが困難になる可能性がある。逆に、担持量が55%を超える場合は、硫酸シリカゲル層130に油類を添加したときに添加部位において担持された硫酸と夾雑物質との反応が局所的に進行し、後記する脂肪族炭化水素溶媒が硫酸シリカゲル層130を通過しにくくなることから、油類の精製効率が低下する可能性がある。
 硫酸シリカゲル層130における硫酸シリカゲルの密度は、特に限定されるものではないが、通常、0.3~1.1g/cmに設定するのが好ましく、0.5~1.0g/cmに設定するのがより好ましい。この密度が0.3g/cm未満の場合、添加した油類が硫酸シリカゲル層130を速やかに通過してしまい、夾雑物質の分解効率が低下する可能性がある。逆に、この密度が1.1g/cmを超える場合、添加した油類が硫酸シリカゲル層130内に浸透しにくくなり、夾雑物質の分解効率が低下するとともに分解に長時間を要する可能性がある。
 第2部位120は、後記する調製装置1において用いられる捕捉器200に対して連結するための螺旋部121を図1の下端の外周部に有しており、内部に処理層140が設けられている。処理層140は、過マンガン酸塩を固定した担体層141と、図1において担体層141の下に配置された硝酸銀シリカゲル層142とを含んでいる。
 担体層141は、粒状の担体、例えば、酸化アルミニウム、シリカゲル(通常は加熱により活性度を高めた活性シリカゲル)、ゼオライト等の結晶性のアルミノケイ酸塩またはこれらの任意の組合せによる混合物に対して過マンガン酸塩を固定したものからなる層である。ここで用いられる過マンガン酸塩は、酸化剤として用いられるものであれば特に限定されるものではなく、例えば、過マンガン酸カリウム、過マンガン酸ナトリウム、過マンガン酸銀、過マンガン酸マグネシウム、過マンガン酸カルシウム、過マンガン酸バリウムおよび過マンガン酸アンモニウムを挙げることができる。過マンガン酸塩は、一種類のものが単独で用いられてもよいし、二種類以上のものが併用されてもよい。
 担体層141は、粒径が10~500μm程度の粒状の担体の表面に過マンガン酸塩水溶液を均一に添加し、ある程度の含水率が維持されるように減圧加熱により水分を除去することで調製されたものである。担体に対する過マンガン酸塩の固定量は、通常、担体の重量基準で少なくとも3%に設定するのが好ましく、少なくとも4%に設定するのがより好ましい。固定量が3%未満の場合、油類の精製過程において発生するSOxガスやNOxガスの消費能力が低下する可能性がある。過マンガン酸塩の固定量は、多く設定することでSOxガスやNOxガスの消費能力が高まることから上限を規制する必要性に乏しいが、通常は担体に対して添加する過マンガン酸塩水溶液における過マンガン酸塩の溶解度による限界がある。
 担体層141の含水率は、一般には担体の重量基準で3~10%に設定するのが好ましく、4~6%に設定するのがより好ましい。含水率が3%以下の場合、油類の精製過程において発生するSOxガスやNOxガスの消費能力が顕著に低下する可能性がある。一方、含水率が10%を超える場合、その水分が処理層140に同時に含まれる硝酸銀シリカゲル層142に作用してその含水率を高めてしまう可能性があり、その結果、油類の精製効果が低下する可能性がある。
 また、担体層141の含水率は、担体に応じて適切に設定するのが好ましい。例えば、担体が酸化アルミニウムの場合、担体層141の含水率は4~6%に設定するのが好ましく、4.5~5%に設定するのがより好ましい。一方、担体がシリカゲルの場合、担体層141の含水率は酸化アルミニウムが担体の場合よりも高い3~20%に設定するのが好ましく、4~10%に設定するのがより好ましい。
 担体層141としては、夾雑物質の処理能に優れ、より多量の油類の精製に適していることから、酸化アルミニウムを担体とし、これに過マンガン酸カリウムを固定したものを用いるのが好ましい。例えば、酸化アルミニウムを450~600℃で1~12時間程度焼成することで水分および付着した有機物を除去し、この酸化アルミニウムをイオン交換水または蒸留水を用いて調製した過マンガン酸カリウム水溶液に投入して均一に混合した後、エバポレータを用いて含水率が上記範囲になるよう乾燥処理したものを用いるのが好ましい。特に、過マンガン酸カリウム水溶液として、投入する酸化アルミニウムの重量に対して3~5%の過マンガン酸カリウムを溶解したものを用い、過マンガン酸カリウムの固定量が酸化アルミニウムの重量基準で3~5%になるよう調整したものを用いるのが好ましい。
 担体層141において、過マンガン酸塩を固定した担体の密度は、特に限定されるものではないが、通常、1.0~1.4g/cmに設定するのが好ましく、1.1~1.2g/cmに設定するのがより好ましい。この密度が1.0g/cm未満の場合、油類の精製過程において発生するSOxガスやNOxガスの消費能力が低下する可能性がある。逆に、この密度が1.4g/cmを超える場合、後記する脂肪族炭化水素溶媒が担体層141を通過しにくくなり、油類の精製効率が低下する可能性がある。
 硝酸銀シリカゲル層142は、硝酸銀シリカゲルを充填したものである。ここで用いられる硝酸銀シリカゲルは、粒径が40~210μm程度の粒状のシリカゲル(通常は加熱により活性度を高めた活性シリカゲル)の表面に硝酸銀の水溶液を均一に添加した後、減圧加熱により水分を除去することで調製されたものである。シリカゲルに対する硝酸銀の担持量は、通常、シリカゲルの重量基準で5~20%に設定するのが好ましい。この担持量が5%未満の場合、夾雑物質やその分解生成物が硝酸銀シリカゲル層142において捕捉されにくくなり、油類の精製効果が低下する可能性がある。逆に、20%を超える場合、硝酸銀シリカゲル層142において銀イオン量が多くなることから有機ハロゲン化物質が吸着・捕捉されやすくなり、油類の精製過程において有機ハロゲン化物質の一部が回収されにくくなる可能性がある。
 硝酸銀シリカゲル層142の含水率は、一般にはシリカゲルの重量基準で2~10%に設定するのが好ましく、3.5~5%に設定するのがより好ましい。含水率が2%以下の場合、硝酸銀シリカゲル層142において銀イオンの活性が高まることから有機ハロゲン化物質が吸着・捕捉されやすくなり、油類の精製過程において有機ハロゲン化物質の一部が回収されにくくなる可能性がある。逆に、含水率が10%を超える場合、油類の精製効果が低下する可能性がある。
 硝酸銀シリカゲル層142における硝酸銀シリカゲルの充填密度は、特に限定されるものではないが、通常、0.3~0.8g/cmに設定するのが好ましく、0.4~0.7g/cmに設定するのがより好ましい。この密度が0.3g/cm未満の場合、油類の精製過程において発生するSOxガスやNOxガスの消費能力が低下する可能性がある。逆に、この密度が0.8g/cmを超える場合、油類の精製時において後記する脂肪族炭化水素溶媒が担体層141を通過しにくくなり、油類の精製効率が低下する可能性がある。
 第1部位110と第2部位120とは、図2に示すように、第1部位110の突起部111を第2部位120の図1の上端側内部に嵌め込むことで液密・気密に一体化し、第1部位110の上端部および第2部位120の下端部にそれぞれ開口部150、160を有する一連の筒体100となって精製器具10を形成する。
 精製器具10の大きさは、精製処理する油類の量に応じて適宜設定することができるものであり、特に限定されるものではないが、例えば油類の量が1~20mL程度の場合、第1部位110および第2部位120は、いずれも、所要の層を充填可能な部分について内径10~20mmで長さが100~300mm程度に設定されているのが好ましい。
 次に、図3を参照し、上述の精製器具10を用いた、油類に含まれる有機ハロゲン化物質を分析するための分析用試料の調製器の例を説明する。この例の調製器は、より具体的には、有機ハロゲン化物質の一例であるダイオキシン類を含む可能性のある油類からダイオキシン類の分析用試料を調製するためのものである。ダイオキシン類は、一般に、ポリ塩化ジベンゾパラジオキシン(PCDDs)、ポリ塩化ジベンゾフラン(PCDFs)およびダイオキシン様ポリ塩化ビフェニル(DL-PCBs)を総称する用語である。DL-PCBsは、209種類のポリ塩化ビフェニル類(PCBs)のうち、PCDDsおよびPCDFsと同様の毒性を示すPCBsであり、ノンオルソPCBsおよびモノオルソPCBsを含む。
 図3において、調製器1は、精製器具10とダイオキシン類の捕捉器200とを主に備えており、精製器具10は捕捉器200に対して装着されている。
 捕捉器200は、管体210を備えている。管体210は、精製器具10の筒体100と同様の材料を用いて形成されており、一端に開口211を有しかつ他端に開口212を有する、両端が開口した一連の円筒状に形成されている。管体210の開口211側は、精製器具10の装着部220が形成されており、この装着部220の内周面には第2部位120の螺旋部121に対応する螺旋部221が形成されている。また、管体210は、先端が開口した2本の分岐路、すなわち、間隔をおいて設けられた第1分岐路215と第2分岐路216とを有している。
 管体210は、内部に捕捉層230が充填されている。捕捉層230は、油類に含まれるダイオキシン類をノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群と、モノオルソPCBsとに分画して捕捉するためのものであり、第1層240と第2層250とを備えている。第1層240と第2層250とは、間隔を設けて管体210に充填されている。より具体的には、第1層240は、第1分岐路215と第2分岐路216との間において管体210内に充填されており、第2層250は、第2分岐路216と開口212との間において管体210内に充填されている。
 第1層240は、図3に示すように、活性炭含有シリカゲル層241と、その下方に配置されたグラファイト含有シリカゲル層242とを含むものである。活性炭含有シリカゲル層241は、活性炭と粒状のシリカゲルとの混合物からなるものである。このような混合物は、活性炭とシリカゲルとを単純に混合することで得られる活性炭分散シリカゲルであってもよいし、珪酸ナトリウム(水ガラス)と活性炭との混合物を鉱酸と反応させることで得られる活性炭埋蔵シリカゲルであってもよい。活性炭は、市販の各種のものを用いることができるが、通常、粒径が40~100μm程度の粒状または粉末状であって、BET法により測定した比表面積が100~1,200m/g、特に500~1,000m/gのものが好ましい。活性炭分散シリカゲルにおいて用いられるシリカゲルは、通常、粒径が40~210μm程度の粒状のものである。このシリカゲルは、加熱することで活性度を適宜に高めたものであってもよい。
 活性炭とシリカゲルとの混合物における活性炭の割合は、0.013~5.0重量%が好ましく、0.1~3.0重量%がより好ましい。活性炭が0.013重量%未満の場合または5.0重量%を超える場合は、第1層240において、塩素数の多いPCDDsまたは塩素数の多いPCDFsの吸着能が低下する可能性がある。
 活性炭含有シリカゲル層241の充填密度は、特に限定されるものではないが、通常、0.3~0.8g/cmに設定するのが好ましく、0.45~0.6g/cmに設定するのがより好ましい。
 グラファイト含有シリカゲル層242は、第1層240において、活性炭含有シリカゲル層241に隣接して配置されており、グラファイトと粒状のシリカゲルとを単純に混合することで得られる混合物からなるものである。グラファイトは、市販の各種のものを用いることができるが、通常、粒径が40~200μm程度の粒状または粉末状であって、BET法により測定した比表面積が10~500m/g、特に50~200m/gのものが好ましい。また、シリカゲルは、活性炭含有シリカゲル層241と同様のものが用いられる。
 グラファイトとシリカゲルとの混合物におけるグラファイトの割合は、2.5~50重量%が好ましく、5~25重量%がより好ましい。グラファイトが2.5重量%未満の場合は、第1吸着層240において、ノンオルソPCBsの吸着能が低下する可能性がある。逆に、グラファイトが50重量%を超える場合は、第1層240において、非DL-PCBs、特に、塩素数が1~2の非DL-PCBsが吸着されやすくなる可能性がある。
 グラファイト含有シリカゲル層242の充填密度は、特に限定されるものではないが、通常、0.2~0.6g/cmに設定するのが好ましく、0.3~0.5g/cmに設定するのがより好ましい。
 第1層240において、活性炭含有シリカゲル層241とグラファイト含有シリカゲル層242との割合は、前者(A)に対する後者(B)の体積比(A:B)が1:1~1:12になるよう設定するのが好ましく、1:1~1:9になるよう設定するのがより好ましい。この体積比よりも活性炭含有シリカゲル層241の割合が少ない場合、第1層240においてPCDDsおよびPCDFsの一部、特に、塩素数が8のPCDDsおよびPCDFsの吸着能が低下する可能性がある。逆に、活性炭含有シリカゲル層241の割合が多い場合は、第1層240において、モノオルソPCBsが吸着されやすくなる可能性がある。
 第2層250は、粒状の酸化アルミニウムからなるものである。ここで用いられる酸化アルミニウムは、塩基性、中性および酸性のいずれのものであってもよい。また、酸化アルミニウムの活性度は、特に限定されるものではない。酸化アルミニウムの好ましい粒径は、通常、40~300μmである。
 第2層250における酸化アルミニウムの充填密度は、特に限定されるものではないが、通常、0.5~1.2g/cmに設定するのが好ましく、0.8~1.1g/cmに設定するのがより好ましい。
 管体210の大きさは、精製器具10により精製処理する油類の量に応じて適宜設定することができるものであり、特に限定されるものではないが、精製器具10が先述の大きさの場合、内径3~10mmで、第1層240を充填可能な部分の長さが20~80mm程度に、また、第2層250を充填可能な部分の長さが20~80mm程度に設定されているのが好ましい。
 捕捉器200は、精製器具10の螺旋部121に対して装着部220の螺旋部221を装着することで、精製器具10に対して気密・液密に連結されている。
 次に、調製器1を用いた、油類に含まれるダイオキシン類を分析するための分析用試料の調製方法を説明する。この調製方法は、主に、油類の精製工程、ダイオキシン類の分画工程およびダイオキシン類の抽出工程を含む。
<油類の精製工程>
 この工程では、通常、精製器具10が上側になるよう調整器1を起立した状態に設置し、精製器具10の開口150から硫酸シリカゲル層130に対して油類を添加する。
 ここで注入する油類は、通常、既述の食用油脂類、鉱油類または環境試料からの抽出液などである。油類が環境試料からの抽出液の場合、脂肪族炭化水素溶媒を用いた抽出液であれば、その適量をそのまま硫酸シリカゲル層130へ添加することができる。また、抽出液が脂肪族炭化水素溶媒以外の有機溶媒、例えばトルエンなどの芳香族炭化水素溶媒を用いた抽出により得られたものの場合、当該抽出液は、抽出用に用いた芳香族炭化水素溶媒を脂肪族炭化水素溶媒に置換することで硫酸シリカゲル層130へ添加することができる。一方、油類が食用油脂類や鉱油類の場合、脂肪族炭化水素溶媒と同じ溶媒を用いて希釈後に硫酸シリカゲル層130に対して添加するのが好ましい。希釈用の脂肪族炭化水素溶媒としては、精製器具10に対して供給する、後記する脂肪族炭化水素溶媒と同じものを用いるのが好ましい。
 硫酸シリカゲル層130への油類の添加量は、通常、1~10mL程度が好ましい。環境試料からの抽出液の場合、抽出溶媒または置換溶媒の一部を留去することで濃縮し、その濃縮液の添加量を上記のように設定してもよい。また、食用油脂類や鉱油類の場合、その希釈後の添加量が上記範囲の上限付近になるよう設定するのが好ましい。
 次に、油類を添加した硫酸シリカゲル層130を加熱する。加熱温度は、60℃以上に設定するのが好ましく、80℃以上に設定するのがより好ましい。この加熱により、硫酸シリカゲル層130に浸透した油類に含まれる夾雑物質が硫酸シリカゲル層130と反応し、分解する。加熱条件が60℃未満の場合、夾雑物質と硫酸シリカゲル層130との反応が進行しにくくなることから分析用試料に夾雑物質の一部が残留し、当該分析用試料による分析結果の信頼性が損なわれる可能性がある。加熱温度の上限は、特に限定されるものではないが、通常は安全性の観点から添加した油類の沸騰温度以下に制御するのが好ましい。また、加熱時間は、夾雑物質と硫酸シリカゲル層130との反応時間を十分に確保するために少なくとも30分に設定するのが好ましい。
 この工程では、硫酸シリカゲル層130と夾雑物質との反応および硫酸の熱分解が進行することでSOxガスが発生し得る。
 次に、硫酸シリカゲル層130に対して脂肪族炭化水素溶媒を供給する。ここで供給する脂肪族炭化水素溶媒は、ダイオキシン類を溶解可能なものであり、好ましくは炭素数が5~8個の脂肪族飽和炭化水素溶媒である。例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタンまたはシクロヘキサンを用いるのが好ましい。これらの溶媒は、適宜混合して用いてもよい。脂肪族炭化水素溶媒の供給は、硫酸シリカゲル層130の加熱中に開始してもよいし、その加熱を停止した後に開始してもよい。
 この工程では、脂肪族炭化水素溶媒を開口150から第1部位110内へ供給する。供給された脂肪族炭化水素溶媒は、硫酸シリカゲル層130に浸透し、同層を通過する。この際、脂肪族炭化水素溶媒は、油類に含まれるダイオキシン類、夾雑物質の分解生成物および分解されずに残留している夾雑物質(この夾雑物質には、通常、非DL-PCBsが含まれる。)並びにSOxガスを溶解し、ダイオキシン類を含む脂肪族炭化水素溶媒溶液として第1部位110から第2部位120へ流れて処理層140を通過する。
 第1部位110からの脂肪族炭化水素溶媒に含まれるSOxガスは、脂肪族炭化水素溶媒が担体層141を通過する際に過マンガン酸塩と反応し、消費される。過マンガン酸塩として過マンガン酸カリウムを用いた場合、この反応は次のようになるものと考えられる。この反応に関与する水(HO)は、担体層141が含む水分である。
Figure JPOXMLDOC01-appb-C000002
 一方、第1部位110からの脂肪族炭化水素溶媒に含まれる分解生成物および夾雑物質は、脂肪族炭化水素溶媒が担体層141を通過する際に過マンガン酸塩により酸化される。分解生成物や夾雑物質が例えば不飽和脂肪酸やアルケン(二重結合をもつ炭化水素)の場合、これらは過マンガン酸塩の酸化作用によりグリコール化を経てカルボニル化し、一部はカルボン酸へ酸化されるとともに、生成したカルボン酸がギ酸の場合はさらに酸化されることで水と二酸化炭素とに分解される。
 担体層141を通過した脂肪族炭化水素溶媒に残留する分解生成物や夾雑物質は、脂肪族炭化水素溶媒が硝酸銀シリカゲル層142を通過する際に当該層において捕捉される。以上の結果、処理層140を通過した脂肪族炭化水素溶媒は、油類に含まれていたダイオキシン類を保存して含むとともに、SOxガスが消費されかつ分解生成物や夾雑物質が有意に除去されたダイオキシン類の精製溶液となる。
 脂肪族炭化水素溶媒は、必要により加圧しながら硫酸シリカゲル層130に対して供給することができる。例えば、硫酸シリカゲル層130と油類中の夾雑物質との反応による分解生成物が硫酸シリカゲル層130に詰まりを生じさせることがあるが、そのような場合、脂肪族炭化水素溶媒は加圧しながら供給することで安定的かつ円滑に硫酸シリカゲル層130を通過する。
<ダイオキシン類の分画工程>
 処理層140を通過した脂肪族炭化水素溶媒は、第2部位120の下端の開口160から捕捉器200の上端の開口211を通じて捕捉器200内へ流れ、捕捉層230を通過後に開口212から排出される。この際、処理層140からの脂肪族炭化水素溶媒に含まれるダイオキシン類は、捕捉層230において捕捉され、脂肪族炭化水素溶媒から分離される。より具体的には、捕捉層230において、ダイオキシン類のうちのノンオルソPCBs、PCDDsおよびPCDFsが第1層240に吸着され、また、ダイオキシン類のうちのモノオルソPCBsが第2層250に吸着される。したがって、脂肪族炭化水素溶媒に含まれるダイオキシン類は、捕捉層230において、ノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群と、モノオルソPCBsとに分画される。
 処理層140を通過した脂肪族炭化水素溶媒に残留する夾雑物質は、一部が脂肪族炭化水素溶媒とともに捕捉層230を通過して廃棄され、また、一部が捕捉層230に捕捉される。例えば、非DL-PCBsおよびPCDEは、モノオルソPCBsとともに第2層250に吸着される。また、パラフィン類等の夾雑物質は、脂肪族炭化水素溶媒とともに捕捉層230を通過し、開口212から排出される。
 脂肪族炭化水素溶媒が開口212から排出された後、精製器具10内に開口150から空気流を導入し、硫酸シリカゲル層130、処理層140および捕捉層230を乾燥処理する。開口150から精製器具10内に導入された空気流は、硫酸シリカゲル層130および処理層140を通過後に捕捉器200へ流れ、捕捉層230を通過して開口212から排出される。この際、硫酸シリカゲル層130および処理層140に残留する脂肪族炭化水素溶媒は、通過する空気流により圧し出されて捕捉層230へ移動し、捕捉層230に残留する脂肪族炭化水素溶媒とともに開口212から排出される。この結果、硫酸シリカゲル層130、処理層140および捕捉層230は乾燥処理される。
<ダイオキシン類の抽出工程>
 この工程では、捕捉層230に吸着されたダイオキシン類を抽出する。ここでは、先ず、精製器具10の開口150および捕捉器200の第1分岐路215を気密に閉鎖し、開口212から捕捉器200内へダイオキシン類を溶解可能な溶媒を供給する。捕捉器200内に供給された溶媒は、第2層250を通過して第2分岐路216へ流れ、第2分岐路216の端部から排出される。この際、溶媒は、第2層250に吸着したPCBsを抽出し、抽出溶液となる。したがって、第2分岐路216の端部から排出される抽出溶液を確保すると、モノオルソPCBsおよび非DL-PCBsの分析用試料(第1分析用試料)が得られる。
 開口212から捕捉器200内へ供給するダイオキシン類を溶解可能な溶媒は、後述するダイオキシン類の分析方法に応じて選択することができる。分析方法としてガスクロマトグラフィー法を採用する場合は、それに適した溶媒、例えば、トルエンまたはベンゼンを用いることができる。また、トルエンまたはベンゼンに対して脂肪族炭化水素溶媒または有機塩素系溶媒を添加した混合溶媒を用いることもできる。混合溶媒を用いる場合、トルエンまたはベンゼンの割合は50重量%以上に設定する。混合溶媒において用いる脂肪族炭化水素溶媒は、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタンまたはシクロヘキサンである。また、有機塩素系溶媒は、例えば、ジクロロメタン、トリクロロメタンまたはテトラクロロメタンである。これらの抽出溶媒のうち、少量の使用で分画器具200からダイオキシン類を抽出できることから、トルエンが特に好ましい。
 分析方法としてバイオアッセイ法を採用する場合は、それに適した溶媒、例えば、ジメチルスルホキシド(DMSO)やメタノール等の親水性溶媒が用いられる。
 この工程では、第2層250を管体210の外部から加熱してもよい。第2層250を加熱した場合、抽出用の溶媒の使用量を抑えて効率的にモノオルソPCBsおよび非DL-PCBsを第2層250から抽出することができる。第2層250の加熱温度は、通常、50℃程度から抽出用の溶媒の沸点未満、特に、95℃以下に制御するのが好ましい。
 以上の操作により第1分析用試料を得た後、精製器具10の開口150の気密閉鎖状態を維持する一方で第1分岐路215を開放し、第2分岐路216を気密に閉鎖する。そして、開口212から捕捉器200内へダイオキシン類を溶解可能な溶媒を再度供給する。捕捉器200内に供給された溶媒は、第2層250および第1層240をこの順に通過して第1分岐路215へ流れ、第1分岐路215の端部から排出される。この際、溶媒は、第1層240に吸着したノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を溶解し、これらのダイオキシン群を抽出した抽出溶液となる。したがって、第1分岐路215の端部から排出される抽出溶液を確保すると、ノンオルソPCBs、PCDDsおよびPCDFsの分析用試料(第2分析用試料)が得られる。
 ここで捕捉器200内に供給するダイオキシン類を溶解可能な溶媒は、後述するダイオキシン類の分析方法に応じ、通常、第1の分析用試料の調製のために用いるものと同様のものが用いられる。
 この工程では、第1層240を管体210の外部から加熱してもよい。第1層240を加熱した場合、抽出用の溶媒の使用量を抑えて効率的にノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群を第1層240から抽出することができる。第1層240の加熱温度は、通常、50℃程度から抽出用の溶媒の沸点未満、特に、80℃以上95℃以下に制御するのが好ましい。
 以上の操作により分別して得られる、第1分析用試料および第2分析用試料は、それぞれ別々にダイオキシン類の分析に適用される。分析方法としては、捕捉器200において捕捉されたダイオキシン類を抽出するために用いた溶媒の種類に応じ、通常、GC-HRMS、GC-MSMS、GC-QMS若しくはイオントラップGC/MS等のGC/MS法またはGC/ECD法等のガスクロマトグラフィー法またはバイオアッセイ法を採用することができる。
 第1分析用試料の分析では、この分析用試料がノンオルソPCBs、PCDDsおよびPCDFsを含むダイオキシン群から分離されていることから、これらのダイオキシン群による影響を受けずにモノオルソPCBsを高精度に定量することができる。また、この分析用試料は、モノオルソPCBsとともに非DL-PCBsを含むため、油類に含まれる非DL-PCBsを併せて高精度に定量することができる。例えば、欧州連合(EU)の食品規制基準(COMMISSION REGULATION (EU) No 1259/2011)において規制対象されている所定の非DL-PCBs(IUPAC番号が#28、#52/69、#101、#138、#153および#180である、塩素数が3~7の6種類のPCBs)は、この分析用試料の分析により定量することができる。
 一方、第2分析用試料の分析では、この分析用試料がモノオルソPCBsおよび非DL-PCBsから分離されていることから、これらのPCBsによる影響を受けずにノンオルソPCBs、PCDDsおよびPCDFsを高精度に定量することができる。
 なお、GC/MS法としてGC-MSMSまたはGC-TOFMSを用いることもでき、この場合、2種類の分析用試料を混合することで同時に分析することができる。
 上述の実施の形態は、例えば、次のような変更が可能である。
(1)精製器具10は、第2部位120の処理層140において、担体層141と硝酸銀シリカゲル142との配置を入れ替えることができる。すなわち、図4に示すように、処理層140において、硝酸銀シリカゲル層142を上層側に配置し、担体層141を下層側に配置することができる。
 この変更例に係る精製器具10を用いて分析用試料を調製する場合、第1部位110から第2部位120へ流れた脂肪族炭化水素溶媒に含まれる分解生成物および夾雑物質の一部は脂肪族炭化水素溶媒が硝酸銀シリカゲル層142を通過する際に当該層において捕捉されるが、脂肪族炭化水素溶媒に含まれるSOxガスは一部が硝酸銀と反応することでNOxガスを生成する。硝酸銀シリカゲル層142を通過した脂肪族炭化水素溶媒に残留している分解生成物および夾雑物質は、脂肪族炭化水素溶媒が担体層141を通過する際に過マンガン酸塩により酸化される。ここで、分解生成物や夾雑物質が例えば不飽和脂肪酸やアルケン(二重結合をもつ炭化水素)の場合、これらは過マンガン酸塩の作用を受けて既述のような酸化過程を経て分解される。この分解生成物やその他の夾雑物質は、一部が担体層141に留まり、残余が脂肪族炭化水素溶媒として開口212から排出される。一方、硝酸銀シリカゲル層142からの脂肪族炭化水素溶媒に含まれるSOxガスおよびNOxガスは、脂肪族炭化水素溶媒が担体層141を通過する際にそれぞれが過マンガン酸塩と反応し、消費される。過マンガン酸塩として過マンガン酸カリウムを用いた場合、過マンガン酸カリウムによるSOxガスの消費反応は既述のとおりであるが、過マンガン酸カリウムによるNOxガスの消費反応は次の(i)および(ii)によるものと考えられる。これらの反応に関与する水(HO)は、担体層141が含む水分である。
Figure JPOXMLDOC01-appb-C000003
 反応(ii)においては、反応(i)で生成したNOが消費され、NOを生成する。生成したNOは、反応(i)での消費対象となる。したがって、NOxガスは、担体層141において反応(i)および(ii)がこの順で繰り返されることにより、或いは、反応(i)および(ii)が並行して進行することにより、消費が進んで漸減し、消滅するものと考えられる。
 以上の結果、処理層140を通過した脂肪族炭化水素溶媒は、油類に含まれていたダイオキシン類を保存して含むとともに、SOxガスやNOxガスが消費されかつ分解生成物や夾雑物質が有意に除去されたダイオキシン類の精製溶液となる。
(2)上述の各実施の形態に係る精製器具10は、硫酸シリカゲル層130と処理層140との間に活性シリカゲル層をさらに含んでいてもよい。例えば、図5に示すように、第1部位110内において、硫酸シリカゲル層130の下部に隣接して活性シリカゲル層131が配置されていてもよい。活性シリカゲル層131を形成する活性シリカゲルは、粒状のシリカゲルを加熱することで活性度を高めたものである。活性シリカゲルは、通常、30~210μm程度の粒径のものを用いるのが好ましい。
 精製器具10が上述のような活性シリカゲル層131を有する場合、硫酸シリカゲル層130を通過した脂肪族炭化水素溶媒は活性シリカゲル層131を通過した後に第2部位120の処理層140へ供給される。処理層140へ供給される脂肪族炭化水素溶媒は、活性シリカゲル層131を通過するときに夾雑物質および硫酸シリカゲル層130での分解生成物の一部が捕捉され、除去されることから、処理層140において夾雑物質等による目詰まりが抑えられ、処理層140を通過後の精製度が高まりやすくなる。このため、この形態の精製器具10を用いて調製された分析試料を用いると、信頼性がより高い分析結果を期待することができる。
 活性シリカゲル層131は、第1部位110内において硫酸シリカゲル層130の下部との間に空間を設けて配置されていてもよい。また、活性シリカゲル層131は、第2部位120内において、処理層140の上部に隣接して、または、処理層140の上部との間に空間を設けて配置することもできる。さらに、活性シリカゲル層131は、第1部位110内および第2部位120内の両方に配置することもできる。
 上述の実施の形態において参照した各図は、精製器具10や調製器1の概要を示したものであり、各部の構造、形状および大きさや比率等を正確に反映したものではない。
 以下に実施例等を挙げ、本発明を具体的に説明するが、本発明は、これら実施例等によって限定されるものではない。以下の実施例等および評価において用いた充填材およびダイオキシン類含有油類は次のとおりである。
[充填材]
硫酸シリカゲル:
 活性シリカゲル(関東化学株式会社製)に対して濃硫酸(和光純薬工業株式会社製)を均一に添加した後に乾燥することで調製された硫酸シリカゲルを用いた。活性シリカゲルに対する濃硫酸の添加量は、活性シリカゲルに対する硫酸の量が重量基準で44%になるよう設定した。
硝酸銀シリカゲル:
 活性シリカゲル(関東化学株式会社製)に対して蒸留水に硝酸銀(和光純薬工業株式会社製)を溶解した水溶液を添加して均一に混合した。この混合物をロータリーエバポレーターを用いて減圧下で70℃に加熱して乾燥し、それにより得られた硝酸銀シリカゲルを用いた。ここでは、硝酸銀水溶液として活性シリカゲルの重量に対する硝酸銀量が10%に設定されたものを用い、硝酸銀シリカゲルにおける硝酸銀量を活性シリカゲルの重量基準の10%に設定した。
過マンガン酸カリウム固定酸化アルミニウム:
 酸化アルミニウム(Merck社製の商品名「Aluminium Oxide 90 active basic - (activity stage I) for column chromatography」(粒径0.063~0.200mm))を450℃で4時間焼成することで水分および付着した有機物を除去し、この焼成酸化アルミニウムを蒸留水を用いて調製した過マンガン酸カリウム水溶液に投入して均一に混合した後、エバポレータを用いて含水率が重量基準で5%になるよう乾燥処理したものを用いた。ここでは、過マンガン酸カリウム水溶液として、そこに投入する焼成酸化アルミニウムの重量に対する過マンガン酸カリウム量がそれぞれ2%、3%、4%および5%に設定された四種類のものを用い、過マンガン酸カリウムの固定量が酸化アルミニウムの重量基準でそれぞれ2%、3%、4%および5%に設定された四種類の過マンガン酸カリウム固定酸化アルミニウムを用いた。
過マンガン酸カリウム固定シリカゲル:
 活性シリカゲル(関東化学株式会社製)を450℃で4時間焼成することで水分および付着した有機物を除去し、この焼成活性シリカゲルを蒸留水を用いて調製した過マンガン酸カリウム水溶液に投入して均一に混合した後、エバポレータを用いて含水率が重量基準で10%になるよう乾燥処理したものを用いた。ここでは、過マンガン酸カリウム水溶液として、そこに投入する焼成活性シリカゲルの重量に対する過マンガン酸カリウム量が5%に設定されたものを用い、過マンガン酸カリウムの固定量を活性シリカゲルの重量基準の5%に設定した。
活性炭含有シリカゲル:
 活性シリカゲル(関東化学株式会社製)に対して活性炭(クラレケミカル株式会社の商品名「クラレコールPK-DN」)を添加して均一に混合することで得られた活性炭含有シリカゲルを用いた。活性炭の含有量は0.13重量%に設定した。
グラファイト含有シリカゲル:
 活性シリカゲル(関東化学株式会社製)に対してグラファイト(シグマアルドリッチ社の商品名「ENVI-Carb」)を添加して均一に混合することで得られたグラファイト含有シリカゲルを用いた。グラファイトの含有量は12.5重量%に設定した。
酸化アルミニウム:
 Merck社製の商品名「Aluminium Oxide 90 active basic - (activity stage I) for column chromatography」(粒径0.063~0.200mm)を用いた。
活性シリカゲル:
 市販品(関東化学株式会社製)を用いた。
[ダイオキシン類含有油類]
ダイオキシン類標準溶液:
 n-ヘキサン100mLに対して濃度既知のダイオキシン類標準物質(Wellington Laboratories社の商品名「DF-LCS-A」)1mLおよび濃度既知のPCBs標準物質(Wellington Laboratories社の商品名「PCB-LCS-H」)1mLを添加して溶解したものをダイオキシン類標準溶液とした。ダイオキシン類標準物質は、1312によりラベルされたPCDDs、PCDFsおよびDL-PCBsを含むものである。PCBs標準物質は、1312によりラベルされたIUPAC番号が#28、#52/69、#101、#138、#153および#180の6種類の非DL-PCBs(塩素数が3~7のPCBs)を含む。これらのPCBsはEUの食品規制対象である。
ヒマワリ油:
 市販品
混合植物油:
 市販品
オリーブ油:
 市販品
菜種油:
 市販品
ブドウ油:
 市販品
豚肉油:
 凍結乾燥機のトレー上に豚肉のミンチ(市販品)を厚さ2cm程度に均して載置し、この豚肉試料を凍結乾燥機内で-40℃に凍結させた。約3~6時間後に凍結乾燥機のチャンバ内の圧力を20Pa近くまで下げて豚肉試料の乾燥を開始し、豚肉試料の温度が約20~30℃に到達したところで乾燥を終了した。以上の処理を経た豚肉試料をソックスレー抽出用の円筒ろ紙に入れ、トルエン(A)とアセトン(B)との比率(A:B)が7:3の混合有機溶媒を用いて16時間ソックスレー抽出した。得られた抽出液を無水硫酸ナトリウムを用いて脱水、ろ過処理し、そのろ液からロータリーエバポレーターを用いて混合有機溶媒を除去した後の油状の残渣を豚肉油として用いた。
鶏肉油:
 豚肉のミンチに替えて鶏肉のミンチ(市販品)を用い、豚肉油の調製工程と同じ工程を経て得られた油状の残渣を鶏肉油として用いた。
鶏卵油:
 豚肉のミンチに替えて市販の鶏卵を溶いたものを用い、豚肉油の調製工程と同じ工程を経て得られた油状の残渣を鶏卵油として用いた。
牛脂油:
 豚肉のミンチに替えて牛肉のミンチ(市販品)を用い、豚肉油の調製工程と同じ工程を経て得られた油状の残渣を牛脂油として用いた。
[実施例1]
 図1に示す形態の精製器具10を作成した。ここでは、突起部111を除いた本体部分の外径が20mm、内径が17.6mm、長さが120mmに設定された筒体内に硫酸シリカゲル23gを高さが105mmになるよう充填することで硫酸シリカゲル層130を形成し、第1部位110を作成した。また、外径、内径および長さが第1部位110の上記本体部分と同じ筒体内に硝酸銀シリカゲル2.5gを高さが22mmになるよう充填した後、その上に過マンガン酸カリウム固定酸化アルミニウム(但し、過マンガン酸カリウムの固定量が5%のもの。)8.5gを高さが33mmになるよう充填して積層することで処理層140を形成し、第2部位120を作成した。そして、作成した第1部位110の突起部111を第2部位120の一端側に嵌め込むことで第1部位110と第2部位120とを一体化し、精製器具10を完成した。ここでは、図2に示すように、第1部位110から第2部位120にかけて硫酸シリカゲル層130、担体層141(過マンガン酸カリウム固定酸化アルミニウム層)および硝酸銀シリカゲル層142の順になるよう第1部位110と第2部位120とを連結した。
[実施例2]
 第2部位の作成時に過マンガン酸カリウム固定酸化アルミニウムに替えて過マンガン酸カリウム固定シリカゲルを用いた点を除き、実施例1において作成したものと同様の第1部位110および第2部位120を作成した。そして、第1部位110から第2部位120にかけて硫酸シリカゲル層130、担体層141(過マンガン酸カリウム固定酸化シリカゲル層)および硝酸銀シリカゲル層142の順になるよう第1部位110と第2部位120とを連結して一体化し、精製器具10を作成した。
[実施例3]
 第2部位の作成時において過マンガン酸カリウム固定酸化アルミニウムを充填した層を先に形成し、その上に硝酸銀シリカゲルを充填した層を積層することで処理層140を形成した点を除き、実施例1において作成したものと同様の第1部位110および第2部位120を作成した。そして、第1部位110と第2部位120とを連結して一体化し、第1部位110から第2部位120にかけて硫酸シリカゲル層130、硝酸銀シリカゲル層142および担体層141(過マンガン酸カリウム固定酸化アルミニウム層)がこの順に配置された精製器具10を作成した。
[実施例4~6]
 過マンガン酸カリウムの固定量が異なる過マンガン酸カリウム固定酸化アルミニウムを用い、実施例1で作成したものと同様の精製器具10を作成した。各実施例において用いた過マンガン酸カリウム固定酸化アルミニウムにおける酸化アルミニウムの重量基準での過マンガン酸カリウムの固定量は表1のとおりである。
Figure JPOXMLDOC01-appb-T000004
[実施例7~10]
 第1部位110として硫酸シリカゲル層130の下に図5に示すように活性シリカゲル層131を配置したものを用いた点を除いて実施例1で作成したものと同様の精製器具10を作成した。ここで用いた第1部位110は、筒体内に活性シリカゲルを充填し、その上に硫酸シリカゲルを充填することで作成したものである。ここで、活性シリカゲルおよび硫酸シリカゲルの充填量と充填高さは表2のとおりである。
Figure JPOXMLDOC01-appb-T000005
[比較例1]
 図6に示す第1第比較用精製器具300を作成した。図6は本比較例の図2に相当する図であり、第1比較用精製器具300は、実施例1において用いた筒体100の第1部位110内に硝酸銀シリカゲル11.5gを高さが110mmになるよう充填することで硝酸シリカゲル層330を形成した第1部位相当品310と、実施例1において用いた筒体100の第2部位120内に硫酸シリカゲル13gを高さが90mmになるよう充填することで硫酸シリカゲル層340を形成した第2部位相当品320とを作成し、第1部位相当品310と第2部位相当品320とを実施例1の精製器具10と同様に一体化したものである。
[比較例2]
 第2部位において処理層140を硝酸銀シリカゲルのみで形成した点を除き、実施例1において作成したものと同様の第1部位110および第2部位120を作成した。そして、第1部位110と第2部位120とを連結して一体化し、第1部位110から第2部位120にかけて硫酸シリカゲル層130と硝酸銀シリカゲル層142とがこの順に配置された第2比較用精製器具を作成した。
[評価]
評価1:
 実施例1において作成した精製器具10を撮影した写真を図7に示す。図7において、精製器具10は、上側が第1部位110であり、下側が第2部位120である。図7によると、第2部位120の処理層140において、担体層141に相当する部分は過マンガン酸カリウムによる暗色を呈している。これは、実施例2~6においてそれぞれ作成した精製器具10についても同様であった(なお、実施例2および実施例4~6については図7と同様であるが、実施例3については処理層140において担体層141が下層側になることから、処理層140の下層側が暗色を呈する。)。
 実施例1において作成した精製器具10の第1部位110の開口150から硫酸シリカゲル層130に対し、油類試料を添加した。ここで添加した油類試料は、ヒマワリ油6gにn-ヘキサンを添加して10mLに希釈したものである。油類試料が添加された硫酸シリカゲル層130を加熱して80℃で30分間保持した後、開口150から第1部位110内にn-ヘキサン130mLを50kPaに加圧しながら徐々に供給した。このn-ヘキサンを第1部位110および第2部位120の各層に対して通過させ、第2部位120の開口160から排出した。
 n-ヘキサンが通過後(すなわち、油類試料を精製処理した後。)の精製器具10を撮影した写真を図8に示す。図8は、当初は過マンガン酸カリウムによる暗色を呈していた担体層141(過マンガン酸カリウム固定酸化アルミニウム層)の上部付近が明色に変化したことを示している。これは、担体層141の過マンガン酸カリウムが硫酸シリカゲル層130において発生したSOxガスと反応し、当該SOxガスを消費したことを現わしている。
 実施例2および実施例3においてそれぞれ作成した精製器具10について同様の操作をし、n-ヘキサンが通過後(すなわち、油類試料を精製処理した後。)の状態を撮影した写真をそれぞれ図9および図10に示す。図9は、担体層141の略全体が明色に変化したことを示していることから、実施例2の精製器具10においても担体層141の過マンガン酸カリウムが硫酸シリカゲル層130において発生したSOxガスと反応し、当該SOxガスを消費したものと評価される。一方、図10は、担体層141の上部付近のみがやや明色に変化したことを示している。これは、実施例3の精製器具10において、硫酸シリカゲル層130で発生したSOxガスが担体層141の硝酸銀シリカゲル層142を通過するときにNOxガスに変換され、このNOxガスが担体層141の過マンガン酸カリウムと反応することで消費されたことを現わしている。
評価2:
 実施例1および実施例4~6においてそれぞれ作成した精製器具10を用い、評価1と同じ操作により豚肉油6gおよび鶏肉油6gをそれぞれ精製処理した。精製処理後に各実施例に係る精製器具10の第2部位120について、担体層141部分を撮影した写真を図11に示す。
 図11によると、ここでの評価対象とする実施例4~6は、実施例1と同じく担体層141が明色に変化していることから、実施例4~6についても担体層141の過マンガン酸カリウムが硫酸シリカゲル層130において発生したSOxガスと反応し、当該SOxガスを消費したものと評価される。但し、過マンガン酸カリウムの固定量が5%の実施例1の場合は担体層141が明色に変化した範囲が限定的であるのに対し、過マンガン酸カリウムの固定量が実施例1よりも少ない実施例4~6の場合は担体層141が明色に変化した範囲が広がっている。これは、担体である酸化アルミニウムに対する過マンガン酸カリウムの固定量が多いほど、硫酸シリカゲル層130において発生したSOxガスを効率的に消費可能なことを示している。
評価3:
 実施例1および実施例3の精製器具10をそれぞれ用い、図3に示す調製器1を作成した。この調製器1において用いた捕捉器200は次のようにして作成したものである。本体部分の外径が8mm、内径が6mm、長さが30mmに設定された管体210の第1分岐路215と第2分岐路216との間に内において、第1層240を形成した。第1層240は、グラファイト含有シリカゲル0.6gを高さが25mmになるよう充填したグラファイト含有シリカゲル層242を形成し、その上に活性炭含有シリカゲル0.25gを高さが5mmになるよう充填することで活性炭含有シリカゲル層241を形成したものである。また、第2分岐路216と下端との間に酸化アルミニウム0.8gを高さが30mmになるよう充填することで第2層250を形成した。
 この調製器1を用い、ダイオキシン類含有油類からダイオキシン類の分析用試料を調製した。分析用試料の調製操作において用いた試験油類は、ダイオキシン類含有油類の5gを試験管に採取し、これにn-ヘキサンを加えて10mLになるよう希釈したものである。ダイオキシン類含有油類がダイオキシン類標準溶液以外のものの場合、試験管に採取したダイオキシン類含有油類に対してダイオキシン類標準溶液の調製において用いたダイオキシン類標準物質およびPCBs標準物質をそれぞれ0.02mL添加した後、n-ヘキサンを加えて試験油類を調製した。
 分析用試料の調製では、精製器具10の第1部位110の開口150から硫酸シリカゲル層130に対し、樹脂製の使い捨てシリンジを用いて試験油類の全量を添加した。添加した試験油類の全量が硫酸シリカゲル層130に浸透した後、使用したシリンジ内を2~4mLのn-ヘキサンを用いて1回洗浄し、その洗浄液も硫酸シリカゲル層130に添加して浸透させた。
 次に、硫酸シリカゲル層130を80℃に加熱し、当該温度で30分間保持した。その後、硫酸シリカゲル層130の加熱温度を60℃に変更して開口150から硫酸シリカゲル層130に対して130mLのn-ヘキサンを供給し、このn-ヘキサンを精製器具10と捕捉器200とに通過させて捕捉器200の開口212から排出させた。この間、n-ヘキサンを安定に通過させるのに必要な供給圧は概ね50~70kPaであったが、一時500kPaを超える供給圧を要することがあった。これは、硫酸シリカゲル層130での分解生成物により処理層140が詰まりを生じたことによるものと考えられる。n-ヘキサンの供給開始からn-ヘキサンの排出が完了するまでに要した時間は約52分であった。開口212からのn-ヘキサンの排出が完了した後、開口150から精製器具10内に圧縮空気を供給し、精製器具10および捕捉器200内の各層を乾燥処理した。
 乾燥処理の終了後、捕捉器200の第2層250を90℃に加熱するとともに開口150および第1分岐路215を気密に閉鎖し、この状態で開口212から捕捉器200内にトルエン2.5mLを供給した。そして、第2層250を通過したトルエンを第2分岐路216を通じて回収し、第1分析用試料を得た。次に、捕捉器200の第1層240を90℃に加熱するとともに開口150および第2分岐路216を気密に閉鎖し、この状態で開口212から捕捉器200内にトルエン2.5mLを供給した。そして、第2層250および第1層240をこの順に通過したトルエンを第1分岐路215を通じて回収し、第2分析用試料を得た。
 第1分析用試料および第2分析用試料をそれぞれHRGC/HRMS法により個別に定量分析し、ダイオキシン類および非DL-PCBsの回収率を算出した。結果を表3に示す。なお、HRGC/HRMS法においては、アジレントテクノロジー社製のGC-MSを用い、キャピラリーカラムとして同社製のDB-5ms(但し、長さ60mのもの。)を用いた。これは、HRGC/HRMS法を採用した以下の他の評価についても同じである。
Figure JPOXMLDOC01-appb-T000006
 表3によると、実施例1および実施例3の精製器具10を用いて得られた第1分析用試料および第2分析用試料は、ダイオキシン類の個々の回収率が60~120%の範囲にあり、EUの食品規制基準の評価用試料として利用可能である。
評価4:
 比較例1の第1比較用精製器具300を用い、図3に示す調製器1に相当する調製器、すなわち、調製器1の精製器具10のみ第1比較用精製器具300に置き換えたものを作成した。そして、この調製器を用い、ダイオキシン類含有油類からダイオキシン類の分析用試料を調製した。分析用試料の調製操作において用いた試験油類は、ヒマワリ油を試験管に採取し、これにダイオキシン類標準溶液の調製において用いたダイオキシン類標準物質およびPCBs標準物質をそれぞれ0.02mL添加した後、n-ヘキサンを加えて10mLになるよう希釈したものである。試験油類は、ヒマワリ油の使用量が3.5gのものと4gのものとの二種類を調製した。各試験油類は、評価2で用いたものよりもダイオキシン類含有油類(ヒマワリ油)の使用量を抑えたものである。
 分析用試料の調製では、第1比較用精製器具300の第1部位相当品310の開口150から硝酸銀シリカゲル層330に対し、樹脂製の使い捨てシリンジを用いて試験油類の全量を添加した。添加した試験油類の全量が硝酸銀シリカゲル層330に浸透した後、使用したシリンジ内を2~4mLのn-ヘキサンを用いて1回洗浄し、その洗浄液も硝酸銀シリカゲル層330に添加して浸透させた。
 次に、硝酸銀シリカゲル層330を60℃に加熱し、当該温度で10分間保持した。その後、開口150から硝酸銀シリカゲル層330に対して90mLのn-ヘキサンを徐々に供給し、このn-ヘキサンを精製器具300と捕捉器200とに通過させて捕捉器200の開口212から排出させた。この間、n-ヘキサンの供給圧を50kPa以上に設定した。開口212からのn-ヘキサンの排出が完了した後、開口150から第1比較用精製器具300内に圧縮空気を供給し、第1比較用精製器具300および捕捉器200内の各層を乾燥処理した。
 乾燥処理の終了後、評価3の場合と同様の操作を実行し、第1分析用試料および第2分析用試料を得た。得られた第1分析用試料および第2分析用試料をそれぞれHRGC/HRMS法により個別に定量分析し、ダイオキシン類および非DL-PCBsの回収率を算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000007
 表4によると、ヒマワリ油の使用量が3.5gの場合は第1分析用試料に含まれるPCBsの一部の回収率が60%未満であり、また、同油の使用量が4gの場合は第1分析用試料に含まれるPCBsの全ての回収率が60%を大きく下回っていることから、ダイオキシン類含有油類の使用量が多い試験油類を第1比較用精製器具300に適用した場合は精製が不完全になり、EUの食品規制基準の評価用試料として利用可能な分析用試料の調製が困難である。
評価5:
 評価3において、実施例1、3の精製器具10をそれぞれ採用した調製器1を用いてヒマワリ油から調製した第1分析用試料について、HRGC/HRMS法での測定時に得られた保持時間(Retention time)が概ね24~35分の範囲(塩素数が5のPCBsのクロマトグラムが現われる範囲)および保持時間が概ね16~24分の範囲(塩素数が3のPCBsのクロマトグラムが現われる範囲)におけるロックマス(分析時に同時に測定される、質量較正用に用いたパーフルオロケロセンの検出ノイズ。)の結果を実施例1による第1分析用試料に関して図12に、また、実施例3による第1分析用試料に関して図13にそれぞれ示す。
 図12によると、実施例1による第1分析用試料についてはロックマスが安定しており、塩素数が5のPCBsおよび塩素数が3のPCBsの検出ピークが鋭利にかつ高強度に現われている。これに対し、図13によると、実施例3による第1分析用試料についてはロックマスが相対的に不安定であり、塩素数が5のPCBsおよび塩素数が3のPCBsの検出ピークの強度が相対的に低く現われている。分析用試料に含まれる夾雑物質は、パーフルオロケロセンのイオン化を妨げ、ロックマスを不安定化することから、実施例1の精製器具10は、実施例3の精製器具10に比べてダイオキシン類含有油類をより高度に精製できていることになる。
評価6:
 評価3において、実施例1、3の精製器具10をそれぞれ採用した調製器1を用いてヒマワリ油から調製した第1分析用試料および第2分析用試料について、m/zが50~500の質量範囲の化合物検出を行うスキャンモードによりGC-MSの測定を行った。実施例1の精製器具10を用いて得られた分析用試料についての結果を図14に示し、実施例3の精製器具を用いて得られた分析用試料についての結果を図15に示す。
 図14においては、第1分析用試料および第2分析用試料のいずれについても上記質量範囲の化合物が検出されていないが、図15では両方の分析用試料について上記質量範囲の化合物が検出されている。この結果は、評価5の結果と同じく、実施例1の精製器具10が実施例3の精製器具10に比べてダイオキシン類含有油類をより高度に精製できていることを示している。
評価7:
 評価3において、実施例1の精製器具10を用いて5gのヒマワリ油を精製した。ここでの精製操作は、精製器具10に対して捕捉器200を連結しなかった点を除き、評価3の場合と同様にした。得られた精製溶液をロータリーエバポレータを用いて濃縮し、その濃縮液についてm/zが50~500の質量範囲の化合物検出を行うスキャンモードによりGC-MSの測定を行った。一方、実施例1の精製器具10に替えて比較例2に係る第2比較用精製器具を用い、同様の操作により5gのヒマワリ油を精製した。得られた精製溶液をロータリーエバポレータを用いて濃縮し、その濃縮液についてm/zが50~500の質量範囲の化合物検出を行うスキャンモードによりGC-MSの測定を行った。図16に結果を示す。
 図16によると、実施例1の精製器具10を用いて調製した精製溶液の測定結果は、比較例2の第2比較用精製器具を用いて調製した精製溶液の測定結果よりもピーク面積が小さい。これは、実施例1の精製器具10を用いて調製した精製溶液における夾雑物質の量が比較例2の第2比較用精製器具を用いて調製した精製溶液における同物質の量よりも少ないこと、すなわち、実施例1の精製器具10の方が比較例2の第2比較用精製器具よりもダイオキシン類含有油類の精製効果が高いことを示している。
評価8:
 実施例4~6の精製器具10を用い、図3に示す調製器1を作成した。そして、この調製器1を用いて評価3の場合と同様の操作を実行し、第1分析用試料および第2分析用試料を得た。但し、本評価では、鶏肉湯6gを試験管に採取し、これにダイオキシン類標準溶液の調製において用いたダイオキシン類標準物質およびPCBs標準物質をそれぞれ0.02mL添加した後、n-ヘキサンを加えて10mLになるよう希釈したものを試験油類とした。
 得られた第2分析用試料をHRGC/HRMS法により分析したときの保持時間(Retention time)が概ね24~33分の範囲におけるロックマスの結果を図17に示す。図17によると、実施例4、5、6の順にロックマスが安定し、クロマトグラムのピークが明瞭化している。これは、精製器具10の担体層141において担体である酸化アルミニウムに対する過マンガン酸カリウムの固定量が多くなるに従ってダイオキシン類含有油類の精製効果が高まることを示している。
評価9:
 実施例7~10の精製器具10を用い、図3に示す調製器1を作成した。そして、この調製器1を用いて評価3の場合と同様の操作を実行し、第1分析用試料および第2分析用試料を得た。但し、本評価では、鶏卵油6gおよび牛脂油6gをそれぞれ個別の試験管に採取し、これらにダイオキシン類標準溶液の調製において用いたダイオキシン類標準物質およびPCBs標準物質をそれぞれ0.02mL添加した後、n-ヘキサンを加えて10mLになるよう希釈して調製した二種類の試験油類を用いた。なお、鶏卵油は不飽和脂肪酸を多く含む油類であるのに対し、牛脂油は飽和脂肪酸を多く含む油類である。調製器1に対するn-ヘキサンの供給において、n-ヘキサンを安定に通過させるのに必要な供給圧は、実施例7~10のいずれの精製器具10を用いた場合においても概ね50~70kPaで終始安定していた。これは、硫酸シリカゲル層130での分解生成物が活性シリカゲル層131により捕捉され、当該分解生成物による処理層140の詰まりが抑えられたことによるものと考えられる。n-ヘキサンの供給開始からn-ヘキサンの排出が完了するまでに要した時間は評価3の場合と概ね同じ約52分であった。
 各試験油類から得られた第1分析用試料および第2分析用試料をHRGC/HRMS法により分析したときのクロマトグラムを図18(鶏卵油から調製した試験油類の場合。)および図19(牛脂油から調製した試験油類の場合。)に示す。図18、図19において、実施例7、実施例8、実施例9、実施例10の順にベースラインが上昇している。これは、硫酸シリカゲルの使用量が多く、活性シリカゲルの使用量が少ない方が試験油類の精製効果が高いこと、および、活性シリカゲルの使用量を少量に抑えてn-ヘキサン(脂肪族炭化水素溶媒)の供給圧を安定させることができることを示している。
10  精製器具
100 筒体
110 第1部位
120 第2部位
130 硫酸シリカゲル層
131 活性シリカゲル層
140 処理層
141 担体層
142 硝酸銀シリカゲル層

Claims (9)

  1.  油類に含まれる有機ハロゲン化物質を分析するために前記油類を精製するための方法であって、
     硫酸シリカゲル層へ前記油類を添加する工程と、
     前記油類を添加後の前記硫酸シリカゲル層に対して脂肪族炭化水素溶媒を供給する工程と、
     過マンガン酸塩を固定した担体層と硝酸銀シリカゲル層とを含む処理層に前記硫酸シリカゲル層を通過した前記脂肪族炭化水素溶媒を通過させる工程と、
    を含む油類の精製方法。
  2.  前記担体層が過マンガン酸塩を固定した酸化アルミニウム層である、請求項1に記載の油類の精製方法。
  3.  前記処理層において、前記担体層と前記硝酸銀シリカゲル層との順に前記硫酸シリカゲル層を通過した前記脂肪族炭化水素溶媒を通過させる、請求項1または2に記載の油類の精製方法。
  4.  前記硫酸シリカゲル層を通過した前記脂肪族炭化水素溶媒を前記処理層に通過させる前に活性シリカゲル層に通過させる工程をさらに含む、請求項1から3のいずれかに記載の油類の精製方法。
  5.  油類に含まれる有機ハロゲン化物質を分析するために前記油類を精製するための器具であって、
     両端が開口した筒体と、
     前記筒体内に充填された硫酸シリカゲル層と、
     前記筒体内において前記硫酸シリカゲル層とは別に充填された、過マンガン酸塩を固定した担体層および硝酸銀シリカゲル層を含む処理層と、
    を備えた油類の精製器具。
  6.  前記担体層が過マンガン酸塩を固定した酸化アルミニウム層である、請求項5に記載の油類の精製器具。
  7.  前記処理層は、前記硫酸シリカゲル層と前記硝酸銀シリカゲル層との間に位置するよう前記担体層を含んでいる、請求項5または6に記載の油類の精製器具。
  8.  前記筒体が前記硫酸シリカゲル層を充填した第1部位と前記処理層を充填した第2部位とに分割されており、前記第1部位と前記第2部位とを結合することで形成される、請求項5から7のいずれかに記載の油類の精製器具。
  9.  前記筒体内において前記硫酸シリカゲル層と前記処理層との間に充填された活性シリカゲル層をさらに備えた、請求項5から8のいずれかに記載の油類の精製器具。
PCT/JP2020/024026 2019-08-22 2020-06-18 油類の精製方法 WO2021033404A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20854335.5A EP4019930A4 (en) 2019-08-22 2020-06-18 METHOD FOR PURIFYING OILS
CN202080054839.7A CN114158273A (zh) 2019-08-22 2020-06-18 油类的纯化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-152402 2019-08-22
JP2019152402A JP2021032666A (ja) 2019-08-22 2019-08-22 油類の精製方法

Publications (1)

Publication Number Publication Date
WO2021033404A1 true WO2021033404A1 (ja) 2021-02-25

Family

ID=74661033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024026 WO2021033404A1 (ja) 2019-08-22 2020-06-18 油類の精製方法

Country Status (4)

Country Link
EP (1) EP4019930A4 (ja)
JP (1) JP2021032666A (ja)
CN (1) CN114158273A (ja)
WO (1) WO2021033404A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115078560A (zh) * 2022-04-27 2022-09-20 中国食品发酵工业研究院有限公司 酒或饮料中矿物油的定性检测方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108048A (ja) * 1983-11-17 1985-06-13 日本化学工業株式会社 空気浄化剤
WO2001091883A1 (fr) 2000-05-31 2001-12-06 Miura Co., Ltd. Filtre pour échantillonnage de composés organiques chlorés
JP3273796B2 (ja) 1998-01-23 2002-04-15 三浦工業株式会社 塩素化有機化合物の採取器
JP2004053388A (ja) 2002-07-19 2004-02-19 Miura Co Ltd 塩素化有機化合物の採取用フイルターおよびその製造方法、塩素化有機化合物の採取器並びに塩素化有機化合物の採取方法
WO2008123393A1 (ja) 2007-03-29 2008-10-16 Ehime University ポリ塩化ビフェニル類の抽出方法
KR20110049007A (ko) * 2009-11-04 2011-05-12 한국표준과학연구원 마이크로 코어쉘 구조의 고체 산화제 분말의 제조방법
US20110316186A1 (en) * 2010-04-08 2011-12-29 Purafil, Inc. Filtration Media Having Recycled Waste Materials
US20130041200A1 (en) * 2010-04-07 2013-02-14 Centre National De La Recherche Scientifique (C.N.R.S.) Method of treating effluents containing halogenated compounds
WO2013031415A1 (ja) * 2011-08-29 2013-03-07 ニチアス株式会社 二酸化窒素吸着剤、二酸化窒素吸着装置および二酸化窒素の除去方法
WO2014192056A1 (ja) * 2013-05-27 2014-12-04 三浦工業株式会社 ダイオキシン類の分画方法
WO2014192055A1 (ja) 2013-05-27 2014-12-04 三浦工業株式会社 ダイオキシン類の分画器具
JP2019152402A (ja) 2018-03-05 2019-09-12 トヨタ自動車株式会社 熱整流器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2819104B2 (ja) * 1991-03-05 1998-10-30 矢崎総業株式会社 吸収式冷凍機内のnoガス除去方法
JP2012030199A (ja) * 2010-08-03 2012-02-16 Japan Pionics Co Ltd 窒素酸化物を含むガスの処理方法
JP5900757B2 (ja) * 2014-03-28 2016-04-06 三浦工業株式会社 ポリ塩化ビフェニル類の分画方法
ITUB20153877A1 (it) * 2015-09-24 2017-03-24 Tiberio Bruzzese Metodo di purificazione di gliceridi di acidi grassi, composizioni che ne derivano, e loro uso

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108048A (ja) * 1983-11-17 1985-06-13 日本化学工業株式会社 空気浄化剤
JP3273796B2 (ja) 1998-01-23 2002-04-15 三浦工業株式会社 塩素化有機化合物の採取器
WO2001091883A1 (fr) 2000-05-31 2001-12-06 Miura Co., Ltd. Filtre pour échantillonnage de composés organiques chlorés
JP2004053388A (ja) 2002-07-19 2004-02-19 Miura Co Ltd 塩素化有機化合物の採取用フイルターおよびその製造方法、塩素化有機化合物の採取器並びに塩素化有機化合物の採取方法
WO2008123393A1 (ja) 2007-03-29 2008-10-16 Ehime University ポリ塩化ビフェニル類の抽出方法
KR20110049007A (ko) * 2009-11-04 2011-05-12 한국표준과학연구원 마이크로 코어쉘 구조의 고체 산화제 분말의 제조방법
US20130041200A1 (en) * 2010-04-07 2013-02-14 Centre National De La Recherche Scientifique (C.N.R.S.) Method of treating effluents containing halogenated compounds
US20110316186A1 (en) * 2010-04-08 2011-12-29 Purafil, Inc. Filtration Media Having Recycled Waste Materials
WO2013031415A1 (ja) * 2011-08-29 2013-03-07 ニチアス株式会社 二酸化窒素吸着剤、二酸化窒素吸着装置および二酸化窒素の除去方法
WO2014192056A1 (ja) * 2013-05-27 2014-12-04 三浦工業株式会社 ダイオキシン類の分画方法
WO2014192055A1 (ja) 2013-05-27 2014-12-04 三浦工業株式会社 ダイオキシン類の分画器具
JP2019152402A (ja) 2018-03-05 2019-09-12 トヨタ自動車株式会社 熱整流器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115078560A (zh) * 2022-04-27 2022-09-20 中国食品发酵工业研究院有限公司 酒或饮料中矿物油的定性检测方法

Also Published As

Publication number Publication date
EP4019930A4 (en) 2023-09-13
EP4019930A1 (en) 2022-06-29
JP2021032666A (ja) 2021-03-01
CN114158273A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CA2900970C (en) Method for fractionating dioxins
TWI425983B (zh) 用以精製含有多氯聯苯類物質之油性液體之製劑
WO2021033404A1 (ja) 油類の精製方法
US20220082534A1 (en) Method for fractionating dioxins
JP5574135B1 (ja) ダイオキシン類の分画器具
JP5626538B2 (ja) ポリ塩化ビフェニル類の抽出方法
EP2975376B1 (en) Solute extraction device
JP2015021869A (ja) ポリ塩化ビフェニル類の抽出方法
JP6864265B2 (ja) ハロゲン化有機化合物の抽出方法
JP5900757B2 (ja) ポリ塩化ビフェニル類の分画方法
JP5691120B2 (ja) 高濃度硫酸含有シリカゲルの製造法
JP5900758B2 (ja) ポリ塩化ビフェニル類の分画方法および分画器具
WO2022064749A1 (ja) 有機ハロゲン化合物の抽出方法
JP7015705B2 (ja) ポリ塩化ビフェニル類の抽出方法
JP5891816B2 (ja) ダイオキシン類の抽出方法
WO2022176252A1 (ja) 有機ハロゲン化合物の抽出方法
US20240123371A1 (en) Method for extracting organic halogen compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020854335

Country of ref document: EP

Effective date: 20220322