WO2013031415A1 - 二酸化窒素吸着剤、二酸化窒素吸着装置および二酸化窒素の除去方法 - Google Patents

二酸化窒素吸着剤、二酸化窒素吸着装置および二酸化窒素の除去方法 Download PDF

Info

Publication number
WO2013031415A1
WO2013031415A1 PCT/JP2012/068354 JP2012068354W WO2013031415A1 WO 2013031415 A1 WO2013031415 A1 WO 2013031415A1 JP 2012068354 W JP2012068354 W JP 2012068354W WO 2013031415 A1 WO2013031415 A1 WO 2013031415A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen dioxide
adsorbent
zeolite
nitrogen
dioxide adsorbent
Prior art date
Application number
PCT/JP2012/068354
Other languages
English (en)
French (fr)
Inventor
章博 今井
俊 石川
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Publication of WO2013031415A1 publication Critical patent/WO2013031415A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01D53/565Nitrogen oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a nitrogen dioxide adsorbent, a nitrogen dioxide adsorption device, and a method for removing nitrogen dioxide.
  • gaseous chemical substances In the manufacturing process of advanced precision electronic equipment such as semiconductor devices and liquid crystal displays, the cleanliness of the atmosphere in clean rooms and manufacturing equipment is improved to ensure the yield, quality, reliability, etc. It is important to control the atmosphere near the product surface.
  • control of gaseous chemical substances is indispensable as products are highly integrated.
  • the gaseous chemical substances to be controlled are roughly classified into basic gas, acidic gas, and gaseous organic substance.
  • nitrogen dioxide gas which is acidic gas, is clouded on the lens during the exposure process. Therefore, it is desired to remove it highly.
  • various reduction catalysts are provided in the exhaust gas exhaust path to remove NOx in automobile exhaust gas and factory exhaust gas, but these catalysts contain a relatively large amount of NOx.
  • the exhaust gas contained in is treated at a high temperature of several hundred degrees Celsius as the object to be treated, and the air in a clean room with a relatively low NOx content is treated as in the manufacturing atmosphere of semiconductors and liquid crystal displays.
  • NOx cannot be highly removed at room temperature.
  • an adsorbent for nitrogen oxides at room temperature one obtained by adding an alkaline agent to activated carbon is known.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-150308
  • An adsorbent has been proposed in which potassium hydroxide is added as a nitrogen oxide-absorbing substance and potassium iodide is further added as an ionizing agent for nitrogen oxide.
  • the present invention provides a nitrogen dioxide adsorbent capable of efficiently removing nitrogen dioxide at room temperature while suppressing the conversion reaction of nitrogen dioxide to nitric oxide, and the nitrogen dioxide adsorption It is an object of the present invention to provide a nitrogen dioxide adsorbing apparatus using an agent and a method for removing nitrogen dioxide.
  • the present inventors have conducted intensive studies and solved the problem by using a nitrogen dioxide adsorbent in which potassium permanganate is supported on zeolite having a silica / alumina ratio of 10 or more on a molar basis.
  • the present invention has been found and the present invention has been completed.
  • the present invention (1) a nitrogen dioxide adsorbent comprising potassium permanganate supported on a zeolite having a silica / alumina ratio of 10 or more on a molar basis; (2) The nitrogen dioxide adsorbent according to (1), wherein the zeolite has a specific surface area of 200 to 700 m 2 / g and an average pore diameter of 3 to 10 mm, (3) The nitrogen dioxide adsorbent according to (1) or (2), wherein the zeolite is a ZSM-5 type zeolite, (4) The nitrogen dioxide adsorbent according to any one of (1) to (3) above, wherein the supported amount of the potassium permanganate is 2 to 10% by mass, (5) The nitrogen dioxide adsorbent according to any one of the above (1) to (4), wherein the conversion rate of adsorbed nitrogen dioxide to nitric oxide is 0 to 5%, (6) A nitrogen dioxide adsorbing device comprising a hollow main body capable of circulating a nitrogen dioxide-containing gas filled with
  • a nitrogen dioxide adsorbent capable of efficiently removing nitrogen dioxide at room temperature while suppressing the conversion reaction of nitrogen dioxide into nitric oxide, and the nitrogen dioxide adsorbent.
  • a nitrogen dioxide adsorbing apparatus and a method for removing nitrogen dioxide can be provided.
  • the nitrogen dioxide adsorbent of the present invention is characterized in that potassium permanganate is supported on zeolite having a silica / alumina ratio (molar ratio) of 10 or more.
  • the zeolite used as the carrier in the nitrogen dioxide adsorbent of the present invention has a silica / alumina ratio (molar ratio) of 10 or more, preferably 35 or more, more preferably 200 or more, more preferably 500 or more. Is more preferable, and more preferably 1000 or more.
  • the upper limit of the silica / alumina ratio of the zeolite is not particularly limited, but is usually 2000 or less.
  • zeolite In general, zeolite is difficult to adsorb nitrogen dioxide because it easily absorbs moisture in the atmosphere, particularly under high humidity, and is difficult to use as a carrier for a nitrogen dioxide adsorbent.
  • the water adsorption property of the zeolite was correlated with the silica / alumina molar ratio constituting the zeolite, and a zeolite having a silica / alumina ratio of 10 or more on a molar basis was used.
  • NO 2 can be suitably adsorbed while suppressing the adsorption of moisture even under high humidity, and have completed the present invention.
  • the nitrogen dioxide adsorbent of the present invention when the silica / alumina molar ratio of the zeolite is less than 10, moisture in the atmosphere is easily adsorbed and it becomes difficult to exhibit sufficient nitrogen dioxide adsorption performance.
  • the silica / alumina ratio (molar ratio) C of zeolite is determined by the ICP (inductively coupled plasma) emission spectrometer method, with the concentration B (mass%) of silica (SiO 2 ) and alumina (Al 2 O). 3 ) and after calculating the concentration A (mass%), it can be calculated by the following formula.
  • Silica / alumina ratio (molar ratio) C 1.597 ⁇ (B / A)
  • the specific surface area of the zeolite is preferably 200 to 700 m 2 / g, more preferably 250 to 700 m 2 / g, and further preferably 300 to 700 m 2 / g. preferable.
  • nitrogen dioxide can be effectively adsorbed.
  • the specific surface area of the zeolite means a value measured from the adsorption amount of the monomolecular layer by using BELSORP-mini manufactured by Nippon Bell Co., Ltd. and adsorbing nitrogen gas to the pores of the sample surface.
  • the average pore diameter of the zeolite is preferably 3 to 10 mm, more preferably 4 to 9 mm, and further preferably 5 to 8 mm.
  • nitrogen dioxide can be effectively adsorbed.
  • the average pore diameter of zeolite means a value measured by adsorbing nitrogen gas to the sample surface using BELSORP-mini manufactured by Nippon Bell Co., Ltd.
  • zeolite examples include ZSM-5 type zeolite, beta type zeolite, ferrierite type zeolite, mordenite type zeolite, Y type zeolite and the like. Of these, those having a silica / alumina ratio (molar ratio) of 10 or more may be appropriately selected.
  • ZSM-5 type zeolite can be suitably employed because it easily adopts a high silica / alumina ratio.
  • the nitrogen dioxide adsorbent of the present invention is preferably prepared by impregnating the above zeolite with an aqueous potassium permanganate solution.
  • an aqueous potassium permanganate solution depending on the pH of the aqueous potassium permanganate solution in contact with the zeolite, a part of potassium permanganate (KMnO 4 ) is reduced and supported as MnO 2 or MnO. It is preferable to control the pH of the aqueous potassium permanganate solution at about 8.2 to 8.6.
  • the ZSM-5 type zeolite can easily control the pH of the aqueous solution to about 8.2 to 8.6 at the time of contact with the potassium permanganate aqueous solution, the ZSM-5 type zeolite is also used as the zeolite in this respect. It is preferable to adopt.
  • the nitrogen dioxide adsorbent of the present invention is obtained by supporting potassium permanganate on the zeolite.
  • the amount of potassium permanganate supported is preferably 2 to 10% by mass, more preferably 3 to 8% by mass, and 4 to 7% by mass. Further preferred.
  • the amount of potassium permanganate supported is in the above range, so that the nitrogen dioxide supported on the zeolite is suitably converted while suppressing the conversion to nitrogen monoxide. Oxidation can efficiently remove nitrogen dioxide even at room temperature.
  • the loading amount of potassium permanganate means a value calculated by pulverizing a loaded sample and obtaining a mass ratio of potassium and manganese by fluorescent X-ray analysis.
  • the nitrogen dioxide adsorbent of the present invention preferably has a conversion rate of adsorbed nitrogen dioxide to nitric oxide of 0 to 5%, more preferably 0 to 3%, and more preferably 0 to 1%. Is more preferable.
  • the conversion rate (%) of the adsorbed nitrogen dioxide to nitric oxide was filled in a glass tube having an inner diameter of 20 mm and a length of 300 mm with the nitrogen dioxide adsorbent of the present invention at a height of 40 mm.
  • air temperature 23 ° C., relative humidity 50%
  • nitrogen dioxide gas 500 volume ppb as a nitrogen dioxide-containing gas is vented at a wind speed of 0.3 m / second as a nitrogen dioxide-containing gas.
  • the nitrogen dioxide adsorbent of the present invention can be prepared by impregnating the above-mentioned zeolite with a potassium permanganate aqueous solution at room temperature.
  • an aqueous potassium permanganate solution may be added to and impregnated with the above-mentioned zeolite, or the above-mentioned zeolite may be added to, mixed with, and impregnated with an aqueous potassium permanganate solution.
  • the aqueous potassium permanganate solution preferably has a potassium permanganate concentration of 3 to 15% by mass.
  • the supported amount of potassium permanganate is preferably 2 to 10% by mass, It is preferable to adjust the amount of use so that it is more preferably 3 to 8% by mass, and further preferably 4 to 7% by mass.
  • the impregnation time of the aqueous potassium permanganate solution is preferably 0.5 to 5 hours.
  • the nitrogen dioxide adsorbent of the present invention in which potassium permanganate is supported on the zeolite can be obtained by removing moisture by natural drying or forced drying.
  • the nitrogen dioxide adsorption agent which can remove nitrogen dioxide efficiently at normal temperature can be provided, suppressing the conversion reaction of nitrogen dioxide to nitric oxide. Since the nitrogen dioxide adsorbent of the present invention can exhibit a high nitrogen dioxide removal effect, the concentration of NOx in the environment can be reduced below a certain value without using a NOx removal catalyst. .
  • the nitrogen dioxide adsorbing device of the present invention is characterized in that the nitrogen dioxide adsorbing agent of the present invention is filled in a hollow main body through which a nitrogen dioxide-containing gas can be circulated.
  • the hollow main body through which the nitrogen dioxide-containing gas can be circulated has an inlet and an outlet for the nitrogen dioxide-containing gas, and can be circulated without leaking the nitrogen dioxide-containing gas at room temperature. If it is a thing, it will not restrict
  • Specific examples of the hollow body include gas cylinders and tubular bodies having an inlet and an outlet for a nitrogen dioxide-containing gas, and examples of the material of the hollow body include various glasses, resins, metals, and the like. be able to.
  • the size of the hollow body may be appropriately determined in consideration of the amount of nitrogen dioxide-containing gas to be processed, the processing time, and the like.
  • the details of the nitrogen dioxide adsorbent of the present invention filled in the hollow main body are as described above.
  • the amount of the nitrogen dioxide adsorbent of the present invention filled in the hollow body may be appropriately determined in consideration of the amount of nitrogen dioxide-containing gas to be treated, the concentration of nitrogen dioxide, the treatment time, and the like.
  • the nitrogen dioxide adsorbent of the present invention does not need to be filled in the entire hollow main body, and may be filled only in a part of the main body with a support member provided in the hollow main body as necessary.
  • the nitrogen dioxide-containing gas to be processed contains 10 to 5000 volume ppb of nitrogen dioxide.
  • a nitrogen dioxide adsorbing device 1 is a device in which a nitrogen dioxide adsorbing agent 3 is filled in a part of a hollow main body 2 through which a nitrogen dioxide-containing gas can be circulated with an indicating member 4. 1, nitrogen dioxide is removed by flowing a nitrogen dioxide-containing gas from the gas inlet 21, adsorbing nitrogen dioxide to the nitrogen dioxide adsorbent 3, and then discharging the adsorbed gas from the gas outlet 22. Can do.
  • the nitrogen dioxide adsorbent of the present invention since the nitrogen dioxide adsorbent of the present invention is used, nitrogen dioxide that can efficiently remove nitrogen dioxide even at room temperature while suppressing the conversion reaction of nitrogen dioxide to nitrogen monoxide.
  • An adsorption device can be provided.
  • the method for removing nitrogen dioxide of the present invention is characterized in that a nitrogen dioxide-containing gas is brought into contact with the nitrogen dioxide adsorbent of the present invention at a temperature of 5 to 50 ° C. and a relative humidity of 20 to 80%. is there.
  • the atmospheric temperature in which the nitrogen dioxide-containing gas is brought into contact with the nitrogen dioxide adsorbent of the present invention is 5 to 50 ° C., preferably 10 to 40 ° C., preferably 15 to 35 It is more preferable that the temperature is C.
  • nitrogen dioxide can be favorably adsorbed even under normal temperature conditions.
  • the relative humidity in the atmosphere in which the nitrogen dioxide-containing gas is brought into contact with the nitrogen dioxide adsorbent of the present invention is 20 to 80%, suitably 30 to 70%. More preferably, it is 40 to 60%.
  • nitrogen dioxide removing method of the present invention uses the nitrogen dioxide adsorbent of the present invention, nitrogen dioxide can be suitably removed even when the relative humidity in the atmosphere is high.
  • the details of the nitrogen dioxide adsorbent used are as described above.
  • examples of the nitrogen dioxide-containing gas include those containing 10 to 5000 volume ppb of nitrogen dioxide.
  • specific embodiments include, for example, nitrogen dioxide containing 20 to 80% relative humidity under a temperature condition of 5 to 50 ° C. with respect to the nitrogen dioxide adsorption device 1 shown in FIG.
  • a mode in which the gas is allowed to flow from the gas inlet 21 to the gas outlet 22 can be exemplified.
  • nitrogen dioxide in the gas is effective for the nitrogen dioxide adsorbent 3 even at room temperature and in a high humidity atmosphere. Can be adsorbed and removed.
  • the nitrogen dioxide adsorbent of the present invention since the nitrogen dioxide adsorbent of the present invention is used, nitrogen dioxide can be efficiently removed even at room temperature while suppressing the conversion reaction of nitrogen dioxide into nitric oxide. .
  • Example 1 ZSM-5 having a pellet shape (diameter 1.5 mm, length 2 to 5 mm), silica / alumina ratio (molar ratio) of 1500, specific surface area of 300 m 2 / g, and average pore diameter of 5.5 mm
  • Nitrogen dioxide by immersing 30 g of type zeolite (manufactured by Tosoh Corp.) in 250 ml of an aqueous solution (liquid temperature 40 ° C.) containing 8% by mass of potassium permanganate for 2 hours and drying at a temperature of about 105 ° C.
  • An adsorbent was prepared.
  • the obtained nitrogen dioxide adsorbent had a supported amount of potassium permanganate of 5.0% by mass.
  • Nitrogen dioxide-containing gas distribution test A nitrogen dioxide-containing gas flow test was performed using a nitrogen dioxide adsorption device 1 as shown in FIG. A glass tube having an inner diameter of 20 mm and a length of 300 mm was used as the hollow body 2, and the nitrogen dioxide adsorbent was filled up to a height of 40 mm through the support member 4 to form the nitrogen dioxide adsorption device 1. Thereafter, air containing 500 ppb of nitrogen dioxide and containing no nitrogen monoxide (temperature: 23 ° C., relative humidity 50%) as the nitrogen dioxide-containing gas from the gas inlet 21 toward the gas outlet 22 has a wind speed of 0.3 m / sec. Aerated.
  • Example 2 A nitrogen dioxide-containing gas flow test was performed in the same manner as in Example 1 except that the nitrogen dioxide adsorbent obtained in Example 1 was used and the relative humidity of the nitrogen dioxide-containing gas was changed from 50% to 80%. As a result, nitrogen monoxide was not detected at the gas outlet 22 over the entire measurement time. For this reason, the conversion rate of adsorbed nitrogen dioxide into nitric oxide was 0% over the entire measurement time. Further, the change with time in the NOx removal rate was determined in the same manner as in Example 1. The results are shown in Table 1 and FIG.
  • Example 3 A nitrogen dioxide-containing gas flow test was conducted in the same manner as in Example 1 except that the nitrogen dioxide adsorbent obtained in Example 1 was used and the relative humidity of the nitrogen dioxide-containing gas was changed from 50% to 20%. As a result, nitrogen monoxide was not detected at the gas outlet 22 over the entire measurement time. For this reason, the conversion rate of adsorbed nitrogen dioxide into nitric oxide was 0% over the entire measurement time. Further, the change with time in the NOx removal rate was determined in the same manner as in Example 1. The results are shown in Table 1 and FIG.
  • Example 4 Mordenite-type zeolite having a pellet shape (diameter 1.5 mm, length 2 to 5 mm), silica / alumina ratio (molar ratio) of 240, specific surface area of 450 m 2 / g, and average pore diameter of 6.8 mm
  • a nitrogen dioxide adsorbent is obtained by immersing 30 g (manufactured by Tosoh Corporation) in 250 ml of an aqueous solution (liquid temperature 40 ° C.) containing 8% by mass of potassium permanganate for 2 hours and drying at a temperature of about 105 ° C. Was prepared.
  • the obtained nitrogen dioxide adsorbent had a supported amount of potassium permanganate of 4.0% by mass.
  • Example 1 Using the nitrogen dioxide adsorbent, a nitrogen dioxide-containing gas flow test was conducted in the same manner as in Example 1. As a result, nitrogen monoxide was not detected at the gas outlet 22 over the entire measurement time. For this reason, the conversion rate of adsorbed nitrogen dioxide into nitric oxide was 0% over the entire measurement time. Further, the change with time in the NOx removal rate was determined in the same manner as in Example 1. The results are shown in Table 1 and FIG.
  • Beta-type zeolite having a pellet shape (diameter 1.5 mm, length 2 to 5 mm), silica / alumina ratio (molar ratio) of 40, specific surface area of 450 m 2 / g, and average pore diameter of 7.2 mm
  • a nitrogen dioxide adsorbent is obtained by immersing 30 g (manufactured by Tosoh Corporation) in 250 ml of an aqueous solution (liquid temperature 40 ° C.) containing 8% by mass of potassium permanganate for 2 hours and drying at a temperature of about 105 ° C. Was prepared.
  • the obtained nitrogen dioxide adsorbent had a supported amount of potassium permanganate of 5.0% by mass.
  • Example 1 Using the nitrogen dioxide adsorbent, a nitrogen dioxide-containing gas flow test was conducted in the same manner as in Example 1. As a result, nitrogen monoxide was not detected at the gas outlet 22 over the entire measurement time. For this reason, the conversion rate of adsorbed nitrogen dioxide into nitric oxide was 0% over the entire measurement time. Further, the change with time in the NOx removal rate was determined in the same manner as in Example 1. The results are shown in Table 1 and FIG.
  • Beta-type zeolite having a pellet shape (diameter 1.5 mm, length 2 to 5 mm), silica / alumina ratio (molar ratio) of 18, specific surface area of 580 m 2 / g, and average pore diameter of 7.2 mm
  • a nitrogen dioxide adsorbent is obtained by immersing 30 g (manufactured by Tosoh Corporation) in 250 ml of an aqueous solution (liquid temperature 40 ° C.) containing 8% by mass of potassium permanganate for 2 hours and drying at a temperature of about 105 ° C. Was prepared.
  • the obtained nitrogen dioxide adsorbent had a supported amount of potassium permanganate of 6.0% by mass.
  • Example 1 Using the nitrogen dioxide adsorbent, a nitrogen dioxide-containing gas flow test was conducted in the same manner as in Example 1. As a result, nitrogen monoxide was not detected at the gas outlet 22 over the entire measurement time. For this reason, the conversion rate of adsorbed nitrogen dioxide into nitric oxide was 0% over the entire measurement time. Further, the change with time in the NOx removal rate was determined in the same manner as in Example 1. The results are shown in Table 1 and FIG.
  • Comparative Example 1 30 g of A-type zeolite (manufactured by Tosoh Corporation) having a pellet shape (diameter 1.5 mm, length 2 to 5 mm), silica / alumina ratio (molar ratio) of 2.0, and average pore diameter of 4 mm was immersed in 250 ml of an aqueous solution containing 8% by mass of potassium permanganate (liquid temperature: 40 ° C.) for 2 hours, and dried at a temperature of about 105 ° C. to prepare a nitrogen dioxide adsorbent. The obtained nitrogen dioxide adsorbent had a supported amount of potassium permanganate of 5.0% by mass.
  • Example 2 Using the nitrogen dioxide adsorbent, a nitrogen dioxide-containing gas flow test was conducted in the same manner as in Example 1. As a result, nitrogen monoxide was not detected at the gas outlet 22 over the entire measurement time. For this reason, the conversion rate of adsorbed nitrogen dioxide into nitric oxide was 0% over the entire measurement time. Further, the change with time in the NOx removal rate was determined in the same manner as in Example 1. The results are shown in Table 2 and FIG.
  • Example 2 Using the nitrogen dioxide adsorbent, a nitrogen dioxide-containing gas flow test was conducted in the same manner as in Example 1. As a result, nitrogen monoxide was not detected at the gas outlet 22 over the entire measurement time. For this reason, the conversion rate of adsorbed nitrogen dioxide into nitric oxide was 0% over the entire measurement time. Further, the change with time in the NOx removal rate was determined in the same manner as in Example 1. The results are shown in Table 2 and FIG.
  • Example 3 30 g of activated carbon (Kuraray Chemical Co., Ltd.) having a crushed shape (particle size 0.85 mm to 1.70 mm), a specific surface area of 1400 m 2 / g and an average pore diameter of 8 mm, and 10 mass of potassium carbonate
  • a nitrogen dioxide adsorbent was prepared by immersing in 250 ml of an aqueous solution containing 20% (liquid temperature 20 ° C.) for 2 hours and drying at a temperature of about 105 ° C.
  • the obtained nitrogen dioxide adsorbent had a potassium carbonate loading of 7.0% by mass.
  • a nitrogen dioxide-containing gas flow test was conducted in the same manner as in Example 1.
  • Example 1 to 6 From the results shown in Table 1 and FIG. 2, in Examples 1 to 6, the nitrogen dioxide adsorbents used were loaded with potassium permanganate on zeolite having a silica / alumina ratio of 10 or more on a molar basis. Thus, it can be seen that a high NOx removal rate can be exhibited for a long time at room temperature. Thus, in Examples 1 to 6, since the used nitrogen dioxide adsorbent can exhibit a high nitrogen dioxide removal effect, NOx in the environment can be used without using a NOx removal catalyst. Can be reduced below a certain value.
  • the nitrogen dioxide adsorbents used in Examples 1 to 6 have a low conversion rate of nitrogen dioxide to nitrogen monoxide of 0% over the entire measurement time. It can be seen that the conversion reaction can be suppressed, and even when the relative humidity is as high as 20% to 80%, it is understood that the adsorption of moisture can be suppressed and nitrogen dioxide can be efficiently removed. .
  • the nitrogen dioxide adsorbents obtained in Comparative Example 1 and Comparative Example 2 were both permanganic acid in zeolite having a silica / alumina ratio (molar ratio) of less than 10. Since it is what carries potassium, it turns out that a NOx removal rate is low over the whole measurement time under normal temperature. Further, from the results shown in Table 2 and FIG. 2, since the nitrogen dioxide adsorbent obtained in Comparative Example 3 uses activated carbon as the carrier, the conversion rate of adsorbed nitrogen dioxide into nitric oxide is high. It can be seen that the maximum is 45.4% within the measured range.
  • the nitrogen dioxide adsorbent obtained in Comparative Example 3 has a high NOx removal rate (NO 2 removal effect) at the beginning of the test, it generates nitrogen monoxide from the adsorbed nitrogen dioxide over time, and removes NOx. Since the rate gradually decreases, it can be seen that the entire NOx cannot be removed sufficiently.
  • the present invention it is possible to provide a nitrogen dioxide adsorbent that efficiently removes nitrogen dioxide at room temperature while suppressing the conversion reaction of nitrogen dioxide to nitric oxide.
  • the nitrogen dioxide adsorbing apparatus and the method for removing nitrogen dioxide can be provided.

Abstract

 二酸化窒素の一酸化窒素への転化反応を抑制しつつ、常温下において二酸化窒素を効率的に除去する二酸化窒素吸着剤を提供するとともに、該二酸化窒素吸着剤を用いた二酸化窒素吸着装置および二酸化窒素の除去方法を提供する。 シリカ/アルミナ比がモル基準で10以上であるゼオライトに過マンガン酸カリウムを担持してなることを特徴とする二酸化窒素吸着剤であり、該二酸化窒素吸着剤を用いた二酸化窒素吸着装置および二酸化窒素の除去方法である。

Description

二酸化窒素吸着剤、二酸化窒素吸着装置および二酸化窒素の除去方法
 本発明は、二酸化窒素吸着剤、二酸化窒素吸着装置および二酸化窒素の除去方法に関する。
 半導体装置や液晶ディスプレイといった先端精密電子機器の製造工程においては、得られる製品の歩留まりや、品質、信頼性等を確保するために、クリーンルームや製造装置内における雰囲気の清浄性を向上させ、被加工品表面近傍の雰囲気を制御することが重要になっている。
 特に半導体産業分野においては、製品の高集積度化が進むにつれて、ガス状の化学物質の制御が不可欠となっている。上記制御対象となるガス状の化学物質は、塩基性ガス、酸性ガス、ガス状有機物質に大別され、これ等のガスのうち、酸性ガスである二酸化窒素ガスは、露光工程においてレンズに曇りを生じさせることから、高度に除去することが望まれている。
 従来より、自動車の排ガスや工場の排ガス中のNOxを除去するために排ガスの排出経路内に設けられる還元触媒として種々のものが知られているが、これ等の触媒は、NOxを比較的多量に含む排ガスを被処理物として数百度℃の高温下で処理するものであって、半導体や液晶ディスプレイの製造雰囲気のように、NOxの含有量が相対的に低いクリーンルーム中の空気等を被処理物として常温下でNOxを高度に除去し得るものではない。
 常温下での窒素酸化物の吸着剤としては、活性炭にアルカリ薬剤を添着させたものが知られており、例えば、特許文献1(特開2006-150308号公報)においては、ハニカム状の活性炭に窒素酸化物吸物質として水酸化カリウムを添着させた後、さらに窒素酸化物のイオン化剤としてヨウ化カリウムを添着させた吸着剤が提案されている。
特開2006-150308号公報
 しかしながら、本発明者等の検討によれば、特許文献1に記載されているような活性炭を用いた吸着剤は、活性炭によって二酸化窒素が一酸化窒素に転化される(還元される)ため、二酸化窒素の除去率は見かけ上高くなるものの、NOx全体として見た場合には除去性能が低く、環境負荷を低減し難いものであることが判明した。
 このような状況下、本発明は、二酸化窒素の一酸化窒素への転化反応を抑制しつつ、常温下において二酸化窒素を効率的に除去し得る二酸化窒素吸着剤を提供するとともに、該二酸化窒素吸着剤を用いた二酸化窒素吸着装置および二酸化窒素の除去方法を提供することを目的とするものである。
 上記技術課題を解決すべく、本発明者等が鋭意検討を行ったところ、シリカ/アルミナ比がモル基準で10以上であるゼオライトに過マンガン酸カリウムを担持してなる二酸化窒素吸着剤により解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
(1)シリカ/アルミナ比がモル基準で10以上であるゼオライトに過マンガン酸カリウムを担持してなることを特徴とする二酸化窒素吸着剤、
(2)前記ゼオライトの比表面積が200~700m/g、平均細孔直径が3~10Åである上記(1)に記載の二酸化窒素吸着剤、
(3)前記ゼオライトがZSM-5型ゼオライトである上記(1)または(2)に記載の二酸化窒素吸着剤、
(4)前記過マンガン酸カリウムの担持量が2~10質量%である上記(1)~(3)のいずれかに記載の二酸化窒素吸着剤、
(5)吸着した二酸化窒素の一酸化窒素への転化率が0~5%である上記(1)~(4)のいずれかに記載の二酸化窒素吸着剤、
(6)二酸化窒素含有ガスを流通させ得る中空状本体内に上記(1)~(5)のいずれかに記載の二酸化窒素吸着剤が充填されてなることを特徴とする二酸化窒素吸着装置、
(7)二酸化窒素含有ガスを、5~50℃の温度条件下、相対湿度20~80%で上記(1)~(5)のいずれかに記載の二酸化窒素吸着剤と接触させることを特徴とする二酸化窒素の除去方法
を提供するものである。
 本発明によれば、二酸化窒素の一酸化窒素への転化反応を抑制しつつ、常温下において二酸化窒素を効率的に除去し得る二酸化窒素吸着剤を提供することができるとともに、該二酸化窒素吸着剤を用いた二酸化窒素吸着装置および二酸化窒素の除去方法を提供することができる。
本発明の二酸化窒素吸着装置の形態例を示す図である。 実施例および比較例で得られた吸着剤のNOx除去率(%)を示す図である。
 先ず、本発明の二酸化窒素吸着剤について説明する。
 本発明の二酸化窒素吸着剤は、シリカ/アルミナ比(モル比)が10以上であるゼオライトに過マンガン酸カリウムを担持してなることを特徴とするものである。
 本発明の二酸化窒素吸着剤において担体となるゼオライトは、シリカ/アルミナ比(モル比)が10以上であるものであり、35以上であるものが好ましく、200以上であるものがより好ましく、500以上であるものがさらに好ましく、1000以上であるものが一層好ましい。上記ゼオライトのシリカ/アルミナ比の上限は特に制限されないが、通常2000以下である。
 一般にゼオライトは、特に高湿度下において雰囲気中の水分を吸収し易いために二酸化窒素を吸着し難く、二酸化窒素吸着剤の担体として使用し難い。
 一方、本発明者等が検討したところ、驚くべきことに、ゼオライトの水分吸着性はゼオライトを構成するシリカ/アルミナモル比と相関し、シリカ/アルミナ比がモル基準で10以上であるゼオライトを用いた場合には、高湿度下においても水分の吸着を抑制しつつNOを好適に吸着し得ることを見出し、本発明を完成するに至ったものである。
 本発明の二酸化窒素吸着剤において、ゼオライトのシリカ/アルミナモル比が10未満である場合には、雰囲気中の水分が吸着し易くなって充分な二酸化窒素吸着性能を発揮し難くなる。 
 なお、本出願書類において、ゼオライトのシリカ/アルミナ比(モル比)Cは、ICP(誘導結合プラズマ)発光分析装置法により、シリカ(SiO)の濃度B(質量%)とアルミナ(Al)の濃度A(質量%)とを求めた上で、下記式により算出することができる。
 シリカ/アルミナ比(モル比)C=1.697×(B/A)
 本発明の二酸化窒素吸着剤において、ゼオライトの比表面積は200~700m/gであることが好ましく、250~700m/gであることがより好ましく、300~700m/gであることがさらに好ましい。
 ゼオライトの比表面積が上記範囲内にあることにより、二酸化窒素を効果的に吸着することができる。
 なお、本出願書類において、ゼオライトの比表面積は、日本ベル(株)製BELSORP-miniを用い、窒素ガスを試料表面の細孔に吸着させ、単分子層吸着量から測定した値を意味する。
 本発明の二酸化窒素吸着剤において、ゼオライトの平均細孔直径は、3~10Åであることが好ましく、4~9Åであることがより好ましく、5~8Åであることがさらに好ましい。
 ゼオライトの平均細孔直径が上記範囲内にあることにより、二酸化窒素を効果的に吸着することができる。
 なお、本出願書類において、ゼオライトの平均細孔直径は、日本ベル(株)製BELSORP-miniを用い、窒素ガスを試料表面に吸着させることにより測定した値を意味する。
 本発明の二酸化窒素吸着剤において、ゼオライトとして、具体的には、ZSM-5型ゼオライト、ベータ型ゼオライト、フェリエライト型ゼオライト、モルデナイト型ゼオライト、Y型ゼオライト等を挙げることができ、これ等のゼオライトのうち、シリカ/アルミナ比(モル比)が10以上であるものを適宜選択すればよい。
 上記ゼオライトのうち、ZSM-5型ゼオライトが、高いシリカ/アルミナ比を採り易いため、好適に採用することができる。
 後述するように、本発明の二酸化窒素吸着剤は、上記ゼオライトに対し過マンガン酸カリウム水溶液を含浸することにより調製されてなるものが好ましい。この場合、ゼオライトと接触した際の過マンガン酸カリウム水溶液のpHによっては、過マンガンカリウム(KMnO)の一部が還元されてMnOやMnOとして担持されてしまうことから、ゼオライトとの接触時における過マンガン酸カリウム水溶液のpHは8.2~8.6程度に制御することが好ましい。
 上記ZSM-5型ゼオライトは、過マンガンカリウム水溶液との接触時において、水溶液のpHを容易に8.2~8.6程度に制御できることから、この点においても、ゼオライトとしてZSM-5型ゼオライトを採用することが好ましい。
 本発明の二酸化窒素吸着剤は、上記ゼオライトに過マンガン酸カリウムを担持してなるものである。
 本発明の二酸化窒素吸着剤において、過マンガン酸カリウムの担持量は、2~10質量%であることが好ましく、3~8質量%であることがより好ましく、4~7質量%であることがさらに好ましい。
 本発明の二酸化窒素吸着剤において、過マンガン酸カリウムの担持量が上記範囲内にあるものであることにより、ゼオライト上に担持された二酸化窒素を、一酸化窒素への転化を抑制しつつ好適に酸化して、常温下においても二酸化窒素を効率的に除去することができる。
 なお、本出願書類において、過マンガン酸カリウムの担持量は、担持後の試料を粉砕し、蛍光X線分析より、カリウム、マンガンの質量比を求めることにより算出した値を意味する。
 従来の吸着剤においては、下記(1)式に示すように、吸着した二酸化窒素(NO)が雰囲気中の水分(HO)と反応して亜硝酸(HNO)を生成し、下記(2)式に示すように、この亜硝酸が分解して一酸化窒素(NO)を生成し放出してしまうことから、二酸化窒素の除去率は見かけ上高くなるものの、NOx全体として見た場合には除去性能が低く、環境負荷を低減し難い。
  2NO+HO→HNO+HNO    (1)
  3HNO→HNO+3NO+HO   (2) 
 一方、本発明の二酸化窒素吸着剤においては、下記(3)式に示すように、吸着した二酸化窒素が(NO)が雰囲気中の水分(HO)と反応して亜硝酸(HNO)を生成した後、過マンガン酸カリウムにより酸化されて硝酸(HNO)を生成する。そして、下記(4)式に示すように、生成した硝酸(HNO)は、過マンガン酸カリウムによる酸化反応後に生じた水酸化カリウム(KOH)で中和されることから、一酸化窒素を放出することなく、二酸化窒素を吸着除去することが可能となる。
  2NO+HO→HNO+(o)+HNO→2HNO3 (3)
  2HNO+KOH→KNO+HO          (4)
 本発明の二酸化窒素吸着剤は、吸着した二酸化窒素の一酸化窒素への転化率が0~5%であるものが好ましく、0~3%であるものがより好ましく、0~1%であるものがさらに好ましい。
 なお、本出願書類において、吸着した二酸化窒素の一酸化窒素への転化率(%)は、内径20mm、長さ300mmのガラス管内に、本発明の二酸化窒素吸着剤を40mmの高さで充填した吸着装置に対し、二酸化窒素含有ガスとして、500体積ppbの二酸化窒素ガスを含み一酸化窒素ガスを含まない空気(温度23℃、相対湿度50%)を、風速0.3m/秒で通気した場合に、体積濃度(体積ppb)として、通気時におけるガラス管入口における二酸化窒素濃度(NO濃度(入口側))と、ガラス管出口における一酸化窒素濃度(NO濃度(出口側))をNOx計((株)アナテック・ヤナコ製ECL-880US)で測定し、下記式(A)により算出した値を意味する。
 吸着した二酸化窒素の一酸化窒素への転化率(%)={NO濃度(出口側)/(NO濃度(入口側))}×100 (A)
 本発明の二酸化窒素吸着剤は、上述したゼオライトに対し、過マンガン酸カリウム水溶液を常温下で含浸することにより調製することができる。
 例えば、上述したゼオライトに対し、過マンガン酸カリウム水溶液を添加、混合して含浸させてもよいし、過マンガン酸カリウム水溶液に対し、上述したゼオライトを添加、混合して含浸させてもよい。
 過マンガン酸カリウム水溶液は、過マンガン酸カリウムの濃度が3~15質量%であるものが好ましく、得られる二酸化窒素吸着剤において、過マンガン酸カリウムの担持量が、好ましくは2~10質量%、より好ましくは3~8質量%、さらに好ましくは4~7質量%となるようにその使用量を調整することが好ましい。また、過マンガン酸カリウム水溶液の含浸時間は0.5~5時間であることが好適である。
 上記含浸後、自然乾燥または強制乾燥によって水分を除去することにより、上記ゼオライトに過マンガン酸カリウムを担持してなる、本発明の二酸化窒素吸着剤を得ることができる。
 本発明によれば、二酸化窒素の一酸化窒素への転化反応を抑制しつつ、常温下において二酸化窒素を効率的に除去し得る二酸化窒素吸着剤を提供することができる。
 本発明の二酸化窒素吸着剤は、高い二酸化窒素除去効果を発揮し得るものであることから、NOx除去触媒を使用しなくても、環境中のNOxの濃度を一定値以下に低減することができる。
 次に、本発明の二酸化窒素吸着装置について説明する。
 本発明の二酸化窒素吸着装置は、二酸化窒素含有ガスを流通させ得る中空状本体内に本発明の二酸化窒素吸着剤が充填されてなることを特徴とするものである。
 本発明の二酸化窒素吸着装置において、二酸化窒素含有ガスを流通させ得る中空状本体としては、二酸化窒素含有ガスの入口および出口を有し、常温下において二酸化窒素含有ガスを漏出させることなく流通させ得るものであれば特に制限されない。
 中空状本体として、具体的には、二酸化窒素含有ガスの入口および出口を有するガス筒状物や管状物を挙げることができ、中空状本体の材質としては、各種ガラス、樹脂、金属等を挙げることができる。
 中空状本体のサイズは、処理対象となる二酸化窒素含有ガスの量や、処理時間等を考慮して適宜決定すればよい。
 本発明の二酸化窒素吸着装置において、中空状本体内に充填される本発明の二酸化窒素吸着剤の詳細は、上述したとおりである。
 中空状本体内に充填される本発明の二酸化窒素吸着剤の量も、処理対象となる二酸化窒素含有ガスの量や、二酸化窒素の濃度、処理時間等を考慮の上、適宜決定すればよい。
 本発明の二酸化窒素吸着剤は、中空状本体内部全体に充填する必要はなく、必要に応じて中空状本体内に設けた支持部材により、本体内部の一部にのみ充填してもよい。
 本発明の二酸化窒素吸着装置において、処理対象となる二酸化窒素含有ガスは、二酸化窒素を10~5000体積ppb含むものであることが適当である。
 図1に、本発明の二酸化窒素吸着装置の一形態例を示す。
 図1において、二酸化窒素吸着装置1は、二酸化窒素含有ガスを流通させ得る中空状本体2内の一部に、二酸化窒素吸着剤3を指示部材4により充填したものであって、二酸化窒素吸着装置1においては、二酸化窒素含有ガスをガス入口21から流入させ、二酸化窒素吸着剤3に二酸化窒素を吸着させた後、吸着後のガスをガス出口22から排出することにより、二酸化窒素を除去することができる。
 本発明によれば、本発明の二酸化窒素吸着剤を用いていることから、二酸化窒素の一酸化窒素への転化反応を抑制しつつ、常温下においても二酸化窒素を効率的に除去し得る二酸化窒素吸着装置を提供することができる。
 次に、本発明の二酸化窒素の除去方法について説明する。
 本発明の二酸化窒素の除去方法は、二酸化窒素含有ガスを、5~50℃の温度条件下、相対湿度20~80%で、本発明の二酸化窒素吸着剤と接触させることを特徴とするものである。
 本発明の二酸化窒素の除去方法において、二酸化窒素含有ガスを本発明の二酸化窒素吸着剤と接触させる雰囲気温度は5~50℃であり、10~40℃であることが好適であり、15~35℃であることがより好適である。
 本発明の二酸化窒素の除去方法は、本発明の二酸化窒素吸着剤を用いるものであることから、常温条件下においても、二酸化窒素を好適に吸着することができる。
 本発明の二酸化窒素の除去方法において、二酸化窒素含有ガスを本発明の二酸化窒素吸着剤と接触させる雰囲気中の相対湿度は20~80%であり、30~70%であることが適当であり、40~60%であることがより適当である。
 なお、本出願書類において、相対湿度(%)は、下記式で表わされるように、ある気温における乾燥空気1kg中の飽和水蒸気量Mwmax(重量絶対湿度、単位g/kg)に対して、同気温において乾燥空気1kg中に含まれる水蒸気の量Mw(重量絶対湿度、単位g/kg)の割合を意味するものとする。
  相対湿度=(Mw/Mwmax)×100
 本発明の二酸化窒素除去方法は、本発明の二酸化窒素吸着剤を用いるものであることから、雰囲気中の相対湿度が高い場合であっても、二酸化窒素を好適に除去することができる。
 本発明の二酸化窒素の除去方法において、使用される二酸化窒素吸着剤の詳細は、上述したとおりである。
 また、本発明の二酸化窒素の除去方法において、二酸化窒素含有ガスとしては、二酸化窒素を10~5000体積ppb含むものを挙げることができる。
 本発明の二酸化窒素除去方法において、具体的な実施態様としては、例えば、図1に示す二酸化窒素吸着装置1に対し、5~50℃の温度条件下、相対湿度20~80%の二酸化窒素含有ガスを、ガス入口21からガス出口22に流通させる態様を挙げることができ、このように流通させることにより、常温、高湿度雰囲気下においても、ガス中の二酸化窒素を二酸化窒素吸着剤3に効果的に吸着させ、除去することができる。
 本発明によれば、本発明の二酸化窒素吸着剤を用いていることから、二酸化窒素の一酸化窒素への転化反応を抑制しつつ、常温下においても二酸化窒素を効率的に除去することができる。
 以下、本発明を実施例および比較例によりさらに詳細に説明するが、本発明は以下の例により何ら限定されるものではない。
(実施例1)
 ペレット形状(直径1.5mm、長さ2~5mm)を有し、シリカ/アルミナ比(モル比)が1500、比表面積が300m/g、平均細孔直径が5.5ÅであるZSM-5型ゼオライト(東ソー(株)製)30gを、過マンガン酸カリウムを8質量%含む水溶液(液温40℃)250ml中に2時間浸漬した後、約105℃の温度で乾燥することにより、二酸化窒素吸着剤を調製した。
 得られた二酸化窒素吸着剤は、過マンガン酸カリウムの担持量が5.0質量%であるものであった。
(二酸化窒素含有ガス流通試験)
 図1に示すような二酸化窒素吸着装置1を用いて、二酸化窒素含有ガスの流通試験を行った。
 中空状本体2として、内径20mm、長さ300mmのガラス管を用い、この中に、支持部材4を介して上記二酸化窒素吸着剤を高さ40mmまで充填して二酸化窒素吸着装置1を形成した。その後、二酸化窒素含有ガスとして、500ppbの二酸化窒素を含み、一酸化窒素を含まない空気(温度:23℃、相対湿度50%)をガス入口21からガス出口22に向かって風速0.3m/秒で通気した。
 体積濃度(体積ppp)として、通気時のガス入口21とガス出口22の二酸化窒素濃度およびガス出口22における一酸化窒素濃度をNO計((株)アナテック・ヤナコ社製ECL-880US)で測定した。
 ガス出口22において、全測定時間に亘って一酸化窒素は検出されず、このため、吸着した二酸化窒素の一酸化窒素への転化率は全測定時間にわたって0%であった。
 また、NOx除去率(%)を下記式により算出し、経時変化を観察した。結果を表1および図2に示す。
 NOx除去率(%)={(ガス入口における二酸化窒素濃度-ガス出口における二酸化窒素濃度-ガス出口における一酸化窒素濃度)/ガス入口における二酸化窒素濃度}×100
(実施例2)
 実施例1で得られた二酸化窒素吸着剤を用い、二酸化窒素含有ガスの相対湿度を50%から80%に変更した以外は、実施例1と同様にして二酸化窒素含有ガス流通試験を行った。
 その結果、ガス出口22においては、全測定時間に亘って一酸化窒素は検出されず、このため、吸着した二酸化窒素の一酸化窒素への転化率は全測定時間にわたって0%であった。
 また、実施例1と同様にしてNOx除去率の経時変化を求めた。結果を表1および図2に示す。
(実施例3)
 実施例1で得られた二酸化窒素吸着剤を用い、二酸化窒素含有ガスの相対湿度を50%から20%に変更した以外は、実施例1と同様にして二酸化窒素含有ガス流通試験を行った。
 その結果、ガス出口22においては、全測定時間に亘って一酸化窒素は検出されず、このため、吸着した二酸化窒素の一酸化窒素への転化率は全測定時間にわたって0%であった。
 また、実施例1と同様にしてNOx除去率の経時変化を求めた。結果を表1および図2に示す。
(実施例4)
 ペレット形状(直径1.5mm、長さ2~5mm)を有し、シリカ/アルミナ比(モル比)が240、比表面積が450m/g、平均細孔直径が6.8Åであるモルデナイト型ゼオライト(東ソー(株)製)30gを、過マンガン酸カリウムを8質量%含む水溶液(液温40℃)250ml中に2時間浸漬した後、約105℃の温度で乾燥することにより、二酸化窒素吸着剤を調製した。
 得られた二酸化窒素吸着剤は、過マンガン酸カリウムの担持量が4.0質量%であるものであった。
 上記二酸化窒素吸着剤を用い、実施例1と同様にして二酸化窒素含有ガス流通試験を行った。
 その結果、ガス出口22においては、全測定時間に亘って一酸化窒素は検出されず、このため、吸着した二酸化窒素の一酸化窒素への転化率は全測定時間にわたって0%であった。
 また、実施例1と同様にしてNOx除去率の経時変化を求めた。結果を表1および図2に示す。
(実施例5)
 ペレット形状(直径1.5mm、長さ2~5mm)を有し、シリカ/アルミナ比(モル比)が40、比表面積が450m/g、平均細孔直径が7.2Åであるベータ型ゼオライト(東ソー(株)製)30gを、過マンガン酸カリウムを8質量%含む水溶液(液温40℃)250ml中に2時間浸漬した後、約105℃の温度で乾燥することにより、二酸化窒素吸着剤を調製した。
 得られた二酸化窒素吸着剤は、過マンガン酸カリウムの担持量が5.0質量%であるものであった。
 上記二酸化窒素吸着剤を用い、実施例1と同様にして二酸化窒素含有ガス流通試験を行った。
 その結果、ガス出口22においては、全測定時間に亘って一酸化窒素は検出されず、このため、吸着した二酸化窒素の一酸化窒素への転化率は全測定時間にわたって0%であった。
 また、実施例1と同様にしてNOx除去率の経時変化を求めた。結果を表1および図2に示す。
(実施例6)
 ペレット形状(直径1.5mm、長さ2~5mm)を有し、シリカ/アルミナ比(モル比)が18、比表面積が580m/g、平均細孔直径が7.2Åであるベータ型ゼオライト(東ソー(株)製)30gを、過マンガン酸カリウムを8質量%含む水溶液(液温40℃)250ml中に2時間浸漬した後、約105℃の温度で乾燥することにより、二酸化窒素吸着剤を調製した。
 得られた二酸化窒素吸着剤は、過マンガン酸カリウムの担持量が6.0質量%であるものであった。
 上記二酸化窒素吸着剤を用い、実施例1と同様にして二酸化窒素含有ガス流通試験を行った。
 その結果、ガス出口22においては、全測定時間に亘って一酸化窒素は検出されず、このため、吸着した二酸化窒素の一酸化窒素への転化率は全測定時間にわたって0%であった。
 また、実施例1と同様にしてNOx除去率の経時変化を求めた。結果を表1および図2に示す。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 ペレット形状(直径1.5mm、長さ2~5mm)を有し、シリカ/アルミナ比(モル比)が2.0、平均細孔直径が4ÅであるA型ゼオライト(東ソー(株)製)30gを、過マンガン酸カリウムを8質量%含む水溶液(液温40℃)250ml中に2時間浸漬した後、約105℃の温度で乾燥することにより、二酸化窒素吸着剤を調製した。
 得られた二酸化窒素吸着剤は、過マンガン酸カリウムの担持量が5.0質量%であるものであった。
 上記二酸化窒素吸着剤を用い、実施例1と同様にして二酸化窒素含有ガス流通試験を行った。
 その結果、ガス出口22においては、全測定時間に亘って一酸化窒素は検出されず、このため、吸着した二酸化窒素の一酸化窒素への転化率は全測定時間にわたって0%であった。
 また、実施例1と同様にしてNOx除去率の経時変化を求めた。結果を表2および図2に示す。
(比較例2)
 ペレット形状(直径1.5mm、長さ2~5mm)を有し、シリカ/アルミナ比(モル比)が2.5、比表面積が800m/g、平均細孔直径が7.4ÅであるX型ゼオライト(東ソー(株)製)30gを、過マンガン酸カリウムを8質量%含む水溶液(液温40℃)250ml中に2時間浸漬した後、約105℃の温度で乾燥することにより、二酸化窒素吸着剤を調製した。
 得られた二酸化窒素吸着剤は、過マンガン酸カリウムの担持量が5.0質量%であるものであった。
 上記二酸化窒素吸着剤を用い、実施例1と同様にして二酸化窒素含有ガス流通試験を行った。
 その結果、ガス出口22においては、全測定時間に亘って一酸化窒素は検出されず、このため、吸着した二酸化窒素の一酸化窒素への転化率は全測定時間にわたって0%であった。
 また、実施例1と同様にしてNOx除去率の経時変化を求めた。結果を表2および図2に示す。
(比較例3)
 破砕形状(粒径0.85mm~1.70mm)を有し、比表面積が1400m/g、平均細孔直径が8Åである活性炭(クラレケミカル(株)製)30gを、炭酸カリウムを10質量%含む水溶液(液温20℃)250ml中に2時間浸漬した後、約105℃の温度で乾燥することにより、二酸化窒素吸着剤を調製した。
 得られた二酸化窒素吸着剤は、炭酸カリウムの担持量が7.0質量%であるものであった。
 上記二酸化窒素吸着剤を用い、実施例1と同様にして二酸化窒素含有ガス流通試験を行った。
 その結果、ガス出口22においては、相当量の一酸化窒素の排出が検出され、吸着した二酸化窒素が一酸化窒素へ転化していることが確認できた。一酸化窒素の転化率の経時変化を表2に示す。
 また、実施例1と同様にしてNOx除去率の経時変化を求めた。結果を表2および図2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1および図2に示す結果より、実施例1~実施例6においては、使用した二酸化窒素吸着剤が、いずれもシリカ/アルミナ比がモル基準で10以上であるゼオライトに過マンガン酸カリウムを担持してなるものであることから、常温下において高いNOx除去率を長時間に亘って発揮し得るものであることが分かる。
 このように、実施例1~実施例6においては、使用した二酸化窒素吸着剤が高い二酸化窒素除去効果を発揮し得るものであることから、NOx除去触媒を使用しなくても、環境中のNOxの濃度を一定値以下に低減することができる。
 また、実施例1~実施例6で用いた二酸化窒素吸着剤は、吸着した二酸化窒素の一酸化窒素への転化率が全測定時間にわたって0%と低いことから、二酸化窒素の一酸化窒素への転化反応を抑制し得るものであることが分かり、また、相対湿度が20%~80%と高くても、水分の吸着を抑制して二酸化窒素を効率的に除去し得るものであることが分かる。
 また、表2および図2に示す結果より、比較例1および比較例2で得られた二酸化窒素吸着剤は、いずれも、シリカ/アルミナ比(モル比)が10未満であるゼオライトに過マンガン酸カリウムを担持してなるものであることから、常温下において全測定時間にわたってNOx除去率が低いものであることが分かる。
 また、表2および図2に示す結果より、比較例3で得られた二酸化窒素吸着剤は、担体に活性炭を用いたものであることから、吸着した二酸化窒素の一酸化窒素への転化率が、測定した範囲内で最大45.4%に達するものであることが分かる。このため、比較例3で得られた二酸化窒素吸着剤は、試験開始当初はNOx除去率(NOの除去効果)が高いものの、時間経過とともに吸着した二酸化窒素から一酸化窒素を生じ、NOx除去率が徐々に低下してしまうため、NOx全体としては充分に除去し得ないものであることが分かる。
 本発明によれば、二酸化窒素の一酸化窒素への転化反応を抑制しつつ、常温下において二酸化窒素を効率的に除去する二酸化窒素吸着剤を提供することができるとともに、該二酸化窒素吸着剤を用いた二酸化窒素吸着装置および二酸化窒素の除去方法を提供することができる。
 1   二酸化窒素吸着装置
 2   中空状本体
 21  ガス入口
 22  ガス出口
 3   二酸化窒素吸着剤
 4   支持部材

Claims (7)

  1.  シリカ/アルミナ比がモル基準で10以上であるゼオライトに過マンガン酸カリウムを担持してなることを特徴とする二酸化窒素吸着剤。
  2.  前記ゼオライトの比表面積が200~700m/g、平均細孔直径が3~10Åである請求項1に記載の二酸化窒素吸着剤。
  3.  前記ゼオライトがZSM-5型ゼオライトである請求項1に記載の二酸化窒素吸着剤。
  4.  前記過マンガン酸カリウムの担持量が2~10質量%である請求項1に記載の二酸化窒素吸着剤。
  5.  吸着した二酸化窒素の一酸化窒素への転化率が0~5%である請求項1に記載の二酸化窒素吸着剤。
  6.  二酸化窒素含有ガスを流通させ得る中空状本体内に請求項1~請求項5のいずれかに記載の二酸化窒素吸着剤が充填されてなることを特徴とする二酸化窒素吸着装置。
  7.  二酸化窒素含有ガスを、5~50℃の温度条件下、相対湿度20~80%で請求項1~請求項5のいずれかに記載の二酸化窒素吸着剤と接触させることを特徴とする二酸化窒素の除去方法。
PCT/JP2012/068354 2011-08-29 2012-07-19 二酸化窒素吸着剤、二酸化窒素吸着装置および二酸化窒素の除去方法 WO2013031415A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011186063 2011-08-29
JP2011-186063 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013031415A1 true WO2013031415A1 (ja) 2013-03-07

Family

ID=47755923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068354 WO2013031415A1 (ja) 2011-08-29 2012-07-19 二酸化窒素吸着剤、二酸化窒素吸着装置および二酸化窒素の除去方法

Country Status (3)

Country Link
JP (1) JPWO2013031415A1 (ja)
TW (1) TW201318695A (ja)
WO (1) WO2013031415A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033404A1 (ja) * 2019-08-22 2021-02-25 三浦工業株式会社 油類の精製方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI586425B (zh) * 2014-06-04 2017-06-11 中國鋼鐵股份有限公司 脫硝觸媒及其製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152661A (en) * 1978-05-24 1979-12-01 Taisei Corp Air pollutant removing method
JPS571421A (en) * 1980-06-04 1982-01-06 Nippon Chem Ind Co Ltd:The Air cleaning agent
JPS60108048A (ja) * 1983-11-17 1985-06-13 日本化学工業株式会社 空気浄化剤
JPH04210234A (ja) * 1990-12-11 1992-07-31 Tosoh Corp 窒素酸化物吸着剤
JPH04293542A (ja) * 1991-03-22 1992-10-19 Kobe Steel Ltd No吸着体
JPH11114370A (ja) * 1997-10-09 1999-04-27 Mitsubishi Heavy Ind Ltd 排ガスの脱硝処理方法及び装置
JP2004230382A (ja) * 2003-01-27 2004-08-19 Samsung Electronics Co Ltd 化学フィルタ媒体、これを用いた化学フィルタ及び前記化学フィルタの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152661A (en) * 1978-05-24 1979-12-01 Taisei Corp Air pollutant removing method
JPS571421A (en) * 1980-06-04 1982-01-06 Nippon Chem Ind Co Ltd:The Air cleaning agent
JPS60108048A (ja) * 1983-11-17 1985-06-13 日本化学工業株式会社 空気浄化剤
JPH04210234A (ja) * 1990-12-11 1992-07-31 Tosoh Corp 窒素酸化物吸着剤
JPH04293542A (ja) * 1991-03-22 1992-10-19 Kobe Steel Ltd No吸着体
JPH11114370A (ja) * 1997-10-09 1999-04-27 Mitsubishi Heavy Ind Ltd 排ガスの脱硝処理方法及び装置
JP2004230382A (ja) * 2003-01-27 2004-08-19 Samsung Electronics Co Ltd 化学フィルタ媒体、これを用いた化学フィルタ及び前記化学フィルタの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033404A1 (ja) * 2019-08-22 2021-02-25 三浦工業株式会社 油類の精製方法
EP4019930A4 (en) * 2019-08-22 2023-09-13 Miura Co., Ltd. METHOD FOR PURIFYING OILS

Also Published As

Publication number Publication date
JPWO2013031415A1 (ja) 2015-03-23
TW201318695A (zh) 2013-05-16

Similar Documents

Publication Publication Date Title
JP4153483B2 (ja) 水素化物ガスを精製する方法
JP5133688B2 (ja) Cu−ZSM5ゼオライト成形吸着剤、その活性化方法、温度変動型吸着装置、及びガス精製方法
JP2003311148A (ja) 吸着剤並びにガス精製方法及び装置
US20020100366A1 (en) Method and materials for purifying hydride gases, inert gases, and non-reactive gases
WO2013031415A1 (ja) 二酸化窒素吸着剤、二酸化窒素吸着装置および二酸化窒素の除去方法
CN108067181B (zh) 一氧化碳高选择性吸收剂及其制造方法
JPH06319947A (ja) エッチング排ガス除害剤及びその使用方法
JP5339579B2 (ja) 硫酸基を付与したアンモニア吸着用の天然ゼオライトとその製造方法
JP2008505750A (ja) アルカリ土類金属でイオン交換されたゼオライトを用いた三フッ化窒素ガスの精製方法
US6892473B1 (en) Process for removing water from ammonia
WO2013137300A1 (ja) シラノール化合物除去剤、シラノール化合物の除去方法、ケミカルフィルタ及び露光装置
JP2000219507A (ja) 親水性活性炭
JP6345964B2 (ja) NOx吸着剤及びその製造方法
JP6156391B2 (ja) シラノール化合物除去剤
KR100684201B1 (ko) 불소 포함 배기가스의 처리방법 및 이의 방법을 사용하기위한 흡착 컬럼 장치
JP6435464B2 (ja) ガス分解剤及びガス分解剤の製造方法、並びに、ガス分解剤包装体
JPH09113475A (ja) 可燃性ガスセンサの感度低下防止剤
WO2014077304A1 (ja) シラノール化合物の除去方法、ケミカルフィルタ及び露光装置
JP2017119271A (ja) ギ酸の処理方法及びギ酸の処理装置
JP2005111355A (ja) 光触媒、光触媒担持セラミック多孔体、有害物質の分解浄化方法、および、気体浄化装置
JP2020195993A (ja) 吸着剤及びその製造方法、吸着体及びその製造方法、並びに、二酸化炭素の除去方法
JP2007175598A (ja) アルデヒド類ガス除去剤
JPH11114411A (ja) 吸着剤及びその製造方法
JP4861618B2 (ja) ダイオキシン吸着除去剤
JP3515766B2 (ja) 二硫化炭素の除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826769

Country of ref document: EP

Kind code of ref document: A1