WO2014189117A1 - 強化ガラス板の製造方法 - Google Patents

強化ガラス板の製造方法 Download PDF

Info

Publication number
WO2014189117A1
WO2014189117A1 PCT/JP2014/063614 JP2014063614W WO2014189117A1 WO 2014189117 A1 WO2014189117 A1 WO 2014189117A1 JP 2014063614 W JP2014063614 W JP 2014063614W WO 2014189117 A1 WO2014189117 A1 WO 2014189117A1
Authority
WO
WIPO (PCT)
Prior art keywords
tempered glass
glass plate
less
glass sheet
producing
Prior art date
Application number
PCT/JP2014/063614
Other languages
English (en)
French (fr)
Inventor
昌志 田部
裕貴 片山
浩三 小林
岡 卓司
直樹 豊福
繁 瀬良
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020157019458A priority Critical patent/KR102145229B1/ko
Priority to US14/892,303 priority patent/US20160083292A1/en
Priority to CN201480023335.3A priority patent/CN105164081B/zh
Publication of WO2014189117A1 publication Critical patent/WO2014189117A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/062Easels, stands or shelves, e.g. castor-shelves, supporting means on vehicles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • C03B25/025Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Definitions

  • the present invention relates to a method for producing a tempered glass plate, and more particularly to a method for producing a tempered glass plate suitable for a cover glass of a display device such as a mobile phone, a digital camera, or a PDA (mobile terminal).
  • a display device such as a mobile phone, a digital camera, or a PDA (mobile terminal).
  • Display devices such as mobile phones, digital cameras, PDAs, touch panel displays, large TVs, etc. are becoming increasingly popular.
  • a resin plate made of acrylic or the like has been used as a protective member for protecting the display.
  • the resin plate since the Young's modulus is low, the resin plate is easily bent when the display surface of the display is pressed with a pen or a human finger. For this reason, the resin plate may come into contact with the internal display and display defects may occur.
  • the resin plate has a problem that the surface is easily scratched and visibility is easily lowered.
  • a method for solving these problems is to use a glass plate as a protective member.
  • the glass plate for this application has (1) high mechanical strength, (2) low density and light weight, (3) low cost and a large amount of supply, (4) excellent foam quality, 5) It has a high light transmittance in the visible range, and (6) it has a high Young's modulus so that it is difficult to bend when the surface is pushed with a pen or a finger.
  • a tempered glass plate that has been subjected to ion exchange treatment has been used since the use as a protective member is insufficient (see Patent Documents 1 and 2 and Non-Patent Document 1). .
  • a tempered glass plate has been prepared by a method of performing ion exchange treatment after cutting a tempered glass plate into a predetermined shape in advance, so-called “cutting before tempering”. After the ion exchange treatment, a method of cutting to a predetermined size, so-called “cutting after strengthening” has been studied. When cutting after tempering, there is an advantage that the manufacturing efficiency of the tempered glass plate and various devices is dramatically improved.
  • the float method is generally used as a method for forming a strengthening glass plate because a thin glass plate can be produced inexpensively and in large quantities.
  • the glass composition is formed by the float process, and has a glass composition of mol%, SiO 2 67 to 75%, Al 2 O 3 0 to 4%, Na 2 O 7 to 15%, K 2 O 1-9%, MgO 6-14%, CaO 0-1%, ZrO 2 0-1.5%, SiO 2 + Al 2 O 3 71-75%, Na 2 O + K 2 O 12-20%
  • a reinforcing glass plate having a thickness of 1.5 mm or less is disclosed.
  • the glass plate for strengthening formed by the float process is subjected to an ion exchange treatment, the properties in the vicinity of the surface on the side in contact with the tin bath in the glass production process, the so-called bottom surface and the opposite side, the so-called top surface, There is a problem that the composition is different and the tempered glass plate warps convexly toward the top surface. When the amount of warpage of the tempered glass plate is large, the yield of the tempered glass plate is lowered.
  • the glass sheet for strengthening is formed by a method other than the float method, for example, the overflow downdraw method, the difference in properties and composition between the front surface and the back surface can be reduced, so that the amount of warpage due to this can be reduced.
  • the tempered glass plate may be warped when the tempered glass plate is thinned.
  • This phenomenon is easily manifested when a thin tempered glass plate is ion-exchanged to obtain a tempered glass plate. Further, when a plurality of tempered glass plates are subjected to ion exchange treatment at the same time to obtain a tempered glass plate, the tempered glass plate is more easily realized. In addition, when ion-exchange-processing a some tempered glass board simultaneously, when the curvature amount of a tempered glass plate is too large, tempered glass plates may interfere and a damage
  • the present invention has been made in view of the above circumstances, and the technical problem is that even when a thin glass sheet is obtained by ion exchange treatment of a plurality of glass sheets for strengthening to obtain a strengthened glass sheet.
  • the idea is to devise a method for producing a tempered glass sheet that can reduce as much as possible.
  • the present inventors have arranged a thin glass plate for strengthening at a predetermined interval in a support body, and ion-exchanged it, and then slowly cooled it to solve the above technical problem.
  • the present invention is found and proposed as the present invention. That is, in the method for producing a tempered glass plate of the present invention, a plurality of tempered glass plates having a substantially rectangular shape and a thickness of 1.0 mm or less are arranged on the support in an upright posture with an interval of 10 mm or less in the thickness direction.
  • An arraying step for obtaining a reinforcing glass plate array a strengthening step for obtaining a strengthened glass plate array by immersing the reinforcing glass plate array in an ion exchange solution and performing ion exchange treatment, and a strengthened glass plate array It is characterized by having a slow cooling step of slowly cooling after taking out from the ion exchange solution, and a taking out step of taking out each tempered glass plate constituting the tempered glass plate array from the support.
  • substantially rectangular includes not only a rectangle but also a square.
  • angular part is chamfered in the shape of a curved surface or a notch is included, and the case where it has a hole part or an opening part in the surface is also included.
  • “With an interval of 10 mm or less” means that even if the reinforcing glass plates are partially arranged with an interval of more than 10 mm, there is an area in which the reinforcing glass plates are arranged with an interval of 10 mm or less. If so, it shall be applicable. However, it is preferable that all the tempered glass plates are arranged at intervals of 10 mm or less.
  • the “upright posture” is not limited to a complete vertical posture, but also includes a state tilted by about 0 to 30 ° from the vertical direction.
  • “Slow cooling” refers to cooling at a slower speed than rapid cooling such as taking out directly from the ion exchange solution at room temperature, for example, 150 ° C./min or lower in a temperature range of 150 ° C. or higher and lower than the strain point. This refers to a case where the time for temperature decrease at a temperature decrease rate of 1 min or longer is 1 minute or more.
  • the conventional tempered glass plate was produced by rapidly cooling to room temperature after taking out from the ion exchange solution. As a result of intensive studies by the inventors, it has been found that the amount of warpage can be reduced by gradually cooling the tempered glass plate after the ion exchange treatment. The reason why the amount of warp can be reduced is unknown and currently under investigation.
  • the glass plate is known not to be thermally deformed at a temperature below the strain point, and the conventional tempered glass plate was produced by rapidly cooling to room temperature after taking out from the ion exchange solution.
  • the amount of warpage can be reduced even under a temperature environment below the strain point, and the tempered glass plate is gradually removed after the ion exchange treatment. It has been found that the amount of warpage can be reduced by cooling. The reason why the amount of warp can be reduced is unknown and currently under investigation.
  • the inventors of the present invention fixed alkalinized ions in a segregated state in the surface layer portion of the compressive stress layer during the ion exchange treatment. As described above, when the tempered glass plate is gradually cooled after the ion exchange treatment, it is estimated that the segregation state of the alkali ions is gradually eliminated by the movement of alkali ions, and as a result, the amount of warpage is reduced. Yes.
  • the method for producing a tempered glass sheet according to the present invention comprises a reinforcing glass plate having a substantially rectangular shape and a thickness of 1.0 mm or less, arranged in a plurality of positions on the support at an interval of 10 mm or less in an upright posture in the thickness direction, and strengthened. And an arraying step of obtaining a glass plate array for use.
  • the tempered glass plate is gradually cooled after the ion exchange treatment as in the present invention, even if the tempered glass plates are arranged closely, the amount of warpage of the tempered glass plate can be reduced. As a result, the efficiency of the ion exchange process can be increased as compared with the conventional case.
  • the average warpage rate of all the tempered glass sheets constituting the tempered glass sheet array is less than 0.5%.
  • the “average warpage rate” is an average value of the warpage rates of all the tempered glass sheets taken out from one support.
  • Warpage rate refers to a value obtained by dividing the maximum displacement within the measurement distance by the laser displacement meter by the measurement distance. For example, a tempered glass plate leans on the stage in an inclined state of 87 ° with respect to the horizontal plane. Then, it is preferable to measure by scanning a linear measurement region offset by 5 mm from the upper end surface of the tempered glass plate in the plane.
  • the cooling time from the temperature of the ion exchange solution to 100 ° C. is 1 minute or more in the slow cooling step. If it does in this way, it will become easy to reduce the amount of curvature.
  • the method for producing a tempered glass sheet of the present invention is preferably maintained at a temperature of 100 ° C. or higher and less than (strain point ⁇ 100) ° C. during slow cooling. If it does in this way, while it becomes easy to reduce the amount of curvature, it becomes difficult to advance an ion exchange reaction by heat processing, and it becomes easy to obtain a desired compressive stress value.
  • strain point refers to a value measured based on the method of ASTM C336.
  • “Holding” refers to maintaining for a certain period of time at a predetermined temperature of ⁇ 8 ° C.
  • the tempered glass sheet array is disposed in a heat insulating structure and slowly cooled. If it does in this way, a tempered glass board will be cooled gradually and, as a result, the amount of curvature of a tempered glass board can be reduced.
  • the method for producing a tempered glass sheet according to the present invention is such that the ratio of (internal K luminescence intensity) / (surface K luminescence intensity) is over 0.67 and 0.95 or less, that is, When the above ratio is R, it is preferable to slowly cool so that 0.67 ⁇ R ⁇ 0.95.
  • R the ratio of (internal K luminescence intensity) / (surface K luminescence intensity) of the tempered glass plate is controlled to be more than 0.67 and 0.95 or less by slow cooling, the movement of alkali ions proceeds.
  • the method for producing a tempered glass sheet of the present invention preferably blows air to the tempered glass sheet array during slow cooling. If it does in this way, the dispersion
  • the method for producing a tempered glass sheet of the present invention preferably further includes a post-strengthening cutting step of cutting the tempered glass plate into a predetermined size after the taking out step.
  • the method for producing a tempered glass sheet of the present invention preferably forms the tempered glass sheet by an overflow downdraw method. Molding by the overflow downdraw method makes it easy to produce a glass plate that is unpolished and has a good surface quality, and also makes it easy to produce a large and thin glass plate. As a result, the mechanical strength of the surface of the tempered glass is reduced. It becomes easy to raise. Furthermore, the property difference and the composition difference in the vicinity of the front surface and the back surface are likely to be equal, and the warpage due to this is easily suppressed.
  • the “overflow down draw method” is a method in which molten glass overflows from both sides of a heat-resistant bowl-shaped structure, and the overflowed molten glass is stretched downward while joining at the lower end of the bowl-shaped structure. This is a method of forming a glass plate.
  • the ion exchange treatment is preferably performed so that the compressive stress value of the compressive stress layer is 400 MPa or more and the stress depth of the compressive stress layer is 15 ⁇ m or more.
  • the “compressive stress value of the compressive stress layer” and the “stress depth of the compressive stress layer” are obtained when a sample is observed using a surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho Co., Ltd.). A value calculated from the number of observed interference fringes and their intervals.
  • the method for producing a tempered glass plate of the present invention preferably uses a tempered glass plate containing 1 to 20% by mass of Na 2 O in the glass composition.
  • Method for manufacturing a tempered glass sheet of the present invention has a glass composition, in mass%, SiO 2 50 ⁇ 80% , Al 2 O 3 5 ⁇ 25%, B 2 O 3 0 ⁇ 15%, Na 2 O 1 ⁇ 20 %, K 2 O 0 to 10% is preferably used. In this way, both ion exchange performance and devitrification resistance can be achieved at a high level.
  • the method for producing a tempered glass sheet of the present invention preferably uses a tempered glass sheet having a strain point of 500 ° C. or higher. If it does in this way, the heat resistance of a tempered glass board will improve, and it will become easy to reduce the amount of curvature of a tempered glass board.
  • the method for producing a tempered glass sheet of the present invention preferably does not have a polishing step for polishing all or part of the surface.
  • the method for producing a tempered glass plate of the present invention is preferably used for a cover glass of a display device.
  • the tempered glass plate array of the present invention is characterized in that a plurality of substantially rectangular tempered glass plates are arranged on the support in an upright posture with an interval of 10 mm or less in the thickness direction.
  • the tempered glass plate array of the present invention is characterized in that a plurality of substantially rectangular tempered glass plates are arranged on a support in an upright posture with an interval of 10 mm or less in the thickness direction.
  • the average warpage rate of all tempered glass plates is less than 0.5%.
  • the tempered glass plate of the present invention is a substantially rectangular tempered glass plate, characterized in that the plate thickness is 0.7 mm or less and the warpage rate is less than 0.5%.
  • the ratio of (internal K emission intensity) / (surface K emission intensity) is preferably more than 0.67 and not more than 0.95.
  • the support of the present invention is a support for arranging a plurality of tempered glass plates having a substantially rectangular shape and a thickness of 1.0 mm or less in the thickness direction in an upright posture, and the tempered glass plates are spaced at an interval of 10 mm or less. It has the support part for arranging two or more, It is characterized by the above-mentioned.
  • FIG. 6 It is a schematic perspective view which illustrates one mode of a support for arranging a plurality of glass plates for strengthening (tempered glass plate array). It is a schematic perspective view which illustrates one mode of composition for sending air to a strengthened glass board array.
  • Sample No. 6 related to [Example 6]. 5 is GD-OES data of an alkali component near the surface layer of No. 5.
  • Sample No. 6 related to [Example 6]. 6 is GD-OES data of an alkali component in the vicinity of the surface layer of No. 6; Sample No. 6 related to [Example 6].
  • 7 is a GD-OES data of an alkali component near the surface layer of No. 7; Sample No. 6 related to [Example 6].
  • 8 is GD-OES data of alkali components in the vicinity of the surface layer of No. 8; Sample No. 6 related to [Example 6].
  • 9 is GD-OES data of alkali components near the surface layer of No. 9.
  • 10 is GD-OES data of alkali components in the vicinity of 10 surface layers. Sample No. 6 related to [Example 6].
  • 11 is GD-OES data of alkali components in the vicinity of 11 surface layers. Sample No. 6 related to [Example 6].
  • 12 is GD-OES data of alkali components in the vicinity of 12 surface layers.
  • the dimensions of the strengthening glass plate (tempered glass plate) will be described.
  • the thickness of the tempered glass sheet is 1.5 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, or 0. It is preferable to regulate to less than 5 mm, and it is particularly preferred to regulate to 0.4 mm or less. This makes it easy to reduce the weight of the display device, and when performing post-strengthening cutting, compressive stress tends to occur on the cut surface due to the effect of the compressive stress layer on the surface, and the mechanical strength of the cut surface. Becomes difficult to decrease. On the other hand, if the plate thickness is too small, it is difficult to obtain a desired mechanical strength.
  • the plate thickness is preferably 0.1 mm or more.
  • a tempered glass board tends to warp, so that plate
  • the plate area of the strengthening glass plate is 0.01 m 2 or more, 0.1 m 2 or more, 0.25 m 2 or more, 0.35 m 2 or more, 0.45 m 2 or more, 0.8 m 2 or more, 1 m 2 or more. 2m 2 or more, 1.5 m 2 or more, 2m 2 or more, 1.2.5M 2 or more, 3m 2 or more, 3.5 m 2 or more, it is preferable to regulate the 4m 2 or more, or 4.5 m 2 or more, especially 5 It is preferable to regulate to ⁇ 10 m 2 .
  • the larger the plate area the greater the number of tempered glass plates collected by cutting after tempering, and the production efficiency of tempered glass plates and various devices is dramatically improved.
  • plate area refers to the area of the plate surface excluding the end face, and refers to the area of either the front surface or the back surface.
  • a tempered glass board tends to warp, so that a board area is large, it becomes easy to enjoy the effect of this invention.
  • the plate area of the tempered glass plate can be, for example, 1 m 2 or more, but in this case, the temperature distribution in the surface of the tempered glass plate becomes large during cooling, resulting in a difference in thermal expansion. And it becomes easy to increase the curvature amount of a tempered glass board. Therefore, in the case of this use, the tempered glass plate is likely to warp, so that the effects of the present invention can be easily enjoyed.
  • a plurality of substrates are arranged with an interval of 10 mm or less, and the arrangement interval is preferably 9 mm or less, 8 mm or less, or 7 mm or less, or 0.1 mm or more. And it is preferably 6 mm or less, or 1 mm or more and less than 5 mm, particularly preferably 1.5 mm or more and less than 3 mm.
  • the arrangement interval is too large, the production efficiency of the tempered glass plate tends to be lowered. If the arrangement interval is too small, the tempered glass plates interfere with each other, and there is a risk that scratches will occur.
  • a plurality of tempered glass plates are arranged on the support in a state tilted from 0 to 20 ° from the vertical direction, or from 0 to 10 ° from the vertical direction, particularly from 0 to 5 ° from the vertical direction. Is preferred. If it does in this way, the accommodation rate of the glass plate for strengthening to a support body will improve.
  • the support may have any structure as long as a plurality of reinforcing glass plates can be accommodated at a narrow pitch.
  • the support preferably has, for example, a structure having a frame, a side edge support that supports the side edge of the strengthening glass plate, and a lower end support for supporting the lower end of the strengthening glass plate. It is preferable to provide a recessed part such as a V-groove in the side edge support part and / or the lower end support part. In this way, the reinforcing glass plate can be supported at a predetermined interval by bringing the reinforcing glass plate into contact with the groove.
  • the side edge support part and the lower end support part are preferably, for example, a rod-shaped or wire-shaped member having a recess.
  • FIG. 1 is a schematic perspective view illustrating an embodiment of a support for arranging a plurality of reinforcing glass plates (tempered glass plate array).
  • a support body 1 shown in FIG. 1 includes a frame portion 2 and a support portion 4 that supports the reinforcing glass plate 3 as main components.
  • the support part 4 supports a plurality of strengthening glass plates 3 in an upright posture and arranged with a gap of 10 mm or less in the thickness direction. More specifically, the support portion 4 includes a side edge support portion 4a that supports a pair of side edge portions of the reinforcing glass plate 3, and a lower end support portion 4b that supports the lower end portion of the reinforcing glass plate 3.
  • the both ends of the side edge support portion 4a are detachably attached to the upper surface of the beam frame portion 2e by a fastening member such as a bolt (not shown).
  • a pair of side edge support portions 4a that support side edge portions having the same height of the reinforcing glass plate 3 are attached to the beam frame portion 2e having the same height.
  • the side edge support portion 4 a has a recess facing the side edge portion of the reinforcing glass plate 3, and this recess comes into contact with and supports the side edge portion of the reinforcing glass plate 3. Is positioned in the thickness direction.
  • Both ends of the lower end support portion 4b are detachably attached to upper surfaces of a pair of long side portions in the bottom frame portion 2a by fastening members such as bolts (not shown).
  • the lower end support 4b only supports the strengthening glass plate 3 on its upper surface, and does not have elements such as a recess for positioning the strengthening glass plate 3 in the thickness direction.
  • the lower end support part 4b may have an element for positioning the reinforcing glass plate 3 in the thickness direction.
  • the heat insulating plate 5 is disposed on the both side frame portions 2b and heats these reinforcing glass plates 3 in a state of facing both side edges of the plurality of reinforcing glass plates 3 supported by the support portion 4. However, if necessary, the heat insulating plate 5 may be omitted. In this embodiment, the heat insulating plate 5 is disposed only on both sides of the plurality of reinforcing glass plates 3. Therefore, in the frame portion 2, there are openings in the front frame portion 2 c and the rear frame portion 2 d that face the forefront glass plate 3 in the thickness direction of the reinforcing glass plate 3 and the rearmost glass plate 3 for reinforcement. ing. Moreover, the opening part also exists in the bottom frame part 2a which exists under the glass plate 3 for reinforcement
  • the sheet is immersed in an ion exchange solution, subjected to ion exchange treatment, and a compressive stress layer is formed on the surface thereof.
  • the ion exchange treatment is a method of introducing alkali ions having a large ion radius to the glass surface at a temperature below the strain point of the reinforcing glass plate. If the ion exchange treatment is performed with an ion exchange solution, the compressive stress layer can be appropriately formed even when the plate thickness is small.
  • the ion exchange solution, ion exchange temperature, and ion exchange time may be determined in consideration of the viscosity characteristics of the glass.
  • a compressive stress layer can be efficiently formed on the surface.
  • the compressive stress value of the compressive stress layer is 400 MPa or more (preferably 500 MPa or more, 600 MPa or more or 650 MPa or more, particularly preferably 700 MPa or more), and the stress depth of the compressive stress layer is 15 ⁇ m or more (desirably 20 ⁇ m or more, 25 ⁇ m or more or 30 ⁇ m).
  • the greater the compressive stress value the higher the mechanical strength of the tempered glass sheet.
  • the compressive stress value is too large, it becomes difficult to scribe-cut the tempered glass plate.
  • the compressive stress value of the compressive stress layer is preferably 1500 MPa or less or 1200 MPa or less, particularly preferably 1000 MPa or less. If the content of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, ZnO in the glass composition is increased or the content of SrO, BaO is decreased, the compressive stress value tends to increase. Further, if the ion exchange time is shortened or the temperature of the ion exchange solution is lowered, the compressive stress value tends to increase.
  • the stress depth is preferably 100 ⁇ m or less, less than 80 ⁇ m or 60 ⁇ m or less, particularly preferably less than 52 ⁇ m. Note that if the content of K 2 O or P 2 O 5 in the glass composition is increased or the content of SrO or BaO is decreased, the stress depth tends to increase. Moreover, if the ion exchange time is lengthened or the temperature of the ion exchange solution is increased, the stress depth tends to increase.
  • the method for producing a tempered glass plate of the present invention has a slow cooling step of slowly cooling the tempered glass plate array after taking it out from the ion exchange solution, and continuously cooling it after taking it out from the ion exchange solution. It is preferable to provide a heat insulating structure in the upper part of the ion exchange tank and gradually cool the tempered glass plate array immediately when the tempered glass plate array is taken out from the ion exchange solution. If it does in this way, while the manufacture efficiency of a tempered glass board will improve, it will become easy to reduce the amount of curvature of a tempered glass board.
  • the temperature is preferably lowered at a temperature lowering rate of 25 ° C./min or less or 20 ° C./min or less in a temperature range of 150 ° C. or higher and lower than the strain point, and the temperature lowering time is preferably Is 3 minutes or more, 5 minutes or more, 7 minutes or more, or 10 minutes or more.
  • the temperature lowering speed is increased, it becomes difficult to reduce the warpage amount of the tempered glass sheet.
  • the temperature lowering time is shortened, it becomes difficult to reduce the warpage amount of the tempered glass sheet.
  • Average warpage ratio of a plurality of tempered glass sheets is less than 0.5%, 0.3% or less, less than 0.23%, 0.2% or less, 0.18% or less, less than 0.15%, or 0.13%
  • the warpage rate of the individual tempered glass plate is 0.3% or less, less than 0.23%, 0.2% or less, 0.18% or less, less than 0.15% or 0.13% or less, It is also preferable to slowly cool so as to be less than 10%.
  • the warpage rate is large, the production yield of the tempered glass sheet tends to be lowered.
  • the cooling time from the temperature of the ion exchange solution to the temperature of 100 ° C. is preferably 1 minute or more, 3 minutes or more, 5 minutes or more, 10 to 250 minutes, or 12 to 200 minutes, particularly 15 to 90 minutes.
  • the cooling time is too short, it becomes difficult to reduce the amount of warpage of the tempered glass sheet.
  • the cooling time is too long, the production efficiency of the tempered glass plate is likely to be lowered, and the ion exchange reaction proceeds during cooling, and the compressive stress value is likely to be lowered.
  • “Cooling” is a concept that combines slow cooling and rapid cooling.
  • the slow cooling time is preferably 1 minute or more, 3 minutes or more, 5 minutes or more, 10 to 250 minutes, or 2 to 200 minutes, particularly 15 to 90 minutes. If the slow cooling time is too short, it becomes difficult to reduce the warpage of the tempered glass sheet. On the other hand, if the slow cooling time is too long, the production efficiency of the tempered glass plate tends to be lowered, and the ion exchange reaction proceeds during the slow cooling, so that the compressive stress value tends to be lowered.
  • the holding time is preferably 1 minute or more, 3 minutes or more, 5 minutes or more, 10 to 250 minutes, or 12 to 200 minutes, particularly 15 to 90 minutes.
  • the temperature lowering rate is preferably more than 30 ° C./min, particularly preferably 50 ° C./min or more. If it does in this way, after improving the curvature amount of a tempered glass board, the manufacturing efficiency of a tempered glass board can be raised.
  • a step of raising the temperature by 20 ° C. or more, or 30 ° C. or more, particularly 40 ° C. or more may be provided after slow cooling. However, if the step is provided, the production efficiency of the tempered glass sheet is likely to be lowered, and ion exchange is performed at the time of temperature rise. The reaction proceeds and the compressive stress value tends to decrease.
  • the tempered glass sheet array is disposed in a heat insulating structure and slowly cooled. If it does in this way, a tempered glass board array will be cooled gradually and it will become easy to reduce the amount of curvature of a tempered glass board.
  • the heat insulating structure preferably has a heating means such as a heater. Specifically, a slow cooling furnace or the like can be used. If it does in this way, it will become easy to control a temperature-fall rate.
  • the heat insulation structure does not need to be completely airtight, and may have an opening.
  • the ratio of (internal K emission intensity) / (surface K emission intensity) is more than 0.67 and not more than 0.95.
  • a preferred lower limit ratio of (internal K emission intensity) / (surface K emission intensity) is 0.68 or more, 0.70 or more, 0.72 or more, or 0.74 or more, particularly 0.75 or more,
  • the preferred upper limit ratio is 0.92 or less, 0.90 or less, or 0.88 or less, particularly 0.86 or less.
  • the tempered glass sheet array is preferably blown, more preferably blown toward the interval between the tempered glass sheets, and toward the interval between the tempered glass sheets. It is more preferable to blow from below. If it does in this way, the dispersion
  • a well-known air blower a fan, a blower, etc.
  • FIG. 2 is a schematic perspective view illustrating one aspect of a blower device for blowing air to the tempered glass plate array during slow cooling.
  • the air blower 10 opens a plurality of tempered glass plates 3 in an upright posture in an internal space of a tubular (square tubular) enclosure 11 through which gas can flow vertically.
  • a tempered glass plate array 12 arranged on the support 1 is housed and configured.
  • a blower unit 13 including a fan, a blower, or the like is installed at the upper end of the enclosure 10, and an opening 11 a is formed at the lower end of the enclosure 10.
  • the gas which flowed into the internal space from the opening part 11a of the lower end part of the enclosure 11 with the drive of the ventilation means 13 passes the arrangement
  • the gas is air, but may be an inert gas such as nitrogen or argon.
  • the gas flowing upward in the internal space of the enclosure 11 contacts the front and back surfaces of all the tempered glass plates 3 constituting the tempered glass plate array 12.
  • the air blowing means 13 is installed at the lower end of the enclosure 11, and the opening 11a is formed at the upper end of the enclosure 11, so that the gas flows upward in the internal space of the enclosure 11. You may make it flow toward.
  • the tempered glass plate array 12 may be blown toward the tempered glass plate array 12 by a separately arranged blowing means in a state where the tempered glass plate array 12 is exposed together with the support 1. Good.
  • the gas flow direction is preferably directed upward, but a gas flow directed downward may be generated.
  • the method for producing a tempered glass sheet of the present invention includes a step of taking out the tempered glass sheet from the support.
  • the temperature (or environmental temperature) of the tempered glass plate when taking out the tempered glass plate is preferably less than 100 ° C., particularly preferably 50 ° C. or less. If it does in this way, it will become easy to prevent the situation where a tempered glass board breaks with a thermal shock at the time of taking out.
  • the method for producing a tempered glass sheet of the present invention preferably forms the tempered glass sheet by an overflow downdraw method. If it does in this way, it will become easy to shape
  • the reason for this is that, in the case of the overflow downdraw method, the surface to be the surface does not come into contact with the bowl-like refractory and is molded in a free surface state.
  • the structure and material of the bowl-shaped structure are not particularly limited as long as desired dimensions and surface quality can be realized.
  • the method of applying force with respect to a glass ribbon will not be specifically limited if a desired dimension and surface quality are realizable.
  • a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass ribbon, or a plurality of pairs of heat-resistant rolls are only near the end face of the glass ribbon. You may employ
  • molding may be performed by a slot downdraw method, a float method, a rollout method, a redraw method, or the like.
  • the glass composition contains 1 to 20% by mass of Na 2 O.
  • Na 2 O is a major ion exchange component, and is a component that lowers the high-temperature viscosity and improves meltability and moldability.
  • Na 2 O is also a component that improves devitrification resistance.
  • too small content of Na 2 O lowered meltability, it lowered coefficient of thermal expansion tends to decrease the ion exchange performance.
  • the thermal expansion coefficient becomes too high, and the thermal shock resistance is lowered or it is difficult to match the thermal expansion coefficient of the surrounding materials.
  • the strain point may be excessively lowered or the component balance of the glass composition may be lost, and the devitrification resistance may be deteriorated.
  • Method for manufacturing a tempered glass sheet of the present invention has a glass composition, in mass%, SiO 2 50 ⁇ 80% , Al 2 O 3 5 ⁇ 25%, B 2 O 3 0 ⁇ 15%, Na 2 O 1 ⁇ 20 %, K 2 O 0 to 10%, it is preferable to produce a strengthening glass plate.
  • the reason for limiting the content range of each component as described above will be described below.
  • SiO 2 is a component that forms a network of glass.
  • the content of SiO 2 is preferably 50 to 80%, 52 to 75%, 55 to 72%, or 55 to 70%, particularly preferably 55 to 67.5%.
  • the content of SiO 2 is too small, vitrification becomes difficult, and the thermal expansion coefficient becomes too high, and the thermal shock resistance tends to be lowered.
  • the content of SiO 2 is too large, the meltability and the formability tends to decrease.
  • Al 2 O 3 is a component that improves ion exchange performance, and is a component that increases the strain point and Young's modulus.
  • the content of Al 2 O 3 is preferably 5 to 25%. If the content of Al 2 O 3 is too small, the thermal expansion coefficient becomes too high and the thermal shock resistance tends to be lowered, and in addition, there is a possibility that the ion exchange performance cannot be sufficiently exhibited. Therefore, the preferable lower limit range of Al 2 O 3 is 7% or more, 8% or more, 10% or more, 12% or more, 14% or more, or 15% or more, particularly 16% or more.
  • the preferable upper limit range of Al 2 O 3 is 22% or less, 20% or less, 19% or less, or 18% or less, particularly 17% or less.
  • the content of Al 2 O 3 is 17% or more, 18% or more, 19% or more, or 20 % Or more, preferably 21% or more.
  • B 2 O 3 is a component that reduces high temperature viscosity and density, stabilizes the glass, makes it difficult to precipitate crystals, and lowers the liquidus temperature. It is also a component that increases crack resistance. However, if the content of B 2 O 3 is too large, the ion exchange treatment may cause surface coloring called burns, water resistance may decrease, the compressive stress value of the compressive stress layer may decrease, The stress depth of the stress layer tends to decrease. Therefore, the content of B 2 O 3 is preferably 0 to 15%, 0.1 to 12%, 1 to 10%, more than 1 to 8%, or 1.5 to 6%, particularly preferably 2 to 5%. %.
  • the content of B 2 O 3 is 2.5% or more, 3% or more, 3.5 % Or more or 4% or more, particularly 4.5% or more.
  • Na 2 O is a major ion exchange component, and is a component that lowers the high-temperature viscosity and improves meltability and moldability. Na 2 O is also a component that improves devitrification resistance.
  • the content of Na 2 O is 1 to 20%. When Na 2 O content is too small, or reduced meltability, lowered coefficient of thermal expansion tends to decrease the ion exchange performance. Therefore, when Na 2 O is introduced, a preferable lower limit range of Na 2 O is 10% or more or 11% or more, particularly 12% or more.
  • the thermal expansion coefficient becomes too high, and the thermal shock resistance is lowered or it is difficult to match the thermal expansion coefficient of the surrounding materials.
  • the strain point may be excessively lowered or the component balance of the glass composition may be lost, and the devitrification resistance may be deteriorated. Therefore, a preferable upper limit range of Na 2 O is 17% or less, particularly 16% or less.
  • K 2 O is a component that promotes ion exchange, and is a component that has a large effect of increasing the stress depth of the compressive stress layer among alkali metal oxides. Moreover, it is a component which reduces high temperature viscosity and improves a meltability and a moldability. Furthermore, it is also a component that improves devitrification resistance.
  • the content of K 2 O is 0 to 10%. When the content of K 2 O is too large, the thermal expansion coefficient becomes too high, and the thermal shock resistance is lowered or it becomes difficult to match the thermal expansion coefficient of the surrounding materials. Moreover, there is a tendency that the strain point is excessively lowered, the component balance of the glass composition is lacking, and the devitrification resistance is lowered. Therefore, the preferable upper limit range of K 2 O is 8% or less, 6% or less, or 4% or less, particularly less than 2%.
  • Li 2 O is an ion exchange component and a component that lowers the high-temperature viscosity and improves the meltability and moldability. It is also a component that increases Young's modulus. Furthermore, the effect of increasing the compressive stress value is large among alkali metal oxides. However, when the content of Li 2 O is too large, and decreases the liquidus viscosity, it tends glass devitrified. In addition, the thermal expansion coefficient becomes too high, so that the thermal shock resistance is lowered or it is difficult to match the thermal expansion coefficient of the surrounding material. Furthermore, if the low-temperature viscosity is too low and stress relaxation is likely to occur, the compressive stress value may be reduced. Accordingly, the content of Li 2 O is preferably 0 to 3.5%, 0 to 2%, 0 to 1% or 0 to 0.5%, particularly 0.01 to 0.2%.
  • the preferred content of Li 2 O + Na 2 O + K 2 O is 5-25%, 10-22%, or 15-22%, in particular 17-22%.
  • Li 2 O + Na 2 O + K content of 2 O is too small, the ion exchange performance and meltability is liable to decrease.
  • the content of Li 2 O + Na 2 O + K 2 O is too large, the glass tends to be devitrified, the thermal expansion coefficient becomes too high, the thermal shock resistance decreases, and the heat of the surrounding materials It becomes difficult to match the expansion coefficient.
  • the strain point may be excessively lowered, making it difficult to obtain a high compressive stress value.
  • Li 2 O + Na 2 O + K 2 O is the total amount of Li 2 O, Na 2 O and K 2 O.
  • MgO is a component that lowers the viscosity at high temperature, increases meltability and moldability, and increases the strain point and Young's modulus.
  • MgO is a component that has a large effect of improving ion exchange performance. is there.
  • a preferable upper limit range of MgO is 12% or less, 10% or less, 8% or less, or 5% or less, particularly 4% or less.
  • the suitable minimum range of MgO is 0.1% or more, 0.5% or more, or 1% or more, especially 2% or more.
  • CaO compared with other components, has a great effect of lowering the high-temperature viscosity without increasing devitrification resistance, improving meltability and moldability, and increasing the strain point and Young's modulus.
  • the CaO content is preferably 0 to 10%.
  • the preferred content of CaO is 0-5%, 0.01-4%, or 0.1-3%, especially 1-2.5%.
  • SrO is a component that lowers the high-temperature viscosity without increasing devitrification resistance, thereby improving meltability and moldability, and increasing the strain point and Young's modulus.
  • a suitable content range of SrO is 0 to 5%, 0 to 3%, or 0 to 1%, especially 0 to less than 0.1%.
  • BaO is a component that lowers the high-temperature viscosity without increasing devitrification resistance, thereby increasing meltability and moldability, and increasing the strain point and Young's modulus.
  • a suitable content range of BaO is 0 to 5%, 0 to 3%, or 0 to 1%, especially 0 to less than 0.1%.
  • ZnO is a component that enhances the ion exchange performance, and is a component that is particularly effective in increasing the compressive stress value. Moreover, it is a component which reduces high temperature viscosity, without reducing low temperature viscosity.
  • the content of ZnO is preferably 0 to 6%, 0 to 5%, 0 to 1%, or 0 to 0.5%, particularly preferably 0 to less than 0.1%.
  • ZrO 2 is a component that remarkably improves the ion exchange performance and a component that increases the viscosity and strain point in the vicinity of the liquid phase viscosity. However, if its content is too large, the devitrification resistance may be significantly reduced. There is also a possibility that the density becomes too high. Therefore, the preferable upper limit range of ZrO 2 is 10% or less, 8% or less, or 6% or less, particularly 5% or less. In order to improve ion exchange performance, it is preferable to introduce ZrO 2 into the glass composition. In that case, a suitable lower limit range of ZrO 2 is 0.01% or more or 0.5%, particularly 1% or more. is there.
  • P 2 O 5 is a component that enhances ion exchange performance, and in particular, a component that increases the stress depth of the compressive stress layer.
  • the preferable upper limit range of P 2 O 5 is 10% or less, 8% or less, 6% or less, 4% or less, 2% or less or 1% or less, particularly less than 0.1%.
  • one or two or more selected from the group of As 2 O 3 , Sb 2 O 3 , SnO 2 , F, Cl, SO 3 are used in an amount of 0 to 30,000 ppm (3%) may be introduced.
  • the content of SnO 2 + SO 3 + Cl is preferably 0 to 10,000 ppm, 50 to 5000 ppm, 80 to 4000 ppm, or 100 to 3000 ppm, particularly 300 to 3000 ppm, from the viewpoint of accurately enjoying the clarification effect.
  • “SnO 2 + SO 3 + Cl” refers to the total amount of SnO 2 , SO 3 and Cl.
  • the preferred content range of SnO 2 is 0 to 10000 ppm, or 0 to 7000 ppm, especially 50 to 6000 ppm.
  • the preferred content range of Cl is 0 to 1500 ppm, 0 to 1200 ppm, 0 to 800 ppm, or 0 to 500 ppm, especially 50 ⁇ 300 ppm.
  • a suitable content range of SO 3 is 0 to 1000 ppm, or 0 to 800 ppm, in particular 10 to 500 ppm.
  • Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase the Young's modulus, and are components that can be decolored and control the color of the glass when a complementary color is added.
  • the cost of the raw material itself is high, and if it is introduced in a large amount, the devitrification resistance tends to decrease. Therefore, the rare earth oxide content is preferably 4% or less, 3% or less, 2% or less, or 1% or less, particularly 0.5% or less.
  • substantially no As 2 O 3 , F, PbO, or Bi 2 O 3 is contained in consideration of the environment.
  • substantially does not contain As 2 O 3 means that the glass component is not positively added with As 2 O 3 , but is allowed to be mixed at an impurity level. This means that the content of As 2 O 3 is less than 500 ppm.
  • substantially free of F means that F is not actively added as a glass component but is allowed to be mixed at an impurity level. Specifically, the content of F is less than 500 ppm. It points to something.
  • substantially no PbO means that although PbO is not actively added as a glass component, it is allowed to be mixed at an impurity level. Specifically, the PbO content is less than 500 ppm. It points to something. By “substantially free of Bi 2 O 3", but not added actively Bi 2 O 3 as a glass component, a purpose to allow the case to be mixed with impurity levels, specifically, Bi 2 It indicates that the content of O 3 is less than 500 ppm.
  • a tempered glass so as to have the following characteristics.
  • Density 2.6 g / cm 3 or less, particularly preferably 2.55 g / cm 3 or less. The lower the density, the lighter the tempered glass plate. In addition, increase the content of SiO 2 , B 2 O 3 , P 2 O 5 in the glass composition, or decrease the content of alkali metal oxide, alkaline earth metal oxide, ZnO, ZrO 2 , TiO 2 As a result, the density tends to decrease.
  • the “density” can be measured by a known Archimedes method.
  • the thermal expansion coefficient is preferably 80 ⁇ 10 ⁇ 7 to 120 ⁇ 10 ⁇ 7 / ° C., 85 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., or 90 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C. In particular, it is 90 ⁇ 10 ⁇ 7 to 105 ⁇ 10 ⁇ 7 / ° C. If the thermal expansion coefficient is regulated within the above range, it becomes easy to match the thermal expansion coefficient of a member such as a metal or an organic adhesive, and it becomes easy to prevent peeling of a member such as a metal or an organic adhesive.
  • thermal expansion coefficient refers to a value obtained by measuring an average thermal expansion coefficient in a temperature range of 30 to 380 ° C. using a dilatometer.
  • the thermal expansion coefficient tends to increase, and conversely alkali metal If the content of oxides and alkaline earth metal oxides is reduced, the coefficient of thermal expansion tends to decrease.
  • the strain point is preferably 500 ° C. or higher, 520 ° C. or higher, or 530 ° C. or higher, particularly 550 ° C. or higher.
  • the higher the strain point the better the heat resistance and the harder the tempered glass plate is. Furthermore, it becomes easy to form a high-quality film in patterning of a touch panel sensor or the like. If the content of alkaline earth metal oxide, Al 2 O 3 , ZrO 2 , P 2 O 5 in the glass composition is increased or the content of alkali metal oxide is reduced, the strain point will increase. easy.
  • the temperature at 10 4.0 dPa ⁇ s is preferably 1280 ° C. or lower, 1230 ° C. or lower, 1200 ° C. or lower, or 1180 ° C. or lower, particularly 1160 ° C. or lower.
  • “temperature at 10 4.0 dPa ⁇ s” refers to a value measured by a platinum ball pulling method. The lower the temperature at 10 4.0 dPa ⁇ s, the less the burden on the forming equipment, the longer the life of the forming equipment, and as a result, the manufacturing cost of the strengthening glass sheet can be easily reduced.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1620 ° C. or lower, 1550 ° C. or lower, 1530 ° C. or lower, or 1500 ° C. or lower, particularly 1450 ° C. or lower.
  • “temperature at 10 2.5 dPa ⁇ s” refers to a value measured by a platinum ball pulling method. The lower the temperature at 10 2.5 dPa ⁇ s, the lower the temperature melting becomes possible, and the burden on glass production equipment such as a melting kiln is reduced, and the bubble quality is easily improved. Therefore, the lower the temperature at 10 2.5 dPa ⁇ s, the easier it is to reduce the manufacturing cost of the strengthening glass sheet.
  • the temperature at 10 2.5 dPa ⁇ s corresponds to the melting temperature. Further, if the content of alkali metal oxide, alkaline earth metal oxide, ZnO, B 2 O 3 , TiO 2 in the glass composition is increased or the content of SiO 2 , Al 2 O 3 is reduced, The temperature at 10 2.5 dPa ⁇ s tends to decrease.
  • the liquidus temperature is preferably 1200 ° C. or lower, 1150 ° C. or lower, 1100 ° C. or lower, 1050 ° C. or lower, 1000 ° C. or lower, 950 ° C. or lower, or 900 ° C. or lower, particularly 880 ° C. or lower.
  • the “liquid phase temperature” is obtained by passing the glass powder that passes through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m) and remains in 50 mesh (a sieve opening of 300 ⁇ m) into a platinum boat and puts it in a temperature gradient furnace for 24 hours. It refers to the temperature at which crystals precipitate after being held. In addition, devitrification resistance and a moldability improve, so that liquidus temperature is low.
  • the liquid phase viscosity is preferably 10 4.0 dPa ⁇ s or more, 10 4.4 dPa ⁇ s or more, 10 4.8 dPa ⁇ s or more, 10 5.0 dPa ⁇ s or more, 10 5.4 dPa ⁇ s or more, 10 5.6 dPa ⁇ s or more, 10 6.0 dPa ⁇ s or more, or 10 6.2 dPa ⁇ s or more, particularly 10 6.3 dPa ⁇ s or more.
  • “liquid phase viscosity” refers to a value obtained by measuring the viscosity at the liquid phase temperature by a platinum ball pulling method.
  • liquid phase viscosity is high.
  • the content of Na 2 O, K 2 O in the glass composition is increased or the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2 is reduced, the liquidus viscosity Tends to be high.
  • beta-OH value is 0.45 mm -1 or less, 0.4 mm -1 or less, 0.3 mm -1 or less, 0.28 mm -1 or less, or 0.25 mm -1 or less, particularly 0.10 ⁇ 0.22 mm - 1 is preferred.
  • ⁇ -OH value refers to a value obtained by measuring the transmittance of glass using FT-IR and using the following equation.
  • ⁇ -OH value (1 / X) log (T 1 / T 2 )
  • X Sample thickness (mm)
  • T 1 Transmittance (%) at a reference wavelength of 3846 cm ⁇ 1
  • T 2 Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm ⁇ 1
  • Examples of the method for reducing the ⁇ -OH value include the following methods (1) to (7).
  • N 2 bubbling is performed in the molten glass.
  • the method for producing a tempered glass sheet of the present invention preferably has no step of polishing the surface, and the average surface roughness (Ra) of the unpolished surface is preferably 10 mm or less, more preferably 5 mm or less, more preferably Is preferably controlled to 4 mm or less, more preferably 3 mm or less, and most preferably 2 mm or less.
  • the average surface roughness (Ra) may be measured by a method based on SEMI D7-97 “Measurement method of surface roughness of FPD glass plate”. Although the theoretical strength of glass is inherently very high, it often breaks even at stresses much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the glass surface in a post-molding process such as a polishing process.
  • a strengthening glass plate may be formed by an overflow downdraw method.
  • the timing for cutting the tempered glass sheet into a predetermined size is not particularly limited. Since the tempered glass sheet whose warpage amount has been reduced in the process is cut, it becomes easy to increase the efficiency of the post-strengthening cutting. As a result, the production efficiency of the tempered glass plate can be increased. It is also preferable to provide a step of cutting to a predetermined size before the ion exchange treatment. If it does in this way, since the dimension of the glass plate for reinforcement
  • the method for producing a tempered glass sheet of the present invention is preferably formed by scribe cutting after tempering from the viewpoint of production efficiency of the tempered glass sheet.
  • the depth of the scribe scratch is larger than the stress thickness and the internal tensile stress value is 80 MPa or less (desirably 70 MPa or less, 60 MPa or less, 50 MPa or less).
  • the internal tensile stress value is a value calculated by the following equation.
  • scribe cutting after tempering it is preferable to form a scribe line on the surface of the tempered glass plate and then divide along the scribe line. If it does in this way, it will become difficult to advance the crack which is not intended at the time of cutting.
  • Self-destruction is a phenomenon in which a tempered glass sheet is spontaneously destroyed when it receives damage deeper than the stress depth due to the effects of compressive stress existing on the surface of the tempered glass sheet and internal tensile stress. . If self-breaking of the tempered glass plate starts during the formation of the scribe line, it becomes difficult to perform desired cutting. For this reason, it is preferable to regulate the depth of the scribe line within 10 times, within 5 times, especially within 3 times the stress depth. In forming the scribe line, it is preferable to use a diamond wheel tip or the like from the viewpoint of workability.
  • chamfering is applied to a part or all of the edge region where the end surface (cut surface) and the surface of the tempered glass plate intersect, and at least one edge region on the display side is provided. It is preferable that chamfering is performed on the part or the whole.
  • R chamfering is preferable.
  • R chamfering with a radius of curvature of 0.05 to 0.5 mm is preferable.
  • C chamfering of 0.05 to 0.5 mm is also suitable.
  • the surface roughness Ra of the chamfered surface is preferably 1 nm or less, 0.7 nm or less, or 0.5 nm or less, particularly preferably 0.3 nm or less. In this way, it becomes easy to prevent cracks starting from the edge region.
  • surface roughness Ra refers to a value measured by a method based on JIS B0601: 2001.
  • a plurality of reinforcing glass plates having a substantially rectangular shape and a thickness of 1.0 mm or less are arranged on the support in an upright posture with an interval of 10 mm or less in the thickness direction. It is characterized by that.
  • a plurality of tempered glass plates having a substantially rectangular shape and a thickness of 1.0 mm or less are arranged on the support in an upright posture with an interval of 10 mm or less in the thickness direction. It is characterized by that.
  • the technical features of the tempered glass plate array of the present invention and the technical features of the tempered glass plate array have already been described in the explanation column of the method for producing the tempered glass plate of the present invention. Is omitted.
  • the support of the present invention is a support for arranging a plurality of tempered glass plates having a substantially rectangular shape and a thickness of 1.0 mm or less in an upright posture in the thickness direction, and the tempered glass plates are spaced at an interval of 10 mm or less. It has the support part for arranging two or more, It is characterized by the above-mentioned.
  • the technical features of the support of the present invention have already been described in the explanation column of the method for producing a tempered glass sheet of the present invention, and detailed description thereof is omitted here for convenience.
  • Table 1 shows examples of the present invention (sample Nos. 1 to 4).
  • a tempered glass plate was produced as follows. First, glass raw materials were prepared to produce a glass batch. Next, this glass batch is put into a continuous melting furnace, and after passing through a clarification process, a stirring process, and a supply process, it is formed into a plate having a thickness of 0.7 mm by the overflow down draw method, and then cut into a size of 120 mm ⁇ 180 mm. Thus, a plurality of reinforcing glass plates were produced.
  • This glass sheet for strengthening has a glass composition of 57.4% by weight, SiO 2 57.4%, Al 2 O 3 13%, B 2 O 3 2%, MgO 2%, CaO 2%, Li 2 O 0.1.
  • the glass sheet for strengthening has an unpolished surface, and when immersed in KNO 3 molten salt at 430 ° C. for 420 minutes, the compressive stress layer has a compressive stress value of 680 MPa and a stress depth of 43 ⁇ m.
  • the tempered glass plate array was taken out from the KNO 3 molten salt, and immediately moved into a heat insulating container, and cooled to the temperature shown in the table. After reaching the temperature in the table, the tempered glass plate array was moved to room temperature (20 ° C.) and quenched. In the quenching temperature range, the rate of temperature decrease from the furnace cooling end temperature to 100 ° C. was over 60 ° C./min. Thereafter, 24 tempered glass plates were taken out from the tempered glass plate array.
  • the warpage rate was evaluated for each of the tempered glass plates 1 to 4. More specifically, a laser that leans a tempered glass plate on a stage inclined at 87 ° with respect to a horizontal plane, and scans a linear measurement region offset by 5 mm from the upper end surface of the tempered glass plate toward the surface. Using a displacement meter (manufactured by Keyence Corporation), obtain the profile of the straight line measurement area, find the maximum displacement of the profile with respect to the straight line connecting both ends of this profile, and use this as the amount of warpage. Divide the amount of warpage by the measured distance. The value obtained was taken as the warpage rate. In the table, the average value of the warpage rate of 24 tempered glass sheets is described. In addition, the curvature rate is similarly evaluated about the glass plate for reinforcement
  • the tempered glass plate array was immediately transferred from the KNO 3 molten salt into a slow cooling furnace maintained at 310 ° C. and held for 60 minutes. It moved down to room temperature (20 degreeC) and quenched. Thereafter, 24 tempered glass plates were taken out from the tempered glass plate array, and the warpage rate of each tempered glass plate was evaluated in the same manner as in [Example 1]. As a result, the average value was 0.13%. In addition, the curvature rate of each glass plate for reinforcement
  • the tempered glass plate array was immediately transferred from the KNO 3 molten salt to a slow cooling furnace maintained at 310 ° C., held for 60 minutes, and then turned off. In the furnace. Thereafter, 24 tempered glass plates were taken out from the tempered glass plate array, and the warpage rate of each tempered glass plate was evaluated in the same manner as in [Example 1]. The average value was 0.01%. In addition, the curvature rate of each glass plate for reinforcement
  • a tempered glass plate array was prepared, then immediately moved from the KNO 3 molten salt into a slow cooling furnace maintained at 410 ° C., held for 10 minutes, and then the slow cooling furnace was turned off.
  • the tempered glass plate array was forcibly cooled to room temperature (20 ° C.) by a blowing means. Thereafter, 24 tempered glass plates were taken out from the tempered glass plate array, and the warpage rate of each tempered glass plate was evaluated in the same manner as in [Example 1]. As a result, the average value was 0.07%. In addition, the curvature rate of each glass plate for reinforcement
  • a tempered glass plate was produced as follows. First, as a glass composition, by mass%, SiO 2 61.4%, Al 2 O 3 18%, B 2 O 3 0.5%, Li 2 O 0.1%, Na 2 O 14.5%, K 2 Glass raw materials were prepared so as to contain O 2%, MgO 3%, BaO 0.1%, SnO 2 0.4%, and a glass batch was prepared. Next, this glass batch is put into a continuous melting furnace, and after passing through a clarification process, a stirring process, and a supply process, it is formed into a plate shape by the overflow down draw method, and then cut into dimensions of 1800 mm ⁇ 1500 mm ⁇ thickness 0.5 mm. Thus, a reinforcing glass plate (parent plate) was produced.
  • the strengthening glass plate has a density of 2.45 g / cm 3 , a strain point of 563 ° C., a thermal expansion coefficient of 91.3 ⁇ 10 ⁇ 7 / ° C., a temperature at 10 4.0 dPa ⁇ s of 1255 ° C., 10
  • the temperature at 2.5 dPa ⁇ s is 1590 ° C.
  • the liquid phase temperature is 970 ° C.
  • the liquid phase viscosity is 10 6.3 dPa ⁇ s.
  • the glass sheet for strengthening has an unpolished surface, and when it is immersed in KNO 3 molten salt at 430 ° C.
  • the compressive stress layer has a compressive stress value of 900 MPa and a stress depth of 43 ⁇ m.
  • the refractive index of the sample is 1.50 and the optical elastic constant is 29.5 [(nm / cm) / MPa].
  • the tempered glass plate array was taken out from the KNO 3 molten salt, immediately moved into a heat insulating container, and cooled to 310 ° C. over 15 minutes. After reaching 310 ° C., the tempered glass plate array was moved to room temperature (20 ° C.) and rapidly cooled. In the quenching temperature range, the rate of temperature decrease from the furnace cooling end temperature to 100 ° C. was over 60 ° C./min. Thereafter, 24 tempered glass plates were taken out from the tempered glass plate array.
  • the warpage rate was evaluated for the obtained tempered glass plate. More specifically, a laser that leans a tempered glass plate on a stage inclined at 87 ° with respect to a horizontal plane, and scans a linear measurement region offset by 5 mm from the upper end surface of the tempered glass plate toward the surface. Using a displacement meter (manufactured by Keyence Corporation), obtain the profile of the straight line measurement area, find the maximum displacement of the profile with respect to the straight line connecting both ends of this profile, and use this as the amount of warpage. Divide the amount of warpage by the measured distance. The value obtained was taken as the warpage rate. As a result, the average value of the warp rate of the 24 tempered glass plates was 0.14%. In addition, when the curvature rate was similarly evaluated about the glass plate for reinforcement
  • a scribe line was formed on the surface of the obtained tempered glass plate, and a folding operation was performed along the scribe line to divide it into a 7-inch size.
  • the scribe was started from the end face, and the scribe was finished in a region 5 mm or more inside from the opposite end face.
  • the depth of the scribe scratch was made larger than the stress depth during scribe cutting.
  • glass composition by mass%, SiO 2 61.4%, Al 2 O 3 18%, B 2 O 3 0.5%, Li 2 O 0.1%, Na 2 O 14.5%, K 2 Glass raw materials were prepared so as to contain O 2%, MgO 3%, BaO 0.1%, SnO 2 0.4%, and a glass batch was prepared.
  • this glass batch is put into a continuous melting furnace, and after passing through a clarification process, a stirring process, and a supply process, it is formed into a plate shape by the overflow down draw method, and then cut into dimensions of 1800 mm ⁇ 1500 mm ⁇ thickness 0.5 mm. Thus, a reinforcing glass plate (parent plate) was produced.
  • the strengthening glass plate has a density of 2.45 g / cm 3 , a strain point of 563 ° C., a thermal expansion coefficient of 91.3 ⁇ 10 ⁇ 7 / ° C., a temperature at 10 4.0 dPa ⁇ s of 1255 ° C., 10
  • the temperature at 2.5 dPa ⁇ s is 1590 ° C.
  • the liquid phase temperature is 970 ° C.
  • the liquid phase viscosity is 10 6.3 dPa ⁇ s.
  • the obtained reinforcing glass plates (parent plates) were arranged in an upright posture at an interval of 5 mm in the thickness direction and arranged on a support to make a reinforcing glass plate array.
  • the glass plate array After preheating the glass plate array for strengthening, it was immersed in KNO 3 molten salt at 430 ° C. for 240 minutes to obtain a strengthened glass plate array.
  • the compressive stress value and the stress depth of the compressive stress layer of the tempered glass sheet were calculated by the same method as described above, the compressive stress value was 900 MPa, and the stress depth was 43 ⁇ m.
  • the refractive index of the sample was 1.50, and the optical elastic constant was 29.5 [(nm / cm) / MPa].
  • a scribe line was formed on the surface of the obtained tempered glass plate, and a folding operation was performed along the scribe line to divide it into individual pieces (7 inch size).
  • the scribe was started from the end face, and the scribe was finished in a region 5 mm or more inside from the opposite end face.
  • the depth of the scribe scratch was made larger than the stress depth during scribe cutting.
  • the obtained tempered glass plate (piece) was subjected to the heat treatment shown in Table 3 (temperature increase rate: 5 ° C./min, temperature decrease rate: furnace cooling). 6 to 12 were produced. The ratio of (internal K emission intensity) / (surface K emission intensity) was measured by GD-OES (GD-Profiler 2 manufactured by Horiba, Ltd.) for the obtained heat-treated sample. The results are shown in Table 3 and FIGS. In Table 3, the sample No. 5 is a tempered glass plate before heat treatment. The measurement conditions were discharge power: 80 W and discharge pressure: 200 Pa.
  • the experiment according to Table 3 is not a slow cooling process but a separate heat treatment.
  • the data according to Table 3 can be used to estimate the ratio of (internal K emission intensity) / (surface layer K emission intensity) for the tempered glass sheet after the slow cooling step.
  • the tempered glass plate according to the present invention is suitable for a cover glass of a display device such as a mobile phone, a digital camera, or a PDA. Further, the tempered glass plate according to the present invention, in addition to these uses, uses that require high mechanical strength, such as window glass, magnetic disk substrates, flat panel display substrates, solid-state image sensor cover glasses, Application to tableware can be expected.
  • the method for producing a tempered glass sheet of the present invention can be applied not only to a flat tempered glass sheet but also to a 2D, 2.5D, and 3D tempered glass sheet whose surface is curved in the surface direction.
  • deformation other than the desired curved shape corresponds to the amount of warpage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

 本発明の強化ガラス板の製造方法は、略矩形で且つ板厚1.0mm以下の強化用ガラス板を直立姿勢で厚み方向に10mm以下の間隔を置いて、支持体に複数配列して、強化用ガラス板配列体を得る配列工程と、強化用ガラス板配列体をイオン交換溶液に浸漬して、イオン交換処理し、強化ガラス板配列体を得る強化工程と、強化ガラス板配列体をイオン交換溶液から取り出した後、徐冷する徐冷工程と、支持体から強化ガラス板配列体を構成している各強化ガラス板を取り出す取出し工程と、を有することを特徴とする。

Description

強化ガラス板の製造方法
 本発明は、強化ガラス板の製造方法に関し、特に、携帯電話、デジタルカメラ、PDA(携帯端末)等の表示デバイスのカバーガラスに好適な強化ガラス板の製造方法に関する。
 携帯電話、デジタルカメラ、PDA、タッチパネルディスプレイ、大型テレビ等の表示デバイスは、益々普及する傾向にある。
 従来、これらの用途では、ディスプレイを保護するための保護部材としてアクリル等の樹脂板が用いられていた。しかし、樹脂板は、ヤング率が低いため、ペンや人の指等でディスプレイの表示面が押された場合に撓み易い。このため、樹脂板が内部のディスプレイに接触して、表示不良が発生することがあった。また、樹脂板は、表面に傷が付き易く、視認性が低下し易いという問題もあった。これらの問題を解決する方法は、保護部材としてガラス板を用いることである。この用途のガラス板には、(1)高い機械的強度を有すること、(2)低密度で軽量であること、(3)安価で多量に供給できること、(4)泡品位に優れること、(5)可視域において高い光透過率を有すること、(6)ペンや指等で表面を押した際に撓み難いように高いヤング率を有すること等が要求される。特に、(1)の要件を満たさない場合は、保護部材として用を足さなくなるため、従来からイオン交換処理した強化ガラス板が用いられている(特許文献1、2、非特許文献1参照)。
 従来まで、強化ガラス板は、予め強化用ガラス板を所定形状に切断した後、イオン交換処理を行う方法、所謂、「強化前切断」で作製されていたが、近年、大型の強化用ガラス板をイオン交換処理した後、所定サイズに切断する方法、所謂、「強化後切断」が検討されている。強化後切断を行うと、強化ガラス板や各種デバイスの製造効率が飛躍的に向上するという利点が得られる。
特開2006-83045号公報 特開2011-88763号公報
泉谷徹郎等、「新しいガラスとその物性」、初版、株式会社経営システム研究所、1984年8月20日、p.451-498
 ところで、フロート法は、薄型のガラス板を安価、且つ大量に作製し得るため、強化用ガラス板の成形方法として一般的である。例えば、特許文献2には、フロート法で成形されてなると共に、ガラス組成として、モル%で、SiO2 67~75%、Al23 0~4%、Na2O 7~15%、K2O 1~9%、MgO 6~14%、CaO 0~1%、ZrO2 0~1.5%、SiO2+Al23 71~75%、Na2O+K2O 12~20%を含有し、且つ厚み1.5mm以下の強化用ガラス板が開示されている。
 しかし、フロート法で成形された強化用ガラス板をイオン交換処理すると、ガラス製造工程中でスズ浴に接した側、所謂ボトム面と、その反対側、所謂トップ面とでは、表面近傍の性状、組成が相違し、強化ガラス板がトップ面側に凸に反るという問題が生じる。強化ガラス板の反り量が大きいと、強化ガラス板の歩留まりが低下する。
 一方、フロート法以外の方法、例えばオーバーフローダウンドロー法で強化用ガラス板を成形すれば、表面と裏面の性状差、組成差を低減し得るため、これによる反り量を低減することができる。しかし、フロート法以外の方法で成形する場合であっても、強化用ガラス板が薄型化すると、強化ガラス板が反ってしまうことがある。
 この現象は、薄型の強化用ガラス板をイオン交換処理して、強化ガラス板を得る場合に、顕在化し易くなる。また、複数の強化用ガラス板を同時にイオン交換処理して、強化ガラス板を得る場合に、更に顕在化し易くなる。なお、複数の強化用ガラス板を同時にイオン交換処理する場合、強化ガラス板の反り量が大き過ぎると、強化ガラス板同士が干渉し、傷が発生する虞もある。
 そこで、本発明は上記事情に鑑み成されたものであり、技術的課題は、薄型、且つ複数の強化用ガラス板をイオン交換処理して、強化ガラス板を得る場合であっても、反り量を可及的に低減し得る強化ガラス板の製造方法を創案することである。
 本発明者等は、鋭意検討の結果、薄型、且つ複数の強化用ガラス板を所定間隔で支持体内に配置し、これをイオン交換処理した後に、徐冷することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の強化ガラス板の製造方法は、略矩形で且つ板厚1.0mm以下の強化用ガラス板を直立姿勢で厚み方向に10mm以下の間隔を置いて、支持体に複数配列して、強化用ガラス板配列体を得る配列工程と、強化用ガラス板配列体をイオン交換溶液に浸漬して、イオン交換処理し、強化ガラス板配列体を得る強化工程と、強化ガラス板配列体をイオン交換溶液から取り出した後、徐冷する徐冷工程と、支持体から強化ガラス板配列体を構成している各強化ガラス板を取り出す取出し工程と、を有することを特徴とする。ここで、「略矩形」とは、長方形のみならず、正方形も含む。更に部分的に曲面部、孔部等を有する場合、例えば、長方形の角部が曲面状又は切り欠き状に面取りされている場合を含み、表面内に孔部又は開口部を有する場合も含む。「10mm以下の間隔を置いて」とは、部分的に10mm超の間隔で強化用ガラス板が配列されていても、10mm以下の間隔を置いて強化用ガラス板を配列している領域が存在していれば、該当するものとする。但し、すべての強化ガラス板が10mm以下の間隔で配列されていることが好ましい。「直立姿勢」とは、完全な鉛直姿勢に限定されず、鉛直方向から0~30°程度傾いた状態も含む。「徐冷」とは、イオン交換溶液から直接室温下に取り出すような急冷よりも、緩やかなスピードで冷却する場合を指し、例えば、150℃以上、歪点未満の温度域で30℃/分以下の降温速度で降温する時間が1分間以上である場合を指す。
 従来の強化ガラス板は、イオン交換溶液から取り出した後に、室温まで急冷することで作製されていた。本発明者等が鋭意検討したところ、イオン交換処理後に強化ガラス板を徐冷すると、反り量を低減し得ることを見出した。反り量を低減し得る理由は、不明であり、現在、調査中である。
 現時点では、イオン交換処理後の冷却時の温度分布のばらつきが反りの一因であると推定される。従来のように、イオン交換溶液から強化ガラス板を取り出した後、直ちに室温まで急冷すると、強化ガラス板の面内の温度分布のばらつきが大きくなり、すなわち強化ガラス板の面内中央部が周縁部に比べて高温になるため、熱膨張差に起因して、強化ガラス板が反り易くなる。この反りは、強化ガラス板が常温まで冷却されて、強化ガラス板の面内の温度分布がなくなると、ある程度解消されるが、完全には解消されない。そこで、本願発明のように、イオン交換処理後に強化ガラス板を徐冷すると、冷却時に、強化ガラス板の面内の温度分布のばらつきを小さくすることができる。なお、現状では実証されていないが、アルカリイオンが、イオン交換処理の際に、圧縮応力層の表層部分において偏析した状態で固定されることが、反りの一因であり、イオン交換処理後に強化ガラス板を徐冷すると、アルカリイオンの移動が進むことにより、アルカリイオンの偏析状態が徐々に解消されて、結果として、反り量が改善されている可能性もある。
 ガラス板は、歪点以下の温度では、熱変形しないことが知られており、従来の強化ガラス板は、イオン交換溶液から取り出した後に、室温まで急冷することで作製されていた。本発明者等が鋭意検討したところ、強化ガラス板の場合、意外なことに、歪点未満の温度環境下でも、反り量を低減し得ることを見出すと共に、イオン交換処理後に強化ガラス板を徐冷すると、反り量を低減し得ることを見出した。反り量を低減し得る理由は、不明であり、現在、調査中である。本発明者等は、強化ガラス板の場合、アルカリイオンが、イオン交換処理の際に、圧縮応力層の表層部分において偏析した状態で固定されることが、反りの一因になり、本願発明のように、イオン交換処理後に強化ガラス板を徐冷すると、アルカリイオンの移動が進むことにより、アルカリイオンの偏析状態が徐々に解消されて、結果として、反り量が低減されるものと推定している。
 本発明の強化ガラス板の製造方法は、略矩形で且つ板厚1.0mm以下の強化用ガラス板を直立姿勢で厚み方向に10mm以下の間隔を置いて、支持体に複数配列して、強化用ガラス板配列体を得る配列工程を有する。従来までは、強化用ガラス板を密に配列した状態でイオン交換処理すると、強化ガラス板の反り量が増大するという問題があった。一方、本願発明のように、イオン交換処理後に強化ガラス板を徐冷すると、強化用ガラス板を密に配列しても、強化ガラス板の反り量を低減することが可能になる。結果として、従来よりもイオン交換処理の効率を高めることができる。
 本発明の強化ガラス板の製造方法は、強化ガラス板配列体を構成している全ての強化ガラス板についての平均反り率が0.5%未満になるように徐冷することが好ましい。ここで、「平均反り率」は、一つの支持体から取り出した全ての強化ガラス板の反り率の平均値である。「反り率」は、レーザー変位計により、測定距離内での最大変位量を測定距離で除した値を指し、例えば、強化ガラス板を水平面に対して、87°に傾いた状態でステージに立て掛けて、強化ガラス板の上方端面から面内に向かって、5mmオフセットした直線測定領域を走査することで測定することが好ましい。
 本発明の強化ガラス板の製造方法は、徐冷工程で、イオン交換溶液の温度から100℃までの冷却時間が1分間以上であることが好ましい。このようにすれば、反り量を低減し易くなる。
 本発明の強化ガラス板の製造方法は、徐冷時に、100℃以上で且つ(歪点-100)℃未満の温度で保持することが好ましい。このようにすれば、反り量を低減し易くなると共に、熱処理によりイオン交換反応が進行し難くなり、所望の圧縮応力値を得易くなる。ここで、「歪点」は、ASTM C336の方法に基づいて測定した値を指す。また、「保持」とは、所定温度±8℃の状態で一定時間維持することを指す。
 本発明の強化ガラス板の製造方法は、強化ガラス板配列体を断熱構造体内に配置し、徐冷することが好ましい。このようにすれば、強化ガラス板が徐々に冷却されることになり、結果として、強化ガラス板の反り量を低減することができる。
 本発明の強化ガラス板の製造方法は、(内部のK発光強度)/(表層のK発光強度)の比が、0.67超で且つ0.95以下になるように徐冷すること、つまり上記の比をRとした場合に、0.67<R≦0.95になるように徐冷することが好ましい。上記の通り、圧縮応力層の表層部分において、アルカリイオンの濃度勾配が緩やかであると、アルカリイオンの偏析が少ないものと考えられる。そこで、徐冷により、強化ガラス板の(内部のK発光強度)/(表層のK発光強度)の比を、0.67超で且つ0.95以下に規制すれば、アルカリイオンの移動が進み、アルカリイオンの偏析状態が徐々に解消されて、結果として、反り量が低減されるものと推定される。なお、「(内部のK発光強度)/(表層のK発光強度)」は、表面でのKの発光強度を1とした場合(この場合、深部のKの発光強度が0になる)、深さ方向における表面から内部に至るK濃度の減少が略収束したときの内部のKの発光強度(例えば応力深さよりも10μm深い領域のK発光強度)の割合を表し、GD-OESで測定可能である。
 本発明の強化ガラス板の製造方法は、徐冷時に、強化ガラス板配列体に送風することが好ましい。このようにすれば、強化ガラス板の面内の温度分布のばらつきを抑制することができ、結果として、強化ガラス板の反り量を低減することができる。
 本発明の強化ガラス板の製造方法は、取り出し工程後に、更に強化ガラス板を所定サイズに切断する強化後切断工程を有することが好ましい。
 本発明の強化ガラス板の製造方法は、オーバーフローダウンドロー法で強化用ガラス板を成形することが好ましい。オーバーフローダウンドロー法で成形すれば、未研磨で表面品位が良好なガラス板を作製し易くなり、また大型、薄型のガラス板を作製し易くなり、結果として、強化ガラスの表面の機械的強度を高め易くなる。更に表面と裏面とのそれぞれの面近傍の性状差、組成差が同等になり易く、これによる反りを抑制し易くなる。ここで、「オーバーフローダウンドロー法」は、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス板を成形する方法である。
 本発明の強化ガラス板の製造方法は、圧縮応力層の圧縮応力値が400MPa以上、且つ圧縮応力層の応力深さが15μm以上になるように、イオン交換処理することが好ましい。ここで、「圧縮応力層の圧縮応力値」および「圧縮応力層の応力深さ」は、表面応力計(例えば、有限会社折原製作所製FSM-6000)を用いて、試料を観察した際に、観察される干渉縞の本数とその間隔から算出される値を指す。
 本発明の強化ガラス板の製造方法は、ガラス組成中にNa2Oを1~20質量%含む強化用ガラス板を使用することが好ましい。
 本発明の強化ガラス板の製造方法は、ガラス組成として、質量%で、SiO2 50~80%、Al23 5~25%、B23 0~15%、Na2O 1~20%、K2O 0~10%を含有する強化用ガラス板を使用することが好ましい。このようにすれば、イオン交換性能と耐失透性を高いレベルで両立することができる。
 本発明の強化ガラス板の製造方法は、歪点が500℃以上の強化用ガラス板を使用することが好ましい。このようにすれば、強化ガラス板の耐熱性が向上し、強化ガラス板の反り量を低減し易くなる。
 本発明の強化ガラス板の製造方法は、表面の全部又は一部を研磨する研磨工程を有しないことが好ましい。
 本発明の強化ガラス板の製造方法は、表示デバイスのカバーガラスに用いることが好ましい。
 本発明の強化用ガラス板配列体は、略矩形の強化用ガラス板が、直立姿勢で厚み方向に10mm以下の間隔を置いて、支持体に複数配列されていることを特徴とする。
 本発明の強化ガラス板配列体は、略矩形の強化ガラス板が、直立姿勢で厚み方向に10mm以下の間隔を置いて、支持体に複数配列されていることを特徴とする。
 本発明の強化ガラス板配列体は、全ての強化ガラス板の平均反り率が0.5%未満であることが好ましい。
 本発明の強化ガラス板は、略矩形の強化ガラス板であって、板厚が0.7mm以下であり、且つ反り率が0.5%未満であることを特徴とする。
 本発明の強化ガラス板は、(内部のK発光強度)/(表層のK発光強度)の比が、0.67超で且つ0.95以下であることが好ましい。
 本発明の支持体は、略矩形で且つ板厚1.0mm以下の強化ガラス板を直立姿勢で厚み方向に複数配列するための支持体であって、強化ガラス板を10mm以下の間隔を置いて複数配列するための支持部を有することを特徴とする。
強化用ガラス板(強化ガラス板配列体)を複数配列するための支持体の一態様を例示する概略斜視図である。 強化ガラス板配列体に送風するための構成の一態様を例示する概略斜視図である。 [実施例6]に係る試料No.5の表層近傍のアルカリ成分のGD-OESのデータである。 [実施例6]に係る試料No.6の表層近傍のアルカリ成分のGD-OESのデータである。 [実施例6]に係る試料No.7の表層近傍のアルカリ成分のGD-OESのデータである。 [実施例6]に係る試料No.8の表層近傍のアルカリ成分のGD-OESのデータである。 [実施例6]に係る試料No.9の表層近傍のアルカリ成分のGD-OESのデータである。 [実施例6]に係る試料No.10の表層近傍のアルカリ成分のGD-OESのデータである。 [実施例6]に係る試料No.11の表層近傍のアルカリ成分のGD-OESのデータである。 [実施例6]に係る試料No.12の表層近傍のアルカリ成分のGD-OESのデータである。
発明の実施の形態
 以下、強化用ガラス板(強化ガラス板)の寸法について説明する。
 本発明の強化ガラス板の製造方法において、強化用ガラス板の板厚を1.5mm以下、1.0mm以下、0.8mm以下、0.7mm以下、0.6mm以下、0.5mm以下または0.5mm未満に規制することが好ましく、特に0.4mm以下に規制することが好ましい。このようにすれば、表示デバイスの軽量化を図り易くなると共に、強化後切断を行う場合に、表面の圧縮応力層の影響により、切断面に圧縮応力が生じ易くなり、切断面の機械的強度が低下し難くなる。一方、板厚が小さ過ぎると、所望の機械的強度を得難くなる。また強化工程後に、強化ガラス板が反り易くなる。よって、板厚は0.1mm以上が好ましい。なお、板厚が小さい程、強化ガラス板が反り易くなるため、本発明の効果を享受し易くなる。
 強化用ガラス板の板面積を0.01m2以上、0.1m2以上、0.25m2以上、0.35m2以上、0.45m2以上、0.8m2以上、1m2以上、1.2m2以上、1.5m2以上、2m2以上、1.2.5m2以上、3m2以上、3.5m2以上、4m2以上または4.5m2以上に規制することが好ましく、特に5~10m2に規制することが好ましい。板面積が大きい程、強化後切断による強化ガラス板の採取枚数が多くなり、強化ガラス板や各種デバイスの製造効率が飛躍的に向上する。ここで、「板面積」とは、端面を除く板表面の面積を指し、表面と裏面のとの何れか一方の面積を指す。なお、板面積が大きい程、強化ガラス板が反り易くなるため、本発明の効果を享受し易くなる。
 デジタルサイネージ用途の場合、強化ガラス板の板面積が例えば1m2以上になり得るが、この場合、冷却時に、強化ガラス板の面内の温度分布のばらつきが大きくなり、熱膨張差に起因して、強化ガラス板の反り量を増大し易くなる。よって、この用途の場合、強化ガラス板が反り易くなるため、本発明の効果を享受し易くなる。
 以下、配列工程について説明する。
 本発明の強化ガラス板の製造方法において、10mm以下の間隔を置いて、支持体に複数配列するが、配列間隔は9mm以下、8mm以下または7mm以下であることが好ましく、もしくは0.1mm以上で且つ6mm以下、または1mm以上で且つ5mm未満であることが好ましく、特に1.5mm以上で且つ3mm未満が好ましい。配列間隔が大き過ぎると、強化ガラス板の製造効率が低下し易くなる。なお、配列間隔が小さ過ぎると、強化ガラス板同士が干渉し、傷が発生する虞が生じる。
 強化用ガラス板を鉛直方向から0~20°程度傾いた状態、または鉛直方向から0~10°程度傾いた状態、特に鉛直方向から0~5°程度傾いた状態で支持体に複数配列することが好ましい。このようにすれば、支持体への強化用ガラス板の収納率が向上する。
 支持体は、複数の強化用ガラス板を狭ピッチで収納し得る限り、どのような構造でもよい。支持体は、例えば、枠部と、強化用ガラス板の側縁部を支持する側縁支持部と、強化用ガラス板の下端部を支持するための下端支持部とを有する構造が好ましい。側縁支持部及び/又は下端支持部に、V溝等の凹部を設けることが好ましい。このようにすれば、強化用ガラス板を溝部に当接させることにより、強化用ガラス板を所定間隔で支持することができる。なお、側縁支持部と下端支持部は、例えば、凹部を有する棒状又は針金状の部材が好ましい。
 図1は、強化用ガラス板(強化ガラス板配列体)を複数配列するための支持体の一態様を例示する概略斜視図である。図1に示す支持体1は、枠部2と、強化用ガラス板3を支持する支持部4とを主要な構成要素とする。
 支持部4は、複数枚の強化用ガラス板3を直立姿勢で厚み方向に10mm以下の隙間を置いて配列した状態で支持する。詳述すれば、支持部4は、強化用ガラス板3の一対の側縁部を支持する側縁支持部4aと、強化用ガラス板3の下端部を支持する下端支持部4bとで構成される。
 側縁支持部4aは、その両端が、不図示のボルト等の締結部材によって着脱自在に梁枠部2eの上面に取り付けられる。側縁支持部4aは、強化用ガラス板3の同じ高さの側縁部を支持する一対が、同じ高さの梁枠部2eに取り付けられる。側縁支持部4aは、強化用ガラス板3の側縁部に対向する凹部を有し、この凹部が強化用ガラス板3の側縁部に当接して支持することよって、強化用ガラス板3を厚さ方向に位置決めする。
 下端支持部4bは、その両端が、底枠部2aにおける一対の長辺部の上面に、不図示のボルト等の締結部材によって着脱自在に取り付けられる。下端支持部4bは、強化用ガラス板3を上面で支持するだけで、強化用ガラス板3を厚さ方向に位置決めする凹部等の要素を有さない。なお、下端支持部4bは、強化用ガラス板3を厚さ方向に位置決めする要素を有してもよい。
 保温板5は、両側枠部2bに配設され、支持部4に支持される複数の強化用ガラス板3の両側縁部に対面した状態で、これらの強化用ガラス板3を保温するものであるが、必要に応じて、保温板5を除いてもよい。なお、本実施形態では、保温板5は、複数の強化用ガラス板3の両側方にのみ配設されている。したがって、枠部2のうち、強化用ガラス板3の厚み方向の最前面と最背面の強化用ガラス板3のそれぞれに対面する前枠部2cと後枠部2dには、開口部が存在している。また、強化用ガラス板3の下側に存する底枠部2aにも、開口部が存在している。
 以下、強化工程について説明する。
 本発明の強化ガラス板の製造方法は、イオン交換溶液に浸漬して、イオン交換処理し、その表面に圧縮応力層を形成する。イオン交換処理は、強化用ガラス板の歪点以下の温度でガラス表面にイオン半径が大きいアルカリイオンを導入する方法である。イオン交換溶液によりイオン交換処理すれば、板厚が小さい場合でも、圧縮応力層を適正に形成することができる。
 イオン交換溶液、イオン交換温度及びイオン交換時間は、ガラスの粘度特性等を考慮して決定すればよい。特に、強化用ガラス板中のNa成分をKNO3溶融塩中のKイオンとイオン交換処理すると、表面に圧縮応力層を効率良く形成することができる。
 圧縮応力層の圧縮応力値が400MPa以上(望ましくは500MPa以上、600MPa以上または650MPa以上、特に望ましくは700MPa以上)、且つ圧縮応力層の応力深さが15μm以上(望ましくは20μm以上、25μm以上または30μm以上、特に望ましくは35μm以上)になるように、イオン交換溶液によりイオン交換処理することが好ましい。圧縮応力値が大きい程、強化ガラス板の機械的強度が高くなる。一方、圧縮応力値が大き過ぎると、強化ガラス板をスクライブ切断し難くなる。よって、圧縮応力層の圧縮応力値は、好ましくは1500MPa以下または1200MPa以下、特に好ましくは1000MPa以下である。なお、ガラス組成中のAl23、TiO2、ZrO2、MgO、ZnOの含有量を増加させたり、SrO、BaOの含有量を低減すれば、圧縮応力値が大きくなる傾向がある。また、イオン交換時間を短くしたり、イオン交換溶液の温度を下げれば、圧縮応力値が大きくなる傾向がある。
 応力深さが大きい程、強化ガラス板に深い傷が付いても、強化ガラス板が割れ難くなると共に、機械的強度のばらつきが小さくなる。一方、応力深さが大き過ぎると、強化ガラス板をスクライブ切断し難くなる。応力深さは、好ましくは100μm以下、80μm未満または60μm以下、特に好ましくは52μm未満である。なお、ガラス組成中のK2O、P25の含有量を増加させたり、SrO、BaOの含有量を低減すれば、応力深さが大きくなる傾向がある。また、イオン交換時間を長くしたり、イオン交換溶液の温度を上げれば、応力深さが大きくなる傾向がある。
 以下、徐冷工程について説明する。
 本発明の強化ガラス板の製造方法は、強化ガラス板配列体をイオン交換溶液から取り出した後、徐冷する徐冷工程を有し、イオン交換溶液から取り出した後、連続的に徐冷することが好ましく、イオン交換槽の上部に断熱構造体を設けて、イオン交換溶液から強化ガラス板配列体を上方に取り出した時に、直ちに強化ガラス板配列体を徐冷することが好ましい。このようにすれば、強化ガラス板の製造効率が向上すると共に、強化ガラス板の反り量を低減し易くなる。
 本発明の強化ガラス板の製造方法において、150℃以上で且つ歪点未満の温度域で、25℃/分以下または20℃/分以下の降温速度で降温する好ましく、その際の降温時間は好ましくは3分間以上、5分間以上、7分間以上または10分間以上である。降温速度が速くなると、強化ガラス板の反り量を低減し難くなる。また、降温時間が短くなると、強化ガラス板の反り量を低減し難くなる。
 複数の強化ガラス板の平均反り率が0.5%未満、0.3%以下、0.23%未満、0.2%以下、0.18%以下、0.15%未満または0.13%以下、特に0.10%未満になるように徐冷することが好ましい。平均反り率が大きいと、強化ガラス板の製造歩留まりが低下し易くなる。なお、個別の強化ガラス板の反り率が0.3%以下、0.23%未満、0.2%以下、0.18%以下、0.15%未満または0.13%以下、特に0.10%未満になるように徐冷することも好ましい。反り率が大きいと、強化ガラス板の製造歩留まりが低下し易くなる。
 イオン交換溶液の温度から100℃の温度までの冷却時間は、1分間以上、3分間以上、5分間以上、10~250分間、または12~200分間、特に15~90分間が好ましい。冷却時間が短過ぎると、強化ガラス板の反り量を低減し難くなる。一方、冷却時間が長過ぎると、強化ガラス板の製造効率が低下し易くなると共に、冷却時にイオン交換反応が進行し、圧縮応力値が低下し易くなる。なお、「冷却」とは、徐冷と急冷を併せた概念である。
 100℃以上で且つ(歪点-100)℃未満の温度域、または150℃以上で且つ(歪点-150)℃未満の温度域、特に200℃以上で且つ(歪点-200)℃未満の温度域で徐冷することが好ましい。徐冷温度域が低過ぎると、強化ガラス板の反り量を低減し難くなる。一方、徐冷温度域が高過ぎると、徐冷時にイオン交換反応が進行し、圧縮応力値が低下し易くなる。徐冷時間は、1分間以上、3分間以上、5分間以上、10~250分間、または2~200分間、特に15~90分間が好ましい。徐冷時間が短過ぎると、強化ガラス板の反り量を低減し難くなる。一方、徐冷時間が長過ぎると、強化ガラス板の製造効率が低下し易くなると共に、徐冷時にイオン交換反応が進行し、圧縮応力値が低下し易くなる。
 徐冷時に、100℃以上で且つ(歪点-100)℃未満の温度、または150℃以上で且つ(歪点-150)℃未満の温度、特に200℃以上、(歪点-200)℃未満の温度で保持することが好ましい。保持温度が低過ぎると、強化ガラス板の反り量を低減し難くなる。一方、保持温度が高過ぎると、徐冷時にイオン交換反応が進行し、圧縮応力値が低下し易くなる。保持時間は、1分間以上、3分間以上、5分間以上、10~250分間、または12~200分間、特に15~90分間が好ましい。保持時間が短過ぎると、強化ガラス板の反り量を低減し難くなる。一方、保持時間が長過ぎると、強化ガラス板の製造効率が低下し易くなると共に、徐冷時にイオン交換反応が進行し、圧縮応力値が低下し易くなる。
 徐冷後に、100℃未満の温度まで急冷する工程を設けることが好ましい。この際、降温速度は30℃/分超が好ましく、特に50℃/分以上が好ましい。このようにすれば、強化ガラス板の反り量を改善した上で、強化ガラス板の製造効率を高めることができる。
 徐冷後に20℃以上、または30℃以上、特に40℃以上昇温する工程を設けてもよいが、工程を設けると、強化ガラス板の製造効率が低下し易くなると共に、昇温時にイオン交換反応が進行し、圧縮応力値が低下し易くなる。
 本発明の強化ガラス板の製造方法は、強化ガラス板配列体を断熱構造体内に配置し、徐冷することが好ましい。このようにすれば、強化ガラス板配列体が徐々に冷却されることになり、強化ガラス板の反り量を低減し易くなる。断熱構造体は、ヒーター等の加熱手段を有していることが好ましい。具体的には、徐冷炉等が使用可能である。このようにすれば、降温速度を制御し易くなる。また、断熱構造体は、完全に気密である必要はなく、開口部を有していてもよい。
 本発明の強化ガラス板の製造方法は、(内部のK発光強度)/(表層のK発光強度)の比が、0.67超で且つ0.95以下になるように徐冷することが好ましい。(内部のK発光強度)/(表層のK発光強度)の好適な下限比は0.68以上、0.70以上、0.72以上、または0.74以上、特に0.75以上であり、好適な上限比は0.92以下、0.90以下、または0.88以下、特に0.86以下である。(内部のK発光強度)/(表層のK発光強度)が大き過ぎると、アルカリイオンが、圧縮応力層の表層部分において偏析した状態で固定されるため、強化ガラス板の反り量が大きくなり易い。一方、(内部のK発光強度)/(表層のK発光強度)が小さ過ぎると、圧縮応力値が小さくなり易く、機械的強度を維持し難くなる。
 本発明の強化ガラス板の製造方法は、徐冷時に、強化ガラス板配列体に送風することが好ましく、強化ガラス板の間隔に向けて送風することがより好ましく、強化ガラス板の間隔に向けて下方から送風することがより好ましい。このようにすれば、強化ガラス板の面内の温度分布のばらつきが小さくなり、強化ガラス板の反り量を低減することができる。なお、冷風を送風すれば、強化ガラス板の面内の温度分布のばらつきを低減しながら、強化ガラス板を冷却することができる。熱風を送付すれば、強化ガラス板の面内の温度分布のばらつきを低減しながら、強化ガラス板を徐冷することができる。なお、送風手段として、周知の送風機(ファンやブロワー等)を用いることができる。
 図2は、徐冷時において強化ガラス板配列体に送風するための送風装置の一態様を例示する概略斜視図である。同図に示すように、この送風装置10は、内部を気体が上下方向に流通可能な管状(角管状)の包囲体11の内部空間に、複数の強化ガラス板3を直立姿勢で隙間を開けて支持体1に配列してなる強化ガラス板配列体12が収容されて構成されている。包囲体10の上端部には、ファンやブロワー等からなる送風手段13が設置される共に、包囲体10の下端部には、開口部11aが形成されている。そして、送風手段13の駆動に伴って、包囲体11の下端部の開口部11aからその内部空間に流入した気体は、矢印で示すように、強化ガラス板配列体12の配設箇所を通過して上方に流れ、包囲体10の上端部から外部に流出するように構成されている。なお、気体は、エアであるが、窒素やアルゴン等の不活性ガスであってもよい。
 このような構成によれば、包囲体11の内部空間を上方に向かって流れる気体は、強化ガラス板配列体12を構成している全ての強化ガラス板3の表面及び裏面に接触する。この場合、包囲体11の内部空間における気体の流れ方向は、各強化ガラス板3の表面及び裏面と平行であるため、大きな通気抵抗が生じることはない。なお、上記の構成に代えて、包囲体11の下端部に送風手段13を設置すると共に、包囲体11の上端部に開口部11aを形成することによって、包囲体11の内部空間で気体が上方に向かって流れるようにしてもよい。また、包囲体11を設けることなく、支持体1と共に強化ガラス板配列体12を露出させた状態で、別途配設した送風手段によって、強化ガラス板配列体12に向かって送風するようにしてもよい。さらに、気体の流れる方向も、上方に向かうことが好ましいが、下方に向かう気体の流れが生成されるようにしてもよい。
 以下、取り出し工程について説明する。
 本発明の強化ガラス板の製造方法は、支持体から強化ガラス板を取り出す取出し工程を有する。強化ガラス板を取り出す時の強化ガラス板の温度(又は環境温度)は、100℃未満、特に50℃以下が好ましい。このようにすれば、取り出し時に、強化ガラス板がサーマルショックで破損する事態を防止し易くなる。
 以下、強化用ガラスについて説明する。
 本発明の強化ガラス板の製造方法は、オーバーフローダウンドロー法で強化用ガラス板を成形することが好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を成形し易くなり、結果として、強化ガラス板の表面の機械的強度を高め易くなる。この理由は、オーバーフローダウンドロー法の場合、表面となるべき面が樋状耐火物に接触せず、自由表面の状態で成形されるからである。樋状構造物の構造や材質は、所望の寸法や表面品位を実現できるものであれば、特に限定されない。また、下方への延伸成形を行うために、ガラスリボンに対して力を印加する方法は、所望の寸法や表面品位を実現できるものであれば、特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラスリボンに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスリボンの端面近傍のみに接触させて延伸する方法を採用してもよい。
 オーバーフローダウンドロー法以外にも、スロットダウンドロー法、フロート法、ロールアウト法、リドロー法等で成形してもよい。
 本発明の強化ガラス板の製造方法は、ガラス組成中にNa2Oを1~20質量%含むように、強化用ガラス板を作製することが好ましい。Na2Oは、主要なイオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、Na2Oは、耐失透性を改善する成分でもある。しかし、Na2Oの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低下したり、イオン交換性能が低下し易くなる。一方、Na2Oの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎたり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する場合がある。
 本発明の強化ガラス板の製造方法は、ガラス組成として、質量%で、SiO2 50~80%、Al23 5~25%、B23 0~15%、Na2O 1~20%、K2O 0~10%を含有するように、強化用ガラス板を作製することが好ましい。上記のように各成分の含有範囲を限定した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示は質量%を指す。
 SiO2は、ガラスのネットワークを形成する成分である。SiO2の含有量は、好ましくは50~80%、52~75%、55~72%、または55~70%、特に好ましくは55~67.5%である。SiO2の含有量が少な過ぎると、ガラス化し難くなり、また熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなる。一方、SiO2の含有量が多過ぎると、溶融性や成形性が低下し易くなる。
 Al23は、イオン交換性能を高める成分であり、また歪点やヤング率を高める成分である。Al23の含有量は5~25%が好ましい。Al23の含有量が少な過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなることに加えて、イオン交換性能を十分に発揮できない虞が生じる。よって、Al23の好適な下限範囲は7%以上、8%以上、10%以上、12%以上、14%以上、または15%以上、特に16%以上である。一方、Al23の含有量が多過ぎると、ガラスに失透結晶が析出し易くなって、オーバーフローダウンドロー法等でガラス板を成形し難くなる。また熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合させ難くなり、更には高温粘性が高くなり、溶融性が低下し易くなる。よって、Al23の好適な上限範囲は22%以下、20%以下、19%以下、または18%以下、特に17%以下である。なお、イオン交換性能を重視する場合、Al23の含有量を可及的に増加させることが好ましく、例えばAl23の含有量を17%以上、18%以上、19%以上または20%以上、特に21%以上とすることが好ましい。
 B23は、高温粘度や密度を低下させると共に、ガラスを安定化させて結晶を析出させ難くし、液相温度を低下させる成分である。またクラックレジスタンスを高める成分である。しかし、B23の含有量が多過ぎると、イオン交換処理によって、ヤケと呼ばれる表面の着色が発生したり、耐水性が低下したり、圧縮応力層の圧縮応力値が低下したり、圧縮応力層の応力深さが小さくなる傾向がある。よって、B23の含有量は、好ましくは0~15%、0.1~12%、1~10%、1超~8%、または1.5~6%、特に好ましくは2~5%である。なお、イオン交換性能を重視する場合、B23の含有量を可及的に増加させることが好ましく、例えばB23の含有量を2.5%以上、3%以上、3.5%以上または4%以上、特に4.5%以上とすることが好ましい。
 Na2Oは、主要なイオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、Na2Oは、耐失透性を改善する成分でもある。Na2Oの含有量は1~20%である。Na2Oの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低下したり、イオン交換性能が低下し易くなる。よって、Na2Oを導入する場合、Na2Oの好適な下限範囲は10%以上または11%以上、特に12%以上である。一方、Na2Oの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎたり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する場合がある。よって、Na2Oの好適な上限範囲は17%以下、特に16%以下である。
 K2Oは、イオン交換を促進する成分であり、アルカリ金属酸化物の中では圧縮応力層の応力深さを増大させる効果が大きい成分である。また高温粘度を低下させて、溶融性や成形性を高める成分である。更には、耐失透性を改善する成分でもある。K2Oの含有量は0~10%である。K2Oの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎたり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する傾向がある。よって、K2Oの好適な上限範囲は8%以下、6%以下または4%以下、特に2%未満である。
 上記成分以外にも、例えば以下の成分を導入してもよい。
 Li2Oは、イオン交換成分であると共に、高温粘度を低下させて、溶融性や成形性を高める成分である。またヤング率を高める成分である。更にアルカリ金属酸化物の中では圧縮応力値を増大させる効果が大きい。しかし、Li2Oの含有量が多過ぎると、液相粘度が低下して、ガラスが失透し易くなる。また、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。更に、低温粘性が低下し過ぎて、応力緩和が起こり易くなると、かえって圧縮応力値が小さくなる場合がある。従って、Li2Oの含有量は、好ましくは0~3.5%、0~2%、0~1%または0~0.5%、特に0.01~0.2%である。
 Li2O+Na2O+K2Oの好適な含有量は5~25%、10~22%、または15~22%、特に17~22%である。Li2O+Na2O+K2Oの含有量が少な過ぎると、イオン交換性能や溶融性が低下し易くなる。一方、Li2O+Na2O+K2Oの含有量が多過ぎると、ガラスが失透し易くなることに加えて、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎて、高い圧縮応力値が得られ難くなる場合がある。更に液相温度付近の粘性が低下して、高い液相粘度を確保し難くなる場合もある。なお、「Li2O+Na2O+K2O」は、Li2O、Na2O及びK2Oの合量である。
 MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が大きい成分である。しかし、MgOの含有量が多過ぎると、密度や熱膨張係数が高くなり易く、またガラスが失透し易くなる。よって、MgOの好適な上限範囲は12%以下、10%以下、8%以下または5%以下、特に4%以下である。なお、ガラス組成中にMgOを導入する場合、MgOの好適な下限範囲は0.1%以上、0.5%以上または1%以上、特に2%以上である。
 CaOは、他の成分と比較して、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める効果が大きい。CaOの含有量は0~10%が好ましい。しかし、CaOの含有量が多過ぎると、密度や熱膨張係数が高くなり、またガラス組成の成分バランスを欠いて、かえってガラスが失透し易くなったり、イオン交換性能が低下し易くなる。よって、CaOの好適な含有量は0~5%、0.01~4%、または0.1~3%、特に1~2.5%である。
 SrOは、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。しかし、SrOの含有量が多過ぎると、密度や熱膨張係数が高くなったり、イオン交換性能が低下したり、ガラス組成の成分バランスを欠いて、かえってガラスが失透し易くなる。SrOの好適な含有範囲は0~5%、0~3%、または0~1%、特に0~0.1%未満である。
 BaOは、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。しかし、BaOの含有量が多過ぎると、密度や熱膨張係数が高くなったり、イオン交換性能が低下したり、ガラス組成の成分バランスを欠いて、かえってガラスが失透し易くなる。BaOの好適な含有範囲は0~5%、0~3%、または0~1%、特に0~0.1%未満である。
 ZnOは、イオン交換性能を高める成分であり、特に圧縮応力値を増大させる効果が大きい成分である。また低温粘性を低下させずに、高温粘性を低下させる成分である。しかし、ZnOの含有量が多過ぎると、ガラスが分相したり、耐失透性が低下したり、密度が高くなったり、圧縮応力層の応力深さが小さくなる傾向がある。よって、ZnOの含有量は0~6%、0~5%、0~1%、または0~0.5%、特に0~0.1%未満が好ましい。
 ZrO2は、イオン交換性能を顕著に高める成分であると共に、液相粘度付近の粘性や歪点を高める成分であるが、その含有量が多過ぎると、耐失透性が著しく低下する虞があり、また密度が高くなり過ぎる虞がある。よって、ZrO2の好適な上限範囲は10%以下、8%以下または6%以下、特に5%以下である。なお、イオン交換性能を高めたい場合、ガラス組成中にZrO2を導入することが好ましく、その場合、ZrO2の好適な下限範囲は0.01%以上または0.5%、特に1%以上である。
 P25は、イオン交換性能を高める成分であり、特に圧縮応力層の応力深さを大きくする成分である。しかし、P25の含有量が多過ぎると、ガラスが分相し易くなる。よって、P25の好適な上限範囲は10%以下、8%以下、6%以下、4%以下、2%以下または1%以下、特に0.1%未満である。
 清澄剤として、As23、Sb23、SnO2、F、Cl、SO3の群(好ましくはSnO2、Cl、SO3の群)から選択された一種又は二種以上を0~30000ppm(3%)導入してもよい。SnO2+SO3+Clの含有量は、清澄効果を的確に享受する観点から、好ましくは0~10000ppm、50~5000ppm、80~4000ppm、または100~3000ppm、特に300~3000ppmである。ここで、「SnO2+SO3+Cl」は、SnO2、SO3及びClの合量を指す。
 SnO2の好適な含有範囲は0~10000ppm、または0~7000ppm、特に50~6000ppmである、Clの好適な含有範囲は0~1500ppm、0~1200ppm、0~800ppm、または0~500ppm、特に50~300ppmである。SO3の好適な含有範囲は0~1000ppm、または0~800ppm、特に10~500ppmである。
 Nd23、La23等の希土類酸化物は、ヤング率を高める成分であり、また補色となる色を加えると、消色して、ガラスの色味をコントロールし得る成分である。しかし、原料自体のコストが高く、また多量に導入すると、耐失透性が低下し易くなる。よって、希土類酸化物の含有量は、好ましくは4%以下、3%以下、2%以下または1%以下、特に0.5%以下である。
 本発明では、環境面の配慮から、実質的にAs23、F、PbO、Bi23を含有しないことが好ましい。ここで、「実質的にAs23を含有しない」とは、ガラス成分として積極的にAs23を添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、As23の含有量が500ppm未満であることを指す。「実質的にFを含有しない」とは、ガラス成分として積極的にFを添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、Fの含有量が500ppm未満であることを指す。「実質的にPbOを含有しない」とは、ガラス成分として積極的にPbOを添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、PbOの含有量が500ppm未満であることを指す。「実質的にBi23を含有しない」とは、ガラス成分として積極的にBi23を添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、Bi23の含有量が500ppm未満であることを指す。
 以下の特性を有するように、強化用ガラスを作製することが好ましい。
 密度は、2.6g/cm3以下、特に2.55g/cm3以下が好ましい。密度が低い程、強化ガラス板を軽量化することができる。なお、ガラス組成中のSiO2、B23、P25の含有量を増加させたり、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、ZrO2、TiO2の含有量を低減すれば、密度が低下し易くなる。なお、「密度」は、周知のアルキメデス法で測定可能である。
 熱膨張係数は、好ましくは80×10-7~120×10-7/℃、85×10-7~110×10-7/℃、または90×10-7~110×10-7/℃、特に90×10-7~105×10-7/℃である。熱膨張係数を上記範囲に規制すれば、金属、有機系接着剤等の部材の熱膨張係数に整合し易くなり、金属、有機系接着剤等の部材の剥離を防止し易くなる。ここで、「熱膨張係数」は、ディラトメーターを用いて、30~380℃の温度範囲における平均熱膨張係数を測定した値を指す。なお、ガラス組成中のSiO2、Al23、B23、アルカリ金属酸化物、アルカリ土類金属酸化物の含有量を増加すれば、熱膨張係数が高くなり易く、逆にアルカリ金属酸化物、アルカリ土類金属酸化物の含有量を低減すれば、熱膨張係数が低下し易くなる。
 歪点は、好ましくは500℃以上、520℃以上または530℃以上、特に550℃以上である。歪点が高い程、耐熱性が向上して、強化ガラス板が反り難くなる。更にタッチパネルセンサー等のパターニングにおいて、高品位な膜を形成し易くなる。なお、ガラス組成中のアルカリ土類金属酸化物、Al23、ZrO2、P25の含有量を増加させたり、アルカリ金属酸化物の含有量を低減すれば、歪点が高くなり易い。
 104.0dPa・sにおける温度は、好ましくは1280℃以下、1230℃以下、1200℃以下または1180℃以下、特に1160℃以下である。ここで、「104.0dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。104.0dPa・sにおける温度が低い程、成形設備への負担が軽減されて、成形設備が長寿命化し、結果として、強化用ガラス板の製造コストを低廉化し易くなる。なお、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、B23、TiO2の含有量を増加させたり、SiO2、Al23の含有量を低減すれば、104.0dPa・sにおける温度が低下し易くなる。
 102.5dPa・sにおける温度は、好ましくは1620℃以下、1550℃以下、1530℃以下または1500℃以下、特に1450℃以下である。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。102.5dPa・sにおける温度が低い程、低温溶融が可能になり、溶融窯等のガラス製造設備への負担が軽減されると共に、泡品位を高め易くなる。よって、102.5dPa・sにおける温度が低い程、強化用ガラス板の製造コストを低廉化し易くなる。なお、102.5dPa・sにおける温度は、溶融温度に相当する。また、ガラス組成中のアルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、B23、TiO2の含有量を増加させたり、SiO2、Al23の含有量を低減すれば、102.5dPa・sにおける温度が低下し易くなる。
 液相温度は、好ましくは1200℃以下、1150℃以下、1100℃以下、1050℃以下、1000℃以下、950℃以下または900℃以下、特に880℃以下である。ここで、「液相温度」は、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を指す。なお、液相温度が低い程、耐失透性や成形性が向上する。また、ガラス組成中のNa2O、K2O、B23の含有量を増加させたり、Al23、Li2O、MgO、ZnO、TiO2、ZrO2の含有量を低減すれば、液相温度が低下し易くなる。
 液相粘度は、好ましくは104.0dPa・s以上、104.4dPa・s以上、104.8dPa・s以上、105.0dPa・s以上、105.4dPa・s以上、105.6dPa・s以上、106.0dPa・s以上、または106.2dPa・s以上、特に106.3dPa・s以上である。ここで、「液相粘度」は、液相温度における粘度を白金球引き上げ法で測定した値を指す。なお、液相粘度が高い程、耐失透性や成形性が向上する。また、ガラス組成中のNa2O、K2Oの含有量を増加させたり、Al23、Li2O、MgO、ZnO、TiO2、ZrO2の含有量を低減すれば、液相粘度が高くなり易い。
 β-OH値は0.45mm-1以下、0.4mm-1以下、0.3mm-1以下、0.28mm-1以下、または0.25mm-1以下、特に0.10~0.22mm-1が好ましい。β-OH値が小さい程、歪点が高くなると共に、イオン交換性能が向上する。ここで、「β-OH値」は、FT-IRを用いてガラスの透過率を測定し、下記の式を用いて求めた値を指す。
β-OH値 = (1/X)log(T1/T2
X:試料厚み(mm)
1:参照波長3846cm-1における透過率(%)
2:水酸基吸収波長3600cm-1付近における最小透過率(%)
 β-OH値を低下させる方法として、例えば、以下の(1)~(7)の方法が挙げられる。(1)含水量の低い原料を選択する。(2)原料中に水分を添加しない。(3)水分量を減少させる成分(Cl、SO3等)の添加量を増やす。(4)炉内雰囲気中の水分量を低下させる。(5)溶融ガラス中でN2バブリングを行う。(6)小型溶融炉を採用する。(7)溶融ガラスの流量を速くする。
 以下、研磨工程、切断工程等について説明する。
 本発明の強化ガラス板の製造方法は、表面を研磨する工程を有しないことが好ましく、また未研磨の表面の平均表面粗さ(Ra)は好ましくは10Å以下、より好ましくは5Å以下、より好ましくは4Å以下、更に好ましくは3Å以下、最も好ましくは2Å以下に制御することが望ましい。なお、平均表面粗さ(Ra)はSEMI D7-97「FPDガラス板の表面粗さの測定方法」に準拠した方法により測定すればよい。ガラスの理論強度は本来非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラス表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。それ故、強化ガラス板の表面を未研磨とすれば、イオン交換処理後に、強化ガラス板の機械的強度が維持されて、強化ガラス板が破壊し難くなる。また、イオン交換処理後にスクライブ切断を行う際に、表面が未研磨であると、スクライブ切断時に不当なクラック、破損等が生じ難くなる。更に、強化ガラス板の表面を未研磨とすれば、研磨工程を省略し得るため、強化ガラス板の製造コストを低廉化することができる。なお、未研磨の表面を得るためには、オーバーフローダウンドロー法で強化用ガラス板を成形すればよい。
 本発明の強化ガラス板の製造方法において、強化ガラス板を所定サイズに切断する時期は特に限定されないが、イオン交換処理後に、所定サイズに切断する工程を設けると、すなわち強化後切断すると、徐冷工程で反り量が低減された強化ガラス板を切断することになるから、強化後切断の効率を高め易くなる。結果として、強化ガラス板の製造効率を高めることができる。また、イオン交換処理前に、所定サイズに切断する工程を設けることも好ましい。このようにすれば、強化用ガラス板の寸法が小さくなるため、強化ガラス板の反り量を低減し易くなる。
 本発明の強化ガラス板の製造方法は、強化ガラス板の製造効率の観点から、強化後スクライブ切断されてなることが好ましい。強化ガラス板をスクライブ切断する場合、スクライブ傷の深さが応力厚みより大きく、且つ内部の引っ張り応力値が80MPa以下(望ましくは70MPa以下、60MPa以下、50MPa以下)であることが好ましい。また、強化ガラス板の端面から5mm以上内側に離れた領域から、スクライブを開始することが好ましく、対向する端面から5mm以上内側の領域で、スクライブを終了することが好ましい。このようにすれば、スクライブ時に意図しない割れが発生し難くなり、強化後スクライブ切断を適正に行い易くなる。ここで、内部の引っ張り応力値は、以下の式で算出される値である。
 内部の引っ張り応力値=(圧縮応力値×応力深さ)/(厚み-応力深さ×2)
 強化後スクライブ切断する場合、強化ガラス板の表面にスクライブラインを形成した後、該スクライブラインに沿って、分断することが好ましい。このようにすれば、切断時に意図しないクラックが進展し難くなる。スクライブラインに沿って、強化ガラス板を分断するには、スクライブラインの形成中に、強化ガラスが自己破壊しないことが重要になる。自己破壊とは、強化ガラス板の表面に存在する圧縮応力、内部に存在する引っ張り応力の影響により、応力深さより深いダメージを受けた場合に、強化ガラス板が自発的に破壊される現象である。スクライブラインの形成中に強化ガラス板の自己破壊が始まると、所望の切断を行うことが困難になる。このために、スクライブラインの深さを応力深さの10倍以内、5倍以内、特に3倍以内に規制することが好ましい。なお、スクライブラインの形成には、作業性の点で、ダイヤモンドホイールチップ等を用いることが好ましい。
 強化後切断される場合、強化ガラス板の端面(切断面)と表面が交差する端縁領域の一部又は全部に面取り加工が施されていることが好ましく、少なくとも表示側の端縁領域の一部又は全部に面取り加工が施されていることが好ましい。面取り加工として、R面取りが好ましく、この場合、曲率半径0.05~0.5mmのR面取りが好ましい。また、0.05~0.5mmのC面取りも好適である。更に、面取り面の表面粗さRaは1nm以下、0.7nm以下または0.5nm以下、特に0.3nm以下が好ましい。このようにすれば、端縁領域を起点としたクラックを防止し易くなる。ここで、「表面粗さRa」は、JIS B0601:2001に準拠した方法で測定した値を指す。
 本発明の強化用ガラス板配列体は、略矩形、且つ板厚1.0mm以下の強化用ガラス板が、直立姿勢で厚み方向に10mm以下の間隔を置いて、支持体に複数配列されていることを特徴とする。また、本発明の強化ガラス板配列体は、略矩形、且つ板厚1.0mm以下の強化ガラス板が、直立姿勢で厚み方向に10mm以下の間隔を置いて、支持体に複数配列されていることを特徴とする。ここで、本発明の強化用ガラス板配列体、強化ガラス板配列体の技術的特徴は、本発明の強化ガラス板の製造方法の説明欄に記載済みであり、ここでは、便宜上、詳細な記載を省略する。
 本発明の支持体は、略矩形、且つ板厚1.0mm以下の強化ガラス板を直立姿勢で厚み方向に複数配列するための支持体であって、強化ガラス板を10mm以下の間隔を置いて複数配列するための支持部を有することを特徴とする。ここで、本発明の支持体の技術的特徴は、本発明の強化ガラス板の製造方法の説明欄に記載済みであり、ここでは、便宜上、詳細な記載を省略する。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1は、本発明の実施例(試料No.1~4)を示している。
Figure JPOXMLDOC01-appb-T000001
 次のようにして、強化用ガラス板を作製した。まずガラス原料を調合し、ガラスバッチを作製した。次に、このガラスバッチを連続溶融炉に投入し、清澄工程、攪拌工程、供給工程を経て、オーバーフローダウンドロー法により板厚0.7mmの板状に成形した後、120mm×180mmの寸法に切断して、複数の強化用ガラス板を作製した。この強化用ガラス板は、ガラス組成として、質量%で、SiO2 57.4%、Al23 13%、B23 2%、MgO 2%、CaO 2%、Li2O 0.1%、Na2O 14.5%、K2O 5%、ZrO2 4%を含有し、密度が2.54g/cm3、歪点が517℃、熱膨張係数が99.9×10-7/℃、104.0dPa・sにおける温度が1098℃、102.5dPa・sにおける温度が1392℃、液相温度が880℃、液相粘度が105.5dPa・sである。そして、この強化用ガラス板は、表面が未研磨であり、また430℃のKNO3溶融塩中に420分間浸漬すると、圧縮応力層の圧縮応力値が680MPa、応力深さが43μmになる。
 次に、得られた強化用ガラス板を直立姿勢で厚み方向に6mmの間隔を置いて、支持体に24枚配列して、強化用ガラス板配列体とした。この強化用ガラス板配列体を予熱した後、430℃のKNO3溶融塩中に420分間浸漬することにより、強化ガラス板配列体とした。
 続いて、この強化ガラス板配列体をKNO3溶融塩から取り出した後、直ちに断熱容器内に移動し、表中の温度まで炉冷した。表中の温度に到達した後、強化ガラス板配列体を室温(20℃)下に移動して、急冷した。なお、急冷温度域において、炉冷終了温度から100℃までの降温速度は60℃/分超であった。その後、強化ガラス板配列体から24枚の強化ガラス板を取り出した。
 試料No.1~4の各強化ガラス板につき、反り率を評価した。具体的に説明すると、強化ガラス板を水平面に対して、87°に傾いた状態でステージに立て掛けて、強化ガラス板の上方端面から面内に向かって、5mmオフセットした直線測定領域を走査するレーザー変位計(キーエンス社製)により、該直線測定領域のプロファイルを取得し、このプロファイルの両端を結んだ直線に対するプロファイルの最大変位量を求めて、これを反り量とし、反り量を測定距離で除した値を反り率とした。表中では、24枚の強化ガラス板の反り率の平均値が記載されている。なお、強化用ガラス板についても同様にして反り率が評価されている。
 表1から明らかなように、試料No.1~4では、炉冷(徐冷)により、反り量の増加幅が抑制されている。また、表1から、徐冷時間が長い程、反り量を抑制し易いことが分かる。更に、徐冷終了温度が高いと、反り量を改善し得るものの、圧縮応力層の圧縮応力値が低下し、応力深さが大きくなり易いため、熱処理によりイオン交換反応が進行し易いことが予想される。
 [実施例1]と同様にして、強化ガラス板配列体を作製した後、KNO3溶融塩から直ちに310℃に保持された徐冷炉内に移動し、60分間保持した後、強化ガラス板配列体を室温(20℃)下に移動して、急冷した。その後、強化ガラス板配列体から24枚の強化ガラス板を取り出し、[実施例1]と同様にして、各強化ガラス板の反り率を評価したところ、平均値で0.13%であった。なお、各強化用ガラス板の反り率は、平均値で0.03%であった。
 [実施例1]と同様にして、強化ガラス板配列体を作製した後、KNO3溶融塩から直ちに310℃に保持された徐冷炉内に移動し、60分間保持した後、電源を切った徐冷炉内で炉冷した。その後、強化ガラス板配列体から24枚の強化ガラス板を取り出し、[実施例1]と同様にして、各強化ガラス板の反り率を評価したところ、平均値で0.01%であった。なお、各強化用ガラス板の反り率は、平均値で0.03%であった。
 [実施例1]と同様にして、強化ガラス板配列体を作製した後、KNO3溶融塩から直ちに410℃に保持された徐冷炉内に移動し、10分間保持した後、徐冷炉の電源を切って、送風手段により、強化ガラス板配列体を室温(20℃)まで強制冷却した。その後、強化ガラス板配列体から24枚の強化ガラス板を取り出し、[実施例1]と同様にして、各強化ガラス板の反り率を評価したところ、平均値で0.07%であった。なお、各強化用ガラス板の反り率は、平均値で0.03%であった。
 なお、[実施例1]~[実施例4]で示された傾向は、表2に記載の強化用ガラス板(試料a~e)でも同様になると考えられる。
Figure JPOXMLDOC01-appb-T000002
 次のようにして、強化用ガラス板を作製した。まずガラス組成として、質量%で、SiO2 61.4%、Al23 18%、B23 0.5%、Li2O 0.1%、Na2O 14.5%、K2O 2%、MgO 3%、BaO 0.1%、SnO2 0.4%を含有するように、ガラス原料を調合し、ガラスバッチを作製した。次に、このガラスバッチを連続溶融炉に投入し、清澄工程、攪拌工程、供給工程を経て、オーバーフローダウンドロー法にて板状に成形した後、1800mm×1500mm×厚み0.5mmの寸法に切断して、強化用ガラス板(親板)を作製した。なお、この強化用ガラス板は、密度が2.45g/cm3、歪点が563℃、熱膨張係数が91.3×10-7/℃、104.0dPa・sにおける温度が1255℃、102.5dPa・sにおける温度が1590℃、液相温度が970℃、液相粘度が106.3dPa・sである。そして、この強化用ガラス板は、表面が未研磨であり、また430℃のKNO3溶融塩中に240分間浸漬すると、圧縮応力層の圧縮応力値が900MPa、応力深さが43μmになる。なお、算出に当たり、試料の屈折率を1.50、光学弾性定数を29.5[(nm/cm)/MPa]とする。
 次に、得られた強化用ガラス板を直立姿勢で厚み方向に5mmの間隔を置いて、支持体に24枚配列して、強化用ガラス板配列体とした。この強化用ガラス板配列体を予熱した後、430℃のKNO3溶融塩中に240分間浸漬することにより、強化ガラス板配列体とした。
 続いて、この強化ガラス板配列体をKNO3溶融塩から取り出した後、直ちに断熱容器内に移動し、310℃まで15分間かけて炉冷した。310℃に到達した後、強化ガラス板配列体を室温(20℃)下に移動して、急冷した。なお、急冷温度域において、炉冷終了温度から100℃までの降温速度は60℃/分超であった。その後、強化ガラス板配列体から24枚の強化ガラス板を取り出した。
 得られた強化ガラス板につき、反り率を評価した。具体的に説明すると、強化ガラス板を水平面に対して、87°に傾いた状態でステージに立て掛けて、強化ガラス板の上方端面から面内に向かって、5mmオフセットした直線測定領域を走査するレーザー変位計(キーエンス社製)により、該直線測定領域のプロファイルを取得し、このプロファイルの両端を結んだ直線に対するプロファイルの最大変位量を求めて、これを反り量とし、反り量を測定距離で除した値を反り率とした。その結果、24枚の強化ガラス板の反り率の平均値が0.14%であった。なお、強化用ガラス板についても同様にして反り率を評価したところ、平均値が0.05%であった。
 更に、得られた強化ガラス板の表面にスクライブラインを形成し、そのスクライブラインに沿って、折り割り操作を行い、7インチサイズに分断した。なお、スクライブラインの形成に際し、端面からスクライブを開始し、対向する端面から5mm以上内側の領域で、スクライブを終了するようにした。また、スクライブ切断に際し、スクライブ傷の深さを応力深さより大きくなるようにした。
 まずガラス組成として、質量%で、SiO2 61.4%、Al23 18%、B23 0.5%、Li2O 0.1%、Na2O 14.5%、K2O 2%、MgO 3%、BaO 0.1%、SnO2 0.4%を含有するように、ガラス原料を調合し、ガラスバッチを作製した。次に、このガラスバッチを連続溶融炉に投入し、清澄工程、攪拌工程、供給工程を経て、オーバーフローダウンドロー法にて板状に成形した後、1800mm×1500mm×厚み0.5mmの寸法に切断して、強化用ガラス板(親板)を作製した。なお、この強化用ガラス板は、密度が2.45g/cm3、歪点が563℃、熱膨張係数が91.3×10-7/℃、104.0dPa・sにおける温度が1255℃、102.5dPa・sにおける温度が1590℃、液相温度が970℃、液相粘度が106.3dPa・sである。
 次に、得られた強化用ガラス板(親板)を直立姿勢で厚み方向に5mmの間隔を置いて、支持体に24枚配列して、強化用ガラス板配列体とした。この強化用ガラス板配列体を予熱した後、430℃のKNO3溶融塩中に240分間浸漬することにより、強化ガラス板配列体とした。続いて、上記と同様の方法により、強化ガラス板の圧縮応力層の圧縮応力値と応力深さを算出したところ、圧縮応力値が900MPa、応力深さが43μmであった。なお、算出に当たり、試料の屈折率を1.50、光学弾性定数を29.5[(nm/cm)/MPa]とした。
 更に、得られた強化ガラス板の表面にスクライブラインを形成し、そのスクライブラインに沿って、折り割り操作を行い、所定サイズの個片(7インチサイズ)に分断した。なお、スクライブラインの形成に際し、端面からスクライブを開始し、対向する端面から5mm以上内側の領域で、スクライブを終了するようにした。また、スクライブ切断に際し、スクライブ傷の深さを応力深さより大きくなるようにした。
 更に、得られた強化ガラス板(個片)に対して、表3に記載の熱処理(昇温速度:5℃/分、降温速度:炉冷)を行い、試料No.6~12を作製した。得られた熱処理試料につき、GD-OES(堀場製作所製GD-Profiler2)により(内部のK発光強度)/(表層のK発光強度)の比を測定した。その結果を表3、図3~10に示す。なお、表3における試料No.5は、熱処理を行う前の強化ガラス板である。また、測定条件は、放電電力:80W、放電圧力:200Paとした。
Figure JPOXMLDOC01-appb-T000003
 表3に係る実験は、厳密に言えば、徐冷工程によるものではなく、別途の熱処理である。しかし、表3に係るデータは、徐冷工程後の強化ガラス板について、(内部のK発光強度)/(表層のK発光強度)の比を見積もるために利用可能である。
 本発明に係る強化ガラス板は、携帯電話、デジタルカメラ、PDA等の表示デバイスのカバーガラスに好適である。また、本発明に係る強化ガラス板は、これらの用途以外にも、高い機械的強度が要求される用途、例えば窓ガラス、磁気ディスク用基板、フラットパネルディスプレイ用基板、固体撮像素子用カバーガラス、食器等への応用が期待できる。
 本発明の強化ガラス板の製造方法は、平板形状の強化ガラス板のみならず、表面が面方向に湾曲した2D、2.5D、3Dの強化ガラス板に適用することもできる。2D、2.5D、3Dの強化ガラス板に適用する場合、所望の湾曲形状以外の変形が反り量に該当することになる。
1 支持体
2 枠部
2a 底枠部
2b 両側枠部
2c 前枠部
2d 後枠部
2e 梁枠部
3 強化用ガラス板
4 支持部
4a 側縁支持部
4b 下端支持部
5 保温板
10 送風装置
11 包囲体
12 強化ガラス板配列体
13 送風手段

Claims (21)

  1.  略矩形で且つ板厚1.0mm以下の強化用ガラス板を直立姿勢で厚み方向に10mm以下の間隔を置いて、支持体に複数配列して、強化用ガラス板配列体を得る配列工程と、
     強化用ガラス板配列体をイオン交換溶液に浸漬して、イオン交換処理し、強化ガラス板配列体を得る強化工程と、
     強化ガラス板配列体をイオン交換溶液から取り出した後、徐冷する徐冷工程と、
     支持体から強化ガラス板配列体を構成している各強化ガラス板を取り出す取出し工程と、を有することを特徴とする強化ガラス板の製造方法。
  2.  強化ガラス板配列体を構成している全ての強化ガラス板についての平均反り率が0.5%未満になるように徐冷することを特徴とする請求項1に記載の強化ガラス板の製造方法。
  3.  徐冷工程で、イオン交換溶液の温度から100℃の温度までの冷却時間が1分間以上であることを特徴とする請求項1又は2に記載の強化ガラス板の製造方法。
  4.  徐冷時に、100℃以上で且つ(歪点-100)℃未満の温度に保持することを特徴とする請求項1~3の何れかに記載の強化ガラス板の製造方法。
  5.  強化ガラス板配列体を断熱構造体内に配置し、徐冷することを特徴とする請求項1~4の何れかに記載の強化ガラス板の製造方法。
  6.  (内部のK発光強度)/(表層のK発光強度)の比が、0.67超で且つ0.95以下になるように徐冷することを特徴とする強化ガラス板の製造方法。
  7.  徐冷時に、強化ガラス板配列体に送風することを特徴とする請求項1~6の何れかに記載の強化ガラス板の製造方法。
  8.  取り出し工程後に、更に強化ガラス板を所定サイズに切断する強化後切断工程を有することを特徴とする請求項1~7の何れかに記載の強化ガラス板の製造方法。
  9.  オーバーフローダウンドロー法で成形した強化用ガラス板を使用することを特徴とする請求項1~8の何れかに記載の強化ガラス板の製造方法。
  10.  圧縮応力層の圧縮応力値が400MPa以上、且つ圧縮応力層の応力深さが15μm以上になるように、イオン交換処理することを特徴とする請求項1~9の何れかに記載の強化ガラス板の製造方法。
  11.  ガラス組成中にNa2Oを1~20質量%含む強化用ガラス板を使用することを特徴とする請求項1~10の何れかに記載の強化ガラス板の製造方法。
  12.  ガラス組成として、質量%で、SiO2 50~80%、Al23 5~25%、B23 0~15%、Na2O 1~20%、K2O 0~10%を含有する強化用ガラス板を使用することを特徴とする請求項1~11の何れかに記載の強化ガラス板の製造方法。
  13.  歪点が500℃以上の強化用ガラス板を使用することを特徴とする請求項1~12の何れかに記載の強化ガラス板の製造方法。
  14.  表面の全部又は一部を研磨する研磨工程を有しないことを特徴とする請求項1~13の何れかに記載の強化ガラス板の製造方法。
  15.  表示デバイスのカバーガラスに用いることを特徴とする請求項1~14の何れかに記載の強化ガラス板の製造方法。
  16.  略矩形で且つ板厚1.0mm以下の強化用ガラス板が、直立姿勢で厚み方向に10mm以下の間隔を置いて、支持体に複数配列されていることを特徴とする強化用ガラス板配列体。
  17.  略矩形で且つ板厚1.0mm以下の強化ガラス板が、直立姿勢で厚み方向に10mm以下の間隔を置いて、支持体に複数配列されていることを特徴とする強化ガラス板配列体。
  18.  全ての強化ガラス板の平均反り率が0.5%未満であることを特徴とする請求項17に記載の強化ガラス板配列体。
  19.  略矩形の強化ガラス板であって、
     板厚が0.7mm以下であり、且つ反り率が0.5%未満であることを特徴とする強化ガラス板。
  20.  (内部のK発光強度)/(表層のK発光強度)の比が、0.67超で且つ0.95以下であることを特徴とする請求項19に記載の強化ガラス板。
  21.  略矩形で且つ板厚1.0mm以下の強化ガラス板を直立姿勢で厚み方向に複数配列するための支持体であって、強化ガラス板を10mm以下の間隔を置いて複数配列するための支持部を有することを特徴とする支持体。
PCT/JP2014/063614 2013-05-24 2014-05-22 強化ガラス板の製造方法 WO2014189117A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157019458A KR102145229B1 (ko) 2013-05-24 2014-05-22 강화 유리판의 제조방법
US14/892,303 US20160083292A1 (en) 2013-05-24 2014-05-22 Method for manufacturing tempered glass sheet
CN201480023335.3A CN105164081B (zh) 2013-05-24 2014-05-22 强化玻璃板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013109799 2013-05-24
JP2013-109799 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014189117A1 true WO2014189117A1 (ja) 2014-11-27

Family

ID=51933668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063614 WO2014189117A1 (ja) 2013-05-24 2014-05-22 強化ガラス板の製造方法

Country Status (6)

Country Link
US (1) US20160083292A1 (ja)
JP (1) JP6660660B2 (ja)
KR (1) KR102145229B1 (ja)
CN (1) CN105164081B (ja)
TW (1) TWI634088B (ja)
WO (1) WO2014189117A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056343A1 (ja) * 2014-10-09 2016-04-14 日本電気硝子株式会社 化学強化ガラスの製造方法及び化学強化ガラスの製造装置
WO2016170931A1 (ja) * 2015-04-23 2016-10-27 日本電気硝子株式会社 強化ガラス

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234731B2 (ja) * 2013-08-08 2017-11-22 上村工業株式会社 クランパーを備える保持具
JP6519221B2 (ja) * 2015-02-23 2019-05-29 日本電気硝子株式会社 ガラス基板及びこれを用いた積層体
KR20180091862A (ko) 2015-12-08 2018-08-16 코닝 인코포레이티드 S-형 응력 프로파일 및 생산 방법
JP2019511447A (ja) 2016-03-09 2019-04-25 コーニング インコーポレイテッド 複雑に湾曲したガラス物品の冷間成形
US11338556B2 (en) 2016-06-28 2022-05-24 Corning Incorporated Laminating thin strengthened glass to curved molded plastic surface for decorative and display cover application
JP6965881B2 (ja) * 2016-06-30 2021-11-10 Agc株式会社 化学強化ガラス板
CN115327805A (zh) 2016-07-05 2022-11-11 康宁公司 固定装置和汽车内饰系统
KR102429148B1 (ko) 2016-10-25 2022-08-04 코닝 인코포레이티드 디스플레이에 냉간-성형 유리 적층
KR20180047473A (ko) * 2016-10-31 2018-05-10 엘지디스플레이 주식회사 편광판 및 이를 구비한 표시장치
KR20200017001A (ko) 2017-01-03 2020-02-17 코닝 인코포레이티드 만곡된 커버 유리 및 디스플레이 또는 터치 패널을 갖는 차량 인테리어 시스템 및 이를 형성시키는 방법
US11016590B2 (en) 2017-01-03 2021-05-25 Corning Incorporated Vehicle interior systems having a curved cover glass and display or touch panel and methods for forming the same
EP3625179A1 (en) 2017-05-15 2020-03-25 Corning Incorporated Contoured glass articles and methods of making the same
EP3655282B1 (en) 2017-07-18 2023-02-15 Corning Incorporated Vehicle interior system comprising a cold formed complexly curved glass article
EP3681846A1 (en) 2017-09-12 2020-07-22 Corning Incorporated Deadfront for displays including a touch panel on decorative glass and related methods
TWI806897B (zh) 2017-09-13 2023-07-01 美商康寧公司 用於顯示器的基於光導器的無電面板、相關的方法及載具內部系統
US11065960B2 (en) 2017-09-13 2021-07-20 Corning Incorporated Curved vehicle displays
EP3694709A1 (en) 2017-10-10 2020-08-19 Corning Incorporated Vehicle interior systems having a curved cover glass with improved reliability and methods for forming the same
US11768369B2 (en) 2017-11-21 2023-09-26 Corning Incorporated Aspheric mirror for head-up display system and methods for forming the same
JP7274480B2 (ja) 2017-11-30 2023-05-16 コーニング インコーポレイテッド 曲面ミラーを成形する真空成形装置、システム及び方法
US11767250B2 (en) 2017-11-30 2023-09-26 Corning Incorporated Systems and methods for vacuum-forming aspheric mirrors
CN111989302B (zh) 2018-03-13 2023-03-28 康宁公司 具有抗破裂的弯曲覆盖玻璃的载具内部系统及用于形成这些载具内部系统的方法
KR102625796B1 (ko) * 2018-03-22 2024-01-16 코닝 인코포레이티드 유리 시트를 검사하는 방법, 유리 시트를 제조 하는 방법 및 유리 제조 장치
CN108516702B (zh) * 2018-05-23 2021-03-12 河北视窗玻璃有限公司 一种降低玻璃化学强化中产生翘曲的方法及强化用治具
TW202005928A (zh) * 2018-06-01 2020-02-01 美商康寧公司 低翹曲、強化製品及製作該製品之非對稱離子交換方法
CN112566782A (zh) 2018-07-16 2021-03-26 康宁公司 具冷弯玻璃基板的车辆内部系统及其形成方法
CN110104964A (zh) * 2019-04-30 2019-08-09 咸宁南玻光电玻璃有限公司 玻璃化学钢化处理的方法
CN114269701A (zh) * 2019-06-25 2022-04-01 康宁股份有限公司 离子交换后的玻璃冷却方法
EP3771695A1 (en) 2019-07-31 2021-02-03 Corning Incorporated Method and system for cold-forming glass
JP7183997B2 (ja) * 2019-08-29 2022-12-06 Agc株式会社 ガラス基板の処理方法
CN111333348A (zh) * 2020-03-10 2020-06-26 醴陵旗滨电子玻璃有限公司 化学强化方法、化学强化装置和化学强化玻璃
US11772361B2 (en) 2020-04-02 2023-10-03 Corning Incorporated Curved glass constructions and methods for forming same
CN111875264B (zh) * 2020-08-13 2021-06-04 东莞市晶博光电股份有限公司 一种盖板玻璃的强化工艺
KR20220106900A (ko) * 2021-01-22 2022-08-01 삼성디스플레이 주식회사 기판 적재용 카세트 및 이를 이용한 기판 처리 방법
KR20220121297A (ko) * 2021-02-24 2022-09-01 삼성디스플레이 주식회사 유리판 적재 장치 및 이를 이용한 유리판 강화 방법
CN112811797B (zh) * 2021-03-09 2023-05-09 宜昌南玻显示器件有限公司 一种平板玻璃热弯加工的方法
JP2023084768A (ja) * 2021-12-08 2023-06-20 日本電気硝子株式会社 低熱膨張ガラス
CN115572061B (zh) * 2022-09-28 2024-04-12 湖南旗滨电子玻璃股份有限公司 素玻璃、化学强化玻璃及其制备方法、盖板玻璃

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226539A (ja) * 1997-02-09 1998-08-25 Hoya Corp 情報記録媒体用ガラス基板の製造方法、及び情報記録媒体の製造方法
JP2001517599A (ja) * 1997-09-23 2001-10-09 グラヴルベル 溶融アルカリ金属塩と接触することによるガラス質シート材料の熱寸法安定処理
JP2008195602A (ja) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd 強化ガラス基板の製造方法及び強化ガラス基板
WO2013031855A1 (ja) * 2011-08-31 2013-03-07 日本電気硝子株式会社 強化ガラス基板及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD69678A (ja) * 1967-04-28
JPH07309639A (ja) * 1994-05-12 1995-11-28 A G Technol Kk ガラス基板の化学強化用治具
JP2998949B2 (ja) * 1995-10-31 2000-01-17 ホーヤ株式会社 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP2000344550A (ja) * 1999-06-04 2000-12-12 Daido Steel Co Ltd ガラス基板強化処理方法
JP2001192239A (ja) * 1999-12-28 2001-07-17 Asahi Techno Glass Corp 強化ガラスの製造方法、強化ガラスおよびガラス基板
JP2004161538A (ja) * 2002-11-13 2004-06-10 Central Glass Co Ltd 化学強化ガラスの製造装置
JP2006083045A (ja) 2004-09-17 2006-03-30 Hitachi Ltd ガラス部材
JP2013503105A (ja) * 2009-08-28 2013-01-31 コーニング インコーポレイテッド 化学強化ガラス基板からガラス品をレーザ割断するための方法
JP5621239B2 (ja) 2009-10-20 2014-11-12 旭硝子株式会社 ディスプレイ装置用ガラス板、ディスプレイ装置用板ガラスおよびその製造方法
US20110281072A1 (en) * 2010-05-17 2011-11-17 Robert Sabia Laminable shaped glass article and method of making the same
US8857215B2 (en) * 2011-05-18 2014-10-14 Corning Incorporated Apparatus and method for heat treating glass sheets
TWI591039B (zh) * 2011-07-01 2017-07-11 康寧公司 具高壓縮應力的離子可交換玻璃

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226539A (ja) * 1997-02-09 1998-08-25 Hoya Corp 情報記録媒体用ガラス基板の製造方法、及び情報記録媒体の製造方法
JP2001517599A (ja) * 1997-09-23 2001-10-09 グラヴルベル 溶融アルカリ金属塩と接触することによるガラス質シート材料の熱寸法安定処理
JP2008195602A (ja) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd 強化ガラス基板の製造方法及び強化ガラス基板
WO2013031855A1 (ja) * 2011-08-31 2013-03-07 日本電気硝子株式会社 強化ガラス基板及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056343A1 (ja) * 2014-10-09 2016-04-14 日本電気硝子株式会社 化学強化ガラスの製造方法及び化学強化ガラスの製造装置
JP2016074576A (ja) * 2014-10-09 2016-05-12 日本電気硝子株式会社 化学強化ガラスの製造方法及び化学強化ガラスの製造装置
WO2016170931A1 (ja) * 2015-04-23 2016-10-27 日本電気硝子株式会社 強化ガラス
KR20170139031A (ko) * 2015-04-23 2017-12-18 니폰 덴키 가라스 가부시키가이샤 강화유리
JPWO2016170931A1 (ja) * 2015-04-23 2018-02-15 日本電気硝子株式会社 強化ガラス
KR102289447B1 (ko) * 2015-04-23 2021-08-11 니폰 덴키 가라스 가부시키가이샤 강화유리
US11236015B2 (en) 2015-04-23 2022-02-01 Nippon Electric Glass Co., Ltd. Tempered glass

Also Published As

Publication number Publication date
CN105164081A (zh) 2015-12-16
KR20160012102A (ko) 2016-02-02
TW201509850A (zh) 2015-03-16
US20160083292A1 (en) 2016-03-24
CN105164081B (zh) 2019-07-26
JP6660660B2 (ja) 2020-03-11
JP2015003857A (ja) 2015-01-08
KR102145229B1 (ko) 2020-08-18
TWI634088B (zh) 2018-09-01

Similar Documents

Publication Publication Date Title
JP6660660B2 (ja) 強化ガラス板の製造方法
JP6376443B2 (ja) 強化ガラス板の製造方法
US11535548B2 (en) Glass for chemical strengthening, chemically strengthened glass and method for manufacturing chemically strengthened glass
US10173923B2 (en) Tempered glass, tempered glass plate, and glass for tempering
JP5904426B2 (ja) 強化ガラスおよびその製造方法
JP4974066B2 (ja) 強化ガラス基板及びその製造方法
WO2013191200A1 (ja) 強化ガラスの製造方法
JP5645099B2 (ja) 強化ガラス
JP6300177B2 (ja) 強化ガラスの製造方法
US20130288001A1 (en) Tempered glass, and tempered glass plate
WO2013031855A1 (ja) 強化ガラス基板及びその製造方法
CN115231820A (zh) 化学强化用玻璃及化学强化玻璃
JP2016074576A (ja) 化学強化ガラスの製造方法及び化学強化ガラスの製造装置
WO2014185486A1 (ja) 強化用ガラス板、強化ガラス板及び強化ガラス板の製造方法
JP2015051882A (ja) 強化ガラスの製造方法及び強化ガラス基板
JP5950248B2 (ja) 表示デバイスの製造方法
WO2015079768A1 (ja) 強化ガラス板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023335.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157019458

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14892303

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800280

Country of ref document: EP

Kind code of ref document: A1