WO2014188987A1 - 蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス用電極、蓄電デバイス用セパレーターおよび蓄電デバイス - Google Patents

蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス用電極、蓄電デバイス用セパレーターおよび蓄電デバイス Download PDF

Info

Publication number
WO2014188987A1
WO2014188987A1 PCT/JP2014/063155 JP2014063155W WO2014188987A1 WO 2014188987 A1 WO2014188987 A1 WO 2014188987A1 JP 2014063155 W JP2014063155 W JP 2014063155W WO 2014188987 A1 WO2014188987 A1 WO 2014188987A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
electricity storage
electrode
mass
binder
Prior art date
Application number
PCT/JP2014/063155
Other languages
English (en)
French (fr)
Inventor
一聡 伊藤
智隆 篠田
裕之 宮内
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201480030020.1A priority Critical patent/CN105247717B/zh
Priority to US14/893,875 priority patent/US20160104893A1/en
Priority to JP2014541470A priority patent/JP5652633B1/ja
Priority to KR1020157033037A priority patent/KR20160014599A/ko
Publication of WO2014188987A1 publication Critical patent/WO2014188987A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a power storage device composition, a power storage device slurry containing the composition, a power storage device electrode prepared by applying and drying the slurry to a current collector, and applying and drying the slurry.
  • the present invention relates to a separator for an electricity storage device provided with a protective film formed on the surface, and an electricity storage device provided with at least one of the electrode and the separator.
  • a positive electrode and a negative electrode used in an electricity storage device are prepared by applying a mixture of an active material and a binder to the current collector surface. It is produced by applying and drying to form an active material layer on the current collector surface.
  • a technique has also been proposed in which a mixture of inorganic particles and a binder is applied to the separator surface and dried to form a protective film that can withstand dendrites on the separator surface.
  • JP 2011-005867 A in the field of electricity storage devices, it is common to provide a layer containing an active material or inorganic particles on the surface of an electrode or a separator.
  • a separator for preventing a short circuit is sandwiched between a positive electrode and a negative electrode, and then a molding process such as bonding or winding the electrode and the separator is performed, and the container
  • a molding process such as bonding or winding the electrode and the separator is performed, and the container
  • an electrolytic solution is placed, sealed and sealed.
  • electrodes and separators may be wound into a roll after being manufactured and used for manufacturing an electricity storage device.
  • blocking is used in this sense
  • the active material is peeled off from the active material layer, and the inorganic particles are peeled off from the separator.
  • a method for preventing blocking by using polymer particles having a reactive functional group as an antiblocking agent is studied.
  • some aspects according to the present invention are excellent in blocking resistance by solving at least a part of the problems, and can effectively prevent misalignment when laminating an electrode and a separator (that is,
  • the present invention provides a power storage device composition capable of producing a power storage device electrode and a power storage device separator that can be appropriately blocked, and a power storage device slurry containing the composition.
  • some aspects of the present invention solve at least a part of the above-described problems, thereby being excellent in blocking resistance and effectively preventing misalignment when laminating an electrode and a separator (that is, An electrode for an electricity storage device and a separator for an electricity storage device that can be appropriately blocked, and an electricity storage device including these.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • composition for an electricity storage device is: A polymer (A) having a repeating unit derived from an unsaturated carboxylic acid ester; A component (B) which is at least one selected from the group consisting of polyethylene wax, polypropylene wax, fatty acid amide, fatty acid ester and fatty acid metal salt; A liquid medium, When the content of the polymer (A) is M1 parts by mass and the content of the component (B) is M2 parts by mass, the relationship is 1 ⁇ M1 / M2 ⁇ 4000.
  • composition for an electricity storage device is: Containing a binder, an antiblocking agent, and a liquid medium,
  • the content of the binder is M1 parts by mass and the content of the antiblocking agent is M2 parts by mass, the relationship is 1 ⁇ M1 / M2 ⁇ 4000.
  • the antiblocking agent may be at least one selected from the group consisting of polyethylene wax, polypropylene wax, fatty acid amide, fatty acid ester, and fatty acid metal salt.
  • the binder is A repeating unit (Ma) derived from a fluorine-containing ethylene monomer; A repeating unit (Mb) derived from an unsaturated carboxylic acid ester; It can be a fluorine-containing binder having
  • the binder is A repeating unit (Mc) derived from a conjugated diene compound; A repeating unit (Md) derived from an aromatic vinyl compound; A repeating unit (Me) derived from an unsaturated carboxylic acid ester; A repeating unit (Mf) derived from an unsaturated carboxylic acid; It can be a diene binder having
  • the binder may be particles, and the average particle size of the particles may be 50 to 400 nm.
  • One aspect of the slurry for an electricity storage device according to the present invention is: It contains the composition for electrical storage devices of any one example of the application example 1 thru
  • One aspect of the electrode for an electricity storage device according to the present invention is: It is characterized by comprising: a current collector; and a layer formed by applying and drying the power storage device slurry of Application Example 7 on the surface of the current collector.
  • An electrode for an electricity storage device comprising a protective film on the surface,
  • the protective film is A polymer (A) having a repeating unit derived from an unsaturated carboxylic acid ester;
  • a component (B) which is at least one selected from the group consisting of polyethylene wax, polypropylene wax, fatty acid amide, fatty acid ester and fatty acid metal salt; Containing
  • the content of the polymer (A) is M1 parts by mass and the content of the component (B) is M2 parts by mass, the relationship is 1 ⁇ M1 / M2 ⁇ 4000.
  • One aspect of the electrode for an electricity storage device according to the present invention is: An electrode for an electricity storage device comprising a protective film on the surface,
  • the protective film contains a binder and a blocking agent,
  • the content of the binder is M1 parts by mass and the content of the antiblocking agent is M2 parts by mass, the relationship is 1 ⁇ M1 / M2 ⁇ 4000.
  • One aspect of the slurry for an electricity storage device according to the present invention is: It contains the composition for electrical storage devices of any one example of the application example 1 thru
  • the inorganic particles may be at least one particle selected from the group consisting of silica, titanium oxide, aluminum oxide, zirconium oxide, and magnesium oxide.
  • One aspect of the separator for an electricity storage device according to the present invention is: A layer formed by applying and drying the slurry for an electricity storage device of Application Example 11 or Application Example 12 is provided on the surface.
  • a separator for an electricity storage device comprising a protective film on the surface, A polymer (A) in which the protective film has a repeating unit derived from an unsaturated carboxylic acid ester; A component (B) which is at least one selected from the group consisting of polyethylene wax, polypropylene wax, fatty acid amide, fatty acid ester and fatty acid metal salt; Containing When the content of the polymer (A) is M1 parts by mass and the content of the component (B) is M2 parts by mass, the relationship is 1 ⁇ M1 / M2 ⁇ 4000.
  • a separator for an electricity storage device comprising a protective film on the surface,
  • the protective film contains a binder and an anti-blocking agent,
  • the content of the binder is M1 parts by mass and the content of the antiblocking agent is M2 parts by mass, the relationship is 1 ⁇ M1 / M2 ⁇ 4000.
  • One aspect of the electricity storage device according to the present invention is: The power storage device electrode according to any one of Application Example 8 to Application Example 10 is provided.
  • One aspect of the electricity storage device according to the present invention is: The power storage device separator according to any one of Application Examples 13 to 15 is provided.
  • the electrode for an electricity storage device and the electricity storage are excellent in blocking resistance and can effectively prevent misalignment (ie, can be appropriately blocked) when laminating the electrode and the separator.
  • Device separators can be manufactured.
  • the electrode for an electricity storage device according to the present invention is excellent in blocking resistance and can effectively prevent misalignment (ie, can be blocked appropriately) when the electrode and the separator are laminated.
  • the separator for an electricity storage device according to the present invention is excellent in blocking resistance and can effectively prevent misalignment (ie, can be blocked appropriately) when the electrode and the separator are laminated.
  • An electricity storage device including an electricity storage device electrode and / or an electricity storage device separator produced using the electricity storage device composition according to the present invention has good charge / discharge rate characteristics, which is one of the electrical characteristics.
  • FIG. 1 is a cross-sectional view schematically illustrating an electrode for an electricity storage device according to a first specific example.
  • FIG. 2 is a cross-sectional view schematically illustrating an electrode for an electricity storage device according to a second specific example.
  • FIG. 3 is a cross-sectional view schematically showing the electricity storage device separator according to the present embodiment.
  • (meth) acrylic acid is a concept encompassing both “acrylic acid” and “methacrylic acid”.
  • ⁇ (meth) acrylate is a concept encompassing both “ ⁇ acrylate” and “ ⁇ methacrylate”.
  • composition for electrical storage device which concerns on this Embodiment contains a binder, an antiblocking agent, and a liquid medium,
  • the content of the said binder is M1 mass part, Inclusion of the said antiblocking agent
  • the amount is M2 parts by mass, the relationship is 1 ⁇ M1 / M2 ⁇ 4000.
  • the composition for an electricity storage device can be used as an electrode binder for forming an active material layer on the current collector surface, and also forms a protective film on the separator and / or electrode surface. It can also be used as a binder.
  • the content M1 part by mass of the binder and the content M2 part by mass of the antiblocking agent may be in a relationship of 1 ⁇ M1 / M2 ⁇ 4000, but 20 ⁇ M1 / M2 ⁇ 3000 is preferable, and 30 ⁇ M1 / M2 ⁇ 2500 is more preferable.
  • composition for an electricity storage device according to the present embodiment when used as an electrode binder, it is particularly preferable that 40 ⁇ M1 / M2 ⁇ 2000, and a protective film is formed on the separator and / or electrode surface.
  • a binder for this purpose it is particularly preferred that 40 ⁇ M1 / M2 ⁇ 500.
  • the relationship between M1 and M2 is within the above range, blocking resistance can be imparted to the electrode and the separator, and when the electrode and the separator are laminated, misalignment is effectively prevented (that is, the blocking is appropriately performed). can do.
  • Binder When the binder contained in the composition for an electricity storage device according to the present embodiment is used as a binder for an electrode, it binds the active materials and improves the adhesion between the active material layer and the current collector. Has the function of On the other hand, when used as a binder for forming a protective film on the separator and / or electrode surface, the function of binding inorganic particles to each other and improving the adhesion between the separator and / or electrode surface and the protective film Have
  • Such a binder is preferably in the form of a latex dispersed as particles in a liquid medium. It is preferable that the composition for an electricity storage device is in the form of a latex because the stability of the slurry for an electricity storage device produced by mixing with an active material or inorganic particles becomes good and the applicability of the slurry for an electricity storage device becomes good.
  • binder particles commercially available latexes may be used.
  • the composition for an electricity storage device according to this embodiment is used for producing a positive electrode
  • the following fluorine-containing binder is preferable from the viewpoint of excellent both oxidation resistance and adhesion.
  • the composition for an electricity storage device according to the present embodiment is used for producing a negative electrode
  • the following diene binder is preferable.
  • the binder contained in the composition for electrical storage devices according to the present embodiment may contain at least one selected from the group consisting of polyamic acid and imidized polymers thereof.
  • the binder is composed of a repeating unit (Ma) derived from a fluorine-containing ethylene monomer and an unsaturated carboxylic acid.
  • a fluorine-containing binder having a repeating unit (Mb) derived from an ester is preferable.
  • fluorine-containing ethylene monomers examples include olefin compounds having fluorine atoms and (meth) acrylate compounds having fluorine atoms.
  • the olefin compound having a fluorine atom examples include vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, ethylene trifluoride chloride, and perfluoroalkyl vinyl ether.
  • (meth) acrylate compound having a fluorine atom for example, a compound represented by the following general formula (1), (meth) acrylic acid 3 [4 [1-trifluoromethyl-2,2-bis [bis (trifluoro) Methyl) fluoromethyl] ethynyloxy] benzooxy] 2-hydroxypropyl and the like.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a C 1-18 hydrocarbon group containing a fluorine atom.
  • R 2 in the general formula (1) examples include a fluorinated alkyl group having 1 to 12 carbon atoms, a fluorinated aryl group having 6 to 16 carbon atoms, and a fluorinated aralkyl group having 7 to 18 carbon atoms. Of these, a fluorinated alkyl group having 1 to 12 carbon atoms is preferable.
  • R 2 in the general formula (1) include, for example, 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, 1,1,1, 3,3,3-hexafluoropropan-2-yl group, ⁇ - (perfluorooctyl) ethyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,4,4,4- Hexafluorobutyl group, 1H, 1H, 5H-octafluoropentyl group, 1H, 1H, 9H-perfluoro-1-nonyl group, 1H, 1H, 11H-perfluoroundecyl group, perfluorooctyl group, etc. .
  • the fluorine-containing ethylene monomer is preferably an olefin compound having a fluorine atom, and more preferably at least one selected from the group consisting of vinylidene fluoride, tetrafluoroethylene and hexafluoropropylene. preferable.
  • Said fluorine-containing ethylene-type monomer may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the content of the repeating unit (Ma) derived from the fluorine-containing ethylene monomer is preferably 20 to 40 parts by mass when the total repeating unit is 100 parts by mass, More preferably, it is 35 parts by mass.
  • the unsaturated carboxylic acid ester is preferably a (meth) acrylate compound.
  • (meth) acrylate compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, (meth) N-butyl acrylate, i-butyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) 2-ethylhexyl acrylate, n-octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate,
  • methyl (meth) acrylate ethyl (meth) acrylate and 2-ethylhexyl (meth) acrylate is preferable, and methyl (meth) acrylate is particularly preferable. preferable.
  • the content of the repeating unit (Mb) derived from the unsaturated carboxylic acid ester is preferably 45 to 80 parts by mass, with 50 to 70 parts by mass when all the repeating units are 100 parts by mass. More preferably, it is a part.
  • the fluorine-containing binder further includes repeating units derived from an ⁇ , ⁇ -unsaturated nitrile compound, an unsaturated carboxylic acid, a conjugated diene compound, an aromatic vinyl compound, and other unsaturated monomers described later. You may contain.
  • Method for synthesizing fluorine-containing binder is not particularly limited, but for example, it can be produced by the method described in Japanese Patent No. 4849286.
  • the binder is preferably a diene-based binder.
  • the diene binder includes a repeating unit (Mc) derived from a conjugated diene compound, a repeating unit (Md) derived from an aromatic vinyl compound, a repeating unit (Me) derived from an unsaturated carboxylic acid ester, and an unsaturated carboxylic acid. It is preferable to have a repeating unit (Mf) derived from an acid.
  • conjugated diene compound examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene and the like. , One or more selected from these.
  • 1,3-butadiene is particularly preferable.
  • the content of the repeating unit (Mc) derived from the conjugated diene compound is preferably 30 to 60 parts by mass, and preferably 40 to 55 parts by mass when all the repeating units are 100 parts by mass. It is more preferable.
  • the content ratio of the repeating unit (Mc) is within the above range, the binding property can be further improved.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene, and the like, and one or more selected from these can be given. be able to.
  • aromatic vinyl compound styrene is particularly preferable.
  • the content of the repeating unit (Md) derived from the aromatic vinyl compound is preferably 10 to 40 parts by mass, and 15 to 35 parts by mass when all the repeating units are 100 parts by mass. More preferably.
  • the binder has an appropriate binding property to the graphite used as the active material.
  • the obtained active material layer has good flexibility and binding property to the current collector.
  • Such an unsaturated carboxylic acid ester is preferably a (meth) acrylate compound, and is exemplified by the above-mentioned “1.1.1.2. Repeating unit (Mb) derived from unsaturated carboxylic acid ester”. The compound obtained can be used.
  • the content of the repeating unit (Me) derived from the unsaturated carboxylic acid ester is preferably 5 to 40 parts by mass when all the repeating units are 100 parts by mass. It is more preferable that When the content ratio of the repeating unit (Me) is within the above range, the diene binder has an appropriate affinity with the electrolytic solution, and suppresses an increase in internal resistance due to the binder becoming an electrical resistance component in the electricity storage device. In addition, it is possible to prevent a decrease in binding property due to excessive absorption of the electrolytic solution.
  • unsaturated carboxylic acid examples include mono- or dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and one or more selected from these. Can be. In particular, at least one selected from acrylic acid, methacrylic acid and itaconic acid is preferable.
  • the content of the repeating unit (Mf) derived from the unsaturated carboxylic acid is preferably 15 parts by mass or less when the total repeating unit is 100 parts by mass, and 0.3 to 10 parts by mass It is more preferable that When the content ratio of the repeating unit (Mf) is within the above range, the dispersion stability of the diene binder is excellent at the time of preparing the slurry for the electricity storage device, and thus aggregates are hardly generated. Further, an increase in slurry viscosity over time can be suppressed.
  • the diene binder may have other repeating units.
  • Examples of the repeating unit other than the above include repeating units derived from ⁇ , ⁇ -unsaturated nitrile compounds.
  • ⁇ , ⁇ -unsaturated nitrile compound examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile, vinylidene cyanide, and the like. Can be. Of these, at least one selected from acrylonitrile and methacrylonitrile is preferable, and acrylonitrile is more preferable.
  • the content of the repeating unit derived from the ⁇ , ⁇ -unsaturated nitrile compound is preferably 35 parts by mass or less when the total repeating unit is 100 parts by mass, and preferably 10 to 25 parts by mass. It is more preferable that When the content ratio of the repeating unit derived from the ⁇ , ⁇ -unsaturated nitrile compound is in the above range, the compatibility with the electrolyte used is excellent and the swelling rate does not become too large, contributing to the improvement of the battery characteristics. be able to.
  • the diene binder may further have a repeating unit derived from the compound shown below.
  • examples of such compounds include fluorine-containing compounds having an ethylenically unsaturated bond such as vinylidene fluoride, ethylene tetrafluoride and hexafluoropropylene; ethylenically unsaturated compounds such as (meth) acrylamide and N-methylolacrylamide.
  • Carboxylic acid alkylamides Carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; Acid anhydrides of ethylenically unsaturated dicarboxylic acids; Monoalkyl esters; Monoamides; Aminoethylacrylamide, dimethylaminomethylmethacrylamide, methylaminopropylmethacrylate Examples thereof include aminoalkylamides of ethylenically unsaturated carboxylic acids such as amides, and can be one or more selected from these.
  • the method for synthesizing the diene binder is not particularly limited.
  • the diene binder can be prepared by a method described in Japanese Patent No. 5146710.
  • the binder contained in the composition for an electricity storage device according to the present embodiment may contain at least one selected from the group consisting of a polyamic acid and an imidized polymer thereof.
  • a polyamic acid can be obtained by reacting a tetracarboxylic dianhydride and a diamine.
  • the partially imidized product of polyamic acid can be obtained by dehydrating and ring-closing a part of the amic acid structure of the polyamic acid to imidize it.
  • tetracarboxylic dianhydride and diamine used for synthesizing the polyamic acid tetracarboxylic dianhydrides and diamines described in JP 2010-97188 A can be used.
  • Polyamic acid and its imidized polymer can be synthesized by the method described in Japanese Patent No. 5099394.
  • the average particle diameter of the binder particles is preferably in the range of 50 to 400 nm, and in the range of 100 to 250 nm. It is more preferable. When the average particle diameter of the binder particles is within the above range, the binder particles are effectively adsorbed on the active material or the surface of the inorganic particles, so that the binding property between the active materials or the inorganic particles is improved. In addition, since the binder particles can move following the movement of the active material, it is possible to suppress only one of the two particles from being migrated alone, and the electrical characteristics of the electrode are deteriorated. Can be suppressed.
  • the average particle size of the binder particles can be measured in accordance with JIS Z 8826 using a particle size distribution measuring apparatus having a dynamic light scattering method as a measurement principle by a method described in Japanese Patent No. 5146710.
  • An active material layer containing an anti-blocking agent on the surface of the current collector is obtained by applying and drying a slurry for the electricity storage device containing the composition for an electricity storage device according to the present embodiment on the surface of the current collector. Can be formed.
  • the protection containing the antiblocking agent on the surface of an active material layer or a separator is carried out by applying and drying the slurry for an electricity storage device containing the composition for an electricity storage device according to the present embodiment on the surface of the active material layer or the separator.
  • a film can be formed. Since the anti-blocking agent bleeds out on the surface of the active material layer or protective film containing this anti-blocking agent, it is considered that blocking resistance is imparted to the electrode or the separator.
  • the antiblocking agent contained in the composition for an electricity storage device according to the present embodiment may be dissolved in a liquid medium, or may be in a dispersed state dispersed as droplet particles in the liquid medium.
  • the average particle size of the droplet particles is preferably 1 to 100 ⁇ m, and more preferably 5 to 50 ⁇ m. If the average particle diameter of the droplet particles is within the above range, the droplet particles are likely to protrude on the surface of the active material layer of the electrode or the protective film of the separator, so that the effect of blocking resistance can be easily imparted to the electrode or separator. Can do.
  • the average particle diameter of the droplet particles can be measured using a particle size distribution measuring apparatus based on a laser diffraction / scattering method (microtrack method).
  • a particle size distribution measuring apparatus examples include “Microtrac MT3000II” manufactured by Nikkiso Co., Ltd.
  • antiblocking agent examples include fluorine-based polymers, polyethylene wax, polypropylene wax, ethylene-propylene copolymer wax, Fischer-Tropsch wax, and their partial oxides or copolymers with ethylenically unsaturated carboxylic acids.
  • Synthetic hydrocarbon waxes such as montan wax derivatives, paraffin wax derivatives and microcrystalline wax derivatives; hydrogenated waxes such as hardened castor oil and hardened castor oil derivatives; higher fatty acids such as cetyl alcohol, stearic acid and 12-hydroxystearic acid And alcohols; fatty acid esters such as glyceryl stearate, polyethylene glycol stearate, stearyl stearate, isopropyl palmitate; fatty acids such as stearamide Bromide; calcium stearate, fatty acid metal salts of lithium stearate; phthalic anhydride imide, chlorinated hydrocarbons, and the like.
  • synthetic hydrocarbon waxes such as polyethylene wax, polypropylene wax, ethylene-propylene copolymer wax, Fischer-Tropsch wax and copolymers thereof with partial oxides or ethylenically unsaturated carboxylic acids.
  • Modified waxes such as montan wax derivatives, paraffin wax derivatives, microstarin wax derivatives; higher fatty acids and alcohols such as cetyl alcohol, stearic acid and 12-hydroxystearic acid; fatty acid amides such as stearamide, and fatty acid metal salts.
  • synthetic hydrocarbon waxes such as polyethylene wax, polypropylene wax, ethylene-propylene copolymer wax, Fischer-Tropsch wax and their partial oxides or copolymers with ethylenically unsaturated carboxylic acids, cetyl Higher fatty acids such as alcohol, stearic acid, 12-hydroxystearic acid and the like, fatty acid amides such as alcohol, stearamide, and fatty acid metal salts such as calcium stearate and lithium stearate.
  • synthetic hydrocarbon waxes such as polyethylene wax, polypropylene wax, ethylene-propylene copolymer wax, Fischer-Tropsch wax and their partial oxides or copolymers with ethylenically unsaturated carboxylic acids, cetyl Higher fatty acids such as alcohol, stearic acid, 12-hydroxystearic acid and the like, fatty acid amides such as alcohol, stearamide, and fatty acid metal salts such as calcium stearate and lithium stearate.
  • the anti-blocking agent When the anti-blocking agent is dispersed as droplet particles in the liquid medium, the anti-blocking agent, the liquid medium, and the dispersing agent can be prepared by putting them in a container, dispersing the mixture by heating and stirring, and cooling.
  • the content of the antiblocking agent is preferably 0.01 to 5% by mass, more preferably 0.015 to 3% by mass, and The content is particularly preferably 02 to 1% by mass. If content of an antiblocking agent exists in the said range, blocking resistance can be provided to an electrode or a separator, without inhibiting the stability of the composition for electrical storage devices.
  • the composition for an electricity storage device contains a liquid medium.
  • the liquid medium is preferably an aqueous medium containing water.
  • the aqueous medium can contain a non-aqueous medium other than water.
  • the non-aqueous medium include amide compounds, hydrocarbons, alcohols, ketones, esters, amine compounds, lactones, sulfoxides, sulfone compounds, and the like. Use one or more selected from these. Can do.
  • 90% by mass or more is preferably water and more preferably 98% by mass or more is water in the total amount of 100% by mass of the liquid medium.
  • the content ratio of the non-aqueous medium contained in the aqueous medium is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and substantially no content with respect to 100 parts by mass of the aqueous medium. Is particularly preferred.
  • substantially does not contain means that a non-aqueous medium is not intentionally added as a liquid medium, and is inevitably mixed when a composition for an electricity storage device is produced. May be included.
  • composition for an electricity storage device according to the present embodiment can contain additives other than the components described above as necessary.
  • An example of such an additive is a thickener.
  • the composition for an electricity storage device according to the present embodiment contains a thickener, the applicability, the charge / discharge characteristics of the obtained electricity storage device, and the like can be further improved.
  • thickeners examples include cellulose compounds such as carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose; ammonium salts or alkali metal salts of the above cellulose compounds; poly (meth) acrylic acid, modified poly (meth) acrylic acid, and the like.
  • particularly preferred thickeners include alkali metal salts of carboxymethyl cellulose and alkali metal salts of poly (meth) acrylic acid.
  • Examples of commercially available products of these thickeners include alkali metal salts of carboxymethyl cellulose such as CMC1120, CMC1150, CMC2200, CMC2280, and CMC2450 (manufactured by Daicel Corporation).
  • the use ratio of the thickener is preferably 5% by mass or less with respect to the total solid content of the composition for an electricity storage device. More preferably, the content is 0.1 to 3% by mass.
  • Power storage device slurry The power storage device slurry according to the present embodiment can be manufactured using the power storage device composition described above.
  • the electricity storage device slurry according to the present embodiment can be broadly classified into two types: an electricity storage device electrode slurry and a protective film forming slurry.
  • the storage device electrode slurry is a dispersion used to form an active material layer on the surface of the current collector after it is applied to the surface of the current collector and then dried.
  • the slurry for an electricity storage device electrode according to the present embodiment contains the aforementioned composition for an electricity storage device and an active material.
  • each component contained in the slurry for an electricity storage device electrode according to the present embodiment will be described in detail. However, since the composition for an electricity storage device is as described above, the description thereof is omitted.
  • Active material there is no restriction
  • the active material include carbon materials, silicon materials, oxides containing lithium atoms, lead compounds, tin compounds, arsenic compounds, antimony compounds, aluminum compounds, and the like.
  • Examples of the carbon material include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers.
  • Examples of the silicon material include silicon simple substance, silicon oxide, and silicon alloy.
  • the silicon oxide is preferably a silicon oxide represented by the composition formula SiO x (0 ⁇ x ⁇ 2, preferably 0.1 ⁇ x ⁇ 1).
  • the silicon alloy is preferably an alloy of silicon and at least one transition metal selected from the group consisting of titanium, zirconium, nickel, copper, iron and molybdenum. These transition metal silicon alloys are preferably used because they have high electronic conductivity and high strength. Moreover, since the transition metal existing on the surface of the active material is oxidized and becomes an oxide having a hydroxyl group on the surface when the active material contains these transition metals, the binding force with the binder is also improved. preferable.
  • As the silicon alloy it is more preferable to use a silicon-nickel alloy or a silicon-titanium alloy, and it is particularly preferable to use a silicon-titanium alloy.
  • the silicon content in the silicon alloy is preferably 10 mol% or more, more preferably 20 to 70 mol%, based on all the metal elements in the alloy. Note that the silicon material may be single crystal, polycrystalline, or amorphous.
  • active materials when using a silicon material as an active material, you may use together active materials other than a silicon material.
  • active materials include the above carbon materials; conductive polymers such as polyacene; A X B Y O Z (where A is an alkali metal or transition metal, B is cobalt, nickel, aluminum, tin, manganese) At least one selected from transition metals such as O represents an oxygen atom, and X, Y and Z are 1.10>X> 0.05, 4.00>Y> 0.85, 5.00>, respectively. Z> 1.5 is a number in the range.) And other metal oxides.
  • it is preferable to use a carbon material in combination because the volume change associated with insertion and extraction of lithium is small.
  • oxide containing a lithium atom examples include lithium cobaltate, lithium nickelate, lithium manganate, ternary nickel cobalt lithium manganate, LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 0.90 Ti 0.05 Nb. 0.05 Fe 0.30 Co 0.30 Mn 0.30 PO 4 and the like.
  • the shape of the active material is preferably granular.
  • the average particle diameter of the active material is preferably 0.1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the use ratio of the active material is preferably such that the binder content with respect to 100 parts by mass of the active material is 0.1 to 25 parts by mass, preferably 0.5 to 15 parts by mass. It is more preferable to use in. By setting it as such a use ratio, it will be excellent in adhesiveness, and also an electrode with small electrode resistance and excellent charge / discharge characteristics can be manufactured.
  • the said slurry for electrical storage device electrodes can contain components other than the component mentioned above as needed.
  • examples of such components include a conductivity-imparting agent, a non-aqueous medium, and a thickener.
  • Conductivity-imparting agent examples include carbon in a lithium ion secondary battery; in a nickel-hydrogen secondary battery, cobalt oxide at the positive electrode: nickel powder, cobalt oxide, titanium oxide, carbon at the negative electrode Etc. are used respectively.
  • examples of carbon include graphite, activated carbon, acetylene black, furnace black, graphite, carbon fiber, and fullerene. Among these, acetylene black or furnace black can be preferably used.
  • the use ratio of the conductivity-imparting agent is preferably 20 parts by mass or less, more preferably 1 to 15 parts by mass, and particularly preferably 2 to 10 parts by mass with respect to 100 parts by mass of the active material.
  • the slurry for an electricity storage device electrode may contain a non-aqueous medium having a normal boiling point of 80 to 350 ° C. from the viewpoint of improving the applicability.
  • a non-aqueous medium include, for example, amide compounds such as N-methylpyrrolidone, dimethylformamide, and N, N-dimethylacetamide; hydrocarbons such as toluene, xylene, n-dodecane, and tetralin; 2-ethyl Alcohols such as -1-hexanol, 1-nonanol and lauryl alcohol; ketones such as methyl ethyl ketone, cyclohexanone, phorone, acetophenone and isophorone; esters such as benzyl acetate, isopentyl butyrate, methyl lactate, ethyl lactate and butyl lactate; o-toluidine, Examples include amine
  • the said slurry for electrical storage device electrodes can contain a thickener from a viewpoint of improving the coating property.
  • Specific examples of the thickener include various compounds described in “1.4. Other additives”.
  • the use ratio of the thickener is preferably 20% by mass or less, more preferably 0. 0% by weight based on the total solid content of the slurry for power storage device electrodes. It is 1 to 15% by mass, and particularly preferably 0.5 to 10% by mass.
  • the power storage device electrode slurry according to the present embodiment mixes the power storage device composition, the active material, water, and an additive used as necessary. Can be manufactured. These can be mixed by stirring by a known method. For example, a stirrer, a defoaming machine, a bead mill, a high-pressure homogenizer, or the like can be used.
  • the mixing and stirring for producing the slurry for the electricity storage device electrode it is necessary to select a mixer that can stir to such an extent that no agglomerates of the active material remain in the slurry and sufficient dispersion conditions as necessary.
  • the degree of dispersion can be measured by a particle gauge, but it is preferable to mix and disperse so that aggregates larger than at least 100 ⁇ m are eliminated.
  • the mixer that meets such conditions include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer.
  • Protective film forming slurry is used to form a protective film on the surface of the electrode or separator or both by applying it to the surface of the electrode or separator or both. Refers to the dispersion.
  • the protective film-forming slurry according to the present embodiment contains the above-described composition for an electricity storage device and inorganic particles.
  • each component contained in the slurry for forming a protective film according to the present embodiment will be described in detail.
  • description is abbreviate
  • the protective film-forming slurry according to the present embodiment can improve the toughness of the formed protective film by containing inorganic particles.
  • inorganic particles silica, titanium oxide (titania), aluminum oxide (alumina), zirconium oxide (zirconia), magnesium oxide (magnesia), or the like can be used.
  • titanium oxide and aluminum oxide are preferable from the viewpoint of further improving the toughness of the protective film.
  • rutile type titanium oxide is more preferable.
  • the average particle diameter of the inorganic particles is preferably 1 ⁇ m or less, and more preferably in the range of 0.1 to 0.8 ⁇ m.
  • the average particle diameter of an inorganic particle is larger than the average hole diameter of the separator which is a porous film.
  • the slurry for forming a protective film according to the present embodiment preferably contains 0.1 to 20 parts by mass of the above-mentioned composition for an electricity storage device in terms of solid content with respect to 100 parts by mass of the inorganic particles. More preferably, the content is 1 to 10 parts by mass.
  • the content ratio of the composition for an electricity storage device is 0.1 to 10 parts by mass in terms of solid content, the balance between the toughness of the formed protective film and the lithium ion permeability is improved, and as a result The rate of increase in resistance of the electricity storage device can be further reduced.
  • the protective film-forming slurry according to the present embodiment requires the materials and addition amounts described in the above-mentioned “2.1.2. Other components” slurry for an electricity storage device electrode as necessary. Can be used.
  • the protective film forming slurry according to the present embodiment is obtained by mixing the above-described composition for an electricity storage device, inorganic particles, and other components used as necessary. Prepared.
  • a known mixing device such as a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer can be used.
  • a mixer capable of stirring to such an extent that the aggregate of inorganic particles does not remain in the slurry and a sufficient dispersion condition as necessary are selected.
  • the degree of dispersion can be measured with a particle gauge, but it is preferable to mix and disperse so that aggregates larger than at least 100 ⁇ m are eliminated.
  • the mixer that meets such conditions include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer.
  • the electrode for an electricity storage device is an electrode for an electricity storage device provided with a protective film on the surface, the protective film containing a binder and an anti-blocking agent, When the content is M1 parts by mass and the content of the antiblocking agent is M2 parts by mass, the relationship is 1 ⁇ M1 / M2 ⁇ 4000.
  • the “protective film” in the present invention refers to a film or layer containing a binder and an anti-blocking agent present on the outermost surface of an electrode for an electricity storage device or a separator for an electricity storage device.
  • the electrode for an electricity storage device according to the present embodiment can be applied to both the positive electrode and the negative electrode.
  • specific examples of the electrode for an electricity storage device according to the present embodiment will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view schematically showing an electricity storage device electrode according to a first specific example.
  • the electrode 100 for an electricity storage device includes a current collector 10, an active material layer 20 formed on the surface of the current collector 10, and a protective film 30 formed on the surface of the active material layer 20. It is equipped with. 1 has an active material layer 20 and a protective film 30 formed on only one surface along the longitudinal direction of the current collector 10, but the active material layer 20 and the protective film are formed on both surfaces. 30 may be formed.
  • a molding process such as winding the laminated body is performed.
  • the protective film 30 is formed at least on the surface of the power storage device electrode 100 that is in contact with the separator, blocking resistance is imparted to the power storage device electrode 100, and the active material or the like is peeled off by the molding process. Can be prevented.
  • the current collector 10 is not particularly limited as long as it is made of a conductive material.
  • a current collector made of metal such as iron, copper, aluminum, nickel, and stainless steel is used. In particular, it is preferable to use aluminum for the positive electrode and copper for the negative electrode.
  • a punching metal, an expanded metal, a wire mesh, a foam metal, a mesh metal fiber sintered body, a metal plated resin plate, or the like is used as the current collector in the nickel metal hydride secondary battery.
  • the shape and thickness of the current collector are not particularly limited, but it is preferable that the current collector be a sheet having a thickness of about 0.001 to 0.5 mm.
  • the active material layer 20 is a layer formed by applying a slurry containing a binder and an active material to the surface of the current collector 10 and further drying it.
  • the thickness of the active material layer 20 is not particularly limited, but is usually 0.005 to 5 mm, preferably 0.01 to 2 mm.
  • the active material layer can be effectively infiltrated with the electrolytic solution.
  • the metal ions can be easily transferred between the active material and the electrolytic solution in the active material layer, so that the electrode resistance can be further reduced.
  • the thickness of the active material layer is within the above range, even when the electrode is folded or wound, the active material layer is not peeled off from the current collector. It is preferable at the point from which the electrode for electrical storage devices which is favorable and is rich in flexibility is obtained.
  • the method for applying the slurry to the current collector 10 is not particularly limited.
  • the coating can be performed by an appropriate method such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, or a brush coating method.
  • the coating amount of the power storage device electrode slurry is not particularly limited, but the thickness of the active material layer formed after removing the liquid medium (which is a concept including both water and a non-aqueous medium that is optionally used). However, the amount is preferably 0.005 to 5 mm, and more preferably 0.01 to 2 mm.
  • drying method from the coated film after coating (method for removing water and optionally used non-aqueous medium); for example, drying with warm air, hot air, low humidity air; vacuum drying; (far) infrared , Drying by irradiation with an electron beam or the like.
  • the drying speed is appropriately set so that the liquid medium can be removed as quickly as possible within a speed range in which the active material layer does not crack due to stress concentration or the active material layer does not peel from the current collector. be able to.
  • the coating film is preferably dried in a temperature range of 20 to 250 ° C., more preferably 50 to 150 ° C., preferably for 1 to 120 minutes, more preferably 5 to 60 minutes.
  • the pressing method includes a die press and a roll press.
  • the press conditions should be set appropriately depending on the type of press equipment used and the desired values of the porosity and density of the active material layer. This condition can be easily set by a few preliminary experiments by those skilled in the art.
  • the linear pressure of the roll press machine is 0.1 to 10 (t / cm), preferably 0.
  • the current collector feed speed (roll rotation speed) after drying is 1 to 80 m / min, preferably 5 to 50 m / min. It can be performed in min.
  • the density of the active material layer after pressing is preferably 1.5 to 5.0 g / cm 3 , more preferably 1.5 to 4.0 g / cm 3, and 1.6 to 3.8 g. / Cm 3 is particularly preferable.
  • the protective film 30 is a layer formed by applying the above-described protective film-forming slurry to the surface of the active material layer 20 and further drying it. Since the slurry for forming a protective film contains an anti-blocking agent, the protective film 30 contains at least an anti-blocking agent.
  • the method for applying the protective film forming slurry to the active material layer 20 is not particularly limited.
  • the coating can be performed by an appropriate method such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, or a brush coating method.
  • the coating film is preferably dried in a temperature range of 20 to 250 ° C., more preferably 50 to 150 ° C., preferably for 1 to 120 minutes, more preferably 5 to 60 minutes.
  • the thickness of the protective film 30 is not particularly limited, but is preferably in the range of 0.5 to 4 ⁇ m, and more preferably in the range of 0.5 to 3 ⁇ m. When the thickness of the protective film 30 is within the above range, the permeability of the electrolytic solution into the electrode and the liquid retaining property are improved, and an increase in the internal resistance of the electrode can be suppressed.
  • the electricity storage device electrode 100 manufactured in this way has blocking resistance by bleeding out of the anti-blocking agent on the surface of the protective film 30. Further, even when dendrite is deposited by repeated charge and discharge, a short circuit does not occur because it is guarded by the protective film. Thereby, the function as an electrical storage device can be maintained.
  • FIG. 2 is a cross-sectional view schematically showing an electrode for an electricity storage device according to a second specific example.
  • the electricity storage device electrode 200 includes a current collector 110 and an active material layer 120 formed on the surface of the current collector 110. Since this active material layer 120 contains an anti-blocking agent, it has a function as a protective film as well as an active material layer. 2 has the active material layer 120 formed only on one surface along the longitudinal direction of the current collector 110, the active material layer 120 may be formed on both surfaces.
  • a molding process such as winding the laminated body is performed. Therefore, if the active material layer 120 is formed on at least the surface in contact with the separator in the power storage device electrode 200, blocking resistance is imparted to the power storage device electrode 200, and the active material or the like is peeled off by molding. Can be prevented.
  • the active material layer 120 is a layer formed by applying a slurry for an electricity storage device electrode containing a binder, an active material, and an anti-blocking agent to the surface of the current collector 110 and further drying it.
  • the electricity storage device electrode slurry will be described in detail later.
  • the other configurations of the electricity storage device electrode 200 according to the second embodiment are the same as those of the electricity storage device electrode 100 according to the first embodiment described with reference to FIG.
  • the electrical storage device electrode 200 manufactured in this way has blocking resistance by bleeding out of the anti-blocking agent on the surface of the active material layer 120.
  • An electrical storage device separator is an electrical storage device separator having a protective film on a surface thereof, the protective film containing a binder and an anti-blocking agent, When the content is M1 parts by mass and the content of the blocking agent is M2 parts by mass, the relationship is 1 ⁇ M1 / M2 ⁇ 4000.
  • the electrical storage device separator according to the present embodiment will be described with reference to the drawings.
  • FIG. 3 is a cross-sectional view schematically showing the electricity storage device separator according to the present embodiment.
  • the electricity storage device separator 300 includes a separator 240 and a protective film 230 formed on the surface of the separator 240.
  • the protective film 230 is formed only on one surface along the longitudinal direction of the separator 240, but the protective film 230 may be formed on both surfaces.
  • a molding process such as winding the laminated body is performed.
  • the protective film 230 is formed at least on the surface in contact with the electrode in the electricity storage device separator 300, blocking resistance is imparted to the electricity storage device separator 300, and the active material or the like is peeled off by molding. Can be prevented.
  • Any separator 240 may be used as long as it is electrically stable, chemically stable with respect to the active material or solvent, and has no electrical conductivity.
  • a polymer nonwoven fabric, a porous film, glass or ceramic fibers in a paper shape can be used, and a plurality of these may be laminated.
  • a porous polyolefin film is preferably used, and a composite of this with a heat-resistant material made of polyimide, glass, ceramic fibers or the like may be used.
  • the protective film 230 can be formed by, for example, applying the above-described slurry for forming a protective film on the surface of the separator 240 and then drying it.
  • a method of applying the protective film-forming slurry to the surface of the separator 240 for example, a doctor blade method, a reverse roll method, a comma bar method, a gravure method, an air knife method, a die coating method, or the like can be applied.
  • the coating film is preferably dried in a temperature range of 20 to 250 ° C., more preferably 50 to 150 ° C., preferably for 1 to 120 minutes, more preferably 5 to 60 minutes.
  • the functional layer which does not contain an antiblocking agent is formed in the surface of the separator 240
  • the functional layer surface is obtained by applying and drying the above-described protective film-forming slurry on the functional layer surface.
  • a protective film 230 can also be formed. Thereby, blocking resistance can be provided to the separator.
  • the electricity storage device separator 300 manufactured in this way has blocking resistance by bleeding out of the anti-blocking agent on the surface of the protective film 230. Further, even when dendrite is deposited by repeated charge and discharge, a short circuit does not occur because it is guarded by the protective film. Thereby, the function as an electrical storage device can be maintained.
  • the power storage device only needs to include at least one of the above-described electrode for power storage device and the separator including the above-described protective film.
  • a positive electrode and a negative electrode are laminated with a separator for preventing a short circuit between the electrodes, or a positive electrode, a separator, a negative electrode, and a separator are laminated in this order to form an electrode.
  • Separator laminated body this may be wound or folded according to the shape of the battery, put into a battery container, and an electrolyte solution is injected into the battery container and sealed.
  • the electrode is an electrode for an electricity storage device as described above, the electrode / separator laminate is appropriately blocked, so that the positional deviation between the electrode / separator can be effectively prevented, and depending on the battery shape When forming such as winding, the electrode has blocking resistance, so that the active material layer can be prevented from peeling off.
  • the separator is a separator provided with the above-described protective film.
  • the shape of the battery can be an appropriate shape such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, or the like.
  • the electrolytic solution may be liquid or gel, and a material that effectively expresses the function as a battery may be selected from known electrolytic solutions used for the electricity storage device, depending on the type of active material.
  • the electrolytic solution can be a solution in which an electrolyte is dissolved in a suitable solvent.
  • any conventionally known lithium salt can be used, and specific examples thereof include, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 CO 2 , LiAsF. 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lithium of lower fatty acid carboxylate etc.
  • an aqueous potassium hydroxide solution having a conventionally known concentration of 5 mol / liter or more can be used.
  • the solvent for dissolving the electrolyte is not particularly limited, but specific examples thereof include carbonate compounds such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; Lactone compounds such as butyl lactone; ether compounds such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxide compounds such as dimethyl sulfoxide; One or more selected from these can be used.
  • the concentration of the electrolyte in the electrolytic solution is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
  • the antiblocking agent that has bleeded out to the surface of the electrode and / or separator is eluted into the electrolyte.
  • Example 1 6.1.1. Preparation of binder After the inside of an autoclave with an internal volume of about 6 L equipped with an electromagnetic stirrer was sufficiently purged with nitrogen, 2.5 L of deoxygenated pure water and 25 g of ammonium perfluorodecanoate as an emulsifier were charged and stirred at 350 rpm. The temperature was raised to 60 ° C. Next, a mixed gas composed of 70% of vinylidene fluoride (VDF) as a monomer and 30% of propylene hexafluoride (HFP) was charged until the internal pressure reached 20 kg / cm 2 .
  • VDF vinylidene fluoride
  • HFP propylene hexafluoride
  • the particle size distribution is measured using a particle size distribution measuring device (model “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd.) having a dynamic light scattering method as a measurement principle.
  • FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.
  • the average particle size was 330 nm.
  • composition for electricity storage device 5 g of an aqueous suspension containing 50% by mass of calcium stearate was charged in 1,000 g of the aqueous dispersion containing the binder particles obtained above, and stirred at 300 rpm, whereby an electricity storage device was obtained. A composition S1 was prepared.
  • a dispersion (suspension) in which the antiblocking agent is dispersed in an aqueous solution at 50% by mass is added.
  • a composition for an electricity storage device was prepared.
  • slurry for power storage device 1 part by mass of a thickener (trade name “CMC1120”, manufactured by Daicel Corporation) in a biaxial planetary mixer (product name “TK Hibismix 2P-03” manufactured by PRIMIX Corporation) 100 parts by mass of an active material having a particle diameter (D50 value) of 0.5 ⁇ m, obtained by pulverizing a commercially available lithium iron phosphate (LiFePO 4 ) in an agate mortar and classifying with a sieve, 5 parts by mass of acetylene black and 68 parts by mass of water were added and stirred at 60 rpm for 1 hour.
  • a thickener trade name “CMC1120”, manufactured by Daicel Corporation
  • TK Hibismix 2P-03 manufactured by PRIMIX Corporation
  • the power storage device composition S1 prepared above was added so that the binder particles contained in the composition were 1 part by mass, and the mixture was further stirred for 1 hour to obtain a paste.
  • the mixture was stirred and mixed at 1,800 rpm for 1.5 minutes at 800 rpm for 5 minutes and further under vacuum (about 5.0 ⁇ 10 3 Pa) to prepare a slurry for an electricity storage device.
  • the counter electrode (negative electrode) slurry prepared above was uniformly applied to the surface of the current collector made of copper foil by the doctor blade method so that the film thickness after drying was 150 ⁇ m, and dried at 120 ° C. for 20 minutes. . Then, the counter electrode (negative electrode) was obtained by pressing using a roll-press machine so that the density of a film
  • ⁇ Assembly of lithium-ion battery cells> A bipolar coin cell (manufactured by Hosen Co., Ltd.) manufactured by punching and molding the electrode (negative electrode) produced in the above to a diameter of 15.95 mm in an Ar-substituted glove box with a dew point of ⁇ 80 ° C. or lower.
  • a lithium ion battery cell (power storage device) was assembled by placing the positive electrode manufactured in the above-described method by punching and molding the positive electrode to a diameter of 16.16 mm, and sealing the outer body of the bipolar coin cell with a screw.
  • charging is started at a constant current (3C) for the same cell, and when the voltage reaches 4.2V, charging is continued at a constant voltage (4.2V).
  • the charging capacity at 3C was measured with the time point of becoming the completion of charging (cut-off).
  • discharge was started at a constant current (3C), and when the voltage reached 2.7 V, the discharge was completed (cut off), and the discharge capacity at 3C was measured.
  • “1C” in the measurement condition indicates a current value at which discharge is completed in one hour after constant-current discharge of a cell having a certain electric capacity.
  • “0.1 C” is a current value at which discharge is completed over 10 hours
  • “10 C” is a current value at which discharge is completed over 0.1 hours.
  • Example 6 “6.1.1. Preparation of binder”, the composition of the monomer and the amount of emulsifier were changed as appropriate, and the binder of the composition shown in Table 1 was contained in the same manner as Example 1. An aqueous dispersion was prepared, and water was removed under reduced pressure or added according to the solid content concentration of the aqueous dispersion to obtain an aqueous dispersion having a solid content concentration of 40%.
  • composition for electricity storage device in Example 1 above, the same procedure as in Example 1 above was performed except that the blocking inhibitors were changed to the types and addition amounts shown in Table 1. Compositions S2 to S7 and S11 to S13 for electricity storage devices were prepared.
  • Example 8 A separable flask having a volume of 7 liters was charged with 150 parts by mass of water and 0.2 parts by mass of sodium dodecylbenzenesulfonate, and the inside of the separable flask was sufficiently purged with nitrogen.
  • ether sulfate type emulsifier (trade name “ADEKA rear soap SR1025”, manufactured by ADEKA Co., Ltd.) as an emulsifier, 0.8 parts by mass in terms of solid content, and 2, 2,2-trifluoroethyl methacrylate (TFEMA) 20 parts by mass, acrylonitrile (AN) 10 parts by mass, methyl methacrylate (MMA) 25 parts by mass, 2-ethylhexyl acrylate (EHA) 40 parts by mass and acrylic acid (AA) 5 parts by mass
  • TFEMA 2, 2,2-trifluoroethyl methacrylate
  • AN acrylonitrile
  • MMA methyl methacrylate
  • EHA 2-ethylhexyl acrylate
  • acrylic acid AA 5 parts by mass
  • a monomer emulsion containing a mixture of the above monomers was prepared by adding a sufficient amount of the mixture.
  • the temperature inside the separable flask was started, and when the temperature inside the separable flask reached 60 ° C., 0.5 parts by mass of ammonium persulfate was added as a polymerization initiator. Then, when the temperature inside the separable flask reaches 70 ° C., the addition of the monomer emulsion prepared above is started, and the monomer emulsion is added while maintaining the temperature inside the separable flask at 70 ° C. Slowly added over time. Thereafter, the temperature inside the separable flask was raised to 85 ° C., and this temperature was maintained for 3 hours to carry out the polymerization reaction. After 3 hours, the separable flask was cooled to stop the reaction, and then ammonium water was added to adjust the pH to 7.6 to obtain an aqueous dispersion containing 40% of binder (binder particles).
  • An electricity storage device composition S8, an electricity storage device slurry, an electricity storage device were used in the same manner as in Example 1 except that the aqueous dispersion obtained above was used and the type and content of the anti-blocking agent shown in Table 1 were used. Electrodes and power storage devices were fabricated and evaluated. The results are also shown in Table 1.
  • Examples 9-10 An aqueous dispersion containing a binder having an average particle size shown in Table 1 in the same manner as in Example 8 except that the type and amount (parts) of each monomer were as shown in Table 1. Respectively. A power storage device composition S9 to S10, a power storage device slurry, a power storage device electrode, and a power storage device were prepared and evaluated in the same manner as in Example 1 except that the aqueous dispersion thus obtained was used. did. The results are also shown in Table 1.
  • Example 11 6.5.1. Preparation of binder In a temperature-controllable autoclave equipped with a stirrer, 200 parts by weight of water, 0.6 parts by weight of sodium dodecylbenzenesulfonate, 1.0 part by weight of potassium persulfate, 0.5 parts by weight of sodium bisulfite, ⁇ -0.2 parts by mass of methylstyrene dimer, 0.2 parts by mass of dodecyl mercaptan and the first-stage polymerization component shown in Table 2 were charged all at once, and the temperature was raised to 70 ° C to carry out the polymerization reaction for 2 hours.
  • the second-stage polymerization component shown in Table 2 was added over 6 hours while maintaining the reaction temperature at 70 ° C.
  • 3 hours passed from the start of addition of the second stage polymerization component 1.0 part by mass of ⁇ -methylstyrene dimer and 0.3 part by mass of dodecyl mercaptan were added.
  • the temperature was raised to 80 ° C. the reaction was further continued for 2 hours.
  • the latex pH was adjusted to 7.5, and 5 parts by mass of sodium tripolyphosphate (in terms of solid content) was added. Thereafter, the residual monomer was treated with steam distillation and concentrated under reduced pressure to a solid content of 30% to obtain an aqueous dispersion containing 30% of a binder.
  • the particle size distribution was measured using a particle size distribution analyzer (model “FPAR-1000”, manufactured by Otsuka Electronics Co., Ltd.) using the dynamic light scattering method as a measurement principle.
  • the average particle size was 200 nm.
  • a power storage device composition S14 was prepared in the same manner as in Example 1 except that the aqueous dispersion obtained above was used and the type and content of the anti-blocking agent listed in Table 1 were used. Prepared.
  • a bipolar coin cell manufactured by Hosen Co., Ltd.
  • a separator made of a polypropylene porous membrane punched into a diameter of 24 mm (trade name “Celguard # 2400” manufactured by Celgard Co., Ltd.) was placed, and after injecting 500 ⁇ L of electrolyte so as not to enter air,
  • the positive electrode produced in the section ⁇ Manufacture of counter electrode (positive electrode)> punched and molded to a diameter of 16.16 mm, and sealing the outer body of the two-pole coin cell with a screw the lithium ion A battery cell (electric storage device) was assembled.
  • aqueous dispersion containing 30% of binder is obtained by preparing an aqueous dispersion containing a binder having the composition shown, and removing or adding water under reduced pressure according to the solid content concentration of the aqueous dispersion. It was.
  • Table 1 shows the content ratio of the first-stage polymerization component and the second-stage polymerization component when preparing the aqueous dispersions containing the binders of Examples 11 to 13 and Comparative Examples 4 to 6.
  • VDF vinylidene fluoride
  • HFP propylene hexafluoride
  • TFEMA 2,2,2-trifluoroethyl methacrylate
  • TFEA 2,2,2-trifluoroethyl acrylate
  • HFIPA acrylic acid 1,1, 1,3,3,3-hexafluoroisopropyl
  • MMA methyl methacrylate
  • EHA 2-ethylhexyl acrylate
  • HEMA 2-hydroxyethyl methacrylate
  • MAA methacrylic acid
  • AA acrylic acid
  • TA itaconic acid
  • DVB divinylbenzene
  • TMPTMA trimethylolpropane trimethacrylate
  • AN acrylonitrile
  • BD 1,3-butadiene
  • ST styrene
  • Example 14 6.7.1.
  • Preparation of slurry for forming protective film Titanium oxide (product name “KR380”, manufactured by Titanium Industry Co., Ltd., rutile type, average particle size 0.38 ⁇ m) as inorganic particles is 20 parts by mass with respect to 100 parts by mass of water. 5 parts by mass of the composition S1 for an electricity storage device obtained in “6.1.2.
  • Preparation of composition for electricity storage device” of 1 in terms of solid content with respect to the inorganic particles a thickener (manufactured by Daicel Corporation, Trade name "CMC1120") K.
  • a Mixmix (R) 56-50 type manufactured by PRIMIX Co., Ltd.
  • a mixture dispersion treatment was performed to prepare a slurry for forming a protective film in which titanium oxide was dispersed.
  • the protective film-forming slurry obtained above was die-coated on the surface of the active material layer of the positive electrode produced in “6.5.5. Production and Evaluation of Electricity Storage Device” in Example 11 above. Then, the film was dried at 120 ° C. for 5 minutes to form a protective film on the surface of the active material layer. The formed protective film had a thickness of 3 ⁇ m.
  • the positive electrode thus obtained was evaluated in the same manner as in “6.1.4. Production and evaluation of electrode for power storage device” in Example 1 above. The results are also shown in Table 3.
  • Negative electrode The negative electrode produced in “6.1.5. Production and evaluation of electricity storage device” in Example 1 was used as the negative electrode.
  • Example 15 to 23 Comparative Examples 7 to 9 In Example 14, except that the electricity storage device composition used was changed to the electricity storage device compositions S2 to S13 prepared above, and the inorganic particles used were those shown in Table 3. In the same manner as above, a positive electrode was produced and evaluated. In addition, an electricity storage device was produced and evaluated in the same manner as in Example 14. The results are also shown in Table 3.
  • Example 14 except that the electricity storage device composition used was changed to the electricity storage device composition S14 to S19 prepared above, and the inorganic particles used were those shown in Table 4, respectively. In the same manner as in Example 14, a slurry for forming a protective film was prepared.
  • the obtained slurry for forming a protective film was applied to the surface of the active material layer of the negative electrode prepared in “6.5.4. Production and Evaluation of Electrode for Electricity Storage Device” in Example 11 using a die coating method. Then, it was dried at 120 ° C. for 5 minutes to form a protective film on the surface of the active material layer. In this way, a negative electrode with a protective film in which a protective film was further formed on the surface of the active material layer was prepared, and the same as “6.1.4. Production and evaluation of electrode for power storage device” in Example 1 above. And evaluated. The evaluation results are also shown in Table 4.
  • Example 11 the positive electrode produced in “6.5.5. Production and evaluation of electricity storage device” in Example 11 above was used as the positive electrode, and a protective film was further formed on the surface of the active material layer obtained above as the negative electrode. An electricity storage device was produced and evaluated in the same manner as in Example 14 except that the negative electrode was used. The evaluation results are also shown in Table 4.
  • Example 27 Comparative Example 13 6.11. Synthesis of polyimide
  • Polyimide was synthesized by the method described in JP-A-2009-87562. That is, in a four-necked flask equipped with a cooling pipe and a nitrogen gas inlet, 1.0 mol of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, o-tolidine diisocyanate 0 .95 mol is mixed with N-methyl-2-pyrrolidone (NMP) so that the solid content concentration becomes 20% by mass, 0.01 mol of diazabicycloundecene is added as a catalyst and stirred, and the mixture is stirred at 120 ° C. for 4 minutes. Reacted for hours.
  • NMP N-methyl-2-pyrrolidone
  • composition for electricity storage device Example 1 except that the NMP solution of polyimide obtained above was used, NMP was used instead of water, and the types and contents of the anti-blocking agents listed in Table 7 were used.
  • compositions for power storage devices S20 and S22 were prepared.
  • the protective film-forming slurry obtained above was die-coated on the surface of the active material layer of the positive electrode produced in “6.5.5. Production and Evaluation of Electricity Storage Device” in Example 11 above. Then, the film was dried at 120 ° C. for 5 minutes to form a protective film on the surface of the active material layer. The formed protective film had a thickness of 3 ⁇ m.
  • the positive electrode thus obtained was evaluated in the same manner as in “6.1.4. Production and evaluation of electrode for power storage device” in Example 1 above. The results are also shown in Table 4.
  • Negative electrode The negative electrode produced in “6.1.5. Production and evaluation of electricity storage device” in Example 1 was used as the negative electrode.
  • Example 28 Comparative Example 14 80 parts by mass (in terms of solid content) of the composition S1 for power storage device, 20 parts by mass (in terms of solid content) of polyacrylic acid (manufactured by ACROS, product number “185012500”, average molecular weight 240,000), and Table 7 Were mixed and stirred, and water was appropriately added to prepare power storage device compositions S21 and S23 having a solid content of 40% by mass.
  • polyacrylic acid manufactured by ACROS, product number “185012500”, average molecular weight 240,000
  • a positive electrode having a protective film formed on the surface thereof by preparing a protective film-forming slurry in the same manner as in “6.10 Example 27, Comparative Example 13” except that the composition S21 or S23 for the electricity storage device was used. And electrical storage devices were manufactured and evaluated. The results are also shown in Table 4.
  • Example 29 The slurry for forming a protective film prepared in “6.7.1. Preparation of slurry for forming a protective film” in Example 14 above is a separator made of a polypropylene porous film (trade name “Celguard # 2400” manufactured by Celgard Co., Ltd.). The separator for an electricity storage device in which a protective film is formed on the surface of the separator is coated on one side using a wire bar so that the thickness after drying becomes 10 ⁇ m and then dried at 90 ° C. for 20 minutes. Obtained.
  • Example 30 to 38, Comparative Examples 15 to 18, 21 In Example 29 above, except that the protective film-forming slurry was prepared by changing the composition for the electricity storage device and the inorganic particles used in Table 5 or Table 6 to prepare the electricity storage device, the same as in Example 29 above. Device electrodes and electricity storage devices were manufactured and evaluated. The results are also shown in Table 5 and Table 6.
  • Example 39 to 43, Comparative Examples 19, 20, and 22 In Example 29, the composition for the electricity storage device and the inorganic particles used were changed to those shown in Table 6 to prepare a slurry for forming a protective film, and the electricity storage device separator obtained in Example 29 was protected. An electrode for an electricity storage device and an electricity storage device were produced and evaluated in the same manner as in Example 29 except that the film surface was on the negative electrode side. The results are also shown in Table 6.
  • Titanium oxide The product name “KR380” (manufactured by Titanium Industry Co., Ltd., rutile type, average particle size 0.38 ⁇ m) is used as it is, or is ground in a mortar with the product name “KR380” and used with a sieve. By classification, titanium oxides having an average particle diameter of 0.08 ⁇ m and 0.12 ⁇ m were prepared and used.
  • Aluminum oxide Product name “AKP-3000” (manufactured by Sumitomo Chemical Co., Ltd., average particle size 0.74 ⁇ m), or product name “AL-160SG-3” (manufactured by Showa Denko Co., Ltd., average particle size 0.98 ⁇ m) was used.
  • Zirconium oxide Product name “UEP zirconium oxide” (Daiichi Rare Element Chemical Industries, Ltd., average particle size 0.67 ⁇ m)
  • Silica The product name “Seahoster KE-S50” (manufactured by Nippon Shokubai Co., Ltd., average particle size 0.54 ⁇ m) was used.
  • Magnesium oxide Product name “PUREMAG® FNM-G” (manufactured by Tateho Chemical Co., Ltd., average particle size 0.50 ⁇ m)
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the above embodiment or a configuration that can achieve the same object.
  • the present invention includes a configuration obtained by adding a known technique to the configuration described in the above embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)

Abstract

 ブロッキング耐性に優れると共に、電極とセパレーターとを積層させる際には位置ずれを効果的に防止できる(すなわち適度にブロッキングできる)電極やセパレーターを製造可能な蓄電デバイス用組成物を提供する。 本発明に係る蓄電デバイス用組成物は、バインダーと、ブロッキング防止剤と、液状媒体と、を含有し、前記バインダーの含有量をM1質量部、前記ブロッキング防止剤の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする。

Description

蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス用電極、蓄電デバイス用セパレーターおよび蓄電デバイス
 本発明は、蓄電デバイス用組成物、該組成物を含有する蓄電デバイス用スラリー、該スラリーを集電体に塗布および乾燥して作製された蓄電デバイス用電極、該スラリーを塗布および乾燥して作製された保護膜を表面に備える蓄電デバイス用セパレーター、ならびに該電極および該セパレーターの少なくとも一方を備える蓄電デバイスに関する。
 蓄電デバイスに使用される正極や負極(以下、「電極」ともいう。)は、特開2013-030449号公報にも開示されているように、活物質とバインダーとの混合物を集電体表面へ塗布および乾燥させ、集電体表面に活物質層を形成することにより作製される。また、近年では、セパレーター表面に無機粒子とバインダーとの混合物を塗布および乾燥させ、デンドライトに耐え得る保護膜をセパレーターの表面に形成する技術も提案されている。特開2011-005867号公報にも開示されているように、蓄電デバイスの分野では、電極やセパレーターの表面に活物質や無機粒子を含有する層を備えることが一般的である。
 蓄電デバイスの製造方法としては、正極と負極との間に短絡を防止するためのセパレーターを挟んで積層し、その後、電極とセパレーターとを接着し、または捲回するなどの成形加工を行い、容器内に載置して電解液を注入して、封口する方法が知られている。
 一方、電極やセパレーターは製造後、蓄電デバイスの製造に使用されるまでにロール状に捲回して保管する場合がある。このような場合、電極同士やセパレーター同士でブロッキング(接触面が滑りにくくなり、位置ずれが起こりにくくなること、以下「ブロッキング」との用語はこの意味で使用する。)が発生しやすくなる。電極同士やセパレーター同士でブロッキングが発生すると、活物質層から活物質が剥落し、またセパレーターから無機粒子が剥落するなどの問題が発生する。このような問題を解決するために、例えば特開2007-059271号公報では、アンチブロッキング剤として反応性官能基を有するポリマー粒子を用いてブロッキングを防止する方法が検討されている。
 上述のように蓄電デバイスの製造工程では、電極とセパレーターとを位置合わせして積層した後、その積層体を捲回するなどの成形加工が行われる。このような電極とセパレーターとを積層する工程では、電極とセパレーターとの間で適度なブロッキングが発生しないと、電極とセパレーターとの位置がずれ易くなり、位置合わせが困難となる。電極とセパレーターとの位置ずれが発生すると、短絡を生じて蓄電デバイスが発熱するなどの問題が生じ得る。一方、電極/セパレーター積層体を捲回するなどの成形加工を行う際、電極とセパレーターとの間で強力にブロッキングしてしまうと、活物質層が剥落するなどの問題が発生する。活物質層が剥落すると、蓄電デバイスの充放電特性が劣化するなどの問題が生じ得る。さらに、これらの現象は蓄電デバイスの量産化においては、製品歩留まりの低下の原因となっていた。
 上述の特開2007-059271号公報に開示されている技術によれば、セパレーター同士のブロッキングを回避することはできるが、成形加工においても電極とのブロッキングを同様に防止してしまうため、上述のような成形加工における問題を解決することは困難であった。
 そこで、本発明に係る幾つかの態様は、前記課題の少なくとも一部を解決することで、ブロッキング耐性に優れると共に、電極とセパレーターとを積層させる際には位置ずれを効果的に防止できる(すなわち適度にブロッキングできる)蓄電デバイス用電極や蓄電デバイス用セパレーターを製造可能な蓄電デバイス用組成物、および該組成物を含有する蓄電デバイス用スラリーを提供するものである。
 また、本発明に係る幾つかの態様は、前記課題の少なくとも一部を解決することで、ブロッキング耐性に優れると共に、電極とセパレーターとを積層させる際には位置ずれを効果的に防止できる(すなわち適度にブロッキングできる)蓄電デバイス用電極および蓄電デバイス用セパレーター、ならびにこれらを備える蓄電デバイスを提供するものである。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明に係る蓄電デバイス用組成物の一態様は、
 不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体(A)と、
 ポリエチレンワックス、ポリプロピレンワックス、脂肪酸アミド、脂肪酸エステルおよび脂肪酸金属塩からなる群より選ばれる少なくとも1種である成分(B)と、
 液状媒体と、を含有し、
 前記重合体(A)の含有量をM1質量部、前記成分(B)の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする。
 [適用例2]
 本発明に係る蓄電デバイス用組成物の一態様は、
 バインダーと、ブロッキング防止剤と、液状媒体と、を含有し、
 前記バインダーの含有量をM1質量部、前記ブロッキング防止剤の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする。
 [適用例3]
 適用例2の蓄電デバイス用組成物において、
 前記ブロッキング防止剤が、ポリエチレンワックス、ポリプロピレンワックス、脂肪酸アミド、脂肪酸エステルおよび脂肪酸金属塩からなる群より選ばれる少なくとも1種であることができる。
 [適用例4]
 適用例2または適用例3の蓄電デバイス用組成物において、
 前記バインダーが、
 含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、
 不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、
を有する含フッ素系バインダーであることができる。
 [適用例5]
 適用例2または適用例3の蓄電デバイス用組成物において、
 前記バインダーが、
 共役ジエン化合物に由来する繰り返し単位(Mc)と、
 芳香族ビニル化合物に由来する繰り返し単位(Md)と、
 不飽和カルボン酸エステルに由来する繰り返し単位(Me)と、
 不飽和カルボン酸に由来する繰り返し単位(Mf)と、
を有するジエン系バインダーであることができる。
 [適用例6]
 適用例2ないし適用例5のいずれか一例の蓄電デバイス用組成物において、
 前記バインダーが粒子であり、該粒子の平均粒子径が50~400nmであることができる。
 [適用例7]
 本発明に係る蓄電デバイス用スラリーの一態様は、
 適用例1ないし適用例6のいずれか一例の蓄電デバイス用組成物と、活物質と、を含有することを特徴とする。
 [適用例8]
 本発明に係る蓄電デバイス用電極の一態様は、
 集電体と、前記集電体の表面上に適用例7の蓄電デバイス用スラリーが塗布および乾燥されて形成された層と、を備えることを特徴とする。
 [適用例9]
 本発明に係る蓄電デバイス用電極の一態様は、
 表面に保護膜を備える蓄電デバイス用電極であって、
 前記保護膜が、
 不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体(A)と、
 ポリエチレンワックス、ポリプロピレンワックス、脂肪酸アミド、脂肪酸エステルおよび脂肪酸金属塩からなる群より選ばれる少なくとも1種である成分(B)と、
を含有し、
 前記重合体(A)の含有量をM1質量部、前記成分(B)の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする。
 [適用例10]
 本発明に係る蓄電デバイス用電極の一態様は、
 表面に保護膜を備える蓄電デバイス用電極であって、
 前記保護膜が、バインダーと、ブロッキング剤と、を含有し、
 前記バインダーの含有量をM1質量部、前記ブロッキング防止剤の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする。
 [適用例11]
 本発明に係る蓄電デバイス用スラリーの一態様は、
 適用例1ないし適用例6のいずれか一例の蓄電デバイス用組成物と、無機粒子と、を含有することを特徴とする。
 [適用例12]
 適用例11の蓄電デバイス用スラリーにおいて、
 前記無機粒子が、シリカ、酸化チタン、酸化アルミニウム、酸化ジルコニウムおよび酸化マグネシウムからなる群より選択される少なくとも1種の粒子であることができる。
 [適用例13]
 本発明に係る蓄電デバイス用セパレーターの一態様は、
 適用例11または適用例12の蓄電デバイス用スラリーを塗布および乾燥させて形成された層を表面に備えることを特徴とする。
 [適用例14]
 本発明に係る蓄電デバイス用セパレーターの一態様は、
 表面に保護膜を備える蓄電デバイス用セパレーターであって、
 前記保護膜が、不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体(A)と、
 ポリエチレンワックス、ポリプロピレンワックス、脂肪酸アミド、脂肪酸エステルおよび脂肪酸金属塩からなる群より選ばれる少なくとも1種である成分(B)と、
を含有し、
 前記重合体(A)の含有量をM1質量部、前記成分(B)の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする。
 [適用例15]
 本発明に係る蓄電デバイス用セパレーターの一態様は、
 表面に保護膜を備える蓄電デバイス用セパレーターであって、
 前記保護膜が、バインダーと、ブロッキング防止剤と、を含有し、
 前記バインダーの含有量をM1質量部、前記ブロッキング防止剤の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする。
 [適用例16]
 本発明に係る蓄電デバイスの一態様は、
 適用例8ないし適用例10のいずれか一例の蓄電デバイス用電極を備えることを特徴とする。
 [適用例17]
 本発明に係る蓄電デバイスの一態様は、
 適用例13ないし適用例15のいずれか一例の蓄電デバイス用セパレーターを備えることを特徴とする。
 本発明に係る蓄電デバイス用組成物によれば、ブロッキング耐性に優れると共に、電極とセパレーターとを積層させる際には位置ずれを効果的に防止できる(すなわち適度にブロッキングできる)蓄電デバイス用電極や蓄電デバイス用セパレーターを製造することができる。本発明に係る蓄電デバイス用電極によれば、ブロッキング耐性に優れると共に、電極とセパレーターとを積層させる際には位置ずれを効果的に防止できる(すなわち適度にブロッキングできる)。本発明に係る蓄電デバイス用セパレーターによれば、ブロッキング耐性に優れると共に、電極とセパレーターとを積層させる際には位置ずれを効果的に防止できる(すなわち適度にブロッキングできる)。本発明に係る蓄電デバイス用組成物を用いて製造された蓄電デバイス用電極および/または蓄電デバイス用セパレーターを備える蓄電デバイスは、電気的特性の一つである充放電レート特性が良好となる。
図1は、第1の具体例に係る蓄電デバイス用電極を模式的に示す断面図である。 図2は、第2の具体例に係る蓄電デバイス用電極を模式的に示す断面図である。 図3は、本実施形態に係る蓄電デバイス用セパレーターを模式的に示す断面図である。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。なお、本明細書における「(メタ)アクリル酸~」とは、「アクリル酸~」および「メタクリル酸~」の双方を包括する概念である。また、「~(メタ)アクリレート」とは、「~アクリレート」および「~メタクリレート」の双方を包括する概念である。
 1.蓄電デバイス用組成物
 本実施の形態に係る蓄電デバイス用組成物は、バインダーと、ブロッキング防止剤と、液状媒体と、を含有し、前記バインダーの含有量をM1質量部、前記ブロッキング防止剤の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする。
 本実施の形態に係る蓄電デバイス用組成物は、集電体表面に活物質層を形成するための電極用バインダーとして使用することができ、またセパレーターおよび/または電極表面に保護膜を形成するためのバインダーとして使用することもできる。いずれの使用形態においても、前記バインダーの含有量M1質量部と前記ブロッキング防止剤の含有量M2質量部とが、1<M1/M2<4000の関係にあればよいが、20<M1/M2<3000であることが好ましく、30<M1/M2<2500であることがより好ましい。また、本実施の形態に係る蓄電デバイス用組成物を電極用バインダーとして使用する場合には、40<M1/M2<2000であることが特に好ましく、セパレーターおよび/または電極表面に保護膜を形成するためのバインダーとして使用する場合には40<M1/M2<500であることが特に好ましい。M1とM2との関係が前記範囲であると、ブロッキング耐性を電極やセパレーターに付与することができ、しかも電極とセパレーターとを積層させる際には位置ずれを効果的に防止する(すなわち適度にブロッキングする)ことができる。したがって、活物質の剥落や電極とセパレーターとの位置ずれなどによって、蓄電デバイスの充放電特性が劣化することを防止できる。以下、本実施の形態に係る蓄電デバイス用組成物に含まれる各成分について詳細に説明する。
 1.1.バインダー
 本実施の形態に係る蓄電デバイス用組成物に含まれるバインダーは、電極用バインダーとして使用する場合には、活物質同士を結着させ、また活物質層と集電体との密着性を向上させる機能を有する。一方、セパレーターおよび/または電極表面に保護膜を形成するためのバインダーとして使用する場合には、無機粒子同士を結着させ、またセパレーターおよび/または電極表面と保護膜との密着性を向上させる機能を有する。
 このようなバインダーとしては、液状媒体中に粒子として分散されたラテックス状であることが好ましい。蓄電デバイス用組成物がラテックス状であると、活物質または無機粒子と混合して作製される蓄電デバイス用スラリーの安定性が良好となり、また蓄電デバイス用スラリーの塗布性が良好となるため好ましい。以下、液状媒体中に粒子として分散されたバインダーのことを「バインダー粒子」という。バインダー粒子としては、一般に市販されているラテックスを使用してもよい。
 本実施の形態に係る蓄電デバイス用組成物が正極を作製するために用いられる場合、耐酸化性および密着性の双方に優れる観点から下記の含フッ素系バインダーであることが好ましい。本実施の形態に係る蓄電デバイス用組成物が負極を作製するために用いられる場合、下記のジエン系バインダーであることが好ましい。また、本実施の形態に係る蓄電デバイス用組成物に含まれるバインダーは、ポリアミック酸およびそのイミド化重合体よりなる群から選択される少なくとも1種を含有してもよい。
 1.1.1.含フッ素系バインダー
 本実施の形態に係る蓄電デバイス用組成物が正極を作製するために用いられる場合、バインダーは、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、を有する含フッ素系バインダーであることが好ましい。
 1.1.1.1.含フッ素エチレン系単量体に由来する繰り返し単位(Ma)
 含フッ素エチレン系単量体としては、例えばフッ素原子を有するオレフィン化合物、フッ素原子を有する(メタ)アクリレート化合物等が挙げられる。フッ素原子を有するオレフィン化合物としては、例えばフッ化ビニリデン、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレン、パーフルオロアルキルビニルエーテル等が挙げられる。フッ素原子を有する(メタ)アクリレート化合物としては、例えば下記一般式(1)で表される化合物、(メタ)アクリル酸3[4〔1-トリフルオロメチル-2,2-ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2-ヒドロキシプロピル等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、Rは水素原子またはメチル基であり、Rはフッ素原子を含有する炭素数1~18の炭化水素基である。)
 上記一般式(1)中のRとしては、例えば炭素数1~12のフッ化アルキル基、炭素数6~16のフッ化アリール基、炭素数7~18のフッ化アラルキル基等が挙げられるが、これらの中でも炭素数1~12のフッ化アルキル基であることが好ましい。上記一般式(1)中のRの好ましい具体例としては、例えば2,2,2-トリフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル基、β-(パーフルオロオクチル)エチル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,4,4,4-ヘキサフルオロブチル基、1H,1H,5H-オクタフルオロペンチル基、1H,1H,9H-パーフルオロ-1-ノニル基、1H,1H,11H-パーフルオロウンデシル基、パーフルオロオクチル基等が挙げられる。
 含フッ素エチレン系単量体としては、これらの中でも、フッ素原子を有するオレフィン化合物が好ましく、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンからなる群より選ばれる少なくとも1種であることがより好ましい。上記の含フッ素エチレン系単量体は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
 含フッ素系バインダーにおいて、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)の含有割合は、全繰り返し単位を100質量部とした場合に20~40質量部であることが好ましく、25~35質量部であることがより好ましい。
 1.1.1.2.不飽和カルボン酸エステルに由来する繰り返し単位(Mb)
 一般的に、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する重合体は、密着性は良好であるが、耐酸化性が不良であると考えられており、従来から正極には使用されなかった。しかしながら、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、を有する含フッ素系バインダーであれば、良好な密着性を維持しつつ、十分な耐酸化性を発現できるため、正極用バインダーとして好適に用いることができる。
 不飽和カルボン酸エステルとしては、(メタ)アクリレート化合物であることが好ましい。このような(メタ)アクリレート化合物の具体例としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸i-アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレンなどを挙げることができ、これらのうちから選択される1種以上であることができる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルおよび(メタ)アクリル酸2-エチルヘキシルから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。
 含フッ素系バインダーにおいて、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)の含有割合は、全繰り返し単位を100質量部とした場合に45~80質量部であることが好ましく、50~70質量部であることがより好ましい。
 1.1.1.3.その他の繰り返し単位
 含フッ素系バインダーは、後述するα,β-不飽和ニトリル化合物、不飽和カルボン酸、共役ジエン化合物、芳香族ビニル化合物、およびその他の不飽和単量体に由来する繰り返し単位をさらに含有してもよい。
 1.1.1.4.含フッ素系バインダーの合成方法
 含フッ素系バインダーの合成方法については特に限定されないが、例えば特許4849286号公報に記載されている方法により作製することができる。
 1.1.2.ジエン系バインダー
 本実施の形態に係る蓄電デバイス用組成物が負極を作製するために用いられる場合、バインダーはジエン系バインダーであることが好ましい。ジエン系バインダーは、共役ジエン化合物に由来する繰り返し単位(Mc)と、芳香族ビニル化合物に由来する繰り返し単位(Md)と、不飽和カルボン酸エステルに由来する繰り返し単位(Me)と、不飽和カルボン酸に由来する繰り返し単位(Mf)と、を有することが好ましい。
 1.1.2.1.共役ジエン化合物に由来する繰り返し単位(Mc)
 ジエン系バインダーが共役ジエン化合物に由来する繰り返し単位(Mc)を有することにより、粘弾性および強度に優れた負極用バインダーを製造することが容易となる。すなわち、共役ジエン化合物に由来する繰り返し単位を有する重合体を使用すると、重合体が強い結着力を有することができる。共役ジエン化合物に由来するゴム弾性が重合体に付与されるため、電極の体積収縮や拡大等の変化に追従することが可能となる。これにより、結着性を向上させて、さらには長期に充放電特性を維持する耐久性を有するものと考えられる。
 共役ジエン化合物としては、例えば1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエンなどを挙げることができ、これらのうちから選択される1種以上であることができる。共役ジエン化合物としては、1,3-ブタジエンが特に好ましい。
 ジエン系バインダーにおいて、共役ジエン化合物に由来する繰り返し単位(Mc)の含有割合は、全繰り返し単位を100質量部とした場合に30~60質量部であることが好ましく、40~55質量部であることがより好ましい。繰り返し単位(Mc)の含有割合が前記範囲にあると、結着性のさらなる向上が可能となる。
 1.1.2.2.芳香族ビニル化合物に由来する繰り返し単位(Md)
 ジエン系バインダーが芳香族ビニル化合物に由来する繰り返し単位(Md)を有することにより、負極用スラリーが導電付与剤を含有する場合に、これに対する親和性をより良好にすることができる。
 芳香族ビニル化合物の具体例としては、例えばスチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼンなどを挙げることができ、これらのうちから選択される1種以上であることができる。芳香族ビニル化合物としては、スチレンが特に好ましい。
 ジエン系バインダーにおいて、芳香族ビニル化合物に由来する繰り返し単位(Md)の含有割合は、全繰り返し単位を100質量部とした場合に10~40質量部であることが好ましく、15~35質量部であることがより好ましい。繰り返し単位(Md)の含有割合が前記範囲にあると、バインダーが活物質として用いられるグラファイトに対して適度な結着性を有する。また、得られる活物質層は、柔軟性や集電体に対する結着性が良好なものとなる。
 1.1.2.3.不飽和カルボン酸エステルに由来する繰り返し単位(Me)
 ジエン系バインダーが不飽和カルボン酸エステルに由来する繰り返し単位(Me)を有することにより、電解液との親和性が良好となり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制するとともに、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
 このような不飽和カルボン酸エステルとしては、(メタ)アクリレート化合物であることが好ましく、例えば上述の「1.1.1.2.不飽和カルボン酸エステルに由来する繰り返し単位(Mb)」で例示した化合物を使用することができる。
 ジエン系バインダーにおいて、不飽和カルボン酸エステルに由来する繰り返し単位(Me)の含有割合は、全繰り返し単位を100質量部とした場合に5~40質量部であることが好ましく、10~30質量部であることがより好ましい。繰り返し単位(Me)の含有割合が前記範囲にあると、ジエン系バインダーは電解液との親和性が適度なものとなり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制するとともに、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
 1.1.2.4.不飽和カルボン酸に由来する繰り返し単位(Mf)
 ジエン系バインダーが不飽和カルボン酸に由来する繰り返し単位(Mf)を有することにより、本実施の形態に係る蓄電デバイス用組成物を用いて調製された蓄電デバイス用スラリーの安定性が向上する。
 不飽和カルボン酸の具体例としては、例えばアクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等のモノまたはジカルボン酸を挙げることができ、これらの中から選択される1種以上であることができる。特に、アクリル酸、メタクリル酸およびイタコン酸から選択される1種以上であることが好ましい。
 ジエン系バインダーにおいて、不飽和カルボン酸に由来する繰り返し単位(Mf)の含有割合は、全繰り返し単位を100質量部とした場合に15質量部以下であることが好ましく、0.3~10質量部であることがより好ましい。繰り返し単位(Mf)の含有割合が前記範囲にあると、蓄電デバイス用スラリー調製時において、ジエン系バインダーの分散安定性が優れるため、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
 1.1.2.5.その他の繰り返し単位
 ジエン系バインダーは、上記以外の繰り返し単位を有してもよい。上記以外の繰り返し単位としては、例えばα,β-不飽和ニトリル化合物に由来する繰り返し単位が挙げられる。
 α,β-不飽和ニトリル化合物の具体例としては、例えばアクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エチルアクリロニトリル、シアン化ビニリデンなどを挙げることができ、これらから選択される1種以上であることができる。これらのうち、アクリロニトリルおよびメタクリロニトリルから選択される1種以上であることが好ましく、アクリロニトリルであることがより好ましい。
 ジエン系バインダーにおいて、α,β-不飽和ニトリル化合物に由来する繰り返し単位の含有割合は、全繰り返し単位を100質量部とした場合に、35質量部以下であることが好ましく、10~25質量部であることがより好ましい。α,β-不飽和ニトリル化合物に由来する繰り返し単位の含有割合が前記範囲にあると、使用する電解液との親和性に優れ、かつ膨潤率が大きくなりすぎず、電池特性の向上に寄与することができる。
 また、ジエン系バインダーは、以下に示す化合物に由来する繰り返し単位をさらに有してもよい。このような化合物としては、例えば、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレン等のエチレン性不飽和結合を有する含フッ素化合物;(メタ)アクリルアミド、N-メチロールアクリルアミド等のエチレン性不飽和カルボン酸のアルキルアミド;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;エチレン性不飽和ジカルボン酸の酸無水物;モノアルキルエステル;モノアミド;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミド等のエチレン性不飽和カルボン酸のアミノアルキルアミド等を挙げることができ、これらのうちから選択される1種以上であることができる。
 1.1.2.6.ジエン系バインダーの合成方法
 ジエン系バインダーの合成方法については特に限定されないが、例えば特許5146710号公報に記載されている方法により作製することができる。
 1.1.3.ポリアミック酸およびそのイミド化重合体
 本実施の形態に係る蓄電デバイス用組成物に含まれるバインダーは、ポリアミック酸およびそのイミド化重合体からなる群より選択される少なくとも1種を含有してもよい。ポリアミック酸は、テトラカルボン酸二無水物とジアミンとを反応させることにより得ることができる。また、ポリアミック酸の部分イミド化物は、上記ポリアミック酸のアミック酸構造の一部を脱水閉環してイミド化することにより得ることができる。
 ポリアミック酸を合成するために用いられるテトラカルボン酸二無水物やジアミンとしては、特開2010-97188号公報に記載のテトラカルボン酸二無水物やジアミンを用いることができる。また、ポリアミック酸やそのイミド化重合体は、特許5099394号公報に記載されている方法により合成することができる。
 1.1.4.バインダー粒子の平均粒子径
 上記の含フッ素系バインダーやジエン系バインダーがバインダー粒子である場合、該バインダー粒子の平均粒子径は、50~400nmの範囲にあることが好ましく、100~250nmの範囲にあることがより好ましい。バインダー粒子の平均粒子径が前記範囲にあると、活物質や無機粒子表面へのバインダー粒子の吸着が効果的になされるため、活物質同士または無機粒子同士の結着性が良好となる。また、活物質の移動に伴ってバインダー粒子も追従して移動することができるので、両者の粒子のうちのいずれかのみが単独でマイグレートすることを抑制でき、電極の電気的特性の劣化を抑制できる。バインダー粒子の平均粒子径は、特許5146710号公報に記載されている方法により動的光散乱法を測定原理とする粒度分布測定装置を用いてJIS Z 8826に準拠して測定することができる。
 1.2.ブロッキング防止剤
 本実施の形態に係る蓄電デバイス用組成物を含む蓄電デバイス用スラリーを集電体の表面に塗布および乾燥させることにより、集電体の表面にブロッキング防止剤を含有する活物質層を形成することができる。また、本実施の形態に係る蓄電デバイス用組成物を含む蓄電デバイス用スラリーを活物質層やセパレーターの表面に塗布および乾燥させることにより、活物質層やセパレーターの表面にブロッキング防止剤を含有する保護膜を形成することができる。このブロッキング防止剤を含有する活物質層や保護膜の表面では、ブロッキング防止剤がブリードアウトするので、電極やセパレーターにブロッキング耐性が付与されると考えられる。
 本実施の形態に係る蓄電デバイス用組成物に含まれるブロッキング防止剤は、液状媒体中に溶解させてもよく、液状媒体中に液滴粒子として分散された分散状態であってもよい。ブロッキング防止剤が液状媒体中に液滴粒子として分散している場合、液滴粒子の平均粒子径としては、1~100μmが好ましく、5~50μmがより好ましい。液滴粒子の平均粒子径が前記範囲にあると、電極の活物質層やセパレーターの保護膜の表面で液滴粒子が突出しやすくなるので、電極やセパレーターにブロッキング耐性の効果を付与しやすくすることができる。液滴粒子の平均粒子径は、レーザー回折・散乱法(マイクロトラック法)を測定原理とする粒度分布測定装置を用いて測定することができる。このような粒度分布測定装置としては、日機装株式会社製「マイクロトラックMT3000II」等が挙げられる。
 上記ブロッキング防止剤としては、フッ素系重合体、ポリエチレンワックス、ポリプロピレンワックス、エチレン-プロピレン共重合体ワックス、フィッシャー・トロプシュワックスおよびそれらの部分酸化物あるいはエチレン性不飽和カルボン酸との共重合体等の合成炭化水素系ワックス;モンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体等の変成ワックス;硬化ひまし油、硬化ひまし油誘導体等の水素化ワックス;セチルアルコール、ステアリン酸、12-ヒドロキシステアリン酸等の高級脂肪酸およびアルコール;グリセリルステアレート、ポリエチレングリコールステアレート、ステアリン酸ステアリル、パルミチン酸イソプロピル等の脂肪酸エステル;ステアリン酸アミド等の脂肪酸アミド;ステアリン酸カルシウム、ステアリン酸リチウム等の脂肪酸金属塩;無水フタル酸イミド;塩素化炭化水素等が挙げられる。
 これらのうち好ましいものは、ポリエチレンワックス、ポリプロピレンワックス、エチレン-プロピレン共重合体ワックス、フィッシャー・トロプシュワックスおよびそれらの部分酸化物あるいはエチレン性不飽和カルボン酸との共重合体等の合成炭化水素系ワックス;モンタンワックス誘導体、パラフィンワックス誘導体、マイクロスタリンワックス誘導体等の変成ワックス;セチルアルコール、ステアリン酸、12-ヒドロキシステアリン酸等の高級脂肪酸およびアルコール;ステアリン酸アミド等の脂肪酸アミド、脂肪酸金属塩である。より好ましいものは、ポリエチレンワックス、ポリプロピレンワックス、エチレン-プロピレン共重合体ワックス、フィッシャー・トロプシュワックスおよびそれらの部分酸化物あるいはエチレン性不飽和カルボン酸との共重合体等の合成炭化水素系ワックス、セチルアルコール、ステアリン酸、12-ヒドロキシステアリン酸等の高級脂肪酸およびアルコール、ステアリン酸アミド等の脂肪酸アミド、ステアリン酸カルシウム、ステアリン酸リチウム等の脂肪酸金属塩である。
 ブロッキング防止剤を液状媒体中に液滴粒子として分散させる場合、ブロッキング防止剤、液状媒体、分散剤を容器に入れ、加熱攪拌によって分散後冷却するなどして調製することができる。
 本実施の形態に係る蓄電デバイス用組成物中、ブロッキング防止剤の含有量は、0.01~5質量%であることが好ましく、0.015~3質量%であることがより好ましく、0.02~1質量%であることが特に好ましい。ブロッキング防止剤の含有量が前記範囲にあれば、蓄電デバイス用組成物の安定性を阻害することなく、電極やセパレーターにブロッキング耐性を付与することができる。
 1.3.液状媒体
 本実施の形態に係る蓄電デバイス用組成物は、液状媒体を含有する。液状媒体としては、水を含有する水系媒体であることが好ましい。上記水系媒体には、水以外の非水系媒体を含有させることができる。この非水系媒体としては、例えばアミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。液状媒体が水系媒体である場合、液状媒体の全量100質量%中、90質量%以上が水であることが好ましく、98質量%以上が水であることがより好ましい。本実施の形態に係る蓄電デバイス用組成物は、液状媒体として水系媒体を使用することにより、環境に対して悪影響を及ぼす程度が低くなり、取扱作業者に対する安全性も高くなる。
 水系媒体中に含まれる非水系媒体の含有割合は、水系媒体100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、実質的に含有しないことが特に好ましい。ここで、「実質的に含有しない」とは、液状媒体として非水系媒体を意図的に添加しないという程度の意味であり、蓄電デバイス用組成物を作製する際に不可避的に混入する非水系媒体を含んでもよい。
 1.4.その他の添加剤
 本実施の形態に係る蓄電デバイス用組成物は、必要に応じて前述した成分以外の添加剤を含有することができる。このような添加剤としては、例えば増粘剤が挙げられる。本実施の形態に係る蓄電デバイス用組成物は、増粘剤を含有することにより、その塗布性や得られる蓄電デバイスの充放電特性等をさらに向上させることができる。
 このような増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース化合物;上記セルロース化合物のアンモニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸、変性ポリ(メタ)アクリル酸などのポリカルボン酸;上記ポリカルボン酸のアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、エチレン-ビニルアルコール共重合体などのポリビニルアルコール系(共)重合体;(メタ)アクリル酸、マレイン酸およびフマル酸などの不飽和カルボン酸とビニルエステルとの共重合体の鹸化物などの水溶性ポリマーなどを挙げることができる。これらの中でも特に好ましい増粘剤としては、カルボキシメチルセルロースのアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩などである。
 これら増粘剤の市販品としては、例えばCMC1120、CMC1150、CMC2200、CMC2280、CMC2450(以上、株式会社ダイセル製)等のカルボキシメチルセルロースのアルカリ金属塩を挙げることができる。
 本実施の形態に係る蓄電デバイス用組成物が増粘剤を含有する場合、増粘剤の使用割合は、蓄電デバイス用組成物の全固形分量に対して、5質量%以下であることが好ましく、0.1~3質量%であることがより好ましい。
 2.蓄電デバイス用スラリー
 上述の蓄電デバイス用組成物を用いて、本実施の形態に係る蓄電デバイス用スラリーを製造することができる。本実施の形態に係る蓄電デバイス用スラリーは、大別して蓄電デバイス電極用スラリーと保護膜形成用スラリーの二種類に分類することができる。
 2.1.蓄電デバイス電極用スラリー
 蓄電デバイス電極用スラリーとは、これを集電体の表面に塗布した後、乾燥して、集電体表面上に活物質層を形成するために用いられる分散液のことをいう。本実施の形態に係る蓄電デバイス電極用スラリーは、前述の蓄電デバイス用組成物と、活物質と、を含有する。以下、本実施の形態に係る蓄電デバイス電極用スラリーに含まれる成分についてそれぞれ詳細に説明する。但し、蓄電デバイス用組成物については、前述した通りであるから説明を省略する。
 2.1.1.活物質
 本実施の形態に係る蓄電デバイス電極用スラリーに含まれる活物質を構成する材料としては特に制限はなく、目的とする蓄電デバイスの種類により適宜適当な材料を選択することができる。活物質としては、例えば炭素材料、ケイ素材料、リチウム原子を含む酸化物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、アルミニウム化合物等を挙げることができる。
 上記炭素材料としては、例えばアモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などが挙げられる。
 上記ケイ素材料としては、例えばケイ素単体、ケイ素酸化物、ケイ素合金などを挙げることができるほか、例えばSiC、SiO(0<x≦3、0<y≦5)、Si、SiO、SiO(0<x≦2)で表記されるSi酸化物複合体(例えば特開2004-185810号公報や特開2005-259697号公報に記載されている材料など)、特開2004-185810号公報に記載されたケイ素材料を使用することができる。上記ケイ素酸化物としては、組成式SiO(0<x<2、好ましくは0.1≦x≦1)で表されるケイ素酸化物が好ましい。上記ケイ素合金としては、ケイ素と、チタン、ジルコニウム、ニッケル、銅、鉄およびモリブデンよりなる群から選ばれる少なくとも1種の遷移金属との合金が好ましい。これらの遷移金属のケイ素合金は、高い電子伝導度を有し、かつ高い強度を有することから好ましく用いられる。また、活物質がこれらの遷移金属を含むことにより、活物質の表面に存在する遷移金属が酸化されて表面に水酸基を有する酸化物となるから、バインダーとの結着力がより良好になる点でも好ましい。ケイ素合金としては、ケイ素-ニッケル合金またはケイ素-チタン合金を使用することがより好ましく、ケイ素-チタン合金を使用することが特に好ましい。ケイ素合金におけるケイ素の含有割合は、該合金中の金属元素の全部に対して10モル%以上とすることが好ましく、20~70モル%とすることがより好ましい。なお、ケイ素材料は、単結晶、多結晶および非晶質のいずれであってもよい。
 また、活物質としてケイ素材料を用いる場合には、ケイ素材料以外の活物質を併用してもよい。このような活物質としては、例えば上記の炭素材料;ポリアセン等の導電性高分子;A(但し、Aはアルカリ金属または遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも1種、Oは酸素原子を表し、X、YおよびZはそれぞれ1.10>X>0.05、4.00>Y>0.85、5.00>Z>1.5の範囲の数である。)で表される複合金属酸化物や、その他の金属酸化物等が例示される。これらの中でも、リチウムの吸蔵および放出に伴う体積変化が小さいことから、炭素材料を併用することが好ましい。
 上記リチウム原子を含む酸化物としては、例えばコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、三元系ニッケルコバルトマンガン酸リチウム、LiFePO、LiCoPO、LiMnPO、Li0.90Ti0.05Nb0.05Fe0.30Co0.30Mn0.30POなどが挙げられる。
 活物質の形状としては、粒状であることが好ましい。活物質の平均粒子径としては、0.1~100μmであることが好ましく、1~20μmであることがより好ましい。
 活物質の使用割合は、活物質100質量部に対するバインダーの含有割合が、0.1~25質量部となるような割合で使用することが好ましく、0.5~15質量部となるような割合で使用することがより好ましい。このような使用割合とすることにより、密着性により優れ、しかも電極抵抗が小さく充放電特性により優れた電極を製造することができることとなる。
 2.1.2.その他の成分
 上記蓄電デバイス電極用スラリーは、必要に応じて前述した成分以外の成分を含有することができる。このような成分としては、例えば導電付与剤、非水系媒体、増粘剤等が挙げられる。
 2.1.2.1.導電付与剤
 上記導電付与剤の具体例としては、リチウムイオン二次電池においてはカーボンなどが;ニッケル水素二次電池においては、正極では酸化コバルトが:負極ではニッケル粉末、酸化コバルト、酸化チタン、カーボンなどが、それぞれ用いられる。上記両電池において、カーボンとしては、グラファイト、活性炭、アセチレンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレンなどを挙げることができる。これらの中でも、アセチレンブラックまたはファーネスブラックを好ましく使用することができる。導電付与剤の使用割合は、活物質100質量部に対して、好ましくは20質量部以下であり、より好ましくは1~15質量部であり、特に好ましくは2~10質量部である。
 2.1.2.2.非水系媒体
 上記蓄電デバイス電極用スラリーは、その塗布性を改善する観点から、80~350℃の標準沸点を有する非水系媒体を含有することができる。このような非水系媒体の具体例としては、例えば、N-メチルピロリドン、ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド化合物;トルエン、キシレン、n-ドデカン、テトラリンなどの炭化水素;2-エチル-1-ヘキサノール、1-ノナノール、ラウリルアルコールなどのアルコール;メチルエチルケトン、シクロヘキサノン、ホロン、アセトフェノン、イソホロンなどのケトン;酢酸ベンジル、酪酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル;o-トルイジン、m-トルイジン、p-トルイジンなどのアミン化合物;γ-ブチロラクトン、δ-ブチロラクトンなどのラクトン;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。これらの中でも、バインダー粒子の安定性、蓄電デバイス電極用スラリーを塗布する際の作業性などの点から、N-メチルピロリドンを使用することが好ましい。
 2.1.2.3.増粘剤
 上記蓄電デバイス電極用スラリーは、その塗工性を改善する観点から、増粘剤を含有することができる。増粘剤の具体例としては、上記「1.4.その他の添加剤」に記載した各種化合物が挙げられる。
 蓄電デバイス電極用スラリーが増粘剤を含有する場合、増粘剤の使用割合としては、蓄電デバイス電極用スラリーの全固形分量に対して、好ましくは20質量%以下であり、より好ましくは0.1~15質量%であり、特に好ましくは0.5~10質量%である。
 2.1.3.蓄電デバイス電極用スラリーの製造方法
 本実施の形態に係る蓄電デバイス電極用スラリーは、上述の蓄電デバイス用組成物と、活物質と、水と、必要に応じて用いられる添加剤と、を混合することにより製造することができる。これらの混合には公知の手法による攪拌によって行うことができ、例えば攪拌機、脱泡機、ビーズミル、高圧ホモジナイザーなどを利用することができる。
 蓄電デバイス電極用スラリーを製造するための混合撹拌としては、スラリー中に活物質の凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物がなくなるように混合分散することが好ましい。このような条件に適合する混合機としては、例えばボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを例示することができる。
 2.2.保護膜形成用スラリー
 保護膜形成用スラリーとは、これを電極またはセパレーターの表面もしくはその両方に塗布した後、乾燥させて、電極またはセパレーターの表面もしくはその両方に保護膜を形成するために用いられる分散液のことをいう。本実施の形態に係る保護膜形成用スラリーは、上述した蓄電デバイス用組成物と、無機粒子と、を含有する。以下、本実施の形態に係る保護膜形成用スラリーに含まれる各成分について詳細に説明する。なお、蓄電デバイス用組成物については、上述した通りであるから説明を省略する。
 2.2.1.無機粒子
 本実施の形態に係る保護膜形成用スラリーは、無機粒子を含有することにより、形成される保護膜のタフネスを向上させることができる。無機粒子としては、シリカ、酸化チタン(チタニア)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、酸化マグネシウム(マグネシア)等を用いることができる。これらの中でも、保護膜のタフネスをより向上させる観点から、酸化チタン、酸化アルミニウムが好ましい。また、酸化チタンとしてはルチル型の酸化チタンがより好ましい。
 無機粒子の平均粒子径は、1μm以下であることが好ましく、0.1~0.8μmの範囲内であることがより好ましい。なお、無機粒子の平均粒子径は、多孔質膜であるセパレーターの平均孔径よりも大きいことが好ましい。これにより、セパレーターへのダメージを軽減し、無機粒子がセパレーターの微多孔に詰まることを防ぐことができる。
 本実施の形態に係る保護膜形成用スラリーは、無機粒子100質量部に対して、上述の蓄電デバイス用組成物が、固形分換算で0.1~20質量部含有されていることが好ましく、1~10質量部含有されていることがより好ましい。蓄電デバイス用組成物の含有割合が固形分換算で0.1~10質量部であることにより、形成される保護膜のタフネスとリチウムイオンの透過性とのバランスが良好となり、その結果、得られる蓄電デバイスの抵抗上昇率をより低くすることができる。
 2.2.2.その他の成分
 本実施の形態に係る保護膜形成用スラリーは、必要に応じて、前述の蓄電デバイス電極用スラリー「2.1.2.その他の成分」に記載されている材料、添加量を必要に応じて用いることができる。
 2.2.3.保護膜形成用スラリーの製造方法
 本実施の形態に係る保護膜形成用スラリーは、前述の蓄電デバイス用組成物と、無機粒子と、必要に応じて用いられる他の成分と、を混合することにより調製される。これらを混合するための手段としては、例えばボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサー等の公知の混合装置を利用することができる。
 本実施の形態に係る保護膜形成用スラリーを製造するための混合撹拌は、スラリー中に無機粒子の凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物がなくなるように混合分散することが好ましい。このような条件に適合する混合機としては、例えばボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを例示することができる。
 3.蓄電デバイス用電極
 本実施の形態に係る蓄電デバイス用電極は、表面に保護膜を備える蓄電デバイス用電極であって、前記保護膜が、バインダーと、ブロッキング防止剤と、を含有し、前記バインダーの含有量をM1質量部、前記ブロッキング防止剤の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする。本発明における「保護膜」とは、蓄電デバイス用電極または蓄電デバイス用セパレーターの最表面に存在する、バインダーおよびブロッキング防止剤を含有する膜または層のことをいう。バインダー、ブロッキング剤、およびこれらの含有量の関係については、上記の蓄電デバイス用組成物で説明した内容と同様であるため説明を省略する。なお、本実施の形態に係る蓄電デバイス用電極は、正極および負極のいずれの電極にも適用できる。以下、図面を参照しながら、本実施形態に係る蓄電デバイス用電極の具体例について説明する。
 3.1.1.第1の具体例
 図1は、第1の具体例に係る蓄電デバイス用電極を模式的に示す断面図である。図1に示すように、蓄電デバイス用電極100は、集電体10と、集電体10の表面に形成された活物質層20と、活物質層20の表面に形成された保護膜30と、を備えている。図1に示す蓄電デバイス用電極100は、集電体10の長手方向に沿った一方の面のみに活物質層20および保護膜30が形成されているが、両面に活物質層20および保護膜30を形成してもよい。上述のように蓄電デバイスの製造工程では、電極とセパレーターとを位置合わせして積層した後、その積層体を捲回するなどの成形加工が行われる。したがって、蓄電デバイス用電極100のうち、少なくともセパレーターと接触する面に保護膜30が形成されていれば、蓄電デバイス用電極100にブロッキング耐性が付与され、成形加工によって活物質等が剥落することを防止できる。
 集電体10は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池においては、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属製の集電体が使用されるが、特に正極にアルミニウムを、負極に銅を用いることが好ましい。ニッケル水素二次電池における集電体としては、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板などが使用される。集電体の形状および厚さは特に制限されないが、厚さ0.001~0.5mm程度のシート状のものとすることが好ましい。
 活物質層20は、集電体10の表面に、バインダーおよび活物質を含有するスラリーを塗布して、さらに乾燥させて形成された層である。活物質層20の厚さは特に制限されないが、通常0.005~5mm、好ましくは0.01~2mmである。活物質層の厚さが上記範囲内にあることによって、活物質層に効果的に電解液を染み込ませることができる。その結果、活物質層中の活物質と電解液との充放電に伴う金属イオンの授受が容易に行われるため、電極抵抗をより低下させることができるため好ましい。また、活物質層の厚さが上記範囲内にあることで、電極を折り畳んだり、捲回するなどして成形加工する場合においても、活物質層が集電体から剥離することなく密着性が良好で、柔軟性に富む蓄電デバイス用電極が得られる点で好ましい。
 前記スラリーの集電体10への塗布方法については特に制限はない。塗布は、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの適宜の方法によることができる。蓄電デバイス電極用スラリーの塗布量も特に制限されないが、液状媒体(水および任意的に使用される非水系媒体の双方を包含する概念である)を除去した後に形成される活物質層の厚さが、0.005~5mmとなる量とすることが好ましく、0.01~2mmとなる量とすることがより好ましい。
 塗布後の塗膜からの乾燥方法(水および任意的に使用される非水系媒体の除去方法)についても特に制限されず、例えば温風、熱風、低湿風による乾燥;真空乾燥;(遠)赤外線、電子線などの照射による乾燥などによることができる。乾燥速度としては、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ速く液状媒体が除去できるように適宜に設定することができる。塗膜の乾燥処理は、好ましくは20~250℃、より好ましくは50~150℃の温度範囲において、好ましくは1~120分間、より好ましくは5~60分間の処理時間で行われる。
 さらに、乾燥後の活物質層をプレスすることにより、活物質層の密度を高め、空孔率を以下に示す範囲に調整することが好ましい。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。プレスの条件は、使用するプレス機器の種類および活物質層の空孔率および密度の所望値によって適宜に設定されるべきである。この条件は、当業者による少しの予備実験により、容易に設定することができるが、例えばロールプレスの場合、ロールプレス機の線圧力は0.1~10(t/cm)、好ましくは0.5~5(t/cm)の圧力において、例えばロール温度が20~100℃において、乾燥後の集電体の送り速度(ロールの回転速度)が1~80m/min、好ましくは5~50m/minで行うことができる。
 プレス後の活物質層の密度は、1.5~5.0g/cmとすることが好ましく、1.5~4.0g/cmとすることがより好ましく、1.6~3.8g/cmとすることが特に好ましい。
 保護膜30は、活物質層20の表面に上述の保護膜形成用スラリーを塗布して、さらに乾燥させて形成された層である。当該保護膜形成用スラリーは、ブロッキング防止剤を含有するため、保護膜30には少なくともブロッキング防止剤が含まれている。
 保護膜形成用スラリーの活物質層20への塗布方法については特に制限はない。塗布は、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの適宜の方法によることができる。塗膜の乾燥処理は、好ましくは20~250℃、より好ましくは50~150℃の温度範囲において、好ましくは1~120分間、より好ましくは5~60分間の処理時間で行われる。
 保護膜30の膜厚は、特に限定されるものではないが、0.5~4μmの範囲であることが好ましく、0.5~3μmの範囲であることがより好ましい。保護膜30の膜厚が前記範囲にあると、電極内部への電解液の浸透性および保液性が良好となると共に、電極の内部抵抗の上昇を抑制することもできる。
 このようにして製造された蓄電デバイス用電極100は、保護膜30の表面にブロッキング防止剤がブリードアウトすることでブロッキング耐性を有する。また、充放電を繰り返してデンドライトが析出した場合であっても保護膜でガードされるため短絡が発生しない。これにより、蓄電デバイスとしての機能を維持できる。
 3.1.2.第2の具体例
 図2は、第2の具体例に係る蓄電デバイス用電極を模式的に示す断面図である。図2に示すように、蓄電デバイス用電極200は、集電体110と、集電体110の表面に形成された活物質層120と、を備えている。この活物質層120は、ブロッキング防止剤を含有しているため、活物質層であると同時に保護膜としての機能を備えている。図2に示す蓄電デバイス用電極200は、集電体110の長手方向に沿った一方の面のみに活物質層120が形成されているが、両面に活物質層120を形成してもよい。上述のように蓄電デバイスの製造工程では、電極とセパレーターとを位置合わせして積層した後、その積層体を捲回するなどの成形加工が行われる。したがって、蓄電デバイス用電極200のうち、少なくともセパレーターと接触する面に活物質層120が形成されていれば、蓄電デバイス用電極200にブロッキング耐性が付与され、成形加工によって活物質等が剥落することを防止できる。
 活物質層120は、集電体110の表面に、バインダー、活物質、ブロッキング防止剤を含有する蓄電デバイス電極用スラリーを塗布して、さらに乾燥させて形成された層である。この蓄電デバイス電極用スラリーについては、後に詳述する。第2の実施形態に係る蓄電デバイス用電極200のその他の構成については、図1を用いて説明した第1の実施形態に係る蓄電デバイス用電極100と同様であるため説明を省略する。
 このようにして製造された蓄電デバイス用電極200は、活物質層120の表面にブロッキング防止剤がブリードアウトすることでブロッキング耐性を有する。
 4.蓄電デバイス用セパレーター
 本実施の形態に係る蓄電デバイス用セパレーターは、表面に保護膜を備える蓄電デバイス用セパレーターであって、前記保護膜が、バインダーと、ブロッキング防止剤と、を含有し、前記バインダーの含有量をM1質量部、前記ブロッキング剤の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする。なお、バインダー、ブロッキング剤、およびこれらの含有量の関係については、上記の蓄電デバイス用組成物で説明した内容と同様であるから説明を省略する。以下、図面を参照しながら、本実施の形態に係る蓄電デバイス用セパレーターについて説明する。
 図3は、本実施の形態に係る蓄電デバイス用セパレーターを模式的に示す断面図である。図3に示すように、蓄電デバイス用セパレーター300は、セパレーター240と、セパレーター240の表面に形成された保護膜230と、を備えている。図3に示す蓄電デバイス用セパレーター300は、セパレーター240の長手方向に沿った一方の面のみに保護膜230が形成されているが、両面に保護膜230を形成してもよい。上述のように蓄電デバイスの製造工程では、電極とセパレーターとを位置合わせして積層した後、その積層体を捲回するなどの成形加工が行われる。したがって、蓄電デバイス用セパレーター300のうち、少なくとも電極と接触する面に保護膜230が形成されていれば、蓄電デバイス用セパレーター300にブロッキング耐性が付与され、成形加工によって活物質等が剥落することを防止できる。
 セパレーター240は、電気的に安定であると共に、活物質あるいは溶媒に対して化学的に安定であり、かつ電気伝導性を有していなければどのようなものを用いてもよい。例えば、高分子の不織布、多孔質フィルム、ガラスあるいはセラミックスの繊維を紙状にしたものを用いることができ、これらを複数積層して用いてもよい。特に多孔質ポリオレフィンフィルムを用いることが好ましく、これをポリイミド、ガラスあるいはセラミックスの繊維等よりなる耐熱性の材料と複合させたものを用いてもよい。
 保護膜230は、例えばセパレーター240の表面に上述の保護膜形成用スラリーを塗布し、その後乾燥させることにより形成することができる。セパレーター240の表面に保護膜形成用スラリーを塗布する方法としては、例えばドクターブレード法、リバースロール法、コンマバー法、グラビア法、エアーナイフ法、ダイコート法等の方法を適用することができる。塗膜の乾燥処理は、好ましくは20~250℃、より好ましくは50~150℃の温度範囲において、好ましくは1~120分間、より好ましくは5~60分間の処理時間で行われる。
 なお、セパレーター240の表面にブロッキング防止剤が含まれていない機能層が形成されている場合には、該機能層表面に上述の保護膜形成用スラリーを塗布して乾燥させることにより、機能層表面に保護膜230を形成することもできる。これにより、セパレーターにブロッキング耐性を付与することができる。
 このようにして製造された蓄電デバイス用セパレーター300は、保護膜230の表面にブロッキング防止剤がブリードアウトすることでブロッキング耐性を有する。また、充放電を繰り返してデンドライトが析出した場合であっても保護膜でガードされるため短絡が発生しない。これにより、蓄電デバイスとしての機能を維持できる。
 5.蓄電デバイス
 本実施の形態に係る蓄電デバイスは、前述の蓄電デバイス用電極および前述の保護膜を備えるセパレーターの少なくとも一方を備えていればよい。蓄電デバイスの具体的製造方法としては、正極と負極との間にこれら電極間の短絡を防止するためのセパレーターを挟んで積層し、または正極、セパレーター、負極およびセパレーターをこの順序に積層して電極/セパレーター積層体とし、これを電池形状に応じて巻く、折るなどして電池容器に入れ、この電池容器に電解液を注入して封口する方法が挙げられる。ここで電極が前述の蓄電デバイス用電極であれば、電極/セパレーター積層体を作製する際には適度にブロッキングされるため電極/セパレーター間の位置ずれを効果的に防止でき、電池形状に応じて巻くなどの成形加工をする際には電極がブロッキング耐性を備えているので、活物質層が剥落することを防止できる。セパレーターが前述の保護膜を備えるセパレーターの場合も同様である。なお、電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、適宜の形状であることができる。
 電解液は、液状でもゲル状でもよく、活物質の種類に応じて、蓄電デバイスに用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。電解液は、電解質を適当な溶媒に溶解した溶液であることができる。
 上記電解質としては、リチウムイオン二次電池では、従来から公知のリチウム塩のいずれをも使用することができ、その具体例としては、例えばLiClO、LiBF、LiPF、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、LiCFSO、LiCHSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウムなどを例示することができる。ニッケル水素二次電池では、例えば従来公知の濃度が5モル/リットル以上の水酸化カリウム水溶液を使用することができる。
 上記電解質を溶解するための溶媒は、特に制限されるものではないが、その具体例として、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどのカーボネート化合物;γ-ブチルラクトンなどのラクトン化合物;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル化合物;ジメチルスルホキシドなどのスルホキシド化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。電解液中の電解質の濃度としては、好ましくは0.5~3.0モル/Lであり、より好ましくは0.7~2.0モル/Lである。
 なお、電極/セパレーター積層体を電池容器に入れ、この電池容器内に電解液を注入すると、電極および/またはセパレーターの表面にブリードアウトしていたブロッキング防止剤は電解液中に溶出する。これにより、電極および/またはセパレーターの表面からブロッキング防止剤が除去されるので、電気的特性の一つである充放電レート特性が良好な蓄電デバイスが得られる。
 6.実施例
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
 6.1.実施例1
 6.1.1.バインダーの作製
 電磁式撹拌機を備えた内容積約6Lのオートクレーブの内部を十分に窒素置換した後、脱酸素した純水2.5Lおよび乳化剤としてパーフルオロデカン酸アンモニウム25gを仕込み、350rpmで撹拌しながら60℃まで昇温した。次いで、単量体であるフッ化ビニリデン(VDF)70%および六フッ化プロピレン(HFP)30%からなる混合ガスを、内圧が20kg/cmに達するまで仕込んだ。重合開始剤としてジイソプロピルパーオキシジカーボネートを20%含有するフロン113溶液25gを窒素ガスを使用して圧入し、重合を開始した。重合中は内圧が20kg/cmに維持されるようVDF60.2%およびHFP39.8%からなる混合ガスを逐次圧入して、圧力を20kg/cmに維持した。また、重合が進行するに従って重合速度が低下するため、3時間経過後に、先と同じ重合開始剤溶液の同量を窒素ガスを使用して圧入し、さらに3時間反応を継続した。その後、反応液を冷却すると同時に撹拌を停止し、未反応の単量体を放出した後に反応を停止することにより、重合体の微粒子を40%含有する水系分散体を得た。得られた重合体につき、19F-NMRにより分析した結果、各単量体の質量組成比はVDF/HFP=21/4であった。
 容量7Lのセパラブルフラスコの内部を十分に窒素置換した後、上記の工程で得られた重合体の微粒子を含有する水系分散体1,600g(重合体換算で25質量部に相当)、乳化剤「アデカリアソープSR1025」(商品名、株式会社ADEKA製)0.5質量部、メタクリル酸メチル(MMA)30質量部、アクリル酸2-エチルヘキシル(EHA)40質量部およびメタクリル酸(MAA)5質量部ならびに水130質量部を順次仕込み、70℃で3時間攪拌し、重合体に単量体を吸収させた。次いで油溶性重合開始剤であるアゾビスイソブチロニトリル0.5質量部を含有するテトラヒドロフラン溶液20mLを添加し、75℃に昇温して3時間反応を行い、さらに85℃で2時間反応を行った。その後、冷却した後に反応を停止し、2.5N水酸化ナトリウム水溶液でpH7に調節することにより、バインダー(バインダー粒子)を40%含有する水系分散体を得た。
 得られたバインダー粒子を40%含有する水系分散体について、動的光散乱法を測定原理とする粒度分布測定装置(大塚電子株式会社製、形式「FPAR-1000」)を用いて粒度分布を測定し、その粒度分布から最頻粒径を求めたところ、平均粒子径は330nmであった。
 6.1.2.蓄電デバイス用組成物の調製
 上記で得られたバインダー粒子を含有する水系分散体1,000gに、ステアリン酸カルシウムを50質量%含有する水懸濁液を5g仕込み、300rpmで撹拌することにより、蓄電デバイス用組成物S1を調製した。なお、以下の実施例、比較例においてブロッキング防止剤が水に対して不溶性である場合、同様にブロッキング防止剤を水溶液に50質量%で分散させた状態の分散液(懸濁液)を添加することにより蓄電デバイス用組成物の調製を行った。
 6.1.3.蓄電デバイス用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に増粘剤(商品名「CMC1120」、株式会社ダイセル製)1質量部(固形分換算)、市販のリン酸鉄リチウム(LiFePO)をめのう乳鉢で粉砕し、ふるいを用いて分級することにより得られた粒子径(D50値)が0.5μmである活物質100質量部、アセチレンブラック5質量部および水68質量部を投入し、60rpmで1時間攪拌を行った。次いで、上記で調製した蓄電デバイス用組成物S1を、該組成物中に含有されるバインダー粒子が1質量部となるように加え、さらに1時間攪拌してペーストを得た。得られたペーストに水を加えて固形分濃度を50%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1,800rpmで5分間、さらに真空下(約5.0×10Pa)において1,800rpmで1.5分間攪拌混合することにより、蓄電デバイス用スラリーを調製した。
 6.1.4.蓄電デバイス用電極の製造および評価
 厚み30μmのアルミニウム箔からなる集電体の表面に、上記で調製した蓄電デバイス用スラリーを、乾燥後の膜厚が100μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜(活物質層)の密度が表1に記載の値になるようにロールプレス機によりプレス加工することにより、電極(正極)を得た。
 <電極間のブロッキング耐性の評価>
 作製した2枚の電極を、活物質層を対面させて重ね合わせ、10g/cmの加圧下、30℃で24時間放置した後、2枚の電極を剥離したときの剥離の際の活物質の剥落有無にて電極間のブロッキング耐性を評価した。なお、評価基準は以下の通りであり、その結果を表1に併せて示した。
・活物質が剥落せずに電極を容易に剥離することができた場合、ブロッキングが抑制されているため良好と判断して「○」
・電極を引きはがすのにかなりの力が必要であり、電極の剥離に伴い活物質の剥落が認められた場合、過度にブロッキングされているため不良と判断して「×」
 <電極とセパレーター間のブロッキング耐性の評価>
 作製した1枚の電極を、電極の活物質層とポリプロピレン製多孔膜からなるセパレーター(セルガード株式会社製、商品名「セルガード#2400」)とを対面させて重ね合わせ、10g/cmの加圧下、30℃で24時間放置した後、電極とセパレーターを剥離する際に必要な力の官能評価にて電極とセパレーター間のブロッキング耐性を評価した。なお、評価基準は以下の通りであり、その結果を表1に併せて示した。
・電極とセパレーターを引き剥がすのにかなりの力が必要であった場合、適度にブロッキングされているため良好と判断して「○」
・電極とセパレーターを容易に剥離することができた場合、過度にブロッキングが抑制されているため不良であると判断して「×」
 6.1.5.蓄電デバイスの製造および評価
 <対極(負極)の製造>
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、ポリフッ化ビニリデン(PVDF)4質量部(固形分換算)、負極活物質としてグラファイト100質量部(固形分換算)、N-メチルピロリドン(NMP)80質量部を投入し、60rpmで1時間撹拌を行った。その後、さらにNMP20質量部を投入した後、撹拌脱泡機(株式会社シンキー製、製品名「あわとり練太郎」)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに真空下において1,800rpmで1.5分間撹拌・混合することにより、対極(負極)用スラリーを調製した。
 銅箔からなる集電体の表面に、上記で調製した対極(負極)用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜の密度が1.5g/cmとなるようにロールプレス機を使用してプレス加工することにより、対極(負極)を得た。
 <リチウムイオン電池セルの組立て>
 露点が-80℃以下となるようAr置換されたグローブボックス内で、上記で製造した電極(負極)を直径15.95mmに打ち抜き成形したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレーター(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、上記で製造した正極を直径16.16mmに打ち抜き成形したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。
 <充放電レート特性の評価>
 上記で製造した蓄電デバイスにつき、定電流(0.2C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として、0.2Cでの充電容量を測定した。次いで、定電流(0.2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、0.2Cでの放電容量を測定した。
 次に、同じセルにつき、定電流(3C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として3Cでの充電容量を測定した。次いで、定電流(3C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、3Cでの放電容量を測定した。
 上記の測定値を用いて、0.2Cでの充電容量に対する3Cでの充電容量の割合(百分率%)を計算することにより充電レート(%)を、0.2Cでの放電容量に対する3Cでの放電容量の割合(百分率%)を計算することにより放電レート(%)を、それぞれ算出した。なお、評価基準は以下の通りであり、その結果を表1に併せて示した。
・充電レートおよび放電レートの双方が80%以上のとき、充放電レート特性は良好であると判断して「○」
・充電レートおよび放電レートの少なくとも一方が80%未満のとき、充放電レート特性は不良であると判断して「×」
 なお、測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値のことを示す。例えば「0.1C」とは10時間かけて放電終了となる電流値のことであり、「10C」とは0.1時間かけて放電完了となる電流値のことをいう。
 6.2.実施例2~7、比較例1~3
 上記実施例1の「6.1.1.バインダーの作製」において、単量体の組成と乳化剤量を適宜に変更したほかは実施例1と同様にして、表1に示す組成のバインダーを含有する水系分散体を調製し、該水系分散体の固形分濃度に応じて水を減圧除去または追加することにより、固形分濃度40%の水系分散体を得た。
 次いで、上記実施例1の「6.1.2.蓄電デバイス用組成物の調製」において、ブロッキング防止剤を表1に記載の種類および添加量とした以外は、上記実施例1と同様にして蓄電デバイス用組成物S2~S7、S11~S13を調製した。
 さらに、上記実施例1の「6.1.3.蓄電デバイス用スラリーの調製」、「6.1.4.蓄電デバイス用電極の製造および評価」、「6.1.5.蓄電デバイスの製造および評価」と同様にして蓄電デバイス電極用スラリー、蓄電デバイス用電極、蓄電デバイスを作製し、評価を行った。その結果を表1に併せて示した。
 6.3.実施例8
 容量7リットルのセパラブルフラスコに、水150質量部およびドデシルベンゼンスルホン酸ナトリウム0.2質量部を仕込み、セパラブルフラスコの内部を十分に窒素置換した。一方、別の容器に、水60質量部、乳化剤としてエーテルサルフェート型乳化剤(商品名「アデカリアソープSR1025」、株式会社ADEKA製)を固形分換算で0.8質量部ならびに単量体として2,2,2-トリフルオロエチルメタクリレート(TFEMA)20質量部、アクリロニトリル(AN)10質量部、メチルメタクリレート(MMA)25質量部、2-エチルヘキシルアクリレート(EHA)40質量部およびアクリル酸(AA)5質量部を加え、十分に攪拌して上記モノマーの混合物を含有するモノマー乳化液を調製した。その後、上記セパラブルフラスコの内部の昇温を開始し、当該セパラブルフラスコの内部の温度が60℃に到達した時点で、重合開始剤として過硫酸アンモニウム0.5質量部を加えた。そして、セパラブルフラスコの内部の温度が70℃に到達した時点で、上記で調製したモノマー乳化液の添加を開始し、セパラブルフラスコの内部の温度を70℃に維持したままモノマー乳化液を3時間かけてゆっくりと添加した。その後、セパラブルフラスコの内部の温度を85℃に昇温し、この温度を3時間維持して重合反応を行った。3時間後、セパラブルフラスコを冷却して反応を停止した後、アンモニウム水を加えてpHを7.6に調整することにより、バインダー(バインダー粒子)を40%含有する水系分散体を得た。
 上記で得られた水系分散体を使用し、表1のブロッキング防止剤の種類と含有量にした以外は、上記実施例1と同様にして蓄電デバイス用組成物S8、蓄電デバイス用スラリー、蓄電デバイス用電極および蓄電デバイスを作製して評価した。その結果を表1に併せて示した。
 6.4.実施例9~10
 各単量体の種類および仕込み量(部)をそれぞれ表1に記載の通りとした以外は上記実施例8と同様にして、表1に記載の平均粒子径を有するバインダーを含有する水系分散体をそれぞれ得た。このようにして得られた水系分散体を使用した以外は、上記実施例1と同様にして蓄電デバイス用組成物S9~S10、蓄電デバイス用スラリー、蓄電デバイス用電極および蓄電デバイスを作製して評価した。その結果を表1に併せて示した。
 6.5.実施例11
 6.5.1.バインダーの作製
 攪拌機を備えた温度調節可能なオートクレーブ中に、水200質量部、ドデシルベンゼンスルホン酸ナトリウム0.6質量部、過硫酸カリウム1.0質量部、重亜硫酸ナトリウム0.5質量部、α-メチルスチレンダイマー0.2質量部、ドデシルメルカプタン0.2質量部、および表2に示した一段目重合成分を一括して仕込み、70℃に昇温し2時間重合反応させた。重合添加率が80%以上であることを確認した後、反応温度を70℃に維持したまま、表2に示す二段目重合成分を6時間かけて添加した。二段目重合成分添加開始から3時間経過した時点で、α-メチルスチレンダイマー1.0質量部およびドデシルメルカプタン0.3質量部を添加した。二段目重合成分添加終了後、温度を80℃に昇温し、さらに2時間反応させた。重合反応終了後、ラテックスのpHを7.5に調節し、トリポリリン酸ナトリウム5質量部(固形分換算)を添加した。その後、残留モノマーを水蒸気蒸留で処理し、減圧下で固形分30%まで濃縮することで、バインダーを30%含有する水系分散体を得た。
 得られたバインダー(バインダー粒子)を50%含有する水系分散体について、動的光散乱法を測定原理とする粒度分布測定装置(大塚電子株式会社製、形式「FPAR-1000」)を用いて粒度分布を測定し、その粒度分布から最頻粒径を求めたところ、平均粒子径は200nmであった。
 6.5.2.蓄電デバイス用組成物の調製
 上記で得られた水系分散体を使用し、表1に記載のブロッキング防止剤の種類と含有量にした以外は実施例1と同様にして蓄電デバイス用組成物S14を調製した。
 6.5.3.蓄電デバイス用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に増粘剤(商品名「CMC2200」、株式会社ダイセル製)1質量部(固形分換算)、負極活物質としてグラファイト100質量部(固形分換算)、水68質量部を投入し、60rpmで1時間攪拌を行った。その後、上記で調製した蓄電デバイス用組成物S14を2質量部(固形分換算)加え、さらに1時間攪拌しペーストを得た。得られたペーストに水を投入し、固形分を50%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、蓄電デバイス用スラリーを調製した。
 6.5.4.蓄電デバイス用電極の製造および評価
 厚み20μmの銅箔よりなる集電体の表面に、上記で調製した蓄電デバイス用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、活物質層の密度が表1に記載の値になるようにロールプレス機によりプレス加工することにより、蓄電デバイス用電極(負極)を得た。また、上記「6.1.4.蓄電デバイス用電極の製造および評価」と同様にして、得られた蓄電デバイス用電極のブロッキング耐性を評価した。その結果を表1に併せて示した。
 6.5.5.蓄電デバイスの製造および評価
 <対極(正極)の製造>
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に電気化学デバイス電極用バインダー(株式会社クレハ製、商品名「KFポリマー#1120」)4.0質量部(固形分換算)、導電助剤(電気化学工業株式会社製、商品名「デンカブラック50%プレス品」)3.0質量部、正極活物質として粒径5μmのLiCoO(ハヤシ化成株式会社製)100質量部(固形分換算)、N-メチルピロリドン(NMP)36質量部を投入し、60rpmで2時間攪拌を行った。得られたペーストにNMPを投入し、固形分を65%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。アルミニウム箔よりなる集電体の表面に、得られた電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、活物質層の密度が3.0g/cmとなるようにロールプレス機によりプレス加工することにより、対極(正極)を得た。
 <リチウムイオン電池セルの組立て>
 露点が-80℃以下となるようAr置換されたグローブボックス内で、上記において製造した電極(負極)を直径15.95mmに打ち抜き成形したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレーター(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、前記<対極(正極)の製造>の項において製造した正極を直径16.16mmに打ち抜き成形したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。また、上記「6.1.6.蓄電デバイスの製造および評価」と同様にして、得られた蓄電デバイスの充放電レート特性を評価した。その結果を表1に併せて示した。
 6.6.実施例12~13、比較例4~6
 上記実施例11の「6.5.1.バインダーの作製」において、表2に示した単量体の組成とし、乳化剤量を適宜に変更した以外は実施例11と同様にして、表1に示す組成のバインダーを含有する水系分散体を調製し、該水系分散体の固形分濃度に応じて水を減圧除去または追加することにより、バインダー(バインダー粒子)を30%含有する水系分散体を得た。
 次いで、上記実施例11の「6.5.2.蓄電デバイス用組成物の調製」において、ブロッキング防止剤の添加量を表1の種類と添加量とした以外は、実施例11と同様にして蓄電デバイス用組成物S15~S19を調製した。
 さらに、上記実施例11の「6.5.3.蓄電デバイス電極用スラリーの調製」、「6.5.4.蓄電デバイス用電極の製造および評価」、「6.5.5.蓄電デバイスの製造および評価」と同様にして蓄電デバイス電極用スラリー、蓄電デバイス用電極、蓄電デバイスを作製し、評価を行った。その結果を表1に併せて示した。
 なお、実施例1~13および比較例1~6に係る蓄電デバイス用組成物、ならびに上記の評価結果を表1に併せて示した。また、実施例11~13および比較例4~6のバインダーを含有する水系分散体を調製する際の、一段目重合成分および二段目重合成分の含有割合を表2に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1および表2における各成分の略称は、それぞれ以下の意味である。
・VDF:フッ化ビニリデン
・HFP:六フッ化プロピレン
・TFEMA:メタクリル酸2,2,2-トリフルオロエチル
・TFEA:アクリル酸2,2,2-トリフルオロエチル
・HFIPA:アクリル酸1,1,1,3,3,3-ヘキサフルオロイソプロピル
・MMA:メタクリル酸メチル
・EHA:アクリル酸2-エチルヘキシル
・HEMA:メタクリル酸2-ヒドロキシエチル
・MAA:メタクリル酸
・AA :アクリル酸
・TA :イタコン酸
・DVB:ジビニルベンゼン
・TMPTMA:トリメタクリル酸トリメチロールプロパン
・AN :アクリロニトリル
・BD :1,3-ブタジエン
・ST :スチレン
 6.7.実施例14
 6.7.1.保護膜形成用スラリーの調製
 無機粒子として酸化チタン(製品名「KR380」、チタン工業株式会社製、ルチル型、平均粒子径0.38μm)を水100質量部に対して20質量部、上記実施例1の「6.1.2.蓄電デバイス用組成物の調製」において得られた蓄電デバイス用組成物S1を無機粒子に対して固形分換算で5質量部、増粘剤(株式会社ダイセル製、商品名「CMC1120」)1質量部を混合し、T.K.フィルミックス(R)56-50型(プライミクス株式会社製)を用いて混合分散処理を行い、酸化チタンが分散された保護膜形成用スラリーを調製した。
 6.7.2.正極の作製
 正極として、上記実施例11の「6.5.5.蓄電デバイスの製造および評価」で作製した正極の活物質層の表面に、上記で得られた保護膜形成用スラリーをダイコート法を用いて塗布した後、120℃、5分で乾燥し、活物質層表面に保護膜を形成した。なお、形成された保護膜の厚みは3μmであった。このようにして得られた正極について、上記実施例1の「6.1.4.蓄電デバイス用電極の製造および評価」と同様にして評価を行った。その結果を表3に併せて示した。
 6.7.3.負極
 負極として、上記実施例1の「6.1.5.蓄電デバイスの製造および評価」で作製した負極を用いた。
 6.7.4.リチウムイオン電池セルの組立て
 上記実施例1の「6.1.5.蓄電デバイスの製造および評価」と同様にして蓄電デバイスを作製し、評価を行った。その結果を表3に併せて示した。
 6.8.実施例15~23、比較例7~9
 上記実施例14において、使用した蓄電デバイス用組成物を上記で調製した蓄電デバイス用組成物S2~S13にそれぞれ変更し、使用した無機粒子を表3に記載のものとした以外は、実施例14と同様にして正極を作製し、評価した。また、上記実施例14と同様にして蓄電デバイスを製造し、評価した。その結果を表3に併せて示した。
 6.9.実施例24~26、比較例10~12
 上記実施例14において、使用した蓄電デバイス用組成物を上記で調製した蓄電デバイス用組成物S14~S19にそれぞれ変更し、使用した無機粒子を表4に記載のものとした以外は、上記実施例14と同様にして保護膜形成用スラリーを調製した。
 次いで、上記実施例11の「6.5.4.蓄電デバイス用電極の製造および評価」で作製した負極の活物質層の表面に、得られた保護膜形成用スラリーをダイコート法を用いて塗布した後、120℃、5分で乾燥し、活物質層表面に保護膜を形成した。このようにして、活物質層表面にさらに保護膜が形成された保護膜付の負極を作製し、上記実施例1の「6.1.4.蓄電デバイス用電極の製造および評価」と同様にして評価を行った。その評価結果を表4に併せて示した。
 また、正極として上記実施例11の「6.5.5.蓄電デバイスの製造および評価」で作製した正極を用い、負極として上記で得られた活物質層の表面にさらに保護膜が形成された負極を用いた以外は、上記実施例14と同様にして蓄電デバイスを製造し、評価した。その評価結果を表4に併せて示した。
 6.10.実施例27、比較例13
 6.10.1.ポリイミドの合成
 特開2009-87562号公報に記載の方法にてポリイミドを合成した。すなわち、冷却管と窒素ガス導入口が備えられた4つ口フラスコに、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物1.0モルと、o-トリジンジイソシアネート0.95モルを固形分濃度が20質量%となるようにN-メチル-2-ピロリドン(NMP)と混合し、触媒としてジアザビシクロウンデセン0.01モルを加えて攪拌し、120℃で4時間反応させた。
 6.10.2.蓄電デバイス用組成物の調製
 上記で得られたポリイミドのNMP溶液を使用し、さらに水の代わりにNMPを用い、表7に記載のブロッキング防止剤の種類と含有量にした以外は上記実施例1と同様にして蓄電デバイス用組成物S20、S22を調製した。
 6.10.3.保護膜形成用スラリーの調製
 上記実施例14の「6.7.1.保護膜形成用スラリーの調製」において、上記で得られた蓄電デバイス用組成物S20またはS22を使用し、表4に記載の無機粒子を使用した以外は、上記実施例14と同様にして保護膜形成用スラリーを調製した。
 6.10.4.正極の作製
 正極として、上記実施例11の「6.5.5.蓄電デバイスの製造および評価」で作製した正極の活物質層の表面に、上記で得られた保護膜形成用スラリーをダイコート法を用いて塗布した後、120℃、5分で乾燥し、活物質層表面に保護膜を形成した。なお、形成された保護膜の厚みは3μmであった。このようにして得られた正極について、上記実施例1の「6.1.4.蓄電デバイス用電極の製造および評価」と同様にして評価を行った。その結果を表4に併せて示した。
 6.10.5.負極
 負極として、上記実施例1の「6.1.5.蓄電デバイスの製造および評価」で作製した負極を用いた。
 6.10.6.リチウムイオン電池セルの組立て
 上記実施例1の「6.1.5.蓄電デバイスの製造および評価」と同様にして蓄電デバイスを作製し、評価を行った。その結果を表4に併せて示した。
 6.11.実施例28、比較例14
 蓄電デバイス用組成物S1を80質量部(固形分換算)と、ポリアクリル酸(ACROS社製、品番「185012500」、平均分子量240,000)20質量部(固形分換算)と、表7に記載のブロッキング防止剤の所定量と、を混合・撹拌し、適宜水を加えて固形分濃度40質量%の蓄電デバイス用組成物S21、S23を調製した。
 蓄電デバイス用組成物S21またはS23を使用した以外は、上記「6.10.実施例27、比較例13」と同様にして保護膜形成用スラリーを調製し、保護膜が表面に形成された正極および蓄電デバイスを製造し、評価した。その結果を表4に併せて示した。
 6.12.実施例29
 上記実施例14の「6.7.1.保護膜形成用スラリーの調製」で調製した保護膜形成用スラリーを、ポリプロピレン製多孔膜からなるセパレーター(セルガード株式会社製、商品名「セルガード#2400」)の片面に乾燥後の厚さが10μmになるようにワイヤーバーを用いて塗工し、次いで90℃で20分間乾燥することにより、セパレーターの表面に保護膜が形成された蓄電デバイス用セパレーターを得た。
 さらに、正極として上記実施例11の「6.5.5.蓄電デバイスの製造および評価」で作製した正極を、負極として上記実施例1の「6.1.5.蓄電デバイスの製造および評価」で作製した負極を用い、上記で得られた蓄電デバイス用セパレーターの保護膜面が正極側になるようにした以外は、上記実施例1の「6.1.4.蓄電デバイス用電極の製造および評価」、「6.1.5.蓄電デバイスの製造および評価」と同様にして蓄電デバイス用電極、蓄電デバイスを作製し、評価を行った。その結果を表5に併せて示した。
 なお、セパレーター間のブロッキング耐性の評価は、以下のように行った。
 <セパレーター間のブロッキング耐性の評価>
 作製した2枚のセパレーターを、保護膜を対面させて重ね合わせ、10g/cmの加圧下、30℃で24時間放置した後、2枚のセパレーターを剥離したときの剥離の際の無機粒子の剥落有無にて電極間のブロッキング耐性を評価した。なお、評価基準は以下の通りであり、その結果を表5に併せて示した。
・無機粒子が剥落せずにセパレーターを容易に剥離することができた場合、ブロッキングが抑制されているため良好と判断して「○」
・セパレーターを引きはがすのにかなりの力が必要であり、セパレーターの剥離に伴い無機粒子の剥落が認められた場合、過度にブロッキングが抑制されているため不良と判断して「×」
 6.13.実施例30~38、比較例15~18、21
 上記実施例29において、使用した蓄電デバイス用組成物および無機粒子を表5または表6に記載のものに変更して保護膜形成用スラリーを調製した以外は、上記実施例29と同様にして蓄電デバイス用電極、蓄電デバイスを製造し、評価した。その結果を表5および表6に併せて示した。
 6.14.実施例39~43、比較例19、20、22
 上記実施例29において、使用した蓄電デバイス用組成物および無機粒子を表6に記載のものに変更して保護膜形成用スラリーを調製し、上記実施例29で得られた蓄電デバイス用セパレーターの保護膜面が負極側になるようにした以外は、上記実施例29と同様にして蓄電デバイス用電極、蓄電デバイスを製造し、評価した。その結果を表6に併せて示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表3~表6に記載の無機粒子は、それぞれ以下の意味である。
・酸化チタン:製品名「KR380」(チタン工業株式会社製、ルチル型、平均粒子径0.38μm)をそのまま使用に供するか、または製品名「KR380」をめのう乳鉢で粉砕し、ふるいを用いて分級することにより、平均粒子径が0.08μm、0.12μmである酸化チタンをそれぞれ調製して使用に供した。
・酸化アルミニウム:製品名「AKP‐3000」(住友化学株式会社製、平均粒子径0.74μm)、または製品名「AL-160SG-3」(昭和電工株式会社製、平均粒子径0.98μm)を使用に供した。
・酸化ジルコニウム:製品名「UEP酸化ジルコニウム」(第一希元素化学工業株式会社製、平均粒子径0.67μm)
・シリカ:製品名「シーホスター(R) KE-S50」(株式会社日本触媒製、平均粒子径0.54μm)を使用に供した。
・酸化マグネシウム:製品名「PUREMAG(R) FNM-G」(タテホ化学工業株式会社製、平均粒子径0.50μm)
 6.15.評価結果
 上記表1~表7から明らかなように、本発明に係る蓄電デバイス用組成物を用いて作製された蓄電デバイス用電極や蓄電デバイス用セパレーターは、良好なブロッキング耐性を有することが判明した。また、これらを用いて作製された蓄電デバイスは、良好な充放電特性を備えることが判明した。
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
10,110…集電体、20,120…活物質層、30,230…保護膜、100,200…蓄電デバイス用電極、300…蓄電デバイス用セパレーター

Claims (17)

  1.  不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体(A)と、
     ポリエチレンワックス、ポリプロピレンワックス、脂肪酸アミド、脂肪酸エステルおよび脂肪酸金属塩からなる群より選ばれる少なくとも1種である成分(B)と、
     液状媒体と、を含有し、
     前記重合体(A)の含有量をM1質量部、前記成分(B)の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする、蓄電デバイス用組成物。
  2.  バインダーと、ブロッキング防止剤と、液状媒体と、を含有し、
     前記バインダーの含有量をM1質量部、前記ブロッキング防止剤の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする、蓄電デバイス用組成物。
  3.  前記ブロッキング防止剤が、ポリエチレンワックス、ポリプロピレンワックス、脂肪酸アミド、脂肪酸エステルおよび脂肪酸金属塩からなる群より選ばれる少なくとも1種である、請求項2に記載の蓄電デバイス用組成物。
  4.  前記バインダーが、
     含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、
     不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、
    を有する含フッ素系バインダーである、請求項2または請求項3に記載の蓄電デバイス用組成物。
  5.  前記バインダーが、
     共役ジエン化合物に由来する繰り返し単位(Mc)と、
     芳香族ビニル化合物に由来する繰り返し単位(Md)と、
     不飽和カルボン酸エステルに由来する繰り返し単位(Me)と、
     不飽和カルボン酸に由来する繰り返し単位(Mf)と、
    を有するジエン系バインダーである、請求項2または請求項3に記載の蓄電デバイス用組成物。
  6.  前記バインダーが粒子であり、該粒子の平均粒子径が50~400nmである、請求項2ないし請求項5のいずれか一項に記載の蓄電デバイス用組成物。
  7.  請求項1ないし請求項6のいずれか一項に記載の蓄電デバイス用組成物と、活物質と、を含有する蓄電デバイス用スラリー。
  8.  集電体と、前記集電体の表面上に請求項7に記載の蓄電デバイス用スラリーが塗布および乾燥されて形成された層と、を備える蓄電デバイス用電極。
  9.  表面に保護膜を備える蓄電デバイス用電極であって、
     前記保護膜が、
     不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体(A)と、
     ポリエチレンワックス、ポリプロピレンワックス、脂肪酸アミド、脂肪酸エステルおよび脂肪酸金属塩からなる群より選ばれる少なくとも1種である成分(B)と、
    を含有し、
     前記重合体(A)の含有量をM1質量部、前記成分(B)の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする、蓄電デバイス用電極。
  10.  表面に保護膜を備える蓄電デバイス用電極であって、
     前記保護膜が、バインダーと、ブロッキング剤と、を含有し、
     前記バインダーの含有量をM1質量部、前記ブロッキング防止剤の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする、蓄電デバイス用電極。
  11.  請求項1ないし請求項6のいずれか一項に記載の蓄電デバイス用組成物と、無機粒子と、を含有する蓄電デバイス用スラリー。
  12.  前記無機粒子が、シリカ、酸化チタン、酸化アルミニウム、酸化ジルコニウムおよび酸化マグネシウムからなる群より選択される少なくとも1種の粒子である、請求項11に記載の蓄電デバイス用スラリー。
  13.  請求項11または請求項12に記載の蓄電デバイス用スラリーを塗布および乾燥させて形成された層を表面に備える蓄電デバイス用セパレーター。
  14.  表面に保護膜を備える蓄電デバイス用セパレーターであって、
     前記保護膜が、不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体(A)と、
     ポリエチレンワックス、ポリプロピレンワックス、脂肪酸アミド、脂肪酸エステルおよび脂肪酸金属塩からなる群より選ばれる少なくとも1種である成分(B)と、
    を含有し、
     前記重合体(A)の含有量をM1質量部、前記成分(B)の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする、蓄電デバイス用セパレーター。
  15.  表面に保護膜を備える蓄電デバイス用セパレーターであって、
     前記保護膜が、バインダーと、ブロッキング防止剤と、を含有し、
     前記バインダーの含有量をM1質量部、前記ブロッキング防止剤の含有量をM2質量部としたときに、1<M1/M2<4000の関係にあることを特徴とする、蓄電デバイス用セパレーター。
  16.  請求項8ないし請求項10のいずれか一項に記載の蓄電デバイス用電極を備える、蓄電デバイス。
  17.  請求項13ないし請求項15のいずれか一項に記載の蓄電デバイス用セパレーターを備える、蓄電デバイス。
PCT/JP2014/063155 2013-05-24 2014-05-19 蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス用電極、蓄電デバイス用セパレーターおよび蓄電デバイス WO2014188987A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480030020.1A CN105247717B (zh) 2013-05-24 2014-05-19 蓄电设备用组合物、蓄电设备用浆料、蓄电设备用电极、蓄电设备用间隔件以及蓄电设备
US14/893,875 US20160104893A1 (en) 2013-05-24 2014-05-19 Composition for electricity storage devices, slurry for electricity storage devices, electrode for electricity storage devices, separator for electricity storage devices, and electricity storage device
JP2014541470A JP5652633B1 (ja) 2013-05-24 2014-05-19 リチウムイオン二次電池用組成物、リチウムイオン二次電池用スラリー、リチウムイオン二次電池用電極、リチウムイオン二次電池用セパレーターおよびリチウムイオン二次電池
KR1020157033037A KR20160014599A (ko) 2013-05-24 2014-05-19 축전 디바이스용 조성물, 축전 디바이스용 슬러리, 축전 디바이스용 전극, 축전 디바이스용 세퍼레이터 및 축전 디바이스

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-109728 2013-05-24
JP2013109728 2013-05-24
JP2013-109729 2013-05-24
JP2013109729 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014188987A1 true WO2014188987A1 (ja) 2014-11-27

Family

ID=51933540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063155 WO2014188987A1 (ja) 2013-05-24 2014-05-19 蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス用電極、蓄電デバイス用セパレーターおよび蓄電デバイス

Country Status (5)

Country Link
US (1) US20160104893A1 (ja)
JP (2) JP5652633B1 (ja)
KR (1) KR20160014599A (ja)
CN (1) CN105247717B (ja)
WO (1) WO2014188987A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143552A (ja) * 2015-02-02 2016-08-08 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
CN107431172A (zh) * 2015-03-25 2017-12-01 株式会社吴羽 隔膜/中间层叠层体、非水电解质二次电池用结构体以及水性胶乳
WO2022210060A1 (ja) * 2021-03-30 2022-10-06 株式会社大阪ソーダ 負極保護膜

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102219154B1 (ko) * 2013-07-24 2021-02-22 니폰 에이 엔 엘 가부시키가이샤 전극용 바인더, 전극용 조성물 및 전극 시트
WO2018085828A1 (en) * 2016-11-07 2018-05-11 Celgard, Llc Battery separators
US11283058B2 (en) * 2017-03-22 2022-03-22 Lg Energy Solution, Ltd. Method of preparing slurry composition for secondary battery positive electrode, positive electrode for secondary battery prepared by using the same, and lithium secondary battery including the positive electrode
CN110431697B (zh) * 2017-03-22 2022-07-19 株式会社Lg化学 制备二次电池正极用浆料组合物的方法、用该方法制备的正极和包含该正极的锂二次电池
WO2018221197A1 (ja) * 2017-05-29 2018-12-06 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
US20210119214A1 (en) * 2018-04-03 2021-04-22 Zeon Corporation Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery member, and non-aqueous secondary battery
US20210194092A1 (en) * 2018-08-07 2021-06-24 Zeon Corporation Composition for non-aqueous secondary battery functional layer and method of producing same, functional layer for non-aqueous secondary battery, non-aqueous secondary battery member, and non-aqueous secondary battery
CN109860600A (zh) * 2019-03-09 2019-06-07 珠海光宇电池有限公司 一种锂离子电池用正极粘结剂、正极极片和锂离子电池
KR20220047803A (ko) * 2019-08-13 2022-04-19 제이에스알 가부시끼가이샤 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
KR20220109449A (ko) 2020-02-07 2022-08-04 후지필름 가부시키가이샤 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지 및, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법
WO2023227484A1 (en) * 2022-05-27 2023-11-30 Arlanxeo Deutschland Gmbh Powderous rubbers with lithium stearate, and use thereof as an electrode binder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116567A (ja) * 1997-06-24 1999-01-22 Sony Corp 非水電解液電池及びその製造方法
JP2010238448A (ja) * 2009-03-30 2010-10-21 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用セパレータ
JP2012076255A (ja) * 2010-09-30 2012-04-19 Mitsubishi Plastics Inc 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5488857B1 (ja) * 2012-09-11 2014-05-14 Jsr株式会社 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428909B2 (ja) * 2002-06-07 2010-03-10 東芝電池株式会社 密閉形アルカリ亜鉛一次電池用正極合剤、その製造方法及び密閉形アルカリ亜鉛一次電池
JP2004014344A (ja) * 2002-06-07 2004-01-15 Toshiba Battery Co Ltd 密閉形アルカリ亜鉛一次電池用正極合剤、その製造方法及び密閉形アルカリ亜鉛一次電池
HUE035297T2 (en) * 2009-02-27 2018-05-02 Zeon Corp Electrode lithium-ion secondary battery
EP2624338B1 (en) * 2012-02-02 2014-11-05 JSR Corporation Electrode binder composition, electrode slurry, electrode, and electrical storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116567A (ja) * 1997-06-24 1999-01-22 Sony Corp 非水電解液電池及びその製造方法
JP2010238448A (ja) * 2009-03-30 2010-10-21 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用セパレータ
JP2012076255A (ja) * 2010-09-30 2012-04-19 Mitsubishi Plastics Inc 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5488857B1 (ja) * 2012-09-11 2014-05-14 Jsr株式会社 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143552A (ja) * 2015-02-02 2016-08-08 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
CN107431172A (zh) * 2015-03-25 2017-12-01 株式会社吴羽 隔膜/中间层叠层体、非水电解质二次电池用结构体以及水性胶乳
CN107431172B (zh) * 2015-03-25 2020-08-18 株式会社吴羽 隔膜/中间层叠层体、非水电解质二次电池用结构体以及水性胶乳
WO2022210060A1 (ja) * 2021-03-30 2022-10-06 株式会社大阪ソーダ 負極保護膜

Also Published As

Publication number Publication date
CN105247717A (zh) 2016-01-13
KR20160014599A (ko) 2016-02-11
JPWO2014188987A1 (ja) 2017-02-23
JP2015005526A (ja) 2015-01-08
US20160104893A1 (en) 2016-04-14
CN105247717B (zh) 2018-02-13
JP5652633B1 (ja) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5652633B1 (ja) リチウムイオン二次電池用組成物、リチウムイオン二次電池用スラリー、リチウムイオン二次電池用電極、リチウムイオン二次電池用セパレーターおよびリチウムイオン二次電池
CN108352575B (zh) 非水系二次电池粘接层用组合物、非水系二次电池用粘接层、层叠体以及非水系二次电池
JP5673987B1 (ja) 蓄電デバイス用バインダー組成物
JP5348444B1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜形成用スラリー、保護膜、および蓄電デバイス
KR101819067B1 (ko) 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지
WO2013058119A1 (ja) 保護膜及びそれを作製するための組成物、スラリー、並びに蓄電デバイス
JP6519581B2 (ja) 電気化学素子電極用導電性接着剤組成物及び電気化学素子電極用集電体
CN110383546B (zh) 电化学元件电极用导电材料分散液、浆料组合物及其制造方法、电极以及电化学元件
WO2006038652A1 (ja) 電極組成物、電極および電池
WO2017038383A1 (ja) 粘着剤用組成物及び粘着フィルム、並びに蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜用スラリー及び蓄電デバイス
JP6547630B2 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2014203767A1 (ja) 蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス電極およびその製造方法、保護膜およびその製造方法、ならびに蓄電デバイス
JP6645101B2 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2013084502A (ja) 電極用バインダー組成物
WO2013187188A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜形成用スラリー、保護膜、および蓄電デバイス
TWI668906B (zh) 正極用漿料、蓄電裝置正極及蓄電裝置
WO2015115201A1 (ja) 電気化学素子用電極及び電気化学素子
JP2014212030A (ja) 蓄電デバイス用電極およびその製造方法、ならびに蓄電デバイス
JP2014212029A (ja) 蓄電デバイス用電極および蓄電デバイス
JP5904350B1 (ja) 蓄電デバイス用バインダー組成物
JP2014212028A (ja) 蓄電デバイス用電極および蓄電デバイス
JP2017120708A (ja) 蓄電デバイス電極用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2016143553A (ja) 蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2016143552A (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2016051677A (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス用スラリー、蓄電デバイス電極、セパレーターおよび蓄電デバイス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014541470

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157033037

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800294

Country of ref document: EP

Kind code of ref document: A1