WO2022210060A1 - 負極保護膜 - Google Patents

負極保護膜 Download PDF

Info

Publication number
WO2022210060A1
WO2022210060A1 PCT/JP2022/012898 JP2022012898W WO2022210060A1 WO 2022210060 A1 WO2022210060 A1 WO 2022210060A1 JP 2022012898 W JP2022012898 W JP 2022012898W WO 2022210060 A1 WO2022210060 A1 WO 2022210060A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
protective film
mass
electrode protective
parts
Prior art date
Application number
PCT/JP2022/012898
Other languages
English (en)
French (fr)
Inventor
雅人 田渕
俊平 浜谷
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to KR1020237020023A priority Critical patent/KR20230163349A/ko
Priority to JP2023510998A priority patent/JPWO2022210060A1/ja
Priority to CN202280011742.7A priority patent/CN116868435A/zh
Publication of WO2022210060A1 publication Critical patent/WO2022210060A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode protective film for protecting negative electrodes used in power storage devices such as lithium ion batteries.
  • Energy storage devices such as lithium-ion secondary batteries and electrochemical capacitors are used in electronic devices such as mobile phones, laptop computers, and camcorders. Recently, due to the increasing awareness of environmental protection and the development of related laws, the application of batteries for in-vehicle applications such as electric vehicles and hybrid electric vehicles and as storage batteries for household power storage is also progressing.
  • a power storage device consists of a positive electrode, a negative electrode, and an electrolyte. As the application of power storage devices progresses, higher performance is required for power storage devices, and improvements in materials such as electrodes are progressing.
  • Patent Document 1 discloses a battery in which a polymer solid electrolyte containing a lithium salt compound is interposed between the electrolyte and an electrode layer.
  • the inventor of the present invention has made intensive studies to solve the above problems. As a result, the inventors have found that the above problems can be solved by a negative electrode protective film having constant mechanical properties during pressing and releasing. The present invention has been completed through further studies based on such findings.
  • Item 1 A negative electrode protective film containing a lithium salt compound, Assuming that the thickness of the negative electrode protective film before pressing is 100%, the film thickness change rate when pressed for 10 minutes at a temperature of 25 ° C. and a pressure of 1 MPa is 1 to 20%, and the film when left for 10 minutes after the press pressure is released. A negative electrode protective film having a thickness change rate of -1 to 5%.
  • Item 2 The negative electrode protective film according to Item 1, which has an ionic conductivity of 0.1 to 10 mS/cm at 25°C.
  • Item 3 The negative electrode protective film has a film thickness change rate (X1) when pressed at a temperature of 25 ° C.
  • Item 3 The negative electrode protective film according to Item 1 or 2, wherein the rate of change in film thickness of (X2) satisfies X1>X2.
  • Item 4. A negative electrode with a negative electrode protective film, comprising a negative electrode and the negative electrode protective film according to any one of Items 1 to 3 laminated on the surface of the negative electrode.
  • Item 5. An electricity storage device comprising a positive electrode, an electrolyte, the negative electrode protective film according to any one of Items 1 to 3, and a negative electrode.
  • Item 6. The electricity storage device according to Item 5, wherein the electrolyte is a solid electrolyte.
  • the negative electrode protective film of the present invention By using the negative electrode protective film of the present invention, it is possible to exhibit high battery characteristics in an electricity storage device. Although the details of this mechanism are not necessarily clear, for example, during charge/discharge, a suitable gap between the negative electrode and the electrolyte can be achieved by forming a negative electrode protective film that has certain mechanical properties when pressed and when released from the press. This is considered to be the result of obtaining an appropriate followability at .
  • a numerical value connected with "-" means a numerical range including numerical values before and after "-" as a lower limit and an upper limit. If multiple lower limits and multiple upper limits are listed separately, any lower limit and upper limit can be selected and connected with "-".
  • the negative electrode protective film of the present invention contains a lithium salt compound, Assuming that the thickness of the negative electrode protective film before pressing is 100%, the film thickness change rate (X1) is 1 to 20% when pressed for 10 minutes at a temperature of 25 ° C. and a pressure of 1 MPa, and left for 10 minutes after the press pressure is released.
  • the film thickness change rate (X2) at the time is -1 to 5%.
  • the film thickness change rate is, more specifically, the film thickness reduction rate. That is, when the thickness of the negative electrode protective film before pressing is taken as 100% (reference), the thickness reduction rate of the negative electrode protective film immediately after pressing the negative electrode protective film at a temperature of 25 ° C.
  • the film thickness change rate (X1) and the film thickness change rate (X2) can be suitably adjusted by, for example, the mixing ratio of the plasticizer and the cross-linking aid described later. can.
  • the negative electrode protective film of the present invention contains a lithium salt compound.
  • a lithium salt compound having a wide potential window, such as those commonly used in lithium ion batteries, is suitable.
  • lithium salt compounds include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 (LiTFSI), LiN(SFO 2 ) 2 (LiFSI), LiN(C 2 F 5 SO 2 ) 2 , LiN[CF 3 SC(C 2 F 5 SO 2 ) 3 ] 2 and the like, but are not limited thereto. These may be used alone or in combination of two or more.
  • the negative electrode protective film of the present invention is preferably formed from a polymer composition containing a lithium salt compound and a polymer.
  • the lower limit is preferably 5 parts by mass or more, more preferably 8 parts by mass or more, and 10 parts by mass or more with respect to 100 parts by mass of the polymer.
  • the upper limit is preferably 900 parts by mass or less, more preferably 800 parts by mass or less, particularly preferably 700 parts by mass or less, and may be 500 parts by mass or less. It may be less than or equal to parts by mass.
  • Polymers used for the negative electrode protective film include polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, polymethyl methacrylate, Examples include polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, polyether polymers, etc. Polyacrylonitrile, polymethyl methacrylate, polyvinylidene fluoride, and polyether polymers are preferred.
  • the polyether polymer preferably has structural units derived from alkylene oxide, and more preferably has structural units derived from ethylene oxide.
  • the polyether polymer contains structural units derived from the monomer represented by formula (1), and optionally, structural units derived from formula (2) and/or derived from formula (3). It is preferable to have a structural unit of Only one type of the monomer represented by each formula may be used, or two or more types may be mixed and used.
  • R is an alkyl group having 1 to 12 carbon atoms, or -CH 2 O(CH 2 CH 2 O) n R 4 , and R 4 is an alkyl group having 1 to 6 carbon atoms; , n is a number from 0 to 12. ]
  • the compound of formula (2) can be obtained from commercial products or can be easily synthesized by a general ether synthesis method from epihalohydrin and alcohol. Moreover, a phenyl group is mentioned as an aryl group.
  • Commercially available compounds include, for example, propylene oxide, butylene oxide, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, benzyl glycidyl ether, 1,2-epoxidedecane, 1,2 -epoxyoctane, 1,2-epoxyheptane, 2-ethylhexyl glycidyl ether, 1,2-epoxydecane, 1,2-epoxyhexane, glycidyl phenyl ether, 1,2-epoxypentane, glycidyl isopropyl ether, etc.
  • R is preferably —CH 2 O (CR 1 R 2 R 3 ), and at least one of R 1 , R 2 and R 3 is —CH 2 O ( CH2CH2O ) nR4 is preferred.
  • R 4 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms.
  • n is preferably 0-6, more preferably 0-4.
  • R 5 represents a group containing an ethylenically unsaturated group.
  • Monomers of formula (3) include allyl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, ⁇ -terpinyl glycidyl ether, cyclohexenylmethyl glycidyl ether, p-vinylbenzyl glycidyl ether, allylphenyl glycidyl ether, and vinyl glycidyl ether.
  • ether 3,4-epoxy-1-butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentene, 1,2-epoxy-5,9-cyclododecanediene, 3,4- Epoxy-1-vinylcyclohexene, 1,2-epoxy-5-cyclooctene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate, glycidyl cinnamate, glycidyl crotonate, glycidyl-4-hexenoate are used.
  • Preferred are allyl glycidyl ether, glycidyl acrylate and glycidyl methacrylate.
  • a structural unit derived from the monomer of formula (1) a structural unit derived from the monomer of formula (2), and a structural unit derived from the monomer of formula (3)
  • the molar ratio is determined by 1 H-NMR spectrum.
  • the structural unit derived from the monomer of formula (1) preferably has 30 mol% or more, more preferably 45 mol% or more, particularly preferably 60 mol% or more, and preferably 100 mol% or less. It is preferably 96 mol % or less, more preferably 93.5 mol % or less.
  • the structural unit derived from the monomer of formula (2) may be 0 mol% or more, may be 3 mol% or more, may be 5 mol% or more, and may be 70 mol% or less, It may be 59 mol % or less, and may be 39 mol % or less.
  • the structural unit derived from the monomer of formula (3) may be 0 mol% or more, 1 mol% or more, 1.5 mol% or more, or 2 mol% or more. It may be 3 mol % or more, 20 mol % or less, 15 mol % or less, or 12 mol % or less.
  • the polyether polymer only structural units derived from the monomer of formula (1), structural units derived from the monomer of formula (2), and structural units derived from the monomer of formula (3) It may be composed, or may be a constituent unit derived from another monomer.
  • the sum of structural units derived from the monomer of formula (1), structural units derived from the monomer of formula (2), and structural units derived from the monomer of formula (3) in the polyether polymer The molar ratio is preferably 90 mol % or more, more preferably 95 mol % or more, particularly preferably 98 mol % or more, and preferably 100 mol %.
  • polyether polymers include ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether terpolymer, ethylene oxide/diethylene glycol methyl glycidyl ether/glycidyl methacrylate terpolymer, ethylene oxide/diethylene glycol methyl glycidyl ether/acrylic acid.
  • Glycidyl terpolymers, ethylene oxide/allyl glycidyl ether binary copolymers, ethylene oxide/glycidyl methacrylate binary copolymers, ethylene oxide/glycidyl acrylate binary copolymers, and the like can be mentioned.
  • the weight average molecular weight of the polyether polymer is not particularly limited, it may be 10,000 to 3,000,000, more preferably 50,000 to 2,500,000, and particularly preferably 100,000 to 2,000,000.
  • the weight average molecular weight is calculated by gel permeation chromatography (GPC) using dimethylformamide (DMF) as a solvent and standard polystyrene conversion.
  • a polyether polymer can be synthesized, for example, as follows.
  • a coordinating anion initiator such as an organic aluminum-based catalyst system, an organic zinc-based catalyst system, an organic tin-phosphate ester condensate catalyst system, or potassium containing K + as a counter ion Polyether (i ) is obtained.
  • Coordinating anionic initiators are preferred from the viewpoint of the degree of polymerization and the properties of the resulting copolymer. Among them, organic tin-phosphate ester condensate catalysts are particularly preferred because they are easy to handle.
  • the content of the polymer contained in the negative electrode protective film is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, based on 100% by mass of the entire negative electrode protective film, and may be 5 to 50% by mass, 5 to 30% by mass, 5 to 20% by mass, 10 to 30% by mass, and 10 to 20% by mass can also be exemplified.
  • the negative electrode protective film may contain room-temperature molten salt.
  • Room-temperature molten salt refers to a salt that is at least partially liquid at room temperature
  • room temperature refers to the temperature range in which the power source normally operates.
  • the temperature range in which the power supply is expected to operate normally has an upper limit of about 120°C, possibly about 60°C, and a lower limit of about -40°C, sometimes about -20°C.
  • Room-temperature molten salts are also called ionic liquids, and pyridine, aliphatic amine, and alicyclic amine quaternary ammonium organic cations are known.
  • quaternary ammonium organic cations include imidazolium ions such as dialkylimidazolium and trialkylimidazolium, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions and piperidinium ions.
  • imidazolium cations are preferred.
  • the tetraalkylammonium ion includes, but is limited to, trimethylethylammonium ion, trimethylethylammonium ion, trimethylpropylammonium ion, trimethylhexylammonium ion, tetrapentylammonium ion, triethylmethylammonium ion, and the like. is not.
  • alkylpyridinium ion N-methylpyridinium ion, N-ethylpyridinium ion, N-propylpyridinium ion, N-butylpyridinium ion, 1-ethyl-2methylpyridinium ion, 1-butyl-4-methyl Examples include, but are not limited to, pyridinium ion, 1-butyl-2,4-dimethylpyridinium ion, and the like.
  • imidazolium cations include 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1- Butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl- Examples include, but are not limited to, 2,3-dimethylimidazolium ion.
  • room-temperature molten salts having these cations may be used alone, or two or more of them may be mixed and used.
  • the negative electrode protective film contains a room-temperature molten salt
  • its content is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass, relative to 100 parts by mass of the polymer.
  • the negative electrode protective film may contain a plasticizer and the like.
  • the plasticizer is not particularly limited, a dicyano compound and an ether compound are preferable.
  • a plasticizer is added, it is preferably a crosslinked polymer, that is, a crosslinked polymer.
  • This cross-linking is preferably a chemical cross-linking, which can suppress the outflow of the plasticizer of the negative electrode protective film.
  • the film thickness change rate can be suitably adjusted by adjusting the mixing ratio of the plasticizer and the cross-linking aid described below.
  • Dicyano compounds include succinonitrile, glutaronitrile, adiponitrile, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, 1,8-dicyanooctane and the like.
  • ether compounds include linear ether compounds and branched ether compounds.
  • linear ether compounds examples include triglyme (triethylene glycol dimethyl ether) and tetraglyme (tetraethylene glycol dimethyl ether).
  • branched ether compounds include the following multi-branched ether compounds.
  • the content of the plasticizer is preferably 10 to 380 parts by mass, more preferably 50 to 350 parts by mass, with respect to 100 parts by mass of the polymer. 125 to 300 parts by mass is particularly preferred.
  • a filler may be included in the negative electrode protective film.
  • the filler is not particularly limited, but any material that is electrochemically stable and electrically insulating may be used, and inorganic and organic fillers are used.
  • specific examples of inorganic fillers include inorganic oxides such as silica, alumina, alumina-silicate, zirconia, potassium titanate, barium titanate and lithium aluminate, and inorganic nitrides such as aluminum nitride and silicon nitride.
  • organic fillers include acrylic resins (polymethyl methacrylate, etc.), styrene resins, fluorine resins, urethane resins, etc., polyolefin resins, styrene-butadiene copolymers, styrene-methyl methacrylate copolymers. , polyalkylene oxide (polyethylene oxide, etc.). These fillers can be used alone or in combination of two or more.
  • the shape of the filler is not particularly limited, and may be spherical, flat, acicular, columnar, amorphous, and the like.
  • the particle size of the filler can be measured by a dynamic light scattering method (dispersion medium: water).
  • the average particle size of the filler is preferably 0.1-20 ⁇ m, more preferably 0.2-15 ⁇ m, and may be 1-15 ⁇ m.
  • the content of the filler may be in the range of 1 to 80 parts by mass, preferably 10 to 60 parts by mass, more preferably 15 to 50 parts by mass, relative to 100 parts by mass of the polymer.
  • the negative electrode protective film has a thickness change rate of 1 to 20% and 2 to 20% when pressed for 10 minutes at a temperature of 25 ° C. and a pressure of 1 MPa, with the thickness of the negative electrode protective film before pressing being 100%. is preferred, and 2 to 15% is particularly preferred. It is shown by the following formula.
  • X1 (%) [(A1-A2)/A1] x 100 Film thickness of negative electrode protective film before pressing: A1 Film thickness when pressed for 10 minutes at a temperature of 25 ° C. and a pressure of 1 MPa: A2 Film thickness change rate when pressed for 10 minutes at a temperature of 25 ° C. and a pressure of 1 MPa: X1
  • the negative electrode protective film is pressed at a temperature of 25 ° C. and a pressure of 1 MPa for 10 minutes, with the thickness of the negative electrode protective film before pressing being 100%, and the film thickness change rate when left for 10 minutes after releasing the pressing pressure is -1 to 5. %, preferably 0 to 5%, particularly preferably 0 to 4%. It is shown by the following formula.
  • X2 (%) [(A1-A3)/A1] x 100 Film thickness of negative electrode protective film before pressing: A1 Film thickness when pressed for 10 minutes at a temperature of 25° C. and a pressure of 1 MPa, and left for 10 minutes after releasing the press pressure: A3 Change rate of film thickness when pressed at a temperature of 25° C. and a pressure of 1 MPa for 10 minutes and left for 10 minutes after releasing the pressing pressure: X2
  • the negative electrode protective film is the film thickness change rate (X1) when pressed at a temperature of 25 ° C. and a pressure of 1 MPa for 10 minutes, and the film thickness when pressed at a temperature of 25 ° C. and a pressure of 1 MPa for 10 minutes and left for 10 minutes after the press pressure is released.
  • Rate of change: (X2) may have a relationship of X1>X2, but preferably 0.05 ⁇ X2 / X1 ⁇ 0.95, and 0.1 ⁇ X2 / X1 ⁇ 0.95 is more preferable, and 0.2 ⁇ X2/X1 ⁇ 0.90 is more preferable.
  • the film thickness of the negative electrode protective film can be appropriately adjusted according to the size of the electricity storage device (the size of the negative electrode, etc.). .1-50 ⁇ m, 0.1-30 ⁇ m, 0.2-200 ⁇ m, 0.2-50 ⁇ m, 0.2-30 ⁇ m, 0.5-200 ⁇ m, 0.5-50 ⁇ m, 0.5-30 ⁇ m, 1-200 ⁇ m , 1 to 50 ⁇ m, 1 to 30 ⁇ m, 2 to 200 ⁇ m, 2 to 50 ⁇ m, 2 to 30 ⁇ m, 5 to 200 ⁇ m, 5 to 50 ⁇ m, 5 to 30 ⁇ m, 10 to 200 ⁇ m, 10 to 50 ⁇ m, and 10 to 30 ⁇ m.
  • It is preferably in the range of 0.1 ⁇ m to 200 ⁇ m, more preferably in the range of 0.2 ⁇ m to 100 ⁇ m, still more preferably in the range of 0.2 ⁇ m to 50 ⁇ m, and particularly preferably in the range of 0.5 ⁇ m to 30 ⁇ m.
  • the ion conductivity of the negative electrode protective film at 25° C. is preferably 0.1 to 10 mS/cm, more preferably 0.3 to 9 mS/cm, particularly 0.4 to 8 mS/cm. preferable.
  • the negative electrode protective film in the present invention is preferably a gel film.
  • a gel is a three-dimensional network structure formed by chemical bonds (covalent bonds, ionic bonds, coordinate bonds, etc.) or intermolecular interactions such as crystallization and molecular entanglement. It is a swollen body that retains solvent molecules.
  • the method for producing the negative electrode protective film of the present invention is not particularly limited, it is formed using the negative electrode protective film composition described in the section "2.
  • Composition for negative electrode protective film contains a polymer, a lithium salt compound, etc., preferably contains a plasticizer, optionally contains a filler, and if necessary, is mixed with an organic solvent and dissolved, and the base is
  • a method of casting the composition on a material for example, a PET film, a Teflon (registered trademark) plate, etc.), removing the solvent, and then heating or irradiating active energy rays such as ultraviolet rays to form a negative electrode protective film.
  • a negative electrode protective film can also be produced by casting the composition on the surface of the negative electrode or the electrolyte.
  • composition for negative electrode protective film As the polymer used in the negative electrode protective film composition, the polymers described in the section “1. Negative electrode protective film” can be used.
  • the lithium salt compound used in the negative electrode protective film composition the lithium salt compound described in the section “1. Negative electrode protective film” can be used. is preferably 5 parts by mass or more, more preferably 8 parts by mass or more, particularly preferably 10 parts by mass or more, and the upper limit is preferably 900 parts by mass or less. It is more preferably contained in an amount of 700 parts by mass or less, and particularly preferably in an amount of 700 parts by mass or less.
  • the plasticizer used in the negative electrode protective film composition the plasticizer described in the section “1. Negative electrode protective film” can be used. It is preferably 50 to 350 parts by mass, particularly preferably 125 to 300 parts by mass.
  • Negative electrode protective film As the filler used in the negative electrode protective film composition, the filler described in the section “1. Negative electrode protective film” can be used. 1 to 80 parts by mass, preferably 10 to 60 parts by mass, more preferably 15 to 50 parts by mass.
  • a reaction initiator can be used, and examples thereof include a thermal reaction initiator and a photoreaction initiator, and a cross-linking aid can be added.
  • a radical initiator selected from organic peroxides, azo compounds, etc.
  • organic peroxides include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, and the like, which are commonly used for cross-linking.
  • azo compounds include azonitrile.
  • Compounds, azoamide compounds, azoamidine compounds, and the like, which are commonly used for cross-linking purposes, can be used.
  • the amount of the radical initiator to be added varies depending on the type, but it is usually in the range of 0.1 to 10 parts by mass based on 100 parts by mass of the polymer.
  • radical initiators such as alkylphenones, benzophenones, acylphosphine oxides, titanocenes, triazines, bisimidazoles, and oxime esters are used.
  • the amount of these radical polymerization initiators to be added varies depending on the type, it is usually in the range of 0.01 to 5.0 parts by mass based on 100 parts by mass of the polymer.
  • crosslinking aids include ethylene glycol diacrylate, ethylene glycol dimethacrylate, oligoethylene glycol diacrylate, oligoethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, allyl methacrylate, allyl acrylate, diallyl maleate, Triallyl isocyanurate, maleimide, phenylmaleimide, maleic anhydride and the like can be optionally used.
  • the content of the cross-linking aid is preferably in the range of 25 to 60 parts by mass, more preferably in the range of 30 to 50 parts by mass, based on 100 parts by mass of the polymer.
  • the negative electrode protective film composition may contain water or an organic solvent.
  • Organic solvents include toluene, xylene, benzene, acetonitrile, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and glyme (ethylene glycol dimethyl ether). , diglyme (diethylene glycol dimethyl ether), THF (tetrahydrofuran).
  • the content of water or organic solvent is preferably 20 to 1400 parts by mass, more preferably 50 to 900 parts by mass, relative to 100 parts by mass of the polymer.
  • the total amount of water or organic solvent and plasticizer is preferably 200 to 1500 parts by mass, more preferably 300 to 1200 parts by mass, with respect to 100 parts by mass of the polymer. is more preferable, and 400 to 1000 parts by mass is particularly preferable.
  • the cross-linking reaction can be carried out by heating at a temperature of room temperature to about 200° C. for about 10 minutes to 24 hours when using heat.
  • a xenon lamp, a mercury lamp, a high pressure mercury lamp and a metal halide lamp can be used in the case of using ultraviolet rays.
  • the electrolyte is irradiated with a wavelength of 365 nm and a light intensity of 1 to 50 mW/cm 2 for 0.1 to 30 minutes. can be done.
  • the electric storage device of the present invention includes a positive electrode, an electrolyte, the negative electrode protective film described in the section "1. Negative electrode protective film”, and a negative electrode.
  • the negative electrode protective film is characterized in that it is interposed between the negative electrode and the electrolyte.
  • the negative electrode protective film is preferably in contact with each of the negative electrode and the electrolyte.
  • a negative electrode protective film may be laminated on the surface of the negative electrode to form a negative electrode with a negative electrode protective film, which may be applied to an electric storage device.
  • the negative electrode protective film can be applied to an electric storage device by laminating the negative electrode protective film on the surface of the electrolyte and arranging the electrolyte and the negative electrode such that the negative electrode protective film is positioned on the negative electrode side.
  • known positive and negative electrodes can be used, and an electrode having a positive electrode material layer or a negative electrode material layer as a current collector can be exemplified.
  • a known current collector can be used for the positive electrode and the negative electrode.
  • metals such as aluminum, nickel, stainless steel, gold, platinum, and titanium are used for the positive electrode as current collectors.
  • Metals such as copper, nickel, stainless steel, gold, platinum, and titanium are used in the negative electrode as current collectors.
  • the positive electrode material layer and the negative electrode material layer contain at least a positive electrode active material and a negative electrode active material, respectively, and may further contain a conductive aid, a binder, and a thickener.
  • the positive electrode active material used in the present invention is a lithium metal-containing composite oxide powder having a composition of LiMO 2 , LiM 2 O 4 , Li 2 MO 3 or LiMEO 4 .
  • M in the formula mainly consists of transition metals and contains at least one of Co, Mn, Ni, Cr, Fe and Ti.
  • M consists of a transition metal, Al, Ga, Ge, Sn, Pb, Sb, Bi, Si, P, B, etc. may be added in addition to the transition metal.
  • E contains at least one of P and Si.
  • the particle diameter of the positive electrode active material is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less. These active materials have an electromotive force of 3 V (vs. Li/Li+) or more.
  • positive electrode active materials include lithium cobaltate, lithium nickelate, nickel/cobalt/lithium manganate (ternary system), spinel-type lithium manganate, and lithium iron phosphate.
  • the negative electrode active material used in the present invention is a carbon material (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (interlayer compound) capable of absorbing and releasing alkali metal ions such as lithium ions, or lithium ion metals such as lithium, aluminum-based compounds, tin-based compounds, silicon-based compounds, and titanium-based compounds that can occlude and release alkali metal ions such as
  • the particle size is preferably 10 nm or more and 100 ⁇ m or less, more preferably 20 nm or more and 20 ⁇ m or less.
  • it may be used as a mixed active material of a metal and a carbon material.
  • the content of the active material in the positive electrode material layer and the negative electrode material layer may be, for example, 100% by mass, about 99.9 to 50% by mass, more preferably about 99.5 to 70% by mass, and further About 99 to 85% by mass is preferred.
  • a known conductive aid can be used, and conductive carbon black such as graphite, furnace black, acetylene black, ketjen black, carbon fiber such as carbon nanotube, or metal powder, etc. mentioned.
  • conductive carbon black such as graphite, furnace black, acetylene black, ketjen black, carbon fiber such as carbon nanotube, or metal powder, etc. mentioned.
  • One or two or more of these conductive aids may be used.
  • the content of the conductive aid is not particularly limited, but the upper limit is preferably 20 parts by mass or less, and 15 parts by mass or less with respect to 100 parts by mass of the total amount of the active material. It is more preferably 10 parts by mass or less, and the lower limit of the content of the conductive aid is usually 0.05 parts by mass or more, 0.1 parts by mass or more, and 0.2 parts by mass or more. , 0.5 parts by mass or more, and 2 parts by mass or more.
  • binder for example, one or more selected from fluororesins such as PVdF, fluororubbers, acrylic rubbers, modified acrylic rubbers, styrene-butadiene rubbers, acrylic polymers, vinyl polymers, and the ion-conductive polymers described above. compounds can be used.
  • fluororesins such as PVdF, fluororubbers, acrylic rubbers, modified acrylic rubbers, styrene-butadiene rubbers, acrylic polymers, vinyl polymers, and the ion-conductive polymers described above. compounds
  • binders are added in an amount of preferably 5 parts by mass or less, more preferably 3 parts by mass or less, for example 0.01 to 2 parts by mass, per 100 parts by mass of the active material.
  • thickeners include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose and salts thereof (alkali metal salts such as sodium salts, ammonium salts), polyvinyl alcohol, polyacrylates, polyethylene oxide, and the like. You may use 1 type(s) or 2 or more types of these thickeners. These thickeners are added in an amount of preferably 5 parts by mass or less, more preferably 3 parts by mass or less, for example 0.01 to 2 parts by mass, per 100 parts by mass of the active material. Moreover, when the viscosity of the coating liquid is low, a thickener can be used together.
  • positive electrode and negative electrode which include a current collector, a positive electrode material layer, and a negative electrode material layer
  • a general method is used.
  • positive electrode material or negative electrode material paste Coating liquid
  • a negative electrode active material powder, a positive electrode active material powder, a conductive aid, a binder, etc. are dispersed in water to form a slurry, which is applied to a metal electrode substrate, and then a blade having a predetermined slit width is used to obtain an appropriate slurry. Uniform thickness.
  • the electrode is dried, for example, with hot air at 100° C. or under reduced pressure at 80° C. in order to remove excess organic solvent.
  • An electrode is manufactured by press-molding the dried electrode with a press machine.
  • the electrolyte is preferably a solid electrolyte, preferably a polymer solid electrolyte or an inorganic solid electrolyte, and more preferably an oxide-based solid electrolyte or a sulfide-based solid electrolyte.
  • An inorganic solid electrolyte is generally an aggregate of inorganic solid particles that constitute the electrolyte.
  • the oxide-based solid electrolyte is particularly limited as long as it contains oxygen, has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulation. not a thing
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of oxygen in lithium phosphate is replaced with nitrogen
  • LiPOD LiPOD
  • D is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb , Mo, Ru, Ag, Ta, W, Pt, Au, etc.
  • LiAON A is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • AON is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the sulfide-based solid electrolyte is particularly limited as long as it contains sulfur, has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulation. not a thing Examples thereof include lithium ion conductive inorganic solid electrolytes satisfying the composition represented by the following formula.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. Among them, B, Sn, Si, Al and Ge are preferred, and Sn, Al and Ge are more preferred.
  • A represents I, Br, Cl or F, preferably I or Br, and particularly preferably I.
  • a to e indicate the composition ratio of each element, and a:b:c:d:e satisfies 1-12:0-1:1:2-12:0-5. Further, a is preferably 1 to 9, more preferably 1.5 to 4. b is preferably 0 to 0.5. Further, d is preferably 3 to 7, more preferably 3.25 to 4.5. Further, e is preferably 0 to 3, more preferably 0 to 2.
  • the ratio of Li 2 S and P 2 S 5 is Li 2 S:P 2 S 5 molar ratio of 60:40 to 85:15. preferably 65:35 to 80:20.
  • sulfide-based solid electrolytes include Li 2 S/SiS 2 , Li 2 S—SiS 2 /P 2 S 5 , Li 2 S/P 2 S 5 , Li 2 S/GeS 2 , Li 2 S / GeS2 / Ga2S3 , Li2S / B2S3 , Li2S / Ga2S3 , Li2S / Al2S3 , Li2S / GeS2 / P2S5 , Li2 S / Al2S3 / P2S5 , Li2S / Al2S3 / P2S5 , Li2S / P2S3 , Li2S / P2S3 , Li2S / P2S3 / P2S5 , Li2S / SiS2 / Li4SiO4 , Li2S / SiS2 / Li3PO4 , LiX/ Li2S / P2S5 , LiX/ Li2S / SiS
  • the inorganic solid electrolyte When the inorganic solid electrolyte is particulate, its particle diameter is, for example, 0.01 to 100 ⁇ m, preferably 0.1 to 20 ⁇ m.
  • the method for manufacturing the electricity storage device of the present invention is not particularly limited, and at least the device is composed of a positive electrode, a negative electrode, an electrolyte, and a negative electrode protective film, and is manufactured by a known method.
  • a positive electrode, an electrolyte, a negative electrode, and a negative electrode protective film are arranged between the negative electrode and the electrolyte, and then inserted into an outer can. After that, it is obtained by joining the sealing body by tab welding or the like, enclosing the sealing body, and caulking it.
  • the shape of the battery is not limited, but examples thereof include a coin shape, a cylindrical shape, a sheet shape, and the like, and a structure in which two or more cells are stacked may be used.
  • a film of the protective film composition for the negative electrode was prepared and the physical properties of the film were evaluated. Evaluation was performed in the following experiments.
  • Polymer was measured by the following method. [Composition molar ratio] It was determined from the signal intensity ratio derived from the composition unit by 1 H-NMR spectrum. [Weight average molecular weight] Gel permeation chromatography (GPC) measurement was performed, and the weight average molecular weight was calculated by standard polystyrene conversion. GPC measurement was performed at 60 ° C. using RID-6A manufactured by Shimadzu Corporation, Shodex KD-807, KD-806, KD-806M and KD-803 columns manufactured by Showa Denko Co., Ltd., and DMF as a solvent. .
  • the polymerization temperature at this time was 20° C., and the reaction was carried out for 10 hours.
  • the polymerization reaction was stopped by adding 1 mL of methanol. After the polymer was taken out by decantation, it was dried at 40° C. under normal pressure for 24 hours and further at 45° C. under reduced pressure for 10 hours to obtain 210 g of polymer.
  • a negative electrode for a solid electrolyte secondary battery was produced (basis weight: 4.0 mg/cm 2 , negative electrode density: 1.1 g/cm 3 , porosity: 26%).
  • a negative electrode protective film composition 1 was prepared by completely dissolving 3 parts by mass of benzophenone as an initiator in 700 parts by mass of ethylene glycol dimethyl ether (monoglyme) as a coating solvent.
  • Negative Electrode with Protective Film In an argon glove box, the negative electrode protective film composition 1 was dropped onto the precursor of the negative electrode. After drying at room temperature for 10 minutes, the solvent was removed under vacuum at 50° C. for 1 hour. Next, cross-linking was performed by UV irradiation at 1 J/cm 2 in an argon glove box to prepare negative electrode 1 (negative electrode with negative electrode protective film) laminated with negative electrode protective film 1 having a thickness of 15 ⁇ m.
  • negative electrode protective film composition 2 was prepared in the same manner as the negative electrode protective film composition 1, except that the type of plasticizer was changed to triethylene glycol dimethyl ether (triglyme).
  • Negative Electrode with Protective Film Formed Negative Electrode 2 (a negative electrode 2 ( A negative electrode with a negative electrode protective film) was produced.
  • negative electrode protective film composition 3 A negative electrode protective composition was prepared in the same manner as negative electrode protective composition 1 except that 20 parts by mass of nanosilica (manufactured by Admatechs, particle size 0.2 to 0.4 ⁇ m) was further added. 3 was produced.
  • Negative electrode protective film composition 4 was prepared in the same manner as negative electrode protective composition 1 except that the amount of LiTFSI was changed to 150 parts by mass and the amount of tetraglyme was changed to 280 parts by mass. did.
  • Negative Electrode with Protective Film Formed Negative Electrode 4 (a negative electrode 4 ( A negative electrode with a negative electrode protective film) was produced.
  • negative electrode protective film composition 5 A negative electrode protective film composition 5 was prepared in the same manner as the negative electrode protective composition 1 except that the amount of LiTFSI was changed to 160 parts by mass and the amount of tetraglyme was changed to 300 parts by mass. did.
  • Negative Electrode Formed with Protective Film Negative electrode 6 (negative electrode with negative electrode protective film) laminated with negative electrode protective film 6 having a thickness of 0.5 ⁇ m was prepared in the same manner as in Example 1 using composition 1 for negative electrode protective film. did.
  • Example 7 Preparation of Negative Electrode with Protective Film Using Composition 1 for negative electrode protective film, negative electrode 7 (negative electrode with negative electrode protective film) laminated with negative electrode protective film 7 having a thickness of 30 ⁇ m was prepared in the same manner as in Example 1.
  • negative electrode protective film composition 6 was prepared in the same manner as the negative electrode protective film composition 1 except that the amount of LiTFSI was changed to 36 parts by mass and the amount of TMPTMA was changed to 5 parts by mass, and the plasticizer was not used. A protective film composition 6 was prepared.
  • Negative Electrode with Protective Film Formed Negative Electrode 8 (a negative electrode 8 ( A negative electrode with a negative electrode protective film) was produced.
  • negative electrode protective film composition 7 was prepared in the same manner as the negative electrode protective film composition 1 except that the amount of LiTFSI was changed to 180 parts by mass and the amount of tetraglyme was changed to 400 parts by mass. made.
  • Negative Electrode 9 A negative electrode with a negative electrode protective film
  • a negative electrode 9 A negative electrode with a negative electrode protective film
  • Negative Electrode Protective Film Composition 8 A negative electrode protective film composition 1 was prepared in the same manner as for negative electrode protective film composition 1 except that the amount of polymer was changed to 10 parts by mass, the amount of LiTFSI was changed to 75 parts by mass, and the amount of TMPTMA was changed to 10 parts by mass. A protective film composition 8 was prepared.
  • Negative electrode 10 laminated with negative electrode protective film 10 having a thickness of 15 ⁇ m was prepared in the same manner as in Example 1, except that composition 1 for negative electrode protective film was changed to composition 8 for negative electrode protective film. made.
  • A2 Film thickness change rate when pressed at a temperature of 25° C. and a pressure of 1 MPa for 10 minutes (referred to as “thickness change rate during pressing” in the table):
  • X1 X2 (%) [(A1-A3)/A1] x 100 Film thickness of negative electrode protective film before pressing: A1 Film thickness when pressed for 10 minutes at a temperature of 25° C. and a pressure of 1 MPa, and left for 10 minutes after releasing the press pressure: A3
  • the rate of change in film thickness when pressed at a temperature of 25° C. and a pressure of 1 MPa for 10 minutes and left for 10 minutes after releasing the pressing pressure (referred to as “thickness change rate before and after test” in the table): X2
  • the ionic conductivity of protective films 1 to 10 was measured using a dynamic viscoelasticity tester (potentiostat PMC-1000 manufactured by Ametec Science Instruments Co., Ltd.) using negative electrodes 1 to 10 as samples. Conducted at 25 ° C., negative electrodes 1 to 10 were sandwiched between SUS electrodes, a voltage of 30 mV, an alternating current method with a frequency range of 10 Hz to 10 MHz was used, and the ionic conductivity of the protective film was calculated from the bulk resistance of the protective film by the complex impedance method. .
  • Preparation Example of Positive Electrode 100 parts by mass of NCM (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) as a positive electrode active material, 3 parts by mass of acetylene black and 3 parts by mass of graphite as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder. ) was added, and further added to the NMP solution so that the solid content concentration of the slurry was 35% by mass, followed by thorough mixing to obtain a positive electrode slurry. The resulting positive electrode slurry was applied onto an aluminum current collector having a thickness of 20 ⁇ m using a die coater, dried at 100° C.
  • NCM LiNi 0.5 Co 0.2 Mn 0.3 O 2
  • PVdF polyvinylidene fluoride
  • a body was produced (weight per unit area: 6.0 mg/cm 2 , positive electrode density: 3.0 g/cm 3 , porosity: 26%).
  • Example of production of oxide-based electrolyte secondary battery Production example of negative electrode with protective film formed in argon glove box Using Li 7 La 3 Zr 2 O 12 (film thickness: 500 ⁇ m) as the positive electrode and inorganic solid electrolyte, the positive electrode, the inorganic solid electrolyte and the negative electrode were laminated in this order and crimped to manufacture a 2032 type coin battery for testing.
  • the negative electrode protective film has film strength, flexibility, binding properties, and ionic conductivity. From the results of Examples and Comparative Examples, the inorganic solid electrolyte secondary battery in which the protective film is arranged between the negative electrode and the inorganic solid electrolyte has excellent battery characteristics (discharge capacity, charge-discharge cycle capacity retention). I understand.
  • the inorganic solid electrolyte secondary battery of the present invention can exhibit excellent charge-discharge characteristics, and can be suitably used for large battery applications such as vehicle applications such as electric vehicles and hybrid electric vehicles and storage batteries for household power storage. It is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

負極と電解質間に保護膜を形成した場合、蓄電デバイスを充放電させることにより、蓄電デバイス中の電極と保護膜の間の空隙が生じることが明らかになり、十分な電池特性が得られなくなることが課題であった。 リチウム塩化合物を含有する負極保護膜であって、 プレス前の負極保護膜の膜厚を100%として、温度25℃、圧力1MPaで10分間プレスした時の膜厚変化率が1~20%であり、プレス圧解除後に10分間放置した時の膜厚変化率が-1~5%である負極保護膜である。

Description

負極保護膜
 本発明は、リチウムイオン電池等の蓄電デバイスに用いられる負極を保護するための負極保護膜に関する。
  リチウムイオン二次電池や電気化学キャパシタといった蓄電デバイスは、携帯電話やノートパソコン、カムコーダーなどの電子機器に用いられている。最近では環境保護への意識の高まりや関連法の整備により、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池としての応用も進んできている。
  蓄電デバイスにおいては、正極、負極、電解質で構成されているが、蓄電デバイスの応用が進むと同時に、蓄電デバイスに高性能化が求められており、電極等の部材の改良が進められている。
 また、特許文献1には、リチウム塩化合物を含む高分子固体電解質を電解質と電極層との間に介在させた電池が開示されている。
特開2020-087711号公報
 特許文献1に示されるような負極と電解質間に保護膜を形成した場合、蓄電デバイスを充放電させることにより、蓄電デバイス中の電極と保護膜の間の空隙が生じることが明らかになり、十分な電池特性が得られなくなることが課題であった。
 本発明者は、上記の課題を解決すべく鋭意検討を行った。その結果、プレス時とプレス解放時における一定の機械的特性を有する負極保護膜において、上記の課題を解決することができることを見出した。本発明は、このような知見に基づいて、さらに検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1 リチウム塩化合物を含有する負極保護膜であって、
 プレス前の負極保護膜の膜厚を100%として、温度25℃、圧力1MPaで10分間プレスした時の膜厚変化率が1~20%であり、プレス圧解除後に10分間放置した時の膜厚変化率が-1~5%である負極保護膜。
項2 25℃におけるイオン伝導率が0.1~10mS/cmである項1に記載の負極保護膜。
項3 前記負極保護膜は、温度25℃、圧力1MPaで10分間プレスした時の膜厚変化率(X1)と温度25℃、圧力1MPaで10分間プレスし、プレス圧解除後に10分間放置した時の膜厚の変化率:(X2)がX1>X2の関係である、項1または2に記載の負極保護膜。
項4 負極と、前記負極表面に積層された項1~3のいずれか1項に記載の負極保護膜と、を備える、負極保護膜付き負極。
項5 正極、電解質、項1~3のいずれか1項に記載の負極保護膜、負極を含有する蓄電デバイス。
項6 電解質が固体電解質である項5に記載の蓄電デバイス。
 本発明の負極保護膜を用いることにより、蓄電デバイスにおける高い電池特性を発揮することが可能となる。この機序の詳細は、必ずしも明らかではないが、例えば、充放電の際に、プレス時とプレス解放時における一定の機械的特性を有する負極保護膜とすることにより、適度な負極と電解質の間で適度な追従性が得られる結果であると考えられる。
 なお、本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。複数の下限値と複数の上限値が別個に記載されている場合、任意の下限値と上限値を選択し、「~」で結ぶことができるものとする。
「1.負極保護膜」
 本発明の負極保護膜は、リチウム塩化合物を含有し、
 プレス前の負極保護膜の膜厚を100%として、温度25℃、圧力1MPaで10分間プレスした時の膜厚変化率(X1)が1~20%であり、プレス圧解除後に10分間放置した時の膜厚変化率(X2)が-1~5%である。本発明において、膜厚変化率とは、より具体的には、膜厚減少率である。すなわち、プレス前の負極保護膜の膜厚を100%(基準)とした場合に、当該負極保護膜を、温度25℃、圧力1MPaで10分間プレスした直後の負極保護膜の膜厚減少率が1~20%(負極保護膜が80~99%となる)である。さらに、プレス前の負極保護膜の膜厚を100%(基準)とした場合に、前記のプレスによる圧力を解除し、温度25℃、大気圧中で10分間静置した時の負極保護膜の膜厚減少率が-1~5%(負極保護膜が95%~101%となる)である。本発明の負極保護膜において、前記の膜厚変化率(X1)及び膜厚変化率(X2)は、例えば、後述の可塑剤及び後述の架橋助剤の配合割合によって、好適に調整することができる。
 本発明の負極保護膜は、リチウム塩化合物を含有する。リチウム塩化合物としては、リチウムイオン電池に一般的に利用されているような、広い電位窓を有するリチウム塩化合物が好適である。リチウム塩化合物としては、例えば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22(LiTFSI),LiN(SFO22(LiFSI)、LiN(C25SO22、LiN[CF3SC(C25SO232などを挙げられるが、これらに限定されない。これらは、単独で用いても、2種類以上を混合して用いても良い。
 本発明の負極保護膜は、リチウム塩化合物とポリマーとを含む、ポリマー組成物により形成されていることが好ましい。リチウム塩化合物の含有量としては、前記ポリマー100質量部に対して、下限としては、5質量部以上含有することが好ましく、8質量部以上含有することがより好ましく、10質量部以上含有することが特に好ましく、上限としては、900質量部以下含有することが好ましく、800質量部以下含有することがより好ましく、700質量部以下含有することが特に好ましく、500質量部以下であってよく、300質量部以下であってよい。
 負極保護膜に用いられるポリマーとしては、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレン、ポリエーテルポリマー等が挙げられ、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリフッ化ビニリデン、ポリエーテルポリマーであることが好ましい。
 ポリエーテルポリマーとしては、アルキレンオキシド由来の構成単位を有することが好ましく、特にエチレンオキシド由来の構成単位を有することがより好ましい。
 ポリエーテルポリマーとしては、具体的には、式(1)である単量体由来の構成単位を含有し、必要に応じて、式(2)由来の構成単位、及び/又は式(3)由来の構成単位を有することが好ましい。各式で表される単量体は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
[式(2)中、Rは、炭素数1~12のアルキル基、又は-CH2O(CH2CH2O)n4であり、R4は炭素数1~6のアルキル基であり、nは0~12の数である。]
 式(2)の化合物は市販品からの入手、またはエピハロヒドリンとアルコールからの一般的なエーテル合成法等により容易に合成が可能である。また、アリール基としては、フェニル基が挙げられる。
 市販品から入手可能な化合物としては、例えば、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、t-ブチルグリシジルエーテル、ベンジルグリシジルエーテル、1,2-エポキシドデカン、1,2-エポキシオクタン、1,2-エポキシヘプタン、2-エチルヘキシルグリシジルエーテル、1,2-エポキシデカン、1,2-エポキシへキサン、グリシジルフェニルエーテル、1,2-エポキシペンタン、グリシジルイソプロピルエーテルなどが使用できる。これら市販品のなかでは、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、グリシジルイソプロピルエーテルが好ましく、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテルが特に好ましい。
 合成によって得られる式(2)で表される単量体では、Rは-CH2O(CR123)が好ましく、R1、R2、R3の少なくとも一つが-CH2O(CH2CH2O)nR4であることが好ましい。R4は炭素数1~6のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。nは0~6が好ましく、0~4がより好ましい。
Figure JPOXMLDOC01-appb-C000003
[式(3)中、R5は、エチレン性不飽和基を含有する基を表す。]
 式(3)の単量体としては、アリルグリシジルエーテル、4-ビニルシクロヘキシルグリシジルエーテル、α-テルピニルグリシジルエーテル、シクロヘキセニルメチルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、アリルフェニルグリシジルエーテル、ビニルグリシジルエーテル、3,4-エポキシ-1-ブテン、3,4-エポキシ-1-ペンテン、4,5-エポキシ-2-ペンテン、1,2-エポキシ-5,9-シクロドデカンジエン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5-シクロオクテン、アクリル酸グリシジル、メタクリル酸グリシジル、ソルビン酸グリシジル、ケイ皮酸グリシジル、クロトン酸グリシジル、グリシジル-4-ヘキセノエートが用いられる。好ましくは、アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジルである。
 ポリエーテルポリマーにおいて、式(1)の単量体に由来する構成単位と、式(2)の単量体に由来する構成単位と、式(3)の単量体に由来する構成単位とのモル比率は1H-NMRスペクトルにより求められる。
 式(1)の単量体に由来する構成単位は30モル%以上有することが好ましく、45モル%以上有することがより好ましく、60モル%以上有することが特に好ましく、100モル%以下有することが好ましく、96モル%以下有することがより好ましく、93.5モル%以下有することが特に好ましい。
 式(2)の単量体に由来する構成単位は0モル%以上であってよく、3モル%以上であってよく、5モル%以上であってよく、70モル%以下であってよく、59モル%以下であってよく、39モル%以下であってよい。
 式(3)の単量体に由来する構成単位は0モル%以上であってよく、1モル%以上であってよく、1.5モル%以上であってよく、2モル%以上であってよく、3モル%以上であってよく、20モル%以下であってよく、15モル%以下であってよく、12モル%以下であってよい。
 ポリエーテルポリマーにおいて、式(1)の単量体に由来する構成単位と、式(2)の単量体に由来する構成単位と、式(3)の単量体に由来する構成単位のみで構成されていてもよく、他の単量体に由来する構成単位されていてもよい。ポリエーテルポリマーにおける式(1)の単量体に由来する構成単位と、式(2)の単量体に由来する構成単位と、式(3)の単量体に由来する構成単位の合計されたモル比率が90モル%以上であることが好ましく、95モル%以上であることがより好ましく、98モル%以上であることが特に好ましく、100モル%であることが好ましい。
 ポリエーテルポリマーの具体例としては、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル三元共重合体、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/メタクリル酸グリシジル三元共重合体、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アクリル酸グリシジル三元共重合体、エチレンオキシド/アリルグリシジルエーテル二元共重合体、エチレンオキシド/メタクリル酸グリシジル二元共重合体、エチレンオキシド/アクリル酸グリシジル二元共重合体等が挙げられる。
 ポリエーテルポリマーの重量平均分子量は特に限定されないが、1万~300万であってよく、5万~250万であることがより好ましく、10万~200万であることが特に好ましい。重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)で、溶媒としてジメチルホルムアミド(DMF)を使用して、標準ポリスチレン換算により算出する。
 ポリエーテルポリマーの合成は、例えば、次のようにして行うことができる。開環重合触媒として有機アルミニウムを主体とする触媒系、有機亜鉛を主体とする触媒系、有機錫-リン酸エステル縮合物触媒系などの配位アニオン開始剤、または対イオンにK+を含むカリウムアルコキシド、ジフェニルメチルカリウム、水酸化カリウムなどのアニオン開始剤を用いて、各単量体を溶媒の存在下又は不存在下、反応温度10~120℃、撹拌下で反応させることによってポリエーテル(i)が得られる。重合度、あるいは得られる共重合体の性質などの点から、配位アニオン開始剤が好ましく、なかでも有機錫-リン酸エステル縮合物触媒系が取り扱い易く特に好ましい。
 負極保護膜に含まれるポリマーの含有量としては、負極保護膜全体を100質量%として、好ましくは5~95質量%、より好ましくは10~90質量%であってよく、5~50質量%、5~30質量%、5~20質量%、10~30質量%、10~20質量%も例示することができる。
 また、負極保護膜には、常温溶融塩が含まれていてもよい。常温溶融塩は、常温において少なくとも一部が液状を呈する塩をいい、常温とは電源が通常作動すると想定される温度範囲をいう。電源が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては60℃程度であり、下限は-40℃程度、場合によっては-20℃程度である。
 常温溶融塩はイオン液体とも呼ばれており、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムカチオンが好ましい。
 なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。
 また、アルキルピリジウムイオンとしては、N-メチルピリジウムイオン、N-エチルピリジニウムイオン、N-プロピルピリジニウムイオン、N-ブチルピリジニウムイオン、1-エチル-2メチルピリジニウムイオン、1-ブチル-4-メチルピリジニウムイオン、1-ブチル-2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。
 イミダゾリウムカチオンとしては、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-エチルイミダゾリウムイオン、1-メチル-3-ブチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-エチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。
 なお、これらのカチオンを有する常温溶融塩は、単独で用いてもよく、または2種以上を混合して用いても良い。
 負極保護膜に常温溶融塩が含まれる場合、その含有量としては、ポリマー100質量部に対して、好ましくは10~1000質量部、より好ましくは20~500質量部である。
 負極保護膜は、可塑剤などを含んでいてもよい。可塑剤としては、特に限定されないが、ジシアノ化合物、エーテル化合物が好ましい。可塑剤を添加する場合は、ポリマーを架橋する、即ちポリマー架橋物であることが好ましい。この架橋は、化学架橋であることが好ましく、負極保護膜の可塑剤の流出を抑制できる。本発明の負極保護膜は、可塑剤及び後述の架橋助剤の配合割合によって、前記の膜厚変化率を好適に調整することができる。
 ジシアノ化合物としてはスクシノニトリル、グルタロニトリル、アジポニトリル、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、1,8-ジシアノオクタン等が挙げられる。
 エーテル化合物としては、直鎖型エーテル化合物と分岐型エーテル化合物を例示することができる。
 直鎖型エーテル化合物の例として、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)などが挙げられる。
 分岐型エーテル化合物の例として、下記の多分岐型エーテル化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 負極保護膜に可塑剤が含まれる場合、可塑剤の含有量としては、ポリマー100質量部に対して、10~380質量部であることが好ましく、50~350質量部であることがより好ましく、125~300質量部であることが特に好ましい。
 負極保護膜にフィラーを含んでもよい。フィラーは特に限定されないが、電気化学的に安定で、かつ電気絶縁性の材料であればよく、無機および有機フィラーが用いられる。無機フィラーの具体例として、シリカ、アルミナ、アルミナ-シリケート、ジルコニア、チタン酸カリウム、チタン酸バリウム、リチウムアルミネートなどの無機酸化物、窒化アルミニウム、窒化ケイ素などの無機窒化物等が挙げられる。
  有機フィラーの具体例として、アクリル系樹脂(ポリメタクリル酸メチル等)、スチレン系樹脂、フッ素系樹脂、ウレタン系樹脂等、ポリオレフィン系樹脂、スチレン-ブタジエン共重合体、スチレン-メタクリル酸メチル共重合体、ポリアルキレンオキシド(ポリエチレンオキシド等)、が挙げられる。これらのフィラーは、それぞれ単独でまたは二種類以上を組み合わせて使用することができる。
  フィラーの形状は、特に限定されるものではなく、球状、扁平状、針状、柱状および不定形などである。フィラーの粒径は、動的光散乱法(分散媒:水)によって測定できる。フィラーの平均粒径は好ましくは0.1~20μm、更に好ましくは0.2~15μmであり、1~15μmであってよい。
  フィラーを含有する場合、フィラーの含有量はポリマー100質量部に対して、1~80質量部の範囲でよく、10~60質量部の範囲が好ましく、更に好ましくは15~50質量部である。
 負極保護膜は、プレス前の負極保護膜の膜厚を100%として、温度25℃、圧力1MPaで10分間プレスした時の膜厚変化率が1~20%であり、2~20%であることが好ましく、2~15%が特に好ましい。以下式で示される。
X1(%)=[(A1-A2)/A1]×100
プレス前の負極保護膜の膜厚:A1
温度25℃、圧力1MPaで10分間プレスした時の膜厚:A2
温度25℃、圧力1MPaで10分間プレスした時の膜厚変化率:X1
 負極保護膜は、プレス前の負極保護膜の膜厚を100%として、温度25℃、圧力1MPaで10分間プレスし、プレス圧解除後に10分間放置した時の膜厚変化率が-1~5%であり、が0~5%が好ましく、0~4%が特に好ましい。以下式で示される。
X2(%)=[(A1-A3)/A1]×100
プレス前の負極保護膜の膜厚:A1
温度25℃、圧力1MPaで10分間プレスし、プレス圧解除後に10分間放置した時の膜厚:A3
温度25℃、圧力1MPaで10分間プレスし、プレス圧解除後に10分間放置した時の膜厚の変化率:X2
 負極保護膜は、温度25℃、圧力1MPaで10分間プレスした時の膜厚変化率(X1)と温度25℃、圧力1MPaで10分間プレスし、プレス圧解除後に10分間放置した時の膜厚の変化率:(X2)がX1>X2の関係であればよいが、0.05≦X2/X1≦0.95となることが好ましく、0.1≦X2/X1≦0.95となることがより好ましく、0.2≦X2/X1≦0.90であることがより好ましい。
 負極保護膜の膜厚(プレス前の負極保護膜の膜厚)は、蓄電デバイスの大きさ(負極の大きさなど)に応じて適宜調整することができ、例えば、0.1~200μm、0.1~50μm、0.1~30μm、0.2~200μm、0.2~50μm、0.2~30μm、0.5~200μm、0.5~50μm、0.5~30μm、1~200μm、1~50μm、1~30μm、2~200μm、2~50μm、2~30μm、5~200μm、5~50μm、5~30μm、10~200μm、10~50μm、10~30μmなどの厚み範囲が例示される。好ましくは0.1μm~200μm、より好ましくは0.2μm~100μmの範囲内であり、更に好ましくは0.2μm~50μmの範囲内であり、特に好ましくは0.5μm~30μmの範囲内である。
 負極保護膜は25℃におけるイオン伝導率が0.1~10mS/cmであることが好ましく、0.3~9mS/cmであることがより好ましく、0.4~8mS/cmであることが特に好ましい。
 本発明における負極保護膜はゲル膜であることが好ましい。ゲルとはポリマーが化学結合(共有結合やイオン結合,配位結合など)によって、あるいは結晶化や分子の絡み合いなどの分子間の相互作用によって、三次元的な網目構造を構成し、その空隙に溶媒分子を保持した膨潤体である。
 本発明の負極保護膜の製造方法は特に限定されないが、「2.負極保護膜用組成物」の項の負極保護膜用組成物により形成される。負極保護膜用組成物としてポリマー、リチウム塩化合物等を含有させ、好ましくは可塑剤を含有させ、必要によりフィラーを含有させ、更に必要に応じて有機溶媒に混合して溶解して上で、基材(例えばPETフィルムやテフロン(登録商標)板など)上に組成物をキャスティングし、溶媒を除去後、加熱又は紫外線などの活性エネルギー線照射によって負極保護膜を作製する方法が挙げられる。また、負極、又は電解質の表面に当該組成物をキャスティングして、負極保護膜を作製することもできる。
「2.負極保護膜用組成物」
 負極保護膜用組成物に用いられるポリマーとしては、「1.負極保護膜」の項で説明したポリマーを用いることができる。
 負極保護膜用組成物に用いられるリチウム塩化合物としては、「1.負極保護膜」の項で説明したリチウム塩化合物を用いることができ、含有量としては、ポリマー100質量部に対して、下限としては、5質量部以上含有することが好ましく、8質量部以上含有することがより好ましく、10質量部以上含有することが特に好ましく、上限としては、900質量部以下含有することが好ましく、800質量部以下含有することがより好ましく、700質量部以下含有することが特に好ましい。
 負極保護膜用組成物に用いられる可塑剤としては、「1.負極保護膜」の項で説明した可塑剤を用いることができ、含有量としては、ポリマー100質量部に対して、10~380質量部であることが好ましく、50~350質量部であることがより好ましく、125~300質量部であることが特に好ましい。
 負極保護膜用組成物に用いられるフィラーとしては、「1.負極保護膜」の項で説明したフィラーを用いることができ、フィラーを含有する場合、その含有量としては、ポリマー100質量部に対して、1~80質量部の範囲でよく、10~60質量部の範囲が好ましく、更に好ましくは15~50質量部である。
 負極保護膜用組成物を架橋するには、反応開始剤を用いることができ、熱反応開始剤、光反応開始剤が挙げられ、更に架橋助剤を含有させることができる。
 熱反応開始剤としては、有機過酸化物、アゾ化合物等から選ばれるラジカル開始剤が用いられる。有機過酸化物としては、ケトンパーオキシド、パーオキシケタール、ハイドロパーオキシド、ジアルキルパーオキシド、ジアシルパーオキシド、パーオキシエステル等、通常架橋用途に使用されているものが用いられ、アゾ化合物としてはアゾニトリル化合物、アゾアミド化合物、アゾアミジン化合物等、通常架橋用途に使用されているものが用いられる。ラジカル開始剤の添加量は種類により異なるが、通常、ポリマーを100質量部として0.1~10質量部の範囲内である。
 光反応開始剤としては、アルキルフェノン系、ベンゾフェノン系、アシルフォスフィンオキサイド系、チタノセン類、トリアジン類、ビスイミダゾール類、オキシムエステル類などラジカル開始剤が用いられる。これらのラジカル重合開始剤の添加量は種類により異なるが、通常、ポリマーを100質量部として0.01~5.0質量部の範囲内である。
 架橋助剤としては、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、オリゴエチレングリコールジアクリレート、オリゴエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、アリルメタクリレート、アリルアクリレート、ジアリルマレート、トリアリルイソシアヌレート、マレイミド、フェニルマレイミド、無水マレイン酸等を任意に用いることができる。架橋助剤の含有量は、ポリマーを100質量部として25~60質量部の範囲内であることが好ましく、30~50質量部の範囲内であることがより好ましい。
 負極保護膜用組成物には、水又は有機溶媒を配合してもよく、有機溶媒としては、トルエン、キシレン、ベンゼン、アセトニトリル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、グライム(エチレングリコールジメチルエーテル)、ジグライム(ジエチレングリコールジメチルエーテル)、THF(テトラヒドロフラン)が挙げられる。
 水又は有機溶媒の含有量としては、ポリマー100質量部に対して、好ましくは20~1400質量部、より好ましくは50~900質量部である。
 本発明の負極保護膜用組成物は、水又は有機溶媒と可塑剤の合計量は、ポリマー100質量部に対して、200~1500質量部であることが好ましく、300~1200質量部であることがより好ましく、400~1000質量部であることが特に好ましい。
  架橋反応は、熱による場合は、室温から200℃ぐらいの温度設定で10分から24時間程度加熱することによって行なうことができる。紫外線による場合では、キセノンランプ、水銀ランプ、高圧水銀ランプおよびメタルハライドランプを用いることができ、例えば、電解質を波長365nm、光量1~50mW/cm2で0.1~30分間照射することによって行うことができる。
「3.蓄電デバイス」
 本発明の蓄電デバイスは、正極、電解質、「1.負極保護膜」の項で記載した負極保護膜、負極を備える。負極保護膜は負極と電解質との間に介在することを特徴としている。負極保護膜は、負極及び電解質それぞれと接触していることが好ましい。また、本発明においては、負極表面に負極保護膜を積層して負極保護膜付き負極とし、これを蓄電デバイスに適用してもよい。また、電解質表面に負極保護膜を積層し、負極保護膜が負極側に位置するようにして電解質と負極とを配置することで、負極保護膜を蓄電デバイスに適用することもできる。
 本発明の蓄電デバイスにおいて、正極、負極ともに公知のものを用いることができるが、集電体に正極材料層、又は負極材料層を備える電極を例示することができる。
 正極、負極には、公知の集電体を用いることができる。具体的には、正極には、集電体として、アルミニウム、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。負極には、集電体として、銅、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。
 また、正極材料層、負極材料層は、それぞれ、少なくとも正極活物質、負極活物質を含有し、更に導電助剤、バインダー、増粘剤を含有していてもよい。
 本発明で使用される正極活物質は、LiMO2、LiM24、Li2MO3、LiMEO4のいずれかの組成からなるリチウム金属含有複合酸化物粉末である。ここで式中のMは主として遷移金属からなり、Co、Mn、Ni、Cr、Fe、Tiの少なくとも一種を含んでいる。Mは遷移金属からなるが、遷移金属以外にもAl、Ga、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどが添加されていてもよい。EはP、Siの少なくとも1種を含んでいる。正極活物質の粒子径には50μm以下が好ましく、更に好ましくは20μm以下のものを用いる。これらの活物質は、3V(vs.Li/Li+)以上の起電力を有するものである。
 正極活物質の具体例としては、コバルト酸リチウム、ニッケル酸リチウム、ニッケル/コバルト/マンガン酸リチウム(3元系)、スピネル型マンガン酸リチウム、リン酸鉄リチウムなどが挙げられる。
 本発明で使用される負極活物質は、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能な構造(層間化合物)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物、チタン系化合物等の金属である。粉末の場合、粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。
 正極材料層中、負極材料層中の活物質の含有量としては、例えば、100質量%であってよく、99.9~50質量%程度、より好ましくは99.5~70質量%程度、さらに好ましくは99~85質量%程度が挙げられる。
 導電助剤を用いる場合には、公知の導電助剤を用いることができ、黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック、カーボンナノチューブなどの炭素繊維、または金属粉末等が挙げられる。これら導電助剤は1種または2種以上用いてもよい。
 導電助剤を用いる場合には、導電助剤の含有量は特に制限されないが、活物質全量100質量部に対して、上限値は20質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることが特に好ましく、導電助剤の含有量の下限値としては、通常、0.05質量部以上、0.1質量部以上、0.2質量部以上、0.5質量部以上、2質量部以上を例示することができる。
 バインダーとしては、例えばPVdF等のフッ素樹脂、フッ素ゴムやアクリルゴム、変性アクリルゴム、スチレン-ブタジエンゴム、アクリル系重合体、ビニル系重合体、前記記載のイオン伝導性ポリマーから選ばれる1種以上の化合物を用いることができる。これらバインダーは活物質を100質量部として、好ましくは5質量部以下、より好ましくは3質量部以下、例えば0.01~2質量部添加する。
 増粘剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロースおよびこれらの塩(ナトリウム塩等のアルカリ金属塩、アンモニウム塩)、ポリビニルアルコール、ポリアクリル酸塩、ポリエチレンオキサイド等が挙げられる。これら増粘剤は1種または2種以上用いてもよい。これら増粘剤は活物質を100質量部として、好ましくは5質量部以下、より好ましくは3質量部以下、例えば0.01~2質量部添加する。また、塗工液の粘度が低い場合には増粘剤を併用することができる。
 正極材料層、負極材料層には、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22(LiTFSI),LiN(SFO22(LiFSI)、LiN(C25SO22、LiN[CF3SC(C25SO232等のリチウム塩化合物とエチレンオキシド/アリルグリシジルエーテル二元共重合体、エチレンオキシド/メタクリル酸グリシジル二元共重合体、エチレンオキシド/アクリル酸グリシジル二元共重合体、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル三元共重合体、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/メタクリル酸グリシジル三元共重合体、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アクリル酸グリシジル三元共重合体等のイオン導電性ポリマーを含有させていてもよい。
 集電体と正極材料層、負極材料層を備える正極、負極の作製方法は特に限定されず一般的な方法が用いられる。例えば、正極活物質あるいは負極活物質、導電助剤、バインダー、水またはN-メチル-2-ピロリドン(NMP)等の溶媒、必要に応じて増粘剤などからなる正極材料、負極材料のペースト(塗工液)をドクターブレード法やシルクスクリーン法などにより集電体表面上に適切な厚さに均一に塗布することより行われる。
 例えばドクターブレード法では、負極活物質粉末や正極活物質粉末、導電助剤、バインダー等を水に分散してスラリー状にし、金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。電極は活物質塗布後、余分な有機溶剤を除去するため、例えば、100℃の熱風や80℃減圧状態で乾燥する。乾燥後の電極はプレス装置によってプレス成型することで電極が製造される。
 電解質としては、固体電解質であることが好ましく、高分子固体電解質、又は無機固体電解質であることが好ましく、酸化物系固体電解質、又は硫化物系固体電解質であることがより好ましい。無機固体電解質は、一般に、電解質を構成する無機固体粒子の集合体である。
 酸化物系固体電解質は、酸素を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものであれば特に限定されるものではない。
 酸化物系固体電解質を構成する具体的な化合物としては、LixLayTiO3〔x=0.3~0.7、y=0.3~0.7〕(LLT)、LixLayZrzmn(MはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxは5≦x≦10を満たし、yは1≦y≦4を満たし、zは1≦z≦4を満たし、mは0≦m≦2を満たし、nは5≦n≦20を満たす。)Lixyzn(式中MはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxは0≦x≦5を満たし、yは0≦y≦1を満たし、zは0≦z≦1を満たし、nは0≦n≦6を満たす。)、Lix(Al,Ga)y(Ti,Ge)zSiamn(ただし、1≦x≦3、0≦y≦1、0≦z≦2、0≦a≦1、1≦m≦7、3≦n≦13)、Li(3-2x)xDO(xは0以上0.1以下の数を表し、Mは2価の金属原子を表す。Dはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixSiyz(1≦x≦5、0<y≦3、1≦z≦10)、Lixyz(1≦x≦3、0<y≦2、1≦z≦10)、Li3BO3-Li2SO4、Li2O-B23-P25、Li2O-SiO2、Li6BaLa2Ta212、Li3PO(4-3/2w)w(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO4、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO3、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi2312、Li(1+x+y)(Al,Ga)x(Ti,Ge)(2-x)Siy(3-y)12(ただし、0≦x≦1、0≦y≦1)、ガーネット型結晶構造を有するLi7La3Zr2O12等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(Li3PO4)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 その中でも、LixLayTiO3〔x=0.3~0.7、y=0.3~0.7〕(LLT)、LixLayZrzmn(MはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxは5≦x≦10を満たし、yは1≦y≦4を満たし、zは1≦z≦4を満たし、mは0≦m≦2を満たし、nは5≦n≦20を満たす。)、Li7La3Zr212(LLZ)、Li3BO3、Li3BO3-Li2SO4、Li3BO3-Li2CO3、Lix(Al,Ga)y(Ti,Ge)zSiamn(ただし、1≦x≦3、0≦y≦1、0≦z≦2、0≦a≦1、1≦m≦7、3≦n≦13)が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 硫化物系固体電解質は、硫黄を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものであれば特に限定されるものではない。例えば下記式で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 Liabcde
 式中、Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。なかでも、B、Sn、Si、Al、Geが好ましく、Sn、Al、Geがより好ましい。Aは、I、Br、Cl、Fを示し、I、Brが好ましく、Iが特に好ましい。a~eは各元素の組成比を示し、a:b:c:d:eは1~12:0~1:1:2~12:0~5を満たす。aはさらに、1~9が好ましく、1.5~4がより好ましい。bは0~0.5が好ましい。dはさらに、3~7が好ましく、3.25~4.5がより好ましい。eはさらに、0~3が好ましく、0~2がより好ましい。
 式において、Li、M、P、S及びAの組成比は、好ましくはb、eが0であり、より好ましくはb=0、e=0で且つa、c及びdの比(a:c:d)がa:c:d=1~9:1:3~7であり、さらに好ましくはb=0、e=0で且つa:c:d=1.5~4:1:3.25~4.5である。
 硫化物系固体電解質がLi/P/S系である場合、Li2SとP25との比率は、Li2S:P25のモル比で、60:40~85:15であることが好ましく、65:35~80:20であることが好ましい。
 硫化物系固体電解質を具体的に例示すると、Li2S/SiS2、Li2S-SiS2/P25、Li2S/P25、Li2S/GeS2、Li2S/GeS2/Ga23、Li2S/B23、Li2S/Ga23、Li2S/Al23、Li2S/GeS2/P25、Li2S/Al23/P25、Li2S/P23、Li2S/P23/P25、Li2S/SiS2/Li4SiO4、Li2S/SiS2/Li3PO4、LiX/Li2S/P25、LiX/Li2S/SiS2、LiX/Li2S/B23(Xはハロゲン原子(Br、ClまたはI))等を例示することができる。
 無機固体電解質が粒子状である場合、その粒子径としては、例えば0.01~100μm、好ましくは0.1~20μmが挙げられる。
 本発明の蓄電デバイスの製造方法は特に限定されず、少なくとも、正極、負極、電解質、及び負極保護膜で構成され、公知の方法にて製造される。例えば、コイン型のリチウムイオン電池の場合、正極、電解質、負極、更に負極と電解質との間に負極保護膜を配置して、外装缶に挿入する。その後、封口体とタブ溶接などで接合して、封口体を封入し、カシめることで得られる。電池の形状は限定されないが、例としてはコイン型、円筒型、シート型などがあげられ、2個以上を積層した構造でもよい。
 以下の実施例において本発明をより具体的に説明するが、本発明はこれらに限定されない。
 本実施例では、負極の保護膜組成物の膜を作製し、膜の物性評価を、また別途、保護膜が形成された負極を用いてコイン電池を作製し、コイン電池の充放電特性の性能評価を以下の実験にて行った。
 ポリマーは以下の方法で測定した。
〔組成モル比率〕
 1H-NMRスペクトルにより組成単位に由来するシグナル強度比から求めた。
〔重量平均分子量〕
 ゲルパーミエーションクロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により重量平均分子量を算出した。GPC測定は(株)島津製作所製RID-6A、昭和電工(株)製ショウデックスKD-807、KD-806、KD-806MおよびKD-803カラム、および溶媒にDMFを用いて60℃で行った。
[合成例(ポリエーテル重合用触媒の製造)]
 撹拌機、温度計及び蒸留装置を備えた3つ口フラスコにトリブチル錫クロライド10g及びトリブチルホスフェート35gを入れ、窒素気流下に撹拌しながら250℃で20分間加熱して留出物を留去させ残留物として固体状の縮合物質を得た。以下の重合例で重合触媒として用いた。
[重合例1 ポリマー1]
 内容量3Lのガラス製4つ口フラスコの内部を窒素置換し、これに重合触媒として触媒の合成例で示した縮合物質1gと水分10ppm以下に調整したグリシジルエーテル化合物(a):
Figure JPOXMLDOC01-appb-C000006
114g、アリルグリシジルエーテル12g、n-ブタノール0.10g及び溶媒としてn-ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド136gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー210gを得た。得られたポリマーのモル比率はエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル=80/17/3モル%であり、重量平均分子量150万であった。
[重合例2 ポリマー2]
 重合例1の仕込みにおいてグリシジルエーテル化合物(a)130g、n-ブタノール0.13g及び溶媒としてn-ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド135gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー220gを得た。得られたポリマーのモル比率はエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル=80/20モル%であり、重量平均分子量180万)
[負極の実施作製例]
 (1)負極活物質として人造黒鉛(粒径10μm)100質量部に、導電助剤として気相成長炭素繊維(VGCF)2質量部、バインダーとしてスチレン-ブタジエンゴム(SBR)3質量部、増粘剤としてカルボキシメチルセルロースのナトリウム塩 2質量部を加え、さらにスラリーの固形分濃度が35質量%となるように水を加えて、十分に混合して負極用スラリーを得た。得られた負極スラリーを厚さ16.5μmの銅集電体上にダイコーターを用いて塗布し、100℃で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ30μmの無機固体電解質二次電池用負極を作製した(目付量4.0mg/cm2、負極密度1.1g/cm3、空隙率26%)
<実施例1>
負極保護膜用組成物1の作製
 ポリマーとしてエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル=80/17/3モル%三元共重合体(重量平均分子量150万)100質量部、リチウム塩化合物としてLiN(CF3SO22(略号:LiTFSI)116質量部、可塑剤としてテトラエチレングリコールジメチルエーテル(テトラグライム)200質量部、架橋助剤としてトリメチロールプロパントリメタクリレート(略号:TMPTMA)40質量部、ラジカル開始剤としてベンゾフェノン3質量部を、塗工溶媒としてエチレングリコールジメチルエーテル(モノグライム)700質量部に完全に溶解させた負極保護膜用組成物1を作製した。
保護膜が形成された負極の作製
 アルゴングローブボックス内で、負極の前駆体上に負極保護膜用組成物1を滴下塗工した。その後、10分間室温で乾燥したのち、真空下50℃で1時間溶媒を除去した。次いで、アルゴングローブボックス内でUV照射1J/cm2による架橋を行い、厚み15μmの負極保護膜1が積層した負極1(負極保護膜付き負極)を作製した。
<実施例2>
負極保護膜用組成物2の作製 
 可塑剤の種類をトリエチレングリコールジメチルエーテル(トリグライム)に変えた以外は負極保護膜用組成物1と同様にして、負極保護膜用組成物2を作製した。
保護膜が形成された負極の作製
 負極保護膜用組成物1を負極保護膜用組成物2に変えた以外は実施例1と同様にして、厚み15μmの負極保護膜2が積層した負極2(負極保護膜付き負極)を作製した。
<実施例3>
負極保護膜用組成物3の作製
 更にナノシリカ(アドマテックス製、粒径0.2~0.4μm)20質量部を加えた以外は負極保護用組成物1と同様にして、負極保護用組成物3を作製した。
膜が形成された負極の作製
 負極保護膜用組成物1を負極保護膜用組成物3に変えた以外は実施例1と同様にして、厚み15μmの負極保護膜3が積層した負極3(負極保護膜付き負極)を作製した。
<実施例4>
負極保護膜用組成物4の作製
 LiTFSIの量を150質量部、テトラグライムの量を280質量部に変えた以外は負極保護用組成物1と同様にして、負極保護膜用組成物4を作製した。
保護膜が形成された負極の作製
 負極保護膜用組成物1を負極保護膜用組成物4に変えた以外は実施例1と同様にして、厚み15μmの負極保護膜4が積層した負極4(負極保護膜付き負極)を作製した。
<実施例5>
負極保護膜用組成物5の作製
 LiTFSIの量を160質量部、テトラグライムの量を300質量部に変えた以外は負極保護用組成物1と同様にして、負極保護膜用組成物5を作製した。
保護膜が形成された負極の作製
 負極保護膜用組成物1を負極保護膜用組成物5に変えた以外は実施例1と同様にして、厚み15μmの負極保護膜5が積層した負極5(負極保護膜付き負極)を作製した。
<実施例6>
保護膜が形成された負極の作製
 負極保護膜用組成物1を用いて実施例1と同様にして、厚み0.5μmの負極保護膜6が積層した負極6(負極保護膜付き負極)を作製した。
<実施例7>
保護膜が形成された負極の作製
 負極保護膜用組成物1を用いて実施例1と同様にして、厚み30μmの負極保護膜7が積層した負極7(負極保護膜付き負極)を作製した。
<比較例1>
負極保護膜用組成物6の作製
 LiTFSIの量を36質量部、TMPTMAの量を5質量部に変えて、更に可塑剤を用いないこと以外は負極保護膜用組成物1と同様にして、負極保護膜用組成物6を作製した。
保護膜が形成された負極の作製
 負極保護膜用組成物1を負極保護膜用組成物6に変えた以外は実施例1と同様にして、厚み15μmの負極保護膜8が積層した負極8(負極保護膜付き負極)を作製した。
<比較例2>
負極保護膜用組成物7の作製
 LiTFSIの量を180質量部、テトラグライムの量を400質量部に変えた以外は負極保護膜用組成物1と同様にして、負極保護膜用組成物7を作製した。
保護膜が形成された負極の作製
 負極保護膜用組成物1を負極保護膜用組成物7に変えた以外は実施例1と同様にして、厚み15μmの負極保護膜9が積層した負極9(負極保護膜付き負極)を作製した。
<比較例3>
負極保護膜用組成物8の作製
 ポリマーの量を10質量部、LiTFSIの量を75質量部、TMPTMAの量を10質量部に変えた以外は負極保護膜用組成物1と同様にして、負極保護膜用組成物8を作製した。
保護膜が形成された負極の作製
 負極保護膜用組成物1を負極保護膜用組成物8に変えた以外は実施例1と同様にして、厚み15μmの負極保護膜10が積層した負極10を作製した。
保護膜のプレス試験
 負極保護膜1~10のプレス試験は、負極1~10をサンプルとして動的粘弾性試験機(ユービーエム社製動的粘弾性測定装置Rheogel-E)を用いて、サンプルシートの厚み方向をプレスするように、25℃で圧力1MPaを10分間掛けて、そのときの厚みを測定し、圧力を解除後10分間放置したときの厚みを測定し、以下の式により膜厚変化率を算出した。結果を表1に示す。
X1(%)=[(A1-A2)/A1]×100
プレス前の負極保護膜の膜厚:A1
温度25℃、圧力1MPaで10分間プレスした時の膜厚:A2
温度25℃、圧力1MPaで10分間プレスした時の膜厚変化率(表内では「プレス時厚み変化率」と記載する):X1
X2(%)=[(A1-A3)/A1]×100
プレス前の負極保護膜の膜厚:A1
温度25℃、圧力1MPaで10分間プレスし、プレス圧解除後に10分間放置した時の膜厚:A3
温度25℃、圧力1MPaで10分間プレスし、プレス圧解除後に10分間放置した時の膜厚の変化率(表内では「試験前後厚み変化率」と記載する):X2
保護膜のイオン伝導度測定
 保護膜1~10のイオン伝導度の測定は、負極1~10をサンプルとして動的粘弾性試験機(アメテックサイエンスインスツルメンツ社製ポテンショスタットPMC-1000)を用いて、25℃で行い、負極1~10をSUS製の電極ではさみ、電圧 30mV、周波数範囲 10Hz~10MHzの交流法を用い、複素インピーダンス法により保護膜のバルク抵抗から保護膜のイオン伝導度を算出した。
正極の作製例
(1)正極活物質としてNCM(LiNi0.5Co0.2Mn0.32)100質量部に、導電助剤としてアセチレンブラック3質量部、黒鉛3質量部、バインダーとしてポリビニリデンフロライド(PVdF)3質量部を加え、さらにスラリーの固形分濃度が35質量%となるようにNMP溶液中に加えて、十分に混合して正極用スラリーを得た。得られた正極スラリーを厚さ20μmのアルミ集電体上にダイコーターを用いて塗布し、100℃で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ18μmの正極の前駆体を作製した(目付量 6.0mg/cm2、正極密度 3.0g/cm3、空隙率 26%)。
(2)ポリマーとしてエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル=80/20モル%二元共重合体(重量平均分子量180万)100質量部、リチウム塩化合物としてLiBF412質量部、可塑剤としてトリグライム 200質量部、架橋助剤としてTMPTMA10質量部をアセトニトリル 700質量部に完全に溶解させた正極含浸用塗工溶液を調製した。
(3)アルゴングローブボックス内で、(1)の正極の前駆体の上に上記(2)の塗工溶液を滴下塗工した。その後、2時間静置することにより、溶媒を除去しながら、正極内の空隙にポリマー電解質を含浸した無機固体電解質二次電池用正極を作製した。
酸化物系電解質二次電池の実施製造例
 アルゴングローブボックス内において、保護膜が形成された負極の作製例 実施例1~7および比較例1~3で得た負極、正極の作製例で得た正極、無機固体電解質としてLi7La3Zr212(膜厚500μm)を用いて、正極、無機固体電解質、負極の順に積層後、カシめ、試験用2032型コイン電池を製造した。
[作製した電池の評価]
 作製した電池の評価としては充放電装置を用いて充放電試験を行い、充電放電3サイクル目の放電容量および3サイクル目の放電容量に対する50サイクル目の放電容量の維持率を求めた。充放電試験条件は、0.1C(10時間率)に相当する電流で4.2VまでCCCV充電(0.01Cカット)後、0.1Cに相当する電流で、2.5VまでCCCV放電(0.01Cカット)を行った。試験温度は60℃環境とした。結果を表1に示す。
 前記の負極保護膜は、膜強度、柔軟性、結着性、イオン伝導性がある。実施例および比較例の結果から、負極と無機固体電解質との間に当該保護膜が配置されている無機固体電解質二次電池は、電池特性(放電容量、充放電サイクル容量維持)が優れていることがわかる。
Figure JPOXMLDOC01-appb-T000007
 本発明の無機固体電解質二次電池は、優れた充放電特性を発揮することができ、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池といった大型の電池用途に好適に利用可能である。

Claims (6)

  1.  リチウム塩化合物を含有する負極保護膜であって、
     プレス前の負極保護膜の膜厚を100%として、温度25℃、圧力1MPaで10分間プレスした時の膜厚変化率が1~20%であり、プレス圧解除後に10分間放置した時の膜厚変化率が-1~5%である負極保護膜。
  2.  25℃におけるイオン伝導率が0.1~10mS/cmである請求項1に記載の負極保護膜。
  3.  前記負極保護膜は、温度25℃、圧力1MPaで10分間プレスした時の膜厚変化率(X1)と温度25℃、圧力1MPaで10分間プレスし、プレス圧解除後に10分間放置した時の膜厚の変化率:(X2)がX1>X2の関係である、請求項1または2に記載の負極保護膜。
  4.  負極と、前記負極表面に積層された請求項1~3のいずれか1項に記載の負極保護膜と、を備える、負極保護膜付き負極。
  5.  正極、電解質、請求項1~3のいずれか1項に記載の負極保護膜、及び負極を含有する蓄電デバイス。
  6.  電解質が固体電解質である請求項5に記載の蓄電デバイス。
PCT/JP2022/012898 2021-03-30 2022-03-18 負極保護膜 WO2022210060A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237020023A KR20230163349A (ko) 2021-03-30 2022-03-18 음극 보호막
JP2023510998A JPWO2022210060A1 (ja) 2021-03-30 2022-03-18
CN202280011742.7A CN116868435A (zh) 2021-03-30 2022-03-18 负极保护膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-057344 2021-03-30
JP2021057344 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210060A1 true WO2022210060A1 (ja) 2022-10-06

Family

ID=83455229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012898 WO2022210060A1 (ja) 2021-03-30 2022-03-18 負極保護膜

Country Status (4)

Country Link
JP (1) JPWO2022210060A1 (ja)
KR (1) KR20230163349A (ja)
CN (1) CN116868435A (ja)
WO (1) WO2022210060A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (ja) * 1994-01-31 1995-08-18 Sony Corp 非水電解液二次電池
WO2011036797A1 (ja) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 リチウム二次電池及びその製造方法
JP2013125750A (ja) * 2011-12-13 2013-06-24 Samsung Electronics Co Ltd 保護負極、これを含むリチウム空気電池及びこれを含む全固体電池
JP2014026806A (ja) * 2012-07-26 2014-02-06 Kojima Press Industry Co Ltd リチウムイオン二次電池及びその製造方法並びに製造装置
WO2014188987A1 (ja) * 2013-05-24 2014-11-27 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス用電極、蓄電デバイス用セパレーターおよび蓄電デバイス
JP2016058282A (ja) * 2014-09-10 2016-04-21 株式会社東芝 非水電解質電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478508B2 (ja) 2018-11-26 2024-05-07 株式会社大阪ソーダ 無機固体電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (ja) * 1994-01-31 1995-08-18 Sony Corp 非水電解液二次電池
WO2011036797A1 (ja) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 リチウム二次電池及びその製造方法
JP2013125750A (ja) * 2011-12-13 2013-06-24 Samsung Electronics Co Ltd 保護負極、これを含むリチウム空気電池及びこれを含む全固体電池
JP2014026806A (ja) * 2012-07-26 2014-02-06 Kojima Press Industry Co Ltd リチウムイオン二次電池及びその製造方法並びに製造装置
WO2014188987A1 (ja) * 2013-05-24 2014-11-27 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス用電極、蓄電デバイス用セパレーターおよび蓄電デバイス
JP2016058282A (ja) * 2014-09-10 2016-04-21 株式会社東芝 非水電解質電池

Also Published As

Publication number Publication date
KR20230163349A (ko) 2023-11-30
CN116868435A (zh) 2023-10-10
JPWO2022210060A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP3655443B2 (ja) リチウム電池
EP3809510A1 (en) Solid electrolyte membrane and all-solid-state battery comprising same
KR20160029599A (ko) 유무기 실리콘 구조체 함유 블록 공중합체, 이를 포함하는 전해질, 및 상기 전해질을 포함하는 리튬전지
JP6246019B2 (ja) 正極および非水電解質二次電池
CN110998953B (zh) 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法
KR102425398B1 (ko) 전고체 전지용 바인더 조성물, 전고체 전지용 슬러리 조성물, 전고체 전지용 전극, 및 전고체 전지
CN111201660A (zh) 固体电解质组合物、含固体电解质的片材、全固态二次电池用电极片及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法
CN113273010A (zh) 复合固体电解质及复合固体电解质二次电池
CN110945702B (zh) 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及后两者的制造方法
CN111213213B (zh) 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法
WO2016145341A1 (en) Crosslinked polymeric battery materials
JP5326575B2 (ja) ポリラジカル化合物−導電性物質複合体の製造方法
CN112042033A (zh) 固体电解质组合物、全固态二次电池用片材、全固态二次电池用电极片及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
JP5517887B2 (ja) 非水電解質二次電池
CN112602214A (zh) 全固体二次电池用粘结剂组合物、全固体二次电池电极复合材料层用浆料组合物、全固体二次电池固体电解质层用浆料组合物、全固体二次电池用电极、全固体二次电池用固体电解质层以及全固体二次电池
JP2022155549A (ja) 蓄電デバイスおよび負極保護膜用コーティング液
Nguyen et al. Enhanced Performance of Lithium Polymer Batteries Based on the Nickel-Rich LiNi0. 8Mn0. 1Co0. 1O2 Cathode Material and Dual Salts
JP5934532B2 (ja) 非水電解質二次電池
WO2022210060A1 (ja) 負極保護膜
JP7478508B2 (ja) 無機固体電解質二次電池
CN115917818A (zh) 全固态二次电池用片材及全固态二次电池的制造方法、以及全固态二次电池用片材及全固态二次电池
JP5959089B2 (ja) 非水電解質二次電池
WO2024135777A1 (ja) ポリマー電解質及び二次電池
WO2024111618A1 (ja) ポリマー電解質及び二次電池
JP7400729B2 (ja) 無機固体電解質二次電池用電極、および無機固体電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280011742.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023510998

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780275

Country of ref document: EP

Kind code of ref document: A1