WO2018221197A1 - 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス - Google Patents

蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス Download PDF

Info

Publication number
WO2018221197A1
WO2018221197A1 PCT/JP2018/018659 JP2018018659W WO2018221197A1 WO 2018221197 A1 WO2018221197 A1 WO 2018221197A1 JP 2018018659 W JP2018018659 W JP 2018018659W WO 2018221197 A1 WO2018221197 A1 WO 2018221197A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
mass
polymer
parts
electricity storage
Prior art date
Application number
PCT/JP2018/018659
Other languages
English (en)
French (fr)
Inventor
巧治 大塚
卓哉 中山
達朗 本多
颯一 西條
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64456265&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018221197(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201880035438.XA priority Critical patent/CN110710034B/zh
Priority to JP2019522088A priority patent/JP7090076B2/ja
Publication of WO2018221197A1 publication Critical patent/WO2018221197A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a power storage device, a slurry for a power storage device electrode, a power storage device electrode, and a power storage device.
  • lithium ion batteries and lithium ion capacitors are expected as power storage devices having high voltage and high energy density.
  • An electrode used in such an electricity storage device is produced by applying and drying a mixture of an active material and an electrode binder to a current collector.
  • the properties required for such an electrode binder include the ability to bind active materials and the adhesion between the active material and the current collector, the applied and dried composition coating (hereinafter referred to as the “active material layer”).
  • the active material layer the applied and dried composition coating
  • binding property To improve the powder fall resistance (hereinafter also referred to simply as “binding property”), and to reduce the internal resistance of the battery due to the electrode binder. Is mentioned.
  • the electrode binder since the electrode binder has high binding properties, the electrode folding method, the winding radius, and the like can be easily designed, and the storage device can be miniaturized.
  • Patent Document 1 a technique for introducing a nitrile group into a polymer as a binder material (see Patent Document 1) has been proposed.
  • binder materials that have excellent binding properties and can form an electrode coating layer with low surface electrical resistivity
  • ethylenically unsaturated carboxylic acid monomers vinyl cyanide monomers
  • ethylenically unsaturated carboxylic acids A binder composition characterized by a combination of an acid ester monomer, an aromatic vinyl monomer, and an aliphatic conjugated diene monomer has been proposed (see Patent Document 3).
  • the material described in Patent Document 1 is intended to achieve high-speed discharge characteristics by improving the electrolyte solution affinity of the binder material, but the material has a swelling property when contacted with the electrolyte solution. Since it is very large, the electricity storage device deteriorates particularly when used or stored at a high temperature, and there is a problem in durability (for example, high temperature cycle characteristics). Further, the materials described in Patent Document 2 and Patent Document 3 are excellent in durability, but the resistance of the battery tends to be high particularly at low temperatures, and the high-speed charge / discharge characteristics are not sufficient. As described above, in the conventional technology, it is considered that the durability and charge / discharge characteristics (particularly, high-speed discharge characteristics) of the electricity storage device are in a trade-off relationship, and it is desired to achieve both of these characteristics at a high level. was there.
  • the electrode binders described in the above-mentioned Patent Documents 1 to 3 cannot be said to have sufficient binding properties for practical use of an active material having a large lithium storage capacity.
  • the active material falls off due to repeated charge and discharge, and the electrode characteristics deteriorate. For this reason, there is a problem that the durability required for practical use cannot be obtained sufficiently.
  • Some embodiments according to the present invention provide a binder composition for an electricity storage device for producing an electricity storage device having excellent binding properties and charge / discharge characteristics (especially high-speed discharge characteristics), low-temperature resistance characteristics, and durability. To do.
  • some embodiments according to the present invention provide a slurry for an electricity storage device electrode containing the composition.
  • some embodiments according to the present invention provide an electricity storage device electrode having excellent binding properties.
  • some embodiments according to the present invention provide an electricity storage device having excellent charge / discharge characteristics (particularly, high-speed discharge characteristics), low-temperature resistance characteristics, and durability.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • One aspect of the binder composition for an electricity storage device is: Containing a polymer (A) and a liquid medium (B),
  • the polymer (A) is: 23 to 70 parts by mass of the repeating unit (a1) derived from an unsaturated carboxylic acid ester, Containing 20 to 74 parts by mass of a repeating unit (a2) derived from a conjugated diene compound,
  • the total amount of the repeating unit (a1) and the repeating unit (a2) is 76 parts by mass or more.
  • One aspect of the binder composition for an electricity storage device is: Containing a polymer (A) and a liquid medium (B),
  • the polymer (A) is: 23 to 70 parts by mass of the repeating unit (a1) derived from an unsaturated carboxylic acid ester, 20 to 74 parts by mass of the repeating unit (a2) derived from the conjugated diene compound; Containing 3 to 50 parts by mass of the repeating unit (a3) derived from the fluorine-containing ethylene monomer,
  • the total amount of the repeating unit (a1), the repeating unit (a2) and the repeating unit (a3) is 76 parts by mass or more.
  • the content of the repeating unit (a1) derived from the unsaturated carboxylic acid ester may be 35 to 68 parts by mass.
  • the polymer (A) may further contain 0.1 to 24 parts by mass of a repeating unit (a4) derived from an unsaturated carboxylic acid.
  • the polymer (A) may further contain 0.1 to 15 parts by mass of a repeating unit (a5) derived from an ⁇ , ⁇ -unsaturated nitrile compound.
  • the polymer (A) may further contain less than 15 parts by mass of a repeating unit (a6) derived from an aromatic vinyl compound.
  • the polymer (A) may be a particle.
  • the number average particle diameter of the particles may be 50 nm or more and 5000 nm or less.
  • the liquid medium (B) may be water.
  • One aspect of the slurry for the electricity storage device electrode according to the present invention is: It contains the binder composition for an electricity storage device and an active material.
  • a silicon material can be contained as the active material.
  • One aspect of the electricity storage device electrode according to the present invention is: It is characterized by comprising: a current collector; and an active material layer formed by applying and drying the slurry for an electricity storage device electrode on the surface of the current collector.
  • One aspect of the electricity storage device according to the present invention is: The power storage device electrode is provided.
  • binder composition for an electricity storage device not only can an electricity storage device electrode excellent in binding properties be produced, but also an electricity storage device excellent in charge / discharge characteristics (especially high-speed discharge characteristics), low-temperature resistance characteristics and durability. Can be manufactured.
  • (meth) acrylic acid is a concept encompassing both “acrylic acid” and “methacrylic acid”.
  • ⁇ (meth) acrylate is a concept encompassing both “ ⁇ acrylate” and “ ⁇ methacrylate”.
  • Binder composition for an electricity storage device contains a polymer (A) and a liquid medium (B).
  • the binder composition for an electricity storage device according to the present embodiment can be used as a material for forming a protective film for suppressing a short circuit caused by dendrite that occurs with charge and discharge, and between active materials. It can also be used as a material for producing an electricity storage device electrode (active material layer) with improved binding ability, ability to adhere an active material to a current collector, and powder fall resistance.
  • active material layer active material layer
  • the binder composition for an electricity storage device contains a polymer (A).
  • the polymer (A) can take the following two embodiments.
  • the polymer (A) according to the first embodiment comprises 23 to 70 parts by mass of a repeating unit (a1) derived from an unsaturated carboxylic acid ester, and 20 to 74 parts by mass of a repeating unit (a2) derived from a conjugated diene compound.
  • the total amount of the repeating units (a1) and the repeating units (a2) is 76 parts by mass or more when the total number of repeating units contained in the polymer (A) is 100 parts by mass.
  • the polymer (A) according to the second embodiment comprises 23 to 70 parts by mass of a repeating unit (a1) derived from an unsaturated carboxylic acid ester and 20 to 74 parts by mass of a repeating unit (a2) derived from a conjugated diene compound. And 3 to 50 parts by mass of the repeating unit (a3) derived from the fluorine-containing ethylene monomer, and when the total of the repeating units contained in the polymer (A) is 100 parts by mass, The total amount of the unit (a1), the repeating unit (a2) and the repeating unit (a3) is 76 parts by mass or more.
  • the polymer (A) according to the first and second aspects it is possible to improve the low-temperature resistance characteristics and durability, and to produce an electricity storage device having an excellent balance between charge / discharge characteristics and durability. it can.
  • the polymer (A) may be in a state dissolved in the liquid medium (B) or in the form of a latex dispersed in the liquid medium (B).
  • a latex in which the particles of A) are dispersed is preferable. If the binder composition for an electricity storage device according to the present embodiment is in a latex form, not only the stability of the slurry for an electricity storage device electrode prepared by mixing with an active material will be good, but also the coating properties will be good. preferable.
  • the polymer (A) in the first and second embodiments is a repeating unit (a1) derived from an unsaturated carboxylic acid ester when the total number of repeating units contained in the polymer (A) is 100 parts by mass. ) (Excluding the repeating unit (a3) derived from the fluorine-containing ethylene monomer) is contained in an amount of 23 to 70 parts by mass.
  • (meth) acrylic acid esters can be preferably used.
  • Specific examples of (meth) acrylic acid esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, (meth) acrylic.
  • the alkylamides of ethylenically unsaturated carboxylic acids such as (meth) acrylamide and N-methylolacrylamide described later; ethylenically unsaturated compounds such as aminoethylacrylamide, dimethylaminomethylmethacrylamide and methylaminopropylmethacrylamide
  • Aminoalkylamides of carboxylic acids are not included in the concept of unsaturated carboxylic acid esters.
  • the polymer (A) in the first and second embodiments contains 23 to 70 parts by mass of the repeating unit (a1) when the total number of repeating units contained in the polymer (A) is 100 parts by mass.
  • the content is preferably 26 to 70 parts by mass, more preferably 35 to 68 parts by mass, and particularly preferably 41 to 65 parts by mass.
  • the content ratio of the repeating unit (a1) in the polymer (A) is within the above range, it is possible to further improve the low temperature resistance characteristics of the electricity storage device.
  • the polymer (A) in the first and second embodiments comprises the repeating unit (a2) derived from the conjugated diene compound when the total number of repeating units contained in the polymer (A) is 100 parts by mass. 20 to 74 parts by mass are contained. Thereby, moderate softness
  • conjugated diene compound examples include, but are not limited to, 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene and the like. And can be one or more selected from these. Among these, 1,3-butadiene is particularly preferable.
  • the polymer (A) in the first and second embodiments contains 20 to 74 parts by mass of the repeating unit (a2) when the total of the repeating units contained in the polymer (A) is 100 parts by mass.
  • the content is preferably 20 to 70 parts by mass, more preferably 30 to 68 parts by mass, and particularly preferably 40 to 65 parts by mass.
  • the polymer (A) in the second aspect is a repeating unit (a3) derived from a fluorine-containing ethylene monomer when the total number of repeating units contained in the polymer (A) is 100 parts by mass. 3 to 50 parts by mass. Thereby, the low temperature resistance characteristic of the electrical storage device can be further improved.
  • the fluorine-containing ethylene monomer is not particularly limited, and examples thereof include an olefin compound having a fluorine atom and a (meth) acrylic acid ester having a fluorine atom.
  • examples of the olefin compound having a fluorine atom include vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, trifluorochloroethylene, perfluoroalkyl vinyl ether, 1,1,2,2-tetrafluoro-1,2- Examples include bis [(trifluorovinyl) oxy] ethane.
  • Examples of (meth) acrylic acid ester having a fluorine atom include (meth) acrylic acid 3 [4 [1-trifluoromethyl-2,2-bis [bis (trifluoromethyl) fluoromethyl] ethynyloxy] benzooxy] 2 -Hydroxypropyl and the like.
  • the polymer (A) in the second embodiment contains 3 to 50 parts by mass of the repeating unit (a3) when the total number of repeating units contained in the polymer (A) is 100 parts by mass.
  • the content is preferably 4 to 40 parts by mass, more preferably 5 to 30 parts by mass, and particularly preferably 5 to 25 parts by mass.
  • the polymer (A) in the first and second embodiments may contain a repeating unit (a4) derived from an unsaturated carboxylic acid.
  • the unsaturated carboxylic acid is not particularly limited, and examples thereof include monocarboxylic acids and dicarboxylic acids (including anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. One or more selected from these can be used.
  • the unsaturated carboxylic acid it is preferable to use one or more selected from acrylic acid, methacrylic acid, and itaconic acid.
  • the repeating unit (a4) is 0.1 to 24 parts by mass when the total of the repeating units contained in the polymer (A) is 100 parts by mass. It is preferably contained, and more preferably 1 to 20 parts by mass. When the content ratio of the repeating unit (a4) in the polymer (A) is within the above range, the electrolyte solution resistance can be further improved.
  • the polymer (A) in the first and second embodiments may contain a repeating unit (a5) derived from an ⁇ , ⁇ -unsaturated nitrile compound.
  • the ⁇ , ⁇ -unsaturated nitrile compound is not particularly limited, and examples thereof include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile, vinylidene cyanide, and one or more selected from these are used. can do. Among these, at least one selected from the group consisting of acrylonitrile and methacrylonitrile is preferable, and acrylonitrile is particularly preferable.
  • the polymer (A) in the first and second embodiments contains 1 to 20 parts by mass of the repeating unit (a5) when the total number of repeating units contained in the polymer (A) is 100 parts by mass.
  • the content is preferably 5 to 15 parts by mass.
  • the polymer (A) in the first and second embodiments may contain a repeating unit (a6) derived from an aromatic vinyl compound.
  • aromatic vinyl compound refers to an aromatic monofunctional vinyl compound, and is a concept that excludes an aromatic polyfunctional vinyl compound described later.
  • the aromatic vinyl compound is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, and the like, and can be one or more selected from these.
  • the polymer (A) in the first and second embodiments contains less than 15 parts by mass of the repeating unit (a6) when the total number of repeating units contained in the polymer (A) is 100 parts by mass. Is preferably contained, more preferably less than 10 parts by mass, still more preferably less than 5 parts by mass, and particularly preferably 0 parts by mass, ie substantially not contained.
  • the content ratio of the repeating unit (a6) in the polymer (A) is within the above range, excessive swelling with respect to the electrolytic solution is easily suppressed.
  • the polymer (A) in the first and second embodiments may contain a repeating unit (a7) derived from an aromatic polyfunctional vinyl compound.
  • Aromatic dialkenyl compounds such as divinylbenzene and diisopropenylbenzene, can be mentioned, It can be 1 or more types selected from these. Among these, divinylbenzene is preferable.
  • the repeating unit (a7) is added in an amount of 0.1 to 5 parts by mass when the total of the repeating units contained in the polymer (A) is 100 parts by mass.
  • the content is preferably less than 1, and more preferably less than 1 to 3 parts by mass.
  • the polymer (A) in the first and second embodiments may contain, in addition to the above repeating units, repeating units derived from other unsaturated monomers copolymerizable therewith. Good.
  • unsaturated monomers include carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, sulfoethyl methacrylate, sulfopropyl methacrylate, sulfobutyl methacrylate, Compounds having a sulfonic acid group such as 2-acrylamido-2-methylpropanesulfonic acid, 2-hydroxy-3-acrylamidepropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid; (meth) acrylamide, N-methylolacrylamide Alkyl amides of ethylenically unsaturated carboxylic acids such as aminoethyl acrylamide, dimethylaminomethyl methacrylamide, methylaminopropyl methacrylamide and the like -Alkyl amides can be exemplified, it can be at least one
  • the polymer (A) in the first aspect is a repeating unit derived from an unsaturated carboxylic acid ester when the total number of repeating units contained in the polymer (A) is 100 parts by mass.
  • the total amount of the repeating unit (a2) derived from (a1) and the conjugated diene compound is 76 parts by mass or more, and more preferably 80 parts by mass or more. It is preferable for the total amount of the repeating unit (a1) and the repeating unit (a2) to be in the above range because the balance between the low temperature resistance characteristics and the durability of the electricity storage device is good.
  • the repeating unit (a1) derived from the unsaturated carboxylic acid ester is conjugated when the total number of repeating units contained in the polymer (A) is 100 parts by mass.
  • the total amount of the repeating unit (a2) derived from the diene compound and the repeating unit (a3) derived from the fluorine-containing ethylene monomer is 76 parts by mass or more, and more preferably 80 parts by mass or more.
  • the toluene insoluble content of the polymer (A) at 50 ° C. is preferably 80% or more, more preferably 90% or more, and particularly preferably 98% or more, that is, substantially not dissolved. It is presumed that the toluene insoluble content is approximately proportional to the amount of insoluble content in the electrolytic solution used in the electricity storage device. For this reason, if the toluene insoluble content is within the above range, it is presumed that it is favorable because an electricity storage device is produced and elution of the polymer (A) into the electrolyte can be suppressed even when charging and discharging are repeated for a long period of time. it can.
  • the toluene-insoluble content of the polymer (A) can be measured by the method described in Examples described later.
  • the polymer (A) preferably has a polystyrene-reduced weight average molecular weight (Mw) of not less than 10,000, more preferably not less than 100,000, more preferably 500,500 by gel permeation chromatography (GPC) method. It is especially preferable that it is 000 or more.
  • GPC gel permeation chromatography
  • the lower limit of the number average particle diameter of the particle is preferably 50 nm or more, more preferably 80 nm or more, and particularly preferably 120 nm or more.
  • the upper limit of the number average particle diameter of the particles is preferably 5000 nm or less, more preferably 1000 nm or less, and particularly preferably 500 nm or less.
  • the number average particle size of the particles is a particle size distribution measuring device using a light scattering method as a measurement principle, and the cumulative frequency of particles when the particles are accumulated from small particles is 50. % Particle diameter (D50).
  • a particle size distribution measuring apparatus examples include Coulter LS230, LS100, LS13 320 (above, manufactured by Beckman Coulter. Inc), FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.), and the like.
  • These particle size distribution measuring devices are not intended to evaluate only the primary particles of the particles, but can also evaluate the secondary particles formed by aggregation of the primary particles. Therefore, the particle size distribution measured by these particle size distribution measuring devices can be used as an indicator of the dispersion state of the (polymer) particles contained in the composition.
  • the electrolyte solution insoluble content of the polymer (A) is preferably 80% or more, more preferably 90% or more, and particularly preferably 98% or more, that is, substantially not dissolved.
  • the electrical storage device is manufactured, and elution of the polymer (A) into the electrolyte solution can be suppressed even when charging / discharging is repeated for a long period of time. .
  • the electrolyte solution swelling ratio of the polymer (A) is preferably 100 to 420%, more preferably 120 to 400%, and particularly preferably 130 to 360%.
  • the electrolytic solution swelling ratio is within the above range, the polymer (A) can be appropriately swollen with respect to the electrolytic solution.
  • solvated lithium ions can easily reach the active material, effectively reducing the electrode resistance, and realizing better charge / discharge characteristics.
  • the large volume change does not generate
  • the electrolyte solution swelling ratio of the polymer (A) can be measured by the method described in Examples described later.
  • the polymer (A) may be produced by one-stage polymerization, may be produced by two-stage polymerization, or further by multi-stage polymerization.
  • a known polymerization initiator, molecular weight adjustment Can be carried out in the presence of an agent, an emulsifier (surfactant) and the like.
  • polymer (A) of the second aspect As the polymer (A), (1) Polymer particles having a repeating unit (a1) derived from an unsaturated carboxylic acid ester, a repeating unit (a2) derived from a conjugated diene compound, and a repeating unit (a3) derived from a fluorine-containing ethylene monomer Copolymer particles obtained by one-stage polymerization, (2) Polymer X having repeating unit (a3) derived from fluorine-containing ethylene monomer, repeating unit (a1) derived from unsaturated carboxylic acid ester and repeating unit (a2) derived from conjugated diene compound
  • Composite particles having a polymer Y having The two aspects are mentioned. Among these, from the viewpoint of excellent oxidation resistance, composite particles are preferable, and the composite particles are more preferably polymer alloy particles.
  • the polymer alloy particles can be produced by a method described in JP2014-081996A.
  • polymerization initiator examples include water-soluble polymerization initiators such as sodium persulfate, potassium persulfate, and ammonium persulfate; oil-soluble polymerization such as benzoyl peroxide, lauryl peroxide, and 2,2′-azobisisobutyronitrile.
  • Initiators Redox polymerization initiators composed of a combination of a reducing agent such as sodium bisulfite, iron (II) salt, tertiary amine and the like, and an oxidizing agent such as persulfate and organic peroxide. . These polymerization initiators can be used singly or in combination of two or more.
  • the use ratio of the polymerization initiator is preferably 0.3 to 3 parts by mass with respect to 100 parts by mass in total of the monomers used.
  • the molecular weight modifier examples include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan; dimethylxanthogen disulfide, diisopropylxanthogen disulfide Xanthogen compounds such as terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, and tetramethylthiuram monosulfide; phenol compounds such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol; allyl Allyl compounds such as alcohols; halogenated hydrocarbon compounds such as dichloromethane, dibromomethane and carbon tetrabro
  • dodecyl mercaptan is preferred.
  • the above exemplified molecular weight regulators may be used alone or in combination of two or more.
  • the use ratio of the molecular weight modifier is preferably 0.1 to 10 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass in total of the monomers used.
  • the emulsifier examples include anionic surfactants, nonionic surfactants, amphoteric surfactants, and fluorosurfactants, and known ones can be used.
  • the use ratio of the emulsifier is preferably 0.01 to 10 parts by mass, and more preferably 0.02 to 5 parts by mass with respect to 100 parts by mass of the total amount of monomers used.
  • the synthesis of the polymer (A) is not particularly limited, but can be easily synthesized by, for example, a known emulsion polymerization step or an appropriate combination thereof.
  • the emulsion polymerization is preferably carried out in a suitable aqueous medium, more preferably in water.
  • the total content of the monomers in the aqueous medium is preferably 10 to 50% by mass, and more preferably 20 to 40% by mass.
  • the conditions for emulsion polymerization are preferably a polymerization time of 2 to 24 hours at a polymerization temperature of 40 to 85 ° C., and more preferably a polymerization time of 3 to 20 hours at a polymerization temperature of 50 to 80 ° C.
  • the binder composition for an electricity storage device contains a liquid medium (B).
  • the liquid medium (B) is preferably an aqueous medium containing water.
  • This aqueous medium can contain a small amount of non-aqueous medium in addition to water.
  • non-aqueous media include amide compounds, hydrocarbons, alcohols, ketones, esters, amine compounds, lactones, sulfoxides, sulfone compounds, and the like, and one or more selected from these are used. can do.
  • the content ratio of such a non-aqueous medium is preferably 10% by mass or less, and more preferably 5% by mass or less, with respect to the total amount of the aqueous medium. It is most preferable that the aqueous medium is composed of only water without containing a non-aqueous medium.
  • the binder composition for an electricity storage device uses an aqueous medium as the liquid medium (B), and preferably contains no non-aqueous medium other than water, thereby having a low adverse effect on the environment and handling work. The safety for the person is also increased.
  • the binder composition for electrical storage devices according to the present embodiment can improve the coating property and adhesion by containing a water-soluble polymer.
  • water-soluble polymer examples include cellulose compounds such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and hydroxyethylcellulose; ammonium salts or alkali metal salts of the above cellulose compounds; poly (meth) acrylic acid, modified poly (meth) Polycarboxylic acids such as acrylic acid; alkali metal salts of the above polycarboxylic acids; polyvinyl alcohol-based (co) polymers such as polyvinyl alcohol, modified polyvinyl alcohol, and ethylene-vinyl alcohol copolymers; (meth) acrylic acid, maleic acid And saponified products of copolymers of unsaturated carboxylic acids such as fumaric acid and vinyl esters; alternating copolymers of maleic anhydride and isobutylene; ammonium salts or alcohols of the above alternating copolymers It can be mentioned Li metal salts, polyacrylamide, water-soluble polymers modified polyacrylamide.
  • particularly preferred water-soluble polymers include alkali metal salts of carboxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, alkali metal salts of poly (meth) acrylic acid, and alkali metals of an alternating copolymer of maleic anhydride and isobutylene. Salt, polyacrylamide, modified polyacrylamide and the like.
  • Examples of commercially available water-soluble polymers include carboxymethyl cellulose such as CMC1120, CMC1150, CMC2200, CMC2280, CMC2450 (above, manufactured by Daicel Corporation), Metroles SH type, Metroles SE type (above, manufactured by Shin-Etsu Chemical Co., Ltd.), etc. Mention may be made of alkali metal salts.
  • examples of commercially available alternating copolymers of maleic anhydride and isobutylene include isoban 06, isoban 10, isoban 18, isoban 110 (above, manufactured by Kuraray Co., Ltd.) and the like.
  • the binder composition for an electricity storage device contains a water-soluble polymer
  • the content ratio of the water-soluble polymer is 5% by mass or less with respect to the total solid content of the binder composition for an electricity storage device.
  • the content is preferably 0.1 to 3% by mass.
  • the binder composition for an electricity storage device may contain a surfactant from the viewpoint of improving dispersibility and dispersion stability.
  • a surfactant examples include an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and a fluorosurfactant, and known ones can be used.
  • the binder composition for an electricity storage device may contain a preservative from the viewpoint of long-term reliability.
  • a preservative known ones can be used, but isothiazoline preservatives can be suitably used.
  • the power storage device slurry according to the present embodiment contains the above-described power storage device binder composition.
  • the binder composition for an electricity storage device described above can also be used as a material for forming a protective film for suppressing a short circuit caused by dendrites generated with charge / discharge, and the binding ability between active materials and It can also be used as a material for producing an electricity storage device electrode (active material layer) with improved adhesion ability between an active material and a current collector and resistance to powder falling.
  • a slurry for an electricity storage device for forming a protective film (hereinafter also referred to as “slurry for forming a protective film”) and a slurry for an electricity storage device for forming an active material layer of the electricity storage device electrode (hereinafter referred to as “electric storage device”). It is also referred to as “device electrode slurry”.
  • slurry for forming a protective film is applied to the surface of the electrode and / or separator and then dried to form a protective film on the surface of the electrode and / or separator.
  • the slurry for forming a protective film according to this embodiment may be composed only of the above-described binder composition for an electricity storage device, and may further contain an inorganic filler.
  • each component contained in the slurry for forming a protective film according to this embodiment will be described in detail.
  • description is abbreviate
  • the slurry for protective film formation concerning this embodiment can improve the toughness of the protective film formed by containing an inorganic filler.
  • an inorganic filler it is preferable to use at least one type of particles selected from the group consisting of silica, titanium oxide (titania), aluminum oxide (alumina), zirconium oxide (zirconia), and magnesium oxide (magnesia).
  • titanium oxide and aluminum oxide are preferable from the viewpoint of further improving the toughness of the protective film.
  • rutile type titanium oxide is more preferable.
  • the average particle diameter of the inorganic filler is preferably 1 ⁇ m or less, and more preferably in the range of 0.1 to 0.8 ⁇ m.
  • the average particle diameter of an inorganic filler is larger than the average hole diameter of the separator which is a porous film.
  • the slurry for forming a protective film according to this embodiment preferably contains 0.1 to 20 parts by mass of the binder composition for an electricity storage device described above in terms of solid content with respect to 100 parts by mass of the inorganic filler. More preferably, the content is 1 to 10 parts by mass.
  • the content ratio of the binder composition for an electricity storage device is within the above range, the balance between the toughness of the protective film to be formed and the lithium ion permeability is improved, and as a result, the resistance increase rate of the obtained electricity storage device is further increased. Can be lowered.
  • the material described in “1.2. Liquid Medium (B)” of the binder composition for an electricity storage device described above can be used as necessary for the slurry for forming a protective film according to the present embodiment.
  • the addition amount of the liquid medium can be adjusted as necessary so that the optimum viscosity of the slurry can be obtained according to the coating method and the like.
  • “Slurry for electricity storage device electrode” in the present specification is used to form an active material layer on the surface of the current collector after being applied to the surface of the current collector and then dried. Refers to a dispersion.
  • the slurry for an electricity storage device electrode according to the present embodiment contains the above-described binder composition for an electricity storage device and an active material.
  • each component contained in the slurry for an electricity storage device electrode according to the present embodiment will be described in detail.
  • omitted since it is as having mentioned above about the binder composition for electrical storage devices, a liquid medium, and another component, description is abbreviate
  • Active Material examples include carbon materials, silicon materials, oxides containing lithium atoms, lead compounds, tin compounds, arsenic compounds, antimony compounds, and aluminum compounds.
  • Examples of the carbon material include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers.
  • Examples of the silicon material include silicon simple substance, silicon oxide, and silicon alloy.
  • Si oxide composites represented by SiO x (0 ⁇ x ⁇ 2) for example, materials described in Japanese Patent Application Laid-Open Nos. 2004-185810 and 2005-259697
  • a silicon material described in Japanese Unexamined Patent Publication No. 2004-185810 can be used.
  • the silicon oxide is preferably a silicon oxide represented by the composition formula SiO x (0 ⁇ x ⁇ 2, preferably 0.1 ⁇ x ⁇ 1).
  • the silicon alloy is preferably an alloy of silicon and at least one transition metal selected from the group consisting of titanium, zirconium, nickel, copper, iron and molybdenum. These transition metal silicon alloys are preferably used because they have high electronic conductivity and high strength. In addition, since the active material contains these transition metals, the transition metal present on the surface of the active material is oxidized to form an oxide having a hydroxyl group on the surface, so that the binding force with the binder is further improved. preferable.
  • the silicon alloy it is more preferable to use a silicon-nickel alloy or a silicon-titanium alloy, and it is particularly preferable to use a silicon-titanium alloy.
  • the silicon content in the silicon alloy is preferably 10 mol% or more, more preferably 20 to 70 mol%, based on all the metal elements in the alloy. Note that the silicon material may be single crystal, polycrystalline, or amorphous.
  • oxide containing lithium atom examples include lithium cobaltate, lithium nickelate, lithium manganate, ternary nickel cobalt lithium manganate, LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 0.90 Ti 0.05 Nb. 0.05 Fe 0.30 Co 0.30 Mn 0.30 PO 4 and the like.
  • the active material exemplified below may be included in the active material layer.
  • examples of such an active material include a conductive polymer such as polyacene; A X B Y O Z (where A is an alkali metal or transition metal, B is a transition metal such as cobalt, nickel, aluminum, tin, or manganese) At least one selected, O represents an oxygen atom, and X, Y, and Z are 1.10>X> 0.05, 4.00>Y> 0.85, 5.00>Z> 1.5, respectively.
  • the composite metal oxide represented by (2) and other metal oxides are exemplified.
  • the slurry for an electricity storage device electrode according to this embodiment can be used when producing either an anode or an electricity storage device electrode, but is particularly suitable for producing an anode.
  • the negative electrode When producing the negative electrode, it is preferable to use a material containing a carbon material and / or a silicon material among the active materials exemplified above. Since the silicon material has a larger amount of occlusion of lithium per unit weight than other active materials, the active material contains the silicon material, so that the power storage capacity of the obtained power storage device can be increased. The output and energy density of the electricity storage device can be increased.
  • the negative electrode active material is more preferably composed of a mixture of a carbon material and a silicon material. Since the volume change due to charge / discharge is small, the carbon material can reduce the influence of the volume change of the silicon material by using a mixture of the carbon material and the silicon material as the negative electrode active material, Adhesion with the active material layer can be further improved.
  • a carbon-coated silicon material in which a carbon material film is formed on the surface of the silicon material can also be used.
  • a carbon-coated silicon material By using a carbon-coated silicon material, the effect of volume change associated with charging / discharging of the silicon material can be more effectively mitigated by the carbon material present on the surface. It becomes easy to improve the adhesiveness.
  • silicon (Si) When silicon (Si) is used as an active material, silicon can occlude up to 22 lithium atoms per 5 atoms (5Si + 22Li ⁇ Li 22 Si 5 ). As a result, the theoretical silicon capacity reaches 4200 mAh / g.
  • silicon causes a large volume change when occludes lithium. Specifically, the carbon material expands in volume up to about 1.2 times by occluding lithium, whereas the silicon material expands in volume up to about 4.4 times by occluding lithium. For this reason, the silicon material is pulverized by repeated expansion and contraction, peeling from the current collector, and separation of the active materials, and the conductive network inside the active material layer is broken. Therefore, the cycle characteristics are extremely deteriorated in a short time.
  • the electricity storage device electrode slurry according to the present embodiment even when a silicon material is used, good electrical characteristics can be exhibited without causing the above-described problems. This is because the polymer (A) can firmly bind the silicon material, and at the same time, the polymer (A) expands and contracts even if the silicon material expands by occluding lithium, and the silicon material becomes This is considered to be because the state of being firmly bound can be maintained.
  • the content ratio of the silicon material in 100% by mass of the active material is preferably 1% by mass or more, more preferably 1 to 50% by mass, further preferably 5 to 45% by mass. It is particularly preferable to set it to ⁇ 40% by mass.
  • the content of the silicon material in 100% by mass of the active material is preferably 4 to 40% by mass, more preferably 5 to 35% by mass, It is particularly preferably 5 to 30% by mass. Since the volume expansion of the carbon material relative to the volume expansion of the silicon material due to occlusion of lithium is small when the amount of silicon material used is in the above range, the volume change due to charge / discharge of the active material layer containing these active materials is reduced. The binding between the current collector and the active material layer can be further improved.
  • the shape of the active material is preferably granular.
  • the average particle diameter of the active material is preferably 0.1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the average particle diameter of the active material is a volume average particle diameter calculated from a particle size distribution measured using a particle size distribution measuring apparatus based on a laser diffraction method.
  • a laser diffraction particle size distribution measuring apparatus examples include HORIBA LA-300 series, HORIBA LA-920 series (above, manufactured by Horiba, Ltd.), and the like.
  • This particle size distribution measuring apparatus does not only evaluate primary particles of the active material, but also evaluates secondary particles formed by aggregation of the primary particles. Therefore, the average particle diameter obtained by the particle size distribution measuring apparatus can be used as an index of the dispersion state of the active material contained in the slurry for the electricity storage device electrode.
  • the average particle diameter of the active material can also be measured by centrifuging the slurry to settle the active material, removing the supernatant, and measuring the precipitated active material by the above method. .
  • the active material is preferably used in such a ratio that the content of the polymer (A) with respect to 100 parts by mass of the active material is 0.1 to 25 parts by mass, It is more preferable to use in such a ratio. By setting it as such a usage rate, it is possible to manufacture an electrode that is excellent in binding properties and has low electrode resistance and excellent charge / discharge characteristics.
  • the electricity storage device electrode according to the present embodiment includes a current collector and a layer formed by applying and drying the above-mentioned slurry for an electricity storage device electrode on the surface of the current collector.
  • Such an electricity storage device electrode can be produced by applying the above-mentioned slurry for an electricity storage device electrode on the surface of an appropriate current collector such as a metal foil to form a coating film, and then drying the coating film.
  • the electricity storage device electrode thus manufactured is formed by binding an active material layer containing the polymer (A) and the active material described above and an optional component added as necessary on a current collector. Is.
  • the current collector is not particularly limited as long as it is made of a conductive material.
  • a current collector made of metal such as iron, copper, aluminum, nickel, and stainless steel is used.
  • aluminum is used for the positive electrode and copper is used for the negative electrode, the above-described storage device electrode The effect of the slurry is most apparent.
  • a punching metal, an expanded metal, a wire mesh, a foam metal, a mesh metal fiber sintered body, a metal plated resin plate, or the like is used as the current collector in the nickel metal hydride secondary battery.
  • the shape and thickness of the current collector are not particularly limited, but are preferably in the form of a sheet having a thickness of about 0.001 to 0.5 mm.
  • the coating can be performed by an appropriate method such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, or a brush coating method.
  • the application amount of the slurry for the electricity storage device electrode is not particularly limited, but the thickness of the active material layer formed after removing the liquid medium is preferably 0.005 mm to 5 mm, preferably 0.01 mm to 2 mm. It is more preferable to set the amount to be.
  • drying method from the coated film after coating (method for removing water and optionally used non-aqueous medium); for example, drying with hot air, hot air, low humidity air; vacuum drying; (far) infrared , Drying by irradiation with an electron beam or the like.
  • the drying speed is appropriately set so that the liquid medium can be removed as quickly as possible within a speed range in which the active material layer does not crack due to stress concentration or the active material layer does not peel from the current collector. be able to.
  • the density of the active material layer by pressing the dried active material layer.
  • the pressing method include a mold press and a roll press.
  • the density of the active material layer after pressing is preferably 1.6 to 2.4 g / cm 3, and more preferably 1.7 to 2.2 g / cm 3 .
  • the power storage device includes the above-described power storage device electrode, and further contains an electrolytic solution, and can be manufactured according to a conventional method using components such as a separator.
  • a negative electrode and a positive electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery, and stored in a battery container, and an electrolytic solution is injected into the battery container.
  • the shape of the battery can be an appropriate shape such as a coin shape, a cylindrical shape, a square shape, or a laminate shape.
  • the electrolytic solution may be liquid or gel, and a material that effectively expresses the function as a battery may be selected from known electrolytic solutions used for the electricity storage device, depending on the type of active material.
  • the electrolytic solution can be a solution in which an electrolyte is dissolved in a suitable solvent.
  • any conventionally known lithium salt can be used in the lithium ion secondary battery, and specific examples thereof include, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 CO 2 , LiAsF 6. , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lower fatty acid lithium carboxylate and the like can be exemplified.
  • an aqueous potassium hydroxide solution having a conventionally known concentration of 5 mol / liter or more can be used.
  • the solvent for dissolving the electrolyte is not particularly limited, and specific examples thereof include carbonate compounds such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; ⁇ -butyl Lactone compounds such as lactones; ether compounds such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxide compounds such as dimethyl sulfoxide, and the like. One or more selected from the above can be used.
  • the concentration of the electrolyte in the electrolytic solution is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
  • the above-described power storage device can be applied to lithium ion secondary batteries, electric double layer capacitors, lithium ion capacitors, and the like that require discharging at a large current density.
  • a lithium ion secondary battery is particularly preferable.
  • members other than the binder composition for an electricity storage device can be members for known lithium ion secondary batteries, electric double layer capacitors, and lithium ion capacitors. It is.
  • Binder Composition for Electricity Storage Device (1) Preparation of Binder Composition for Electricity Storage Device In a temperature-controllable autoclave equipped with a stirrer, 200 parts by mass of water, 0.9 part by mass of sodium dodecylbenzenesulfonate, A total of 1.0 part by weight of potassium sulfate, 0.5 part by weight of sodium bisulfite, 0.1 part by weight of ⁇ -methylstyrene dimer, 0.1 part by weight of dodecyl mercaptan and the first-stage polymerization component shown in Table 1 Then, the temperature was raised to 70 ° C. and a polymerization reaction was carried out for 2 hours.
  • the second-stage polymerization component shown in Table 1 was added over 6 hours while maintaining the reaction temperature at 70 ° C.
  • 3 hours passed from the start of addition of the second-stage polymerization component 0.1 part by mass of ⁇ -methylstyrene dimer and 0.05 part by mass of dodecyl mercaptan were added.
  • the temperature in the autoclave was raised to 80 ° C., and the reaction was further continued for 2 hours to obtain a latex.
  • the pH of the latex was adjusted to 7.5, and 5 parts by mass of sodium tripolyphosphate (added as an aqueous solution having a solid content converted value and a concentration of 10% by mass) was added.
  • the residual monomer is removed by steam distillation, and after concentration under reduced pressure, Rosima 541 (manufactured by Dow Chemical Co.) is used as a preservative so as to be 0.1% by mass with respect to the binder composition for an electricity storage device
  • an aqueous dispersion (a binder composition for an electricity storage device) containing 40% by mass of the polymer (A) particles was obtained.
  • the electrolyte solution insoluble content of the polymer (A) was 98 wt%. Further, EC / DEC attached to the surface of the insoluble matter (membrane) separated by the filtration was absorbed and removed by paper, and then the weight (Z (g)) of the insoluble matter (membrane) was measured.
  • the electrolytic solution swelling ratio was measured by the following formula (3), the electrolytic solution swelling ratio of the polymer (A) was 200 wt%.
  • Electrolyte insoluble matter (mass%) ((1-Y) / 1) ⁇ 100 (2)
  • Electrolytic solution swelling ratio (% by mass) (Z / (1-Y)) ⁇ 100 (3)
  • a positive electrode slurry was prepared by stirring and mixing for 2 minutes at 1,800 rpm for 5 minutes and further under reduced pressure (about 5 ⁇ 10 3 Pa) at 1,800 rpm for 1.5 minutes.
  • the positive electrode slurry prepared above was uniformly applied by a doctor blade method so that the film thickness after drying was 100 ⁇ m. Dry at 20 ° C. for 20 minutes. Thereafter, the film (active material layer) was pressed by a roll press so that the density of the film (active material layer) was 1.9 g / cm 3 , and further vacuum-dried at 150 ° C. for 4 hours under a reduced pressure of 75 Pa of absolute pressure, whereby Obtained.
  • the power storage device binder composition obtained above was added so that the ratio of the polymer (A) contained in the composition was 2 parts by mass, and the mixture was stirred at 15 rpm for 15 minutes to obtain a paste. It was. After adding ion-exchanged water to the obtained paste to adjust the solid content concentration to 50% by mass, using a stirring defoaming machine (product name “Netaro Awatori” manufactured by Shinkey Co., Ltd.) at 200 rpm A negative electrode slurry was prepared by stirring and mixing for 2 minutes, then at 1,800 rpm for 5 minutes, and further under reduced pressure (about 5 ⁇ 10 3 Pa) at 1,800 rpm for 1.5 minutes.
  • a stirring defoaming machine product name “Netaro Awatori” manufactured by Shinkey Co., Ltd.
  • a lithium ion secondary battery cell (power storage device) can be obtained by placing the positive electrode manufactured as described above and punching and molding the positive electrode to a diameter of 16.16 mm, and sealing the outer body of the bipolar coin cell with a screw. Assembled.
  • electrolytic solution used in is EC / DEC solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L.
  • Capacity retention (%) (discharge capacity at the 100th cycle) / (discharge capacity at the first cycle) (Evaluation criteria) ⁇ 5 points: Capacity retention is 95% or more ⁇ 4 points: Capacity retention is 90% to less than 95% ⁇ 3 points: Capacity retention is 85% to less than 90% ⁇ 2 points: Capacity retention is 80 % To less than 85% ⁇ 1 point: Capacity retention is 75% to less than 80% ⁇ 0 point: Capacity retention is less than 75%
  • the total score for evaluation of peel strength, evaluation of low-temperature resistance and evaluation of high-temperature cycle characteristics is 15 points, but each evaluation item is 3 points or more, and the total score is 10 points or more, Judge as good.
  • Examples 2 to 12 and Comparative Examples 1 to 8 The kind and amount of the monomer for synthesizing the polymer (A) were as shown in Table 1, respectively, and the solid content was the same as in Example 1 except that the amount of the emulsifier was adjusted as necessary.
  • Example 13 (1) Preparation of Binder Composition for Electricity Storage Device After the inside of an autoclave having an internal volume of about 6 L equipped with an electromagnetic stirrer is sufficiently purged with nitrogen, 2.5 L of deoxygenated pure water and ammonium perfluorodecanoate as an emulsifier 25 g was charged and the temperature was raised to 60 ° C. while stirring at 350 rpm. Next, a mixed gas composed of 70% by mass of the monomer vinylidene fluoride (VdDF) and 30% by mass of propylene hexafluoride (HFP) was charged until the internal pressure reached 20 kg / cm 2 .
  • VdDF monomer vinylidene fluoride
  • HFP propylene hexafluoride
  • Freon 113 (CClF 2 -CCl 2 F) solution containing 20% by mass of diisopropyl peroxydicarbonate as a polymerization initiator was injected using nitrogen gas to initiate polymerization.
  • a mixed gas composed of 60% by mass of VdDF and 40% by mass of HFP was sequentially injected so that the internal pressure was maintained at 20 kg / cm 2 . Since the polymerization rate decreased as the polymerization progressed, 3 hours after the start of polymerization, the same amount of the same polymerization initiator solution as above was injected using nitrogen gas, and the reaction was continued for another 3 hours.
  • the temperature in the autoclave was raised to 80 ° C., and the reaction was further continued for 2 hours to obtain a latex. Thereafter, the pH of the latex was adjusted to 7.5, and 5 parts by mass of sodium tripolyphosphate (added as an aqueous solution having a solid content converted value and a concentration of 10% by mass) was added. Next, the residual monomer is removed by steam distillation, and after concentration under reduced pressure, Rosima 541 (manufactured by Dow Chemical Co.) is used as a preservative so as to be 0.1% by mass with respect to the binder composition for an electricity storage device. In addition, an aqueous dispersion (binder composition for an electricity storage device) containing 40% by mass of particles composed of the polymer (X) and the polymer (Y) was obtained.
  • aqueous dispersion bin composition for an electricity storage device
  • Examples 14 to 24 and Comparative Examples 10 to 15 The type and amount of the monomer for synthesizing the polymer were as shown in Table 2, respectively, and the solid content concentration was 40 as in Example 13 except that the amount of emulsifier was adjusted as necessary.
  • An aqueous dispersion (binder composition for an electricity storage device) containing mass% polymer particles was prepared. Further, using these binder compositions for electricity storage devices, both positive and negative electrodes and a coin cell battery were produced in the same manner as in Example 1, and each evaluation was performed. The evaluation results are shown in Tables 2 and 4.
  • Example 25 is the same as Example 8
  • Example 26 is the same as Example 10
  • Comparative Example 9 is the same as in Table 1 except that the types and amounts of monomers for synthesizing the polymer are as described in Table 1.
  • an aqueous dispersion (binder composition for an electricity storage device) containing 40% by mass of polymer particles was prepared.
  • the negative electrode when preparing the negative electrode slurry, the negative electrode was prepared in the same manner as in Example 1, except that 80 parts by mass of graphite and 20 parts by mass of silicon oxide were used as the negative electrode active material. Both electrodes of a positive electrode and a coin cell battery were produced and evaluated. The evaluation results are shown in Tables 1 and 5.
  • the electricity storage device including the electrode produced using the composition for an electricity storage device according to the present invention shown in Examples 1 to 12 has a binding force, resistance suppression at a low temperature, a high temperature cycle. The balance of characteristics was excellent.
  • Comparative Examples 1 to 8 an electricity storage device having good binding force, resistance suppression at low temperatures, and high temperature cycle characteristics could not be obtained.
  • the electricity storage device comprising the electrode produced using the composition for an electricity storage device according to the present invention shown in Examples 13 to 24 has a binding force, resistance suppression at low temperature, high temperature cycle The balance of characteristics was excellent.
  • Comparative Examples 10 to 15 an electricity storage device having good binding force, resistance suppression at low temperatures, and high temperature cycle characteristics was not obtained.
  • an electricity storage device including an electrode manufactured using the composition for an electricity storage device according to the present invention shown in Examples 25 to 26 uses an active material containing a silicon active material. Also, excellent properties were obtained with excellent balance of binding force, resistance suppression at low temperatures, and high temperature cycle characteristics.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration.
  • the present invention includes a configuration that achieves the same effects as the configuration described in the above embodiment or a configuration that can achieve the same object.
  • the present invention includes a configuration obtained by adding a known technique to the configuration described in the above embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

結着性に優れると共に、充放電特性(特に高速放電特性)及び耐久性に優れる蓄電デバイスを作製するための蓄電デバイス用バインダー組成物を提供する。 本発明に係る蓄電デバイス用バインダー組成物は、重合体(A)と、液状媒体(B)と、を含有し、前記重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、前記重合体(A)が、不飽和カルボン酸エステルに由来する繰り返し単位(a1)23~70質量部と、共役ジエン化合物に由来する繰り返し単位(a2)20~74質量部と、を含有し、前記繰り返し単位(a1)及び前記繰り返し単位(a2)の合計量が76質量部以上であることを特徴とする。

Description

蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
 本発明は、蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイスに関する。
 近年、電子機器の駆動用電源として、高電圧、高エネルギー密度を有する蓄電デバイスが要求されている。特にリチウムイオン電池やリチウムイオンキャパシタは、高電圧、高エネルギー密度を有する蓄電デバイスとして期待されている。
 このような蓄電デバイスに使用される電極は、活物質と電極用バインダーの混合物を集電体へ塗布・乾燥することで作製される。このような電極用バインダーに要求される特性としては、活物質同士の結合能力及び活物質と集電体との接着力、塗布・乾燥された組成物塗膜(以下、「活物質層」ともいう。)からの活物質の微粉などが脱落しない粉落ち耐性(以下、まとめて単に「結着性」ともいう。)を高めることや、電極用バインダーに起因する電池の内部抵抗を低減させることが挙げられる。たとえば、電極用バインダーが高結着性を有することで電極の折り畳み方法や捲回半径等の設計が容易となり、蓄電デバイスの小型化を達成することができる。また、電極用バインダーに起因する電池の内部抵抗を低減させることで、良好な充放電特性を実現することができる。さらに近年では電気自動車用駆動電源として搭載した場合、急加速に対応し得る高速放電が可能な蓄電デバイスが求められている。
 上記の事情により、従来技術においては結着性と、蓄電デバイスの充放電特性及び耐久性とを向上すべく、バインダー材料の電解液に対する親和性を調整するための種々の提案がなされている。たとえば、バインダー材料である重合体にニトリル基を導入する技術(特許文献1参照)などが提案されている。
 また、結着性が良好、かつ電極に塗工欠陥を作りにくいバインダー材料として、脂肪族共役ジエン系単量体、エチレン性不飽和カルボン酸系単量体、及びこれらと共重合可能なエチレン性不飽和単量体の組み合わせを特徴とするバインダー組成物が提案されている(特許文献2参照)。さらに、結着性に優れており、表面電気抵抗率の低い電極塗工層を形成できるバインダー材料として、エチレン性不飽和カルボン酸単量体、シアン化ビニル系単量体、エチレン性不飽和カルボン酸エステル系単量体、芳香族ビニル系単量体、脂肪族共役ジエン系単量体の組み合わせを特徴とするバインダー組成物が提案されている(特許文献3参照)。
 また、最近になって、蓄電デバイスの高出力化及び高エネルギー密度化の要求を達成する観点から、リチウム吸蔵量の大きい材料を利用する検討が進められている。例えば、より結晶性の高い黒鉛(グラファイト)を活物質として利用することでリチウム吸蔵量を向上させ、炭素材料の理論吸蔵量(約370mAh/g)に近い容量を実現するアプローチが進められている。その一方で、リチウムの理論吸蔵量が最大で約4200mAh/gであるケイ素材料を活物質として活用するアプローチが提案されている(特許文献4参照)。いずれにしても、このようなリチウム吸蔵量が大きい活物質を活用することで、蓄電デバイスの容量が大幅に向上すると考えられている。
特開平08-287915号公報 特開2012-094506号公報 特開2011-154981号公報 特開2004-185810号公報
 しかしながら、上記の従来技術によっても電気自動車用駆動電源として搭載可能なレベルの高速放電特性は実現されていない。たとえば、特許文献1に記載されている材料は、バインダー材料の電解液親和性を向上することによって高速放電特性を実現しようというものであるが、該材料は電解液と接触したときの膨潤性が非常に大きいため、蓄電デバイスを特に高温において使用ないし保管したときの劣化が著しく、耐久性(例えば高温サイクル特性)に問題がある。また、特許文献2や特許文献3に記載されている材料は、耐久性に優れる反面、電池の抵抗が特に低温下で高い傾向にあり高速充放電特性が十分ではなかった。このように従来技術においては、蓄電デバイスの耐久性と充放電特性(特に高速放電特性)とはトレードオフの関係にあるものと考えられており、これらの特性を高いレベルで両立させたいという課題があった。
 また、上記特許文献1~3に記載されている電極用バインダーは、リチウム吸蔵量の大きい活物質を実用化するにあたり結着性が十分とは言えなかった。このような電極用バインダーを使用すると、充放電を繰り返すことにより活物質が脱落するなどして電極特性が劣化するため、実用化に必要な耐久性が十分に得られないという課題もあった。
 本発明に係る幾つかの態様は、結着性に優れると共に、充放電特性(特に高速放電特性)、低温抵抗特性及び耐久性に優れる蓄電デバイスを作製するための蓄電デバイス用バインダー組成物を提供する。また、本発明に係る幾つかの態様は、該組成物を含有する蓄電デバイス電極用スラリーを提供する。また、本発明に係る幾つかの態様は、結着性に優れた蓄電デバイス電極を提供する。さらに、本発明に係る幾つかの態様は、充放電特性(特に高速放電特性)、低温抵抗特性及び耐久性に優れる蓄電デバイスを提供する。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明に係る蓄電デバイス用バインダー組成物の一態様は、
 重合体(A)と、液状媒体(B)と、を含有し、
 前記重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、前記重合体(A)が、
 不飽和カルボン酸エステルに由来する繰り返し単位(a1)23~70質量部と、
 共役ジエン化合物に由来する繰り返し単位(a2)20~74質量部と、を含有し、
 前記繰り返し単位(a1)及び前記繰り返し単位(a2)の合計量が76質量部以上であることを特徴とする。
 [適用例2]
 本発明に係る蓄電デバイス用バインダー組成物の一態様は、
 重合体(A)と、液状媒体(B)と、を含有し、
 前記重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、前記重合体(A)が、
 不飽和カルボン酸エステルに由来する繰り返し単位(a1)23~70質量部と、
 共役ジエン化合物に由来する繰り返し単位(a2)20~74質量部と、
 含フッ素エチレン系単量体に由来する繰り返し単位(a3)3~50質量部と、を含有し、
 前記繰り返し単位(a1)、前記繰り返し単位(a2)及び前記繰り返し単位(a3)の合計量が76質量部以上であることを特徴とする。
 [適用例3]
 上記適用例の蓄電デバイス用バインダー組成物において、
 前記不飽和カルボン酸エステルに由来する繰り返し単位(a1)の含有割合が35~68質量部であることができる。
 [適用例4]
 上記適用例の蓄電デバイス用バインダー組成物において、
 前記重合体(A)が、さらに不飽和カルボン酸に由来する繰り返し単位(a4)を0.1~24質量部含有することができる。
 [適用例5]
 上記適用例の蓄電デバイス用バインダー組成物において、
 前記重合体(A)が、さらにα,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)を0.1~15質量部含有することができる。
 [適用例6]
 上記適用例の蓄電デバイス用バインダー組成物において、
 前記重合体(A)が、さらに芳香族ビニル化合物に由来する繰り返し単位(a6)を15質量部未満含有することができる。
 [適用例7]
 上記適用例の蓄電デバイス用バインダー組成物において、
 前記重合体(A)が粒子であることができる。
 [適用例8]
 上記適用例の蓄電デバイス用バインダー組成物において、
 前記粒子の数平均粒子径が50nm以上5000nm以下であることができる。
 [適用例9]
 上記適用例の蓄電デバイス用バインダー組成物において、
 前記液状媒体(B)が水であることができる。
 [適用例10]
 本発明に係る蓄電デバイス電極用スラリーの一態様は、
 上記蓄電デバイス用バインダー組成物と、活物質と、を含有することを特徴とする。
 [適用例11]
 上記適用例の蓄電デバイス電極用スラリーにおいて、
 前記活物質としてケイ素材料を含有することができる。
 [適用例12]
 本発明に係る蓄電デバイス電極の一態様は、
 集電体と、前記集電体の表面上に上記蓄電デバイス電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備えることを特徴とする。
 [適用例13]
 本発明に係る蓄電デバイスの一態様は、
 上記蓄電デバイス電極を備えることを特徴とする。
 本発明に係る蓄電デバイス用バインダー組成物によれば、結着性に優れた蓄電デバイス電極を製造できるだけでなく、充放電特性(特に高速放電特性)、低温抵抗特性及び耐久性に優れる蓄電デバイスを製造することができる。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。なお、本明細書における「(メタ)アクリル酸~」とは、「アクリル酸~」及び「メタクリル酸~」の双方を包括する概念である。また、「~(メタ)アクリレート」とは、「~アクリレート」及び「~メタクリレート」の双方を包括する概念である。
 1.蓄電デバイス用バインダー組成物
 本実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)と、液状媒体(B)とを含有する。本実施形態に係る蓄電デバイス用バインダー組成物は、充放電に伴って発生するデンドライトに起因する短絡を抑制するための保護膜を形成するための材料として使用することもできるし、活物質同士の結合能力及び活物質と集電体との密着能力並びに粉落ち耐性を向上させた蓄電デバイス電極(活物質層)を作製するための材料として使用することもできる。以下、本実施形態に係る蓄電デバイス用バインダー組成物に含まれる各成分について詳細に説明する。
 1.1.重合体(A)
 本実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)を含有する。本発明において、重合体(A)は以下の2つの態様を取り得る。
 第1の態様に係る重合体(A)は、不飽和カルボン酸エステルに由来する繰り返し単位(a1)23~70質量部と、共役ジエン化合物に由来する繰り返し単位(a2)20~74質量部とを有し、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、前記繰り返し単位(a1)と前記繰り返し単位(a2)の合計量が76質量部以上である。
 第2の態様に係る重合体(A)は、不飽和カルボン酸エステルに由来する繰り返し単位(a1)23~70質量部と、共役ジエン化合物に由来する繰り返し単位(a2)20~74質量部と、含フッ素エチレン系単量体に由来する繰り返し単位(a3)3~50質量部とを有し、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、前記繰り返し単位(a1)と前記繰り返し単位(a2)と前記繰り返し単位(a3)の合計量が76質量部以上である。
 第1及び第2の態様に係る重合体(A)を使用することにより、低温抵抗特性及び耐久性を共に向上させて、充放電特性及び耐久性のバランスに優れた蓄電デバイスを作製することができる。
 重合体(A)は、液状媒体(B)に溶解された状態でもよいし、液状媒体(B)中に分散されたラテックス状であってもよいが、液状媒体(B)中に重合体(A)の粒子が分散されたラテックス状であることが好ましい。本実施形態に係る蓄電デバイス用バインダー組成物がラテックス状であると、活物質と混合して作成される蓄電デバイス電極用スラリーの安定性が良好となるだけでなく、塗布性も良好となるため好ましい。
 以下、重合体(A)に含まれ得る各繰り返し単位について説明する。
 1.1.1.不飽和カルボン酸エステルに由来する繰り返し単位(a1)
 第1及び第2の態様における重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、不飽和カルボン酸エステルに由来する繰り返し単位(a1)(ただし、含フッ素エチレン系単量体に由来する繰り返し単位(a3)を除く。)を23~70質量部含有する。これにより、重合体(A)と電解液との親和性が良好となり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制すると共に、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
 不飽和カルボン酸エステルの中でも、(メタ)アクリル酸エステルを好ましく使用することができる。(メタ)アクリル酸エステルの具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸i-アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリルなどを挙げることができ、これらのうちから選択される1種以上であることができる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル及び(メタ)アクリル酸2-エチルヘキシルから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルを含有することが特に好ましい。なお、本発明において、後述する(メタ)アクリルアミド、N-メチロールアクリルアミド等のエチレン性不飽和カルボン酸のアルキルアミド;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミド等のエチレン性不飽和カルボン酸のアミノアルキルアミド等は、不飽和カルボン酸エステルの概念には含まれない。
 第1及び第2の態様における重合体(A)は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、繰り返し単位(a1)を23~70質量部含有するが、その含有割合は、好ましくは26~70質量部、より好ましくは35~68質量部、特に好ましくは41~65質量部である。重合体(A)における繰り返し単位(a1)の含有割合が前記範囲にあると、蓄電デバイスの低温抵抗特性のさらなる向上が可能となる。
 1.1.2.共役ジエン化合物に由来する繰り返し単位(a2)
 第1及び第2の態様における重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、共役ジエン化合物に由来する繰り返し単位(a2)を20~74質量部含有する。これにより、重合体(A)に適度な柔軟性を付与することができ、結着性が良好となるため、蓄電デバイスの耐久性が向上する。
 共役ジエン化合物としては、特に限定されないが、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエンなどを挙げることができ、これらのうちから選択される1種以上であることができる。これらの中でも、1,3-ブタジエンが特に好ましい。
 第1及び第2の態様における重合体(A)は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、繰り返し単位(a2)を20~74質量部含有するが、その含有割合は、好ましくは20~70質量部、より好ましくは30~68質量部、特に好ましくは40~65質量部である。重合体(A)における繰り返し単位(a2)の含有割合が前記範囲にあると、結着性がさらに向上すると共に、蓄電デバイスの耐久性のさらなる向上が可能となる。
 1.1.3.含フッ素エチレン系単量体に由来する繰り返し単位(a3)
 第2の態様における重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、含フッ素エチレン系単量体に由来する繰り返し単位(a3)を3~50質量部含有する。これにより、蓄電デバイスの低温抵抗特性をさらに向上させることができる。
 含フッ素エチレン系単量体としては、特に限定されないが、フッ素原子を有するオレフィン化合物、フッ素原子を有する(メタ)アクリル酸エステル等が挙げられる。フッ素原子を有するオレフィン化合物としては、例えばフッ化ビニリデン、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレン、パーフルオロアルキルビニルエーテル、1,1,2,2-テトラフルオロ-1,2-ビス[(トリフルオロビニル)オキシ]エタン等が挙げられる。フッ素原子を有する(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸3[4[1-トリフルオロメチル-2,2-ビス[ビス(トリフルオロメチル)フルオロメチル]エチニルオキシ]ベンゾオキシ]2-ヒドロキシプロピル等が挙げられる。
 第2の態様における重合体(A)は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、繰り返し単位(a3)を3~50質量部含有するが、その含有割合は、好ましくは4~40質量部、より好ましくは5~30質量部、特に好ましくは5~25質量部である。重合体(A)における繰り返し単位(a3)の含有割合が前記範囲にあると、蓄電デバイスの低温抵抗特性と耐久性とのバランスのさらなる向上が可能となる。
 1.1.4.不飽和カルボン酸に由来する繰り返し単位(a4)
 第1及び第2の態様における重合体(A)は、不飽和カルボン酸に由来する繰り返し単位(a4)を含有してもよい。これにより、重合体(A)の電解液への溶解を低減することが可能となり、電解液による結着性の低下を抑制することができる。また、蓄電デバイス中で溶解した重合体成分が電気抵抗成分となることによる内部抵抗の上昇を抑制することができる。
 不飽和カルボン酸としては、特に限定されないが、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等の、モノカルボン酸及びジカルボン酸(無水物を含む。)を挙げることができ、これらから選択される1種以上を使用することができる。不飽和カルボン酸としては、アクリル酸、メタクリル酸、イタコン酸から選択される1種以上を使用することが好ましい。
 第1及び第2の態様における重合体(A)は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、繰り返し単位(a4)を0.1~24質量部含有することが好ましく、1~20質量部含有することがより好ましい。重合体(A)における繰り返し単位(a4)の含有割合が前記範囲にあると、電解液耐性のさらなる向上が可能となる。
 1.1.5.α,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)
 第1及び第2の態様における重合体(A)は、α,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)を含有してもよい。これにより、重合体(A)の電解液への溶解を低減することが可能となり、電解液による結着性の低下を抑制することができる。また、蓄電デバイス中で溶解した重合体成分が電気抵抗成分となることによる内部抵抗の上昇を抑制することができる。
 α,β-不飽和ニトリル化合物としては、特に限定されないが、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エチルアクリロニトリル、シアン化ビニリデン等が挙げられ、これらから選択される1種以上を使用することができる。これらのうち、アクリロニトリル及びメタクリロニトリルよりなる群から選択される1種以上が好ましく、アクリロニトリルが特に好ましい。
 第1及び第2の態様における重合体(A)は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、繰り返し単位(a5)を1~20質量部含有することが好ましく、5~15質量部含有することがより好ましい。重合体(A)における繰り返し単位(a5)の含有割合が前記範囲にあると、重合体(A)に電解液への適度な親和性が付与され、蓄電デバイスの低温抵抗特性のさらなる向上が可能となるが、上記上限範囲を超えると過度な親和性が付与され、蓄電デバイスの耐久性が低下する。
 1.1.6.芳香族ビニル化合物に由来する繰り返し単位(a6)
 第1及び第2の態様における重合体(A)は、芳香族ビニル化合物に由来する繰り返し単位(a6)を含有してもよい。本明細書において、「芳香族ビニル化合物」とは、芳香族単官能ビニル化合物のことを指し、後述する芳香族多官能ビニル化合物を除外する概念である。
 芳香族ビニル化合物としては、特に限定されないが、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロルスチレンなどを挙げることができ、これらから選択される1種以上であることができる。
 第1及び第2の態様における重合体(A)は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、繰り返し単位(a6)を15質量部未満含有することが好ましく、10質量部未満含有することがより好ましく、5質量部未満含有することがさらにより好ましく、0質量部、すなわち実質的に含有しないことが特に好ましい。重合体(A)における繰り返し単位(a6)の含有割合が前記範囲にあると、電解液に対する過度な膨潤が抑制されやすい。
 1.1.7.芳香族多官能ビニル化合物に由来する繰り返し単位(a7)
 第1及び第2の態様における重合体(A)は、芳香族多官能ビニル化合物に由来する繰り返し単位(a7)を含有してもよい。これにより、重合体(A)の電解液に対する過度な膨潤を抑制することができるため好ましい。
 芳香族多官能ビニル化合物としては、特に限定されないが、ジビニルベンゼン、ジイソプロペニルベンゼン等の芳香族ジアルケニル化合物を挙げることができ、これらから選択される1種以上であることができる。これらの中でも、ジビニルベンゼンが好ましい。
 第1及び第2の態様における重合体(A)は、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、繰り返し単位(a7)を0.1~5質量部未満含有することが好ましく、1~3質量部未満含有することがより好ましい。重合体(A)における繰り返し単位(a7)の含有割合が前記範囲にあると、電解液に対する過度な膨潤が抑制され、結着性のさらなる向上が可能となる。
 1.1.8.その他の繰り返し単位
 第1及び第2の態様における重合体(A)は、上記の繰り返し単位の他に、これらと共重合可能な他の不飽和単量体に由来する繰り返し単位を含有してもよい。
 このような不飽和単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチルメタクリレート、スルホプロピルメタクリレート、スルホブチルメタクリレート、2-アクリルアミド-2-メチルプロパンスルホン酸、2-ヒドロキシ-3-アクリルアミドプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などのスルホン酸基を有する化合物;(メタ)アクリルアミド、N-メチロールアクリルアミド等のエチレン性不飽和カルボン酸のアルキルアミド;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミド等のエチレン性不飽和カルボン酸のアミノアルキルアミド等を挙げることができ、これらのうちから選択される1種以上であることができる。
 1.1.9.繰り返し単位の合計量
 第1の態様における重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、不飽和カルボン酸エステルに由来する繰り返し単位(a1)及び共役ジエン化合物に由来する繰り返し単位(a2)の合計量が76質量部以上であり、80質量部以上であることがより好ましい。前記繰り返し単位(a1)及び前記繰り返し単位(a2)の合計量が前記範囲であると、蓄電デバイスの低温抵抗特性と耐久性とのバランスが良好となるため好ましい。
 第2の態様における重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、不飽和カルボン酸エステルに由来する繰り返し単位(a1)、共役ジエン化合物に由来する繰り返し単位(a2)及び含フッ素エチレン系単量体に由来する繰り返し単位(a3)の合計量が76質量部以上であり、80質量部以上であることがより好ましい。前記繰り返し単位(a1)、前記繰り返し単位(a2)及び前記繰り返し単位(a3)の合計量が前記範囲であると、蓄電デバイスの高温サイクル特性や低温抵抗特性と耐久性とのバランスが良好となるため好ましい。
 1.1.10.重合体(A)の特性
<トルエン不溶分>
 重合体(A)の50℃におけるトルエン不溶分は、80%以上であることが好ましく、90%以上であることがより好ましく、98%以上、すなわち実質的に溶解しないことが特に好ましい。トルエン不溶分は、蓄電デバイスで使用する電解液への不溶分量とほぼ比例すると推測される。このため、トルエン不溶分が前記範囲であれば、蓄電デバイスを作製して、長期間にわたり充放電を繰り返した場合でも電解液への重合体(A)の溶出を抑制できるため良好であると推測できる。重合体(A)のトルエン不溶分は、後述の実施例に記載された方法により測定することができる。
<重量平均分子量(Mw)>
 重合体(A)は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算の重量平均分子量(Mw)が10,000以上であることが好ましく、100,000以上であることがより好ましく、500,000以上であることが特に好ましい。重合体(A)の重量平均分子量(Mw)が前記範囲であると、結着性がさらに良好となり、充放電特性に優れた蓄電デバイスが得られやすい。
<数平均粒子径>
 重合体(A)が粒子である場合、該粒子の数平均粒子径の下限値としては、50nm以上であることが好ましく、80nm以上であることがより好ましく、120nm以上であることが特に好ましい。該粒子の数平均粒子径の上限値としては、5000nm以下であることが好ましく、1000nm以下であることがより好ましく、500nm以下であることが特に好ましい。該粒子の数平均粒子径が前記範囲にあると、蓄電デバイス用バインダー組成物の安定性が向上すると共に、蓄電デバイス電極を構成する合材層(セパレータ、保護膜等)強度を高く維持することができる。
 (重合体)粒子の数平均粒子径とは、光散乱法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、小さい粒子から粒子を累積したときの粒子数の累積度数が50%となる粒子径(D50)の値である。このような粒度分布測定装置としては、例えばコールターLS230、LS100、LS13 320(以上、Beckman Coulter.Inc製)や、FPAR-1000(大塚電子株式会社製)等を挙げることができる。これらの粒度分布測定装置は、粒子の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とすることができる。従って、これらの粒度分布測定装置によって測定された粒度分布は、組成物中に含まれる(重合体)粒子の分散状態の指標とすることができる。
<吸熱特性>
 重合体(A)は、JIS K7121に準拠して示差走査熱量測定(DSC)を行ったときに、-50~+80℃の温度範囲における吸熱ピークが1つのみ観測されることが好ましい。重合体(A)の吸熱挙動は、(重合体)粒子の形状安定性と相関すると推測される。このため、重合体(A)の吸熱ピークが前記温度範囲であれば、前記粒子の形状安定性が良好となり、形成された活物質層や保護膜が十分な強度を有すると推測できる。
<電解液不溶分>
 重合体(A)の電解液不溶分は、80%以上であることが好ましく、90%以上であることがより好ましく、98%以上、すなわち実質的に溶解しないことが特に好ましい。電解液不溶分が前記範囲であれば、蓄電デバイスを作製して、長期間にわたり充放電を繰り返した場合でも電解液への重合体(A)の溶出を抑制できるため、耐久性が良好となる。
<電解液膨潤率>
 重合体(A)の電解液膨潤率は、100~420%であることが好ましく、120~400%であることがより好ましく、130~360%であることが特に好ましい。電解液膨潤率が前記範囲内にあると、重合体(A)は電解液に対して適度に膨潤することができる。その結果、溶媒和したリチウムイオンが容易に活物質へ到達することができ、効果的に電極抵抗を低下させて、より良好な充放電特性を実現できる。また、前記範囲内の電解液膨潤率であれば、大きな体積変化が発生しないため結着性にも優れる。重合体(A)の電解液膨潤率は、後述の実施例に記載された方法により測定することができる。
 1.1.11.重合体(A)の製造方法
 重合体(A)は、一段重合で作製してもよく、二段重合、さらに多段重合で作製してもよく、それぞれの重合において公知の重合開始剤、分子量調整剤、乳化剤(界面活性剤)等の存在下で行うことができる。
 第2の態様の重合体(A)である場合、重合体(A)としては、
(1)不飽和カルボン酸エステルに由来する繰り返し単位(a1)、共役ジエン化合物に由来する繰り返し単位(a2)及び含フッ素エチレン系単量体に由来する繰り返し単位(a3)を有する重合体粒子を一段重合で合成して得られる共重合体粒子、
(2)含フッ素エチレン系単量体に由来する繰り返し単位(a3)を有する重合体Xと、不飽和カルボン酸エステルに由来する繰り返し単位(a1)及び共役ジエン化合物に由来する繰り返し単位(a2)を有する重合体Yとを有する複合粒子、
の二態様が挙げられる。これらのうち、耐酸化性に優れる観点から、複合粒子であることが好ましく、該複合粒子がポリマーアロイ粒子であることがより好ましい。ポリマーアロイ粒子は、特開2014-081996号等に記載された方法により製造することができる。
 上記重合開始剤としては、例えば過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の水溶性重合開始剤;過酸化ベンゾイル、ラウリルパーオキサイド、2,2’-アゾビスイソブチロニトリル等の油溶性重合開始剤;重亜硫酸ナトリウム、鉄(II)塩、三級アミン等の還元剤と、過硫酸塩や有機過酸化物等の酸化剤との組合せからなるレドックス系重合開始剤等を挙げることができる。これらの重合開始剤は、1種単独または2種以上を組み合わせて用いることができる。重合開始剤の使用割合は、使用する単量体の合計100質量部に対して、0.3~3質量部とすることが好ましい。
 上記分子量調整剤としては、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタンなどのアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイドなどのキサントゲン化合物;ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィドなどのチウラム化合物;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなどのフェノール化合物;アリルアルコールなどのアリル化合物;ジクロルメタン、ジブロモメタン、四臭化炭素などのハロゲン化炭化水素化合物;α-ベンジルオキシスチレン、α-ベンジルオキシアクリロニトリル、α-ベンジルオキシアクリルアミドなどのビニルエーテル化合物などのほか、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート、α-メチルスチレンダイマーなどが挙げられるが、これらに制限されるものではない。これらのうち、ドデシルメルカプタンであることが好ましい。上記例示した分子量調整剤は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。分子量調整剤の使用割合は、使用する単量体の合計100質量部に対して、0.1~10質量部とすることが好ましく、1~5質量部とすることがより好ましい。
 上記乳化剤としては、例えばアニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤、フッ素系界面活性剤等を挙げることができ、公知のものを使用することができる。乳化剤の使用割合は、使用する単量体の合計100質量部に対して、0.01~10質量部とすることが好ましく、0.02~5質量部とすることがより好ましい。
 重合体(A)の合成は、特に限定されるものではないが、例えば公知の乳化重合工程またはこれを適宜に組み合わせることにより容易に合成することができる。乳化重合は、適当な水系媒体中で行うことが好ましく、水中で行うことがより好ましい。この水系媒体中における単量体の合計の含有割合は、10~50質量%とすることが好ましく、20~40質量%とすることがより好ましい。
 乳化重合の条件としては、重合温度40~85℃において重合時間2~24時間とすることが好ましく、重合温度50~80℃において重合時間3~20時間とすることがより好ましい。
 1.2.液状媒体(B)
 本実施形態に係る蓄電デバイス用バインダー組成物は、液状媒体(B)を含有する。液状媒体(B)としては、水を含有する水系媒体であることが好ましい。この水系媒体は、水以外に少量の非水系媒体を含有することができる。このような非水系媒体としては、例えばアミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物等を挙げることができ、これらのうちから選択される1種以上を使用することができる。このような非水系媒体の含有割合は、水系媒体の全量に対して、好ましくは10質量%以下であり、より好ましくは5質量%以下である。なお、水系媒体は、非水系媒体を含有せずに水のみからなるものであることが最も好ましい。
 本実施形態に係る蓄電デバイス用バインダー組成物は、液状媒体(B)として水系媒体を使用し、好ましくは水以外の非水系媒体を含有しないことにより、環境に対する悪影響を与える程度が低く、取扱作業者に対する安全性も高くなる。
 1.3.その他の成分
 1.3.1.水溶性ポリマー
 本実施形態に係る蓄電デバイス用バインダー組成物は、水溶性ポリマーを含有することによって、その塗工性や密着性を改善することができる。
 水溶性ポリマーとしては、例えばカルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース等のセルロース化合物;上記セルロース化合物のアンモニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸、変性ポリ(メタ)アクリル酸等のポリカルボン酸;上記ポリカルボン酸のアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、エチレン-ビニルアルコール共重合体等のポリビニルアルコール系(共)重合体;(メタ)アクリル酸、マレイン酸及びフマル酸等の不飽和カルボン酸とビニルエステルとの共重合体の鹸化物;無水マレイン酸とイソブチレンとの交互共重合体;上記交互共重合体のアンモニウム塩またはアルカリ金属塩、ポリアクリルアミド、変性ポリアクリルアミド等の水溶性ポリマーを挙げることができる。これらの中でも特に好ましい水溶性ポリマーとしては、カルボキシメチルセルロースのアルカリ金属塩、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、ポリ(メタ)アクリル酸のアルカリ金属塩、無水マレイン酸とイソブチレンとの交互共重合体のアルカリ金属塩、ポリアクリルアミド、変性ポリアクリルアミド等である。
 水溶性ポリマーの市販品としては、例えばCMC1120、CMC1150、CMC2200、CMC2280、CMC2450(以上、株式会社ダイセル製)、メトローズSHタイプ、メトローズSEタイプ(以上、信越化学工業株式会社製)等のカルボキシメチルセルロースのアルカリ金属塩を挙げることができる。また、無水マレイン酸とイソブチレンとの交互共重合体の市販品としては、イソバン06、イソバン10、イソバン18、イソバン110(以上、株式会社クラレ製)等を挙げることができる。
 本実施形態に係る蓄電デバイス用バインダー組成物が水溶性ポリマーを含有する場合、水溶性ポリマーの含有割合は、蓄電デバイス用バインダー組成物の全固形分量に対して、5質量%以下であることが好ましく、0.1~3質量%であることがより好ましい。
 1.3.2.界面活性剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、分散性及び分散安定性を改善する観点から界面活性剤を含有してもよい。界面活性剤としては、例えばアニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤、フッ素系界面活性剤等を挙げることができ、公知のものを使用することができる。
 1.3.3.防腐剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、長期信頼性の観点から防腐剤を含有してもよい。防腐剤としては、公知のものを使用することができるが、イソチアゾリン系防腐剤を好適に用いることができる。
 2.蓄電デバイス用スラリー
 本実施形態に係る蓄電デバイス用スラリーは、上述の蓄電デバイス用バインダー組成物を含有するものである。上述の蓄電デバイス用バインダー組成物は、充放電に伴って発生するデンドライトに起因する短絡を抑制するための保護膜を形成するための材料として使用することもできるし、活物質同士の結合能力及び活物質と集電体との密着能力並びに粉落ち耐性を向上させた蓄電デバイス電極(活物質層)を作製するための材料として使用することもできる。そのため、保護膜を形成するための蓄電デバイス用スラリー(以下、「保護膜形成用スラリー」ともいう。)と、蓄電デバイス電極の活物質層を形成するための蓄電デバイス用スラリー(以下、「蓄電デバイス電極用スラリー」ともいう。)とに分けて説明する。
 2.1.保護膜形成用スラリー
 本明細書における「保護膜形成用スラリー」とは、これを電極またはセパレータの表面もしくはその両方に塗布した後、乾燥させて、電極またはセパレータの表面もしくはその両方に保護膜を形成するために用いられる分散液のことをいう。本実施形態に係る保護膜形成用スラリーは、上述した蓄電デバイス用バインダー組成物のみから構成されていてもよく、無機フィラーをさらに含有していてもよい。以下、本実施形態に係る保護膜形成用スラリーに含まれる各成分について詳細に説明する。なお、蓄電デバイス用バインダー組成物については、上述した通りであるので説明を省略する。
 2.1.1.無機フィラー
 本実施形態に係る保護膜形成用スラリーは、無機フィラーを含有することにより、形成される保護膜のタフネスを向上させることができる。無機フィラーとしては、シリカ、酸化チタン(チタニア)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、及び酸化マグネシウム(マグネシア)よりなる群から選択される少なくとも1種の粒子を用いることが好ましい。これらの中でも、保護膜のタフネスをより向上させる観点から、酸化チタン、酸化アルミニウムが好ましい。また、酸化チタンとしてはルチル型の酸化チタンがより好ましい。
 無機フィラーの平均粒子径は、1μm以下であることが好ましく、0.1~0.8μmの範囲内であることがより好ましい。なお、無機フィラーの平均粒子径は、多孔質膜であるセパレータの平均孔径よりも大きいことが好ましい。これにより、セパレータへのダメージを軽減し、無機フィラーがセパレータの微多孔に詰まることを防ぐことができる。
 本実施形態に係る保護膜形成用スラリーは、無機フィラー100質量部に対して、上述の蓄電デバイス用バインダー組成物が、固形分換算で0.1~20質量部含有されていることが好ましく、1~10質量部含有されていることがより好ましい。蓄電デバイス用バインダー組成物の含有割合が前記範囲であることにより、形成される保護膜のタフネスとリチウムイオンの透過性とのバランスが良好となり、その結果、得られる蓄電デバイスの抵抗上昇率をより低くすることができる。
 2.1.2.液状媒体
 本実施形態に係る保護膜形成用スラリーは、上述の蓄電デバイス用バインダー組成物の「1.2.液状媒体(B)」に記載されている材料を必要に応じて用いることができる。液状媒体の添加量は、塗工方法等に応じて最適なスラリーの粘度が得られるように、必要に応じて調整することができる。
 2.1.3.その他の成分
 本実施形態に係る保護膜形成用スラリーは、上述の蓄電デバイス用バインダー組成物の「1.3.その他の成分」に記載されている材料を必要に応じて適量用いることができる。
 2.2.蓄電デバイス電極用スラリー
 本明細書における「蓄電デバイス電極用スラリー」とは、これを集電体の表面に塗布した後、乾燥させて、集電体表面上に活物質層を形成するために用いられる分散液のことをいう。本実施形態に係る蓄電デバイス電極用スラリーは、上述の蓄電デバイス用バインダー組成物と、活物質とを含有する。以下、本実施形態に係る蓄電デバイス電極用スラリーに含まれる成分についてそれぞれ詳細に説明する。なお、蓄電デバイス用バインダー組成物、液状媒体及びその他の成分については、上述した通りであるので説明を省略する。
 2.2.1.活物質
 活物質としては、例えば炭素材料、ケイ素材料、リチウム原子を含む酸化物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、アルミニウム化合物などを挙げることができる。
 上記炭素材料としては、例えばアモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などが挙げられる。
 上記ケイ素材料としては、例えばケイ素単体、ケイ素酸化物、ケイ素合金などを挙げることができるほか、例えばSiC、SiO(0<x≦3、0<y≦5)、Si、SiO、SiO(0<x≦2)で表記されるSi酸化物複合体(例えば特開2004-185810号公報や特開2005-259697号公報に記載された材料など)、特開2004-185810号公報に記載されたケイ素材料を使用することができる。上記ケイ素酸化物としては、組成式SiO(0<x<2、好ましくは0.1≦x≦1)で表されるケイ素酸化物が好ましい。上記ケイ素合金としては、ケイ素と、チタン、ジルコニウム、ニッケル、銅、鉄及びモリブデンよりなる群から選ばれる少なくとも1種の遷移金属との合金が好ましい。これらの遷移金属のケイ素合金は、高い電子伝導度を有し、かつ、高い強度を有することから好ましく用いられる。また、活物質がこれらの遷移金属を含むことにより、活物質の表面に存在する遷移金属が酸化されて表面に水酸基を有する酸化物となるため、バインダーとの結着力がより良好になる点でも好ましい。ケイ素合金としては、ケイ素-ニッケル合金またはケイ素-チタン合金を使用することがより好ましく、ケイ素-チタン合金を使用することが特に好ましい。ケイ素合金におけるケイ素の含有割合は、該合金中の金属元素の全部に対して10モル%以上とすることが好ましく、20~70モル%とすることがより好ましい。なお、ケイ素材料は、単結晶、多結晶及び非晶質のいずれであってもよい。
 上記リチウム原子を含む酸化物としては、例えばコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、三元系ニッケルコバルトマンガン酸リチウム、LiFePO、LiCoPO、LiMnPO、Li0.90Ti0.05Nb0.05Fe0.30Co0.30Mn0.30POなどが挙げられる。
 また、活物質層中には、以下に例示する活物質を含んでもよい。このような活物質としては、例えばポリアセン等の導電性高分子;A(但し、Aはアルカリ金属または遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも1種、Oは酸素原子を表し、X、Y及びZはそれぞれ1.10>X>0.05、4.00>Y>0.85、5.00>Z>1.5の範囲の数である。)で表される複合金属酸化物や、その他の金属酸化物等が例示される。
 本実施形態に係る蓄電デバイス電極用スラリーは、正極及び負極のいずれの蓄電デバイス電極を作製する際にも使用することができるが、特に負極の作製に適している。
 正極を作製する場合には、上記例示した活物質の中でもリチウム原子を含む酸化物を使用することが好ましい。
 負極を作製する場合には、上記例示した活物質の中でも炭素材料及び/又はケイ素材料を含有するものを使用することが好ましい。ケイ素材料は単位重量当たりのリチウムの吸蔵量がその他の活物質と比較して大きいことから、活物質がケイ素材料を含有することにより、得られる蓄電デバイスの蓄電容量を高めることができ、その結果蓄電デバイスの出力及びエネルギー密度を高くすることができる。また、負極活物質としては、炭素材料とケイ素材料との混合物からなることがより好ましい。炭素材料は、充放電に伴う体積変化が小さいから、負極活物質として炭素材料とケイ素材料との混合物を使用することにより、ケイ素材料の体積変化の影響を緩和することができ、集電体と活物質層との密着性をより向上させることができる。かかる混合物としては、ケイ素材料の表面に炭素材料の被膜が形成された炭素被膜ケイ素材料を用いることもできる。炭素被膜ケイ素材料を用いることで、ケイ素材料の充放電に伴う体積変化の影響を表面に存在する炭素材料によってより効果的に緩和することができるようになるため、集電体と活物質層との密着性を向上させることが容易となる。
 シリコン(Si)を活物質として使用する場合、シリコンは5原子あたり最大22個のリチウムを吸蔵することができる(5Si+22Li→Li22Si)。この結果、シリコン理論容量は4200mAh/gにも達する。しかしながら、シリコンはリチウムを吸蔵する際に大きな体積変化を生じる。具体的には、炭素材料はリチウムを吸蔵することにより最大1.2倍程度に体積膨張するのに対して、ケイ素材料はリチウムを吸蔵することにより最大4.4倍程度に体積膨張する。このためケイ素材料は膨張と収縮の繰り返しによって微粉化、集電体からの剥離や、活物質同士の乖離を引き起こし、活物質層内部の導電ネットワークが寸断される。したがって短時間でサイクル特性が極端に劣化してしまう。
 しかしながら、本実施形態に係る蓄電デバイス電極用スラリーを使用することで、ケイ素材料を使用した場合でも上述のような問題が発生することなく、良好な電気的特性を示すことができる。これは、重合体(A)がケイ素材料を強固に結着させることができると同時に、リチウムを吸蔵することによりケイ素材料が体積膨張しても重合体(A)が伸び縮みしてケイ素材料を強固に結着させた状態を維持することができるためであると考えられる。
 活物質100質量%中に占めるケイ素材料の含有割合は、1質量%以上とすることが好ましく、1~50質量%とすることがより好ましく、5~45質量%とすることがさらに好ましく、10~40質量%とすることが特に好ましい。
 活物質としてケイ素材料と炭素材料とを併用する場合、活物質100質量%に占めるケイ素材料の含有割合は、4~40質量%であること好ましく、5~35質量%であることがより好ましく、5~30質量%であることが特に好ましい。ケイ素材料の使用量が前記範囲であると、リチウムの吸蔵に伴うケイ素材料の体積膨張に対する炭素材料の体積膨張が小さいため、これらの活物質を含有する活物質層の充放電に伴う体積変化を低減させることができ、集電体と活物質層との結着性をより向上させることができる。
 活物質の形状としては、粒状であることが好ましい。活物質の平均粒子径としては、0.1~100μmであることが好ましく、1~20μmであることがより好ましい。
 ここで、活物質の平均粒子径とは、レーザー回折法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、その粒度分布から算出される体積平均粒子径のことである。このようなレーザー回折式粒度分布測定装置としては、例えばHORIBA LA-300シリーズ、HORIBA LA-920シリーズ(以上、株式会社堀場製作所製)などを挙げることができる。この粒度分布測定装置は、活物質の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とする。従って、この粒度分布測定装置によって得られた平均粒子径は、蓄電デバイス電極用スラリー中に含まれる活物質の分散状態の指標とすることができる。なお、活物質の平均粒子径は、スラリーを遠心分離して活物質を沈降させた後、その上澄み液を除去し、沈降した活物質を上記の方法により測定することによっても測定することができる。
 活物質の使用割合は、活物質100質量部に対する重合体(A)の含有割合が、0.1~25質量部となるような割合で使用することが好ましく、0.5~15質量部となるような割合で使用することがより好ましい。このような使用割合とすることにより、結着性により優れ、しかも電極抵抗が小さく充放電特性により優れた電極を製造することができる。
 3.蓄電デバイス電極
 本実施形態に係る蓄電デバイス電極は、集電体と、前記集電体の表面上に上述の蓄電デバイス電極用スラリーが塗布、乾燥されて形成された層と、を備えるものである。かかる蓄電デバイス電極は、金属箔などの適宜の集電体の表面に、上述の蓄電デバイス電極用スラリーを塗布して塗膜を形成し、次いで該塗膜を乾燥することにより製造することができる。このようにして製造された蓄電デバイス電極は、集電体上に、上述の重合体(A)及び活物質、さらに必要に応じて添加した任意成分を含有する活物質層が結着されてなるものである。
 集電体は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池においては、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属製の集電体が使用されるが、特に正極にアルミニウムを、負極に銅を用いた場合、上述の蓄電デバイス電極用スラリーの効果が最もよく現れる。ニッケル水素二次電池における集電体としては、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板などが使用される。集電体の形状及び厚さは特に制限されないが、厚さ0.001~0.5mm程度のシート状のものとすることが好ましい。
 蓄電デバイス電極用スラリーの集電体への塗布方法についても特に制限はない。塗布は、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビヤ法、エクストルージョン法、浸漬法、ハケ塗り法などの適宜の方法によることができる。蓄電デバイス電極用スラリーの塗布量も特に制限されないが、液状媒体を除去した後に形成される活物質層の厚さが、0.005mm~5mmとなる量とすることが好ましく、0.01mm~2mmとなる量とすることがより好ましい。
 塗布後の塗膜からの乾燥方法(水及び任意的に使用される非水系媒体の除去方法)についても特に制限されず、例えば温風、熱風、低湿風による乾燥;真空乾燥;(遠)赤外線、電子線などの照射による乾燥などによることができる。乾燥速度としては、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ速く液状媒体が除去できるように適宜に設定することができる。
 さらに、乾燥後の活物質層をプレスすることにより、活物質層の密度を高めることが好ましい。プレス方法は、金型プレスやロールプレスなどの方法が挙げられる。プレス後の活物質層の密度としては、1.6~2.4g/cmとすることが好ましく、1.7~2.2g/cmとすることがより好ましい。
 4.蓄電デバイス
 本実施形態に係る蓄電デバイスは、上述の蓄電デバイス電極を備えるものであり、さらに電解液を含有し、セパレータなどの部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に収納し、該電池容器に電解液を注入して封口する方法などを挙げることができる。電池の形状は、コイン型、円筒型、角形、ラミネート型など、適宜の形状であることができる。
 電解液は、液状でもゲル状でもよく、活物質の種類に応じて、蓄電デバイスに用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。電解液は、電解質を適当な溶媒に溶解した溶液であることができる。
 電解質としては、リチウムイオン二次電池では、従来から公知のリチウム塩のいずれをも使用することができ、その具体例としては、例えばLiClO、LiBF、LiPF、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、LiCFSO、LiCHSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウムなどを例示することができる。ニッケル水素二次電池では、例えば従来公知の濃度が5モル/リットル以上の水酸化カリウム水溶液を使用することができる。
 電解質を溶解するための溶媒は、特に制限されるものではないが、その具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどのカーボネート化合物;γ-ブチルラクトンなどのラクトン化合物;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル化合物;ジメチルスルホキシドなどのスルホキシド化合物などを挙げることができ、これらのうちから選択される一種以上を使用することができる。電解液中の電解質の濃度としては、好ましくは0.5~3.0モル/Lであり、より好ましくは0.7~2.0モル/Lである。
 上述した蓄電デバイスは、大電流密度での放電が必要なリチウムイオン二次電池、電気二重層キャパシタやリチウムイオンキャパシタ等に適用可能である。この中でもリチウムイオン二次電池が特に好ましい。本実施形態に係る蓄電デバイス電極及び蓄電デバイスにおいて、蓄電デバイス用バインダー組成物以外の部材は、公知のリチウムイオン二次電池用、電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
 5.実施例
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
 5.1.実施例1
 5.1.1.蓄電デバイス用バインダー組成物の調製及び評価
(1)蓄電デバイス用バインダー組成物の調製
 攪拌機を備えた温度調節可能なオートクレーブ中に、水200質量部、ドデシルベンゼンスルホン酸ナトリウム0.9質量部、過硫酸カリウム1.0質量部、重亜硫酸ナトリウム0.5質量部、α-メチルスチレンダイマー0.1質量部、ドデシルメルカプタン0.1質量部及び第1表に示した一段目重合成分を一括して仕込み、70℃に昇温して2時間重合反応を行った。重合添加率が80質量%以上であることを確認した後、反応温度を70℃に維持したまま、第1表に示す二段目重合成分を6時間かけて添加した。二段目重合成分の添加開始から3時間経過した時点で、α-メチルスチレンダイマー0.1質量部及びドデシルメルカプタン0.05質量部を添加した。二段目重合成分の添加終了後、オートクレーブ内の温度を80℃に昇温し、さらに2時間反応を継続してラテックスを得た。その後、ラテックスのpHを7.5に調節し、トリポリリン酸ナトリウム5質量部(固形分換算値、濃度10質量%の水溶液として添加)を加えた。次いで、残留単量体を水蒸気蒸留によって除去し、減圧下で濃縮後、防腐剤としてロシマ541(ダウ・ケミカル社製)を蓄電デバイス用バインダー組成物に対して0.1質量%となるように加え、重合体(A)からなる粒子を40質量%含有する水分散体(蓄電デバイス用バインダー組成物)を得た。
(2)重合体粒子の数平均粒子径の測定
 動的光散乱法を測定原理とする粒度分布測定装置(大塚電子株式会社製、型式「FPAR-1000」)を用いて、上記重合体粒子の粒度分布を測定した。その粒度分布から求めた数平均粒子径は160nmであった。
(3)トルエン不溶分の測定
 上記で得られた水分散体10gを直径8cmのテフロン(登録商標)シャーレへ秤り取り、120℃で1時間乾燥して成膜した。得られた膜(重合体)のうちの1gをトルエン400mL中に浸漬して50℃で3時間振とうした。次いで、トルエン相を300メッシュの金網で濾過して不溶分を分離した後、溶解分のトルエンを蒸発除去して得た残存物の重量(Y(g))を測定した。下記式(1)によってトルエン不溶分を求めたところ、重合体(A)のトルエン不溶分は95%であった。
 トルエン不溶分(%)=((1-Y)/1)×100   (1)
(4)吸熱特性
 上記(3)で得られた膜をJIS K7121に準拠して示差走査熱量計(DSC)を用いて測定したところ、単一のガラス転移温度(Tg)が-31℃に1つだけ観測された。
(5)電解液不溶分・膨潤率の測定(電解液浸漬試験)
 上記(3)で得られた膜1gを、後述の蓄電デバイスの製造において電解液として用いるエチレンカーボネート(EC)及びジエチルカーボネート(DEC)からなる混合液(EC/DEC=1/2(容量比)、以下、この混合液を「EC/DEC」という。)400mL中に浸漬して、60℃において24時間振とうした。次いで、300メッシュの金網で濾過して不溶分を分離した後、溶解分のEC/DECを蒸発除去して得た残存物の重量(Y(g))を測定した。下記式(2)によって電解液不溶分を求めたところ、上記重合体(A)の電解液不溶分は98wt%であった。また、上記の濾過で分離した不溶分(膜)の表面についたEC/DECを紙に吸収させて取り除いた後、該不溶分(膜)の重量(Z(g))を測定した。下記式(3)によって電解液膨潤率を測定したところ、上記重合体(A)の電解液膨潤率は200wt%であった。
 電解液不溶分(質量%)=((1-Y)/1)×100   (2)
 電解液膨潤率(質量%)=(Z/(1-Y))×100   (3)
 5.1.2.正極の製造
(1)正極用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス(株)製、商品名「TKハイビスミックス 2P-03」)に、増粘剤(商品名「CMC1130」、(株)ダイセル製)の6質量%水溶液2質量部(固形分換算値)、正極活物質(市販のリン酸鉄リチウム(LiFePO)をめのう乳鉢で粉砕し、ふるいを用いて分級することにより得られた、粒子径(D50値)が0.5μmのもの)100質量部、導電付与剤としてアセチレンブラック3質量部、及びイオン交換水15質量部を投入し、90rpmで1時間攪拌を行った。次いでここに、上記で得られた蓄電デバイス用バインダー組成物を、該組成物中に含有される重合体(A)の割合が4質量部となるように加え、さらにイオン交換水85質量部を追加した後に1時間攪拌してペーストを得た。得られたペーストにイオン交換水を加えて固形分濃度を40質量%に調整した後、攪拌脱泡機((株)シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1,800rpmで5分間、さらに減圧下(約5×10Pa)において1,800rpmで1.5分間攪拌混合することにより、正極用スラリーを調製した。
(2)正極の製造
 厚み30μmのアルミニウム箔からなる集電体の表面に、上記で調製した正極用スラリーを、乾燥後の膜厚が100μmとなるようにドクターブレード法によって均一に塗布し、120℃において20分間乾燥した。その後、膜(活物質層)の密度が1.9g/cmになるようにロールプレス機によりプレス加工し、さらに絶対圧75Paの減圧下、150℃において4時間真空乾燥することにより、正極を得た。
 5.1.3.負極の製造及び評価
(1)負極用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス(株)製、商品名「TKハイビスミックス 2P-03」)に、増粘剤(商品名「CMC2200」、(株)ダイセル製)の2質量%水溶液1質量部(固形分換算)、負極活物質としてグラファイト100質量部、導電付与剤としてアセチレンブラック4質量部、及びイオン交換水90質量部を投入し、60rpmで1時間撹拌を行った。その後、上記で得られた蓄電デバイス用バインダー組成物を、該組成物中に含有される重合体(A)の割合が2質量部となるように加え、15rpmで15分間攪拌してペーストを得た。得られたペーストにイオン交換水を加えて固形分濃度を50質量%に調整した後、撹拌脱泡機((株)シンキー製、製品名「あわとり練太郎」)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに減圧下(約5×10Pa)において1,800rpmで1.5分間撹拌・混合することにより、負極用スラリーを調製した。
(2)負極の製造
 厚み15μmの銅箔からなる集電体の表面に、上記で調製した負極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜(活物質層)の密度が1.5g/cmとなるようにロールプレス機を使用してプレス加工し、さらに絶対圧75Paの減圧下、150℃において4時間真空乾燥することにより、負極を得た。
(3)負極塗工層の結着力(ピール強度)の評価
 上記で得られた電極シートの表面に、ナイフを用いて活物質層から集電体に達する深さまでの切り込みを2mm間隔で縦横それぞれ10本入れて碁盤目の切り込みを作った。この切り込みに幅18mmの粘着テープ(ニチバン(株)製、商品名「セロテープ」(登録商標)JIS Z1522に規定)を貼り付けて直ちに引き剥がし、活物質の脱落の程度を目視判定で評価した。評価基準は以下の通りである。評価結果を第3表に示した。
(評価基準)
・5点:活物質層の脱落が0個である。
・4点:活物質層の脱落が1~5個である。
・3点:活物質層の脱落が6~20個である。
・2点:活物質層の脱落が21~40個である。
・1点:活物質層の脱落が41個以上である。
 5.1.4.蓄電デバイスの製造及び評価
(1)リチウムイオン二次電池セルの組み立て及び充電
 露点が-80℃以下となるようにAr置換されたグローブボックス内で、上記で製造した負極を直径15.95mmに打ち抜き成型したものを、2極式コインセル(宝泉(株)製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード(株)製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、上記で製造した正極を直径16.16mmに打ち抜き成型したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン二次電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、LiPFを1mol/Lの濃度で溶解したEC/DEC溶液である。
 組み立てた蓄電デバイスを25℃の恒温槽中に入れ、定電流(0.2C)にて充電を開始し、電圧が3.75Vになった時点で引き続き定電圧(3.75V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。次いで、定電流(0.2C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)とした。(エージング充放電)
 次に、上記エージング充放電後の同じセルを25℃の恒温槽中に入れたまま、定電流(0.2C)にて充電を開始し、電圧が3.75Vになった時点で引き続き定電圧(3.75V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として充電を完了し、リチウムイオン二次電池セル(以下、「コインセル電池」ともいう。)を用意した。上記の手順に従って以下の評価項目数に応じた数のコインセル電池を用意した。
(2)低温抵抗の評価
 上記で用意した充電状態のコインセル電池を-10℃の恒温槽中に入れ、4時間静置後、EIS測定(“Electrochemical Inpedance Spectroscopy”、「電気化学インピーダンス測定」)を行い、低温抵抗値を測定した。比較例7で作製したコインセルの抵抗値を5点、比較例8で作製したコインセルの抵抗値を0点とし以下の基準で評価した(抵抗値は低い方が良く、高い方が悪い)。評価結果を第3表に示した。
(評価基準)
・5点:比較例8の抵抗値-(5×(比較例8の抵抗値-比較例7の抵抗値)/6)未満
・4点:比較例8の抵抗値-(4×(比較例8の抵抗値-比較例7の抵抗値)/6)未満~比較例8の抵抗値-(5×(比較例8の抵抗値-比較例7の抵抗値)/6)
・3点:比較例8の抵抗値-(3×(比較例8の抵抗値-比較例7の抵抗値)/6)未満~比較例8の抵抗値-(4×(比較例8の抵抗値-比較例7の抵抗値)/6)
・2点:比較例8の抵抗値-(2×(比較例8の抵抗値-比較例7の抵抗値)/6)未満~比較例8の抵抗値-(3×(比較例8の抵抗値-比較例7の抵抗値)/6)
・1点:比較例8の抵抗値-(1×(比較例8の抵抗値-比較例7の抵抗値)/6)未満~比較例8の抵抗値-(2×(比較例8の抵抗値-比較例7の抵抗値)/6)
・0点:比較例8の抵抗値-(1×(比較例8の抵抗値-比較例7の抵抗値)/6)以上
(3)高温サイクル特性の評価
 上記で用意したコインセル電池を45℃の恒温槽中に入れ、2時間静置後、1Cにて2.5Vまで放電し1Cにて3.75Vまで充電する工程を100サイクル繰り返した。下記式により容量保持率を計算し、下記の基準で評価した。評価結果を第3表に示した。
 容量保持率(%)=(100サイクル目の放電容量)/(1サイクル目の放電容量)
(評価基準)
・5点:容量保持率が95%以上
・4点:容量保持率が90%以上~95%未満
・3点:容量保持率が85%以上~90%未満
・2点:容量保持率が80%以上~85%未満
・1点:容量保持率が75%以上~80%未満
・0点:容量保持率が75%未満
 ピール強度の評価、低温抵抗の評価及び高温サイクル特性の評価の点数を合計すると最高15点となるが、それぞれの評価項目が3点以上であり、かつ、合計得点が10点以上である場合、良好であると判断する。
 5.2.実施例2~12及び比較例1~8
 重合体(A)を合成するための単量体の種類及び量を、それぞれ第1表に記載の通りとし、また必要に応じて乳化剤量を調整した以外は、実施例1と同様にして固形分濃度40質量%の重合体粒子を含有する水系分散体(蓄電デバイス用バインダー組成物)を調製した。また、これらの蓄電デバイス用バインダー組成物を用いて、実施例1と同様にして正極、負極の両電極及びコインセル電池を作製し、各評価を行った。評価結果を第1表及び第3表に示した。
 5.3.実施例13
(1)蓄電デバイス用バインダー組成物の調製
 電磁式撹拌機を備えた内容積約6Lのオートクレーブの内部を十分に窒素置換した後、脱酸素した純水2.5L及び乳化剤としてパーフルオロデカン酸アンモニウム25gを仕込み、350rpmで撹拌しながら60℃まで昇温した。次いで、単量体であるフッ化ビニリデン(VdDF)70質量%及び六フッ化プロピレン(HFP)30質量%からなる混合ガスを、内圧が20kg/cmに達するまで仕込んだ。さらに、重合開始剤としてジイソプロピルパーオキシジカーボネートを20質量%含有するフロン113(CClF-CClF)溶液25gを、窒素ガスを使用して圧入し、重合を開始した。重合中は内圧が20kg/cmに維持されるように、VdDF60質量%及びHFP40質量%からなる混合ガスを逐次圧入した。重合が進行するに従って重合速度が低下するため、重合開始から3時間経過後に、先と同じ重合開始剤溶液と同量を、窒素ガスを使用して圧入し、さらに3時間反応を継続した。その後、反応液を冷却すると同時に撹拌を停止し、未反応の単量体を放出して反応を停止することにより、重合体(X)の微粒子を40質量%含有する水系分散体を得た。得られた重合体(X)について19F-NMRにより分析した結果、各単量体の質量組成比はVdDF/HFP=21/4であることが分かった。
 次いで、攪拌機を備えた温度調節可能なオートクレーブ中に、窒素置換した後、上記で得られた重合体(X)の微粒子を含有する水系分散体(重合体(X)換算で25質量部に相当)、イオン交換水300質量部、ドデシルベンゼンスルホン酸ナトリウム0.3質量部、α-メチルスチレンダイマー0.1質量部、ドデシルメルカプタン0.1質量部及びメタクリル酸メチル25質量部(第2表に示した一段目重合成分のうち不飽和カルボン酸エステル)を仕込み70℃に昇温して2時間撹拌して、重合体(X)の微粒子にメタクリル酸メチルを吸収させ、その後残りの重合成分を一括して仕込み1時間撹拌後、過硫酸カリウム0.5質量部、重亜硫酸ナトリウム0.2質量部を加えて重合反応を行った。重合添加率が80質量%以上であることを確認した後、反応温度を70℃に維持したまま、第2表に示す二段目重合成分を12時間かけて添加した。二段目重合成分の添加開始から6時間経過した時点で、α-メチルスチレンダイマー0.1質量部及びドデシルメルカプタン0.05質量部を添加した。二段目重合成分の添加終了後、オートクレーブ内の温度を80℃に昇温し、さらに2時間反応を継続してラテックスを得た。その後、ラテックスのpHを7.5に調節し、トリポリリン酸ナトリウム5質量部(固形分換算値、濃度10質量%の水溶液として添加)を加えた。次いで、残留単量体を水蒸気蒸留によって除去し、減圧下で濃縮後、防腐剤としてロシマ541(ダウ・ケミカル社製)を蓄電デバイス用バインダー組成物に対して0.1質量%となるように加え、重合体(X)と重合体(Y)からなる粒子を40質量%含有する水分散体(蓄電デバイス用バインダー組成物)を得た。
(2)電極及び蓄電デバイスの作製、並びに評価
 この蓄電デバイス用バインダー組成物を用いた以外は、実施例1と同様にして正極、負極の両電極及びコインセル電池を作製し、各評価を行った。評価結果を第2表及び第4表に示した。
 5.4.実施例14~24及び比較例10~15
 重合体を合成するための単量体の種類及び量を、それぞれ第2表に記載の通りとし、また必要に応じて乳化剤量を調整した以外は、実施例13と同様にして固形分濃度40質量%の重合体粒子を含有する水系分散体(蓄電デバイス用バインダー組成物)を調製した。また、これらの蓄電デバイス用バインダー組成物を用いて、実施例1と同様にして正極、負極の両電極及びコインセル電池を作製し、各評価を行った。評価結果を第2表及び第4表に示した。
 5.5.実施例25、26及び比較例9
 実施例25は実施例8と同様、実施例26は実施例10と同様、比較例9は重合体を合成するための単量体の種類及び量を第1表に記載の通りにした以外は実施例1と同様にして、重合体粒子を40質量%含有する水分散体(蓄電デバイス用バインダー組成物)を調製した。また、実施例25、26及び比較例9では、負極用スラリーを調製する際に、負極活物質としてグラファイト80質量部及び酸化ケイ素20質量部とした以外は、実施例1と同様にして負極、正極の両電極及びコインセル電池を作製し、各評価を行った。評価結果は第1表及び第5表に示した。
 5.6.評価結果
 各蓄電デバイス用バインダー組成物の組成及び物性評価を第1表及び第2表に、各実施例及び比較例の評価結果を第3表、第4表及び第5表にそれぞれ示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 第1表及び第2表における単量体の略称は、それぞれ以下の単量体を表す。
<不飽和カルボン酸エステル>
・MMA:メタクリル酸メチル
・MA:アクリル酸メチル
・EA:アクリル酸エチル
・BA:アクリル酸n-ブチル
・2EHA:アクリル酸2-エチルヘキシル
・HEMA:メタクリル酸ヒドロキシエチル
<共役ジエン化合物>
・BD:1,3-ブタジエン
<不飽和カルボン酸>
・AA:アクリル酸
・MAA:メタクリル酸
・TA:イタコン酸
<芳香族ビニル化合物>
・ST:スチレン
<α,β-不飽和ニトリル化合物>
・AN:アクリロニトリル
<その他>
・AAM:アクリルアミド
<芳香族多官能ビニル化合物>
・DVB:ジビニルベンゼン
<含フッ素エチレン系単量体>
・VdDF:フッ化ビニリデン
・HFP:六フッ化プロピレン
・TFE:四フッ化エチレン
・2VE:1,1,2,2-テトラフルオロ-1,2-ビス[(トリフルオロビニル)オキシ]エタン
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 第3表から明らかなように、実施例1~12に示した本願発明に係る蓄電デバイス用組成物を用いて作製された電極を備える蓄電デバイスは、結着力、低温時の抵抗抑制、高温サイクル特性のバランスに優れたものであった。一方、比較例1~8では、結着力、低温時の抵抗抑制、高温サイクル特性のいずれも良好である蓄電デバイスは得られなかった。
 第4表から明らかなように、実施例13~24に示した本願発明に係る蓄電デバイス用組成物を用いて作製された電極を備える蓄電デバイスは、結着力、低温時の抵抗抑制、高温サイクル特性のバランスに優れたものであった。一方、比較例10~15では、結着力、低温時の抵抗抑制、高温サイクル特性のいずれも良好である蓄電デバイスは得られなかった。
 第5表から明らかなように、実施例25~26に示した本願発明に係る蓄電デバイス用組成物を用いて作製された電極を備える蓄電デバイスは、シリコン活物質を含有する活物質を用いても、結着力、低温時の抵抗抑制、高温サイクル特性のバランスに優れ、良好な特性が得られた。
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
 

Claims (13)

  1.  重合体(A)と、液状媒体(B)と、を含有し、
     前記重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、前記重合体(A)が、
     不飽和カルボン酸エステルに由来する繰り返し単位(a1)23~70質量部と、
     共役ジエン化合物に由来する繰り返し単位(a2)20~74質量部と、を含有し、
     前記繰り返し単位(a1)及び前記繰り返し単位(a2)の合計量が76質量部以上である、蓄電デバイス用バインダー組成物。
  2.  重合体(A)と、液状媒体(B)と、を含有し、
     前記重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、前記重合体(A)が、
     不飽和カルボン酸エステルに由来する繰り返し単位(a1)23~70質量部と、
     共役ジエン化合物に由来する繰り返し単位(a2)20~74質量部と、
     含フッ素エチレン系単量体に由来する繰り返し単位(a3)3~50質量部と、を含有し、
     前記繰り返し単位(a1)、前記繰り返し単位(a2)及び前記繰り返し単位(a3)の合計量が76質量部以上である、蓄電デバイス用バインダー組成物。
  3.  前記不飽和カルボン酸エステルに由来する繰り返し単位(a1)の含有割合が35~68質量部である、請求項1または請求項2に記載の蓄電デバイス用バインダー組成物。
  4.  前記重合体(A)が、さらに不飽和カルボン酸に由来する繰り返し単位(a4)を0.1~24質量部含有する、請求項1ないし請求項3のいずれか一項に記載の蓄電デバイス用バインダー組成物。
  5.  前記重合体(A)が、さらにα,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)を0.1~15質量部含有する、請求項1ないし請求項4のいずれか一項に記載の蓄電デバイス用バインダー組成物。
  6.  前記重合体(A)が、さらに芳香族ビニル化合物に由来する繰り返し単位(a6)を15質量部未満含有する、請求項1ないし請求項5のいずれか一項に記載の蓄電デバイス用バインダー組成物。
  7.  前記重合体(A)が粒子である、請求項1ないし請求項6のいずれか一項に記載の蓄電デバイス用バインダー組成物。
  8.  前記粒子の数平均粒子径が50nm以上5000nm以下である、請求項7に記載の蓄電デバイス用バインダー組成物。
  9.  前記液状媒体(B)が水である、請求項1ないし請求項8のいずれか一項に記載の蓄電デバイス用バインダー組成物。
  10.  請求項1ないし請求項9のいずれか一項に記載の蓄電デバイス用バインダー組成物と、活物質と、を含有する蓄電デバイス電極用スラリー。
  11.  前記活物質としてケイ素材料を含有する、請求項10に記載の蓄電デバイス電極用スラリー。
  12.  集電体と、前記集電体の表面上に請求項10または請求項11に記載の蓄電デバイス電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備える蓄電デバイス電極。
  13.  請求項12に記載の蓄電デバイス電極を備える蓄電デバイス。
     
PCT/JP2018/018659 2017-05-29 2018-05-15 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス WO2018221197A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880035438.XA CN110710034B (zh) 2017-05-29 2018-05-15 蓄电设备用粘结剂组合物、蓄电设备电极用浆料、蓄电设备电极和蓄电设备
JP2019522088A JP7090076B2 (ja) 2017-05-29 2018-05-15 蓄電デバイス活物質層用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-105881 2017-05-29
JP2017105881 2017-05-29

Publications (1)

Publication Number Publication Date
WO2018221197A1 true WO2018221197A1 (ja) 2018-12-06

Family

ID=64456265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018659 WO2018221197A1 (ja) 2017-05-29 2018-05-15 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス

Country Status (3)

Country Link
JP (1) JP7090076B2 (ja)
CN (1) CN110710034B (ja)
WO (1) WO2018221197A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125989A (ja) * 1997-07-04 1999-01-29 Jsr Corp 電池電極用バインダー
JP2002042819A (ja) * 2000-07-31 2002-02-08 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極および二次電池
JP2002231251A (ja) * 2001-02-06 2002-08-16 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物およびリチウムイオン二次電池
JP2015005526A (ja) * 2013-05-24 2015-01-08 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス用電極、蓄電デバイス用セパレーターおよび蓄電デバイス
WO2015012366A1 (ja) * 2013-07-24 2015-01-29 日本エイアンドエル株式会社 電極用バインダー、電極用組成物及び電極シート
WO2016084330A1 (ja) * 2014-11-28 2016-06-02 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755544B2 (ja) * 1995-09-25 2006-03-15 日本ゼオン株式会社 有機溶媒系バインダー組成物、電極、および電池
JP4433509B2 (ja) * 1999-04-15 2010-03-17 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物及びその利用
JP5062459B2 (ja) * 2001-05-15 2012-10-31 株式会社Gsユアサ 非水電解質二次電池
JP4844764B2 (ja) * 2008-03-17 2011-12-28 信越化学工業株式会社 非水電解質二次電池負極及びそれを用いた非水電解質二次電池
JP5259373B2 (ja) * 2008-12-19 2013-08-07 日本エイアンドエル株式会社 非水電解液二次電池電極用バインダー
JP5547504B2 (ja) * 2010-01-28 2014-07-16 日本エイアンドエル株式会社 二次電池電極用バインダー
JP2012230809A (ja) * 2011-04-26 2012-11-22 Sony Corp 二次電池、電子機器、電動工具、電動車両および電力貯蔵システム
ES2526689T3 (es) * 2012-02-02 2015-01-14 Jsr Corporation Composición ligante de electrodo, suspensión para el electrodo, electrodo y dispositivo de almacenamiento eléctrico
JP5459526B1 (ja) * 2012-06-11 2014-04-02 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜形成用スラリー、保護膜、および蓄電デバイス
US9966606B2 (en) * 2013-03-27 2018-05-08 Jsr Corporation Binder composition for power storage devices
JP2016143553A (ja) 2015-02-02 2016-08-08 Jsr株式会社 蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125989A (ja) * 1997-07-04 1999-01-29 Jsr Corp 電池電極用バインダー
JP2002042819A (ja) * 2000-07-31 2002-02-08 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極および二次電池
JP2002231251A (ja) * 2001-02-06 2002-08-16 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物およびリチウムイオン二次電池
JP2015005526A (ja) * 2013-05-24 2015-01-08 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス用電極、蓄電デバイス用セパレーターおよび蓄電デバイス
WO2015012366A1 (ja) * 2013-07-24 2015-01-29 日本エイアンドエル株式会社 電極用バインダー、電極用組成物及び電極シート
WO2016084330A1 (ja) * 2014-11-28 2016-06-02 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池

Also Published As

Publication number Publication date
CN110710034A (zh) 2020-01-17
CN110710034B (zh) 2023-04-14
JPWO2018221197A1 (ja) 2020-05-21
JP7090076B2 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
JP6210240B2 (ja) 蓄電デバイス用バインダー組成物
JP4849286B1 (ja) 正極用バインダー組成物
JP5999399B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
JP5488857B1 (ja) 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス
JPWO2014157715A1 (ja) 蓄電デバイス用バインダー組成物
JP2020057606A (ja) 正極構造体および二次電池
TWI431842B (zh) 電極用接合劑組成物,電極用漿料,電極及蓄電裝置
JP5163919B1 (ja) 電極用バインダー組成物
JP2016058185A (ja) 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JPWO2015098008A1 (ja) リチウムイオン二次電池負極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2017212090A (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス用スラリー、蓄電デバイス用セパレータ、蓄電デバイス電極及び蓄電デバイス
JP2013084502A (ja) 電極用バインダー組成物
JP2016058184A (ja) 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
KR20150029610A (ko) 축전 디바이스용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극, 보호막 형성용 슬러리, 보호막 및 축전 디바이스
JP2014002926A (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP5601476B2 (ja) 電極用バインダー組成物
JP5057125B2 (ja) 電極用バインダー組成物、電極用スラリー、電極、及び電気化学デバイス
JP2015153530A (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6822892B2 (ja) 二次電池負極用スラリー、二次電池電極、二次電池、二次電池電極の製法、及び水溶性バインダーの二次電池負極用スラリーとしての使用
WO2016002586A1 (ja) 蓄電デバイス用バインダー組成物
JP2016143553A (ja) 蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2016143552A (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP7090076B2 (ja) 蓄電デバイス活物質層用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP6965534B2 (ja) 蓄電デバイス電極用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP5024575B1 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809207

Country of ref document: EP

Kind code of ref document: A1