WO2016084330A1 - 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 - Google Patents

非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 Download PDF

Info

Publication number
WO2016084330A1
WO2016084330A1 PCT/JP2015/005706 JP2015005706W WO2016084330A1 WO 2016084330 A1 WO2016084330 A1 WO 2016084330A1 JP 2015005706 W JP2015005706 W JP 2015005706W WO 2016084330 A1 WO2016084330 A1 WO 2016084330A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
secondary battery
organic particles
polymer
composition
Prior art date
Application number
PCT/JP2015/005706
Other languages
English (en)
French (fr)
Inventor
裕美 高松
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020177013161A priority Critical patent/KR102493659B1/ko
Priority to US15/527,067 priority patent/US10586966B2/en
Priority to CN201580062205.5A priority patent/CN107004828B/zh
Priority to JP2016561230A priority patent/JP6737182B2/ja
Publication of WO2016084330A1 publication Critical patent/WO2016084330A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous secondary battery functional layer composition, a non-aqueous secondary battery functional layer, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics of being small and light, having high energy density, and capable of repeated charge and discharge. Is used in a wide range of applications.
  • the non-aqueous secondary battery generally includes a battery member such as a positive electrode, a negative electrode, and a separator that separates the positive electrode and the negative electrode and prevents a short circuit between the positive electrode and the negative electrode.
  • a porous film layer for improving heat resistance and strength, an adhesive layer for bonding battery members, and the like (hereinafter, these are collectively referred to as “functional layer”).
  • battery members are used.
  • an electrode in which a functional layer is further formed on an electrode base material in which an electrode mixture layer is provided on a current collector, or a separator in which a functional layer is formed on a separator base material is an electrode member. It is used as
  • a functional layer is performed actively for the purpose of the further performance enhancement of the secondary battery using the battery member which has those functional layers (for example, refer patent document 1).
  • a carboxy-modified diene polymer containing 5 to 85% by mass of an aliphatic conjugated diene monomer unit is bound to a porous membrane layer containing a filler and a binder.
  • a technique for improving the binding property of the porous membrane layer while suppressing the aggregation of the binding material by using it as a material has been proposed.
  • a positive electrode active material for example, LiCoO 2 or the like
  • a transition metal for example, cobalt in the case of LiCoO 2
  • the positive electrode active material is contained in the electrolytic solution due to side reactions accompanying the use. It may elute as a transition metal ion. Then, the transition metal eluted from the positive electrode into the electrolytic solution may be deposited on the negative electrode, leading to deterioration of life characteristics such as cycle characteristics of the secondary battery.
  • the present inventor has conducted intensive studies for the purpose of providing a technique for capturing transition metal ions such as cobalt ions eluted from the positive electrode active material into the electrolytic solution. And this inventor makes transition metal ions, such as cobalt ion eluted in the electrolyte solution from the positive electrode active material of a positive mix layer, by giving the functional layer which constitutes a battery member the capture function of transition metal ions. The idea was to capture in a secondary battery. Therefore, the present inventor conducted further studies, formed a functional layer using organic particles containing an aliphatic conjugated diene monomer unit at a specific ratio, and specified the content of the organic particles in the functional layer.
  • the present invention was completed by finding that the functional layer can have high transition metal capturing ability while ensuring high adhesion to the functional layer.
  • “comprising a monomer unit” means “a monomer-derived structural unit is contained in a polymer obtained using the monomer”.
  • the composition for non-aqueous secondary battery functional layers of this invention is a composition for non-aqueous secondary battery functional layers containing an organic particle.
  • the proportion of the aliphatic conjugated diene monomer units in the total monomer units contained in the organic particles is 5% by mass or more, and the content of the organic particles is solid. It is characterized by being 50% by mass or more in terms of minutes.
  • organic particles containing an aliphatic conjugated diene monomer unit at a specific ratio are used and the content of the organic particles in terms of solid content is increased to 50% by mass or more, high adhesiveness can be obtained.
  • a functional layer having a high transition metal capturing ability can be obtained while ensuring.
  • the “all monomer units contained in the organic particles” means a single amount contained in all the polymers constituting the organic particles. Means the total body unit.
  • the composition for non-aqueous secondary battery functional layers of the present invention has an electrolyte swelling degree of the organic particles of 4 times or more and 30 times or less.
  • the degree of swelling of the electrolyte solution of the organic particles is within the above range, the adhesion of the functional layer is enhanced, and the elution of the organic particles into the electrolyte solution is suppressed to further improve the high-temperature cycle characteristics of the secondary battery. Can be improved.
  • the “electrolyte swelling degree” of the organic particles can be measured using the measuring method described in the examples of the present specification.
  • the volume average particle diameter D50 of the organic particles is preferably 250 nm or more and 1000 nm or less.
  • the adhesion of the functional layer is further improved to improve the high-temperature cycle characteristics of the secondary battery, and the increase in internal resistance is suppressed.
  • the low temperature output characteristics of the secondary battery can be improved.
  • the “volume average particle diameter D50” of the organic particles can be measured using the measuring method described in the examples of the present specification.
  • the composition for a non-aqueous secondary battery functional layer of the present invention has a core-shell structure in which the organic particles include a core part and a shell part that partially covers the outer surface of the core part,
  • the core part is preferably made of a polymer having an electrolyte solution swelling degree of 5 to 30 times
  • the shell part is preferably made of a polymer having an electrolyte solution swelling degree of more than 1 and 4 times or less.
  • the organic particles have a specific core-shell structure including a core portion and a shell portion made of a polymer each having a specific degree of electrolyte solution swelling, thereby further improving the adhesion of the functional layer, and organic It is possible to improve the high temperature cycle characteristics of the secondary battery by suppressing elution of the particles into the electrolytic solution, and to improve the low temperature output characteristics of the secondary battery.
  • the “electrolyte swelling degree” of the polymer of the core part and the polymer of the shell part can be measured by using the measuring method described in the examples of the present specification.
  • the functional layer for non-aqueous secondary batteries of this invention is either of the composition for non-aqueous secondary battery functional layers mentioned above. It was formed using. Thus, if any of the above-described compositions is used, a functional layer having a high transition metal capturing ability can be obtained while ensuring high adhesiveness.
  • the non-aqueous secondary battery of this invention is the positive electrode containing the above-mentioned functional layer for non-aqueous secondary batteries, and a transition metal And a positive electrode mixture layer containing an active material.
  • transition metal ions such as cobalt ions eluted from the positive electrode active material into the electrolytic solution can be captured by the functional layer. Therefore, a nonaqueous secondary battery having excellent life characteristics such as cycle characteristics can be obtained.
  • the composition for non-aqueous secondary battery functional layers which can form the functional layer with high transition metal capture
  • the functional layer for non-aqueous secondary batteries which has high transition metal capture
  • a nonaqueous secondary battery having excellent life characteristics such as cycle characteristics can be obtained.
  • the composition for a non-aqueous secondary battery functional layer of the present invention is used for forming a functional layer such as a porous membrane layer or an adhesive layer, and forms the functional layer for a non-aqueous secondary battery of the present invention.
  • a functional layer such as a porous membrane layer or an adhesive layer
  • the non-aqueous secondary battery of this invention is equipped with the functional layer for non-aqueous secondary batteries of this invention, It is characterized by the above-mentioned.
  • composition for functional layer of non-aqueous secondary battery contains organic particles, and the organic particles have an aliphatic conjugated diene monomer unit ratio of 5 in all monomer units contained in the organic particles. It is at least mass%. And the composition for non-aqueous secondary battery functional layers of this invention is content of 50 mass% or more in conversion of solid content of organic particles. Moreover, the composition for non-aqueous secondary battery functional layers optionally contains a particulate polymer for functional layers and other components.
  • the functional layer formed using the composition for a nonaqueous secondary battery functional layer is a layer that functions as a porous membrane layer (that is, the composition for a nonaqueous secondary battery functional layer is a nonaqueous secondary battery).
  • the non-aqueous secondary battery functional layer composition usually includes non-conductive particles (except those corresponding to organic particles and functional layer particulate polymers). Furthermore, it contains.
  • Organic particles in which the proportion of the aliphatic conjugated diene monomer unit in the total monomer units is 5% by mass or more are contained in the composition at a rate of 50% by mass or more in terms of solid content.
  • the secondary batteries having the functional layer exhibit excellent cycle characteristics such as cycle characteristics. Can be made.
  • the organic particles are usually not a water-soluble polymer but are present in a particulate form in a dispersion medium such as water, and can be contained in the functional layer while maintaining the particle shape. Further, the organic particles need to contain aliphatic conjugated diene monomer units in a proportion of 5% by mass or more and 100% by mass or less in all monomer units contained in the organic particles, and optionally other Monomer units may be included.
  • the organic particle may be a particle made of a composite polymer composed of a plurality of polymers, and preferably includes a core portion and a shell portion each made of a polymer having a specific degree of electrolyte swelling. It has a specific core-shell structure.
  • an organic particle may be used individually by 1 type, and may be used in combination of 2 or more types. Here, when using in combination of 2 or more types of organic particles, the ratio of the total amount of all the organic particles should just be 50 mass% or more.
  • aliphatic conjugated diene monomer unit examples include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3. -Butadiene, 2-chloro-1,3-butadiene (chloroprene), substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like.
  • 1,3-butadiene is preferable as the aliphatic conjugated diene monomer from the viewpoint of effectively increasing the transition metal capturing ability of the functional layer containing organic particles.
  • these aliphatic conjugated diene monomers may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the ratio of the aliphatic conjugated diene monomer unit which occupies in all the monomer units contained in an organic particle needs to be 5 mass% or more, and it is preferable that it is 7 mass% or more. It is more preferably at least 9% by mass, further preferably at least 9% by mass, preferably at most 80% by mass, more preferably at most 60% by mass, and at most 50% by mass. More preferably, it is particularly preferably 45% by mass or less. If the proportion of the aliphatic conjugated diene monomer unit is less than 5% by mass, a functional layer having sufficient transition metal capturing ability cannot be obtained, and as a result, a secondary battery having high life characteristics such as cycle characteristics can be obtained. I can't. In addition, when the ratio of the aliphatic conjugated diene monomer unit is set to the above upper limit value or less, the degree of swelling of the organic particles can be set to an appropriate level and the adhesiveness of the functional layer can be enhanced.
  • the organic particles may contain other monomer units other than the aliphatic conjugated diene monomer units described above.
  • Such other monomer units include vinyl chloride monomers such as vinyl chloride and vinylidene chloride; vinyl acetate monomers such as vinyl acetate; styrene, ⁇ -methylstyrene, styrenesulfonic acid, butoxystyrene.
  • Aromatic vinyl monomers such as vinylnaphthalene; vinylamine monomers such as vinylamine; vinylamide monomers such as N-vinylformamide and N-vinylacetamide; monomers having a carboxylic acid group; sulfonic acid groups Acid group-containing monomer such as a monomer having a phosphoric acid group, a monomer having a phosphoric acid group, a monomer having a hydroxyl group; methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, 2-ethylhexyl acrylate (Meth) acrylic acid alkyl ester monomers such as; (meth) acrylic monomers such as acrylamide and methacrylamide (Meth) acrylonitrile monomers such as acrylonitrile and methacrylonitrile; fluorine-containing (meth) acrylate monomers such as 2- (perfluorohexyl) ethyl methacrylate and 2- (perfluor
  • the organic particles are prepared by polymerizing a monomer composition containing the monomer described above.
  • the ratio of each monomer in the monomer composition is usually the same as the ratio of each monomer unit in desired organic particles.
  • the polymerization mode of the organic particles is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method may be used.
  • addition polymerization such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • emulsifiers, dispersants, polymerization initiators, polymerization aids and the like used for the polymerization can be used, and the amount used is also generally used.
  • the organic particle prepared by the method mentioned above has the following properties.
  • the volume average particle diameter D50 of the organic particles is preferably 250 nm or more, more preferably 300 nm or more, further preferably 400 nm or more, preferably 1000 nm or less, and preferably 900 nm or less. More preferably, it is 700 nm or less, more preferably 550 nm or less.
  • the volume average particle diameter D50 of the organic particles is not less than the lower limit of the above range, the increase in internal resistance can be suppressed and the low temperature output characteristics of the secondary battery can be improved.
  • the volume average particle diameter D50 of the organic particles is not more than the upper limit of the above range, the adhesion of the functional layer in the electrolytic solution can be improved and the cycle characteristics of the secondary battery can be improved.
  • the electrolyte solution swelling degree of the organic particles is preferably 4 times or more, more preferably 4.5 times or more, further preferably 5 times or more, and preferably 30 times or less, 25 It is more preferable that it is 2 times or less, and it is still more preferable that it is 20 times or less.
  • the degree of swelling of the electrolytic solution of the organic particles is not less than the lower limit of the above range, the adhesion of the functional layer in the electrolytic solution can be improved.
  • the electrolyte solution swelling degree of the organic particles is not more than the upper limit of the above range, elution of the organic particles into the electrolyte solution can be suppressed and the cycle characteristics of the secondary battery can be improved.
  • a method of adjusting the electrolyte solution swelling degree of the organic particles for example, considering the SP value of the electrolyte solution, appropriately selecting the type and amount of the monomer for producing the organic particles, Examples include adjusting the degree of crosslinking and the molecular weight of the polymer constituting the organic particles.
  • the SP value of a polymer is close to the SP value of an electrolytic solution, the polymer tends to swell in the electrolytic solution.
  • the SP value of the polymer is far from the SP value of the electrolytic solution, the polymer tends to hardly swell in the electrolytic solution.
  • the SP value means a solubility parameter.
  • the SP value can be calculated using the method introduced in Hansen Solubility Parameters A User's Handbook, 2nd Ed (CRCPless). Further, the SP value of an organic compound can be estimated from the molecular structure of the organic compound. Specifically, it can be calculated by using simulation software (for example, “HSPiP” (http://www.hansen-solution.com)) that can calculate the SP value from the SMILE equation. In this simulation software, Hansen SOLUBILITY PARAMETERS A User's Handbook Second Edition, Charles M. et al. The SP value is obtained based on the theory described in Hansen.
  • the glass transition temperature of the organic particles is preferably ⁇ 20 ° C. or higher, more preferably higher than 30 ° C., further preferably 50 ° C. or higher, particularly preferably 80 ° C. or higher, and 200 ° C. Or less, more preferably 180 ° C. or less, and further preferably 150 ° C. or less.
  • the highest glass transition temperature is set as the glass transition temperature of the organic particles. If the glass transition temperature of the organic particles is within the above range, the ion conductivity of the functional layer for a non-aqueous secondary battery can be increased, and the low-temperature output characteristics of the non-aqueous secondary battery can be improved.
  • the content of organic particles needs to be 50% by mass or more and 100% by mass or less in terms of solid content, and preferably 60% by mass or more. 70% by mass or more, more preferably 75% by mass or more, and particularly preferably 80% by mass or more.
  • the adhesion of the functional layer in the electrolytic solution can be improved and the transition metal capturing ability of the functional layer can be improved.
  • the low temperature output characteristic of a non-aqueous secondary battery can be improved.
  • the organic particles are not particularly limited in terms of structure other than having a particle shape, and may be particles composed of one kind of polymer or particles composed of a composite polymer composed of two or more kinds of polymers. It may be. Especially, it is preferable that an organic particle consists of a composite polymer which has a specific core-shell structure provided with the core part and shell part which each consist of a polymer which has specific electrolyte solution swelling degree. Specifically, the organic particles include a core portion made of a polymer having a degree of electrolyte swelling of 5 to 30 times and a shell portion made of a polymer having an electrolyte swelling degree of more than 1 and 4 times or less.
  • a core-shell structure including a core portion and a shell portion that partially covers the outer surface of the core portion. Since the organic particles have such a specific core-shell structure and electrolyte swelling degree, the adhesiveness of the functional layer in the electrolyte is further enhanced, and the elution of the organic particles into the electrolyte is suppressed and the secondary particles are suppressed. While improving the high temperature cycling characteristic of a battery, the low temperature output characteristic of a secondary battery can be improved. Even if the outer surface of the core portion appears to be completely covered by the shell portion in appearance, if the hole that communicates the inside and outside of the shell portion is formed, the shell portion is the core portion. It is the shell part which partially covers the outer surface of. Therefore, for example, an organic particle having a shell portion having pores communicating from the outer surface of the shell portion (that is, the peripheral surface of the organic particle) to the outer surface of the core portion is included in the organic particles having the specific core-shell structure. It is.
  • the separator and the electrode can be strongly bonded in the electrolytic solution as described above. Therefore, in a secondary battery including the functional layer, the functional layer It is difficult to generate a gap between the battery members bonded via each other (for example, between the separator and the electrode). Therefore, in a secondary battery using a functional layer containing organic particles, the distance between the positive electrode and the negative electrode is difficult to increase in the secondary battery, the internal resistance of the secondary battery can be reduced, and the reaction of the electrochemical reaction at the electrode Since the field is unlikely to be non-uniform, it is assumed that excellent low-temperature output characteristics can be realized. Furthermore, in the secondary battery, even when charging and discharging are repeated, it is difficult to form a gap between the separator and the electrode, and the battery capacity is unlikely to decrease. Thereby, it is guessed that the outstanding high temperature cycling characteristic is realizable.
  • the polymer constituting the core part of the organic particles swells greatly with respect to the electrolytic solution.
  • the gap between the molecules of the polymer becomes large, and ions easily pass between the molecules.
  • the polymer in the core part of the organic particles is not completely covered by the shell part. Therefore, ions easily pass through the core portion in the electrolytic solution, so that the organic particles can exhibit high ion diffusibility. Therefore, if the organic particles are used, it is possible to suppress an increase in resistance due to the functional layer and to suppress a decrease in low-temperature output characteristics.
  • the polymer in the shell portion usually does not have adhesiveness in a state where it does not swell in the electrolytic solution, and develops adhesiveness only after swelling in the electrolytic solution. Therefore, the organic particles usually do not exhibit adhesiveness in a state where they are not swollen in the electrolytic solution. For this reason, the functional layer containing the organic particles usually does not exhibit great adhesion in a state where it is not swollen in the electrolytic solution, and the battery member is formed by forming the functional layer on a substrate such as a separator substrate. It is presumed that blocking is unlikely to occur even if they are stacked.
  • the organic particles do not exhibit any adhesive properties unless they are swollen in the electrolytic solution, and are heated to, for example, a certain temperature or higher (for example, 50 ° C. or higher) even if they are not swollen in the electrolytic solution. Therefore, adhesiveness can be expressed.
  • the above-described aliphatic conjugated diene monomer unit may be included only in the core polymer, or only in the shell polymer.
  • both of the polymer in the core part and the polymer in the shell part may be contained in a predetermined ratio.
  • the outer surface of the core part is completely covered by the shell part even when the aliphatic conjugated diene monomer unit is contained in the polymer of the core part. is not. Therefore, the transition metal scavenging ability can also be expressed by the aliphatic conjugated diene monomer unit contained in the polymer of the core part.
  • the aliphatic conjugated diene monomer is only the core part or both the core part and the shell part. It is preferable to include. Further, when the organic particles have a specific core-shell structure, the organic particles satisfy the volume average particle diameter D50 and / or the electrolyte solution swelling degree of the organic particles as the whole particle including the core portion and the shell portion. It is preferable.
  • the shell part of the organic particles having a specific core-shell structure is preferably composed of a plurality of shell part structures.
  • the organic particles 100 may have a core-shell structure including a shell portion formed of a core portion 110 and a plurality of shell portion structures 120.
  • the core part 110 is a part in the organic particle 100 that is inside the shell part.
  • the shell part structure 120 covers the outer surface 110 ⁇ / b> S of the core part 110, and the shell part made of the shell part structure 120 is usually the outermost part of the organic particle 100.
  • the shell part which consists of the shell part structure 120 does not cover the whole outer surface 110S of the core part 110, but covers the outer surface 110S of the core part 110 partially.
  • the average ratio of the outer surface of the core part covered by the shell part is preferably 10% or more, and 40% or more. More preferably, it is more preferably 55% or more, particularly preferably 60% or more, preferably 99% or less, more preferably 95% or less, and 85% or less. Is more preferable, and it is especially preferable that it is 70% or less.
  • the coverage is set to be equal to or lower than the upper limit of the above range, it is possible to improve the low-temperature output characteristics of the secondary battery by improving the ion diffusibility and improve the low-temperature shutdown characteristics of the secondary battery. Moreover, the adhesiveness of the functional layer by hot pressing can be enhanced.
  • a coverage can be measured from the observation result of organic particles. Specifically, it can be measured by the method described below. First, organic particles are sufficiently dispersed in a room temperature curable epoxy resin, and then embedded to produce a block piece containing organic particles. Next, the block piece is cut into a thin piece having a thickness of 80 nm to 200 nm with a microtome equipped with a diamond blade to produce a measurement sample. Thereafter, if necessary, the measurement sample is stained using, for example, ruthenium tetroxide or osmium tetroxide. Next, this measurement sample is set in a transmission electron microscope (TEM), and a cross-sectional structure of the organic particles is photographed.
  • TEM transmission electron microscope
  • the magnification of the transmission electron microscope is preferably such that the cross section of one organic particle enters the field of view, specifically about 10,000 times.
  • a circumferential length D1 corresponding to the outer surface of the core portion and a length D2 of the portion where the outer surface of the core portion and the shell portion abut are measured.
  • ratio Rc by which the outer surface of the core part of the organic particle is covered with a shell part is computed by the following formula (1) using measured length D1 and length D2.
  • Covering ratio Rc (%) (D2 / D1) ⁇ 100 (1)
  • Said coating ratio Rc is measured about 20 or more organic particles, the average value is calculated, and it is defined as the average ratio (covering ratio) at which the outer surface of the core part is covered by the shell part.
  • the covering ratio Rc can be calculated manually from the cross-sectional structure, but can also be calculated using commercially available image analysis software.
  • image analysis software for example, “AnalySIS Pro” (manufactured by Olympus Corporation) can be used.
  • the organic particles having the specific core-shell structure may include arbitrary constituent elements other than the above-described core part and shell part as long as the intended effect is not significantly impaired.
  • the organic particles may have a portion formed of a polymer different from the core portion inside the core portion.
  • the seed particles used when the organic particles are produced by the seed polymerization method may remain inside the core portion.
  • the organic particles include only the core part and the shell part from the viewpoint of remarkably exhibiting the intended effect.
  • the core portion of the organic particles having a specific core-shell structure is preferably made of a polymer having a predetermined degree of swelling with respect to the electrolytic solution.
  • the electrolyte swelling degree of the polymer of the core part is preferably 5 times or more, more preferably 6 times or more, further preferably 7 times or more, and 30 times or less. Preferably, it is 20 times or less, more preferably 15 times or less, still more preferably 10 times or less.
  • the adhesion of the functional layer can be improved and the low-temperature output characteristics of the secondary battery can be improved.
  • the electrolyte solution swelling degree of the polymer of the core part below the upper limit of the above range, elution of organic particles into the electrolyte solution can be suppressed and the high-temperature cycle characteristics of the secondary battery can be improved.
  • the glass transition temperature of the polymer of the core part is preferably ⁇ 20 ° C. or higher, more preferably 0 ° C. or higher, further preferably 10 ° C. or higher, and preferably 100 ° C. or lower. Preferably, it is 95 degrees C or less, More preferably, it is 90 degrees C or less.
  • the electrolyte swelling of the core polymer Those having a desired degree can be appropriately selected and used within a range where the proportion of the aliphatic conjugated diene monomer units in the organic particles is 5% by mass or more.
  • Such monomers include vinyl chloride monomers such as vinyl chloride and vinylidene chloride; vinyl acetate monomers such as vinyl acetate; styrene, ⁇ -methylstyrene, styrenesulfonic acid, butoxystyrene, Aromatic vinyl monomers such as vinylnaphthalene; vinylamine monomers such as vinylamine; vinylamide monomers such as N-vinylformamide and N-vinylacetamide; methyl acrylate, ethyl acrylate, methyl methacrylate, methacryl (Meth) acrylic acid alkyl ester monomers such as ethyl acrylate and 2-ethylhexyl acrylate; (meth) acrylamide monomers such as acrylamide and methacrylamide; (meth) acrylonitrile monomers such as acrylonitrile and methacrylonitrile; 2 -(Perfluorohexyl) ethyl methacrylate Rate, 2-fluorine-
  • the polymer of the core part preferably includes an aliphatic conjugated diene monomer unit.
  • the polymer of the core part preferably contains (meth) acrylic acid alkyl ester monomer units or (meth) acrylonitrile monomer units in addition to the aliphatic conjugated diene monomer units. It is more preferable to include an acid alkyl ester monomer unit, and it is particularly preferable to include a monomer unit derived from methyl methacrylate. This facilitates control of the degree of swelling of the core polymer.
  • the proportion of the (meth) acrylic acid alkyl ester monomer unit in the core polymer is preferably 10% by mass or more, more preferably 20% by mass or more, and 30% by mass or more. Is more preferably 70% by mass or less, more preferably 65% by mass or less, and further preferably 60% by mass or less.
  • the polymer of the core part may include an acid group-containing monomer unit.
  • the acid group-containing monomer a monomer having an acid group, for example, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and And monomers having a hydroxyl group.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
  • examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate.
  • “(meth) acryloyl” means acryloyl and / or methacryloyl.
  • Examples of the monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl methacrylate.
  • an acid group-containing monomer a monomer having a carboxylic acid group is preferable, among which a monocarboxylic acid is preferable, and (meth) acrylic acid is more preferable.
  • an acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the acid group-containing monomer unit in the polymer of the core part is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. , 45% by mass or less, more preferably 35% by mass or less, and further preferably 25% by mass or less.
  • the polymer of the core part preferably contains a crosslinkable monomer unit in addition to the monomer unit.
  • a crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or irradiation with energy rays.
  • crosslinkable monomer examples include polyfunctional monomers having two or more polymerization reactive groups in the monomer.
  • polyfunctional monomers include divinyl compounds such as divinylbenzene; di (meth) acrylic acid esters such as diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, and 1,3-butylene glycol diacrylate.
  • di (meth) acrylic acid esters such as diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, and 1,3-butylene glycol diacrylate.
  • tri (meth) acrylic acid ester compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate
  • ethylenically unsaturated monomers containing epoxy groups such as allyl glycidyl ether and glycidyl methacrylate; and the like.
  • ethylene glycol dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate are preferable, and ethylene glycol dimethacrylate is more preferable from the viewpoint of easily controlling the degree of electrolyte solution swelling of the polymer in the core portion.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the ratio of the crosslinkable monomer unit is preferably determined in consideration of the type and amount of the monomer used.
  • the specific ratio of the crosslinkable monomer unit in the polymer of the core part is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.5% by mass or more. More preferably, it is 1.0% by mass or more, particularly preferably 5% by mass or less, more preferably 4% by mass or less, and further preferably 3% by mass or less. It is preferably 2% by mass or less.
  • the ratio of the crosslinkable monomer unit By setting the ratio of the crosslinkable monomer unit to be equal to or higher than the lower limit of the above range, the adhesion of the functional layer in the electrolyte and the cycle characteristics of the secondary battery can be improved. Moreover, the polymerization stability at the time of preparation of organic particles is ensured by making the ratio of the crosslinkable monomer unit not more than the upper limit of the above range, and the obtained organic particles can be made into suitable particles.
  • the diameter of the core part can be measured as the volume average particle diameter D50 of the particulate polymer before forming the shell part, which is obtained in the process of producing the organic particles.
  • the particulate polymer before forming such a shell portion corresponds to the polymer constituting the core portion.
  • the volume average particle diameter D50 of the particulate polymer before forming the shell part can be measured in the same manner as the volume average particle diameter D50 of the organic particles.
  • the shell portion of the organic particles having a specific core-shell structure is preferably made of a polymer having a predetermined electrolyte solution swelling degree smaller than the electrolyte solution swelling degree of the polymer of the core part.
  • the electrolyte solution swelling degree of the polymer of the shell part is preferably more than 1 time, more preferably 1.1 times or more, still more preferably 1.2 times or more, It is preferably 4 times or less, more preferably 3.5 times or less, still more preferably 3 times or less, and particularly preferably 1.5 times or less.
  • the glass transition temperature of the shell polymer is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, and particularly preferably 80 ° C. or higher.
  • the temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, still more preferably 150 ° C. or lower, and particularly preferably 120 ° C. or lower.
  • the shell part preferably has an average thickness that falls within a predetermined range with respect to the volume average particle diameter D50 of the organic particles.
  • the average thickness (core-shell ratio) of the shell part with respect to the volume average particle diameter D50 of the organic particles is preferably 1% or more, more preferably 3% or more, and 5% or more. Is more preferably 8% or more, preferably 30% or less, more preferably 25% or less, further preferably 20% or less, and preferably 15% or less. Particularly preferred.
  • the average thickness of the shell part equal to or greater than the lower limit of the above range, the adhesion of the functional layer in the electrolytic solution can be improved.
  • the low temperature output characteristic of a secondary battery can be improved by making the average thickness of a shell part below into the upper limit of the said range.
  • the average thickness of the shell portion is obtained by observing the cross-sectional structure of the organic particles using a transmission electron microscope (TEM). Specifically, the maximum thickness of the shell portion in the cross-sectional structure of the organic particles is measured using TEM, and the average value of the maximum thickness of the shell portions of 20 or more organic particles arbitrarily selected is determined as the average thickness of the shell portion.
  • the shell part is composed of polymer particles, and the particles constituting the shell part do not overlap in the radial direction of the organic particles, and the polymer part constitutes the shell part with a single layer. In such a case, the number average particle diameter of the particles constituting the shell portion is defined as the average thickness of the shell portion.
  • the form of the shell part is not particularly limited, but the shell part is preferably composed of polymer particles.
  • the shell part is composed of polymer particles, a plurality of particles constituting the shell part may overlap in the radial direction of the organic particles. However, in the radial direction of the organic particles, it is preferable that the particles constituting the shell portion do not overlap each other, and those polymer particles constitute the shell portion as a single layer.
  • the number average particle diameter of the particles constituting the shell part is preferably 10 nm or more, more preferably 20 nm or more, and 30 nm or more. Is more preferably 200 nm or less, more preferably 150 nm or less, and further preferably 100 nm or less.
  • the number average particle diameter of the particles constituting the shell part can be obtained by observing the cross-sectional structure of the organic particles using a transmission electron microscope (TEM). Specifically, the longest diameter of the particles constituting the shell portion in the cross-sectional structure of the organic particles is measured, and the average value of the longest diameters of the particles constituting the shell portions of 20 or more organic particles arbitrarily selected is determined as the shell.
  • the number average particle diameter of the particles constituting the part can be used.
  • the electrolyte solution swelling of the polymer of the shell part Those having a desired degree can be appropriately selected and used within a range where the proportion of the aliphatic conjugated diene monomer units in the organic particles is 5% by mass or more.
  • Examples of such a monomer include the same monomers as those exemplified as monomers that can be used to produce the core polymer.
  • such a monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • an aromatic vinyl monomer is preferable as the monomer used for the preparation of the shell polymer. That is, the polymer of the shell part preferably includes an aromatic vinyl monomer unit. If an aromatic vinyl monomer is used, the electrolyte solution swelling degree of the polymer in the shell part can be easily controlled. Moreover, the adhesiveness of the functional layer can be further enhanced.
  • aromatic vinyl monomers styrene derivatives such as styrene and styrene sulfonic acid are more preferable, and styrene is more preferable from the viewpoint of further improving the low-temperature output characteristics of the secondary battery.
  • the ratio of the aromatic vinyl monomer unit in the polymer of the shell part is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and preferably 99.5% by mass. % Or less, more preferably 99% by mass or less, still more preferably 98% by mass or less, and particularly preferably 95% by mass or less.
  • the polymer of the shell part may contain an acid group-containing monomer unit in addition to the aromatic vinyl monomer unit.
  • examples of the acid group-containing monomer include the same monomers as those that can constitute the acid group-containing monomer unit that can be contained in the polymer of the core part.
  • an acid group-containing monomer a monomer having a carboxylic acid group is preferable, among which monocarboxylic acid is preferable, and (meth) acrylic acid is more preferable.
  • an acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the acid group-containing monomer unit in the polymer of the shell part is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 3% by mass or more, and particularly preferably 5% by mass or more. Preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less, More preferably, it is 8 mass% or less. Improve the dispersibility of the organic particles in the functional layer by keeping the ratio of the acid group-containing monomer units in the above range, and in particular, express good adhesiveness over the entire functional layer in the electrolyte. Can do.
  • the polymer of the shell part may contain a crosslinkable monomer unit.
  • a crosslinkable monomer the monomer similar to what was illustrated as a crosslinkable monomer which can be used for a core part polymer is mentioned, for example.
  • crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the organic particles having the specific core-shell structure described above include, for example, a monomer used for the preparation of the core polymer and a monomer used for the preparation of the shell polymer. It can manufacture by changing the ratio of a monomer and polymerizing in steps. Specifically, the organic particles can be produced by a continuous multi-stage emulsion polymerization method and a multi-stage suspension polymerization method in which the polymer in the previous stage is sequentially coated with the polymer in the subsequent stage. In the production of organic particles having a specific core-shell structure, aliphatic conjugated is included in the total amount of the monomer used for preparing the core polymer and the monomer used for preparing the shell polymer. The proportion of the diene monomer is set to 5% by mass or more.
  • an emulsifier for example, an anionic surfactant such as sodium dodecylbenzenesulfonate and sodium dodecylsulfate, a nonionic surfactant such as polyoxyethylene nonylphenyl ether and sorbitan monolaurate, or Cationic surfactants such as octadecylamine acetate can be used.
  • anionic surfactant such as sodium dodecylbenzenesulfonate and sodium dodecylsulfate
  • a nonionic surfactant such as polyoxyethylene nonylphenyl ether and sorbitan monolaurate
  • Cationic surfactants such as octadecylamine acetate
  • polymerization initiator examples include peroxides such as t-butylperoxy-2-ethylhexanoate, potassium persulfate, cumene peroxide, 2,2′-azobis (2-methyl-N- (2 An azo compound such as -hydroxyethyl) -propionamide) or 2,2'-azobis (2-amidinopropane) hydrochloride can be used.
  • the polymerization procedure is as follows. First, a monomer that forms the core part and an emulsifier are mixed in a polymerization solvent such as water, and then a polymerization initiator is added. In the form of a polymer. Furthermore, the organic particle which has the core shell structure mentioned above can be obtained by superposing
  • the monomer that forms the polymer of the shell portion is divided into a plurality of times or continuously supplied to the polymerization system.
  • the monomer that forms the polymer of the shell part is divided into a polymerization system or continuously supplied, whereby the polymer constituting the shell part is formed into particles, and these particles are bonded to the core part. Thereby, the shell part which covers a core part partially can be formed.
  • the particle diameter of the particles constituting the shell part and the It is possible to control the average thickness.
  • the particle diameter of the particles constituting the shell part and the shell part It is possible to control the average thickness.
  • the monomer that forms the polymer of the shell part preferably includes a hydrophobic monomer, and particularly preferably includes an aromatic vinyl monomer.
  • a shell part that partially covers the core part can also be formed by appropriately adjusting the amount of the emulsifier.
  • the volume average particle diameter of the particulate polymer constituting the core part, the volume average particle diameter D50 of the organic particles after forming the shell part, and the number average particle diameter of the particles constituting the shell part are, for example, By adjusting the amount of the emulsifier and the amount of the monomer, the desired range can be obtained. Moreover, the electrolyte solution swelling degree of the whole organic particle can be made into a desired range by adjusting the composition of the polymer of the core part and the polymer of the shell part.
  • the average ratio of the outer surface of the core part covered by the shell part corresponds to the volume average particle diameter of the particulate polymer constituting the core part, for example, the amount of emulsifier and the polymer of the shell part By adjusting the amount of the monomer that forms, the desired range can be obtained.
  • the functional layer composition contains a particulate polymer for the functional layer as a binder. It is preferable to make it.
  • the organic particles when the organic particles have the above-described specific core-shell structure and the degree of swelling of the electrolytic solution, the organic particles do not exhibit great adhesion in a state where they are not swollen in the electrolytic solution.
  • the functional layer composition preferably contains a particulate polymer for a functional layer that exhibits higher adhesiveness than the organic particles in an environment at a temperature of 25 ° C. that is not swollen in the electrolytic solution.
  • the functional layer particulate polymer that can be used in combination with the organic particles a known particulate polymer that can be used as a binder in the field of secondary batteries, which is water-insoluble and dispersible in water
  • a thermoplastic elastomer is mentioned.
  • an acrylic polymer is preferable.
  • the acrylic polymer refers to a polymer containing a (meth) acrylic acid ester monomer unit.
  • the ratio of the aliphatic conjugated diene monomer contained in an acrylic polymer becomes like this. Preferably it is 5 mass% or less, More preferably, it is less than 5 mass%.
  • these particulate polymers for functional layers may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the glass transition temperature of the functional layer particulate polymer is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 80 ° C. or higher, still more preferably ⁇ 70 ° C. or higher, and 30 ° C. or lower. It is preferably 25 ° C. or lower, more preferably 20 ° C. or lower.
  • the volume average particle diameter D50 of the functional layer particulate polymer is preferably 100 nm or more, more preferably 200 nm or more, preferably 500 nm or less, and more preferably 400 nm or less. .
  • the volume average particle diameter D50 of the functional layer particulate polymer can be not less than the lower limit of the above range, the dispersibility of the functional layer particulate polymer can be enhanced.
  • the adhesiveness of the particulate polymer for functional layers can be improved by making volume average particle diameter D50 below the upper limit of the said range.
  • the volume average particle diameter D50 of the particulate polymer for functional layers can be measured similarly to the volume average particle diameter D50 of the organic particles.
  • the content of the functional layer particulate polymer in the functional layer composition is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more per 100 parts by mass of the organic particles. It is further preferably 10 parts by mass or more, preferably 35 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 25 parts by mass or less.
  • the content of the particulate polymer for the functional layer not more than the upper limit of the above range, it is possible to suppress the ion diffusibility of the functional layer from being lowered and to secure the low temperature output characteristics of the secondary battery. it can.
  • Examples of the method for producing the functional layer particulate polymer include a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • the emulsion polymerization method and the suspension polymerization method are preferable because the polymerization can be performed in water and the aqueous dispersion containing the functional layer particulate polymer can be suitably used as a material for the functional layer composition.
  • the reaction system contains a dispersing agent.
  • the functional layer particulate polymer is usually formed of a polymer substantially constituting the functional layer, but may be accompanied by optional components such as additives used in the polymerization.
  • the non-conductive particles to be blended in the functional layer composition used for forming the functional layer that can function as a porous membrane layer are not particularly limited, and are known non-conductive particles used in non-aqueous secondary batteries. Examples thereof include conductive particles.
  • the non-conductive particles both inorganic fine particles and organic fine particles other than the organic particles and the functional layer particulate polymer described above can be used. Usually, inorganic fine particles are used. It is done.
  • a material of nonelectroconductive particle the material which exists stably in the use environment of a non-aqueous secondary battery and is electrochemically stable is preferable.
  • non-conductive particle material examples include aluminum oxide (alumina), hydrated aluminum oxide (boehmite), silicon oxide, magnesium oxide (magnesia), calcium oxide, titanium oxide (titania).
  • Oxide particles such as BaTiO 3 , ZrO, alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; covalently bonded crystal particles such as silicon and diamond; barium sulfate, calcium fluoride, barium fluoride Insoluble ion crystal particles such as; clay fine particles such as talc and montmorillonite;
  • these particles may be subjected to element substitution, surface treatment, solid solution, and the like as necessary.
  • the nonelectroconductive particle mentioned above may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the amount of non-conductive particles in the composition needs to be 50% by mass or less in terms of solid content.
  • the composition for a nonaqueous secondary battery functional layer may contain any other component in addition to the organic particles, the functional layer particulate polymer, and the nonconductive particles described above.
  • these other components include known additives such as a wetting agent, a viscosity modifier, and an electrolytic solution additive.
  • the composition for non-aqueous secondary battery functional layers contains a wetting agent.
  • wetting agent As the wetting agent, a nonionic surfactant or an anionic surfactant is preferable. And the content of the wetting agent is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and 0.5 parts by mass or more per 100 parts by mass of the organic particles. Is more preferably 1.5 parts by mass or more, preferably 3 parts by mass or less, more preferably 2.5 parts by mass or less, and still more preferably 2 parts by mass or less. .
  • composition for a non-aqueous secondary battery functional layer can be prepared by dissolving or dispersing each of the above components in a hydrophilic solvent such as water as a dispersion medium. Specifically, the above components and the hydrophilic solvent are mixed using a ball mill, sand mill, bead mill, pigment disperser, crushed grinder, ultrasonic disperser, homogenizer, planetary mixer, fill mix or the like. By doing so, the composition for functional layers can be prepared.
  • a hydrophilic solvent such as water as a dispersion medium.
  • hydrophilic solvent examples include water; ketones such as diacetone alcohol and ⁇ -butyrolactone; alcohols such as ethyl alcohol, isopropyl alcohol and normal propyl alcohol; propylene glycol monomethyl ether, methyl cellosolve, ethyl cellosolve, Glycol ethers such as ethylene glycol tertiary butyl ether, butyl cellosolve, 3-methoxy-3-methyl-1-butanol, ethylene glycol monopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, dipropylene glycol monomethyl ether; 1,3 -Ethers such as dioxolane, 1,4-dioxolane and tetrahydrofuran; In addition, you may use water as a main solvent and mix and use hydrophilic solvents other than said water in the range which can ensure the melt
  • the non-aqueous secondary battery functional layer of the present invention is formed using the above-described non-aqueous secondary battery functional layer composition.
  • the functional layer for non-aqueous secondary batteries of this invention is used when manufacturing the non-aqueous secondary battery of this invention as an adhesion layer and / or a porous membrane layer.
  • the non-aqueous secondary battery functional layer can be formed on an appropriate substrate using the above-described non-aqueous secondary battery functional layer composition.
  • the functional layer may be provided on one side of the substrate, or may be provided on both sides of the substrate.
  • the functional layer can be peeled from the substrate and used as a separator as it is in a self-supporting film state.
  • the functional layer for non-aqueous secondary batteries of this invention can exhibit high transition metal capture
  • the base material for forming the functional layer is not particularly limited.
  • the functional layer is used as a member constituting a part of the separator, the separator base material can be used, and a part of the electrode is constituted.
  • an electrode substrate can be used.
  • a functional layer may be formed on a separator base material etc. and it may use as it is as battery members, such as a separator,
  • the functional layer may be formed on the substrate and used as an electrode, or the functional layer formed on the release substrate may be once peeled off from the substrate and attached to another substrate to be used as a battery member.
  • the functional layer for a non-aqueous secondary battery of the present invention is composed of 50% by mass or more of the organic particles described above, from the viewpoint of sufficiently increasing the strength and heat resistance of the battery member, the functional layer is described above. You may form on the separator base material or electrode base material in which the known porous film layer (protective layer) containing 70 mass% or more of such nonelectroconductive particles was formed.
  • the separator base material forming the functional layer is not particularly limited, and examples thereof include known separator base materials such as an organic separator.
  • the organic separator is a porous member made of an organic material, and examples of the organic separator include a microporous film or a nonwoven fabric containing a polyolefin resin such as polyethylene and polypropylene, an aromatic polyamide resin, and the like. Of these, polyethylene microporous membranes and nonwoven fabrics are preferred because of their excellent strength.
  • the thickness of an organic separator can be made into arbitrary thickness, and is 0.5 micrometer or more normally, Preferably it is 5 micrometers or more, and is 40 micrometers or less normally, Preferably it is 30 micrometers or less, More preferably, it is 20 micrometers or less.
  • Electrode substrate Although it does not specifically limit as an electrode base material which forms a functional layer, The electrode base material with which the electrode compound-material layer was formed on the electrical power collector is mentioned.
  • the current collector, the components in the electrode mixture layer (for example, the electrode active material (positive electrode active material, negative electrode active material) and the electrode mixture layer binder (positive electrode mixture layer binder, negative electrode composite) The material layer binder) and the like, and the method for forming the electrode mixture layer on the current collector can be known ones, for example, those described in JP-A-2013-145663. It is done.
  • the positive electrode active material for example, when the non-aqueous secondary battery is a lithium ion secondary battery, specifically, transition metal oxides, transition metal sulfides, lithium and A compound containing a transition metal such as a composite metal oxide with a transition metal is used.
  • transition metal Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo etc. are mentioned, for example.
  • the transition metal oxide for example, MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , amorphous Examples include MoO 3 , amorphous V 2 O 5 , and amorphous V 6 O 13 .
  • the transition metal sulfide include TiS 2 , TiS 3 , amorphous MoS 2 , and FeS.
  • the composite metal oxide of lithium and transition metal includes a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, a lithium-containing composite metal oxide having an olivine structure, etc. Is mentioned.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), and Co—Ni—Mn lithium-containing composite oxide (Li (Co Mn Ni) O 2 ), Ni—Mn—Al lithium-containing composite oxide, Ni—Co—Al lithium-containing composite oxide, and solid solution of LiMaO 2 and Li 2 MbO 3 .
  • lithium-containing composite metal oxide having a spinel structure examples include lithium manganate (LiMn 2 O 4 ) and a part of Mn of lithium manganate (LiMn 2 O 4 ) with another transition metal.
  • examples of the lithium-containing composite metal oxide having an olivine type structure include olivine represented by Li y MdPO 4 such as olivine type lithium iron phosphate (LiFePO 4 ) and olivine type lithium manganese phosphate (LiMnPO 4 ).
  • Type lithium phosphate compounds Md represents one or more transition metals having an average oxidation state of 3+, and examples thereof include Mn, Fe, and Co.
  • Y represents a number satisfying 0 ⁇ y ⁇ 2.
  • Md may be partially substituted with another metal. Examples of the metal that can be substituted include Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, and Mo.
  • a composite metal oxide of lithium and a transition metal is preferable from the viewpoint of output characteristics and high-temperature cycle characteristics of the non-aqueous secondary battery.
  • a lithium-containing composite metal oxide having a structure is more preferable, and a lithium-containing cobalt oxide (LiCoO 2 ) is more preferable.
  • Examples of the method for forming a functional layer on a substrate such as the separator substrate and electrode substrate described above include the following methods. 1) A method in which the composition for a functional layer is applied to the surface of a separator substrate or an electrode substrate and then dried; 2) A method of drying the separator substrate or electrode substrate after immersing the separator substrate or electrode substrate in the functional layer composition; 3) A method for applying a composition for a functional layer on a release substrate, then drying to produce a functional layer, and transferring the obtained functional layer to the surface of a separator substrate or an electrode substrate;
  • a well-known method can be used. Specific examples include a spray coating method, a doctor blade method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the thickness of the coating film on the substrate after coating and before drying can be appropriately set according to the thickness of the functional layer obtained by drying.
  • the method for drying the functional layer composition on the substrate is not particularly limited, and a known method can be used. The drying method by irradiation etc. is mentioned.
  • the functional layer contains components other than the dispersion medium contained in the functional layer composition in the same ratio as the functional layer composition, usually including organic particles, and optionally for the functional layer. It further contains other components such as particulate polymer, non-conductive particles, wetting agent, dispersing agent and the like.
  • the thickness of the functional layer is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 0.7 ⁇ m or more, preferably 10 ⁇ m or less, and 7 ⁇ m or less. More preferably, it is 5 ⁇ m or less. If the thickness of the functional layer is not less than the lower limit of the above range, the secondary battery using the functional layer by sufficiently securing the strength of the functional layer and more sufficiently capturing the transition metal derived from the positive electrode active material The battery characteristics can be improved. Moreover, if the thickness of a functional layer is below the upper limit of the said range, while being able to ensure the diffusibility of electrolyte solution, a secondary battery can fully be reduced in size.
  • the non-aqueous secondary battery of the present invention includes the above-described functional layer for a non-aqueous secondary battery between a positive electrode mixture layer containing a positive electrode active material containing a transition metal and a negative electrode mixture layer. And Specifically, the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the functional layer for a non-aqueous secondary battery described above contains a transition metal. Is disposed between the positive electrode mixture layer and the negative electrode mixture layer.
  • the transition metal ions eluted from the positive electrode active material into the electrolyte are effectively captured by the functional layer of the present invention, and the transition metal ions are deposited on the negative electrode. Can be suppressed. Therefore, the nonaqueous secondary battery of the present invention is excellent in life characteristics such as cycle characteristics. Further, in the non-aqueous secondary battery of the present invention, the functional layer of the present invention exhibits an excellent adhesive force, so that the adhesion between the positive electrode and the separator and / or the negative electrode and the separator can be increased through the functional layer. it can.
  • ⁇ Positive electrode, negative electrode and separator> At least one of the positive electrode, the negative electrode, and the separator used in the non-aqueous secondary battery of the present invention has a functional layer.
  • a positive electrode and a negative electrode having a functional layer an electrode in which a functional layer is provided on an electrode substrate formed by forming an electrode mixture layer on a current collector can be used.
  • a separator which has a functional layer the separator which provides a functional layer on a separator base material, and the separator which consists of a functional layer can be used.
  • an electrode base material and a separator base material the thing similar to the thing quoted by the term of ⁇ base material> can be used.
  • a positive electrode, a negative electrode, and a separator which do not have a functional layer it does not specifically limit,
  • the electrode which consists of an electrode base material mentioned above, and the separator which consists of a separator base material mentioned above can be used.
  • the positive electrode, the negative electrode, and the separator may include components other than the functional layer as long as the effects of the present invention are not significantly impaired.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily soluble in a solvent and exhibit a high degree of dissociation.
  • electrolyte may be used individually by 1 type and may be used in combination of 2 or more types.
  • the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted depending on the type of solvent.
  • the concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate.
  • VC vinylene carbonate
  • the non-aqueous secondary battery according to the present invention includes, for example, a positive electrode and a negative electrode that are overlapped with a separator and wound into a battery container according to the battery shape as necessary.
  • a positive electrode and a negative electrode that are overlapped with a separator and wound into a battery container according to the battery shape as necessary.
  • An overcurrent prevention element, an expanded metal, a lead plate, or the like may be provided.
  • the shape of the secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • a polymer for the core part of the organic particles a polymer obtained by performing the same process as that for forming the core part in the preparation of the organic particles was prepared. Thereafter, the polymer was dried at a temperature of 25 ° C. for 48 hours, and then the polymer was hot-pressed at 130 ° C. to form a film to produce a film having a thickness of 0.5 mm. Next, the film produced as described above was cut into a 1 cm square to obtain a test piece. The weight of this test piece was measured and designated as W0.
  • this test piece was immersed in electrolyte solution at the temperature of 60 degreeC for 72 hours, and the test piece was taken out from electrolyte solution.
  • the mixed solvent volume mixing ratio EC / DEC
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • /VC 68.5/30/1.5
  • SP value 12.7 (cal / cm 3 ) 1/2 ) was used as a supporting electrolyte in which a solution of LiPF 6 was dissolved at a concentration of 1 mol / L.
  • ⁇ Swelling degree of electrolyte in polymer of shell part First, as the polymer of the shell part of the organic particle, the monomer composition used for the formation of the shell part is used instead of the monomer composition used for the formation of the core part in the preparation of the organic particle. A polymer was produced in the same manner as the method. Thereafter, a film was prepared from the polymer in the shell portion by the same method as the method for measuring the electrolyte swelling degree of the polymer in the core portion, a test piece was obtained from the film, and the electrolyte swelling degree S was measured. In addition, as the electrolytic solution used for measuring the electrolytic solution swelling degree of the polymer in the shell portion, the same electrolytic solution used for measuring the electrolytic solution swelling degree of the polymer in the core portion was used.
  • ⁇ Swelling degree of electrolyte of organic particles First, organic particles were prepared. Thereafter, a film was prepared from the organic particles in the same manner as the method for measuring the electrolyte swelling degree of the polymer in the core part, a test piece was obtained from the film, and the electrolyte swelling degree S was measured. In addition, as an electrolyte solution used for measuring the electrolyte solution swelling degree of the organic particles, the same electrolyte solution used for measuring the electrolyte solution swelling degree of the polymer in the core part was used.
  • ⁇ Glass transition temperature of organic particles, core polymer, shell polymer and functional layer particulate polymer For the measurement of the glass transition temperature of the organic particles, the polymer of the core part, and the polymer of the shell part, the monomer composition used for the preparation of each polymer is used, and the same polymerization conditions as those of the polymer are used. Under the conditions, an aqueous dispersion containing a polymer to be a measurement sample was prepared, and a measurement sample obtained by drying the aqueous dispersion was used. For the measurement of the glass transition temperature of the functional layer particulate polymer, a measurement sample obtained by drying the aqueous dispersion containing the obtained functional layer particulate polymer was used.
  • the glass transition temperature is measured using a differential thermal analyzer (product name “EXSTAR DSC6220”, manufactured by SII Nano Technology), weighing 10 mg of the above-mentioned measurement sample into an aluminum pan, and using an empty aluminum pan as a reference.
  • the DSC curve was measured using a measurement temperature range of ⁇ 100 ° C. to 500 ° C. at a rate of temperature increase of 10 ° C./min and normal temperature and humidity. In this temperature rising process, the DSC curve immediately before the endothermic peak of the DSC curve in which the differential signal (DDSC) is 0.05 mW / min / mg or more, and the DSC curve at the first inflection point after the endothermic peak are obtained.
  • the glass transition temperature was determined from the intersection with the tangent line.
  • the prepared organic particles were sufficiently dispersed in a visible light curable resin (“D-800” manufactured by JEOL Ltd.) and then embedded to obtain a block piece containing organic particles.
  • the obtained block piece was cut into a thin piece having a thickness of 100 nm with a microtome equipped with a diamond blade to prepare a measurement sample.
  • the measurement sample was dyed using ruthenium tetroxide.
  • the dyed measurement sample was set in a transmission electron microscope (“JEM-3100F” manufactured by JEOL Ltd.), and a cross-sectional structure of organic particles was photographed at an acceleration voltage of 80 kV.
  • the magnification of the transmission electron microscope was set so that the cross section of one organic particle was in the visual field. Thereafter, the cross-sectional structure of the photographed organic particles was observed, and the average thickness of the shell portion of the organic particles was measured by the following procedure according to the observed configuration of the shell portion. And the core-shell ratio (%) was calculated
  • the maximum thickness of the shell portion was measured.
  • the maximum thickness of the shell portion was measured for 20 arbitrarily selected organic particles, and the average value of the maximum thickness was taken as the average thickness of the shell portion.
  • ⁇ Volume average particle diameter D50 of organic polymer and particulate polymer for functional layer For each of the prepared organic particles and the functional layer particulate polymer, an aqueous dispersion adjusted to a solid content concentration of 15% by mass was prepared, and a laser diffraction particle size distribution analyzer (“SALD-7100” manufactured by Shimadzu Corporation) was prepared. Was used to measure the particle size distribution. And about the obtained particle diameter distribution, the particle diameter from which the cumulative volume calculated from the small diameter side will be 50% was calculated
  • SALD-7100 laser diffraction particle size distribution analyzer
  • EC ethylene carbonate
  • DEC / VC vinylene carbonate
  • a cellophane tape defined in JIS Z1522 was used.
  • the cellophane tape was fixed on a horizontal test bench. Thereafter, the stress was measured when one end of the separator was pulled vertically upward at a pulling speed of 50 mm / min and peeled off. This measurement is performed three times for each of a laminate including a positive electrode and a separator and a laminate including a negative electrode and a separator, a total of 6 times, an average value of stress is obtained, and the average value is defined as peel strength (N / m). Evaluation was made according to the following criteria. It shows that the adhesiveness in the electrolyte solution of a functional layer is excellent, so that the value of this peel strength is large.
  • the prepared composition for a non-aqueous secondary battery functional layer (solid content concentration: 15% by mass) is poured into a Teflon (registered trademark) petri dish, dried at 25 ° C. for 5 days, and then punched to a size of 12 mm in diameter. A film having a thickness of 500 ⁇ m and a diameter of 12 mm was obtained as a test piece, and its mass was measured.
  • Cobalt concentration in the test piece is 750 mass ppm or more
  • B Cobalt concentration in the test piece is 600 mass ppm or more and less than 750 ppm by mass
  • C Cobalt concentration in the test piece is 450 mass ppm or more and less than 600 mass ppm
  • D Test Cobalt concentration in the piece is less than 450 ppm by mass
  • Example 1 Manufacture of organic particles>
  • MMA methyl methacrylate
  • MAA methacrylic acid
  • EDMA ethylene dimethacrylate
  • dodecylbenzene as an emulsifier 1 part of sodium sulfonate
  • the organic particles had a core-shell structure including a core part and a shell part that partially covered the outer surface of the core part.
  • the proportion of 1,3-butadiene (BD) as the aliphatic conjugated diene monomer in the monomers used for the preparation of the organic particles was 17% by mass.
  • the electrolyte solution swelling degree, core-shell ratio, coverage, and volume average particle diameter D50 of the obtained organic particles were measured. The results are shown in Table 1.
  • ⁇ Preparation of non-aqueous secondary battery functional layer composition 100 parts of the aqueous dispersion containing the above-mentioned organic particles in terms of solid content, 20 parts of the above-mentioned aqueous dispersion of acrylic polymer as the particulate polymer for functional layer in terms of solids, SN wet 366 as a wetting agent (San Nopco, solid content 70%) is mixed with 1.8 parts in terms of solid content, and ion-exchanged water is further mixed so that the solid content concentration is 20%, thereby obtaining a composition for a non-aqueous secondary battery functional layer. It was. In addition, the ratio of the organic particle which occupies for the solid content of the composition for non-aqueous secondary battery functional layers computed from preparation amount was 82.1 mass%.
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate binder to adjust the pH to 8. Thereafter, unreacted monomers are removed from the mixture by heating under reduced pressure, and the mixture is cooled to 30 ° C. or lower to obtain an aqueous dispersion containing a desired particulate binder (binder for negative electrode mixture layer). It was.
  • MAC350HC carboxymethylcellulose sodium salt
  • the negative electrode slurry composition was applied on a copper foil having a thickness of 20 ⁇ m, which was a current collector, with a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode mixture layer thickness of 80 ⁇ m.
  • ⁇ Production of positive electrode slurry composition 100 parts of LiCoO 2 having a volume average particle diameter of 12 ⁇ m as the positive electrode active material, 2 parts of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., product name “HS-100”) as the conductive material, and binder for positive electrode (positive electrode mixture layer)
  • Polyvinylidene fluoride manufactured by Kureha Co., Ltd., product name “# 7208” was mixed in an amount equivalent to the solid content, and N-methylpyrrolidone was added thereto to make the total solid content concentration 70%. These were mixed by a planetary mixer to obtain a positive electrode slurry composition.
  • the positive electrode slurry composition was applied onto a 20 ⁇ m-thick aluminum foil as a current collector by a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled with a roll press to obtain a positive electrode.
  • the pressed positive electrode was cut out to 49 cm ⁇ 5 cm.
  • a separator cut out to 55 cm ⁇ 5.5 cm was disposed on the positive electrode mixture layer of the cut out positive electrode.
  • the negative electrode after pressing was cut into 50 cm ⁇ 5.2 cm, and the cut negative electrode was arranged on the side opposite to the positive electrode of the separator so that the surface on the negative electrode mixture layer side faced the separator. Further, a separator cut out to 55 cm ⁇ 5.5 cm was disposed on the surface of the negative electrode on the current collector side. Thereafter, a heat press treatment was performed for 10 seconds at a temperature of 80 ° C.
  • an 800 mAh wound type lithium ion secondary battery was manufactured.
  • a separator cut into 55 cm ⁇ 5.5 cm was disposed, and subjected to a heat press treatment at a temperature of 80 ° C. and a pressure of 0.5 MPa for 10 seconds, A laminate including a positive electrode and a separator was obtained.
  • a separator cut out to 55 cm ⁇ 5.5 cm was disposed, and subjected to a heat press treatment at a temperature of 80 ° C.
  • a laminate comprising a negative electrode and a separator was obtained.
  • the above-described methods were used to adhere to the electrode (adhesiveness of the functional layer in the electrolytic solution), the high temperature cycle characteristics of the secondary battery, and the low temperature of the secondary battery.
  • the output characteristics were evaluated. The results are shown in Table 1.
  • Example 2 As in Example 1, except that the amount of methyl methacrylate was changed to 45 parts and the amount of 1,3-butadiene was changed to 7 parts for the monomer composition used for the production of the core part during the production of the organic particles.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • the monomer composition used for the production of the core part has an amount of methyl methacrylate of 27 parts, an amount of 1,3-butadiene of 33 parts, and an amount of methacrylic acid of 9 parts.
  • the amount of styrene was changed to 17 parts, and 11 parts of 1,3-butadiene (BD) as an aliphatic conjugated diene monomer unit was newly added.
  • BD 1,3-butadiene
  • Example 4 In the production of the organic particles, the monomer composition used for the production of the core part has an amount of methyl methacrylate of 19 parts, an amount of 1,3-butadiene of 10 parts, and an amount of methacrylic acid of 40 parts. Except for the changes, the organic particles, the functional layer particulate polymer, the nonaqueous secondary battery functional layer composition, the separator, the negative electrode particulate binder, the negative electrode slurry composition, and the negative electrode were the same as in Example 1. A positive electrode slurry composition, a positive electrode, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 In the same manner as in Example 1 except that the amount of sodium dodecylbenzenesulfonate as an emulsifier was changed to 1.5 parts during the production of the organic particles, the organic particles, the functional layer particulate polymer, and the nonaqueous secondary battery were used.
  • a functional layer composition, a separator, a particulate binder for a negative electrode, a slurry composition for a negative electrode, a negative electrode, a slurry composition for a positive electrode, a positive electrode, and a lithium ion secondary battery were produced.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 In the same manner as in Example 1 except that the amount of sodium dodecylbenzenesulfonate as an emulsifier was changed to 0.2 part during the production of the organic particles, the organic particles, the functional layer particulate polymer, and the nonaqueous secondary battery were used.
  • a functional layer composition, a separator, a particulate binder for a negative electrode, a slurry composition for a negative electrode, a negative electrode, a slurry composition for a positive electrode, a positive electrode, and a lithium ion secondary battery were produced.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 In the same manner as in Example 1 except that the amount of styrene was changed to 25 parts and the amount of methacrylic acid was changed to 5 parts for the monomer composition used for the production of the shell part during the production of the organic particles.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 When preparing the composition for the functional layer of the non-aqueous secondary battery, an aqueous dispersion of the acrylic polymer as the particulate polymer for the functional layer was added to 35 parts in terms of solid content, and SN wet 366 as a wetting agent (manufactured by San Nopco) , 70% solid content) was changed to 2.0 parts in terms of solid content, respectively, in the same manner as in Example 1, organic particles, functional layer particulate polymer, and non-aqueous secondary battery functional layer composition , Separator, particulate binder for negative electrode, slurry composition for negative electrode, negative electrode, slurry composition for positive electrode, positive electrode and lithium ion secondary battery. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 In a 5 MPa pressure vessel equipped with a stirrer, 35 parts of methyl methacrylate (MMA) as a (meth) acrylic acid alkyl ester monomer, 20 parts of 1,3-butadiene (BD) as an aliphatic conjugated diene monomer, aromatic 27 parts of styrene (ST) as a vinyl monomer, 17 parts of methacrylic acid (MAA) as a monomer having a carboxylic acid group and 1 part of ethylene dimethacrylate (EDMA) as a crosslinkable monomer; 1 part of sodium dodecylbenzenesulfonate; 150 parts of ion exchange water; and 0.5 part of potassium persulfate as a polymerization initiator were added and sufficiently stirred.
  • MMA methyl methacrylate
  • BD 1,3-butadiene
  • ST aromatic 27 parts of styrene
  • MAA methacrylic acid
  • EDMA ethylene dimethacrylate
  • a functional layer particulate polymer, a non-aqueous secondary battery functional layer composition, a separator, a negative electrode particulate binder, and a negative electrode slurry in the same manner as in Example 8 except that the production conditions of the organic particles are as described above.
  • a composition, a negative electrode, a slurry composition for positive electrode, a positive electrode, and a lithium ion secondary battery were produced.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 As in Example 1, except that the amount of methyl methacrylate was changed to 49 parts and the amount of 1,3-butadiene was changed to 3 parts for the monomer composition used for the production of the core part during the production of the organic particles.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 When preparing the composition for a non-aqueous secondary battery functional layer, an aqueous dispersion of an acrylic polymer as a particulate polymer for a functional layer was added to 82 parts in terms of solid content, and SN wet 366 (manufactured by San Nopco) as a wetting agent. , 70% solid content) was changed to 20 parts in terms of solid content, in the same manner as in Example 1, organic particles, functional layer particulate polymer, non-aqueous secondary battery functional layer composition, separator A negative electrode particulate binder, a negative electrode slurry composition, a negative electrode, a positive electrode slurry composition, a positive electrode, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 1 in Table 1 when the proportion of the aliphatic conjugated diene monomer unit in the total monomer units contained in the organic particles is less than 5% by mass, the content of the organic particles is It turns out that even if it is at most, a functional layer having an excellent transition metal capturing ability cannot be obtained, and a secondary battery having an excellent high-temperature cycle characteristic cannot be obtained. Further, from Comparative Example 2 in Table 1, when the content of the organic particles in the composition is less than 50% by mass in terms of solid content, the function excellent in adhesiveness and transition metal capturing ability in the electrolytic solution It can be seen that a layer cannot be obtained and a secondary battery excellent in low-temperature output characteristics and high-temperature cycle characteristics cannot be obtained.
  • the composition for non-aqueous secondary battery functional layers which can form the functional layer with high transition metal capture
  • the functional layer for non-aqueous secondary batteries which has high transition metal capture
  • a nonaqueous secondary battery having excellent life characteristics such as cycle characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

 本発明は、正極活物質から溶出したコバルトイオン等の遷移金属イオンを二次電池中で捕捉し、負極での遷移金属の析出を防止する技術を提供することを目的とする。本発明によれば、有機粒子を含み、前記有機粒子は、有機粒子に含まれる全単量体単位中に占める脂肪族共役ジエン単量体単位の割合が5質量%以上であり、前記有機粒子の含有量が、固形分換算で50質量%以上である、非水系二次電池機能層用組成物が提供される。

Description

非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
 本発明は、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして、非水系二次電池は、一般に、正極、負極、および、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。
 ここで、近年、二次電池においては、耐熱性および強度を向上させるための多孔膜層や、電池部材同士を接着するための接着層など(以下、これらを総称して「機能層」と称する場合がある)を備える電池部材が使用されている。具体的には、集電体上に電極合材層を設けてなる電極基材上に更に機能層を形成してなる電極や、セパレータ基材上に機能層を形成してなるセパレータが電極部材として使用されている。
 そして、それらの機能層を有する電池部材を使用した二次電池の更なる高性能化を目的として、機能層の改良が盛んに行われている(例えば、特許文献1参照)。
 具体的には、例えば特許文献1では、フィラーと結着材とを含む多孔膜層について、脂肪族共役ジエン系単量体単位を5~85質量%含有するカルボキシ変性ジエン系重合体を結着材として使用することで、結着材の凝集を抑制しつつ多孔膜層の結着性を向上させる技術が提案されている。
特開2011-165430号公報
 ところで、近年、電池容量の大容量化などの観点から、二次電池の正極の電極合材層(正極合材層)として、遷移金属を含有する正極活物質(例えば、LiCoO等)を含む正極合材層が使用されている。しかし、遷移金属を含有する正極活物質を使用した二次電池では、その使用に伴う副反応等により、正極活物質中の遷移金属(例えば、LiCoOの場合にはコバルト)が電解液中に遷移金属イオンとして溶出する場合がある。そして、正極から電解液中に溶出した遷移金属は、負極上で析出し、二次電池のサイクル特性などの寿命特性の悪化を招く虞がある。
 しかしながら、従来、二次電池においては、多孔膜層などの部材自体の物性を向上させることで二次電池の性能を向上させる技術が着目されており、上述した遷移金属の溶出の問題については、十分な検討がなされていなかった。そのため、遷移金属を含有する正極活物質を使用した二次電池においては、正極活物質から溶出したコバルトイオン等の遷移金属イオンを当該遷移金属イオンが負極付近へと移動する前に二次電池中で捕捉し、負極での遷移金属の析出を防止する技術を提供することが求められている。
 そこで、本発明者は、正極活物質から電解液中に溶出したコバルトイオン等の遷移金属イオンを捕捉する技術を提供することを目的として鋭意検討を行った。そして、本発明者は、電池部材を構成する機能層に遷移金属イオンの捕捉機能を持たせることにより、正極合材層の正極活物質から電解液中に溶出したコバルトイオン等の遷移金属イオンを二次電池中で捕捉することに着想した。そこで、本発明者はさらに検討を重ね、脂肪族共役ジエン単量体単位を特定の割合で含む有機粒子を用いて機能層を形成し、且つ、機能層中の当該有機粒子の含有量を特定の割合とすることで、機能層に、高い接着性を確保させつつ、高い遷移金属捕捉能を持たせることができることを見出し、本発明を完成させた。
 なお、本発明において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池機能層用組成物は、有機粒子を含む非水系二次電池機能層用組成物であって、前記有機粒子は、有機粒子に含まれる全単量体単位中に占める脂肪族共役ジエン単量体単位の割合が5質量%以上であり、前記有機粒子の含有量が、固形分換算で50質量%以上であることを特徴とする。このように、脂肪族共役ジエン単量体単位を特定の割合で含む有機粒子を用い、且つ、固形分換算での当該有機粒子の含有量を50質量%以上と多くすれば、高い接着性を確保しつつ、高い遷移金属捕捉能を持つ機能層を得ることができる。
 なお、本発明において、有機粒子が複数の重合体からなる場合には、「有機粒子に含まれる全単量体単位」とは、有機粒子を構成する全ての重合体に含まれている単量体単位の合計を意味する。
 ここで、本発明の非水系二次電池機能層用組成物は、前記有機粒子の電解液膨潤度が4倍以上30倍以下であることが好ましい。このように、有機粒子の電解液膨潤度が上述の範囲内であれば、機能層の接着性を高めると共に、有機粒子の電解液への溶出を抑制して二次電池の高温サイクル特性を更に向上させることができる。
 なお、本発明において、有機粒子の「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 また、本発明の非水系二次電池機能層用組成物は、前記有機粒子の体積平均粒子径D50が250nm以上1000nm以下であることが好ましい。このように、有機粒子の体積平均粒子径D50が上述の範囲内であれば、機能層の接着性を更に高めて二次電池の高温サイクル特性を向上させると共に、内部抵抗の上昇を抑制して二次電池の低温出力特性を向上させることができる。
 なお、本発明において、有機粒子の「体積平均粒子径D50」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 さらに、本発明の非水系二次電池機能層用組成物は、前記有機粒子が、コア部と、前記コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有しており、前記コア部は、電解液膨潤度が5倍以上30倍以下の重合体からなり、前記シェル部は、電解液膨潤度が1倍超4倍以下の重合体からなることが好ましい。このように、有機粒子が、それぞれ特定の電解液膨潤度を有する重合体からなるコア部とシェル部とを備える特定のコアシェル構造を有することで、機能層の接着性を更に高め、かつ、有機粒子の電解液への溶出を抑制して二次電池の高温サイクル特性を向上させると共に、二次電池の低温出力特性を向上させることができる。
 なお、本発明において、コア部の重合体およびシェル部の重合体の「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用機能層は、上述の非水系二次電池機能層用組成物の何れかを用いて形成されたことを特徴とする。このように、上述の組成物の何れかを用いれば、高い接着性を確保しつつ、高い遷移金属捕捉能を持つ機能層を得ることができる。
 さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述の非水系二次電池用機能層と、遷移金属を含有する正極活物質を含む正極合材層とを備えることを特徴とする。このように、上述の機能層を設ければ、正極活物質から電解液中に溶出したコバルトイオン等の遷移金属イオンを機能層で捕捉することができる。従って、サイクル特性などの寿命特性に優れる非水系二次電池を得ることができる。
 本発明によれば、高い接着性を確保しつつ、高い遷移金属捕捉能を持つ機能層を形成することが可能な非水系二次電池機能層用組成物が得られる。
 また、本発明によれば、高い接着性を確保しつつ、高い遷移金属捕捉能を持つ非水系二次電池用機能層が得られる。
 更に、本発明によれば、サイクル特性などの寿命特性に優れる非水系二次電池が得られる。
本発明の非水系二次電池機能層用組成物に含まれる有機粒子の一例の構造を模式的に示す断面図である。
 以下、本発明の実施形態について詳細に説明する。なお、本発明は下記の実施形態に限定されるものではない。
 ここで、本発明の非水系二次電池機能層用組成物は、多孔膜層や接着層などの機能層の形成に用いられるものであり、本発明の非水系二次電池用機能層を形成する際に用いることができる。そして、本発明の非水系二次電池は、本発明の非水系二次電池用機能層を備えることを特徴とする。
(非水系二次電池機能層用組成物)
 本発明の非水系二次電池機能層用組成物は、有機粒子を含み、当該有機粒子は、有機粒子に含まれる全単量体単位中に占める脂肪族共役ジエン単量体単位の割合が5質量%以上である。そして、本発明の非水系二次電池機能層用組成物は、有機粒子の含有量が、固形分換算で50質量%以上である。
 また、非水系二次電池機能層用組成物は、任意に、機能層用粒子状重合体およびその他の成分を含有する。更に、非水系二次電池機能層用組成物を用いて形成される機能層が多孔膜層として機能する層である場合(即ち、非水系二次電池機能層用組成物が非水系二次電池多孔膜層用組成物である場合)には、非水系二次電池機能層用組成物は、通常、非導電性粒子(有機粒子および機能層用粒子状重合体に該当するものを除く)を更に含有する。
<有機粒子>
 全単量体単位中に占める脂肪族共役ジエン単量体単位の割合が5質量%以上の有機粒子は、組成物中に固形分換算で50質量%以上の割合で含まれることで、本発明の非水系二次電池機能層用組成物を用いた機能層に優れた接着性および遷移金属捕捉能を発揮させるとともに、当該機能層を備える二次電池に優れたサイクル特性などの寿命特性を発揮させることができる。
 ここで、有機粒子は、通常、水溶性の重合体ではなく、水などの分散媒中において粒子状で存在しており、その粒子形状を維持したまま機能層に含有され得る。
 また、有機粒子は、有機粒子に含まれる全単量体単位中に脂肪族共役ジエン単量体単位を5質量%以上、100質量%以下の割合で含むことを必要とし、任意に、その他の単量体単位を含み得る。
 そして、有機粒子は、複数の重合体で構成された複合重合体よりなる粒子であってもよく、好ましくは、それぞれ特定の電解液膨潤度を有する重合体からなるコア部とシェル部とを備える特定のコアシェル構造を有する。
 なお、有機粒子は、1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。ここで、2種類以上の有機粒子を組み合わせて使用する場合には、全有機粒子の合計量の割合が50質量%以上となればよい。
[脂肪族共役ジエン単量体単位]
 脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン(クロロプレン)、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などが挙げられる。これらの中でも、有機粒子を含む機能層の遷移金属捕捉能を効果的に高める観点からは、脂肪族共役ジエン単量体としては、1,3-ブタジエンが好ましい。
 なお、これらの脂肪族共役ジエン単量体は、1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 そして、有機粒子に含まれる全単量体単位中に占める脂肪族共役ジエン単量体単位の割合は、5質量%以上であることが必要であり、7質量%以上であることが好ましく、8質量%以上であることがより好ましく、9質量%以上であることが更に好ましく、80質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることが更に好ましく、45質量%以下であることが特に好ましい。脂肪族共役ジエン単量体単位の割合が5質量%未満であると、遷移金属捕捉能を十分に有する機能層が得られず、その結果、サイクル特性などの寿命特性が高い二次電池が得られない。なお、脂肪族共役ジエン単量体単位の割合を上記上限値以下とすれば、有機粒子の膨潤度を適度な大きさにすると共に、機能層の接着性を高めることができる。
[その他の単量体単位]
 有機粒子は、上述した脂肪族共役ジエン単量体単位以外のその他の単量体単位を含んでいてもよい。そのようなその他の単量体単位としては、塩化ビニル、塩化ビニリデン等の塩化ビニル系単量体;酢酸ビニル等の酢酸ビニル系単量体;スチレン、α-メチルスチレン、スチレンスルホン酸、ブトキシスチレン、ビニルナフタレン等の芳香族ビニル単量体;ビニルアミン等のビニルアミン系単量体;N-ビニルホルムアミド、N-ビニルアセトアミド等のビニルアミド系単量体;カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、水酸基を有する単量体等の酸基含有単量体;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、2-エチルヘキシルアクリレート等の(メタ)アクリル酸アルキルエステル単量体;アクリルアミド、メタクリルアミド等の(メタ)アクリルアミド単量体;アクリロニトリル、メタクリロニトリル等の(メタ)アクリロニトリル単量体;2-(パーフルオロヘキシル)エチルメタクリレート、2-(パーフルオロブチル)エチルアクリレート等のフッ素含有(メタ)アクリレート単量体;マレイミド;フェニルマレイミド等のマレイミド誘導体;ジビニルベンゼン等のジビニル化合物;ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート等のジ(メタ)アクリル酸エステル化合物;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等のトリ(メタ)アクリル酸エステル化合物;アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を含有するエチレン性不飽和単量体;などが挙げられる。
 なお、本発明において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味し、「(メタ)アクリロ」とは、アクリロおよび/またはメタクリロを意味し、「(メタ)アクリレート」とは、アクリレートおよび/またはメタクリレートを意味する。
[有機粒子の製造方法]
 有機粒子は、上述した単量体を含む単量体組成物を重合することにより調製される。ここで、単量体組成物中の各単量体の割合は、通常、所望の有機粒子における各単量体単位の割合と同様とする。
 有機粒子の重合様式は、特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。
[有機粒子の性状]
 そして、上述した方法で調製した有機粒子は、以下の性状を有することが好ましい。
[[有機粒子の体積平均粒子径D50]]
 有機粒子の体積平均粒子径D50は、250nm以上であることが好ましく、300nm以上であることがより好ましく、400nm以上であることが更に好ましく、1000nm以下であることが好ましく、900nm以下であることがより好ましく、700nm以下であることが更に好ましく、550nm以下であることが特に好ましい。有機粒子の体積平均粒子径D50が上記範囲の下限値以上であれば、内部抵抗の上昇を抑制して二次電池の低温出力特性を向上させることができる。また、有機粒子の体積平均粒子径D50が上記範囲の上限値以下であれば、機能層の電解液中での接着性を高めて二次電池のサイクル特性を向上させることができる。
[[有機粒子の電解液膨潤度]]
 有機粒子の電解液膨潤度は、4倍以上であることが好ましく、4.5倍以上であることがより好ましく、5倍以上であることが更に好ましく、30倍以下であることが好ましく、25倍以下であることがより好ましく、20倍以下であることが更に好ましい。有機粒子の電解液膨潤度が上記範囲の下限値以上であれば、機能層の電解液中での接着性を向上させることができる。一方、有機粒子の電解液膨潤度が上記範囲の上限値以下であれば、有機粒子の電解液への溶出を抑制して、二次電池のサイクル特性を向上させることができる。
 なお、有機粒子の電解液膨潤度を調整する方法としては、例えば、電解液のSP値を考慮して、有機粒子を製造するための単量体の種類および量を適切に選択することや、有機粒子を構成する重合体の架橋度および分子量を調整することなどが挙げられる。
 なお、一般に、重合体のSP値が電解液のSP値に近い場合、その重合体はその電解液に膨潤しやすい傾向がある。他方、重合体のSP値が電解液のSP値から離れていると、その重合体はその電解液に膨潤し難い傾向がある。
 ここでSP値とは、溶解度パラメータのことを意味する。
 そして、SP値は、Hansen Solubility Parameters A User’s Handbook,2ndEd(CRCPress)で紹介されている方法を用いて算出することができる。
 また、有機化合物のSP値は、その有機化合物の分子構造から推算することも可能である。具体的には、SMILEの式からSP値を計算できるシミュレーションソフトウェア(例えば「HSPiP」(http=//www.hansen-solubility.com))を用いて計算しうる。このシミュレーションソフトウェアでは、Hansen SOLUBILITY PARAMETERS A User’s Handbook SecondEdition、Charles M.Hansenに記載の理論に基づき、SP値が求められている。
[有機粒子のガラス転移温度]
 有機粒子のガラス転移温度は、-20℃以上であることが好ましく、30℃超であることがより好ましく、50℃以上であることが更に好ましく、80℃以上であることが特に好ましく、200℃以下であることが好ましく、180℃以下であることがより好ましく、150℃以下であることが更に好ましい。
 なお、有機粒子のガラス転移温度が複数観測される場合には、最も高いガラス転移温度を有機粒子のガラス転移温度とする。
 有機粒子のガラス転移温度を上記範囲内とすれば、非水系二次電池用機能層のイオン伝導性を高め、非水系二次電池の低温出力特性を向上させることができる。
[有機粒子の含有量]
 非水系二次電池機能層用組成物は、有機粒子の含有量が、固形分換算で、50質量%以上、100質量%以下であることが必要であり、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、75質量%以上であることが更に好ましく、80質量%以上であることが特に好ましい。有機粒子の含有量を上記範囲内とすれば、機能層の電解液中での接着性を向上させると共に、機能層の遷移金属捕捉能を向上させることができる。また、非水系二次電池の低温出力特性を向上させることができる。
[有機粒子の構造]
 有機粒子は、粒子形状を有すること以外には構造上特に限定されず、1種類の重合体よりなる粒子であってもよいし、2種類以上の重合体で構成された複合重合体よりなる粒子であってもよい。中でも、有機粒子は、それぞれ特定の電解液膨潤度を有する重合体からなるコア部とシェル部とを備える特定のコアシェル構造を有する複合重合体よりなることが好ましい。具体的には、有機粒子は、電解液膨潤度が5倍以上30倍以下の重合体からなるコア部と、電解液膨潤度が1倍超4倍以下の重合体からなるシェル部とを備え、コア部と、コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有することが好ましい。有機粒子がこのような特定のコアシェル構造および電解液膨潤度を有することで、機能層の電解液中での接着性を更に高め、かつ、有機粒子の電解液への溶出を抑制して二次電池の高温サイクル特性を向上させると共に、二次電池の低温出力特性を向上させることができる。
 なお、外観上、コア部の外表面がシェル部によって完全に覆われているように見える場合であっても、シェル部の内外を連通する孔が形成されていれば、そのシェル部はコア部の外表面を部分的に覆うシェル部である。したがって、例えば、シェル部の外表面(即ち、有機粒子の周面)からコア部の外表面まで連通する細孔を有するシェル部を備える有機粒子は、上記特定のコアシェル構造を有する有機粒子に含まれる。
 なお、特定のコアシェル構造および電解液膨潤度を有する有機粒子を使用することで上述したような優れた効果が得られる理由は、明らかではないが、以下の通りであると推察される。
 即ち、有機粒子のシェル部を構成する重合体は、電解液に対して膨潤する。このとき、例えば膨潤したシェル部の重合体が有する官能基が活性化し、機能層が形成される基材(例えば、セパレータ基材、電極基材等)や機能層を介して貼り合わされる電池部材の表面にある官能基と化学的または電気的な相互作用を生じるなどの要因により、シェル部は電解液中で基材および電池部材と強固に接着できる。そのため、有機粒子を含む機能層により電池部材同士(例えば、セパレータと電極)を電解液中において強力に接着することが可能となっているものと推察される。
 また、有機粒子を含む機能層を接着層として使用した場合、上述したように電解液中においてセパレータと電極とを強力に接着することができるので、当該機能層を備える二次電池では、機能層を介して接着された電池部材間(例えば、セパレータと電極との間)に空隙を生じ難い。そのため、有機粒子を含む機能層を使用した二次電池では、二次電池内において正極と負極との距離が大きくなり難く、二次電池の内部抵抗を小さくできると共に、電極における電気化学反応の反応場が不均一になり難いため、優れた低温出力特性を実現できると推察される。更に、当該二次電池では、充放電を繰り返してもセパレータと電極との間に空隙ができ難く、電池容量が低下しにくい。これにより、優れた高温サイクル特性を実現できるものと推察される。
 更に、有機粒子のコア部を構成する重合体は、電解液に対して大きく膨潤する。そして、重合体は、電解液に大きく膨潤した状態では、重合体の分子間の隙間が大きくなり、その分子間をイオンが通り易くなる。また、有機粒子のコア部の重合体は、シェル部によって完全に覆われてはいない。そのため、電解液中においてイオンがコア部を通りやすくなるので、有機粒子は高いイオン拡散性を発現できる。従って、上記有機粒子を使用すれば、機能層による抵抗の上昇を抑制し、低温出力特性の低下を抑制することも可能である。
 また、シェル部の重合体は、電解液に膨潤していない状態においては、通常、接着性を有さず、電解液に膨潤することにより始めて接着性を発現する。そのため、有機粒子は、電解液に膨潤していない状態において、通常、接着性を発現しない。このため、その有機粒子を含む機能層は、電解液に膨潤していない状態では、通常、大きな接着性を発現せず、その機能層をセパレータ基材等の基材に形成してなる電池部材は、重ねてもブロッキングを生じ難いものと推察される。なお、有機粒子は、電解液に膨潤しない限りは接着性を全く発揮しないというものではなく、電解液に膨潤していない状態であっても、例えば一定温度以上(例えば50℃以上)に加熱されることにより、接着性を発現し得る。
 なお、有機粒子が特定のコアシェル構造を有する場合には、上述した脂肪族共役ジエン単量体単位は、コア部の重合体のみに含まれてもよく、シェル部の重合体のみに含まれてもよく、また、コア部の重合体およびシェル部の重合体の双方にそれぞれ所定の割合で含まれてもよい。ここで、特定のコアシェル構造を有する有機粒子では、脂肪族共役ジエン単量体単位がコア部の重合体に含まれる場合であっても、コア部の外表面がシェル部によって完全に覆われる訳ではない。そのため、コア部の重合体に含まれる脂肪族共役ジエン単量体単位によっても、遷移金属捕捉能を発現させることができる。
 なお、機能層の接着性を十分に高めると共にコア部およびシェル部のガラス転移温度の調整を容易にする観点からは、脂肪族共役ジエン単量体はコア部のみ或いはコア部およびシェル部の双方に含ませることが好ましい。
 また、有機粒子が特定のコアシェル構造を有する場合には、当該有機粒子は、コア部とシェル部とを含む粒子全体として上述した体積平均粒子径D50および/または有機粒子の電解液膨潤度を満たすことが好ましい。
 ここで、特定のコアシェル構造を有する有機粒子のシェル部は、複数のシェル部構造体からなることが好ましい。
 具体的には、有機粒子の一例の断面構造を図1に示すように、有機粒子100は、コア部110および複数のシェル部構造体120で形成されたシェル部を備えるコアシェル構造を有することが好ましい。ここで、コア部110は、この有機粒子100においてシェル部よりも内側にある部分である。また、シェル部構造体120は、コア部110の外表面110Sを覆い、当該シェル部構造体120からなるシェル部は、通常は有機粒子100において最も外側にある部分である。そして、シェル部構造体120からなるシェル部は、コア部110の外表面110Sの全体を覆っているのではなく、コア部110の外表面110Sを部分的に覆っている。
[[被覆率]]
 ここで、特定のコアシェル構造を有する有機粒子では、コア部の外表面がシェル部によって覆われる平均割合(以下「被覆率」という。)は、10%以上であることが好ましく、40%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが特に好ましく、99%以下であることが好ましく、95%以下であることがより好ましく、85%以下であることが更に好ましく、70%以下であることが特に好ましい。被覆率を上記範囲の下限値以上とすることにより、機能層の電解液への浸漬前の耐ブロッキング性、機能層の電解液中での接着性、および二次電池の高温サイクル特性をそれぞれ向上させることができる。また、被覆率を上記範囲の上限値以下とすることにより、イオン拡散性を高めて二次電池の低温出力特性を向上させることができると共に、二次電池の低温シャットダウン特性を向上させることができ、また、機能層の熱プレスによる接着性を高めることができる。
 なお、被覆率は、有機粒子の観察結果から測定しうる。具体的には、以下に説明する方法により測定しうる。
 まず、有機粒子を常温硬化性のエポキシ樹脂中に十分に分散させた後、包埋し、有機粒子を含有するブロック片を作製する。次に、ブロック片を、ダイヤモンド刃を備えたミクロトームで厚さ80nm~200nmの薄片状に切り出して、測定用試料を作製する。その後、必要に応じて、例えば四酸化ルテニウムまたは四酸化オスミウムを用いて測定用試料に染色処理を施す。
 次に、この測定用試料を、透過型電子顕微鏡(TEM)にセットして、有機粒子の断面構造を写真撮影する。透過型電子顕微鏡の倍率は、有機粒子1個の断面が視野に入る倍率が好ましく、具体的には10,000倍程度が好ましい。
 撮影された有機粒子の断面構造において、コア部の外表面に相当する周の長さD1、および、コア部の外表面とシェル部とが当接する部分の長さD2を測定する。そして、測定された長さD1および長さD2を用いて、下記の式(1)により、その有機粒子のコア部の外表面がシェル部によって覆われる割合Rcを算出する。
 被覆割合Rc(%)=(D2/D1)×100 ・・・(1)
 上記の被覆割合Rcを、20個以上の有機粒子について測定し、その平均値を計算して、コア部の外表面がシェル部によって覆われる平均割合(被覆率)とする。
 ここで、上記の被覆割合Rcは、断面構造からマニュアルで計算することもできるが、市販の画像解析ソフトを用いて計算することもできる。市販の画像解析ソフトとして、例えば「AnalySIS Pro」(オリンパス株式会社製)を用いることができる。
 なお、上記特定のコアシェル構造を有する有機粒子は、所期の効果を著しく損なわない限り、上述したコア部およびシェル部以外に任意の構成要素を備えていてもよい。具体的には、例えば、有機粒子は、コア部の内部に、コア部とは別の重合体で形成された部分を有していてもよい。具体例を挙げると、有機粒子をシード重合法で製造する場合に用いたシード粒子が、コア部の内部に残留していてもよい。ただし、所期の効果を顕著に発揮する観点からは、有機粒子はコア部およびシェル部のみを備えることが好ましい。
[[コア部]]
-コア部の重合体の電解液膨潤度-
 特定のコアシェル構造を有する有機粒子のコア部は、電解液に対して所定の膨潤度を有する重合体からなることが好ましい。具体的には、コア部の重合体の電解液膨潤度は、5倍以上であることが好ましく、6倍以上であることがより好ましく、7倍以上であることが更に好ましく、30倍以下であることが好ましく、20倍以下であることがより好ましく、15倍以下であることが更に好ましく、10倍以下であることが特に好ましい。コア部の重合体の電解液膨潤度を上記範囲の下限値以上にすることにより、機能層の接着性を高めて二次電池の低温出力特性を向上させることができる。また、コア部の重合体の電解液膨潤度を上記範囲の上限値以下にすることにより、有機粒子の電解液への溶出を抑制して二次電池の高温サイクル特性を向上させることができる。
-コア部の重合体のガラス転移温度-
 また、コア部の重合体のガラス転移温度は、-20℃以上であることが好ましく、0℃以上であることがより好ましく、10℃以上であることが更に好ましく、100℃以下であることが好ましく、95℃以下であることがより好ましく、90℃以下であることが更に好ましい。コア部の重合体のガラス転移温度を上記範囲の下限値以上にすることにより、有機粒子のコアシェル構造を安定的に維持することができる。また、コア部の重合体のガラス転移温度を上記範囲の上限値以下にすることにより、機能層の電解液中での接着性を向上させることができる。
-コア部の重合体の組成-
 コア部の重合体を調製するために用いる単量体としては、上述した脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体の他、コア部の重合体の電解液膨潤度が所望の範囲となるものを、有機粒子中の脂肪族共役ジエン単量体単位の割合が5質量%以上となる範囲内で適宜選択して用いうる。そのような単量体としては、例えば、塩化ビニル、塩化ビニリデン等の塩化ビニル系単量体;酢酸ビニル等の酢酸ビニル系単量体;スチレン、α-メチルスチレン、スチレンスルホン酸、ブトキシスチレン、ビニルナフタレン等の芳香族ビニル単量体;ビニルアミン等のビニルアミン系単量体;N-ビニルホルムアミド、N-ビニルアセトアミド等のビニルアミド系単量体;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、2-エチルヘキシルアクリレート等の(メタ)アクリル酸アルキルエステル単量体;アクリルアミド、メタクリルアミド等の(メタ)アクリルアミド単量体;アクリロニトリル、メタクリロニトリル等の(メタ)アクリロニトリル単量体;2-(パーフルオロヘキシル)エチルメタクリレート、2-(パーフルオロブチル)エチルアクリレート等のフッ素含有(メタ)アクリレート単量体;マレイミド;フェニルマレイミド等のマレイミド誘導体;などが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ここで、コア部の重合体は、脂肪族共役ジエン単量体単位を含むことが好ましい。
 また、コア部の重合体は、脂肪族共役ジエン単量体単位以外に、(メタ)アクリル酸アルキルエステル単量体単位または(メタ)アクリロニトリル単量体単位を含むことが好ましく、(メタ)アクリル酸アルキルエステル単量体単位を含むことがより好ましく、メタクリル酸メチル由来の単量体単位を含むことが特に好ましい。これにより、コア部の重合体の膨潤度の制御が容易になる。
 また、コア部の重合体における(メタ)アクリル酸アルキルエステル単量体単位の割合は、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、70質量%以下であることが好ましく、65質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。(メタ)アクリル酸アルキルエステル単量体単位の割合を上記範囲の下限値以上にすることにより、二次電池の低温出力特性を向上させることができる。また、(メタ)アクリル酸アルキルエステル単量体単位の割合を上記範囲の上限値以下にすることにより、機能層の電解液中での接着性および二次電池の高温サイクル特性を向上させることができる。
 また、コア部の重合体は、酸基含有単量体単位を含みうる。ここで、酸基含有単量体としては、酸基を有する単量体、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、および、水酸基を有する単量体が挙げられる。
 そして、カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 また、スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 更に、リン酸基を有する単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。なお、本明細書において、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 また、水酸基を有する単量体としては、例えば、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピルなどが挙げられる。
 これらの中でも、酸基含有単量体としては、カルボン酸基を有する単量体が好ましく、中でもモノカルボン酸が好ましく、(メタ)アクリル酸がより好ましい。
 また、酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、コア部の重合体における酸基含有単量体単位の割合は、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、45質量%以下であることが好ましく、35質量%以下であることがより好ましく、25質量%以下であることが更に好ましい。酸基含有量体単位の割合を上記範囲に収めることにより、有機粒子の調製時に、コア部の重合体の分散性を高め、コア部の重合体の外表面に対し、コア部の外表面を部分的に覆うシェル部を形成し易くすることができる。
 また、コア部の重合体は、上記単量体単位に加え、架橋性単量体単位を含んでいることが好ましい。架橋性単量体とは、加熱またはエネルギー線の照射により、重合中または重合後に架橋構造を形成しうる単量体である。架橋性単量体単位を含むことにより、コア部の重合体の電解液膨潤度を、上記の範囲に容易に収めることができる。
 架橋性単量体としては、例えば、当該単量体に2個以上の重合反応性基を有する多官能単量体が挙げられる。このような多官能単量体としては、例えば、ジビニルベンゼン等のジビニル化合物;ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート等のジ(メタ)アクリル酸エステル化合物;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等のトリ(メタ)アクリル酸エステル化合物;アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を含有するエチレン性不飽和単量体;などが挙げられる。これらの中でも、コア部の重合体の電解液膨潤度を容易に制御する観点から、エチレングリコールジメタクリレート、アリルグリシジルエーテル、グリシジルメタクリレートが好ましく、エチレングリコールジメタクリレートがより好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ここで、一般に、重合体において架橋性単量体単位の割合が増えると、その重合体の電解液膨潤度は小さくなる傾向がある。したがって、架橋性単量体単位の割合は、使用する単量体の種類および量を考慮して決定することが好ましい。コア部の重合体における架橋性単量体単位の具体的な割合は、0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましく、1.0質量%以上であることが特に好ましく、5質量%以下であることが好ましく、4質量%以下であることがより好ましく、3質量%以下であることが更に好ましく、2質量%以下であることが特に好ましい。架橋性単量体単位の割合を上記範囲の下限値以上にすることにより、機能層の電解液中での接着性および二次電池のサイクル特性を向上させることができる。また、架橋性単量体単位の割合を上記範囲の上限値以下にすることにより、有機粒子の調製時の重合安定性が確保され、得られる有機粒子を好適な粒子状とすることができる。
 ここで、コア部の径は、有機粒子の製造過程において得られる、シェル部を形成する前の粒子状の重合体の体積平均粒子径D50として測定することができる。このようなシェル部を形成する前の粒子状の重合体は、コア部を構成する重合体に相当する。なお、シェル部を形成する前の粒子状の重合体の体積平均粒子径D50は、上記有機粒子の体積平均粒子径D50と同様に測定しうる。
[[シェル部]]
-シェル部の重合体の電解液膨潤度-
 特定のコアシェル構造を有する有機粒子のシェル部は、コア部の重合体の電解液膨潤度よりも小さい所定の電解液膨潤度を有する重合体からなることが好ましい。具体的には、シェル部の重合体の電解液膨潤度は、1倍超であることが好ましく、1.1倍以上であることがより好ましく、1.2倍以上であることが更に好ましく、4倍以下であることが好ましく、3.5倍以下であることがより好ましく、3倍以下であることが更に好ましく、1.5倍以下であることが特に好ましい。シェル部の重合体の電解液膨潤度を上記範囲内にすることにより、機能層の電解液中での接着性を高めて二次電池の高温サイクル特性の低下を抑制することができる。
-シェル部の重合体のガラス転移温度-
 また、シェル部重合体のガラス転移温度は、50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることが更に好ましく、80℃以上であることが特に好ましく、200℃以下であることが好ましく、180℃以下であることがより好ましく、150℃以下であることが更に好ましく、120℃以下であることが特に好ましい。シェル部重合体のガラス転移温度を上記範囲の下限値以上にすることにより、機能層の耐ブロッキング性を向上させることができる。また、ガラス転移温度を上記範囲の上限値以下にすることにより、機能層の電解液中での接着性を向上させることができる。
-コアシェル比率-
 更に、シェル部は、有機粒子の体積平均粒子径D50に対して、所定の範囲に収まる平均厚みを有することが好ましい。具体的には、有機粒子の体積平均粒子径D50に対するシェル部の平均厚み(コアシェル比率)は、1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることが更に好ましく、8%以上であることが特に好ましく、30%以下であることが好ましく、25%以下であることがより好ましく、20%以下であることが更に好ましく、15%以下であることが特に好ましい。シェル部の平均厚みを上記範囲の下限値以上にすることにより、機能層の電解液中での接着性を向上させることができる。また、シェル部の平均厚みを上記範囲の上限値以下とすることにより、二次電池の低温出力特性を向上させることができる。
 ここで、シェル部の平均厚みは、透過型電子顕微鏡(TEM)を用いて有機粒子の断面構造を観察することにより求められる。具体的には、TEMを用いて有機粒子の断面構造におけるシェル部の最大厚みを測定し、任意に選択した20個以上の有機粒子のシェル部の最大厚みの平均値を、シェル部の平均厚みとする。ただし、シェル部が重合体の粒子によって構成されており、かつ、有機粒子の径方向で、シェル部を構成する粒子同士が重なり合わず、それらの重合体の粒子が単層でシェル部を構成している場合は、シェル部を構成する粒子の個数平均粒子径をシェル部の平均厚みとする。
-シェル部の形態-
 また、シェル部の形態は特に制限されないが、シェル部は、重合体の粒子によって構成されていることが好ましい。シェル部が重合体の粒子によって構成されている場合、有機粒子の径方向にシェル部を構成する粒子が複数重なり合っていてもよい。ただし、有機粒子の径方向では、シェル部を構成する粒子同士が重なり合わず、それらの重合体の粒子が単層でシェル部を構成していることが好ましい。
 更に、シェル部が重合体の粒子によって構成されている場合、シェル部を構成する粒子の個数平均粒子径は、10nm以上であることが好ましく、20nm以上であることがより好ましく、30nm以上であることが更に好ましく、200nm以下であることが好ましく、150nm以下であることがより好ましく、100nm以下であることが更に好ましい。個数平均粒子径を上記範囲に収めることにより、機能層の電解液中での接着性を向上させることができる。
 なお、シェル部を構成する粒子の個数平均粒子径は、透過型電子顕微鏡(TEM)を用いて有機粒子の断面構造を観察することにより求められる。具体的には、有機粒子の断面構造におけるシェル部を構成する粒子の最長径を測定し、任意に選択した20個以上の有機粒子のシェル部を構成する粒子の最長径の平均値を、シェル部を構成する粒子の個数平均粒子径とすることができる。
-シェル部の重合体の組成-
 シェル部の重合体を調製するために用いる単量体としては、上述した脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体の他、シェル部の重合体の電解液膨潤度が所望の範囲となるものを、有機粒子中の脂肪族共役ジエン単量体単位の割合が5質量%以上となる範囲内で適宜選択して用いうる。そのような単量体としては、例えば、コア部の重合体を製造するために用いうる単量体として例示した単量体と同様の単量体が挙げられる。また、このような単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの単量体の中でも、シェル部の重合体の調製に用いられる単量体としては、芳香族ビニル単量体が好ましい。即ち、シェル部の重合体は、芳香族ビニル単量体単位を含むことが好ましい。芳香族ビニル単量体を用いれば、シェル部の重合体の電解液膨潤度を制御し易い。また、機能層の接着性を一層高めることができる。そして、芳香族ビニル単量体の中でも、スチレンおよびスチレンスルホン酸等のスチレン誘導体がより好ましく、二次電池の低温出力特性を更に向上させる観点からは、スチレンが更に好ましい。
 そして、シェル部の重合体における芳香族ビニル単量体単位の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上であり、好ましくは99.5質量%以下、より好ましくは99質量%以下、更に好ましくは98質量%以下、特に好ましくは95質量%以下である。芳香族ビニル単量体単位の割合を上記範囲内とすることにより、機能層の電解液中での接着性を高め、二次電池の高温サイクル特性を更に向上させることができる。
 また、シェル部の重合体は、芳香族ビニル単量体単位以外に、酸基含有単量体単位を含みうる。ここで、酸基含有単量体としては、コア部の重合体が含み得る酸基含有単量体単位を構成しうる単量体と同様の単量体が挙げられる。
 中でも、酸基含有単量体としては、カルボン酸基を有する単量体が好ましく、中でもモノカルボン酸が好ましく、(メタ)アクリル酸がより好ましい。
 また、酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 シェル部の重合体中の酸基含有単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは3質量%以上、特に好ましくは5質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは8質量%以下である。酸基含有単量体単位の割合を上記範囲に収めることにより、機能層中での有機粒子の分散性を向上させ、特に電解液中において機能層全面に渡って良好な接着性を発現させることができる。
 また、シェル部の重合体は、架橋性単量体単位を含みうる。架橋性単量体としては、例えば、コア部重合体に用いうる架橋性単量体として例示したものと同様の単量体が挙げられる。また、架橋性単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[[コアシェル構造を有する有機粒子の製造方法]]
 上述した特定のコアシェル構造を有する有機粒子は、例えば、コア部の重合体の調製に用いる単量体と、シェル部の重合体の調製に用いる単量体とを用い、経時的にそれらの単量体の比率を変えて段階的に重合することにより、製造することができる。具体的には、有機粒子は、先の段階の重合体を後の段階の重合体が順次に被覆するような連続した多段階乳化重合法および多段階懸濁重合法によって製造することができる。なお、特定のコアシェル構造を有する有機粒子の製造に当たっては、コア部の重合体の調製に用いる単量体と、シェル部の重合体の調製に用いる単量体との合計量中で脂肪族共役ジエン単量体が占める割合が5質量%以上となるようにする。
 そこで、以下に、多段階乳化重合法により上記特定のコアシェル構造を有する有機粒子を得る場合の一例を示す。
 重合に際しては、常法に従って、乳化剤として、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム等のアニオン性界面活性剤、ポリオキシエチレンノニルフェニルエーテル、ソルビタンモノラウレート等のノニオン性界面活性剤、またはオクタデシルアミン酢酸塩等のカチオン性界面活性剤を用いることができる。また、重合開始剤として、例えば、t-ブチルパーオキシ-2-エチルヘキサノエート、過硫酸カリウム、キュメンパーオキサイド等の過酸化物、2,2’-アゾビス(2-メチル-N-(2-ハイドロキシエチル)-プロピオンアミド)、2,2’-アゾビス(2-アミジノプロパン)塩酸塩等のアゾ化合物を用いることができる。
 そして、重合手順としては、まず、水などの重合溶媒に、コア部を形成する単量体および乳化剤を混合し、その後重合開始剤を入れ、一括で乳化重合することによってコア部を構成する粒子状の重合体を得る。さらに、このコア部を構成する粒子状の重合体の存在下にシェル部を形成する単量体の重合を行うことによって、上述したコアシェル構造を有する有機粒子を得ることができる。
 この際、コア部の外表面をシェル部によって部分的に覆う観点から、シェル部の重合体を形成する単量体は、複数回に分割して、もしくは、連続して重合系に供給することが好ましい。シェル部の重合体を形成する単量体を重合系に分割して、もしくは、連続で供給することにより、シェル部を構成する重合体が粒子状に形成され、この粒子がコア部と結合することで、コア部を部分的に覆うシェル部を形成することができる。
 ここで、シェル部の重合体を形成する単量体を複数回に分割して供給する場合には、単量体を分割する割合に応じてシェル部を構成する粒子の粒子径およびシェル部の平均厚みを制御することが可能である。また、シェル部の重合体を形成する単量体を連続で供給する場合には、単位時間あたりの単量体の供給量を調整することで、シェル部を構成する粒子の粒子径およびシェル部の平均厚みを制御することが可能である。
 また、シェル部の重合体を形成する単量体として重合溶媒に対して親和性の低い単量体を用いると、コア部を部分的に覆うシェル部を形成し易くなる傾向がある。従って、重合溶媒が水の場合、シェル部の重合体を形成する単量体は、疎水性単量体を含むことが好ましく、芳香族ビニル単量体を含むことが特に好ましい。
 更に、シェル部の重合に用いる乳化剤量を少なくすると、コア部を部分的に覆うシェル部を形成し易くなる傾向がある。従って、適宜乳化剤量を調整することによっても、コア部を部分的に覆うシェル部を形成することができる。
 なお、コア部を構成する粒子状の重合体の体積平均粒子径、シェル部を形成した後の有機粒子の体積平均粒子径D50、および、シェル部を構成する粒子の個数平均粒子径は、例えば、乳化剤の量、単量体の量などを調整することで、所望の範囲にすることができる。また、有機粒子全体の電解液膨潤度は、コア部の重合体およびシェル部の重合体それぞれの組成を調整することで、所望の範囲にすることができる。
 更に、コア部の外表面がシェル部によって覆われる平均割合は、コア部を構成する粒子状の重合体の体積平均粒子径に対応させて、例えば、乳化剤の量、および、シェル部の重合体を形成する単量体の量を調整することで、所望の範囲にすることができる。
<機能層用粒子状重合体>
 ここで、電解液への浸漬前に機能層に含まれる成分が機能層から脱落するのを抑制する観点からは、結着材として、機能層用粒子状重合体を機能層用組成物に含有させることが好ましい。
 中でも、有機粒子が上述した特定のコアシェル構造および電解液膨潤度を有する場合には、当該有機粒子は電解液に膨潤していない状態では大きな接着性を発現しないので、機能層用粒子状重合体、特には電解液に膨潤していない温度25℃の環境下において有機粒子よりも高い接着性を発揮する機能層用粒子状重合体を、機能層用組成物に含有させることが好ましい。
 そして、上記有機粒子と併用し得る機能層用粒子状重合体としては、非水溶性で、水中に分散可能な、二次電池の分野において結着材として使用し得る既知の粒子状重合体、例えば、熱可塑性エラストマーが挙げられる。そして、熱可塑性エラストマーとしては、アクリル系重合体が好ましい。
 ここで、アクリル系重合体とは、(メタ)アクリル酸エステル単量体単位を含む重合体を指す。なお、アクリル系重合体に含まれる脂肪族共役ジエン単量体の割合は、好ましくは5質量%以下、より好ましくは5質量%未満である。
 なお、これらの機能層用粒子状重合体は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
 機能層用粒子状重合体のガラス転移温度は、-100℃以上であることが好ましく、-80℃以上であることがより好ましく、-70℃以上であることが更に好ましく、30℃以下であることが好ましく、25℃以下であることがより好ましく、20℃以下であることが更に好ましい。機能層用粒子状重合体のガラス転移温度を前記範囲の下限値以上にすることにより、機能層の接着性を高めることができる。また、ガラス転移温度を前記範囲の上限値以下にすることにより、機能層の柔軟性を高めることができる。
 更に、機能層用粒子状重合体の体積平均粒子径D50は、100nm以上であることが好ましく、200nm以上であることがより好ましく、500nm以下であることが好ましく、400nm以下であることがより好ましい。機能層用粒子状重合体の体積平均粒子径D50を前記範囲の下限値以上にすることにより、機能層用粒子状重合体の分散性を高めることができる。また、体積平均粒子径D50を前記範囲の上限値以下にすることにより、機能層用粒子状重合体の接着性を高めることができる。なお、機能層用粒子状重合体の体積平均粒子径D50は、前記有機粒子の体積平均粒子径D50と同様に測定しうる。
 そして、機能層用組成物中の機能層用粒子状重合体の含有量は、有機粒子100質量部当たり、0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、10質量部以上であることが更に好ましく、35質量部以下であることが好ましく、30質量部以下であることがより好ましく、25質量部以下であることが更に好ましい。機能層用粒子状重合体の含有量を前記範囲の下限値以上にすることにより、有機粒子が機能層から脱落するのを十分に防止するとともに、機能層の接着性を高めることができる。また、機能層用粒子状重合体の含有量を前記範囲の上限値以下にすることにより、機能層のイオン拡散性が低下するのを抑制し、二次電池の低温出力特性を確保することができる。
 機能層用粒子状重合体の製造方法としては、例えば、溶液重合法、懸濁重合法、乳化重合法などが挙げられる。中でも、水中で重合をすることができ、機能層用粒子状重合体を含む水分散液をそのまま機能層用組成物の材料として好適に使用できるので、乳化重合法および懸濁重合法が好ましい。また、機能層用粒子状重合体を製造する際、その反応系は分散剤を含むことが好ましい。機能層用粒子状重合体は、通常、実質的にそれを構成する重合体により形成されるが、重合に際して用いた添加剤等の任意の成分を同伴していてもよい。
<非導電性粒子>
 更に、多孔膜層として機能し得る機能層の形成に使用する機能層用組成物に配合される非導電性粒子としては、特に限定されることなく、非水系二次電池に用いられる既知の非導電性粒子を挙げることができる。
 具体的には、非導電性粒子としては、無機微粒子と、上述した有機粒子および機能層用粒子状重合体以外の有機性の微粒子との双方を用いることができるが、通常は無機微粒子が用いられる。なかでも、非導電性粒子の材料としては、非水系二次電池の使用環境下で安定に存在し、電気化学的に安定である材料が好ましい。このような観点から非導電性粒子の材料の好ましい例を挙げると、酸化アルミニウム(アルミナ)、水和アルミニウム酸化物(ベーマイト)、酸化ケイ素、酸化マグネシウム(マグネシア)、酸化カルシウム、酸化チタン(チタニア)、BaTiO3、ZrO、アルミナ-シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化ホウ素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイト等の粘土微粒子;などが挙げられる。また、これらの粒子は必要に応じて元素置換、表面処理、固溶体化等が施されていてもよい。
 なお、上述した非導電性粒子は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。但し、本発明では、非水系二次電池機能層用組成物を用いて得られる機能層の遷移金属捕捉能および接着性を高める観点から、機能層を多孔膜層として用いる場合であっても、組成物中の非導電性粒子の量は固形分換算で50質量%以下とする必要がある。
<その他の成分>
 非水系二次電池機能層用組成物は、上述した有機粒子、機能層用粒子状重合体、非導電性粒子以外にも、任意のその他の成分を含んでいてもよい。これらのその他の成分としては、例えば、濡れ剤、粘度調整剤、電解液添加剤などの既知の添加剤が挙げられる。中でも、均一な機能層を成形する観点からは、非水系二次電池機能層用組成物は濡れ剤を含有することが好ましい。これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
[濡れ剤]
 濡れ剤としては、ノニオン性界面活性剤またはアニオン性界面活性剤が好ましい。そして、濡れ剤の含有量は、有機粒子100質量部当たり、0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、0.5質量部以上であることが更に好ましく、1.5質量部以上であることが特に好ましく、3質量部以下であることが好ましく、2.5質量部以下であることがより好ましく、2質量部以下であることが更に好ましい。
<非水系二次電池機能層用組成物の調製方法>
 非水系二次電池機能層用組成物は、上記各成分を分散媒としての水などの親水性溶媒中に溶解または分散させることにより調製することができる。具体的には、上記各成分と親水性溶媒とを、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて混合することにより、機能層用組成物を調製することができる。
[親水性溶媒]
 ここで、親水性溶媒としては、例えば、水;ダイアセトンアルコール、γ-ブチロラクトン等のケトン類;エチルアルコール、イソプロピルアルコール、ノルマルプロピルアルコール等のアルコール類;プロピレングリコールモノメチルエーテル、メチルセロソルブ、エチルセロソルブ、エチレングリコールターシャリーブチルエーテル、ブチルセロソルブ、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル等のグリコールエーテル類;1,3-ジオキソラン、1,4-ジオキソラン、テトラヒドロフラン等のエーテル類;などが挙げられる。なお、主溶媒として水を使用し、上記各成分の溶解または分散状態が確保可能な範囲において上記の水以外の親水性溶媒を混合して用いてもよい。
(非水系二次電池用機能層)
 本発明の非水系二次電池用機能層は、上述した非水系二次電池機能層用組成物を用いて形成されることを特徴とする。そして、本発明の非水系二次電池用機能層は、接着層および/または多孔膜層として、本発明の非水系二次電池を製造する際に用いられる。
 具体的には、非水系二次電池用機能層は、上述した非水系二次電池機能層用組成物を用い、適切な基材上に形成することができる。ここで、機能層は基材の片面に設けてもよいし、基材の両面に設けてもよい。なお、機能層は、基材から剥離し、自立膜の状態でそのままセパレータとして使用することもできる。
 そして、本発明の非水系二次電池用機能層は、高い接着性を確保しつつ、高い遷移金属捕捉能を発揮することができる。
<基材>
 機能層を形成する基材としては、特に限定されず、セパレータの一部を構成する部材として機能層を使用する場合には、セパレータ基材を用いることができ、また、電極の一部を構成する部材として機能層を使用する場合には、電極基材を用いることができる。また、基材上に形成した機能層の用法に特に制限は無く、例えばセパレータ基材等の上に機能層を形成してそのままセパレータ等の電池部材として使用してもよいし、電極基材上に機能層を形成して電極として使用してもよいし、離型基材上に形成した機能層を基材から一度剥離し、他の基材に貼り付けて電池部材として使用してもよい。なお、本発明の非水系二次電池用機能層は50質量%以上が前述した有機粒子で構成されているため、電池部材の強度および耐熱性を十分に高める観点からは、機能層は、上述したような非導電性粒子を70質量%以上含有する既知の多孔膜層(保護層)が形成されたセパレータ基材または電極基材の上に形成してもよい。
[セパレータ基材]
 ここで、機能層を形成するセパレータ基材としては、特に限定されないが、有機セパレータなどの既知のセパレータ基材が挙げられる。ここで有機セパレータは、有機材料からなる多孔性部材であり、有機セパレータの例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微孔膜または不織布などが挙げられる。中でも、強度に優れることからポリエチレン製の微多孔膜や不織布が好ましい。なお、有機セパレータの厚さは、任意の厚さとすることができ、通常0.5μm以上、好ましくは5μm以上であり、通常40μm以下、好ましくは30μm以下、より好ましくは20μm以下である。
[電極基材]
 機能層を形成する電極基材としては、特に限定されないが、集電体上に電極合材層が形成された電極基材が挙げられる。
 ここで、集電体、電極合材層中の成分(例えば、電極活物質(正極活物質、負極活物質)および電極合材層用結着材(正極合材層用結着材、負極合材層用結着材)など)、並びに、集電体上への電極合材層の形成方法は、既知のものを用いることができ、例えば特開2013-145763号公報に記載のものが挙げられる。
 特に、電池容量向上の観点からは、正極活物質としては、例えば非水系二次電池がリチウムイオン二次電池の場合には、具体的には、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などの遷移金属を含有する化合物が用いられる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 ここで、遷移金属酸化物としては、例えばMnO、MnO2、V25、V613、TiO2、Cu223、非晶質V2O-P25、非晶質MoO3、非晶質V25、非晶質V613等が挙げられる。
 また、遷移金属硫化物としては、TiS2、TiS3、非晶質MoS2、FeSなどが挙げられる。
 さらに、リチウムと遷移金属との複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル型構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO2)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム含有複合酸化物(Li(Co Mn Ni)O2)、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、LiMaO2とLi2MbO3との固溶体などが挙げられる。
 また、スピネル型構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn24)や、マンガン酸リチウム(LiMn24)のMnの一部を他の遷移金属で置換した化合物が挙げられる。
 さらに、オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、オリビン型リン酸鉄リチウム(LiFePO4)、オリビン型リン酸マンガンリチウム(LiMnPO4)などのLiyMdPO4で表されるオリビン型リン酸リチウム化合物が挙げられる。ここで、Mdは平均酸化状態が3+である1種類以上の遷移金属を表し、例えばMn、Fe、Co等が挙げられる。また、yは0≦y≦2を満たす数を表す。さらに、LiyMdPO4で表されるオリビン型リン酸リチウム化合物は、Mdが他の金属で一部置換されていてもよい。置換しうる金属としては、例えば、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、BおよびMoなどが挙げられる。
 これらの中でも、非水系二次電池の高容量化に加えて、非水系二次電池の出力特性および高温サイクル特性の観点から、リチウムと遷移金属との複合金属酸化物が好ましく、これらの中でも層状構造を有するリチウム含有複合金属酸化物がより好ましく、リチウム含有コバルト酸化物(LiCoO2)がさらに好ましい。
[離型基材]
 機能層を形成する離型基材としては、特に限定されず、既知の離型基材を用いることができる。
<非水系二次電池用機能層の形成方法>
 上述したセパレータ基材、電極基材などの基材上に機能層を形成する方法としては、以下の方法が挙げられる。
1)機能層用組成物をセパレータ基材又は電極基材の表面に塗布し、次いで乾燥する方法;
2)機能層用組成物にセパレータ基材又は電極基材を浸漬後、これを乾燥する方法;
3)機能層用組成物を、離型基材上に塗布し、次いで乾燥して機能層を製造し、得られた機能層をセパレータ基材又は電極基材の表面に転写する方法;
 機能層用組成物をセパレータ基材又は電極基材上に塗布する方法としては、特に限定されず、公知の方法を用いることができる。具体的には、スプレーコート法、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。ここで、塗布後乾燥前の基材上の塗膜の厚みは、乾燥して得られる機能層の厚さに応じて適宜に設定することができる。
 また、基材上の機能層用組成物を乾燥する方法としては、特に限定されず、公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。
 なお、機能層用組成物の乾燥後、金型プレスまたはロールプレスなどを用い、機能層に加圧処理を施してもよい。加圧処理により、機能層と基材との密着性を向上させることができる。
 従って、機能層は、機能層用組成物中に含まれていた分散媒以外の成分を機能層用組成物と同様の比率で含有しており、通常、有機粒子を含み、任意に機能層用粒子状重合体、非導電性粒子、濡れ剤、分散剤などのその他の成分をさらに含有する。
[機能層の厚さ]
 機能層の厚さは、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.7μm以上であることが更に好ましく、10μm以下であることが好ましく、7μm以下であることがより好ましく、5μm以下であることが更に好ましい。機能層の厚さが上記範囲の下限値以上であれば、機能層の強度を十分に確保するとともに、正極活物質由来の遷移金属をより十分に捕捉して該機能層を用いた二次電池の電池特性を向上させることができる。また、機能層の厚さが上記範囲の上限値以下であれば、電解液の拡散性を確保することができるとともに、二次電池を十分に小型化することができる。
(非水系二次電池)
 本発明の非水系二次電池は、上述した非水系二次電池用機能層を、遷移金属を含有する正極活物質を含む正極合材層と、負極合材層との間に備えることを特徴とする。具体的には、本発明の非水系二次電池は、正極と、負極と、セパレータと、電解液とを備え、上述した非水系二次電池用機能層が、遷移金属を含有する正極活物質を含む正極合材層と負極合材層との間に配置されている。そして、本発明の非水系二次電池では、正極活物質から電解液中に溶出した遷移金属イオンを本発明の機能層が効果的に捕捉して、当該遷移金属イオンが負極上で析出するのを抑制することができる。そのため、本発明の非水系二次電池は、サイクル特性などの寿命特性に優れる。また、本発明の非水系二次電池では、本発明の機能層が優れた接着力を発揮するため、機能層を介して正極とセパレータ、および/または、負極とセパレータの密着性を高めることができる。
<正極、負極およびセパレータ>
 本発明の非水系二次電池に用いる正極、負極およびセパレータは、少なくとも一つが機能層を有している。具体的には、機能層を有する正極および負極としては、集電体上に電極合材層を形成してなる電極基材の上に機能層を設けてなる電極を用いることができる。また、機能層を有するセパレータとしては、セパレータ基材の上に機能層を設けてなるセパレータや、機能層よりなるセパレータを用いることができる。なお、電極基材およびセパレータ基材としては、<基材>の項で挙げたものと同様のものを用いることができる。
 また、機能層を有さない正極、負極およびセパレータとしては、特に限定されることなく、上述した電極基材よりなる電極および上述したセパレータ基材よりなるセパレータを用いることができる。
 なお、正極、負極、およびセパレータは、本発明の効果を著しく損なわない限り、機能層以外の構成要素を備えていてもよい。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、非水系二次電池がリチウムイオン二次電池の場合には、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましい。なお、電解質は1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、例えばビニレンカーボネート(VC)等の既知の添加剤を添加してもよい。
<非水系二次電池の製造方法>
 本発明の非水系二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる非水系二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 実施例および比較例において、コア部の重合体、シェル部の重合体および有機粒子の電解液膨潤度と、コア部、シェル部および機能層用粒子状重合体のガラス転移温度と、有機粒子のコアシェル比率と、有機粒子の被覆率と、有機粒子および機能層用粒子状重合体の体積平均粒子径D50と、機能層の電解液中での接着性と、二次電池の低温出力特性と、二次電池の高温サイクル特性と、機能層の遷移金属捕捉能とは、下記の方法で測定および評価した。
<コア部の重合体の電解液膨潤度>
 まず、有機粒子のコア部の重合体として、有機粒子の調製においてコア部を形成するために行うのと同様の工程を行うことにより得られた重合体を用意した。その後、温度25℃、48時間の条件で重合体を乾燥した後、その重合体を130℃で熱プレスしてフィルム状に成形して、厚み0.5mmのフィルムを作製した。
 次に、上記のようにして作製したフィルムを1cm角に裁断して、試験片を得た。この試験片の重量を測定し、W0とした。また、この試験片を電解液に温度60℃で72時間浸漬し、その試験片を電解液から取り出した。取り出した試験片の表面の電解液を拭き取り、浸漬後の試験片の重量W1を測定した。
 そして、これらの重量W0およびW1を用いて、電解液膨潤度S(倍)を、S=W1/W0にて計算した。
 なお、コア部の重合体の電解液膨潤度を測定するために用いる電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とビニレンカーボネート(VC)の混合溶媒(体積混合比EC/DEC/VC=68.5/30/1.5;SP値12.7(cal/cm1/2)に、支持電解質としてLiPFを1mol/Lの濃度で溶かした溶液を用いた。
<シェル部の重合体の電解液膨潤度>
 まず、有機粒子のシェル部の重合体として、有機粒子の調製においてコア部の形成に用いる単量体組成物の代わりにシェル部の形成に用いる単量体組成物を用いて、シェル部の製造方法と同様にして重合体を製造した。
 その後、コア部の重合体の電解液膨潤度の測定方法と同様の方法で、シェル部の重合体によりフィルムを作製し、そのフィルムから試験片を得て、電解液膨潤度Sを測定した。
 なお、シェル部の重合体の電解液膨潤度を測定するために用いる電解液としては、コア部の重合体の電解液膨潤度を測定するために用いる電解液と同様のものを用いた。
<有機粒子の電解液膨潤度>
 まず、有機粒子を用意した。その後、コア部の重合体の電解液膨潤度の測定方法と同様の方法で、有機粒子によりフィルムを作製し、そのフィルムから試験片を得て、電解液膨潤度Sを測定した。
 なお、有機粒子の電解液膨潤度を測定するために用いる電解液としては、コア部の重合体の電解液膨潤度を測定するために用いる電解液と同様のものを用いた。
<有機粒子、コア部の重合体、シェル部の重合体および機能層用粒子状重合体のガラス転移温度>
 有機粒子、コア部の重合体、シェル部の重合体のガラス転移温度の測定には、各重合体の調製に使用した単量体組成物を使用し、当該重合体の重合条件と同様の重合条件で、測定試料となる重合体を含む水分散液をそれぞれ作製し、当該水分散液を乾固させて得られる測定試料を使用した。
 機能層用粒子状重合体のガラス転移温度の測定には、得られた機能層用粒子状重合体を含む水分散液を乾固させて得られる測定試料を使用した。
 ガラス転移温度の測定は、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製、製品名「EXSTAR DSC6220」)を用い、上述の測定試料10mgをアルミパンに計量し、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~500℃の間で、昇温速度10℃/分、常温常湿下で、DSC曲線を測定して行った。そして、この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点から、ガラス転移温度を求めた。
<有機粒子のコアシェル比率>
 調製した有機粒子を、可視光硬化性樹脂(日本電子株式会社製「D-800」)に十分分散させた後、包埋し、有機粒子を含有するブロック片を得た。次に、得られたブロック片を、ダイヤモンド刃を備えたミクロトームで厚さ100nmの薄片状に切り出して、測定用試料を作製した。その後、四酸化ルテニウムを用いて測定用試料に染色処理を施した。
 次に、染色処理を施した測定用試料を、透過型電子顕微鏡(日本電子社製「JEM-3100F」)にセットして、加速電圧80kVにて、有機粒子の断面構造を写真撮影した。透過型電子顕微鏡の倍率は、視野に有機粒子1個の断面が入るように設定した。その後、撮影された有機粒子の断面構造を観察し、観察されたシェル部の構成に応じて、以下の手順で有機粒子のシェル部の平均厚みを測定した。そして、測定されたシェル部の平均厚みを有機粒子の体積平均粒子径D50で割ることにより、コアシェル比率(%)を求めた。
[シェル部が粒子形状を有している場合]
 有機粒子の断面構造から、シェル部の重合体の粒子の最長径を測定した。シェル部の重合体の粒子の最長径を、任意に選択した20個の有機粒子について測定し、その最長径の平均値をシェル部の平均厚みとした。
[シェル部が粒子状以外の形状を有している場合]
 有機粒子の断面構造から、シェル部の最大厚みを測定した。シェル部の最大厚みを、任意に選択した20個の有機粒子について測定し、その最大厚みの平均値をシェル部の平均厚みとした。
<有機粒子の被覆率>
 上記有機粒子のコアシェル比率の測定方法と同様にして、調製した有機粒子の断面構造を写真撮影し、撮影された有機粒子の断面構造において、コア部の周の長さD1、および、コア部の外表面とシェル部とが当接する部分の長さD2を計測し、その有機粒子のコア部の外表面がシェル部によって覆われる割合(被覆割合)Rc(%)=(D2/D1)×100を算出した。
 そして、被覆割合Rcを、任意に選択した20個の有機粒子について測定し、その平均値を、有機粒子のコア部の外表面がシェル部によって覆われる平均割合(被覆率)とした。
<有機粒子および機能層用粒子状重合体の体積平均粒子径D50>
 調製した有機粒子および機能層用粒子状重合体それぞれについて、固形分濃度15質量%に調整した水分散液を準備し、レーザー回折式粒子径分布測定装置(島津製作所社製「SALD-7100」)により粒子径分布を測定した。そして、得られた粒子径分布について、小径側から計算した累積体積が50%となる粒子径を求め、体積平均粒子径D50とした。
<機能層の電解液中での接着性>
 製造した正極及びセパレータを備える積層体、並びに、負極及びセパレータを備える積層体を、それぞれ10mm幅に切り出して、試験片を得た。この試験片を電解液中に温度60℃で3日間浸漬した。この際、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とビニレンカーボネート(VC)の混合溶媒(体積混合比EC/DEC/VC=68.5/30/1.5;SP値12.7(cal/cm1/2)に、支持電解質としてLiPFを溶媒に対し1mol/Lの濃度で溶かしたものを用いた。
 その後、試験片を取り出し、表面に付着した電解液を拭き取った。その後、この試験片を、電極(正極又は負極)の表面を下にして、電極の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に固定しておいた。その後、セパレータの一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を、正極及びセパレータを備える積層体並びに負極及びセパレータを備える積層体でそれぞれ3回、合計6回行い、応力の平均値を求めて、当該平均値をピール強度(N/m)とし、以下の基準で評価した。このピール強度の値が大きいほど、機能層の電解液中での接着性が優れていることを示す。
 A:ピール強度が5.0N/m以上
 B:ピール強度が3.0N/m以上5.0N/m未満
 C:ピール強度が0.5N/m以上3.0N/m未満
 D:ピール強度が0.5N/m未満
<二次電池の低温出力特性>
 製造した800mAh捲回型のリチウムイオン二次電池を、25℃の環境下で24時間静置した。その後、25℃の環境下で、0.1Cの充電レートで5時間の充電の操作を行い、その時の電圧V0を測定した。その後、-10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始から15秒後の電圧V1を測定した。
 そして、電圧変化ΔVを、ΔV=V0-V1にて計算し、下記の基準で評価した。この電圧変化ΔVの値が小さいほど、二次電池が低温出力特性に優れることを示す。
 A:電圧変化ΔVが350mV未満
 B:電圧変化ΔVが350mV以上500mV未満
 C:電圧変化ΔVが500mV以上
<二次電池の高温サイクル特性>
 製造した800mAh捲回型ラミネートセルを45℃の環境下で、0.5Cの定電流法によって4.35Vに充電し3Vまで放電する充放電を200サイクル繰り返し、放電容量を測定した。5セルの平均値を測定値とし、3サイクル終了時の放電容量C0に対する200サイクル終了時の放電容量C1の割合を百分率で算出して充放電容量保持率ΔCを求め(ΔC=(C1/C0)×100(%))、これをサイクル特性の評価基準とした。この値ΔCが高いほど高温サイクル特性に優れ、長寿命であることを示す。
 A:充放電容量保持率ΔCが80%以上
 B:充放電容量保持率ΔCが70%以上80%未満
 C:充放電容量保持率ΔCが60%以上70%未満
 D:充放電容量保持率ΔCが60%未満
<機能層の遷移金属捕捉能>
 調製した非水系二次電池機能層用組成物(固形分濃度:15質量%)をテフロン(登録商標)シャーレに注ぎ、25℃で5日間乾燥させた後、直径12mmの大きさに打ち抜き、厚さ500μm、直径12mmのフィルムを試験片として得て、質量を測定した。次いで、溶媒(エチルメチルカーボネート:エチレンカーボネート=70:30(質量比))に支持電解質としてのLiPF6を1モル/リットルの濃度で溶解させて得た電解液をガラス容器に10g入れ、さらに試験片を浸漬させて25℃で24時間静置し、試験片を十分に電解液に膨潤させた。そして、前述の電解液と同一の組成からなる電解液に塩化コバルト(無水)(CoCl2)を溶解し、コバルト濃度が18質量ppmである(塩化コバルト濃度が40質量ppmである)塩化コバルト溶液を調製した。次に、前述の電解液で膨潤させた試験片が入ったガラス容器に前述の塩化コバルト溶液10gを入れ、試験片を塩化コバルト溶液に浸漬させ、25℃で5日間静置した。その後、試験片を取り出し、ジエチルカーボネートで試験片を十分に洗浄し、試験片表面に付着したジエチルカーボネートを十分に拭き取った後、その試験片の重量を測定した。その後、試験片をテフロン(登録商標)性ビーカーに入れ、硫酸および硝酸(硫酸:硝酸=0.1:2(体積比))を添加し、ホットプレートで加温して、試験片が炭化するまで濃縮した。さらに、硝酸および過塩素酸(硝酸:過塩素酸=2:0.2(体積比))を添加した後、過塩素酸およびフッ化水素酸(過塩素酸:フッ化水素酸=2:0.2(体積比))を添加し、白煙が出るまで濃縮した。次いで、硝酸および超純水(硝酸:超純水=0.5:10(体積比))を添加し、加温した。放冷後、定容し定容溶液とした。この定容溶液を用い、ICP質量分析計(PerkinElmer社製「ELAN DRS II」)で、前記定容溶液中のコバルト量を測定した。そして、前記定容溶液中のコバルト量を前記試験片の重量で割ることで、遷移金属捕捉能としての試験片中のコバルト濃度(質量ppm)を求め、下記の基準で評価した。このコバルト濃度が高いほど、非水系二次電池機能層の単位質量あたりの遷移金属捕捉能が高いことを示す。
 A:試験片中のコバルト濃度が750質量ppm以上
 B:試験片中のコバルト濃度が600質量ppm以上750質量ppm未満
 C:試験片中のコバルト濃度が450質量ppm以上600質量ppm未満
 D:試験片中のコバルト濃度が450質量ppm未満
(実施例1)
<有機粒子の製造>
 攪拌機付き5MPa耐圧容器に、コア部の製造に用いる単量体組成物として、(メタ)アクリル酸アルキルエステル単量体としてのメタクリル酸メチル(MMA)35部、脂肪族共役ジエン単量体としての1,3-ブタジエン(BD)17部、カルボン酸基を有する単量体としてのメタクリル酸(MAA)17部及び架橋性単量体としてのエチレンジメタクリレート(EDMA)1部;乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部;イオン交換水150部;並びに、重合開始剤としての過硫酸カリウム0.5部を入れ、十分に攪拌した。その後、60℃に加温して重合を開始した。重合転化率が96%になるまで重合を継続させることにより、コア部を構成する粒子状の重合体を含む水分散液を得た。
 この水分散液に、シェル部の製造に用いる単量体組成物として芳香族ビニル単量体としてのスチレン(ST)28部、カルボン酸基を有する単量体としてのメタクリル酸(MAA)2部を連続添加し、70℃に加温して重合を継続した。重合転化率が96%になった時点で冷却して反応を停止することにより、有機粒子を含む水分散液を製造した。なお、有機粒子は、コア部と、コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有していた。また、有機粒子の調製に用いた単量体中で脂肪族共役ジエン単量体としての1,3-ブタジエン(BD)が占める割合は17質量%であった。そして、得られた有機粒子の電解液膨潤度、コアシェル比率、被覆率および体積平均粒子径D50を測定した。結果を表1に示す。
<機能層用粒子状重合体の製造>
 撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてのラウリル硫酸ナトリウム(花王ケミカル社製、製品名「エマール2F」)0.15部、並びに重合開始剤としての過硫酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。
 一方、別の容器でイオン交換水50部、分散剤としてのドデシルベンゼンスルホン酸ナトリウム0.5部、並びに、重合性単量体として、ブチルアクリレート95部、アクリロニトリル2部、メタクリル酸2部、N-メチロールアクリルアミド1部を混合して単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了し、機能層用粒子状重合体としての粒子状のアクリル重合体を含む水分散液を製造した。
 得られた機能層用粒子状重合体の体積平均粒子径D50は0.36μm、ガラス転移温度は-30℃であった。
<非水系二次電池機能層用組成物の調製>
 上述の有機粒子を含む水分散液を固形分換算で100部、上述の機能層用粒子状重合体としてのアクリル重合体の水分散液を固形分換算で20部、濡れ剤としてのSNウェット366(サンノプコ社製、固形分70%)を固形分換算で1.8部、さらにイオン交換水を固形分濃度が20%になるように混合し、非水系二次電池機能層用組成物を得た。なお、仕込み量から計算した非水系二次電池機能層用組成物の固形分中に占める有機粒子の割合は82.1質量%であった。
<セパレータの製造>
 ポリエチレン製の有機多孔基材(厚み16μm、ガーレー値210s/100cc)をセパレータ基材として用意した。用意したセパレータ基材の両面に、スラリー状の機能層用組成物をスプレーコート法により塗布し、50℃で1分間乾燥させた。これにより、1層当たりの厚みが1μmの機能層(接着層)をセパレータ基材上に設けたセパレータを得た。このセパレータは、機能層、セパレータ基材及び機能層を、この順に備えていた。
<負極用の粒子状バインダーの製造>
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン33.5部、イタコン酸3.5部、スチレン62部、2-ヒドロキシエチルアクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤としての過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状バインダー(SBR)を含む混合物を得た。上記粒子状バインダーを含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって前記の混合物から未反応単量体の除去を行い、30℃以下まで冷却して、所望の粒子状バインダー(負極合材層用結着材)を含む水分散液を得た。
<負極用スラリー組成物の製造>
 負極活物質として人造黒鉛(体積平均粒子径:15.6μm)100部、及び、増粘剤としてカルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部混合し、さらにイオン交換水を加えて固形分濃度を68%に調製し、25℃で60分間混合した。こうして得られた混合液に、イオン交換水を加えて固形分濃度を62%に調製した後、さらに25℃で15分間混合した。この混合液に、上記の粒子状バインダーを含む水分散液を固形分相当で1.5部入れ、さらにイオン交換水を加えて最終固形分濃度が52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用スラリー組成物を得た。
<負極の製造>
 前記負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmのプレス後の負極を得た。
<正極用スラリー組成物の製造>
 正極活物質として体積平均粒子径12μmのLiCoOを100部、導電材としてアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2部、及び、正極用バインダー(正極合材層用結着材)としてポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部混合し、これにN-メチルピロリドンを加えて全固形分濃度を70%にした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を得た。
<正極の製造>
 前記正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウム箔上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミニウム箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極を得た。
<リチウムイオン二次電池の製造>
 プレス後の正極を49cm×5cmに切り出した。切り出された正極の正極合材層上に、55cm×5.5cmに切り出したセパレータを配置した。さらに、プレス後の負極を50cm×5.2cmに切り出し、この切り出された負極を前記セパレータの正極とは反対側に、負極合材層側の表面がセパレータに向かい合うよう配置した。更に、55cm×5.5cmに切り出したセパレータを負極の集電体側の表面上に配置した。その後、温度80℃、圧力0.5MPaで10秒間、加熱プレス処理を施して、正極及び負極をセパレータに圧着して、積層体を得た。これを捲回機によって捲回し、捲回体を得た。この捲回体を60℃0.5MPaでプレスし、扁平体とした。この扁平体を、電池の外装としてのアルミニウム包材外装で包み、電解液(溶媒:EC/DEC/VC=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF)を空気が残らないように注入した。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム外装を閉口した。これにより、800mAhの捲回型リチウムイオン二次電池を製造した。
 また、上記同様に切りだされた正極の正極合材層上に、55cm×5.5cmに切り出したセパレータを配置し、温度80℃、圧力0.5MPaで10秒間、加熱プレス処理を施して、正極及びセパレータを備える積層体を得た。さらに、上記同様に切りだされた負極の負極合材層上に、55cm×5.5cmに切り出したセパレータを配置し、温度80℃、圧力0.5MPaで10秒間、加熱プレス処理を施して、負極及びセパレータを備える積層体を得た。
 こうして得られたリチウムイオン二次電池及び積層体について、上述した方法で、電極との接着性(機能層の電解液中での接着性)、二次電池の高温サイクル特性及び二次電池の低温出力特性を評価した。結果を表1に示す。
(実施例2)
 有機粒子の製造時に、コア部の製造に用いる単量体組成物について、メタクリル酸メチルの量を45部に、1,3-ブタジエンの量を7部にそれぞれ変更した以外は実施例1と同様にして、有機粒子、機能層用粒子状重合体、非水系二次電池機能層用組成物、セパレータ、負極用の粒子状バインダー、負極用スラリー組成物、負極、正極用スラリー組成物、正極およびリチウムイオン二次電池を製造した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(実施例3)
 有機粒子の製造時に、コア部の製造に用いる単量体組成物について、メタクリル酸メチルの量を27部に、1,3-ブタジエンの量を33部に、メタクリル酸の量を9部にそれぞれ変更し、シェル部の製造に用いる単量体組成物について、スチレンの量を17部に変更し、脂肪族共役ジエン単量体単位としての1,3-ブタジエン(BD)を新たに11部加えた以外は実施例1と同様にして、有機粒子、機能層用粒子状重合体、非水系二次電池機能層用組成物、セパレータ、負極用の粒子状バインダー、負極用スラリー組成物、負極、正極用スラリー組成物、正極およびリチウムイオン二次電池を製造した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(実施例4)
 有機粒子の製造時に、コア部の製造に用いる単量体組成物について、メタクリル酸メチルの量を19部に、1,3-ブタジエンの量を10部に、メタクリル酸の量を40部にそれぞれ変更した以外は実施例1と同様にして、有機粒子、機能層用粒子状重合体、非水系二次電池機能層用組成物、セパレータ、負極用の粒子状バインダー、負極用スラリー組成物、負極、正極用スラリー組成物、正極およびリチウムイオン二次電池を製造した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(実施例5)
 有機粒子の製造時に、乳化剤としてのドデシルベンゼンスルホン酸ナトリウムの量を1.5部に変更した以外は実施例1と同様にして、有機粒子、機能層用粒子状重合体、非水系二次電池機能層用組成物、セパレータ、負極用の粒子状バインダー、負極用スラリー組成物、負極、正極用スラリー組成物、正極およびリチウムイオン二次電池を製造した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(実施例6)
 有機粒子の製造時に、乳化剤としてのドデシルベンゼンスルホン酸ナトリウムの量を0.2部に変更した以外は実施例1と同様にして、有機粒子、機能層用粒子状重合体、非水系二次電池機能層用組成物、セパレータ、負極用の粒子状バインダー、負極用スラリー組成物、負極、正極用スラリー組成物、正極およびリチウムイオン二次電池を製造した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(実施例7)
 有機粒子の製造時に、シェル部の製造に用いる単量体組成物について、スチレンの量を25部に、メタクリル酸の量を5部にそれぞれ変更した以外は実施例1と同様にして、有機粒子、機能層用粒子状重合体、非水系二次電池機能層用組成物、セパレータ、負極用の粒子状バインダー、負極用スラリー組成物、負極、正極用スラリー組成物、正極およびリチウムイオン二次電池を製造した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(実施例8)
 非水系二次電池機能層用組成物の調製時に、機能層用粒子状重合体としてのアクリル重合体の水分散液を固形分換算で35部に、濡れ剤としてのSNウェット366(サンノプコ社製、固形分70%)を固形分換算で2.0部にそれぞれ変更した以外は実施例1と同様にして、有機粒子、機能層用粒子状重合体、非水系二次電池機能層用組成物、セパレータ、負極用の粒子状バインダー、負極用スラリー組成物、負極、正極用スラリー組成物、正極およびリチウムイオン二次電池を製造した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(実施例9)
 攪拌機付き5MPa耐圧容器に、(メタ)アクリル酸アルキルエステル単量体としてのメタクリル酸メチル(MMA)35部、脂肪族共役ジエン単量体としての1,3-ブタジエン(BD)20部、芳香族ビニル単量体としてのスチレン(ST)27部、カルボン酸基を有する単量体としてのメタクリル酸(MAA)17部及び架橋性単量体としてのエチレンジメタクリレート(EDMA)1部;乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部;イオン交換水150部;並びに、重合開始剤としての過硫酸カリウム0.5部を入れ、十分に攪拌した。その後、60℃に加温して重合を開始した。重合転化率が96%になるまで重合を継続させることにより、有機粒子を含む水分散液を得た。
 有機粒子の製造条件を上記とした以外は実施例8と同様にして、機能層用粒子状重合体、非水系二次電池機能層用組成物、セパレータ、負極用の粒子状バインダー、負極用スラリー組成物、負極、正極用スラリー組成物、正極およびリチウムイオン二次電池を製造した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(比較例1)
 有機粒子の製造時に、コア部の製造に用いる単量体組成物について、メタクリル酸メチルの量を49部に、1,3-ブタジエンの量を3部にそれぞれ変更した以外は実施例1と同様にして、有機粒子、機能層用粒子状重合体、非水系二次電池機能層用組成物、セパレータ、負極用の粒子状バインダー、負極用スラリー組成物、負極、正極用スラリー組成物、正極およびリチウムイオン二次電池を製造した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(比較例2)
 非水系二次電池機能層用組成物の調製時に、機能層用粒子状重合体としてのアクリル重合体の水分散液を固形分換算で82部に、濡れ剤としてのSNウェット366(サンノプコ社製、固形分70%)を固形分換算で20部にそれぞれ変更した以外は実施例1と同様にして、有機粒子、機能層用粒子状重合体、非水系二次電池機能層用組成物、セパレータ、負極用の粒子状バインダー、負極用スラリー組成物、負極、正極用スラリー組成物、正極およびリチウムイオン二次電池を製造した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1~9より、全単量体単位中に占める脂肪族共役ジエン単量体単位の割合が5質量%以上の有機粒子を固形分換算で50質量%以上含む組成物から形成される機能層は、電解液中での接着性および遷移金属捕捉能に優れることが分かる。加えて、当該機能層を備える二次電池は、低温出力特性および高温サイクル特性に優れることが分かる。
 一方、表1の比較例1より、有機粒子に含まれる全単量体単位中に占める脂肪族共役ジエン単量体単位の割合が5質量%未満である場合には、有機粒子の含有量が多くても遷移金属捕捉能に優れた機能層を得ることができず、また、高温サイクル特性に優れた二次電池を得ることができないことが分かる。
 また、表1の比較例2より、組成物中の有機粒子の含有量が固形分換算で50質量%未満である場合には、電解液中での接着性および遷移金属捕捉能に優れた機能層を得ることができず、また、低温出力特性および高温サイクル特性に優れた二次電池を得ることができないことが分かる。
 本発明によれば、高い接着性を確保しつつ、高い遷移金属捕捉能を持つ機能層を形成することが可能な非水系二次電池機能層用組成物が得られる。
 また、本発明によれば、高い接着性を確保しつつ、高い遷移金属捕捉能を持つ非水系二次電池用機能層が得られる。
 更に、本発明によれば、サイクル特性などの寿命特性に優れる非水系二次電池が得られる。
 
 

Claims (6)

  1.  有機粒子を含む非水系二次電池機能層用組成物であって、
     前記有機粒子は、有機粒子に含まれる全単量体単位中に占める脂肪族共役ジエン単量体単位の割合が5質量%以上であり、
     前記有機粒子の含有量が、固形分換算で50質量%以上である、非水系二次電池機能層用組成物。
  2.  前記有機粒子の電解液膨潤度が4倍以上30倍以下である、請求項1に記載の非水系二次電池機能層用組成物。
  3.  前記有機粒子の体積平均粒子径D50が250nm以上1000nm以下である、請求項1または2に記載の非水系二次電池機能層用組成物。
  4.  前記有機粒子が、コア部と、前記コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有しており、
     前記コア部は、電解液膨潤度が5倍以上30倍以下の重合体からなり、
     前記シェル部は、電解液膨潤度が1倍超4倍以下の重合体からなる、
    請求項1~3の何れか一項に記載の非水系二次電池機能層用組成物。
  5.  請求項1~4の何れか一項に記載の非水系二次電池機能層用組成物を用いて形成された、非水系二次電池用機能層。
  6.  請求項5に記載の非水系二次電池用機能層と、遷移金属を含有する正極活物質を含む正極合材層とを備える、非水系二次電池。
     
PCT/JP2015/005706 2014-11-28 2015-11-16 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 WO2016084330A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177013161A KR102493659B1 (ko) 2014-11-28 2015-11-16 비수계 2차 전지 기능층용 조성물, 비수계 2차 전지용 기능층 및 비수계 2차 전지
US15/527,067 US10586966B2 (en) 2014-11-28 2015-11-16 Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
CN201580062205.5A CN107004828B (zh) 2014-11-28 2015-11-16 非水系二次电池功能层用组合物、非水系二次电池用功能层以及非水系二次电池
JP2016561230A JP6737182B2 (ja) 2014-11-28 2015-11-16 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-241672 2014-11-28
JP2014241672 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016084330A1 true WO2016084330A1 (ja) 2016-06-02

Family

ID=56073925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005706 WO2016084330A1 (ja) 2014-11-28 2015-11-16 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池

Country Status (5)

Country Link
US (1) US10586966B2 (ja)
JP (1) JP6737182B2 (ja)
KR (1) KR102493659B1 (ja)
CN (1) CN107004828B (ja)
WO (1) WO2016084330A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017038383A1 (ja) * 2015-08-28 2018-08-30 Jsr株式会社 粘着剤用組成物及び粘着フィルム、並びに蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜用スラリー及び蓄電デバイス
WO2018221197A1 (ja) * 2017-05-29 2018-12-06 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
EP3407414A4 (en) * 2017-01-12 2019-02-13 LG Chem, Ltd. NONAQUEOUS ELECTROLYTE AND LITHIUM SECONDARY BATTERY COMPRISING SAME
CN110431687A (zh) * 2017-03-31 2019-11-08 日本瑞翁株式会社 非水系二次电池功能层用组合物、非水系二次电池用功能层以及非水系二次电池
EP3503253A4 (en) * 2016-08-17 2020-01-01 Zeon Corporation COMPOSITION OF A FUNCTIONAL LAYER OF A WATER-FREE SECONDARY BATTERY, FUNCTIONAL LAYER OF A WATER-FREE SECONDARY BATTERY AND WATER-FREE SECONDARY BATTERY
WO2022209997A1 (ja) * 2021-03-30 2022-10-06 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360926B (zh) * 2018-11-06 2020-03-24 长沙矿冶研究院有限责任公司 一种锂硫电池用功能化隔膜及其制备方法、锂硫电池
CN112290012A (zh) * 2020-10-20 2021-01-29 合肥国轩高科动力能源有限公司 一种锂离子电池三元正极材料的制备方法
CN114551998A (zh) * 2022-04-21 2022-05-27 河南电池研究院有限公司 一种固态锂离子电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209432A (ja) * 2012-09-11 2014-11-06 Jsr株式会社 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス
JP2014212122A (ja) * 2009-08-07 2014-11-13 Jsr株式会社 電気化学デバイス及びバインダー組成物
JP2014212132A (ja) * 2014-08-20 2014-11-13 Jsr株式会社 リチウムイオン二次電池
WO2014188734A1 (ja) * 2013-05-23 2014-11-27 日本ゼオン株式会社 二次電池負極用スラリー組成物、二次電池用負極、および、二次電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462016B2 (ja) 2010-02-08 2014-04-02 日本エイアンドエル株式会社 二次電池耐熱保護層用バインダーおよび耐熱保護層用組成物
JP6186852B2 (ja) 2013-04-30 2017-08-30 日本ゼオン株式会社 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
CN114785915B (zh) * 2014-01-03 2024-08-02 Lg伊诺特有限公司 音圈马达和摄像头模块
CN105934838B (zh) * 2014-02-14 2018-10-09 日本瑞翁株式会社 二次电池多孔膜用组合物、二次电池用多孔膜、及二次电池
US10193119B2 (en) * 2014-06-27 2019-01-29 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
EP3176855B1 (en) * 2014-07-30 2019-05-22 Zeon Corporation Composition for nonaqueous secondary battery function layers, base with function layer for nonaqueous secondary batteries, method for producing laminate for nonaqueous secondary batteries, and nonaqueous secondary battery
CN106575735B (zh) * 2014-08-28 2019-04-23 日本瑞翁株式会社 非水系二次电池用层叠体和非水系二次电池构件的制造方法
CN107004859B (zh) * 2014-11-25 2020-12-22 日本瑞翁株式会社 非水系二次电池用粘结剂、非水系二次电池功能层用组合物、非水系二次电池用功能层以及非水系二次电池
CN107431169B (zh) * 2015-03-20 2021-04-20 日本瑞翁株式会社 非水系二次电池功能层用组合物、功能层以及二次电池
US10454084B2 (en) * 2015-08-11 2019-10-22 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
WO2017056404A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
US10615379B2 (en) * 2015-11-27 2020-04-07 Zeon Corporation Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery
CN108292753B (zh) * 2015-11-30 2022-04-22 日本瑞翁株式会社 非水系二次电池粘接层用组合物、非水系二次电池用粘接层以及非水系二次电池
JP6729603B2 (ja) * 2016-01-29 2020-07-22 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその製造方法、並びに、その用途
WO2017141791A1 (ja) * 2016-02-17 2017-08-24 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212122A (ja) * 2009-08-07 2014-11-13 Jsr株式会社 電気化学デバイス及びバインダー組成物
JP2014209432A (ja) * 2012-09-11 2014-11-06 Jsr株式会社 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス
WO2014188734A1 (ja) * 2013-05-23 2014-11-27 日本ゼオン株式会社 二次電池負極用スラリー組成物、二次電池用負極、および、二次電池
JP2014212132A (ja) * 2014-08-20 2014-11-13 Jsr株式会社 リチウムイオン二次電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3342837A4 (en) * 2015-08-28 2019-03-27 JSR Corporation ADHESIVE AND ADHESIVE FILM COMPOSITION, ENERGY STORAGE DEVICE COMPOSITION, ENERGY STORAGE DEVICE ELECTRODE PASTE, ENERGY STORAGE DEVICE ELECTRODE, PROTECTIVE FILM PASTE, AND ENERGY STORAGE DEVICE
JPWO2017038383A1 (ja) * 2015-08-28 2018-08-30 Jsr株式会社 粘着剤用組成物及び粘着フィルム、並びに蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜用スラリー及び蓄電デバイス
US11417933B2 (en) 2016-08-17 2022-08-16 Zeon Corporation Nonaqueous secondary battery functional layer composition, nonaqueous secondary battery functional layer, and nonaqueous secondary battery
EP3503253A4 (en) * 2016-08-17 2020-01-01 Zeon Corporation COMPOSITION OF A FUNCTIONAL LAYER OF A WATER-FREE SECONDARY BATTERY, FUNCTIONAL LAYER OF A WATER-FREE SECONDARY BATTERY AND WATER-FREE SECONDARY BATTERY
US10862166B2 (en) 2017-01-12 2020-12-08 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
EP3407414A4 (en) * 2017-01-12 2019-02-13 LG Chem, Ltd. NONAQUEOUS ELECTROLYTE AND LITHIUM SECONDARY BATTERY COMPRISING SAME
US11050117B2 (en) 2017-03-31 2021-06-29 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
EP3605652A4 (en) * 2017-03-31 2021-01-06 Zeon Corporation COMPOSITION FOR FUNCTIONAL LAYER OF WATER-FREE SECONDARY BATTERY, FUNCTIONAL LAYER OF WATER-FREE SECONDARY BATTERY, AND WATER-FREE SECONDARY BATTERY
CN110431687A (zh) * 2017-03-31 2019-11-08 日本瑞翁株式会社 非水系二次电池功能层用组合物、非水系二次电池用功能层以及非水系二次电池
CN110431687B (zh) * 2017-03-31 2022-04-19 日本瑞翁株式会社 非水系二次电池功能层用组合物、非水系二次电池用功能层以及非水系二次电池
JPWO2018221197A1 (ja) * 2017-05-29 2020-05-21 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP7090076B2 (ja) 2017-05-29 2022-06-23 株式会社Eneosマテリアル 蓄電デバイス活物質層用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2018221197A1 (ja) * 2017-05-29 2018-12-06 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2022209997A1 (ja) * 2021-03-30 2022-10-06 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池

Also Published As

Publication number Publication date
KR20170086034A (ko) 2017-07-25
CN107004828B (zh) 2020-04-17
KR102493659B1 (ko) 2023-01-30
US20180130987A1 (en) 2018-05-10
CN107004828A (zh) 2017-08-01
US10586966B2 (en) 2020-03-10
JPWO2016084330A1 (ja) 2017-09-07
JP6737182B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6614141B2 (ja) 非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池
JP6601486B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP6737182B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP6597634B2 (ja) 非水系二次電池用バインダー、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP6409782B2 (ja) リチウムイオン二次電池のバインダー用の粒子状重合体、接着層及び多孔膜組成物
KR101819067B1 (ko) 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지
WO2016017066A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層付き基材、非水系二次電池用積層体の製造方法および非水系二次電池
JP6601404B2 (ja) リチウムイオン二次電池多孔膜用組成物、リチウムイオン二次電池用多孔膜およびリチウムイオン二次電池
WO2015198534A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP6398431B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2016110894A1 (ja) 非水系二次電池用セパレータおよびその製造方法、並びに、非水系二次電池
JP6413419B2 (ja) 非水系二次電池多孔膜用複合粒子、非水系二次電池用多孔膜、非水系二次電池用電池部材、および非水系二次電池
WO2016031163A1 (ja) 非水系二次電池用積層体および非水系二次電池部材の製造方法
JP6589269B2 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層および非水系二次電池
JP6485459B2 (ja) リチウムイオン二次電池用多孔膜およびリチウムイオン二次電池
JP2016154107A (ja) 非水系二次電池機能層用バインダー、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2018180809A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561230

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177013161

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15527067

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863466

Country of ref document: EP

Kind code of ref document: A1