WO2014182058A1 - 케이블형 이차전지 - Google Patents

케이블형 이차전지 Download PDF

Info

Publication number
WO2014182058A1
WO2014182058A1 PCT/KR2014/004042 KR2014004042W WO2014182058A1 WO 2014182058 A1 WO2014182058 A1 WO 2014182058A1 KR 2014004042 W KR2014004042 W KR 2014004042W WO 2014182058 A1 WO2014182058 A1 WO 2014182058A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
separation layer
type secondary
cable
Prior art date
Application number
PCT/KR2014/004042
Other languages
English (en)
French (fr)
Inventor
권요한
오병훈
정혜란
김제영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14733494.0A priority Critical patent/EP2822084B1/en
Priority to JP2015515970A priority patent/JP6037579B2/ja
Priority to US14/483,373 priority patent/US9070952B2/en
Priority to US14/483,328 priority patent/US9083061B2/en
Priority to US14/483,318 priority patent/US9077048B2/en
Priority to US14/483,348 priority patent/US9142865B2/en
Publication of WO2014182058A1 publication Critical patent/WO2014182058A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/469Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/125Cells or batteries with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/286Cells or batteries with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/025Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cable type secondary battery free of deformation, and more particularly, to a cable type secondary battery including an internal electrode support and having an electrode and a separation layer integrated.
  • a secondary battery is a device that converts external electrical energy into chemical energy and stores it and generates electricity when needed.
  • the term “rechargeable battery” is also used to mean that it can be charged multiple times.
  • Commonly used secondary batteries include lead storage batteries, nickel cadmium batteries (NiCd), nickel hydrogen storage batteries (NiMH), lithium ion batteries (Li-ion), and lithium ion polymer batteries (Li-ion polymer). Secondary batteries offer both economic and environmental advantages over primary batteries that are used once and discarded.
  • Secondary batteries are currently used where low power is used. Examples are devices, handhelds, tools, and uninterruptible power supplies that help start up the car. Recently, the development of wireless communication technology has led to the popularization of portable devices, and there is also a tendency to wirelessize many kinds of conventional devices, and the demand for secondary batteries is exploding. In addition, hybrid vehicles and electric vehicles have been put to practical use in terms of prevention of environmental pollution, and these next-generation vehicles employ technologies that use secondary batteries to reduce value, weight, and extend life.
  • secondary batteries are cylindrical, rectangular or pouch type batteries. This is because the secondary battery is manufactured by mounting an electrode assembly composed of a negative electrode, a positive electrode, and a separator inside a pouch-shaped case of a cylindrical or rectangular metal can or an aluminum laminate sheet, and injecting an electrolyte into the electrode assembly. Therefore, since a certain space for mounting the secondary battery is essentially required, the cylindrical, square or pouch type of the secondary battery has a problem in that it acts as a limitation for the development of various types of portable devices. Accordingly, there is a need for a new type of secondary battery that is easily deformed.
  • a linear battery which is a battery having a very large ratio of length to cross-sectional diameter.
  • Korean Patent Laid-Open Publication No. 2005-99903 discloses a variable battery including an internal electrode, an external electrode, and an electrolyte layer interposed between these electrodes, but its flexibility is not good.
  • the linear battery uses a polymer electrolyte to form an electrolyte layer, it is difficult to introduce electrolyte into the active material of the electrode, thereby increasing the resistance of the battery, thereby deteriorating capacity characteristics and cycle characteristics.
  • the wire-type current collector When the wire-type current collector is used for the cable type secondary battery, since the wire resistance is generally higher than the surface resistance, the wire-type current collector has higher resistance characteristics than the sheet-type current collector, resulting in poor battery performance. There is a problem that can be.
  • an object of the present invention is to provide a secondary battery having a novel linear structure, which is easily deformable, maintains stability and excellent performance of the secondary battery, and facilitates the introduction of an electrolyte into the active material of the electrode.
  • the internal electrode support And a sheet-shaped inner electrode-separation layer-external electrode composite formed by spirally winding on the outer surface of the inner electrode support, wherein the inner electrode-separation layer-external electrode composite includes an inner electrode and a short circuit to prevent a short circuit of the electrode.
  • a cable type secondary battery formed by compressing a separation layer and an external electrode to be integrated.
  • the sheet-shaped inner electrode-separation layer-outer electrode composite may have a strip structure extending in one direction.
  • the sheet-shaped inner electrode-separation layer-outer electrode composite may be formed by spirally winding so as not to overlap each other or spirally wound so as to overlap each other.
  • the inner electrode-separation layer-external electrode composite may be compressed so that the inner electrode and the separation layer, or the separation layer and the outer electrode are integrated with each other at a peel strength of 15 to 300 N / m. It may be formed.
  • the internal electrode support A sheet-shaped inner electrode formed spirally wound on an outer surface of the inner electrode support body; And a sheet-type separation layer-external electrode composite formed by spirally winding the outer surface of the internal electrode, wherein the separation layer-external electrode composite is compressed to integrate the separation layer and the external electrode to prevent the short circuit of the electrode.
  • the formed cable type secondary battery is provided.
  • the sheet-type separation layer-external electrode composite may have a strip structure extending in one direction.
  • the sheet-type separation layer-external electrode composite may be formed by spirally winding so as not to overlap each other or spirally wound so as to overlap each other.
  • the separation layer-external electrode composite may be formed such that the separation layer and the external electrode are integrated to form a peel strength of 15 to 300 N / m.
  • the internal electrode support A sheet-shaped inner electrode-separation layer composite formed by winding spirally on an outer surface of the inner electrode support body; And a sheet-shaped external electrode formed by spirally winding the outer surface of the inner electrode-separation layer composite, wherein the inner electrode-separation layer composite is compressed by integrating an inner electrode and a separation layer which prevents a short circuit between the electrodes.
  • the formed cable type secondary battery is provided.
  • the sheet-shaped inner electrode-separation layer composite may have a strip structure extending in one direction.
  • the sheet-shaped inner electrode-separation layer composite may be formed by spirally winding so as not to overlap each other or spirally wound so as to overlap each other.
  • the internal electrode-separation layer composite may be formed such that the internal electrode and the separation layer are integrated to form a peel strength of 15 to 300 N / m.
  • the internal electrode support may be an open structure, it may be a hollow fiber, a wound wire support, a wound sheet support or a mesh support.
  • the hollow yarn is polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile, polyimide, polyethylene terephthalate, polyamide imide, polyester imide, polyether sulfone, and It may be formed of one or more selected from the group consisting of polysulfone.
  • the inner electrode may include an inner current collector and an inner electrode active material layer formed on one surface of the inner current collector
  • the outer electrode may include an outer current collector and an outer electrode active material layer formed on one surface of the outer current collector. can do.
  • it may further include a polymer film layer formed on the other surface of the inner current collector or the other surface of the outer current collector.
  • the polymer film layer may be formed of any one selected from the group consisting of polyolefins, polyesters, polyimides and polyamides, or a mixture of two or more thereof.
  • the inner current collector or the outer current collector may be a mesh current collector.
  • the width and length of the separation layer may be greater than the width and length of the inner current collector and the outer current collector.
  • At least one of the inner current collector and the outer current collector may further include a primer coating layer formed of a conductive material and a binder.
  • the conductive material may include any one selected from the group consisting of carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotubes, and graphene, or a mixture of two or more thereof.
  • the binder may include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride trichloro Ethylene (polyvinylidene fluoride-co-trichloroethylene), polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate ( polyvinylacetate, ethylene vinyl co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate Cellulose acetate propionate, cyanoethylpullu Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, styrenebutadiene rubber
  • the internal electrode may further include a polymer support layer formed on a surface of the internal electrode active material layer.
  • the polymer support layer may be a porous polymer layer having a pore size of 0.01 ⁇ m to 10 ⁇ m and a porosity of 5 to 95%.
  • the polymer support layer may include a polar linear polymer, an oxide-based linear polymer, or a mixture thereof.
  • the polar linear polymer polyacrylonitrile, polyvinyl chloride, polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluorofluoropropylene ( polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride-co-trichloroethylene, polyethylenimine, polymethyl methacrylate, polybutyl acrylate ( polybutyl acrylate), polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl co-vinyl acetate, polyarylate and polyp-phenylene terephthalamide (Poly -p-phenylene terephthalamide) any one selected from the group consisting of or a mixture of two or more thereof Can be.
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride-hexafluorofluoropropylene
  • the oxide-based linear polymer is any one selected from the group consisting of polyethylene oxide, polypropylene oxide, polyoxymethylene, and polydimethylsiloxane, or two of them. It may be a mixture of the above.
  • a plurality of recesses may be formed on at least one surface of the inner current collector or the outer current collector.
  • the plurality of recesses may have a continuous pattern or an intermittent pattern.
  • the internal current collector may include stainless steel, aluminum, nickel, titanium, calcined carbon, or copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Or it may be made of a conductive polymer.
  • the conductive material may be one or a mixture of two or more selected from polyacetylene, polyaniline, polypyrrole, polythiophene, polysulfuritride, indium tin oxide (ITO), silver, palladium and nickel.
  • the conductive polymer may be a polymer that is one compound selected from polyacetylene, polyaniline, polypyrrole, polythiophene, and polysulfuritride, or a mixture of two or more thereof.
  • the external current collector stainless steel, aluminum, nickel, titanium, calcined carbon or copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Conductive polymers; A metal paste comprising a metal powder of Ni, Al, Au, Ag, Pd / Ag, Cr, Ta, Cu, Ba, or ITO; Or a carbon paste including carbon powder which is graphite, carbon black, or carbon nanotubes.
  • the internal electrode support may have a hollow structure in which a space is formed.
  • the inner electrode support may include at least one wire-shaped inner electrode support wound in a spiral form, or at least one sheet-shaped inner electrode support wound in a spiral form.
  • the internal electrode support may include two or more wire type internal electrode supports spirally wound to cross each other.
  • an internal electrode current collector core part, a lithium ion supply core part including an electrolyte, or a filling core part may be formed in a space formed inside the internal electrode supporter.
  • the lithium ion supply core portion may include a gel polymer electrolyte and a support, and may further include a liquid electrolyte and a porous carrier.
  • the electrolyte is ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VC vinylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • Electrolyte solution Gel polymer electrolytes using PEO, PVdF, PVdF-HFP, PMMA, PAN or PVAc; Or a solid electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES) or polyvinyl acetate (PVAc); It may include an electrolyte selected from.
  • the electrolyte may further include a lithium salt, wherein the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, one selected from a lower aliphatic carboxylic acid lithium, and tetraphenyl lithium borate Or two or more kinds.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, one selected from a lower aliphatic
  • the inner electrode may be a cathode or an anode
  • the outer electrode may be an anode or a cathode corresponding to the inner electrode
  • the inner electrode active material may include natural graphite, artificial graphite or carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And any one active material particles selected from the group consisting of metals (Me) and a composite of carbon or a mixture of two or more thereof, and the external electrode active material includes LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and LiCoPO 4 , LiFePO 4 , LiNiMnCoO 2 and LiNi 1-xyz Co x M1 y M2 z O 2 (M1 and M2 are independently of each other Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg
  • the internal electrode active material is LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiFePO 4 , LiNiMnCoO 2, and LiNi 1-xyz Co x M1 y M2 z O 2
  • M1 and M2 are independently of each other selected from the group consisting of Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg and Mo
  • the separation layer may be an electrolyte layer or a separator.
  • the electrolyte layer a gel polymer electrolyte using PEO, PVdF, PVdF-HFP, PMMA, PAN or PVAc; Or a solid electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES) or polyvinyl acetate (PVAc); It may include an electrolyte selected from.
  • the electrolyte layer may further include a lithium salt.
  • the lithium salt LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, may be one or two or more selected from lithium chloroborane, lithium lower aliphatic carbonate and lithium tetraphenyl borate.
  • the separator may include a porous polymer substrate made of a polyolefin-based polymer selected from the group consisting of ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer, and ethylene-methacrylate copolymer; Any one selected from the group consisting of polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenylene oxide, polyphenylene sulfide and polyethylene naphthalate or two or more thereof Porous polymer substrate made of a polymer mixture; A porous substrate formed of a mixture of inorganic particles and a binder polymer; Or a separator having a porous coating layer formed of a mixture of inorganic particles and a binder polymer on at least one surface of the porous polymer substrate.
  • a porous polymer substrate made of a polyolefin-based polymer selected from the group consist
  • the porous polymer substrate may be a porous polymer film substrate, or a porous non-woven fabric substrate.
  • the cable type secondary battery may further include a protective coating formed to surround the outer surface.
  • the protective coating may be formed of a polymer resin.
  • the polymer resin may include any one selected from the group consisting of PET, PVC, HDPE and epoxy resin, or a mixture of two or more thereof.
  • the protective coating may further include a moisture barrier layer.
  • the moisture barrier layer may be formed of aluminum or a liquid crystal polymer.
  • the lithium ion supply core portion containing an electrolyte;
  • An inner electrode support having an open structure formed surrounding the outer surface of the lithium ion supply core;
  • a sheet-shaped inner electrode-separation layer-external electrode composite formed around the outer surface of the inner electrode support and spirally wound, wherein the inner electrode-separation layer-external electrode composite includes an inner current collector and the inner current collector. Compressing the internal electrode having an internal electrode active material layer formed on the entire surface, a separation layer to prevent short-circuit of the electrode, and an external current collector and an external electrode including the external electrode active material layer formed on the surface of the external current collector.
  • the formed cable type secondary battery is provided.
  • the lithium ion supply core portion containing an electrolyte;
  • An inner electrode support having an open structure formed surrounding the outer surface of the lithium ion supply core;
  • a sheet-shaped inner electrode formed spirally wound on an outer surface of the inner electrode support body and having an inner current collector and an inner electrode active material layer formed on a surface of the inner current collector;
  • a sheet-type separation layer-external electrode composite formed by spirally winding the outer surface of the internal electrode, wherein the separation layer-external electrode composite includes a separation layer and an external current collector and an external current collector to prevent a short circuit of an electrode.
  • a cable type secondary battery formed by pressing an external electrode having an external electrode active material layer formed on the entire surface thereof to be integrated.
  • the lithium ion supply core portion containing an electrolyte;
  • An inner electrode support having an open structure formed surrounding the outer surface of the lithium ion supply core;
  • a sheet-shaped inner electrode-separation layer composite formed by winding spirally on an outer surface of the inner electrode support body;
  • a sheet-shaped external electrode formed spirally wound on an outer surface of the inner electrode-separation layer composite, the sheet-type outer electrode having an outer current collector and an outer electrode active material layer formed on a surface of the outer current collector.
  • the separation layer composite is provided with a cable type secondary battery formed by compressing the internal current collector and the internal electrode including the internal electrode active material layer formed on the surface of the internal current collector, and a separation layer for preventing short circuit of the electrodes.
  • two or more internal electrode support disposed in parallel to each other; Two or more sheet-shaped inner electrodes formed spirally wound on an outer surface of each of the inner electrode supports; And a separation layer formed around the outer surfaces of the inner electrodes and wound in a spiral shape, wherein the separation layer prevents short-circuits of the electrodes, and the sheet-type separation layer-outer electrode composite formed by bonding the external electrodes to be integrated.
  • a battery is provided.
  • two or more lithium ion supply core portion containing an electrolyte;
  • An inner electrode support having an open structure formed surrounding an outer surface of each of the lithium ion supply cores;
  • Two or more internal electrodes spirally wound on an outer surface of each of the internal electrode supports and disposed in parallel with each other and having an internal current collector and an internal electrode active material layer formed on a surface of the internal current collector;
  • an outer electrode formed around the outer surface of the inner electrodes and wound in a spiral shape, the outer electrode including a separation layer for preventing a short circuit of the electrode and an outer current collector and an outer electrode active material layer formed on a surface of the outer current collector.
  • a cable type secondary battery comprising a sheet-type separation layer-external electrode composite formed by pressing.
  • the electrode and the separation layer are bonded and integrated, so that the separation layer in close contact with the electrode absorbs the electrolyte and induces a uniform supply of the electrolyte to the external electrode active material layer, thereby improving the stability and performance of the cable type secondary battery.
  • the separation layer in close contact with the electrode absorbs the electrolyte and induces a uniform supply of the electrolyte to the external electrode active material layer, thereby improving the stability and performance of the cable type secondary battery.
  • the resistance of the cable type secondary battery can be reduced, thereby contributing to the improvement of battery performance.
  • the lithium ion supply core part including the electrolyte is located inside the internal electrode support, and the internal electrode support has an open structure, so that the electrolyte of the lithium ion supply core part is an electrode active material. It is easy to penetrate into the furnace, and it is easy to supply lithium ions and exchange lithium ions. For this reason, the capacity characteristics and cycle characteristics of a battery are excellent.
  • the cable-type secondary battery according to an embodiment of the present invention includes an internal electrode support having an open structure, and a sheet-shaped electrode-separation layer composite is wound in a spiral like a spring structure, thereby maintaining a linear shape. It can relieve stress from external force.
  • FIG 1 and 2 are views illustrating an internal electrode-separation layer-external electrode composite according to an embodiment of the present invention.
  • FIG 3 and 4 illustrate a separation layer-external electrode composite according to an embodiment of the present invention.
  • FIG 5 and 6 are views illustrating the internal electrode-separation layer composite according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an internal electrode-separation layer-external electrode composite according to an embodiment of the present invention.
  • FIG. 8 is a view schematically illustrating a shape in which a sheet-shaped inner electrode-separation layer-outer electrode composite is wound on an outer surface of an inner electrode support according to an exemplary embodiment of the present invention.
  • FIG. 9 is a view illustrating a cable type secondary battery including an inner electrode support and an inner electrode-separation layer-outer electrode composite according to an embodiment of the present invention.
  • FIG. 10 is a view illustrating a cable type secondary battery including an inner electrode support and a separation layer-outer electrode composite according to an embodiment of the present invention.
  • FIG. 11 is a view illustrating a cable type secondary battery including an internal electrode support and an internal electrode-separation layer composite according to an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a cable type secondary battery having a plurality of internal electrodes according to an embodiment of the present invention.
  • FIG. 13 is a graph showing a voltage profile with respect to a normalized capacity during charging of a cable type secondary battery manufactured according to Examples and Comparative Examples of the present invention.
  • FIG. 14 is a graph showing a voltage profile with respect to a normalized capacity during discharge of a cable type secondary battery manufactured according to Examples and Comparative Examples of the present invention.
  • 15 is a graph showing cycle life characteristics of a cable type secondary battery manufactured according to Examples and Comparative Examples of the present invention.
  • the conventional cable type secondary battery has an electrolyte layer between the inner electrode and the outer electrode, and these electrolyte layers must isolate the inner electrode and the outer electrode in order to prevent a short circuit, and thus have a gel polymer electrolyte or a solid polymer having a certain level of mechanical properties. It is necessary to use an electrolyte.
  • the gel-type polymer electrolyte or the solid polymer electrolyte does not have excellent performance as a lithium ion source, in order to supply lithium ions to the electrode active material layer sufficiently, the thickness of the electrolyte layer must be increased, and the thickness of the electrolyte layer is increased. As a result, the gap between the electrodes is widened, resulting in a decrease in battery performance due to an increase in resistance.
  • a lithium ion supply core part including an electrolyte is provided inside an internal electrode support having an open structure, and the electrolyte of the lithium ion supply core part passes through the internal electrode support to reach the internal electrode active material layer and the external electrode active material layer. It was made.
  • the gap between the inner electrode and the separation layer or between the separation layer and the outer electrode may exist depending on the uneven portion of the inner electrode support.
  • the electrolyte is injected by the above intervals, the electrolyte is prevented from being transferred to the internal electrode active material layer and the external electrode active material layer. Due to this problem, the charging and discharging of the secondary battery exhibits irregular charging and discharging behavior, and thus, it is difficult to implement a desired battery performance.
  • the gap between the electrode and the separation layer can be kept constant, and the separation layer in close contact with the electrode active material layer is electrolyte through the internal electrode. By absorbing it can be induced to supply a uniform electrolyte solution to the external electrode active material layer.
  • the current collector when the current collector is applied in the form of a wire, since the wire resistance is generally higher than the sheet resistance, the resistance acting on the current collector in the form of a wire affects the battery and causes the performance of the battery to deteriorate.
  • the sheet-type current collector is used as the internal current collector and the external current collector, the resistance of the battery can be reduced, thereby improving the performance of the battery.
  • the cable-type secondary battery according to an embodiment of the present invention, the internal electrode support; And a sheet-shaped inner electrode-separation layer-external electrode composite formed by spirally winding on the outer surface of the inner electrode support, wherein the inner electrode-separation layer-external electrode composite includes an inner electrode and a short circuit to prevent a short circuit of the electrode. It is formed by compressing the separation layer and the external electrode to be integrated.
  • the cable-type secondary battery according to another embodiment of the present invention, the internal electrode support; A sheet-shaped inner electrode formed spirally wound on an outer surface of the inner electrode support body; And a sheet-type separation layer-external electrode composite formed by spirally winding the outer surface of the internal electrode, wherein the separation layer-external electrode composite is compressed to integrate the separation layer and the external electrode to prevent the short circuit of the electrode. Is formed.
  • the cable-type secondary battery according to another embodiment of the present invention, the internal electrode support; A sheet-shaped inner electrode-separation layer composite formed by winding spirally on an outer surface of the inner electrode support body; And a sheet-shaped external electrode formed by spirally winding the outer surface of the inner electrode-separation layer composite, wherein the inner electrode-separation layer composite is compressed by integrating an inner electrode and a separation layer which prevents a short circuit between the electrodes. Is formed.
  • the spiral is represented in English as a spiral or helix, and is a shape that is twisted in a predetermined range, and generally refers to a shape similar to that of a general spring.
  • the sheet type inner electrode-separation layer-external electrode composite, the sheet type separation layer-external electrode composite, and the sheet type inner electrode-separation layer composite may have a strip structure extending in one direction. have.
  • the sheet-shaped inner electrode-separation layer-external electrode composite, the sheet-shaped separation layer-external electrode composite, and the sheet-shaped inner electrode-separation layer composite may be spirally wound so as not to overlap each other.
  • each of the sheet-type separation layer-electrode composite may be formed by spirally winding so as not to overlap each other at intervals within two times the width of the sheet-type separation layer-electrode composite so as not to deteriorate the performance of the battery. have.
  • each sheet-type separation layer-electrode composite may have a width of the overlapping portion within 0.9 times the width of each sheet-type separation layer-electrode composite in order to suppress excessive increase in internal resistance of the battery. It may be formed by winding in a spiral.
  • the internal electrode-separation layer composite 30 may be formed by pressing the electrode 7 to be integrated.
  • the composite of the electrode-separation layer according to the present invention the external current collector 11, the external electrode active material layer 12, the separation layer 13,
  • the internal electrode active material layer 14 and the internal current collector 15 may be an internal electrode-separation layer-external electrode composite 10 formed by compression to be integrated.
  • the external current collector 21 and the external electrode active material layer 22 may be formed.
  • a separation layer-external electrode composite 20 formed by compressing the separation layer 23 to be integrated.
  • the separation layer 33, the internal electrode active material layer 34, and the internal current collector 35 are compressed to be integrated.
  • the internal electrode-separation layer composite 30 may be formed.
  • the inner electrode-separation layer-outer electrode composite 10 may be formed by laminating an inner electrode, a separation layer, and an outer electrode in a longitudinal direction in order, and then laminating a process using a roll press method.
  • the binder eluted in the separator consisting of inorganic particles and the binder as a binder or separation layer included in the electrode active material layer has a stronger adhesive force at the interface between the separation layer and the electrode.
  • the inner electrode-separation layer-external electrode composite 10 may include the inner electrode 7 and the separation layer 13, or the separation layer 13 and the outer electrode 5 of 15 to 300 N.
  • FIG. / m may be formed by pressing to achieve a peel strength (peel strength) to be integrated
  • the separation layer-external electrode composite 20 the separation layer 23 and the external electrode 5 is 15 to 300 N / m may be formed by pressing to form a peel strength to be integrated
  • the internal electrode-separation layer composite 30, the internal electrode 7 and the separation layer 33 is 15 to 300 N / m peeling It may be formed by pressing to form a strength and integrated.
  • an appropriate level of adhesive force is formed so that the separation layer and the electrode are not spaced apart from each other, thereby bonding and integrating the separation layer and the electrode.
  • the separation layer When the separation layer is applied to the cable type secondary battery, since the sheet-type separation layer is formed on the outer surface of the internal electrode, a portion overlapping with each other and a portion not overlapping with each other are generated.
  • the separation layer and the electrode composite are applied by integrating the separation layer and the electrode in advance, as in the present invention, even when the cable type secondary battery is bent, the separation layer and the electrode move integrally. It is possible to prevent the occurrence of the internal short circuit due to the contact of the external electrode. As a result, since it advantageously works to improve the flexibility of the battery and minimizes the overlap between the separation layers, the ion conductivity of the battery also works advantageously to contribute to the improvement of the battery performance.
  • the electrode active material layer may detach from the electrode current collector.
  • the separation layer and the electrode are integrated, so that the separation layer is an electrode. It acts as a buffer against external stress acting on the active material layer.
  • the sheet-shaped inner electrode-separation layer-outer electrode composite 10 includes a lamination process between the inner electrode (not shown), the separation layer 13, and the outer electrodes 11 and 12. It can be formed by pressing to be integrated through the, wherein the separation layer 13 is designed to have a larger width and length than the internal electrode (not shown) and the external electrodes (11, 12) by the internal electrode (not shown) And short circuits with the external electrodes 11 and 12 may not occur. More specifically, the width difference w1 and the length difference w2 between the separation layer 13 and the internal and external electrodes may be designed to be 0.1 mm or more.
  • the sheet-shaped inner electrode-separation layer-external electrode composite 10 is wound on the outer surface of the inner electrode support 2 surrounding the outer surface of the lithium ion supply core part 1 to manufacture a cable type secondary battery. Can be.
  • the internal electrode support may have an open structure.
  • the open structure refers to a structure in which the open structure is used as an interface, and freely moves materials from inside to outside through this interface.
  • the internal electrode support of the open structure of the present invention may be a hollow fiber, a wound wire support, a wound sheet support or a mesh support, and the electrolyte freely moves to the internal electrode active material and the external electrode active material to prevent wetting. It may also have pores on the surface to facilitate smoothing.
  • the internal electrode support having the open structure maintains the linear shape of the cable type secondary battery, can prevent deformation of the battery structure due to external force, and prevents collapse or deformation of the electrode structure to prevent the cable type secondary battery. Flexibility can be secured.
  • the hollow yarn is polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile, polyimide, polyethylene terephthalate, polyamide imide, polyester imide, polyether sulfone, and Using at least one polymer selected from the group consisting of polysulfones, it can be obtained by conventional hollow fiber formation methods.
  • the wound wire support may be formed in a shape such as a spring structure composed of a polymer or a metal.
  • the polymer may be made of a material having excellent chemical resistance that is not reactive with an electrolyte, and the metal may be the same as the metal constituting the internal current collector or the external current collector described below.
  • the diameter of the internal electrode support may be 0.1 to 10 mm, the surface may have pores having a diameter of 100 nm to 10 ⁇ m.
  • the inner electrode may include an inner current collector and an inner electrode active material layer formed on one surface of the inner current collector
  • the outer electrode may include an outer current collector and an outer electrode active material layer formed on one surface of the outer current collector. can do.
  • it may further include a polymer film layer formed on the other surface of the inner current collector or the other surface of the outer current collector.
  • the polymer film layer may be formed of any one selected from the group consisting of polyolefins, polyesters, polyimides and polyamides, or a mixture of two or more thereof.
  • the inner current collector or the outer current collector may be a mesh current collector.
  • the electrode current collector of the cable type secondary battery is a wire type
  • a disadvantage is that the resistance element according to the small surface area is larger than the case where the electrode current collector is a wound sheet type or a wound mesh type. It is not suitable because its rate characteristic may be lowered.
  • the electrode active material layer may detach from the electrode current collector. Therefore, a large amount of binder component enters the electrode active material layer for electrode flexibility. However, such a large amount of binder swelling (swelling) occurs by the electrolyte solution, can be easily separated from the electrode current collector, thereby causing a decrease in battery performance.
  • At least one of the internal current collector and the external current collector may further include a primer coating layer composed of a conductive material and a binder.
  • the conductive material may include any one selected from the group consisting of carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotubes, and graphene, or a mixture of two or more thereof.
  • the binder may include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride trichloro Ethylene (polyvinylidene fluoride-co-trichloroethylene), polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate ( polyvinylacetate, ethylene vinyl co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate Cellulose acetate propionate, cyanoethylpullu Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, styrenebutadiene rubber
  • the internal electrode may further include a polymer support layer formed on a surface of the internal electrode active material layer.
  • the polymer support layer When the polymer support layer is further included on the surface of the internal electrode active material layer according to an embodiment of the present invention, a phenomenon occurs that a crack occurs on the surface of the internal electrode active material layer even if a cable type secondary battery is bent by an external force. Excellently prevented. As a result, the detachment phenomenon of the internal electrode active material layer is further prevented, and thus the performance of the battery may be further improved.
  • the polymer support layer may have a porous structure. In this case, the electrolyte may be smoothly introduced into the internal electrode active material layer, thereby preventing an increase in electrode resistance.
  • the polymer support layer may include a polar linear polymer, an oxide-based linear polymer or a mixture thereof.
  • the polar linear polymer polyacrylonitrile, polyvinyl chloride, polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluorofluoropropylene ( polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride-co-trichloroethylene, polyethylenimine, polymethyl methacrylate, polybutyl acrylate ( polybutyl acrylate), polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl co-vinyl acetate, polyarylate and polyp-phenylene terephthalamide (Poly -p-phenylene terephthalamide) any one selected from the group consisting of or a mixture of two or more thereof Can be.
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride-hexafluorofluoropropylene
  • the oxide-based linear polymer is any one selected from the group consisting of polyethylene oxide, polypropylene oxide, polyoxymethylene, and polydimethylsiloxane, or two of them. It may be a mixture of the above.
  • the polymer support layer may be a porous polymer layer having a pore size of 0.01 ⁇ m to 10 ⁇ m and a porosity of 5 to 95%.
  • porous structure of the porous polymer layer may be formed through phase separation or phase inversion by non-solvent in the manufacturing process.
  • polyvinylidene fluoride-hexafuluropropylene as a polymer is added to acetone acting as a solvent to prepare a solution having a solid content of 10% by weight. Thereafter, water or ethanol as a non-solvent may be added to the prepared solution by 2 to 10% by weight to prepare a polymer solution.
  • the phase inversion In the process of evaporation after coating of the polymer solution, the phase inversion, the area occupied by the non-solvent in the phase-separated portion of the non-solvent and the polymer becomes pores. Therefore, the pore size may be adjusted according to the degree of solubility of the nonsolvent and the polymer and the content of the nonsolvent.
  • a plurality of recesses may be formed on at least one surface.
  • the plurality of recesses may have a continuous pattern or an intermittent pattern. That is, it may have a recess of a continuous pattern formed in the longitudinal direction spaced apart from each other, or may have an intermittent pattern in which a plurality of holes are formed.
  • the plurality of holes may be circular or polygonal.
  • the internal current collector is stainless steel, aluminum, nickel, titanium, calcined carbon or copper; Or surface treated with carbon, nickel, titanium or silver on the surface of stainless steel; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Or manufactured using a conductive polymer.
  • the current collector collects electrons generated by the electrochemical reaction of the active material or serves to supply electrons required for the electrochemical reaction.
  • a metal such as copper or aluminum is used.
  • it is relatively more flexible than using a metal such as copper or aluminum.
  • it is possible to achieve the light weight of the battery by using a polymer current collector in place of the metal current collector.
  • Such conductive materials may be polyacetylene, polyaniline, polypyrrole, polythiophene, polysulfuride, ITO (indum tin oxide), silver, palladium and nickel, and the conductive polymer may be polyacetylene, polyaniline, polypyrrole, polythiol Offen, polysulfuritride and the like can be used.
  • the non-conductive polymer used for the current collector is not particularly limited in kind.
  • Examples of the external current collector of the present invention include stainless steel, aluminum, nickel, titanium, calcined carbon, or copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Conductive polymers; A metal paste comprising a metal powder of Ni, Al, Au, Ag, Al, Pd / Ag, Cr, Ta, Cu, Ba, or ITO; Or a carbon paste containing carbon powder which is graphite, carbon black or carbon nanotubes.
  • the conductive material and the conductive polymer may be the same as those used in the above-described internal current collector.
  • the internal electrode support may have a hollow structure in which a space is formed.
  • the inner electrode support may include at least one wire-shaped inner electrode support wound in a spiral form, or at least one sheet-shaped inner electrode support wound in a spiral form.
  • the internal electrode support may include two or more wire type internal electrode supports spirally wound to cross each other.
  • the internal electrode current collector core may be formed in a space formed inside the internal electrode support.
  • the internal electrode current collector core portion carbon nanotubes, stainless steel, aluminum, nickel, titanium, calcined carbon or copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Or it may be made of a conductive polymer.
  • a lithium ion supply core part including an electrolyte may be formed in a space formed inside the internal electrode support.
  • the lithium ion supply core may include a gel polymer electrolyte and a support.
  • the lithium ion supply core unit may include a liquid electrolyte and a porous carrier.
  • the filling core may be formed in a space formed inside the internal electrode support.
  • the filling core part may include materials for improving various performances in a cable type secondary battery, for example, polymer resin, rubber, inorganic material, and the like. It may be formed into various shapes such as wire, fiber, powder, mesh, foam, and the like.
  • the cable type secondary battery 100 includes a lithium ion supply core unit 110 including an electrolyte; An inner electrode support 120 having an open structure formed surrounding the outer surface of the lithium ion supply core unit 110; And a sheet-shaped inner electrode-separation layer-external electrode complex 130 formed around the outer surface of the inner electrode support 120 and spirally wound, including the inner electrode-separation layer-external electrode composite 130.
  • An internal electrode including an internal current collector and an internal electrode active material layer formed on a surface of the internal current collector, a separation layer to prevent short circuit of the electrode, and an external current collector and an external electrode active material layer formed on the surface of the external current collector. It is formed by compressing the external electrodes to be integrated.
  • the lithium ion supply core unit 210 including an electrolyte; An internal electrode support 220 having an open structure formed surrounding the outer surface of the lithium ion supply core unit 210; A sheet-shaped inner electrode formed spirally wound on an outer surface of the inner electrode support 220 and having an inner current collector 231 and an inner electrode active material layer 232 formed on a surface of the inner current collector 231; And a sheet-shaped separation layer-external electrode composite 230 formed spirally wound on an outer surface of the internal electrode, wherein the separation layer-external electrode composite 230 includes a separation layer and an external to prevent shorting of the electrode.
  • the current collector and the external electrode including the external electrode active material layer formed on the surface of the external current collector are formed by pressing so as to be integrated.
  • the lithium ion supply core unit 310 including an electrolyte; An internal electrode support 320 having an open structure formed surrounding the outer surface of the lithium ion supply core unit 310; A sheet-shaped inner electrode-separation layer composite 330 formed by winding spirally on the outer surface of the inner electrode support 320; And a spiral wound around the outer surface of the inner electrode-separation layer composite 330 and having an outer current collector 332 and an outer electrode active material layer 331 formed on a surface of the outer current collector 332.
  • the inner electrode-separation layer composite 330 Including, but not including, the inner electrode-separation layer composite 330, the inner electrode having a current collector and an inner electrode active material layer formed on the surface of the inner current collector and a separation layer for preventing a short circuit of the electrode It is formed by pressing so that it may be integrated.
  • Cable type secondary battery according to an embodiment of the present invention has a horizontal cross section of a predetermined shape, it may have a linear structure elongated in the longitudinal direction with respect to the horizontal cross section.
  • the cable type secondary battery according to the exemplary embodiment of the present invention may have flexibility, and may be freely deformed.
  • the predetermined shape means that the shape is not particularly limited, and any shape that does not impair the essence of the present invention is possible.
  • the lithium ion supply core portion 110, 210, 310 includes an electrolyte, although the type of the electrolyte is not particularly limited to ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate ( BC), vinylene carbonate (VC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methyl formate (MF), gamma-butyrolactone ( ⁇ -BL; butyrolactone), Non-aqueous electrolyte using sulfolane, methylacetate (MA), or methylpropionate (MP); Gel polymer electrolytes using PEO, PVdF, PVdF-HFP, PMMA, PAN or PVAc; Or a solid electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES) or polyvinyl acetate (PVAc); Etc.
  • EC ethylene carbonate
  • the electrolyte may further include a lithium salt, which may include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloro is preferred to use a borane lithium, lower aliphatic carboxylic acid lithium, and tetraphenyl lithium borate, etc.
  • the lithium ion supply cores 110, 210, and 310 may be configured only with an electrolyte, and in the case of a liquid electrolyte, a porous carrier may be used.
  • the inner electrode may be a cathode or an anode
  • the outer electrode may be an anode or a cathode corresponding to the inner electrode
  • the electrode active material layer of the present invention functions to move ions through a current collector, and the movement of these ions is caused by interaction through occlusion of ions from the electrolyte layer and release of ions into the electrolyte layer.
  • the electrode active material layer may be classified into a negative electrode active material layer and a positive electrode active material layer.
  • the inner electrode active material layer is a negative electrode active material, natural graphite, artificial graphite or carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And it may include any one active material particles or a mixture of two or more thereof selected from the group consisting of a complex of the metals (Me) and carbon, the external electrode active material layer is a positive electrode active material, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiFePO 4 , LiNiMnCoO 2 and LiNi 1-xyz Co x M1 y M2 z O 2 (M1 and M2 are independently of each other Al, Ni, Co, Fe
  • the internal electrode active material layer may be a positive electrode active material layer
  • the external electrode active material layer may be a negative electrode active material layer
  • the electrode active material layer includes an electrode active material, a binder, and a conductive material, and combines with the current collector to form an electrode.
  • deformation occurs, such as the electrode being folded or severely bent by an external force, detachment of the electrode active material occurs. Due to the detachment of the electrode active material, a decrease in battery performance and battery capacity occurs.
  • the current collector since the current collector has elasticity, it plays a role of dispersing the force at the time of deformation due to external force, so that the deformation of the electrode active material layer occurs less, and thus the detachment of the active material can be prevented.
  • an electrolyte layer or a separator may be used as the separation layer of the present invention.
  • Examples of the electrolyte layer serving as a passage for the ions include a gel polymer electrolyte using PEO, PVdF, PVdF-HFP, PMMA, PAN, or PVAc; Or a solid electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES) or polyvinyl acetate (PVAc); Etc.
  • the matrix of the solid electrolyte is preferably made of polymer or ceramic glass as a basic skeleton.
  • ions may move very slowly in terms of reaction rate, and therefore, it is preferable to use an electrolyte of a gel polymer having easier movement of ions than a solid.
  • the gel polymer electrolyte is not excellent in mechanical properties, it may include a support to compensate for this, and such a support may be a pore structure support or a crosslinked polymer. Since the electrolyte layer of the present invention may serve as a separator, a separate separator may not be used.
  • the electrolyte layer of the present invention may further include a lithium salt.
  • Lithium salts can improve ionic conductivity and reaction rate, non-limiting examples of which are LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloro available borane lithium, lower aliphatic carboxylic acid lithium, and tetraphenyl lithium borate, etc. have.
  • the separator is not limited to a kind thereof, but a porous material made of a polyolefin-based polymer selected from the group consisting of ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer.
  • a polymer substrate A porous polymer substrate made of a polymer selected from the group consisting of polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide and polyethylene naphthalate; A porous substrate formed of a mixture of inorganic particles and a binder polymer; Alternatively, a separator having a porous coating layer formed of a mixture of inorganic particles and a binder polymer on at least one surface of the porous polymer substrate may be used.
  • the binder polymer is attached to each other (that is, the binder polymer is connected and fixed between the inorganic particles) so that the inorganic particles can remain bound to each other,
  • the porous coating layer is maintained in a state bound to the porous polymer substrate by a polymer binder.
  • the inorganic particles of the porous coating layer are present in the closest packed structure substantially in contact with each other, and the interstitial volume generated when the inorganic particles are in contact with each other becomes pores of the porous coating layer.
  • the polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, and polyphenylene It is preferable to use a separator of a nonwoven material corresponding to a porous polymer substrate made of a polymer selected from the group consisting of sulfide and polyethylene naphthalate.
  • the present invention includes a protective coating, which is formed on the outer surface of the outer current collector to protect the electrode against moisture and external shock in the air as an insulator.
  • a protective coating which is formed on the outer surface of the outer current collector to protect the electrode against moisture and external shock in the air as an insulator.
  • conventional polymer resins including a moisture barrier layer may be used.
  • aluminum or liquid crystal polymer having excellent moisture barrier performance may be used as the moisture barrier layer, and the polymer resin may be PET, PVC, HDPE or epoxy resin.
  • the lithium ion supply core unit 110 including an electrolyte; An inner electrode support 120 having an open structure formed surrounding the outer surface of the lithium ion supply core; And a sheet-shaped inner electrode-separation layer-external electrode complex 130 formed around the outer surface of the inner electrode support 120 and spirally wound, including the inner electrode-separation layer-external electrode composite 130.
  • An internal electrode including an internal current collector and an internal electrode active material layer formed on a surface of the internal current collector, a separation layer to prevent short circuit of the electrode, and an external current collector and an external electrode active material layer formed on the surface of the external current collector. It is formed by compressing the external electrodes to be integrated.
  • the polymer electrolyte is formed in a wire shape using an extruder or the like to prepare a lithium ion supply core unit 110.
  • a non-aqueous electrolyte may be injected into the center of the inner electrode support to form a lithium ion supply core unit 110.
  • the inside of the battery may be prepared. It can also be formed by injecting a nonaqueous electrolyte into the electrode support.
  • a non-aqueous electrolyte may be injected thereto to prepare the lithium ion supply core unit 110.
  • a wire-type inner electrode support 120 is prepared and wound around the lithium ion supply core 110.
  • an inner electrode active material layer and an outer electrode active material layer are coated on each of the sheet-shaped inner current collector and the sheet-shaped outer current collector to prepare sheet inner electrodes and sheet outer electrodes, respectively.
  • a general coating method may be applied as such a coating method. Specifically, an electroplating or anodizing process may be used, but a comma coater is used to coat an electrode slurry containing an active material. Or it is preferably prepared using a coating method using a slot die coater (slot die coater). In addition, in the case of the electrode slurry containing the active material, it is also possible to manufacture by using a method of extrusion coating using a dip coating or an extruder.
  • the inner current collector and the outer current collector may be a mesh-type current collector.
  • the manufactured inner electrode-separation layer-external electrode composite 130 is wound on the outer surface of the inner electrode support 120 to manufacture an electrode assembly, and then the protective coating 140 covers the outer surface of the electrode assembly. To form.
  • the protective coating 140 is formed on the outermost surface to protect the electrode against moisture and external shock in the air as an insulator.
  • a conventional polymer resin including a moisture barrier layer may be used as described above.
  • Cable type secondary battery two or more internal electrode support disposed in parallel with each other; Two or more sheet-shaped inner electrodes formed spirally wound on an outer surface of each of the inner electrode supports; And a separation layer formed around the outer surfaces of the inner electrodes and wound in a spiral shape to prevent the short circuit of the electrodes, and a sheet-type separation layer-outer electrode composite formed by bonding the outer electrodes to be integrated.
  • the cable type secondary battery 400 of the present invention according to another embodiment of the present invention, two or more lithium ion supply core portion 410 including an electrolyte;
  • An inner electrode support 420 having an open structure formed surrounding the outer surface of each of the lithium ion supply cores 410;
  • the inner surface of each of the inner electrode support 420 is spirally wound and formed in parallel with each other having an inner current collector 431 and an inner electrode active material layer 432 formed on the surface of the inner current collector 431.
  • Two or more internal electrodes disposed; And an outer electrode formed around the outer surface of the inner electrodes and wound in a spiral shape, the outer electrode including a separation layer for preventing a short circuit of the electrode and an outer current collector and an outer electrode active material layer formed on a surface of the outer current collector.
  • a sheet-type separation layer-external electrode composite 430 formed by pressing.
  • the cable type secondary battery 400 includes an internal electrode composed of a plurality of electrodes, it is easy to adjust the balance between the negative electrode and the positive electrode and includes a plurality of electrodes, thereby preventing the possibility of disconnection.
  • an internal electrode support having an open structure in which a spring-type lithium ion supply core portion with an empty core was possible was prepared.
  • a negative electrode active material slurry composed of graphite as a negative electrode active material, denka black as a conductive material and PVdF as a binder, 70% by weight, 5% by weight and 25% by weight, respectively, the slurry was then coated on a copper foil. And slitting at a width of 2 mm to prepare a sheet type internal electrode (cathode).
  • the cathode active material slurry composed of LiCoO 2 as a cathode active material, denca black as a conductive material, and PVdF as a binder, 80% by weight, 5% by weight and 15% by weight, respectively, the cathode active material slurry was coated on an aluminum foil. Then, by slitting to a width of 2 mm, a sheet external electrode (anode) was produced.
  • the sheet-shaped separator made of a porous substrate formed of a mixture of inorganic particles and a binder polymer and the sheet-shaped inner electrode are attached to each other, and then the inner electrode and the separator are bonded to each other through a lamination process using a roll press.
  • An internal electrode-separation layer composite was prepared.
  • the internal electrode-separation layer composite thus prepared was wound on the outer surface of the internal electrode support having the aforementioned open structure.
  • the sheet external electrode was wound on the outer surface of the wound internal electrode-separation layer composite. Thereafter, a heat-shrink tube having a moisture barrier layer was formed on the outer surface of the wound external electrode, and then a protective coating layer was formed by applying heat to shrink.
  • a sheet-shaped inner electrode is formed on the outer surface of the inner electrode support, and a separator is formed on the outer surface of the wound sheet-shaped inner electrode.
  • a cable type secondary battery was manufactured in the same manner as in Example, except that the method was used.
  • the charge and discharge experiments were carried out 100 times under a voltage condition of 4.2 to 3.0 V at a current density of 0.3 C, respectively, and the life characteristics of the batteries were confirmed and normalized. The voltage profile for the given capacity was checked.
  • 13 and 14 are graphs showing voltage profiles of normalized capacities during charging and discharging of cable type secondary batteries manufactured according to Examples and Comparative Examples of the present invention, respectively.
  • the cable-type secondary battery manufactured according to the embodiment can be seen that the resistance is somewhat reduced than in the case of the comparative example.
  • Figure 15 is a graph showing the cycle life characteristics of the cable-type secondary battery manufactured according to the Examples and Comparative Examples of the present invention. According to Figure 15, it can be seen that the capacity retention rate of the embodiment is significantly improved than in the case of the comparative example, thereby it can be seen that the cycle life characteristics of the embodiment is more excellent.
  • the separation layer-electrode composite is applied to minimize the gap between the electrode and the separation layer and to make the electrode integral, thereby improving the electrolyte impregnation by the micropores of the separation layer in close contact with the electrode. For this reason, it is judged that the resistance of the cable type secondary battery was reduced and the lifespan characteristics were improved.

Abstract

본 발명은, 내부전극 지지체; 및 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극-분리층-외부전극 복합체;를 포함하되, 상기 내부전극-분리층-외부전극 복합체는, 내부전극, 전극의 단락을 방지하는 분리층 및 외부전극이 일체화되도록 압착하여 형성된 케이블형 이차전지를 제공한다. 본 발명에 따르면, 전극과 분리층이 접합하여 일체화됨으로써, 전극과 밀착된 분리층이 전해액을 흡수하여 외부전극 활물질층에 균일한 전해액의 공급을 유도함으로써 케이블형 이차전지의 안정성 및 성능을 향상시키고, 저항이 높은 와이어형 집전체를 배제하고, 시트형의 전극을 구비함으로써, 케이블형 이차전지의 저항을 감소시켜 전지의 성능개선에 기여할 수 있고, 열린 구조의 내부전극 지지체를 구비하고 있고, 시트형의 전극-분리층 복합체가 스프링 구조와 같은 나선형으로 권선되어 있어, 선형의 형상을 유지하며, 외부 힘에 의한 스트레스를 완화할 수 있다.

Description

케이블형 이차전지
본 발명은 변형이 자유로운 케이블형 이차전지에 관한 것으로, 더욱 자세하게는 내부전극 지지체를 포함하고, 전극과 분리층이 일체화된 케이블형 이차전지에 관한 것이다.
본 출원은 2013년 5월 7일에 출원된 한국특허출원 제10-2013-0051561호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2014년 5월 7일에 출원된 한국특허출원 제10-2014-0054275호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 이차 전지는 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요할 때에 전기를 만들어 내는 장치를 말한다. 여러 번 충전할 수 있다는 뜻으로 "충전식 전지"(rechargeable battery)라는 명칭도 쓰인다. 흔히 쓰이는 이차전지로는 납 축전지, 니켈 카드뮴 전지(NiCd), 니켈 수소 축전지(NiMH), 리튬 이온 전지(Li-ion), 리튬 이온 폴리머 전지(Li-ion polymer)가 있다. 이차 전지는 한 번 쓰고 버리는 일차 전지에 비해 경제적인 이점과 환경적인 이점을 모두 제공한다.
이차 전지는 현재 낮은 전력을 사용하는 곳에 쓰인다. 이를테면 자동차의 시동을 돕는 기기, 휴대용 장치, 도구, 무정전 전원 장치를 들 수 있다. 최근 무선통신 기술의 발전은 휴대용 장치의 대중화를 주도하고 있으며, 종래의 많은 종류의 장치들을 무선화하는 경향도 있어, 이차전지에 대한 수요가 폭발하고 있다. 또한, 환경오염 등의 방지 측면에서 하이브리드 자동차, 전기 자동차가 실용화되고 있는데, 이들 차세대 자동차들은 이차전지를 사용하여 값과 무게를 줄이고 수명을 늘리는 기술을 채용하고 있다.
일반적으로 이차전지는 원통형, 각형 또는 파우치형의 전지가 대부분이다. 이는 이차전지는 음극, 양극 및 분리막으로 구성된 전극조립체를 원통형 또는 각형의 금속캔이나 알루미늄 라미네이트 시트의 파우치형 케이스 내부에 장착하고, 상기 전극 조립체에 전해질을 주입시켜 제조하기 때문이다. 따라서, 이차전지 장착을 위한 일정한 공간이 필수적으로 요구되므로, 이러한 이차전지의 원통형, 각형 또는 파우치형의 형태는 다양한 형태의 휴대용 장치의 개발에 대한 제약으로 작용하게 되는 문제점이 있다. 이에, 형태의 변형이 용이한 신규한 형태의 이차전지가 요구되고 있다.
이러한 요구에 대하여, 단면적 직경에 대하여 길이의 비가 매우 큰 전지인 선형전지가 제안되었다. 대한민국 공개특허 제2005-99903호는 내부전극, 외부전극과 이들 전극 사이에 개재되는 전해질층으로 구성되는 가변형 전지를 개시하고 있으나, 가요성이 좋지 않다. 또한, 상기 선형전지는 전해질층을 형성하기 위하여 폴리머 전해질을 사용하게 되므로 전극의 활물질로의 전해질의 유입이 어려워 전지의 저항이 증가하여 용량 특성 및 사이클 특성이 저하되는 문제점이 있다.
그리고, 케이블형 이차전지의 형성시, 내부전극과 외부전극 사이에 개재되는 분리층과 상기 전극들 사이에 불균일한 간격이 발생하게 되는데, 이러한 간격으로 인해 외부전극 활물질층으로의 전해액 유입이 원활히 일어나지 않아 전지성능이 악화될 수 있는 문제점이 있다.
그리고, 케이블형 이차전지에 와이어형의 집전체를 사용하게 될 경우, 일반적으로 선 저항이 면 저항보다 높기 때문에, 와이어형의 집전체는 시트형의 집전체에 비해 저항 특성이 높게 나타나 전지성능이 악화될 수 있는 문제점이 있다.
따라서 본 발명이 해결하고자 하는 과제는, 변형이 용이하며, 이차전지의 안정성과 우수한 성능을 유지할 수 있으며, 전극의 활물질로의 전해질의 유입이 용이한 신규한 선형 구조의 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 내부전극 지지체; 및 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극-분리층-외부전극 복합체;를 포함하되, 상기 내부전극-분리층-외부전극 복합체는, 내부전극, 전극의 단락을 방지하는 분리층 및 외부전극이 일체화되도록 압착하여 형성된 케이블형 이차전지가 제공된다.
이때, 상기 시트형의 내부전극-분리층-외부전극 복합체는, 일측 방향으로 연장된 스트립 구조일 수 있다.
그리고, 상기 시트형의 내부전극-분리층-외부전극 복합체는, 서로 겹치지 않도록 나선형으로 권선되어 형성되거나 또는 서로 겹치도록 나선형으로 권선되어 형성될 수 있다.
그리고, 상기 내부전극-분리층-외부전극 복합체는, 상기 내부전극과 상기 분리층, 또는 상기 분리층과 상기 외부전극이 15 내지 300 N/m의 박리강도(peel strength)를 이루며 일체화되도록 압착하여 형성된 것일 수 있다.
그리고, 본 발명의 다른 측면에 따르면, 내부전극 지지체; 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극; 및 상기 내부전극의 외면에 나선형으로 권선되어 형성된 시트형의 분리층-외부전극 복합체;를 포함하되, 상기 분리층-외부전극 복합체는, 전극의 단락을 방지하는 분리층 및 외부전극이 일체화되도록 압착하여 형성된 케이블형 이차전지가 제공된다.
이때, 상기 시트형의 분리층-외부전극 복합체는, 일측 방향으로 연장된 스트립 구조일 수 있다.
그리고, 상기 시트형의 분리층-외부전극 복합체는, 서로 겹치지 않도록 나선형으로 권선되어 형성되거나 또는 서로 겹치도록 나선형으로 권선되어 형성될 수 있다.
그리고, 상기 분리층-외부전극 복합체는, 상기 분리층과 상기 외부전극이 15 내지 300 N/m의 박리강도를 이루며 일체화되도록 형성된 것일 수 있다.
그리고, 본 발명의 또 다른 측면에 따르면, 내부전극 지지체; 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극-분리층 복합체; 및 상기 내부전극-분리층 복합체의 외면에 나선형으로 권선되어 형성된 시트형의 외부전극;을 포함하되, 상기 내부전극-분리층 복합체는, 내부전극 및 전극의 단락을 방지하는 분리층이 일체화되도록 압착하여 형성된 케이블형 이차전지가 제공된다.
이때, 상기 시트형의 내부전극-분리층 복합체는, 일측 방향으로 연장된 스트립 구조일 수 있다.
그리고, 상기 시트형의 내부전극-분리층 복합체는, 서로 겹치지 않도록 나선형으로 권선되어 형성되거나 또는 서로 겹치도록 나선형으로 권선되어 형성될 수 있다.
그리고, 상기 내부전극-분리층 복합체는, 상기 내부전극과 상기 분리층이 15 내지 300 N/m의 박리강도를 이루며 일체화되도록 형성된 것일 수 있다.
한편, 상기 내부전극 지지체는, 열린 구조일 수 있고, 중공사, 권선된 와이어형 지지체, 권선된 시트형 지지체 또는 메쉬형 지지체일 수 있다.
여기서, 상기 중공사는, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리이미드, 폴리에틸렌테레프탈레이트, 폴리아미드 이미드, 폴리에스테르 이미드, 폴리에테르 설폰, 및 폴리설폰으로 이루어진 군으로부터 선택된 1종 이상으로 형성되는 것일 수 있다.
한편, 상기 내부전극은, 내부집전체 및 상기 내부집전체의 일면에 형성된 내부전극 활물질층을 포함하고, 상기 외부전극은, 외부집전체 및 상기 외부집전체의 일면에 형성된 외부전극 활물질층을 포함할 수 있다.
이때, 상기 내부집전체의 타면 또는 상기 외부집전체의 타면에 형성된 고분자 필름층을 더 포함할 수 있다.
여기서, 상기 고분자 필름층은, 폴리올레핀, 폴리에스테르, 폴리이미드 및 폴리아미드로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성될 수 있다.
그리고, 상기 내부집전체 또는 상기 외부집전체는, 메쉬형 집전체일 수 있다.
그리고, 상기 분리층의 폭과 길이는 상기 내부집전체 및 상기 외부집전체의 폭과 길이보다 더 클 수 있다.
그리고, 상기 내부집전체 및 상기 외부집전체 중 적어도 어느 하나는, 도전재와 바인더로 구성된 프라이머 코팅층을 더 포함할 수 있다.
이때, 상기 도전재는, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브 및 그래핀으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
그리고, 상기 바인더는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
한편, 상기 내부전극은, 상기 내부전극 활물질층의 표면에 형성된 고분자 지지층을 더 포함하는 것일 수 있다.
이때, 상기 고분자 지지층은, 0.01 ㎛ 내지 10 ㎛의 기공 크기 및 5 내지 95 %의 기공도를 갖는 다공성 고분자층일 수 있다.
그리고, 상기 고분자 지지층은, 극성 선형 고분자, 옥사이드계 선형 고분자 또는 이들의 혼합물을 포함할 수 있다.
이때, 상기 극성 선형 고분자는, 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐 클로라이드 (polyvinyl chloride), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌이민 (polyethylene imine), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리아릴레이트 (polyarylate) 및 폴리p-페닐렌 테레프탈아미드 (Poly-p-phenylene terephthalamide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 옥사이드계 선형 고분자는, 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌 옥사이드 (polypropylene oxide), 폴리옥시메틸렌 (polyoxymethylene) 및 폴리디메틸실록산 (polydimethylsiloxane)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 내부집전체 또는 상기 외부집전체의 적어도 일면에, 복수의 함입부가 형성될 수 있다.
이때, 상기 복수의 함입부는, 연속적인 패턴을 갖거나, 또는 단속적인 패턴을 가질 수 있다.
그리고, 상기 내부집전체는, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 제조된 것일 수 있다.
여기서, 상기 도전재는, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리설퍼니트리드, ITO(Indum Tin Oxide), 은, 팔라듐 및 니켈 중에서 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
그리고, 상기 전도성 고분자는, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 고분자일 수 있다.
그리고, 상기 외부집전체는, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트;로 제조된 것일 수 있다.
한편, 상기 내부전극 지지체는, 내부에 공간이 형성되어 있는 중공형 구조일 수 있다.
이때, 상기 내부전극 지지체는, 나선형으로 권선된 하나 이상의 와이어형의 내부전극 지지체, 또는 나선형으로 권선된 하나 이상의 시트형의 내부전극 지지체를 포함할 수 있다.
그리고, 상기 내부전극 지지체는, 서로 교차하도록 나선형으로 권선된 2개 이상의 와이어형의 내부전극 지지체를 포함할 수 있다.
그리고, 상기 내부전극 지지체의 내부에 형성되어 있는 공간에, 내부전극 집전체 코어부, 전해질을 포함하는 리튬이온 공급 코어부, 또는 충진 코어부가 형성될 수 있다.
이때, 상기 리튬이온 공급 코어부는, 겔형 폴리머 전해질 및 지지체를 포함할 수 있고, 액체 전해질 및 다공성 담체를 더 포함할 수 있다.
한편, 상기 전해질은, 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC), 비닐렌카보네이트(VC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 메틸포르메이트(MF), 감마-부티로락톤(γ-BL;butyrolactone), 설포레인(sulfolane), 메틸아세테이트(MA; methylacetate), 또는 메틸프로피오네이트(MP; methylpropionate)를 사용한 비수전해액; PEO, PVdF, PVdF-HFP, PMMA, PAN 또는 PVAc를 사용한 겔형 고분자 전해질; 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 중에서 선택된 전해질을 포함할 수 있다.
그리고, 상기 전해질은, 리튬염을 더 포함할 수 있고, 이때, 상기 리튬염은, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬 중에서 선택된 1종 또는 2종 이상일 수 있다.
한편, 상기 내부전극은, 음극 또는 양극이고, 상기 외부전극은, 상기 내부전극에 상응하는 양극 또는 음극일 수 있다.
이때, 상기 내부전극이 음극이고, 상기 외부전극이 양극인 경우, 내부전극 활물질은, 천연흑연, 인조흑연 또는 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함하고, 외부전극 활물질은, LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi 1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z ≤ 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
그리고, 상기 내부전극이 양극이고, 상기 외부전극이 음극인 경우, 내부전극 활물질은, LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi 1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 = x < 0.5, 0 = y < 0.5, 0 = z < 0.5, x+y+z = 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함하고, 외부전극 활물질은, 천연흑연, 인조흑연 또는 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
한편, 상기 분리층은, 전해질층 또는 세퍼레이터일 수 있다.
이때, 상기 전해질층은, PEO, PVdF, PVdF-HFP, PMMA, PAN 또는 PVAc를 사용한 겔형 고분자 전해질; 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 중에서 선택된 전해질을 포함할 수 있다.
그리고, 상기 전해질층은, 리튬염을 더 포함할 수 있다.
이때, 상기 리튬염은, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬 중에서 선택된 1종 또는 2종 이상일 수 있다.
그리고, 상기 세퍼레이터는, 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 고분자 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈레이트로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 고분자로 제조한 다공성 고분자 기재; 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재; 또는 상기 다공성 고분자 기재의 적어도 일면상에 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 구비한 세퍼레이터일 수 있다.
이때, 상기 다공성 고분자 기재는, 다공성 고분자 필름 기재, 또는 다공성 부직포 기재일 수 있다.
한편, 상기 케이블형 이차전지는 그 외면을 둘러싸도록 형성된 보호피복을 더 포함할 수 있다.
여기서, 상기 보호피복은, 고분자 수지로 형성될 수 있다.
이때, 상기 고분자 수지는, PET, PVC, HDPE 및 에폭시 수지로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
그리고, 상기 보호피복은, 수분 차단층을 더 포함하는 것일 수 있다.
이때, 상기 수분 차단층은, 알루미늄 또는 액정 고분자로 형성될 수 있다.
한편, 본 발명의 또 다른 측면에 따르면, 전해질을 포함하는 리튬이온 공급 코어부; 상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체; 및 상기 내부전극 지지체의 외면을 둘러싸며 나선형으로 권선되어 형성된 시트형의 내부전극-분리층-외부전극 복합체;를 포함하되, 상기 내부전극-분리층-외부전극 복합체는, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 내부전극, 전극의 단락을 방지하는 분리층 및 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 외부전극이 일체화되도록 압착하여 형성된 케이블형 이차전지가 제공된다.
그리고, 본 발명의 또 다른 측면에 따르면, 전해질을 포함하는 리튬이온 공급 코어부; 상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체; 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성되며, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 시트형의 내부전극; 및 상기 내부전극의 외면에 나선형으로 권선되어 형성된 시트형의 분리층-외부전극 복합체;를 포함하되, 상기 분리층-외부전극 복합체는, 전극의 단락을 방지하는 분리층 및 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 외부전극이 일체화되도록 압착하여 형성된 케이블형 이차전지가 제공된다.
그리고, 본 발명의 또 다른 측면에 따르면, 전해질을 포함하는 리튬이온 공급 코어부; 상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체; 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극-분리층 복합체; 및 상기 내부전극-분리층 복합체의 외면에 나선형으로 권선되어 형성되며, 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 시트형의 외부전극;을 포함하되, 상기 내부전극-분리층 복합체는, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 내부전극 및 전극의 단락을 방지하는 분리층이 일체화되도록 압착하여 형성된 케이블형 이차전지가 제공된다.
그리고, 본 발명의 또 다른 측면에 따르면, 서로 평행하게 배치된 2 이상의 내부전극 지지체; 각각의 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 2 이상의 시트형의 내부전극; 및 상기 내부전극들의 외면을 함께 둘러싸며 나선형으로 권선되어 형성되되, 전극의 단락을 방지하는 분리층, 및 외부전극이 일체화되도록 합착하여 형성된 시트형의 분리층-외부전극 복합체;를 포함하는 케이블형 이차전지가 제공된다.
그리고, 본 발명의 또 다른 측면에 따르면, 전해질을 포함하는 2 이상의 리튬이온 공급 코어부; 각각의 상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체; 각각의 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성되고, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 서로 평행하게 배치된 2 이상의 내부전극; 및 상기 내부전극들의 외면을 함께 둘러싸며 나선형으로 권선되어 형성되고, 전극의 단락을 방지하는 분리층 및 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 외부전극이 일체화되도록 압착하여 형성된 시트형의 분리층-외부전극 복합체;를 포함하는 케이블형 이차전지가 제공된다.
본 발명에 따르면, 전극과 분리층이 접합하여 일체화됨으로써, 전극과 밀착된 분리층이 전해액을 흡수하여 외부전극 활물질층에 균일한 전해액의 공급을 유도함으로써 케이블형 이차전지의 안정성 및 성능을 향상시킬 수 있다.
그리고, 저항이 높은 와이어형 집전체를 배제하고, 시트형의 전극을 구비함으로써, 케이블형 이차전지의 저항을 감소시켜 전지의 성능개선에 기여할 수 있다.
그리고, 본 발명의 일 실시예에 따르면, 전해질을 포함하는 리튬이온 공급 코어부는 내부전극 지지체의 내부에 위치하고 있으며, 상기 내부전극 지지체는 열린 구조를 가지므로, 이러한 리튬 이온 공급 코어부의 전해질은 전극 활물질로의 침투가 용이하여, 리튬이온의 공급 및 리튬이온의 교환을 용이하게 할 수 있다. 이로 인해 전지의 용량 특성 및 사이클 특성이 우수하다.
그리고, 본 발명의 일 실시예에 따른 케이블형 이차전지는 열린 구조의 내부전극 지지체를 구비하고 있고, 시트형의 전극-분리층 복합체가 스프링 구조와 같은 나선형으로 권선되어 있어, 선형의 형상을 유지할 수 있으며, 외부 힘에 의한 스트레스를 완화할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 내부전극-분리층-외부전극 복합체를 나타낸 도면이다.
도 3 및 도 4는 본 발명의 일 실시예에 따른 분리층-외부전극 복합체를 나타낸 도면이다.
도 5 및 도 6은 본 발명의 일 실시예에 따른 내부전극-분리층 복합체를 나타낸 도면이다.
도 7은 본 발명의 일 실시예에 따른 내부전극-분리층-외부전극 복합체를 나타낸 도면이다.
도 8은 본 발명의 일 실시에에 따라 내부전극 지지체의 외면에 시트형의 내부전극-분리층-외부전극 복합체가 권선된 모양을 개략적으로 나타낸 도면이다.
도 9는 본 발명의 일 실시예에 따른 내부전극 지지체와 내부전극-분리층-외부전극 복합체를 포함하는 케이블형 이차전지를 나타낸 도면이다.
도 10은 본 발명의 일 실시예에 따른 내부전극 지지체와 분리층-외부전극 복합체를 포함하는 케이블형 이차전지를 나타낸 도면이다.
도 11은 본 발명의 일 실시예에 따른 내부전극 지지체와 내부전극-분리층 복합체를 포함하는 케이블형 이차전지를 나타낸 도면이다.
도 12는 본 발명의 일 실시예에 따른 다수의 내부전극을 가지는 케이블형 이차전지의 단면을 나타낸 도면이다.
도 13은 본 발명의 실시예 및 비교예에 따라 제조된 케이블형 이차전지의 충전시 정규화된 용량에 대한 전압 프로파일을 나타낸 그래프이다.
도 14는 본 발명의 실시예 및 비교예에 따라 제조된 케이블형 이차전지의 방전시 정규화된 용량에 대한 전압 프로파일을 나타낸 그래프이다.
도 15는 본 발명의 실시예 및 비교예에 따라 제조된 케이블형 이차전지의 사이클 수명 특성을 나타낸 그래프이다.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
기존의 케이블형 이차전지는 내부전극과 외부전극 사이에 전해질층을 구비하고 이들 전해질층은 단락을 방지하기 위하여 내부전극과 외부전극을 격리시켜야 하므로 일정한 수준의 기계적 물성을 갖는 겔형 고분자 전해질이나 고체 고분자 전해질을 사용할 필요가 있다. 그러나, 이러한 겔형 고분자 전해질이나 고체 고분자 전해질은 리튬이온 소스로써의 성능이 뛰어나지 않으므로, 전극 활물질층에 리튬이온을 충분히 공급하기 위해서는 전해질층의 두께가 증가될 수 밖에 없으며, 이러한 전해질층의 두께의 증가에 의해서 전극간의 간격이 벌어지게 되어 오히려 저항의 증가로 인한 전지성능의 저하를 가져오게 되는 문제가 있었다.
이러한 문제점을 해결하기 위해 열린 구조의 내부전극 지지체의 내부에 전해질을 포함하는 리튬이온 공급 코어부를 구비하여 리튬이온 공급 코어부의 전해질은 내부전극 지지체를 통과함으로써 내부전극 활물질층 및 외부전극 활물질층에 도달하도록 하였다.
하지만, 상기 내부전극 지지체의 요철부위에 따라 내부전극과 분리층 사이 또는 분리층과 외부전극 사이에 간격이 존재할 수 밖에 없었다. 이 경우, 상기 간격에 의해 전해액의 주입 시, 내부전극 활물질층 및 외부전극 활물질층으로의 전해액 전달에 방해 되었다. 이러한 문제점으로 인해 이차전지의 충방전시 불규칙한 충방전 거동을 나타내며, 결국 원하는 전지의 성능 구현이 어려웠다.
하지만, 본 발명에 따르면, 전극과 분리층을 미리 접합하여 일체화시킨 복합체를 구비함으로써, 전극과 분리층간의 간격을 일정하게 유지시킬 수 있으며, 전극 활물질층에 밀착된 분리층이 내부전극을 통해 전해액을 흡수하여 외부전극 활물질층에 균일한 전해액의 공급을 유도할 수 있다.
한편, 집전체를 와이어형태로 적용하는 경우, 일반적으로 선저항이 면저항보다 높기 때문에, 와이어형태의 집전체에 작용하는 저항이 전지에 영향을 미쳐 전지의 성능을 악화시키는 원인이 되었다. 하지만 본 발명에 따르면, 내부집전체 및 외부집전체로서, 시트형 집전체를 사용하기 때문에, 전지의 저항을 감소시킬 수 있고, 이를 통해 전지의 성능을 개선시킬 수 있다.
즉, 본 발명의 일 실시예에 따른 케이블형 이차전지는, 내부전극 지지체; 및 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극-분리층-외부전극 복합체;를 포함하되, 상기 내부전극-분리층-외부전극 복합체는, 내부전극, 전극의 단락을 방지하는 분리층 및 외부전극이 일체화되도록 압착하여 형성된다.
그리고, 본 발명의 다른 실시예에 따른 케이블형 이차전지는, 내부전극 지지체; 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극; 및 상기 내부전극의 외면에 나선형으로 권선되어 형성된 시트형의 분리층-외부전극 복합체;를 포함하되, 상기 분리층-외부전극 복합체는, 전극의 단락을 방지하는 분리층 및 외부전극이 일체화되도록 압착하여 형성된다.
그리고, 본 발명의 또 다른 실시예에 따른 케이블형 이차전지는, 내부전극 지지체; 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극-분리층 복합체; 및 상기 내부전극-분리층 복합체의 외면에 나선형으로 권선되어 형성된 시트형의 외부전극;을 포함하되, 상기 내부전극-분리층 복합체는, 내부전극 및 전극의 단락을 방지하는 분리층이 일체화되도록 압착하여 형성된다.
여기서, 상기 나선형이란 영문상으로 스파이럴(spiral) 또는 헬릭스(helix)로 표현되며, 일정 범위를 비틀려 돌아간 모양으로, 일반적인 스프링의 형상과 유사한 형상을 통칭한다.
이때, 상기 시트형의 내부전극-분리층-외부전극 복합체, 상기 시트형의 분리층-외부전극 복합체 및 상기 시트형의 내부전극-분리층 복합체는, 일측 방향으로 연장된 스트립(strip, 띠) 구조일 수 있다.
그리고, 상기 시트형의 내부전극-분리층-외부전극 복합체, 상기 시트형의 분리층-외부전극 복합체 및 상기 시트형의 내부전극-분리층 복합체는, 서로 겹치지 않도록 나선형으로 권선되어 형성될 수 있다. 이때, 상기 각각의 시트형의 분리층-전극 복합체는, 전지의 성능이 저하되지 않도록 상기 시트형의 분리층-전극 복합체 폭의 2 배 이내의 간격을 두고 서로 이격되어 겹치지 않도록 나선형으로 권선되어 형성될 수 있다.
또한, 상기 시트형의 내부전극-분리층-외부전극 복합체, 상기 시트형의 분리층-외부전극 복합체 및 상기 시트형의 내부전극-분리층 복합체는, 서로 겹치도록 나선형으로 권선되어 형성될 수 있다. 이때, 상기 각각의 시트형의 분리층-전극 복합체는, 전지의 내부저항의 과도한 상승을 억제하기 위해, 상기 서로 겹치는 부분의 폭이 상기 각각의 시트형의 분리층-전극 복합체 폭의 0.9 배 이내가 되도록 나선형으로 권선되어 형성될 수 있다.
도 1, 도 3 및 도 5를 참조하면, 본 발명에 따른 전극-분리층의 복합체는, 외부전극(5), 분리층(13) 및 내부전극(7)이 일체화되도록 압착하여 형성된 내부전극-분리층-외부전극 복합체(10)일 수 있고, 외부전극(5) 및 분리층(23)이 일체화되도록 압착하여 형성된 분리층-외부전극 복합체(20)일 수 있으며, 분리층(33) 및 내부전극(7)이 일체화되도록 압착하여 형성된 내부전극-분리층 복합체(30)일 수 있다.
더욱 바람직하게는, 도 2, 도 4 및 도 6을 참조하면, 본 발명에 따른 전극-분리층의 복합체는, 외부집전체(11), 외부전극 활물질층(12), 분리층(13), 내부전극 활물질층(14) 및 내부집전체(15)가 일체화되도록 압착하여 형성된 내부전극-분리층-외부전극 복합체(10)일 수 있고, 외부집전체(21), 외부전극 활물질층(22) 및 분리층(23)이 일체화되도록 압착하여 형성된 분리층-외부전극 복합체(20)일 수 있으며, 분리층(33), 내부전극 활물질층(34) 및 내부집전체(35)가 일체화되도록 압착하여 형성된 내부전극-분리층 복합체(30)일 수 있다.
상기 내부전극-분리층-외부전극 복합체(10)는, 내부전극, 분리층 및 외부전극을 길이 방향으로 길게 잘라 순서대로 포갠 후, 롤 프레스 방법을 이용한 라미네이션 공정 등을 거쳐 형성될 수 있다.
이때, 상기 전극 활물질층에 포함된 바인더 또는 분리층으로서 무기물 입자와 바인더로 이루어진 세퍼레이터에서 용출된 바인더가 상기 분리층과 전극의 계면에서 더욱 강한 접착력을 갖도록 한다.
여기서, 상기 내부전극-분리층-외부전극 복합체(10)는, 상기 내부전극(7)과 상기 분리층(13), 또는 상기 분리층(13)과 상기 외부전극(5)이 15 내지 300 N/m의 박리강도(peel strength)를 이루며 일체화되도록 압착하여 형성된 것일 수 있고, 상기 분리층-외부전극 복합체(20)는, 상기 분리층(23)과 상기 외부전극(5)이 15 내지 300 N/m의 박리강도를 이루며 일체화되도록 압착하여 형성된 것일 수 있으며, 상기 내부전극-분리층 복합체(30)는, 상기 내부전극(7)과 상기 분리층(33)이 15 내지 300 N/m의 박리강도를 이루며 일체화되도록 압착하여 형성된 것일 수 있다. 상기와 같은 수치범위의 박리강도를 만족하게 되면, 분리층과 전극이 서로 이격되지 않는 적절한 수준의 접착력이 형성됨으로써 분리층과 전극을 접착하여 일체화할 수 있다.
케이블형 이차전지에 분리층이 적용되는 경우, 내부전극의 외면에 시트형의 분리층이 권선되어 형성되기 때문에, 분리층간에 서로 겹치는 부분과 서로 겹치지 않는 부분이 발생하게 된다.
종래에는 분리층간에 서로 겹치지 않는 부분의 경우, 케이블형 이차전지를 구부리거나 비틀 때, 분리층간의 경계부분이 벌어지게 되며, 이때 내부전극과 외부전극이 서로 접촉하여 내부단락이 발생할 수 있었다. 이러한 현상을 방지하기 위해, 분리층이 서로 겹치도록 권선하게 되면 분리층의 두께가 두꺼워져 전지의 이온전도도가 낮아지게 되는 다른 문제가 발생하게 되었다.
하지만, 본 발명에서와 같이 분리층과 전극이 미리 접합하여 일체화된 분리층-전극 복합체를 적용하게 되면, 케이블형 이차전지를 구부리더라도, 분리층과 전극이 일체적으로 움직이기 때문에, 내부전극과 외부전극의 접촉으로 인한 내부단락의 발생을 방지할 수 있다. 그 결과, 전지의 유연성 향상에 유리하게 작용하고, 분리층이 서로 겹치는 것을 최소화할 수 있기 때문에, 전지의 이온전도도 측면에도 유리하게 작용하여 전지 성능 향상에 기여하게 된다.
나아가, 전극에 극심한 구부림(extreme bending stress)과 같은 스트레스가 가해졌을 때, 전극 활물질층이 전극집전체에서 탈리할 수 있는데, 본 발명에서는 분리층과 전극이 일체화되어 있음으로써, 상기 분리층은 전극 활물질층에 작용하는 외부 스트레스에 대한 완충작용을 하게 된다.
일 예로, 도 7 및 도 8을 참조하면 시트형의 내부전극-분리층-외부전극 복합체(10)는, 내부전극(미도시), 분리층(13) 및 외부전극(11, 12)간의 라미네이션 공정을 통해 일체화되도록 압착함으로써 형성시킬 수 있으며, 이때, 상기 분리층(13)은 상기 내부전극(미도시) 및 외부전극(11, 12)보다 폭과 길이를 더 크게 설계함으로써 내부전극(미도시) 및 외부전극(11, 12)과의 단락이 일어나지 않도록 할 수 있다. 더욱 자세하게는 분리층(13)과 내, 외부전극과의 폭 차이(w1) 및 길이 차이(w2)를 0.1 mm 이상이 되도록 설계할 수 있다.
그 후, 상기 시트형의 내부전극-분리층-외부전극 복합체(10)를 리튬이온 공급 코어부(1)의 외면을 감싸고 있는 내부전극 지지체(2)의 외면에 권선함으로써 케이블형 이차전지를 제조할 수 있다.
한편, 상기 내부전극 지지체는, 열린 구조일 수 있다. 열린 구조라 함은 그 열린 구조를 경계면으로 하고, 이러한 경계면을 통과하여 내부에서 외부로의 물질의 이동이 자유로운 형태의 구조를 말하는 것이다.
본 발명의 열린 구조의 내부전극 지지체는, 중공사, 권선된 와이어형 지지체, 권선된 시트형 지지체 또는 메쉬형 지지체일 수 있고, 전해질이 내부전극 활물질 및 외부전극 활물질로 자유롭게 이동하여 웨팅(wetting)을 원활히 할 수 있는 기공을 표면에 가질 수도 있다.
상기 열린 구조의 내부전극 지지체는, 케이블형 이차전지의 선형의 형상을 유지시키며, 외부의 힘에 의한 전지 구조의 변형을 방지할 수 있으며, 전극 구조의 붕괴 또는 변형을 방지하여 케이블형 이차전지의 가요성을 확보할 수 있다.
여기서, 상기 중공사는, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리이미드, 폴리에틸렌테레프탈레이트, 폴리아미드 이미드, 폴리에스테르 이미드, 폴리에테르 설폰, 및 폴리설폰으로 이루어진 군으로부터 선택된 1종 이상의 고분자를 이용하여, 통상의 중공사 형성 방법에 의해 얻어질 수 있다.
그리고, 상기 권선된 와이어형 지지체는, 고분자 또는 금속으로 구성된 스프링 구조와 같은 형상으로 이루어질 수 있다. 이때 상기 고분자는 전해액과 반응성이 없는 내화학성이 우수한 재료로 이루어질 수 있고, 상기 금속은 후술하는 내부집전체 또는 외부집전체를 구성하는 금속과 동일한 것이 사용될 수 있다.
이때, 상기 내부전극 지지체의 지름은 0.1 내지 10 mm일 수 있고, 표면에는 100 nm 내지 10 ㎛의 직경을 갖는 기공을 가질 수 있다.
한편, 상기 내부전극은, 내부집전체 및 상기 내부집전체의 일면에 형성된 내부전극 활물질층을 포함하고, 상기 외부전극은, 외부집전체 및 상기 외부집전체의 일면에 형성된 외부전극 활물질층을 포함할 수 있다.
이때, 상기 내부집전체의 타면 또는 상기 외부집전체의 타면에 형성된 고분자 필름층을 더 포함할 수 있다.
여기서, 상기 고분자 필름층은, 폴리올레핀, 폴리에스테르, 폴리이미드 및 폴리아미드로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성될 수 있다.
그리고, 상기 내부집전체 또는 상기 외부집전체는, 메쉬형 집전체일 수 있다.
케이블형 이차전지의 전극집전체가 와이어형인 경우, 전극집전체가 권선된 시트형 또는 권선된 메쉬형인 경우보다 작은 표면적에 따른 저항 요소가 크다는 점이 단점으로 작용하여, 고율 충방전시 전지 저항에 따른 전지의 율특성이 떨어질 수 있어 부적합하다.
한편, 케이블형 이차전지에 구부림 또는 비틀림 등의 외력이 작용하게 되면, 전극 활물질층이 전극집전체에서 탈리하는 현상이 발생할 수 있다. 따라서, 전극 유연성을 위해 전극 활물질층에 다량의 바인더 성분이 들어가게 된다. 하지만, 이러한 다량의 바인더는 전해액에 의해 스웰링(swelling) 현상이 발생하여, 전극집전체에서 쉽게 떨어져 나갈 수 있어, 이로 인해 전지 성능 저하가 발생할 수 있다.
따라서, 전극 활물질층과 전극집전체간의 접착력 향상을 위해, 상기 내부집전체 및 상기 외부집전체 중 적어도 어느 하나는, 도전재와 바인더로 구성된 프라이머 코팅층을 더 포함할 수 있다.
이때, 상기 도전재는, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브 및 그래핀으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
그리고, 상기 바인더는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
한편, 상기 내부전극은, 상기 내부전극 활물질층의 표면에 형성된 고분자 지지층을 더 포함할 수 있다.
본 발명의 일 실시예에 따라 상기 내부전극 활물질층의 표면에 상기 고분자 지지층을 더 포함하게 되면, 케이블형 이차전지가 외력 등으로 굽힘이 일어나더라도 내부전극 활물질층의 표면에 크랙이 발생하는 현상이 탁월하게 방지된다. 이로써 내부전극 활물질층의 탈리 현상이 더욱 방지되어, 전지의 성능이 더 개선될 수 있다. 나아가, 상기 고분자 지지층은 다공성의 구조를 가질 수 있고, 이때, 내부전극 활물질층으로의 전해액 유입을 원활하도록 하여, 전극 저항의 증가를 방지할 수 있다.
여기서, 상기 고분자 지지층은, 극성 선형 고분자, 옥사이드계 선형 고분자 또는 이들의 혼합물을 포함할 수 있다.
이때, 상기 극성 선형 고분자는, 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐 클로라이드 (polyvinyl chloride), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌이민 (polyethylene imine), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리아릴레이트 (polyarylate) 및 폴리p-페닐렌 테레프탈아미드 (Poly-p-phenylene terephthalamide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 옥사이드계 선형 고분자는, 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌 옥사이드 (polypropylene oxide), 폴리옥시메틸렌 (polyoxymethylene) 및 폴리디메틸실록산 (polydimethylsiloxane)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 고분자 지지층은, 0.01 ㎛ 내지 10 ㎛의 기공 크기 및 5 내지 95 %의 기공도를 갖는 다공성 고분자층일 수 있다.
그리고, 상기 다공성 고분자층의 다공성 구조는, 그 제조과정에서 비용매(non-solvent)에 의한 상분리 또는 상전환을 통해 형성될 수 있다.
일 예로, 고분자인 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌을, 용매로서 작용하는 아세톤에 첨가하여, 10 중량%의 고형분 함량이 되는 용액을 준비한다. 그 후, 비용매로서 물 또는 에탄올을 상기 준비된 용액에 2 내지 10 중량%만큼 첨가하여 고분자 용액을 제조할 수 있다.
이러한 고분자 용액이 코팅된 후 증발되는 과정에서, 상전환이 되면서 비용매와 고분자의 상분리된 부분 중, 비용매가 차지하는 영역이 기공이 된다. 따라서, 비용매와 고분자의 용해도 정도와 비용매의 함량에 따라 기공의 크기를 조절할 수 있다.
또한, 상기 내부집전체 및 상기 외부집전체의 표면적을 증가시키기 위해, 적어도 일면에, 복수의 함입부가 형성될 수 있다. 이때, 상기 복수의 함입부는, 연속적인 패턴을 갖거나, 또는 단속적인 패턴을 가질 수 있다. 즉, 서로 이격되어 길이방향으로 형성된 연속적인 패턴의 함입부를 가지거나, 또는 복수개의 구멍들이 형성된 단속적인 패턴을 가질 수 있다. 상기 복수개의 구멍들은 원형일 수도 있고, 다각형일 수도 있다.
한편, 상기 내부집전체로는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 또는 스테인리스스틸의 표면에 카본, 니켈, 티탄 또는 은으로 표면처리된 것; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자를 사용하여 제조된 것이 바람직하다.
집전체는 활물질의 전기화학 반응에 의해 생성된 전자를 모으거나 전기화학반응에 필요한 전자를 공급하는 역할을 하는 것으로, 일반적으로 구리나 알루미늄 등의 금속을 사용한다. 특히, 도전재로 표면처리된 비전도성 고분자 또는 전도성 고분자로 이루어진 고분자 전도체를 사용하는 경우에는 구리나 알루미늄과 같은 금속을 사용한 경우보다 상대적으로 가요성이 우수하다. 또한, 금속 집전체를 대체하여 고분자 집전체를 사용하여 전지의 경량성을 달성할 수 있다.
이러한 도전재로는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리설퍼니트리드, ITO(Indum Tin Oxide), 은, 팔라듐 및 니켈 등이 가능하며, 전도성 고분자는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드 등이 사용가능하다. 다만, 집전체에 사용되는 비전도성 고분자는 특별히 종류를 한정하지는 않는다.
본 발명의 외부집전체로는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Al, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트;로 제조된 것을 사용할 수 있다. 이때, 상기 도전재 및 전도성 고분자는 전술한 내부집전체에서 사용되는 것과 동일한 것이 사용될 수 있다.
한편, 상기 내부전극 지지체는, 내부에 공간이 형성되어 있는 중공형 구조일 수 있다.
이때, 상기 내부전극 지지체는, 나선형으로 권선된 하나 이상의 와이어형의 내부전극 지지체, 또는 나선형으로 권선된 하나 이상의 시트형의 내부전극 지지체를 포함할 수 있다.
그리고, 상기 내부전극 지지체는, 서로 교차하도록 나선형으로 권선된 2개 이상의 와이어형의 내부전극 지지체를 포함할 수 있다.
그리고, 상기 내부전극 지지체의 내부에 형성되어 있는 공간에, 내부전극 집전체 코어부가 형성될 수 있다.
이때, 상기 내부전극 집전체 코어부는, 카본나노튜브, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 제조될 수 있다.
그리고, 상기 내부전극 지지체의 내부에 형성되어 있는 공간에, 전해질을 포함하는 리튬이온 공급 코어부가 형성될 수 있다.
이때, 상기 리튬이온 공급 코어부는, 겔형 폴리머 전해질 및 지지체를 포함할 수 있다.
그리고, 상기 리튬이온 공급 코어부는, 액체 전해질 및 다공성 담체를 포함할 수 있다.
또한, 상기 내부전극 지지체의 내부에 형성되어 있는 공간에, 충진 코어부가 형성될 수 있다.
상기 충진 코어부는, 전술한 내부전극 집전체 코어부 및 리튬이온 공급 코어부를 형성하는 재료 이외에, 케이블형 이차전지에 있어 다양한 성능을 개선시키기 위한 재료들, 예를 들어, 고분자 수지, 고무, 무기물 등이, 와이어형, 섬유상, 분말상, 메쉬, 발포체 등의 다양한 형상으로 형성될 수 있다.
이하, 도 9 내지 도 11을 참조하면, 본 발명의 일 측면에 따른 케이블형 이차전지(100)는, 전해질을 포함하는 리튬이온 공급 코어부(110); 상기 리튬이온 공급 코어부(110)의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체(120); 및 상기 내부전극 지지체(120)의 외면을 둘러싸며 나선형으로 권선되어 형성된 시트형의 내부전극-분리층-외부전극 복합체(130);를 포함하되, 상기 내부전극-분리층-외부전극 복합체(130)는, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 내부전극, 전극의 단락을 방지하는 분리층 및 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 외부전극이 일체화되도록 압착하여 형성된다.
그리고, 본 발명의 다른 측면에 따른 케이블형 이차전지(200)는, 전해질을 포함하는 리튬이온 공급 코어부(210); 상기 리튬이온 공급 코어부(210)의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체(220); 상기 내부전극 지지체(220)의 외면에 나선형으로 권선되어 형성되며, 내부집전체(231)와 상기 내부집전체(231)의 표면에 형성된 내부전극 활물질층(232)을 구비하는 시트형의 내부전극; 및 상기 내부전극의 외면에 나선형으로 권선되어 형성된 시트형의 분리층-외부전극 복합체(230);를 포함하되, 상기 분리층-외부전극 복합체(230)는, 전극의 단락을 방지하는 분리층 및 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 외부전극이 일체화되도록 압착하여 형성된다.
그리고, 본 발명의 또 다른 측면에 따른 케이블형 이차전지(300)는, 전해질을 포함하는 리튬이온 공급 코어부(310); 상기 리튬이온 공급 코어부(310)의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체(320); 상기 내부전극 지지체(320)의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극-분리층 복합체(330); 및 상기 내부전극-분리층 복합체(330)의 외면에 나선형으로 권선되어 형성되며, 외부집전체(332)와 상기 외부집전체(332)의 표면에 형성된 외부전극 활물질층(331)을 구비하는 시트형의 외부전극;을 포함하되, 상기 내부전극-분리층 복합체(330)는, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 내부전극 및 전극의 단락을 방지하는 분리층이 일체화되도록 압착하여 형성된다.
본 발명의 일 실시예에 따른 케이블형 이차전지는 소정 형상의 수평 단면을 가지며, 수평 단면에 대한 길이방향으로 길게 늘어진 선형구조를 가질 수 있다. 본 발명의 일 실시예에 따른 케이블형 이차전지는, 가요성을 가질 수 있어, 변형이 자유로울 수 있다. 여기서, 소정의 형상이라 함은 특별히 형상을 제한하지 않는다는 것으로, 본 발명의 본질을 훼손하지 않는 어떠한 형상도 가능하다는 의미이다.
한편, 상기 리튬이온 공급 코어부(110, 210, 310)는, 전해질을 포함하는데, 이러한 전해질로는 그 종류를 특별히 한정하는 것은 아니지만 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC), 비닐렌카보네이트(VC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 메틸포르메이트(MF), 감마-부티로락톤(γ-BL;butyrolactone), 설포레인(sulfolane), 메틸아세테이트(MA; methylacetate), 또는 메틸프로피오네이트(MP; methylpropionate)를 사용한 비수전해액; PEO, PVdF, PVdF-HFP, PMMA, PAN 또는 PVAc를 사용한 겔형 고분자 전해질; 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 등을 사용할 수 있다. 그리고, 이러한 전해질은, 리튬염을 더 포함할 수 있는데, 이러한 리튬염으로는 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬 등을 사용하는 것이 바람직하다. 그리고, 이러한 리튬 이온 공급 코어부(110, 210, 310)는 전해질로만 구성될 수 있으며, 액상의 전해액의 경우에는 다공질의 담체를 사용하여 구성될 수도 있다.
상기 내부전극은, 음극 또는 양극일 수 있으며, 상기 외부전극은, 상기 내부전극과 상응하는 양극 또는 음극일 수 있다.
본 발명의 전극 활물질층은 집전체를 통해서 이온을 이동시키는 작용을 하고, 이들 이온의 이동은 전해질층으로부터의 이온의 흡장 및 전해질층으로의 이온의 방출을 통한 상호작용에 의한다.
이러한 전극 활물질층은 음극 활물질층과 양극 활물질층으로 구분할 수 있다.
구체적으로, 상기 내부전극이 음극이고, 상기 외부전극이 양극인 경우, 상기 내부전극 활물질층은 음극 활물질로서, 천연흑연, 인조흑연 또는 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함할 수 있고, 상기 외부전극 활물질층은 양극 활물질로서, LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi 1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z ≤ 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
또한, 상기 내부전극이 양극이고, 상기 외부전극이 음극인 경우에는 내부전극 활물질층은 양극 활물질층이 되고, 외부전극 활물질층은 음극 활물질층이 될 수 있다.
전극 활물질층은 전극 활물질, 바인더 및 도전재를 포함하며 집전체와 결합하여 전극을 구성한다. 전극이 외부의 힘에 의해서 접히거나 심하게 구부러지는 등의 변형이 일어나는 경우에는, 전극 활물질의 탈리가 발생하게 된다. 이러한 전극 활물질의 탈리로 인하여 전지의 성능 및 전지 용량의 저하가 발생하게 된다. 하지만, 집전체가 탄성을 가지므로 외부의 힘에 따른 변형시에 힘을 분산하는 역할을 하므로 전극 활물질층에 대한 변형이 적게 일어나고 따라서 활물질의 탈리를 예방할 수 있다.
본 발명의 분리층은 전해질층 또는 세퍼레이터를 사용할 수 있다.
이러한 이온의 통로가 되는 전해질층으로는 PEO, PVdF, PVdF-HFP, PMMA, PAN 또는 PVAc를 사용한 겔형 고분자 전해질; 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 등을 사용한다. 고체 전해질의 매트릭스(matrix)는 고분자 또는 세라믹 글라스를 기본골격으로 하는 것이 바람직하다. 일반적인 고분자 전해질의 경우에는 이온전도도가 충족되더라도 반응속도적 측면에서 이온이 매우 느리게 이동할 수 있으므로, 고체인 경우보다 이온의 이동이 용이한 겔형 고분자의 전해질을 사용하는 것이 바람직하다. 겔형 고분자 전해질은 기계적 특성이 우수하지 않으므로 이를 보완하기 위해서 지지체를 포함할 수 있고, 이러한 지지체로는 기공구조 지지체 또는 가교 고분자가 사용될 수 있다. 본 발명의 전해질층은 분리막의 역할이 가능하므로 별도의 분리막을 사용하지 않을 수 있다.
본 발명의 전해질층은, 리튬염을 더 포함할 수 있다. 리튬염은 이온 전도도 및 반응속도를 향상시킬 수 있는데, 이들의 비제한적인 예로는, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬 등을 사용할 수 있다.
상기 세퍼레이터로는 그 종류를 한정하는 것은 아니지만 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 고분자 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈레이트로 이루어진 군에서 선택된 고분자로 제조한 다공성 고분자 기재; 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재; 또는 상기 다공성 고분자 기재의 적어도 일면상에 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 구비한 세퍼레이터 등을 사용할 수 있다.
이때, 무기물 입자 및 바인더 고분자의 혼합물로 형성된 상기 다공성 코팅층에서는, 바인더 고분자가 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착(즉, 바인더 고분자가 무기물 입자 사이를 연결 및 고정)시키고 있으며, 또한 상기 다공성 코팅층은 고분자 바인더에 의해 상기 다공성 고분자 기재와 결착된 상태를 유지한다. 이러한 다공성 코팅층의 무기물 입자들은 실질적으로 서로 접촉한 상태로 최밀 충전된 구조로 존재하며, 무기물 입자들이 접촉된 상태에서 생기는 틈새 공간(interstitial volume)이 상기 다공성 코팅층의 기공이 된다.
특히, 리튬이온 공급 코어부의 리튬이온이 외부전극에도 쉽게 전달되기 위해서는 상기 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈레이트로 이루어진 군에서 선택된 고분자로 제조한 다공성 고분자 기재에 해당하는 부직포 재질의 세퍼레이터를 사용하는 것이 바람직하다.
본 발명은 보호피복을 구비하는데, 보호피복은 절연체로서 공기 중의 수분 및 외부충격에 대하여 전극을 보호하기 위해 외부집전체의 외면에 형성한다. 상기 보호피복(140, 240, 340)으로는 수분 차단층을 포함하는 통상의 고분자 수지를 사용할 수 있다. 이때, 상기 수분 차단층으로 수분 차단 성능이 우수한 알루미늄이나 액정고분자 등이 사용될 수 있고, 상기 고분자 수지로는 PET, PVC, HDPE 또는 에폭시 수지 등이 사용될 수 있다.
이하에서는 일 실시예에 따른 케이블형 이차전지 및 그 제조방법을 도 9를 참조하여 간략하게 살펴본다.
일 실시예에 따른 본 발명의 케이블형 이차전지(100)는, 전해질을 포함하는 리튬이온 공급 코어부(110); 상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체(120); 및 상기 내부전극 지지체(120)의 외면을 둘러싸며 나선형으로 권선되어 형성된 시트형의 내부전극-분리층-외부전극 복합체(130);를 포함하되, 상기 내부전극-분리층-외부전극 복합체(130)는, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 내부전극, 전극의 단락을 방지하는 분리층 및 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 외부전극이 일체화되도록 압착하여 형성된다.
먼저, 고분자 전해질을 압출기 등을 사용하여 와이어 형태로 형성하여 리튬이온 공급 코어부(110)를 준비한다. 또는, 중심부가 빈 내부전극 지지체를 준비한 후에, 내부전극 지지체의 중심부에 비수전해액을 주입하여 리튬이온 공급 코어부(110)를 형성할 수도 있으며, 보호코팅까지 적용된 전지 조립체를 준비한 이후에 전지의 내부전극 지지체 중심부에 비수전해액을 주입하여 형성할 수도 있다. 또 다른 방법으로는 스폰지 재질의 와이어 형태의 담체를 준비한 후에 이에 비수전해액을 주입하여 리튬이온 공급 코어부(110)를 준비할 수도 있다.
그 후, 와이어형의 내부전극 지지체(120)를 준비하고 상기 리튬이온 공급 코어부(110)에 권선한다.
이어서, 시트형의 내부집전체와 시트형의 외부집전체 각각에 내부전극 활물질층과 외부전극 활물질층을 코팅하여 시트형의 내부전극과 시트형의 외부전극을 각각 제조한다. 이러한 코팅방법으로는 일반적인 코팅방법이 적용될 수 있으며, 구체적으로는 전기도금(electroplating) 또는 양극산화처리(anodic oxidation process) 방법이 사용 가능하지만, 활물질을 포함하는 전극슬러리를 콤마코터기(comma coater) 또는 슬롯다이코터기(slot die coater)를 이용하여 코팅하는 방법을 사용하여 제조하는 것이 바람직하다. 또한, 활물질을 포함하는 전극슬러리인 경우에는 딥코팅(dip coating) 또는 압출기를 사용하여 압출코팅하는 방법을 사용하여 제조하는 것도 가능하다.
그 후, 상기 시트형의 내부전극과 시트형의 외부전극의 사이에 고분자 전해질층으로 이루어진 분리층을 형성한 후, 라미네이팅 처리를 통해 내부전극-분리층-외부전극 복합체(130)를 제조한다. 이때 상기 내부집전체와 외부집전체는 메쉬형 집전체일 수도 있다.
이어서, 상기 제조된 내부전극-분리층-외부전극 복합체(130)를 상기 내부전극 지지체(120)의 외면에 권선하여 전극조립체를 제조한 후, 상기 전극조립체의 외면을 감싸도록 보호피복(140)을 형성한다.
상기 보호피복(140)은 절연체로서 공기 중의 수분 및 외부충격에 대하여 전극을 보호하기 위해 최외면에 형성한다. 상기 보호피복(140)으로는 전술한 바와 같이 수분 차단층을 포함하는 통상의 고분자 수지를 사용할 수 있다.
이하에서는, 또 다른 가능한 실시예를 설명한다.
본 발명의 일 실시예에 따른 케이블형 이차전지는, 서로 평행하게 배치된 2 이상의 내부전극 지지체; 각각의 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 2 이상의 시트형의 내부전극; 및 상기 내부전극들의 외면을 함께 둘러싸며 나선형으로 권선되어 형성되되, 전극의 단락을 방지하는 분리층, 및 외부전극이 일체화되도록 합착하여 형성된 시트형의 분리층-외부전극 복합체;를 포함한다.
나아가, 도 12를 참조하면, 본 발명의 또 다른 실시예에 따른 본 발명의 케이블형 이차전지(400)는, 전해질을 포함하는 2 이상의 리튬이온 공급 코어부(410); 각각의 상기 리튬이온 공급 코어부(410)의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체(420); 각각의 상기 내부전극 지지체(420)의 외면에 나선형으로 권선되어 형성되고, 내부집전체(431)와 상기 내부집전체(431)의 표면에 형성된 내부전극 활물질층(432)을 구비하는 서로 평행하게 배치된 2 이상의 내부전극; 및 상기 내부전극들의 외면을 함께 둘러싸며 나선형으로 권선되어 형성되고, 전극의 단락을 방지하는 분리층 및 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 외부전극이 일체화되도록 압착하여 형성된 시트형의 분리층-외부전극 복합체(430);를 포함한다.
이러한 케이블형 이차전지(400)는 복수의 전극으로 이루어진 내부전극을 구비하므로, 음극과 양극의 밸런스 조정이 용이하고 다수의 전극을 구비하므로 단선의 가능성을 방지할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 아니 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
지름이 250 ㎛인 구리의 와이어 4개를 교차하도록 권선함으로써, 중심부가 비어있는 스프링 형태의 리튬이온 공급 코어부의 존재가 가능한 열린 구조의 내부전극 지지체를 준비하였다.
이어서, 음극 활물질로서 흑연, 도전재로서 덴카블랙 및 바인더로서 PVdF가 각각 70 중량%, 5 중량% 및 25 중량%로 이루어진 음극 활물질 슬러리를 제조한 후, 상기 음극 활물질 슬러리를 구리 호일 위에 도포한 후, 폭 2 mm로 슬릿팅(slitting)하여, 시트형의 내부전극(음극)을 제조하였다.
그리고, 양극 활물질로서 LiCoO2, 도전재로서 덴카블랙 및 바인더로서 PVdF가 각각 80 중량%, 5 중량% 및 15 중량%로 이루어진 양극 활물질 슬러리를 제조한 후, 상기 양극 활물질 슬러리를 알루미늄 호일 위에 도포한 후, 폭 2 mm로 슬릿팅하여, 시트형 외부전극(양극)을 제조하였다.
그 후, 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재로 이루어진 시트형 세퍼레이터와, 상기 시트형 내부전극을 서로 부착시킨 후, 롤 프레스를 이용한 라미네이션 공정을 거쳐 상기 내부전극과 상기 세퍼레이터가 접합하여 일체화된 시트형의 내부전극-분리층 복합체를 제조하였다.
이와 같이 제조된 내부전극-분리층 복합체를 전술한 열린 구조의 내부전극 지지체의 외면에 권선하였다.
이어서, 상기 시트형 외부전극을 상기 권선된 내부전극-분리층 복합체의 외면에 권선하였다. 그 후, 상기 권선된 외부전극의 외면에, 수분 차단층이 형성된 열수축 튜브를 형성시킨 후, 열을 가하여 수축시킴으로써 보호피복층을 형성하였다.
그 후, 비수전해액(1M LiPF6, EC:PC=1:1(부피비))을, 주사기를 이용하여 내부전극의 중심부에 주입함으로써 리튬이온 공급 코어부를 형성하였으며, 이후 완전히 밀봉함으로써 케이블형 이차전지를 제조하였다.
비교예
내부전극-분리층 복합체를 열린 구조의 내부전극 지지체의 외면에 권선하는 방법 대신, 내부전극 지지체의 외면에 시트형 내부전극을 권선하여 형성시키고, 권선된 시트형 내부전극의 외면에 세퍼레이터를 권선하여 형성하는 방법을 사용하는 것을 제외하고는 실시예와 동일한 방법으로 케이블형 이차전지를 제조하였다.
전지 성능 평가
전술한 실시예 및 비교예에 따라 제조된 케이블형 이차전지에 대하여, 각각 0.3 C의 전류밀도로 4.2 ~ 3.0 V의 전압조건에서 100회 충방전 실험을 진행하여 전지의 수명 특성을 확인하였고, 정규화된 용량에 대한 전압 프로파일을 확인하였다.
도 13 및 도 14는 각각 본 발명의 실시예 및 비교예에 따라 제조된 케이블형 이차전지의 충전시 및 방전시 정규화된 용량에 대한 전압 프로파일을 나타낸 그래프이다. 실시예에 따라 제조된 케이블형 이차전지가 비교예의 경우보다, 저항이 다소 감소되었음을 확인할 수 있다.
그리고, 도 15는 본 발명의 실시예 및 비교예에 따라 제조된 케이블형 이차전지의 사이클 수명 특성을 나타낸 그래프이다. 도 15에 따르면, 실시예의 용량 유지율이 비교예의 경우보다 크게 향상되었음을 알 수 있고, 이로써 실시예의 사이클 수명 특성이 더욱 우수하다는 것을 알 수 있다.
상기 결과를 보면, 분리층-전극 복합체가 적용됨으로써 전극과 분리층간의 간격을 최소화시키고, 전극을 일체형으로 만들어줌으로써, 전극과 밀착된 분리층의 미세기공에 의해 전해액 함침성이 향상되었다고 판단되며, 이로 인해, 케이블형 이차전지의 저항이 감소되었고, 수명 특성이 향상되었다고 판단된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
<부호의 설명>
1, 110, 210, 310, 410: 리튬이온 공급 코어부
2, 120, 220, 320, 420: 내부전극 지지체
5: 외부전극
7: 내부전극
10, 130: 내부전극-분리층-외부전극 복합체
11, 21, 332: 외부집전체
12, 22, 331: 외부전극 활물질층
13, 23, 33: 분리층
14, 34, 232, 432: 내부전극 활물질층
15, 35, 231, 431: 내부집전체
20, 230, 430: 분리층-외부전극 복합체
30, 330: 내부전극-분리층 복합체
100, 200, 300, 400: 케이블형 이차전지
140, 240, 340, 440: 보호피복

Claims (78)

  1. 내부전극 지지체; 및
    상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극-분리층-외부전극 복합체;를 포함하되,
    상기 내부전극-분리층-외부전극 복합체는, 내부전극, 전극의 단락을 방지하는 분리층 및 외부전극이 일체화되도록 압착하여 형성된 케이블형 이차전지.
  2. 제1항에 있어서,
    상기 시트형의 내부전극-분리층-외부전극 복합체는, 일측 방향으로 연장된 스트립 구조인 것을 특징으로 하는 케이블형 이차전지.
  3. 제1항에 있어서,
    상기 시트형의 내부전극-분리층-외부전극 복합체는, 서로 겹치지 않도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  4. 제3항에 있어서,
    상기 시트형의 내부전극-분리층-외부전극 복합체는, 상기 시트형의 내부전극-분리층-외부전극 복합체 폭의 2 배 이내의 간격을 두고 서로 이격되어 겹치지 않도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  5. 제1항에 있어서,
    상기 시트형의 내부전극-분리층-외부전극 복합체는, 서로 겹치도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  6. 제5항에 있어서,
    상기 시트형의 내부전극-분리층-외부전극 복합체는, 상기 서로 겹치는 부분의 폭이 상기 시트형의 내부전극-분리층-외부전극 복합체 폭의 0.9 배 이내가 되도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  7. 제1항에 있어서,
    상기 내부전극-분리층-외부전극 복합체는, 상기 내부전극과 상기 분리층, 또는 상기 분리층과 상기 외부전극이 15 내지 300 N/m의 박리강도(peel strength)를 이루며 일체화되도록 압착하여 형성된 것을 특징으로 하는 케이블형 이차전지.
  8. 내부전극 지지체;
    상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극; 및
    상기 내부전극의 외면에 나선형으로 권선되어 형성된 시트형의 분리층-외부전극 복합체;를 포함하되,
    상기 분리층-외부전극 복합체는, 전극의 단락을 방지하는 분리층 및 외부전극이 일체화되도록 압착하여 형성된 케이블형 이차전지.
  9. 제8항에 있어서,
    상기 시트형의 분리층-외부전극 복합체는, 일측 방향으로 연장된 스트립 구조인 것을 특징으로 하는 케이블형 이차전지.
  10. 제8항에 있어서,
    상기 시트형의 분리층-외부전극 복합체는, 서로 겹치지 않도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  11. 제10항에 있어서,
    상기 시트형의 분리층-외부전극 복합체는, 상기 시트형의 분리층-외부전극 복합체 폭의 2 배 이내의 간격을 두고 서로 이격되어 겹치지 않도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  12. 제8항에 있어서,
    상기 시트형의 분리층-외부전극 복합체는, 서로 겹치도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  13. 제12항에 있어서,
    상기 시트형의 분리층-외부전극 복합체는, 상기 서로 겹치는 부분의 폭이 상기 시트형의 분리층-외부전극 복합체 폭의 0.9 배 이내가 되도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  14. 제8항에 있어서,
    상기 분리층-외부전극 복합체는, 상기 분리층과 상기 외부전극이 15 내지 300 N/m의 박리강도를 이루며 일체화되도록 압착하여 형성된 것을 특징으로 하는 케이블형 이차전지.
  15. 내부전극 지지체;
    상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극-분리층 복합체; 및
    상기 내부전극-분리층 복합체의 외면에 나선형으로 권선되어 형성된 시트형의 외부전극;을 포함하되,
    상기 내부전극-분리층 복합체는, 내부전극 및 전극의 단락을 방지하는 분리층이 일체화되도록 압착하여 형성된 케이블형 이차전지.
  16. 제15항에 있어서,
    상기 시트형의 내부전극-분리층 복합체는, 일측 방향으로 연장된 스트립 구조인 것을 특징으로 하는 케이블형 이차전지.
  17. 제15항에 있어서,
    상기 시트형의 내부전극-분리층 복합체는, 서로 겹치지 않도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  18. 제17항에 있어서,
    상기 시트형의 내부전극-분리층 복합체는, 상기 시트형의 내부전극-분리층 복합체 폭의 2 배 이내의 간격을 두고 서로 이격되어 겹치지 않도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  19. 제15항에 있어서,
    상기 시트형의 내부전극-분리층 복합체는, 서로 겹치도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  20. 제19항에 있어서,
    상기 시트형의 내부전극-분리층 복합체는, 상기 서로 겹치는 부분의 폭이 상기 시트형의 내부전극-분리층 복합체 폭의 0.9 배 이내가 되도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
  21. 제15항에 있어서,
    상기 내부전극-분리층 복합체는, 상기 내부전극과 상기 분리층이 15 내지 300 N/m의 박리강도를 이루며 일체화되도록 압착하여 형성된 것을 특징으로 하는 케이블형 이차전지.
  22. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 내부전극 지지체는, 열린 구조인 것을 특징으로 하는 케이블형 이차전지.
  23. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 내부전극 지지체는, 중공사, 권선된 와이어형 지지체, 권선된 시트형 지지체 또는 메쉬형 지지체인 것을 특징으로 하는 케이블형 이차전지.
  24. 제23항에 있어서,
    상기 중공사는, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리이미드, 폴리에틸렌테레프탈레이트, 폴리아미드 이미드, 폴리에스테르 이미드, 폴리에테르 설폰, 및 폴리설폰으로 이루어진 군으로부터 선택된 1종 이상으로 형성되는 것을 특징으로 하는 케이블형 이차전지.
  25. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 내부전극은, 내부집전체 및 상기 내부집전체의 일면에 형성된 내부전극 활물질층을 포함하고,
    상기 외부전극은, 외부집전체 및 상기 외부집전체의 일면에 형성된 외부전극 활물질층을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  26. 제25항에 있어서,
    상기 내부집전체의 타면 또는 상기 외부집전체의 타면에 형성된 고분자 필름층을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
  27. 제26항에 있어서,
    상기 고분자 필름층은, 폴리올레핀, 폴리에스테르, 폴리이미드 및 폴리아미드로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성되는 것을 특징으로 하는 케이블형 이차전지.
  28. 제25항에 있어서,
    상기 내부집전체 또는 상기 외부집전체는, 메쉬형 집전체인 것을 특징으로 하는 케이블형 이차전지.
  29. 제25항에 있어서,
    상기 내부전극은, 상기 내부전극 활물질층의 표면에 형성된 고분자 지지층을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
  30. 제29항에 있어서,
    상기 고분자 지지층은, 0.01 ㎛ 내지 10 ㎛의 기공 크기 및 5 내지 95 %의 기공도를 갖는 다공성 고분자층인 것을 특징으로 하는 케이블형 이차전지.
  31. 제29항에 있어서,
    상기 고분자 지지층은, 극성 선형 고분자, 옥사이드계 선형 고분자 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  32. 제31항에 있어서,
    상기 극성 선형 고분자는, 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐 클로라이드 (polyvinyl chloride), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌이민 (polyethylene imine), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리아릴레이트 (polyarylate) 및 폴리p-페닐렌 테레프탈아미드 (Poly-p-phenylene terephthalamide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
  33. 제31항에 있어서,
    상기 옥사이드계 선형 고분자는, 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌 옥사이드 (polypropylene oxide), 폴리옥시메틸렌 (polyoxymethylene) 및 폴리디메틸실록산 (polydimethylsiloxane)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
  34. 제25항에 있어서,
    상기 분리층의 폭과 길이는 상기 내부집전체 및 상기 외부집전체의 폭과 길이보다 더 큰 것을 특징으로 하는 케이블형 이차전지.
  35. 제25항에 있어서,
    상기 내부집전체 및 상기 외부집전체 중 적어도 어느 하나는, 도전재와 바인더로 구성된 프라이머 코팅층을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
  36. 제35항에 있어서,
    상기 도전재는, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브 및 그래핀으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  37. 제35항에 있어서,
    상기 바인더는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
  38. 제25항에 있어서,
    상기 내부집전체 또는 상기 외부집전체의 적어도 일면에, 복수의 함입부가 형성된 것을 특징으로 하는 케이블형 이차전지.
  39. 제38항에 있어서,
    상기 복수의 함입부는, 연속적인 패턴을 갖거나, 또는 단속적인 패턴을 갖는 것을 특징으로 하는 케이블형 이차전지.
  40. 제39항에 있어서,
    상기 연속적인 패턴은, 서로 이격되어 길이방향으로 형성된 것을 특징으로 하는 케이블형 이차전지.
  41. 제39항에 있어서,
    상기 단속적인 패턴은, 복수개의 구멍들이 형성된 것을 특징으로 하는 케이블형 이차전지.
  42. 제41항에 있어서,
    상기 복수개의 구멍들은, 각각 원형 또는 다각형인 것을 특징으로 하는 케이블형 이차전지.
  43. 제25항에 있어서,
    상기 내부집전체는, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 제조된 것을 특징으로 하는 케이블형 이차전지.
  44. 제43항에 있어서,
    상기 도전재는, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리설퍼니트리드, ITO(Indum Tin Oxide), 은, 팔라듐 및 니켈로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
  45. 제43항에 있어서,
    상기 전도성 고분자는, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
  46. 제25항에 있어서,
    상기 외부집전체는, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트;로 제조된 것을 특징으로 하는 케이블형 이차전지.
  47. 제46항에 있어서,
    상기 도전재는, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리설퍼니트리드, ITO(Indum Tin Oxide), 은, 팔라듐 및 니켈로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
  48. 제46항에 있어서,
    상기 전도성 고분자는, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
  49. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 내부전극 지지체는, 내부에 공간이 형성되어 있는 중공형 구조인 것을 특징으로 하는 케이블형 이차전지.
  50. 제49항에 있어서,
    상기 내부전극 지지체는, 나선형으로 권선된 하나 이상의 와이어형의 내부전극 지지체, 또는 나선형으로 권선된 하나 이상의 시트형의 내부전극 지지체를 포함하는 것을 특징으로 하는 케이블형 이차전지.
  51. 제49항에 있어서,
    상기 내부전극 지지체는, 서로 교차하도록 나선형으로 권선된 2개 이상의 와이어형의 내부전극 지지체를 포함하는 것을 특징으로 하는 케이블형 이차전지.
  52. 제49항에 있어서,
    상기 내부전극 지지체의 내부에 형성되어 있는 공간에, 내부전극 집전체 코어부, 전해질을 포함하는 리튬이온 공급 코어부, 또는 충진 코어부가 형성된 것을 특징으로 하는 케이블형 이차전지.
  53. 제52항에 있어서,
    상기 내부전극 집전체 코어부는, 카본나노튜브, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 제조된 것을 특징으로 하는 케이블형 이차전지.
  54. 제52항에 있어서,
    상기 리튬이온 공급 코어부는, 겔형 폴리머 전해질 및 지지체를 포함하는 것을 특징으로 하는 케이블형 이차전지.
  55. 제52항에 있어서,
    상기 리튬이온 공급 코어부는, 액체 전해질 및 다공성 담체를 포함하는 것을 특징으로 하는 케이블형 이차전지.
  56. 제52항에 있어서,
    상기 전해질은, 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC), 비닐렌카보네이트(VC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 메틸포르메이트(MF), 감마-부티로락톤(γ-BL;butyrolactone), 설포레인(sulfolane), 메틸아세테이트(MA; methylacetate), 또는 메틸프로피오네이트(MP; methylpropionate)를 사용한 비수전해액;
    PEO, PVdF, PVdF-HFP, PMMA, PAN 또는 PVAc를 사용한 겔형 고분자 전해질; 또는
    PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 중에서 선택된 전해질을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  57. 제52항에 있어서,
    상기 전해질은, 리튬염을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
  58. 제57항에 있어서,
    상기 리튬염은, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
  59. 제52항에 있어서,
    상기 충진 코어부는 와이어, 섬유상, 분말상, 메쉬, 또는 발포체 형상을 갖는 고분자 수지, 고무, 또는 무기물을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  60. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 내부전극은, 음극 또는 양극이고, 상기 외부전극은, 상기 내부전극에 상응하는 양극 또는 음극인 것을 특징으로 하는 케이블형 이차전지.
  61. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 내부전극이 음극이고, 상기 외부전극이 양극인 경우, 내부전극 활물질은, 천연흑연, 인조흑연 또는 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함하고,
    외부전극 활물질은, LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi 1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z ≤ 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  62. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 내부전극이 양극이고, 상기 외부전극이 음극인 경우, 내부전극 활물질은, LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi 1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 = x < 0.5, 0 = y < 0.5, 0 = z < 0.5, x+y+z = 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함하고,
    외부전극 활물질은, 천연흑연, 인조흑연 또는 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  63. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 분리층은, 전해질층 또는 세퍼레이터인 것을 특징으로 하는 케이블형 이차전지.
  64. 제63항에 있어서,
    상기 전해질층은, PEO, PVdF, PVdF-HFP, PMMA, PAN 또는 PVAc를 사용한 겔형 고분자 전해질; 또는
    PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 중에서 선택된 전해질을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  65. 제63항에 있어서,
    상기 전해질층은, 리튬염을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
  66. 제65항에 있어서,
    상기 리튬염은, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
  67. 제63항에 있어서,
    상기 세퍼레이터는, 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 고분자 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈레이트로 이루어진 군에서 선택된 고분자로 제조한 다공성 고분자 기재; 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재; 또는 상기 다공성 고분자 기재의 적어도 일면상에 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 구비한 세퍼레이터인 것을 특징으로 하는 케이블형 이차전지.
  68. 제67항에 있어서,
    상기 다공성 고분자 기재는, 다공성 고분자 필름 기재, 또는 다공성 부직포 기재인 것을 특징으로 하는 케이블형 이차전지.
  69. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 케이블형 이차전지의 외면을 둘러싸도록 형성된 보호피복을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
  70. 제69항에 있어서,
    상기 보호피복은, 고분자 수지로 형성된 것을 특징으로 하는 케이블형 이차전지.
  71. 제70항에 있어서,
    상기 고분자 수지는, PET, PVC, HDPE 및 에폭시 수지로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 케이블형 이차전지.
  72. 제70항에 있어서,
    상기 보호피복은, 수분 차단층을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
  73. 제72항에 있어서,
    상기 수분 차단층은, 알루미늄 또는 액정 고분자로 형성된 것을 특징으로 하는 케이블형 이차전지.
  74. 전해질을 포함하는 리튬이온 공급 코어부;
    상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체; 및
    상기 내부전극 지지체의 외면을 둘러싸며 나선형으로 권선되어 형성된 시트형의 내부전극-분리층-외부전극 복합체;를 포함하되,
    상기 내부전극-분리층-외부전극 복합체는, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 내부전극, 전극의 단락을 방지하는 분리층 및 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 외부전극이 일체화되도록 압착하여 형성된 케이블형 이차전지.
  75. 전해질을 포함하는 리튬이온 공급 코어부;
    상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체;
    상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성되며, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 시트형의 내부전극; 및
    상기 내부전극의 외면에 나선형으로 권선되어 형성된 시트형의 분리층-외부전극 복합체;를 포함하되,
    상기 분리층-외부전극 복합체는, 전극의 단락을 방지하는 분리층 및 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 외부전극이 일체화되도록 압착하여 형성된 케이블형 이차전지.
  76. 전해질을 포함하는 리튬이온 공급 코어부;
    상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체;
    상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 시트형의 내부전극-분리층 복합체; 및
    상기 내부전극-분리층 복합체의 외면에 나선형으로 권선되어 형성되며, 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 시트형의 외부전극;을 포함하되,
    상기 내부전극-분리층 복합체는, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 내부전극 및 전극의 단락을 방지하는 분리층이 일체화되도록 압착하여 형성된 케이블형 이차전지.
  77. 서로 평행하게 배치된 2 이상의 내부전극 지지체;
    각각의 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성된 2 이상의 시트형의 내부전극; 및
    상기 내부전극들의 외면을 함께 둘러싸며 나선형으로 권선되어 형성되되, 전극의 단락을 방지하는 분리층, 및 외부전극이 일체화되도록 합착하여 형성된 시트형의 분리층-외부전극 복합체;를 포함하는 케이블형 이차전지.
  78. 전해질을 포함하는 2 이상의 리튬이온 공급 코어부;
    각각의 상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성된 열린 구조의 내부전극 지지체;
    각각의 상기 내부전극 지지체의 외면에 나선형으로 권선되어 형성되고, 내부집전체와 상기 내부집전체의 표면에 형성된 내부전극 활물질층을 구비하는 서로 평행하게 배치된 2 이상의 내부전극; 및
    상기 내부전극들의 외면을 함께 둘러싸며 나선형으로 권선되어 형성되고, 전극의 단락을 방지하는 분리층 및 외부집전체와 상기 외부집전체의 표면에 형성된 외부전극 활물질층을 구비하는 외부전극이 일체화되도록 압착하여 형성된 시트형의 분리층-외부전극 복합체;를 포함하는 케이블형 이차전지.
PCT/KR2014/004042 2013-05-07 2014-05-07 케이블형 이차전지 WO2014182058A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14733494.0A EP2822084B1 (en) 2013-05-07 2014-05-07 Cable-type secondary battery
JP2015515970A JP6037579B2 (ja) 2013-05-07 2014-05-07 ケーブル型二次電池
US14/483,373 US9070952B2 (en) 2013-05-07 2014-09-11 Cable-type secondary battery
US14/483,328 US9083061B2 (en) 2013-05-07 2014-09-11 Cable-type secondary battery
US14/483,318 US9077048B2 (en) 2013-05-07 2014-09-11 Cable-type secondary battery
US14/483,348 US9142865B2 (en) 2013-05-07 2014-09-11 Cable-type secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0051561 2013-05-07
KR20130051561 2013-05-07
KR10-2014-0054275 2014-05-07
KR1020140054275A KR101465164B1 (ko) 2013-05-07 2014-05-07 케이블형 이차전지

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US14/483,328 Continuation US9083061B2 (en) 2013-05-07 2014-09-11 Cable-type secondary battery
US14/483,318 Continuation US9077048B2 (en) 2013-05-07 2014-09-11 Cable-type secondary battery
US14/483,373 Continuation US9070952B2 (en) 2013-05-07 2014-09-11 Cable-type secondary battery
US14/483,348 Continuation US9142865B2 (en) 2013-05-07 2014-09-11 Cable-type secondary battery

Publications (1)

Publication Number Publication Date
WO2014182058A1 true WO2014182058A1 (ko) 2014-11-13

Family

ID=51999948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004042 WO2014182058A1 (ko) 2013-05-07 2014-05-07 케이블형 이차전지

Country Status (6)

Country Link
US (4) US9070952B2 (ko)
EP (1) EP2822084B1 (ko)
JP (1) JP6037579B2 (ko)
KR (3) KR101465164B1 (ko)
CN (2) CN204464379U (ko)
WO (1) WO2014182058A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508966A (ja) * 2015-02-09 2018-03-29 エルジー・ケム・リミテッド ケーブル型二次電池
CN110692150A (zh) * 2017-09-29 2020-01-14 株式会社Lg化学 电极混合物制造方法和电极混合物
US11664501B2 (en) 2017-11-29 2023-05-30 Ningde Amperex Technology Limited Electrode assembly and secondary battery having a protective layer therein

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037579B2 (ja) * 2013-05-07 2016-12-07 エルジー・ケム・リミテッド ケーブル型二次電池
KR101752373B1 (ko) * 2014-10-31 2017-06-29 주식회사 엘지화학 전극 복합체, 그를 포함하는 이차전지 및 케이블형 전지 이차전지
JP6111453B2 (ja) * 2015-02-26 2017-04-12 株式会社アイ.エス.テイ ポリイミドコーティング活物質粒子、電極材料用スラリー、負極、電池、及び、ポリイミドコーティング活物質粒子の製造方法
KR101940149B1 (ko) * 2015-07-03 2019-01-18 주식회사 엘지화학 이차전지 및 그의 제조방법
KR20170028110A (ko) 2015-09-03 2017-03-13 주식회사 엘지화학 케이블형 이차전지
US10770758B2 (en) 2015-10-21 2020-09-08 Lg Chem, Ltd. Cable-type secondary battery including winding core having guide portions
KR102065733B1 (ko) * 2015-10-21 2020-01-13 주식회사 엘지화학 전극 복합체, 그를 포함하는 이차전지 및 케이블형 전지 이차전지
US10770732B2 (en) 2015-10-21 2020-09-08 Lg Chem, Ltd. Cable-type secondary battery including spaced spring inner electrode support wound on outside of winding core
CN105552367B (zh) * 2015-12-21 2018-04-17 中盐安徽红四方锂电有限公司 一种含cnt的锂离子电池水性正极浆料及其制备方法
TWI689123B (zh) * 2016-01-07 2020-03-21 南韓商Lg化學股份有限公司 製備纜型二次電池組之設備及方法與藉由該方法製備之纜型二次電池組
KR102128095B1 (ko) * 2016-02-05 2020-06-29 주식회사 엘지화학 케이블형 이차전지
US20180076453A1 (en) 2016-06-23 2018-03-15 Government Of The United States As Represented By The Secretary Of The Air Force Bendable, creasable, and printable batteries with enhanced safety and high temperture stability - methods of fabrication, and methods of using the same
KR102107216B1 (ko) * 2016-07-05 2020-05-06 주식회사 엘지화학 이차 전지용 카트리지 및 이를 포함하는 배터리 모듈
KR102580262B1 (ko) * 2017-01-04 2023-09-20 나노텍 인스트러먼츠, 인코포레이티드 형상 적응성 로프형 플렉시블 수퍼커패시터
CN110603669B (zh) * 2017-09-01 2022-07-22 株式会社Lg新能源 制造线缆型二次电池用负极的方法、由此制造的负极以及包含所述负极的线缆型二次电池
EP3678247A4 (en) * 2017-12-21 2020-12-16 Lg Chem, Ltd. FLEXIBLE SECONDARY BATTERY INCLUDING A BIPOLAR ELECTRODE
US11211606B2 (en) 2017-12-28 2021-12-28 The Hong Kong Polytechnic University Electrode for battery and fabrication method thereof
JP6524386B1 (ja) * 2018-04-30 2019-06-05 裕憲 松井 螺旋型二次電池
CN108832057A (zh) * 2018-06-20 2018-11-16 湖南辰砾新材料有限公司 一种锂电池用隔膜及其制备方法
CN113471630B (zh) * 2021-06-30 2023-10-10 宁德新能源科技有限公司 卷绕式电芯及电池
KR20240022277A (ko) * 2022-08-11 2024-02-20 삼성에스디아이 주식회사 이차 전지용 음극 및 이를 포함하는 이차 전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099903A (ko) 2004-04-12 2005-10-17 경상대학교산학협력단 실형태의 가변형 전지
KR100582557B1 (ko) * 2004-11-25 2006-05-22 한국전자통신연구원 표면 패터닝된 음극 집전체로 이루어지는 리튬금속 고분자이차전지용 음극 및 그 제조 방법
KR20080015373A (ko) * 2006-08-14 2008-02-19 소니 가부시끼가이샤 비수 전해질 2차 전지
JP2011054502A (ja) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd リチウム二次電池およびその製造方法
KR20130040166A (ko) * 2011-10-13 2013-04-23 주식회사 엘지화학 케이블형 이차전지
KR20130040160A (ko) * 2011-10-13 2013-04-23 주식회사 엘지화학 케이블형 이차전지

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522897A (en) 1983-10-14 1985-06-11 Cape Cod Research, Inc. Rope batteries
DE3829419C1 (ko) * 1988-08-31 1989-12-28 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn Gmbh & Co Kg, 5790 Brilon, De
FR2652450B1 (fr) 1989-09-22 1991-11-29 Accumulateurs Fixes Procede de fabrication d'une electrode a support de type mousse pour generateur electrochimique et electrode obtenue par ce procede.
US5478676A (en) 1994-08-02 1995-12-26 Rexam Graphics Current collector having a conductive primer layer
JP3407501B2 (ja) 1995-09-29 2003-05-19 松下電器産業株式会社 ポリマ電解質およびそれを用いたリチウム・ポリマ電池
AU1438197A (en) 1996-01-25 1997-08-20 Danionics A/S Electrode/current collector, laminates for an electrochemical device
JP3260319B2 (ja) 1998-04-08 2002-02-25 ティーディーケイ株式会社 シート型電極・電解質構造体の製造方法
US6277514B1 (en) 1998-12-17 2001-08-21 Moltech Corporation Protective coating for separators for electrochemical cells
JP3756815B2 (ja) 1999-06-22 2006-03-15 三菱電機株式会社 電池用セパレータ及び電池
JP2001110244A (ja) * 1999-10-12 2001-04-20 Sony Corp バッテリケーブル
JP2001110445A (ja) * 1999-10-12 2001-04-20 Sony Corp コード型バッテリ
US6403263B1 (en) 2000-09-20 2002-06-11 Moltech Corporation Cathode current collector for electrochemical cells
US20020164441A1 (en) 2001-03-01 2002-11-07 The University Of Chicago Packaging for primary and secondary batteries
CN1260848C (zh) 2002-03-28 2006-06-21 Tdk株式会社 锂二次电池
JP2005038612A (ja) 2003-07-15 2005-02-10 Ngk Spark Plug Co Ltd リチウムイオン二次電池およびその製造方法
TWI258238B (en) 2003-11-05 2006-07-11 Lg Chemical Ltd Functional polymer film-coated electrode and electrochemical device using the same
KR100569188B1 (ko) 2004-01-16 2006-04-10 한국과학기술연구원 탄소-다공성 지지체 복합 전극 및 그 제조방법
KR100666821B1 (ko) 2004-02-07 2007-01-09 주식회사 엘지화학 유/무기 복합 다공성 코팅층이 형성된 전극 및 이를포함하는 전기 화학 소자
JP2006012835A (ja) 2004-06-23 2006-01-12 Samsung Sdi Co Ltd 二次電池
US8247135B2 (en) 2004-09-14 2012-08-21 Case Western Reserve University Light-weight, flexible edge collected fuel cells
CN101048898B (zh) 2004-10-29 2012-02-01 麦德托尼克公司 锂离子电池及医疗装置
WO2006093049A1 (ja) 2005-03-02 2006-09-08 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池およびその製造法
JP4826214B2 (ja) 2005-11-04 2011-11-30 日産自動車株式会社 駆動システム
US8828591B2 (en) 2006-03-02 2014-09-09 Sony Corporation External packaging material for battery device, nonaqueous electrolyte secondary battery using the same, and battery pack
JP5092457B2 (ja) 2006-03-02 2012-12-05 ソニー株式会社 電池素子外装材、これを用いた非水電解質二次電池及び電池パック
KR100879893B1 (ko) 2006-07-10 2009-01-21 주식회사 엘지화학 실링부의 안전성이 향상된 이차전지
KR100918751B1 (ko) 2006-07-26 2009-09-24 주식회사 엘지화학 분리막과의 계면 접착이 향상된 전극 및 이를 포함하는전기 화학 소자
WO2008049037A2 (en) 2006-10-17 2008-04-24 Maxwell Technologies, Inc. Electrode for energy storage device
US7976976B2 (en) 2007-02-07 2011-07-12 Rosecreek Technologies Inc. Composite current collector
KR20120025619A (ko) * 2007-05-10 2012-03-15 히다치 막셀 에너지 가부시키가이샤 전기 화학 소자
KR101147604B1 (ko) 2007-10-12 2012-05-23 주식회사 엘지화학 젤리-롤형 전극조립체의 변형을 억제하기 위한 제조방법
JP2011501383A (ja) * 2007-10-26 2011-01-06 サイオン パワー コーポレイション バッテリ電極用プライマー
JP5316809B2 (ja) 2007-11-13 2013-10-16 住友電気工業株式会社 リチウム電池およびその製造方法
CN102084525A (zh) 2008-07-29 2011-06-01 松下电器产业株式会社 非水电解质二次电池用集电体、非水电解质二次电池用电极及它们的制造方法、以及非水电解质二次电池
EP2333876B1 (en) 2008-09-03 2016-08-03 LG Chem, Ltd. Separator having porous coating layer and electrochemical device containing the same
CN102388483B (zh) 2009-01-12 2016-04-06 A123系统有限责任公司 叠层电池及其制备方法
JP4527190B1 (ja) 2009-01-14 2010-08-18 パナソニック株式会社 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法
JP4835742B2 (ja) 2009-02-20 2011-12-14 ソニー株式会社 電池および電池パック
KR101036164B1 (ko) 2009-04-24 2011-05-23 성균관대학교산학협력단 복합전극 및 이의 제조방법
KR101064986B1 (ko) 2009-06-04 2011-09-15 강원대학교산학협력단 세라믹 다공성 지지체, 그를 이용한 강화 복합 전해질 막 및 그를 구비한 막-전극 어셈블리
WO2011028251A2 (en) 2009-08-24 2011-03-10 Sion Power Corporation Release system for electrochemical cells
KR101438980B1 (ko) 2009-10-02 2014-09-11 도요타지도샤가부시키가이샤 리튬 2차 전지 및 상기 전지용 정극
WO2011093661A2 (ko) * 2010-02-01 2011-08-04 주식회사 엘지화학 케이블형 이차전지
KR101279409B1 (ko) * 2010-02-01 2013-06-27 주식회사 엘지화학 케이블형 이차전지
KR101115922B1 (ko) * 2010-02-02 2012-02-13 주식회사 엘지화학 케이블형 이차전지의 제조방법
JP2011181441A (ja) * 2010-03-03 2011-09-15 Sony Corp 円筒型非水電解質電池
KR101105355B1 (ko) 2010-03-26 2012-01-16 국립대학법인 울산과학기술대학교 산학협력단 플렉서블한 전극용 집전체, 이의 제조방법 및 이를 이용한 음극
KR20110127972A (ko) 2010-05-20 2011-11-28 주식회사 엘지화학 금속 코팅된 고분자 집전체를 갖는 케이블형 이차전지
KR101322694B1 (ko) 2010-06-14 2013-10-28 주식회사 엘지화학 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
KR101432862B1 (ko) 2010-06-15 2014-08-26 코오롱인더스트리 주식회사 다공성 지지체 및 그 제조방법
KR20120000708A (ko) 2010-06-28 2012-01-04 주식회사 엘지화학 전기화학소자용 음극, 그 제조방법 및 이를 구비한 전기화학소자
KR101351896B1 (ko) 2010-06-28 2014-01-22 주식회사 엘지화학 케이블형 이차전지용 음극 및 이를 구비하는 케이블형 이차전지
KR101252981B1 (ko) 2010-08-05 2013-04-15 주식회사 엘지화학 안전성이 향상된 이차전지용 파우치 및 이를 이용한 파우치형 이차전지, 중대형 전지팩
KR101326623B1 (ko) 2010-08-09 2013-11-07 주식회사 엘지화학 프라이머가 코팅된 양극 집전체 및 이를 포함하는 마그네슘 이차전지
KR101322695B1 (ko) * 2010-08-25 2013-10-25 주식회사 엘지화학 케이블형 이차전지
KR101322693B1 (ko) 2010-08-27 2013-10-25 주식회사 엘지화학 케이블형 이차전지
US20120115259A1 (en) 2010-11-10 2012-05-10 Keon Jae Lee Method for fabricating flexible electronic device and electronic device fabricated thereby
KR101198806B1 (ko) 2010-12-06 2012-11-07 현대자동차주식회사 다공절연층을 포함하는 이차전지 전극 및 그 제조 방법
AU2011346550A1 (en) * 2010-12-23 2013-07-25 Garal Pty Ltd Fuel cell and electrolyser structure
KR101655510B1 (ko) 2010-12-31 2016-09-07 제너럴 일렉트릭 캄파니 다공성 지지체 상에 중합체 코팅을 형성시키기 위한 진공 챔버 방법
KR101404061B1 (ko) 2011-02-17 2014-06-05 주식회사 엘지화학 케이블형 이차전지
CN103430370B (zh) * 2011-03-11 2015-12-23 株式会社Lg化学 线缆型二次电池
WO2013055187A1 (ko) 2011-10-13 2013-04-18 주식회사 엘지화학 케이블형 이차전지
EP2768057B1 (en) 2011-10-13 2016-08-31 LG Chem, Ltd. Cable-type secondary battery
KR101380586B1 (ko) 2011-10-25 2014-04-01 주식회사 엘지화학 이차전지용 음극 및 이를 구비하는 이차전지
WO2013062337A2 (ko) 2011-10-25 2013-05-02 주식회사 엘지화학 케이블형 이차전지
KR101479298B1 (ko) * 2011-10-25 2015-01-02 주식회사 엘지화학 케이블형 이차전지
US8993172B2 (en) * 2011-12-10 2015-03-31 Kalptree Energy, Inc. Li-ion battery and battery active components on metal wire
US8895189B2 (en) 2012-02-03 2014-11-25 Nanotek Instruments, Inc. Surface-mediated cells with high power density and high energy density
KR101470559B1 (ko) 2012-08-30 2014-12-08 주식회사 엘지화학 케이블형 이차전지용 음극 및 그를 포함하는 케이블형 이차전지
KR101548789B1 (ko) 2012-12-21 2015-09-01 주식회사 엘지화학 케이블형 이차전지 및 이의 제조 방법
KR101470556B1 (ko) 2013-05-07 2014-12-10 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182059A1 (ko) * 2013-05-07 2014-11-13 주식회사 엘지화학 케이블형 이차전지
JP6037579B2 (ja) * 2013-05-07 2016-12-07 エルジー・ケム・リミテッド ケーブル型二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099903A (ko) 2004-04-12 2005-10-17 경상대학교산학협력단 실형태의 가변형 전지
KR100582557B1 (ko) * 2004-11-25 2006-05-22 한국전자통신연구원 표면 패터닝된 음극 집전체로 이루어지는 리튬금속 고분자이차전지용 음극 및 그 제조 방법
KR20080015373A (ko) * 2006-08-14 2008-02-19 소니 가부시끼가이샤 비수 전해질 2차 전지
JP2011054502A (ja) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd リチウム二次電池およびその製造方法
KR20130040166A (ko) * 2011-10-13 2013-04-23 주식회사 엘지화학 케이블형 이차전지
KR20130040160A (ko) * 2011-10-13 2013-04-23 주식회사 엘지화학 케이블형 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2822084A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508966A (ja) * 2015-02-09 2018-03-29 エルジー・ケム・リミテッド ケーブル型二次電池
CN110692150A (zh) * 2017-09-29 2020-01-14 株式会社Lg化学 电极混合物制造方法和电极混合物
US11664501B2 (en) 2017-11-29 2023-05-30 Ningde Amperex Technology Limited Electrode assembly and secondary battery having a protective layer therein

Also Published As

Publication number Publication date
CN104466233A (zh) 2015-03-25
CN204464379U (zh) 2015-07-08
EP2822084A4 (en) 2016-01-13
JP2015518641A (ja) 2015-07-02
CN104466233B (zh) 2017-04-12
KR101542096B1 (ko) 2015-08-06
KR101747332B1 (ko) 2017-06-14
US20140377616A1 (en) 2014-12-25
US9083061B2 (en) 2015-07-14
JP6037579B2 (ja) 2016-12-07
US20140377614A1 (en) 2014-12-25
US9077048B2 (en) 2015-07-07
US20140377613A1 (en) 2014-12-25
US20140377615A1 (en) 2014-12-25
KR101465164B1 (ko) 2014-11-25
US9142865B2 (en) 2015-09-22
KR20140132289A (ko) 2014-11-17
KR20150051210A (ko) 2015-05-11
EP2822084B1 (en) 2016-12-14
EP2822084A1 (en) 2015-01-07
KR20140132305A (ko) 2014-11-17
US9070952B2 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
WO2014182058A1 (ko) 케이블형 이차전지
WO2014182059A1 (ko) 케이블형 이차전지
WO2014182056A1 (ko) 케이블형 이차전지 및 그의 제조방법
WO2014182062A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182060A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2016068651A2 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2014182063A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2018034526A1 (ko) 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2014178590A1 (ko) 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2014092471A1 (ko) 이차전지용 전극, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2015080499A1 (ko) 케이블형 이차전지
WO2014182064A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2017135793A1 (ko) 케이블형 이차전지 및 이의 제조방법
WO2019050346A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지, 및 플렉서블 이차 전지
WO2017039385A1 (ko) 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
WO2016068684A1 (ko) 다층형 케이블형 이차전지
WO2014035192A1 (ko) 케이블형 이차전지용 음극 및 그를 포함하는 케이블형 이차전지
WO2016129939A1 (ko) 케이블형 이차전지
WO2020067778A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2017069586A1 (ko) 케이블형 이차전지
WO2019013449A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2016068683A1 (ko) 다층형 케이블형 이차전지
WO2020080905A1 (ko) 이차전지 패키징용 필름 및 이를 포함하는 이차전지
WO2018164402A1 (ko) 전극 조립체 및 이를 포함하는 리튬 전지

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014733494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014733494

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015515970

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14733494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE