WO2016068651A2 - 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지 - Google Patents
이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지 Download PDFInfo
- Publication number
- WO2016068651A2 WO2016068651A2 PCT/KR2015/011589 KR2015011589W WO2016068651A2 WO 2016068651 A2 WO2016068651 A2 WO 2016068651A2 KR 2015011589 W KR2015011589 W KR 2015011589W WO 2016068651 A2 WO2016068651 A2 WO 2016068651A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- secondary battery
- layer
- porous
- active material
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 95
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 239000007772 electrode material Substances 0.000 claims abstract description 146
- 238000007789 sealing Methods 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 393
- 229920000642 polymer Polymers 0.000 claims description 94
- 239000011230 binding agent Substances 0.000 claims description 83
- -1 polypropylene Polymers 0.000 claims description 57
- 239000004020 conductor Substances 0.000 claims description 52
- 239000000203 mixture Substances 0.000 claims description 52
- 239000003792 electrolyte Substances 0.000 claims description 48
- 229910001416 lithium ion Inorganic materials 0.000 claims description 47
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 45
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 42
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 40
- 239000002002 slurry Substances 0.000 claims description 39
- 239000010954 inorganic particle Substances 0.000 claims description 34
- 238000000926 separation method Methods 0.000 claims description 34
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 31
- 239000011118 polyvinyl acetate Substances 0.000 claims description 30
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 30
- 239000002033 PVDF binder Substances 0.000 claims description 29
- 239000004642 Polyimide Substances 0.000 claims description 24
- 229920001721 polyimide Polymers 0.000 claims description 24
- 229920000131 polyvinylidene Polymers 0.000 claims description 24
- 239000010936 titanium Substances 0.000 claims description 24
- 239000011248 coating agent Substances 0.000 claims description 23
- 238000000576 coating method Methods 0.000 claims description 23
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 21
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 20
- 239000011247 coating layer Substances 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- 238000005538 encapsulation Methods 0.000 claims description 18
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 17
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 17
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 229910052744 lithium Inorganic materials 0.000 claims description 16
- 238000003825 pressing Methods 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 15
- 229920002873 Polyethylenimine Polymers 0.000 claims description 14
- 229920000728 polyester Polymers 0.000 claims description 14
- 229920001451 polypropylene glycol Polymers 0.000 claims description 14
- 239000011148 porous material Substances 0.000 claims description 14
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 13
- 239000004952 Polyamide Substances 0.000 claims description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 229920002647 polyamide Polymers 0.000 claims description 13
- 229920006324 polyoxymethylene Polymers 0.000 claims description 13
- 150000002739 metals Chemical class 0.000 claims description 12
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 claims description 12
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 claims description 12
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 12
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 12
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 12
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 12
- 229920000307 polymer substrate Polymers 0.000 claims description 12
- 229930182556 Polyacetal Natural products 0.000 claims description 11
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 11
- 229920002301 cellulose acetate Polymers 0.000 claims description 11
- 239000005518 polymer electrolyte Substances 0.000 claims description 11
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 11
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 10
- 239000004698 Polyethylene Substances 0.000 claims description 10
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 10
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 229920001940 conductive polymer Polymers 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 10
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 10
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical group [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 10
- 229910003002 lithium salt Inorganic materials 0.000 claims description 10
- 159000000002 lithium salts Chemical class 0.000 claims description 10
- 239000004417 polycarbonate Substances 0.000 claims description 10
- 229920000515 polycarbonate Polymers 0.000 claims description 10
- 229920006393 polyether sulfone Polymers 0.000 claims description 10
- 229920002530 polyetherether ketone Polymers 0.000 claims description 10
- 229920000573 polyethylene Polymers 0.000 claims description 10
- 229920006380 polyphenylene oxide Polymers 0.000 claims description 10
- 229910001220 stainless steel Inorganic materials 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 10
- 239000005977 Ethylene Substances 0.000 claims description 9
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical group O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 9
- 239000004695 Polyether sulfone Substances 0.000 claims description 9
- 229920001218 Pullulan Polymers 0.000 claims description 9
- 239000004373 Pullulan Substances 0.000 claims description 9
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 9
- 239000002041 carbon nanotube Substances 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 9
- 239000011268 mixed slurry Substances 0.000 claims description 9
- 235000019423 pullulan Nutrition 0.000 claims description 9
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 8
- 229920001903 high density polyethylene Polymers 0.000 claims description 8
- 239000004700 high-density polyethylene Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 229920001230 polyarylate Polymers 0.000 claims description 8
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 8
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 8
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 8
- KXJGSNRAQWDDJT-UHFFFAOYSA-N 1-acetyl-5-bromo-2h-indol-3-one Chemical compound BrC1=CC=C2N(C(=O)C)CC(=O)C2=C1 KXJGSNRAQWDDJT-UHFFFAOYSA-N 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 7
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 7
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 7
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 7
- 239000011149 active material Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 239000004745 nonwoven fabric Substances 0.000 claims description 7
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 claims description 7
- 229920006254 polymer film Polymers 0.000 claims description 7
- 239000007784 solid electrolyte Substances 0.000 claims description 7
- 229920002554 vinyl polymer Polymers 0.000 claims description 7
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 claims description 6
- XCKPLVGWGCWOMD-YYEYMFTQSA-N 3-[[(2r,3r,4s,5r,6r)-6-[(2s,3s,4r,5r)-3,4-bis(2-cyanoethoxy)-2,5-bis(2-cyanoethoxymethyl)oxolan-2-yl]oxy-3,4,5-tris(2-cyanoethoxy)oxan-2-yl]methoxy]propanenitrile Chemical compound N#CCCO[C@H]1[C@H](OCCC#N)[C@@H](COCCC#N)O[C@@]1(COCCC#N)O[C@@H]1[C@H](OCCC#N)[C@@H](OCCC#N)[C@H](OCCC#N)[C@@H](COCCC#N)O1 XCKPLVGWGCWOMD-YYEYMFTQSA-N 0.000 claims description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 6
- 229920008347 Cellulose acetate propionate Polymers 0.000 claims description 6
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 claims description 6
- 229920006217 cellulose acetate butyrate Polymers 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 6
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 6
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 6
- 229920001684 low density polyethylene Polymers 0.000 claims description 6
- 239000004702 low-density polyethylene Substances 0.000 claims description 6
- 229940017219 methyl propionate Drugs 0.000 claims description 6
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 6
- 239000002952 polymeric resin Substances 0.000 claims description 6
- 229920000098 polyolefin Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 229920003002 synthetic resin Polymers 0.000 claims description 6
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims description 6
- YEAFTTSAJGPTHJ-UHFFFAOYSA-N 1,1,2-trichloroethene;hydrofluoride Chemical group F.ClC=C(Cl)Cl YEAFTTSAJGPTHJ-UHFFFAOYSA-N 0.000 claims description 5
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 5
- 229910000925 Cd alloy Inorganic materials 0.000 claims description 5
- 229910010238 LiAlCl 4 Inorganic materials 0.000 claims description 5
- 229910015015 LiAsF 6 Inorganic materials 0.000 claims description 5
- 229910015044 LiB Inorganic materials 0.000 claims description 5
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 5
- 229910013684 LiClO 4 Inorganic materials 0.000 claims description 5
- 229910012851 LiCoO 2 Inorganic materials 0.000 claims description 5
- 229910012513 LiSbF 6 Inorganic materials 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 claims description 5
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 claims description 5
- 239000004800 polyvinyl chloride Substances 0.000 claims description 5
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000011253 protective coating Substances 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 4
- 239000006230 acetylene black Substances 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 239000003273 ketjen black Substances 0.000 claims description 4
- 239000011244 liquid electrolyte Substances 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 229910011281 LiCoPO 4 Inorganic materials 0.000 claims description 3
- 229910010707 LiFePO 4 Inorganic materials 0.000 claims description 3
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 claims description 3
- 229910013716 LiNi Inorganic materials 0.000 claims description 3
- 229910013210 LiNiMnCoO Inorganic materials 0.000 claims description 3
- 229910013290 LiNiO 2 Inorganic materials 0.000 claims description 3
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 229930188620 butyrolactone Natural products 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 3
- 239000003575 carbonaceous material Substances 0.000 claims description 3
- 238000002788 crimping Methods 0.000 claims description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229920001519 homopolymer Polymers 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910021382 natural graphite Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229920001748 polybutylene Polymers 0.000 claims description 3
- 239000002987 primer (paints) Substances 0.000 claims description 3
- 229920001384 propylene homopolymer Polymers 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910002706 AlOOH Inorganic materials 0.000 claims description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 claims description 2
- 229910010116 LiAlTiP Inorganic materials 0.000 claims description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims description 2
- MKGYHFFYERNDHK-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Ti+4].[Li+] Chemical compound P(=O)([O-])([O-])[O-].[Ti+4].[Li+] MKGYHFFYERNDHK-UHFFFAOYSA-K 0.000 claims description 2
- PPVYRCKAOVCGRJ-UHFFFAOYSA-K P(=S)([O-])([O-])[O-].[Ge+2].[Li+] Chemical compound P(=S)([O-])([O-])[O-].[Ge+2].[Li+] PPVYRCKAOVCGRJ-UHFFFAOYSA-K 0.000 claims description 2
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 2
- 229910020231 Pb(Mg1/3Nb2/3)O3-xPbTiO3 Inorganic materials 0.000 claims description 2
- 229910020226 Pb(Mg1/3Nb2/3)O3−xPbTiO3 Inorganic materials 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- 229910020346 SiS 2 Inorganic materials 0.000 claims description 2
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 2
- 229910002367 SrTiO Inorganic materials 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- CVJYOKLQNGVTIS-UHFFFAOYSA-K aluminum;lithium;titanium(4+);phosphate Chemical compound [Li+].[Al+3].[Ti+4].[O-]P([O-])([O-])=O CVJYOKLQNGVTIS-UHFFFAOYSA-K 0.000 claims description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 2
- 229920001971 elastomer Polymers 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 239000006260 foam Substances 0.000 claims description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910010272 inorganic material Inorganic materials 0.000 claims description 2
- 239000011147 inorganic material Substances 0.000 claims description 2
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 claims description 2
- 229910000659 lithium lanthanum titanates (LLT) Inorganic materials 0.000 claims description 2
- 229910001386 lithium phosphate Inorganic materials 0.000 claims description 2
- 229910003465 moissanite Inorganic materials 0.000 claims description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 239000005060 rubber Substances 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 claims description 2
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 claims 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims 2
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 claims 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims 1
- 239000005062 Polybutadiene Substances 0.000 claims 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 claims 1
- HPFVBGJFAYZEBE-XNBTXCQYSA-N [(8r,9s,10r,13s,14s)-10,13-dimethyl-3-oxo-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl] 3-cyclopentylpropanoate Chemical compound C([C@H]1[C@H]2[C@@H]([C@]3(CCC(=O)C=C3CC2)C)CC[C@@]11C)CC1OC(=O)CCC1CCCC1 HPFVBGJFAYZEBE-XNBTXCQYSA-N 0.000 claims 1
- 125000001931 aliphatic group Chemical group 0.000 claims 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims 1
- 229910052808 lithium carbonate Inorganic materials 0.000 claims 1
- 229920003366 poly(p-phenylene terephthalamide) Polymers 0.000 claims 1
- 229920002857 polybutadiene Polymers 0.000 claims 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 24
- 239000000243 solution Substances 0.000 description 20
- 239000002904 solvent Substances 0.000 description 12
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 239000007773 negative electrode material Substances 0.000 description 7
- 239000007774 positive electrode material Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 229960002415 trichloroethylene Drugs 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 5
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 4
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical group [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000085 borane Inorganic materials 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910005813 NiMH Inorganic materials 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/14—Primary casings; Jackets or wrappings for protecting against damage caused by external factors
- H01M50/141—Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
- H01M50/469—Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/12—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/28—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2200/00—Safety devices for primary or secondary batteries
- H01M2200/30—Preventing polarity reversal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a secondary battery electrode, a method for manufacturing the same, a secondary battery and a cable type secondary battery comprising the same, and more particularly, a secondary battery electrode which prevents the detachment phenomenon of the electrode active material layer, and improves the flexibility of the electrode, the production thereof
- the present invention relates to a secondary battery and a cable type secondary battery including the same.
- a secondary battery is a device that converts external electrical energy into chemical energy and stores it and generates electricity when needed.
- the term “rechargeable battery” is also used to mean that it can be charged multiple times.
- Commonly used secondary batteries include lead storage batteries, nickel cadmium batteries (NiCd), nickel hydrogen storage batteries (NiMH), lithium ion batteries (Li-ion), and lithium ion polymer batteries (Li-ion polymer). Secondary batteries offer both economic and environmental advantages over primary batteries that are used once and discarded.
- Secondary batteries are currently used where low power is used. Examples are devices, handhelds, tools, and uninterruptible power supplies that help start up the car. Recently, the development of wireless communication technology has led to the popularization of portable devices, and there is also a tendency to wirelessize many kinds of conventional devices, and the demand for secondary batteries is exploding. In addition, hybrid vehicles and electric vehicles have been put to practical use in terms of prevention of environmental pollution, and these next-generation vehicles employ technologies that use secondary batteries to reduce value, weight, and increase lifespan.
- secondary batteries are cylindrical, rectangular or pouch type batteries. This is because the secondary battery is manufactured by mounting an electrode assembly composed of a negative electrode, a positive electrode, and a separator inside a pouch-shaped case of a cylindrical or rectangular metal can or an aluminum laminate sheet, and injecting an electrolyte into the electrode assembly. Therefore, since a certain space for mounting the secondary battery is essentially required, the cylindrical, square or pouch type of the secondary battery has a problem in that it acts as a limitation for the development of various types of portable devices. Accordingly, there is a need for a new type of secondary battery that is easily deformed.
- a cable type secondary battery which is a battery having a very large ratio of length to cross sectional diameter.
- desorption of the electrode active material layer may occur due to a sudden volume expansion of the electrode active material layer during stress or charge / discharge due to an external force due to a deformation of the shape, and thus may cause a decrease in capacity and deterioration of cycle life characteristics.
- increasing the binder content included in the electrode active material layer may have flexibility for bending or twisting.
- the increase in the binder content of the electrode active material layer increases the electrode resistance, causing a decrease in battery performance.
- the electrode active material layer cannot be prevented from being detached even if the binder content is increased, and thus a proper solution cannot be obtained.
- the secondary battery electrode that can mitigate the occurrence of cracks in the electrode active material layer even if the external force acts on the electrode active material layer, and prevent the detachment from the current collector even if the crack occurs badly, It provides a method for manufacturing the same, a secondary battery and a cable-type secondary battery comprising the same.
- a sheet-like electrode laminate including a current collector, an electrode active material layer formed on one surface of the current collector and a porous first support layer formed on the electrode active material layer; And an encapsulation layer formed surrounding the entire side surface of the electrode stack.
- the encapsulation layer is high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polybutylene, polypentene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, Polycarbonate, polyimide, polyether ether ketone, polyethersulfone, polyphenylene oxide, polyphenylene sulfide, polyvinylidene fluoride, polyvinylidene fluoride-hexafuluropropylene, polyvinylidene pullolu It may be formed of a polymer comprising any one or a mixture of two or more thereof selected from the group consisting of lide-trichloroethylene, polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile and polyethylene naphthalate.
- the secondary battery electrode further includes a conductive layer including a conductive material and a binder between the electrode active material layer and the porous first support layer, or an organic-inorganic porous layer including inorganic particles and a binder polymer. It may be provided, or may further comprise a porous polymer layer.
- the current collector stainless steel, aluminum, nickel, titanium, calcined carbon or copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Conductive polymers; A metal paste comprising a metal powder of Ni, Al, Au, Ag, Pd / Ag, Cr, Ta, Cu, Ba, or ITO; Or a carbon paste including carbon powder which is graphite, carbon black, or carbon nanotubes.
- the current collector may be a mesh current collector.
- the current collector may further include a primer coating layer composed of a conductive material and a binder.
- the conductive material may include any one selected from the group consisting of carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotubes, and graphene, or a mixture of two or more thereof.
- the binder may include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride trichloro Ethylene (polyvinylidene fluoride-co-trichloroethylene), polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate ( polyvinylacetate, ethylene vinyl co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate Cellulose acetate propionate, cyanoethylpullu Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, styrenebutadiene rubber
- a plurality of recesses may be formed on at least one surface of the current collector.
- the plurality of recesses may have a continuous pattern or an intermittent pattern.
- porous first support layer may be a mesh-type porous membrane or a nonwoven fabric.
- the porous first support layer may include high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal (polyacetal), polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylene sulfide polyphenylenesulfide) and polyethylenenaphthalate (polyethylenenaphthalate) may be formed of any one or a mixture of two or more thereof.
- the conductive support layer may further include a conductive material coating layer including a conductive material and a binder on the porous first support layer.
- the conductive material coating layer, the conductive material and the binder may be mixed in a weight ratio of 80:20 to 99: 1.
- the conductive material may include any one selected from the group consisting of carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotubes, and graphene, or a mixture of two or more thereof.
- the binder may include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride trichloro Ethylene (polyvinylidene fluoride-co-trichloroethylene), polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate ( polyvinylacetate, ethylene vinyl co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate Cellulose acetate propionate, cyanoethylpullu Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, styrenebutadiene rubber
- the porous first support layer may further include a porous coating layer formed of a mixture of inorganic particles and a binder polymer.
- it may further include a second support layer formed on the other surface of the current collector.
- the second support layer may be a polymer film
- the polymer film may be formed of any one selected from the group consisting of polyolefin, polyester, polyimide and polyamide or a mixture of two or more thereof.
- the electrode active material layer when the secondary battery electrode is a negative electrode, the electrode active material layer, natural graphite, artificial graphite or carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And any one active material particles selected from the group consisting of metals (Me) and a composite of carbon or a mixture of two or more thereof, and when the secondary battery electrode is a positive electrode, the electrode active material layer may include LiCoO 2 ,.
- M1 and M2 are independently of each other Al, Ni, Co, Fe, Mn, V , Cr, Ti, W, Ta, Mg and Mo, x, y and z are each independently the atomic fraction of the elements of the oxide composition 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 Z ⁇ 0.5, 0 ⁇ x + y + z ⁇ 1), or any one active material particles selected from the group consisting of 2 or a mixture of two or more thereof.
- the sheet-shaped secondary battery electrode may have a strip structure extending in one direction.
- a sheet-like electrode laminate including a current collector, an electrode active material layer formed on one surface of the current collector and a support layer formed on the other surface of the current collector; And an encapsulation layer formed surrounding the entire side surface of the electrode stack.
- (S1) the step of applying an electrode active material slurry on one surface of the current collector; (S2) forming a porous first support layer on the coated electrode active material slurry; (S3) pressing the resultant of the step (S2) to form an integrated electrode active material layer by bonding between the current collector and the first support layer to form a sheet-type electrode laminate; And (S4) forming an encapsulation layer so as to surround the entire side surface of the electrode stack.
- the electrode active material slurry may include a binder component.
- the porous first support layer may be formed on the coated electrode active material slurry.
- the resultant of the step (S2) is pressed through a coating blade, and the electrode active material is integrated by bonding between the current collector and the porous first support layer.
- a layer can be formed.
- a step of forming a second support layer on the other surface of the current collector by pressing before the step (S1) or between the step (S3) and the step (S4), a step of forming a second support layer on the other surface of the current collector by pressing.
- a secondary battery which is an electrode for secondary batteries, is provided.
- the internal electrode A separation layer which prevents a short circuit of the electrode formed surrounding the outer surface of the inner electrode; And an external electrode formed by spirally winding the outer surface of the separation layer, wherein at least one of the internal electrode and the external electrode is formed as the secondary battery electrode of the present invention.
- the external electrode may have a strip structure extending in one direction.
- the external electrodes may be spirally wound so as not to overlap each other or spirally wound so as to overlap each other.
- the internal electrode may have a hollow structure having a space formed therein.
- the internal electrode may include one or more of the secondary battery electrodes spirally wound.
- the internal electrode current collector core part, a lithium ion supply core part including an electrolyte, or a charging core part may be formed in a space formed inside the internal electrode.
- the lithium ion supply core portion may further include a gel polymer electrolyte and a support, and may further include a liquid electrolyte and a porous carrier.
- the electrolyte ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC ), Methylformate (MF), gamma-butyrolactone ( ⁇ -BL; butyrolactone), sulfolane (sulfolane), methylacetate (MA) or methylpropionate (MP; methylpropionate)
- Electrolyte solution Gel polymer electrolytes using PEO, PVdF, PVdF-HFP, PMMA, PAN or PVAc; Or a solid electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES) or polyvinyl acetate (PVAc); It may include an electrolyte selected from.
- the electrolyte may further include a lithium salt, wherein the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, from LiAsF 6, LiSbF 6, LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, and tetraphenyl lithium borate group consisting of It may be any one selected or a mixture of two or more thereof.
- the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, from LiAsF 6, LiSbF 6, LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloro
- the inner electrode may be a cathode or an anode
- the outer electrode may be an anode or a cathode corresponding to the inner electrode
- the separation layer may be an electrolyte layer or a separator.
- the electrolyte layer a gel polymer electrolyte using PEO, PVdF, PVdF-HFP, PMMA, PAN or PVAc; Or a solid electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES) or polyvinyl acetate (PVAc); It may include an electrolyte selected from.
- the electrolyte layer may further include a lithium salt, wherein the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, and tetraphenyl boric acid selected from the group consisting of lithium It may be any one or a mixture of two or more thereof.
- the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi,
- the separator may include a porous polymer substrate made of a polyolefin-based polymer selected from the group consisting of ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer, and ethylene-methacrylate copolymer; A porous polymer substrate made of a polymer selected from the group consisting of polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide and polyethylene naphthalate; Or a porous substrate formed of a mixture of inorganic particles and a binder polymer; Or a separator having a porous coating layer formed of a mixture of inorganic particles and a binder polymer on at least one surface of the porous polymer substrate.
- a porous polymer substrate made of a polyolefin-based polymer selected from the group consisting of
- the lithium ion supply core portion containing an electrolyte; An inner electrode formed surrounding the outer surface of the lithium ion supply core part and including a current collector and an electrode active material layer; A separation layer which prevents a short circuit of the electrode formed surrounding the outer surface of the inner electrode; And an external electrode formed around the outer surface of the separation layer and spirally wound, the external electrode including a current collector and an electrode active material layer, wherein at least one of the internal electrode and the external electrode is a secondary battery electrode of the present invention.
- two or more internal electrodes disposed in parallel to each other; A separation layer surrounding the outer surfaces of the inner electrodes together to prevent a short circuit of the formed electrodes; And an external electrode formed by spirally winding the outer surface of the separation layer, wherein at least one of the internal electrode and the external electrode is formed as the secondary battery electrode of the present invention.
- two or more lithium ion supply core portion containing an electrolyte;
- Two or more internal electrodes formed around the outer surface of each of the lithium ion supply cores, the current collector and the electrode active material layer being disposed in parallel with each other;
- a separation layer surrounding the outer surfaces of the inner electrodes together to prevent a short circuit of the formed electrodes;
- an external electrode formed around the outer surface of the separation layer and spirally wound, the external electrode including a current collector and an electrode active material layer, wherein at least one of the internal electrode and the external electrode is a secondary battery electrode of the present invention.
- a cable-type secondary battery formed is provided.
- the internal electrode may include at least one secondary battery electrode spirally wound.
- the internal electrode On the other hand, according to the present invention, the internal electrode; And an external electrode formed around the outer surface of the internal electrode and spirally wound, wherein the external electrode is the secondary battery electrode of the present invention as described above, and the porous first support layer includes the internal electrode and the external electrode.
- a cable type secondary battery which prevents a short circuit.
- a lithium ion supply core portion containing an electrolyte; An inner electrode formed to surround an outer surface of the lithium ion supply core; And an external electrode formed by spirally wound around the outer surface of the internal electrode, wherein at least one of the internal electrode and the external electrode is the secondary battery electrode of the present invention as described above, and the porous first support layer is
- a cable type secondary battery is provided, which prevents a short circuit between the internal electrode and the external electrode.
- the flexibility of the electrode can be greatly improved by introducing a support layer on at least one surface of the sheet-shaped electrode.
- the support layer buffers, thereby alleviating cracking of the electrode active material layer, thereby, in the current collector It prevents the phenomenon that the electrode active material layer is detached.
- the electrolyte solution flows smoothly into the electrode active material layer, and the electrolyte solution is impregnated into the pores of the porous support layer to prevent an increase in resistance in the battery, thereby preventing the performance of the battery.
- FIG. 1 is a perspective view of an electrode for a sheet type secondary battery according to an exemplary embodiment of the present invention.
- FIG. 2 is a cross-sectional view of a sheet-shaped electrode laminate according to an embodiment of the present invention.
- FIG 3 is a cross-sectional view of a sheet-shaped electrode laminate according to another embodiment of the present invention.
- FIG. 4 is a view schematically showing a method of manufacturing a sheet type secondary battery electrode according to an embodiment of the present invention.
- FIG. 5 is a view showing a surface of a mesh-type current collector according to an embodiment of the present invention.
- FIG. 6 is a view schematically showing a surface of a current collector on which a plurality of recesses are formed according to an embodiment of the present invention.
- FIG. 7 is a view schematically showing a surface of a current collector on which a plurality of recesses are formed according to another exemplary embodiment of the present invention.
- FIG. 8 is a SEM photograph showing a cross section of an electrode for a sheet type secondary battery manufactured according to an embodiment of the present invention.
- FIG. 9 is a photograph showing an electrode for a secondary battery manufactured according to an embodiment of the present invention.
- FIG. 10 is a SEM photograph showing a cross section of a porous polymer layer prepared according to an embodiment of the present invention.
- FIG. 11 is a view schematically showing that the sheet-shaped inner electrode of the cable type secondary battery of the present invention is wound around the outer surface of the lithium ion supply core part.
- FIG. 12 is an exploded perspective view schematically illustrating the inside of a cable type secondary battery according to an embodiment of the present invention.
- FIG. 13 is a schematic cross-sectional view of a cable-type secondary battery having a plurality of internal electrodes according to an embodiment of the present invention.
- FIG. 14 is a SEM photograph showing a cross section after folding a sheet-shaped electrode prepared in accordance with an embodiment of the present invention in half.
- 15 is a SEM photograph showing a cross section after folding a sheet-shaped electrode prepared in accordance with a comparative example of the present invention in half.
- 16 is a graph showing the life characteristics of a coin-type half cell having an electrode prepared according to the Examples and Comparative Examples of the present invention.
- 17 is a photograph showing the state after folding the sheet-shaped electrode manufactured in accordance with an embodiment of the present invention in half.
- FIG. 18 is a photograph showing a rump after folding a sheet-shaped electrode manufactured according to a comparative example of the present invention in half.
- FIG. 18 is a photograph showing a rump after folding a sheet-shaped electrode manufactured according to a comparative example of the present invention in half.
- FIG. 19 is a graph showing the life characteristics of a coin-type half cell having an electrode prepared according to the Examples and Comparative Examples of the present invention.
- electrode active material slurry 30 first support layer
- FIG. 1 is a perspective view of an electrode for a sheet-shaped secondary battery according to an embodiment of the present invention
- Figures 2 and 3 is a view showing a cross-section of the sheet-like electrode laminate according to an embodiment of the present invention
- Figure 4 is a present 2 is a view schematically showing a preferred method of manufacturing the electrode for the sheet-shaped secondary battery according to an embodiment of the present invention.
- the sheet type secondary battery electrode according to the present invention includes a current collector 10, an electrode active material layer 20 formed on one surface of the current collector 10, and the electrode active material layer 20.
- the sheet-shaped electrode laminate 70 may further include a second support layer 40 formed on the other surface of the current collector 10.
- a conventional cable type secondary battery may be subjected to rapid volume expansion of an electrode active material layer during a charge and discharge process when a high capacity negative electrode active material of Si or Sn type is applied due to stress caused by external force or deformation of a form.
- a high capacity negative electrode active material of Si or Sn type is applied due to stress caused by external force or deformation of a form.
- the detachment phenomenon of the electrode active material layer occurred, thereby reducing the capacity of the battery and deteriorating cycle life characteristics.
- increasing the binder content included in the electrode active material layer may have flexibility for bending and twisting.
- the increase in the binder content of the electrode active material layer increased the electrode resistance, causing battery performance deterioration.
- extreme external force such as the electrode is completely folded, the electrode active material layer is detached even if the binder content is increased. It could not be prevented and could not be an appropriate solution.
- the above-mentioned problem is solved by including the porous first support layer 30 formed on the outer surface of the electrode and the second support layer 40 which can be formed on the other surface of the current collector 10.
- the porous first support layer 30 has a buffering effect that mitigates the external force acting on the electrode active material layer 20 even when an external force of bending or torsion acts on the electrode. Prevents detachment and improves flexibility of the electrode.
- the second support layer 40 may further suppress the disconnection of the current collector 10 and further improve the flexibility of the current collector 10.
- the encapsulation layer 80 formed to surround all the side surfaces of the sheet-shaped electrode except for the plane and the bottom surface, it is possible to prevent a short circuit that may occur when the side surface of the sheet-shaped electrode is exposed.
- the encapsulation layer 80 may be formed of a polymer that serves as an insulator and does not react with lithium ions.
- Non-limiting examples of such polymers include high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polybutylene, polypentene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, poly Amides, polycarbonates, polyimides, polyetheretherketones, polyethersulfones, polyphenylene oxides, polyphenylene sulfides, polyvinylidene fluorides, polyvinylidene fluorides-hexafuluropropylene, polyvinylidene Pluolide-trichloroethylene, polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyethylene naphthalate and the like can be used.
- the sheet-shaped secondary battery electrode may have a strip structure extending in one direction.
- a sheet-like electrode laminate including a current collector, an electrode active material layer formed on one surface of the current collector and the support layer formed on the other surface of the current collector; And an encapsulation layer formed surrounding the entire side surface of the electrode stack.
- the secondary battery electrode according to the present invention the electrode active material layer and the porous first support layer to be bonded to each other, the adhesive material therebetween, drying the conductive material slurry containing a conductive material and a binder therebetween The resulting conductive layer may be further provided.
- the secondary battery electrode according to the present invention the organic-inorganic mixed slurry containing the inorganic particles and the binder polymer as an adhesive therebetween, so that the electrode active material layer and the porous first support layer can be bonded to each other and integrated.
- the drying result of the organic-inorganic porous layer may be further provided.
- an increase in electrode resistance may be prevented by smoothly inflowing the electrolyte into the electrode active material layer by forming a porous structure.
- the secondary battery electrode according to the present invention is a porous polymer that is a result of drying a polymer solution containing a polymer as an adhesive therebetween so that the electrode active material layer and the porous first support layer are bonded to each other and integrated. It may be further provided with a layer.
- an increase in electrode resistance may be prevented by smoothly introducing the electrolyte into the electrode active material layer by forming a porous structure.
- FIG. 4 illustrates a case in which the electrode active material layer is formed in a state in which the second support layer 40 is previously formed on the bottom surface of the current collector 10, but this is only an embodiment of the present invention. As will be described later, the electrode active material layer may be formed in a state in which the second support layer 40 is not previously formed.
- the electrode active material slurry 20 ' is applied to one surface of the current collector 10 (S1).
- the current collector 10 is to collect electrons generated by the electrochemical reaction of the electrode active material or to supply electrons required for the electrochemical reaction, stainless steel, aluminum, nickel, titanium, calcined carbon or Copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Conductive polymers; A metal paste comprising a metal powder of Ni, Al, Au, Ag, Pd / Ag, Cr, Ta, Cu, Ba, or ITO; Or a carbon paste including carbon powder which is graphite, carbon black, or carbon nanotubes.
- the electrode active material layer may detach from the current collector. Therefore, a large amount of binder component enters the electrode active material layer for electrode flexibility. However, such a large amount of binder swelling (swelling) phenomenon by the electrolyte solution, can be easily separated from the current collector, which may cause a decrease in battery performance.
- the current collector 10 may further include a primer coating layer composed of a conductive material and a binder.
- the conductive material and the binder may be used the same kind as used in the formation of the conductive material coating layer to be described later.
- the current collector 10 may be a mesh-type current collector, and in order to further increase the surface area of the current collector, a plurality of recesses may be formed on at least one surface thereof.
- the plurality of recesses may have a continuous pattern or an intermittent pattern. That is, it may have a recess of a continuous pattern formed in the longitudinal direction spaced apart from each other, or may have an intermittent pattern formed with a plurality of holes.
- the plurality of holes may be circular or polygonal.
- a porous first support layer 30 is formed on the coated electrode active material slurry 20 ′ (S2).
- the first support layer 30 may be a mesh type porous membrane or a nonwoven fabric.
- the electrolyte solution flows smoothly into the electrode active material layer 20, and the first support layer 30 itself is excellent in impregnation of the electrolyte solution, thereby ensuring ion conductivity, thereby increasing resistance inside the battery. Prevents battery performance degradation.
- the first support layer 30 may include high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene polyethylene terephthalate, polybutylene terephthalate, polyester, and poly.
- Acetal, polyamide, polycarbonate, polyimide, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylene sulfide (polyphenylenesulfide) and polyethylenenaphthalate (polyethylenenaphthalate) may be formed of any one or a mixture of two or more thereof.
- the first support layer 30, may further include a conductive material coating layer having a conductive material and a binder.
- the conductive material coating layer prevents deterioration of battery performance by improving conductivity of the electrode active material layer to reduce resistance of the electrode.
- the negative electrode since the conductivity of the negative electrode active material layer is relatively excellent, even if the conductive material coating layer is not included, the negative electrode exhibits similar performance to that in the case where a general negative electrode is used. This is particularly advantageous when applied to the positive electrode to reduce the resistance inside the battery because the performance degradation phenomenon can be intensified.
- the conductive material coating layer, the conductive material and the binder may be mixed in a weight ratio of 80:20 to 99: 1.
- the resistance of the electrode may be excessively increased, but when the content of the aforementioned numerical range is satisfied, the resistance of the electrode is prevented from being excessively increased.
- the first support layer since the first support layer has a buffering effect that prevents the detachment phenomenon of the electrode active material layer, even if a relatively small amount of binder is included, the flexibility of the electrode is not significantly prevented.
- the conductive material may include any one selected from the group consisting of carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotubes, and graphene, or a mixture of two or more thereof, but is not limited thereto. It is not.
- the binder may include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride trichloro Ethylene (polyvinylidene fluoride-co-trichloroethylene), polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate ( polyvinylacetate, ethylene vinyl co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate Cellulose acetate propionate, cyanoethylpullu Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, styrenebutadiene rubber
- step (S2) is compressed to form an integrated electrode active material layer 20 by bonding between the current collector 10 and the first support layer 30 to form an integrated electrode active material layer 20.
- step (S3) is a SEM photograph showing a cross section of an electrode for a secondary battery manufactured according to an embodiment of the present invention.
- the electrode active material slurry 20 ' is coated on one surface of the current collector 10, and then dried to form an electrode active material layer 20. Then, the first support layer 30 is laminated thereon through lamination or the like. When the electrode active material layer 20 and the first support layer 30 are bonded to each other, the electrode active material slurry 20 ′ binder component may be cured, thereby preventing strong adhesion between the two layers.
- the porous support layer may be formed by coating a polymer solution on the electrode active material layer without using a porous first support layer prepared in advance as in the preferred manufacturing method of the present invention.
- the porous support formed by coating the polymer solution has poor mechanical properties compared to the porous first support layer prepared by the preferred method of the present invention, and thus cannot effectively suppress the detachment of the electrode active material layer due to external force. .
- the first support layer 30 is formed on the upper surface of the applied electrode active material slurry 20 ', and together through the coating blade 50.
- the electrode active material layer 20 may be formed by adhering between the current collector 10 and the first support layer 30.
- the electrode active material layer 20, natural graphite, artificial graphite or carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And one of the active material particles selected from the group consisting of a complex of the metals (Me) and carbon or a mixture of two or more thereof, and when the secondary battery electrode is a positive electrode, the electrode active material layer 20, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiFePO 4 , LiNiMnCoO 2 and LiNi 1 -xy- z Co x M1 y M2 z O 2 (M1 and M2 are independently of each other Al, Ni, Co, Fe, Any one selected from the group consist
- an encapsulation layer 80 is formed to surround the entire side surface of the electrode stack 70 (S4).
- the second support layer 40 may be further formed by pressing the second support layer 40 on the other surface of the current collector 10. have.
- the second support layer 40 may further suppress the disconnection of the current collector 10 and further improve the flexibility of the current collector 10.
- the second support layer 40 may be a polymer film, wherein the polymer film is any one selected from the group consisting of polyolefins, polyesters, polyimides, and polyamides, or a mixture of two or more thereof. It may be formed.
- the manufacturing method of the electrode for the sheet-like secondary battery according to another embodiment of the present invention, (S1) applying an electrode active material slurry on one surface of the current collector, and drying to form an electrode active material layer; (S2) applying a conductive material slurry including a conductive material and a binder on the electrode active material layer; (S3) forming a porous first support layer on the coated conductive material slurry; (S4) pressing the resultant of the step (S3) to form an integrated conductive layer by bonding between the electrode active material layer and the porous first support layer to form a sheet-shaped electrode laminate; And (S5) forming an encapsulation layer to surround the entire side surface of the electrode stack.
- the conductive layer improves the conductivity of the electrode to prevent performance degradation of the battery.
- the conductive material and the binder may be formed by mixing in a weight ratio of 1:10 to 8:10.
- the conductive material and the binder used herein may be the same as those used in the conductive coating layer described above.
- the conductive layer may form a porous structure to facilitate the introduction of the electrolyte into the electrode active material layer, wherein the size of the pores formed in the conductive layer is 0.01 ⁇ m to 5 ⁇ m, porosity of 5 to May be 70%.
- FIG. 9 is a photograph showing an electrode for a secondary battery manufactured according to an embodiment of the present invention.
- the electrode active material layer and the first support layer may be hardened so that strong adhesion between the two layers may not be maintained.
- the porous support layer may be formed by coating a polymer solution on the conductive layer without using the porous first support layer prepared in advance as in the preferred method of the present invention.
- the porous support formed by coating the polymer solution has poor mechanical properties compared to the porous first support layer prepared by the preferred method of the present invention, and thus cannot effectively suppress the detachment of the electrode active material layer due to external force. .
- the electrode active material layer and the first Adhesion between the support layers can be formed to form an integrated conductive layer.
- the method may further include pressing and forming a second support layer on the other surface of the current collector.
- the second support layer can suppress the disconnection of the current collector, thereby further improving the flexibility of the current collector.
- the manufacturing method of the electrode for the sheet-like secondary battery according to another embodiment of the present invention, (S1) applying an electrode active material slurry on one surface of the current collector, and drying to form an electrode active material layer; (S2) applying an organic-inorganic mixed slurry containing inorganic particles and a binder polymer on the electrode active material layer; (S3) forming a porous first support layer on the applied organic-inorganic mixed slurry; (S4) pressing the resultant of the step (S3) to form an integrated organic-inorganic porous layer by bonding between the electrode active material layer and the porous first support layer to form a sheet-type electrode laminate; And (S5) forming an encapsulation layer to surround the entire side surface of the electrode stack.
- the organic-inorganic porous layer may be formed by mixing the inorganic particles and the binder polymer in a weight ratio of 20:80 to 95: 5.
- the inorganic particles may be inorganic particles having a dielectric constant of 5 or more, inorganic particles having a lithium ion transfer ability, or a mixture thereof.
- the inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr x , Ti 1-x ) O 3 (PZT, where 0 ⁇ x ⁇ 1), and Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT, where 0 ⁇ x ⁇ 1), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , SiC, SiO 2 , AlOOH, It may be any one selected from the group consisting of Al (OH) 3 and TiO 2 or a mixture of two or more thereof.
- the inorganic particles having the lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium Aluminum Titanium Phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5), lithium nitride (Li 3
- the average particle diameter of the inorganic particles may be 10 nm to 5 ⁇ m.
- the binder polymer may include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride-trichloro, and polyvinylidene fluoride (PVDF).
- PVDF polyvinylidene fluoride
- PVDF polyvinylidene fluoride-co-hexafluoro propylene
- PVDF polyvinylidene fluoride-trichloro
- PVDF polyvinylidene fluoride
- Polyvinylidene fluoride-co-trichloroethylene polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate (polyvinylacetate), ethylene vinyl co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose Cellulose acetate propionate, cyano Pullulan (cyanoethylpullulan), cyanoethylpolyvinylalcohol (cyanoethylcellulose), cyanoethylcellulose (cyanoethylsucrose), pullulan (pullulan), carboxyl methyl cellulose, styrene butadiene It may be any one selected from the group consisting of styrene-butadiene rubber, acrylonitrile-styrene-butadiene copolymer, and polyimide, or a mixture of two
- the organic-inorganic porous layer has a porous structure, thereby smoothly flowing the electrolyte into the electrode active material layer, the pore size formed in the organic-inorganic porous layer is 0.01 ⁇ m to 10 ⁇ m, porosity 5 to 95%.
- the porous structure of the organic-inorganic porous layer may be formed through phase separation or phase inversion by non-solvent in the manufacturing process, the inorganic particles generated by the inorganic particles are connected and fixed by the binder polymer It may be formed by an interstitial volume of the liver.
- the electrode active material layer and the A strong adhesive force may not be maintained between the two layers by curing the binder polymer of the organic-inorganic mixed slurry which allows the first support layer to adhere to each other.
- the porous support layer may be formed by coating the polymer solution on the organic-inorganic porous layer without using the porous first support layer prepared in advance as in the preferred method of the present invention.
- the porous support formed by coating the polymer solution has poor mechanical properties compared to the porous first support layer prepared by the preferred method of the present invention, and can effectively suppress the detachment of the electrode active material layer due to external force. none.
- the electrode active material layer and the Adhesion between the first support layers may form an integrated organic-inorganic porous layer.
- the method may further include pressing and forming a second support layer on the other surface of the current collector.
- the second support layer can suppress the disconnection of the current collector, thereby further improving the flexibility of the current collector.
- the manufacturing method of the electrode for the sheet-like secondary battery according to another embodiment of the present invention, (S1) applying an electrode active material slurry on one surface of the current collector, and drying to form an electrode active material layer; (S2) applying a polymer solution containing a polymer on the electrode active material layer; (S3) forming a porous first support layer on the applied polymer solution; (S4) pressing the resultant of the step (S3) to form an integrated porous polymer layer by bonding between the electrode active material layer and the porous first support layer to form a sheet-type electrode laminate; And (S5) forming an encapsulation layer to surround the entire side surface of the electrode stack.
- the polymer may be a polar linear polymer, an oxide-based linear polymer or a mixture thereof.
- the polar linear polymer may be polyacrylonitrile, polyvinyl chloride, polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluorofluoropropylene (polyvinyl chloride).
- PVDF polyvinylidene fluoride
- PVDF polyvinylidene fluoride-hexafluorofluoropropylene
- polyvinylidene fluoride-co-hexafluoro propylene polyvinylidene fluoride-co-trichloroethylene
- polyethylenimine polymethyl methacrylate
- polybutyl acrylate polybutyl acrylate
- polyvinylpyrrolidone polyvinylacetate
- ethylene vinyl co-vinyl acetate polyarylate
- polyp-phenylene terephthalamide Poly -p-phenylene terephthalamide
- the oxide-based linear polymer is any one selected from the group consisting of polyethylene oxide, polypropylene oxide, polyoxymethylene, and polydimethylsiloxane, or two of them. It may be a mixture of the above.
- the porous polymer layer has a porous structure, thereby facilitating the inflow of the electrolyte into the electrode active material layer, and the pore size formed in the porous polymer layer is 0.01 ⁇ m to 10 ⁇ m, and porosity is 5 to. May be 95%.
- the porous structure of the porous polymer layer may be formed through phase separation or phase inversion by non-solvent in the manufacturing process.
- polyvinylidene fluoride-hexafuluropropylene as a polymer is added to acetone acting as a solvent to prepare a solution having a solid content of 10% by weight. Thereafter, water or ethanol as a non-solvent may be added to the prepared solution by 2 to 10% by weight to prepare a polymer solution.
- the phase inversion In the process of evaporation after coating of the polymer solution, the phase inversion, the area occupied by the non-solvent in the phase-separated portion of the non-solvent and the polymer becomes pores. Therefore, the pore size may be adjusted according to the degree of solubility of the nonsolvent and the polymer and the content of the nonsolvent.
- FIG. 10 is a SEM photograph showing a cross section of the porous polymer layer prepared according to one embodiment of the present invention.
- the electrode active material layer and the first support layer By hardening the binder component of the polymer solution which allows the adhesive to adhere to each other, a strong adhesive force between the two layers may not be maintained.
- the porous support layer may be formed by coating the polymer solution on the porous polymer layer without using the porous first support layer prepared in advance as in the preferred manufacturing method of the present invention.
- the porous support formed by coating the polymer solution has poor mechanical properties compared to the porous first support layer prepared by the preferred method of the present invention, and thus cannot effectively suppress the detachment of the electrode active material layer due to external force. .
- the electrode active material layer and the first Adhesion between the support layers may form an integrated porous polymer layer.
- the method may further include pressing and forming a second support layer on the other surface of the current collector.
- the second support layer can suppress the disconnection of the current collector, thereby further improving the flexibility of the current collector.
- the secondary battery of the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein at least one of the positive electrode and the negative electrode, the secondary battery electrode of the present invention described above to be.
- the secondary battery of the present invention may be a secondary battery of a special type such as a cable type secondary battery as well as a secondary battery of a general type of a stack type, a winding type, a stack / folding type.
- the cable-type secondary battery according to the present invention the internal electrode; A separation layer which prevents a short circuit of the electrode formed surrounding the outer surface of the inner electrode; And an external electrode formed by spirally winding the outer surface of the separation layer, wherein at least one of the internal electrode and the external electrode is formed as the secondary battery electrode of the present invention.
- the spiral is represented in English as a spiral or helix, and is a shape that is twisted in a predetermined range, and generally refers to a shape similar to that of a general spring.
- the external electrode may have a strip structure extending in one direction.
- the external electrodes may be spirally wound so as not to overlap each other.
- the external electrodes may be spirally wound so as not to overlap each other at intervals within two times the width of the external electrodes so as not to deteriorate the performance of the battery.
- the external electrode may be formed by spirally winding so as to overlap each other.
- the external electrode may be formed by spirally winding the width of the overlapping portions to be within 0.9 times the width of the external electrode in order to suppress an excessive increase in the internal resistance of the battery.
- the internal electrode may have a hollow structure in which a space is formed therein.
- the internal electrode may include at least one secondary battery electrode spirally wound.
- the internal electrode current collector core part may be formed in a space formed inside the internal electrode.
- the internal electrode current collector core portion carbon nanotubes, stainless steel, aluminum, nickel, titanium, calcined carbon or copper; Stainless steel surface-treated with carbon, nickel, titanium, or silver; Aluminum-cadmium alloys; Non-conductive polymer surface-treated with a conductive material; Or it may be made of a conductive polymer.
- a lithium ion supply core part including an electrolyte may be formed in a space formed inside the internal electrode.
- the lithium ion supply core may include a gel polymer electrolyte and a support.
- the lithium ion supply core unit may include a liquid electrolyte and a porous carrier.
- the charging core part may be formed in a space formed inside the internal electrode.
- the charging core part may include materials for improving various performances in a cable type secondary battery, for example, polymer resin, rubber, inorganic material, and the like. It may be formed into various shapes such as wire, fiber, powder, mesh, foam, and the like.
- Figure 11 is a cable type secondary battery according to an embodiment of the present invention, a schematic view showing that the sheet-shaped inner electrode is formed on the outer surface of the lithium ion supply core unit 110, the sheet-shaped inner electrode It is also applied to a cable type secondary battery, and the method of forming a sheet-type external electrode to be described later is wound on the outer surface of the separation layer.
- a cable type secondary battery includes a lithium ion supply core unit including an electrolyte; An inner electrode formed surrounding the outer surface of the lithium ion supply core part and including a current collector and an electrode active material layer; A separation layer which prevents a short circuit of the electrode formed surrounding the outer surface of the inner electrode; And an external electrode formed around the outer surface of the separation layer and spirally wound, the external electrode including a current collector and an electrode active material layer, wherein at least one of the internal electrode and the external electrode is a secondary battery electrode of the present invention. Is formed.
- Cable type secondary battery according to an embodiment of the present invention has a horizontal cross section of a predetermined shape, it may have a linear structure elongated in the longitudinal direction with respect to the horizontal cross section.
- the cable type secondary battery according to the exemplary embodiment of the present invention may have flexibility, and may be freely deformed.
- the predetermined shape means that the shape is not particularly limited, and any shape that does not impair the essence of the present invention is possible.
- FIG. 12 illustrates a cable type secondary battery 100 in which an electrode for secondary batteries according to an embodiment of the present invention is introduced into an internal electrode.
- a lithium ion supply core unit 110 including an electrolyte; An inner electrode formed around the outer surface of the lithium ion supply core unit 110 and wound; A separation layer 160 which prevents a short circuit of the electrode formed surrounding the outer surface of the inner electrode; And an external electrode formed around the outer surface of the separation layer 160 and spirally wound, the external electrode including an external current collector 180 and an external electrode active material layer 170.
- the external electrode not the internal electrode, may be the sheet-shaped secondary battery electrode of the present invention described above, and both the internal electrode and the external electrode may include the sheet-shaped secondary battery electrode of the present invention.
- the lithium ion supply core unit 110 includes an electrolyte, but the electrolyte is not particularly limited in its kind, but ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinyl.
- the electrolyte may further include a lithium salt, which may include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloro is preferred to use a borane lithium, lower aliphatic carboxylic acid lithium, and tetraphenyl lithium borate, etc.
- the lithium ion supply core unit 110 may be configured only with an electrolyte, and in the case of a liquid electrolyte solution, may be configured using a porous carrier.
- the inner electrode may be a cathode or an anode
- the outer electrode may be an anode or a cathode corresponding to the inner electrode
- the electrode active material used for the negative electrode or the positive electrode is as described above.
- the separation layer 160 of the present invention may use an electrolyte layer or a separator.
- Examples of the electrolyte layer serving as an ion passage include a gel polymer electrolyte using PEO, PVdF, PVdF-HFP, PMMA, PAN, or PVAc; Or a solid electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES) or polyvinyl acetate (PVAc); Etc.
- the matrix of the solid electrolyte is preferably made of polymer or ceramic glass as a basic skeleton.
- ions may move very slowly in terms of reaction rate, and therefore, it is preferable to use an electrolyte of a gel polymer having easier movement of ions than a solid.
- the gel polymer electrolyte is not excellent in mechanical properties, it may include a support to compensate for this, and such a support may be a pore structure support or a crosslinked polymer. Since the electrolyte layer of the present invention can function as a separator, a separate separator may not be used.
- the electrolyte layer of the present invention may further include a lithium salt.
- Lithium salts can improve ionic conductivity and reaction rate, non-limiting examples of which are LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloro available borane lithium, lower aliphatic carboxylic acid lithium, and tetraphenyl lithium borate, etc. have.
- the separator is not limited to a kind thereof, but a porous material made of a polyolefin-based polymer selected from the group consisting of ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer.
- a polymer substrate A porous polymer substrate made of a polymer selected from the group consisting of polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide and polyethylene naphthalate; A porous substrate formed of a mixture of inorganic particles and a binder polymer; Alternatively, a separator having a porous coating layer formed of a mixture of inorganic particles and a binder polymer on at least one surface of the porous polymer substrate may be used.
- the binder polymer is attached to each other (that is, the binder polymer is connected and fixed between the inorganic particles) so that the inorganic particles can remain bound to each other,
- the porous coating layer is maintained in a state bound to the porous polymer substrate by a polymer binder.
- the inorganic particles of the porous coating layer are present in the closest packed structure substantially in contact with each other, and the interstitial volume generated when the inorganic particles are in contact with each other becomes pores of the porous coating layer.
- the polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, and polyphenylene It is preferable to use a separator of a nonwoven material corresponding to a porous polymer substrate made of a polymer selected from the group consisting of sulfide and polyethylene naphthalate.
- the present invention includes a protective coating 190, which is formed on the outer surface of the outer current collector to protect the electrode against moisture and external shock in the air as an insulator.
- a protective coating 190 a conventional polymer resin including a moisture barrier layer may be used.
- aluminum or liquid crystal polymer having excellent moisture barrier performance may be used as the moisture barrier layer, and the polymer resin may be PET, PVC, HDPE or epoxy resin.
- the cable-type secondary battery including two or more internal electrodes according to another aspect of the present invention, two or more internal electrodes disposed in parallel to each other; A separation layer surrounding the outer surfaces of the inner electrodes together to prevent a short circuit of the formed electrodes; And an external electrode formed by spirally winding the outer surface of the separation layer, wherein at least one of the internal electrode and the external electrode is formed as the secondary battery electrode of the present invention.
- a cable type secondary battery including two or more internal electrodes includes two or more lithium ion supply core parts including an electrolyte; Two or more internal electrodes formed around the outer surface of each of the lithium ion supply cores, the current collector and the electrode active material layer being disposed in parallel with each other; A separation layer surrounding the outer surfaces of the inner electrodes together to prevent a short circuit of the formed electrodes; And an external electrode formed around the outer surface of the separation layer and spirally wound, the external electrode including a current collector and an electrode active material layer, wherein at least one of the internal electrode and the external electrode is the secondary of the present invention. It is formed as a battery electrode.
- FIG. 13 illustrates the cable type secondary battery 200 in which the aforementioned secondary battery electrode of the present invention is introduced into the internal electrodes.
- two or more lithium ion supply core portions 210 including an electrolyte; Two or more internal electrodes formed to be wound around the outer surface of each of the lithium ion supply core parts 210 and disposed in parallel to each other; A separation layer 260 surrounding the outer surfaces of the inner electrodes together to prevent a short circuit of the formed electrodes; And an external electrode formed around the outer surface of the separation layer 260 and spirally wound, the external electrode having an external current collector 280 and an external electrode active material layer 270.
- the external electrode not the internal electrode, may be the sheet-shaped secondary battery electrode of the present invention described above, and both the internal electrode and the external electrode may include the sheet-shaped secondary battery electrode of the present invention.
- the cable type secondary battery 200 includes an internal electrode composed of a plurality of electrodes, it is easy to adjust the loading amount of the electrode active material layer and the battery capacity by adjusting the number of internal electrodes, and since the cable secondary battery 200 includes a plurality of electrodes, The possibility can be prevented.
- the internal electrode On the other hand, according to the present invention, the internal electrode; And an external electrode formed around the outer surface of the internal electrode and spirally wound, wherein the external electrode is the secondary battery electrode of the present invention as described above, and the porous first support layer includes the internal electrode and the external electrode.
- a cable type secondary battery which prevents a short circuit.
- the lithium ion supply core portion comprising an electrolyte; An inner electrode formed to surround an outer surface of the lithium ion supply core; And an external electrode formed by spirally wound around the outer surface of the internal electrode, wherein at least one of the internal electrode and the external electrode is the secondary battery electrode of the present invention as described above, and the porous first support layer is
- a cable type secondary battery is provided, which prevents a short circuit between the internal electrode and the external electrode.
- porous first support layer may serve as a separation layer that prevents a short circuit between the internal electrode and the external electrode, a separate separation layer is not required. This can reduce the resistance of the battery and improve the energy density per cell volume.
- a second support layer made of polyethylene film was pressed to form.
- a negative electrode active material slurry was prepared in which 70 wt%, 5 wt%, and 25 wt% of graphite as a negative electrode active material, denca black as a conductive material, and PVdF as a binder were dispersed in an NMP solvent, respectively.
- the negative electrode active material slurry is coated on the other surface of the current collector, a first support layer made of PET nonwoven fabric is formed thereon, and the second support layer, the current collector, the negative electrode active material slurry, and the first support layer are sequentially stacked.
- the sheet-like electrode laminated body was manufactured by crimping
- an encapsulation layer made of a polyvinylidene fluoride polymer was formed to surround the entire side surface of the sheet-shaped electrode laminate to prepare a sheet-type secondary battery negative electrode.
- An electrode assembly was prepared by interposing a polyethylene separator between a sheet-shaped secondary battery anode prepared in Example 1 (1) and a cathode made of lithium foil. After the electrode assembly was placed in a battery case, 1M LiPF 6 was added to a nonaqueous solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 2, thereby preparing a coin-type half cell.
- the sheet-like current collector made of copper, 70% by weight, 5% by weight and 25% by weight of PVdF as a negative electrode active material, and a binder active material slurry were dispersed in an NMP solvent, respectively.
- the negative electrode was prepared by drying.
- a coin-type half cell was prepared in the same manner as in Example (2), except that the sheet-shaped negative electrode prepared in Comparative Example 1 (1) was used.
- Example 14 and 15 are SEM photographs showing a cross section after folding the sheet-shaped cathodes prepared in Example 1 and Comparative Example 1 in half, respectively.
- Example 16 shows the life characteristics of the half cells according to Example 1 and Comparative Example 1.
- FIG. 16 shows the life characteristics of the half cells according to Example 1 and Comparative Example 1.
- Example 1 compared with Comparative Example 1, although the lifespan characteristics were about 1%, the battery performance was almost similar. From this, it can be seen that through the introduction of the first support layer and the second support layer, the electrode flexibility can be greatly improved.
- a second support layer made of polyethylene film was pressed to form.
- a positive electrode active material slurry in which 80 wt%, 5 wt%, and 15 wt% of LiCoO 2 as a positive electrode active material, denka black as a conductive material, and PVdF as a binder were dispersed in an NMP solvent, respectively, was coated on the other surface of the sheet-type current collector. It dried and formed the positive electrode active material layer.
- a conductive material slurry in which denka black and PVdF are mixed in a weight ratio of 40:60 is applied to the upper surface of the positive electrode active material layer, and a first support layer made of PET nonwoven fabric is formed thereon, and then the second support layer and the zip
- seat type electrode laminated body was manufactured by crimping
- an encapsulation layer made of a polyvinylidene fluoride polymer was formed to surround the entire side surface of the sheet-shaped electrode laminate to prepare a cathode for a sheet type secondary battery.
- An electrode assembly was prepared by interposing a polyethylene separator between the sheet secondary battery positive electrode manufactured in Example 2 (1) and the negative electrode made of lithium foil. After the electrode assembly was placed in a battery case, 1M LiPF 6 was added to a nonaqueous solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 2, thereby preparing a coin-type half cell.
- a positive electrode active material slurry in which 80 wt%, 5 wt%, and 15 wt% of LiCoO 2 as a positive electrode active material, denca black as a conductive material, and PVdF as a binder are dispersed in an NMP solvent, respectively, is applied. And dried to prepare a positive electrode.
- a coin-type half cell was manufactured in the same manner as in (2) of Example 2, except that the positive electrode prepared in (1) of Comparative Example 2 was used.
- a positive electrode was manufactured in the same manner as in (1) of Example 2, except that a slurry including only a PVdF binder was used instead of the conductive material slurry including denka black.
- a coin-type half cell was manufactured in the same manner as in (2) of Example 2, except that the positive electrode prepared in (1) of Comparative Example 3 was used.
- 17 and 18 are photographs showing the state after folding the sheet-shaped electrode manufactured in Example and Comparative Example in half, respectively.
- FIG. 19 shows the life characteristics of the half cells according to Example 2 and Comparative Examples 2 and 3.
- FIG. 1 compared with Comparative Example 2, while showing almost similar life characteristics, in Comparative Example 3, the performance of the battery is very weak.
- Comparative Example 3 since no pores were formed due to the absence of the conductive material, the inflow of the electrolyte into the electrode active material layer became difficult. As a result, the battery performance was deteriorated.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Cell Separators (AREA)
Abstract
Description
Claims (92)
- 집전체, 상기 집전체의 일면에 형성된 전극 활물질층 및 상기 전극 활물질층상에 형성된 다공성의 제1 지지층을 포함하는 시트형 전극 적층체; 및상기 전극 적층체의 측면 전체를 둘러싸며 형성된 봉지층;을 포함하는 시트형의 이차전지용 전극.
- 제1항에 있어서,상기 봉지층은, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌 옥사이드, 폴리페닐렌 설파이드, 폴리비닐리덴 풀루오라이드, 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌, 폴리비닐리덴 풀루오라이드-트리클로로에틸렌, 폴리부틸 아크릴레이트, 폴리메틸 메타크릴레이트, 폴리아크릴로니트릴 및 폴리에틸렌 나프탈레이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 고분자로 형성되는 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 전극 활물질층과 상기 다공성의 제1 지지층 사이에, 도전재와 바인더를 포함하는 도전층을 더 구비하는 것을 특징으로 하는 이차전지용 전극.
- 제3항에 있어서,상기 도전층은, 상기 도전재와 상기 바인더가 1:10 내지 8:10의 중량비로 혼합되어 형성된 것을 특징으로 하는 이차전지용 전극.
- 제3항에 있어서,상기 도전층에 형성된 기공의 크기가, 0.01 ㎛ 내지 5 ㎛이고, 기공도가 5 내지 70 %인 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 전극 활물질층과 상기 다공성의 제1 지지층 사이에, 무기물 입자와 바인더 고분자를 포함하는 유무기 다공성층을 더 구비하는 것을 특징으로 하는 이차전지용 전극.
- 제6항에 있어서,상기 유무기 다공성층은, 상기 무기물 입자와 상기 바인더 고분자가 20:80 내지 95:5의 중량비로 혼합되어 형성된 것을 특징으로 하는 이차전지용 전극.
- 제6항에 있어서,상기 유무기 다공성층에 형성된 기공의 크기가, 0.01 ㎛ 내지 10 ㎛이고, 기공도가 5 내지 95 %인 것을 특징으로 하는 이차전지용 전극.
- 제6항에 있어서,상기 무기물 입자는, 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물인 것을 특징으로 하는 이차전지용 전극.
- 제9항에 있어서,상기 유전율 상수가 5 이상인 무기물 입자는, BaTiO3, Pb(Zrx, Ti1-x)O3(PZT, 여기서, 0<x<1임), Pb1 - xLaxZr1 - yTiyO3(PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT, 여기서, 0 < x < 1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC, SiO2, AlOOH, Al(OH)3 및 TiO2로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 이차전지용 전극.
- 제9항에 있어서,상기 리튬 이온 전달 능력을 갖는 무기물 입자는, 리튬 포스페이트(Li3PO4), 리튬 티타늄 포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬 알루미늄 티타늄 포스페이트(LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), (LiAlTiP)xOy계열 글래스(0<x<4, 0<y<13), 리튬 란탄 티타네이트(LixLayTiO3 , 0<x<2, 0<y<3), 리튬 게르마니움 티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬 나이트라이드(LixNy, 0<x<4, 0<y<2), SiS2(LixSiySz, 0<x<3, 0<y<2, 0<z<4)계열 글래스 및 P2S5(LixPySz, 0<x<3, 0<y<3, 0<z<7)계열 글래스로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 이차전지용 전극.
- 제6항에 있어서,상기 무기물 입자의 평균 입경이 10 nm 내지 5 ㎛인 것을 특징으로 하는 이차전지용 전극.
- 제6항에 있어서,상기 바인더 고분자는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 전극 활물질층과 상기 다공성의 제1 지지층 사이에, 다공성 고분자층을 더 구비하는 것을 특징으로 하는 이차전지용 전극.
- 제14항에 있어서,상기 다공성 고분자층에 형성된 기공의 크기가, 0.01 ㎛ 내지 10 ㎛이고, 기공도가 5 내지 95 %인 것을 특징으로 하는 이차전지용 전극.
- 제14항에 있어서,상기 다공성 고분자층은, 극성 선형 고분자, 옥사이드계 선형 고분자 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 이차전지용 전극.
- 제16항에 있어서,상기 극성 선형 고분자는, 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐 클로라이드 (polyvinyl chloride), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌이민 (polyethylene imine), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리아릴레이트 (polyarylate) 및 폴리p-페닐렌 테레프탈아미드 (Poly-p-phenylene terephthalamide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 이차전지용 전극.
- 제16항에 있어서,상기 옥사이드계 선형 고분자는, 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌 옥사이드 (polypropylene oxide), 폴리옥시메틸렌 (polyoxymethylene) 및 폴리디메틸실록산 (polydimethylsiloxane)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 집전체는, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트;로 제조된 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 집전체는, 메쉬형 집전체인 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 집전체는, 도전재와 바인더로 구성된 프라이머 코팅층을 더 포함하는 것을 특징으로 하는 이차전지용 전극.
- 제21항에 있어서,상기 도전재는, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브 및 그래핀으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 이차전지용 전극.
- 제21항에 있어서,상기 바인더는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 집전체의 적어도 일면에, 복수의 함입부가 형성된 것을 특징으로 하는 이차전지용 전극.
- 제24항에 있어서,상기 복수의 함입부는, 연속적인 패턴을 갖거나, 또는 단속적인 패턴을 갖는 것을 특징으로 하는 이차전지용 전극.
- 제25항에 있어서,상기 연속적인 패턴은, 서로 이격되어 길이방향으로 형성된 것을 특징으로 하는 이차전지용 전극.
- 제25항에 있어서,상기 단속적인 패턴은, 복수개의 구멍들이 형성된 것을 특징으로 하는 이차전지용 전극.
- 제27항에 있어서,상기 복수개의 구멍들은, 각각 원형 또는 다각형인 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 다공성의 제1 지지층은, 메쉬형 다공성 막 또는 부직포인 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 다공성의 제1 지지층은, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide) 및 폴리에틸렌나프탈레이트(polyethylenenaphthalate)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성된 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 다공성의 제1 지지층상에, 도전재와 바인더를 구비하는 도전재 코팅층을 더 포함하는 것을 특징으로 하는 이차전지용 전극.
- 제31항에 있어서,상기 도전재 코팅층은, 상기 도전재와 상기 바인더가 80:20 내지 99:1의 중량비로 혼합된 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 다공성의 제1 지지층상에, 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 더 포함하는 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 집전체의 타면에 형성된 제2 지지층을 더 포함하는 것을 특징으로 하는 이차전지용 전극.
- 제34항에 있어서,상기 제2 지지층은, 고분자 필름인 것을 특징으로 하는 이차전지용 전극.
- 제35항에 있어서,상기 고분자 필름은, 폴리올레핀, 폴리에스테르, 폴리이미드 및 폴리아미드로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성되는 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 이차전지용 전극이 음극인 경우, 상기 전극 활물질층은, 천연흑연, 인조흑연 또는 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함하고,상기 이차전지용 전극이 양극인 경우, 상기 전극 활물질층은, LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi1 -x-y- zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, 0 < x+y+z ≤ 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 이차전지용 전극.
- 제1항에 있어서,상기 시트형의 이차전지용 전극은, 일측 방향으로 연장된 스트립 구조인 것을 특징으로 하는 이차전지용 전극.
- 집전체, 상기 집전체의 일면에 형성된 전극 활물질층 및 상기 집전체의 타면에 형성된 지지층을 포함하는 시트형 전극 적층체; 및상기 전극 적층체의 측면 전체를 둘러싸며 형성된 봉지층;을 포함하는 시트형의 이차전지용 전극.
- (S1) 집전체의 일면에, 전극 활물질 슬러리를 도포하는 단계;(S2) 상기 도포된 전극 활물질 슬러리상에 다공성의 제1 지지층을 형성하는 단계;(S3) 상기 (S2) 단계의 결과물을 압착하여, 상기 집전체와 상기 제1 지지층 사이에 접착하여 일체화된 전극 활물질층을 형성하여, 시트형 전극 적층체를 형성하는 단계; 및(S4) 상기 전극 적층체의 측면 전체를 둘러싸도록 봉지층을 형성하는 단계;를 포함하는 시트형 이차전지용 전극의 제조방법.
- 제40항에 있어서,상기 전극 활물질 슬러리는, 바인더 성분을 포함하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 제41항에 있어서,상기 (S2) 단계는, 상기 바인더 성분이 경화되기 전에, 상기 도포된 전극 활물질 슬러리상에 상기 다공성의 제1 지지층을 형성하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 제41항에 있어서,상기 (S3) 단계는, 상기 바인더 성분이 경화되기 전에, 상기 (S2) 단계의 결과물을 코팅 블레이드를 통해 압착하여, 상기 집전체와 상기 다공성의 제1 지지층 사이에 접착하여 일체화된 전극 활물질층을 형성하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 제40항에 있어서,상기 (S1) 단계 이전 또는 상기 (S3) 단계와 상기 (S4) 단계 사이에, 상기 집전체의 타면에, 제2 지지층을 압착하여 형성하는 단계를 더 포함하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- (S1) 집전체의 일면에, 전극 활물질 슬러리를 도포하고, 건조하여 전극 활물질층을 형성하는 단계;(S2) 상기 전극 활물질층상에, 도전재와 바인더를 포함하는 도전재 슬러리를 도포하는 단계;(S3) 상기 도포된 도전재 슬러리상에 다공성의 제1 지지층을 형성하는 단계;(S4) 상기 (S3) 단계의 결과물을 압착하여, 상기 전극 활물질층과 상기 다공성의 제1 지지층 사이에 접착하여 일체화된 도전층을 형성하여, 시트형 전극 적층체를 형성하는 단계; 및(S5) 상기 전극 적층체의 측면 전체를 둘러싸도록 봉지층을 형성하는 단계;를 포함하는 시트형 이차전지용 전극의 제조방법.
- 제45항에 있어서,상기 (S3) 단계는, 상기 바인더가 경화되기 전에, 상기 도포된 도전재 슬러리상에 상기 다공성의 제1 지지층을 형성하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 제45항에 있어서,상기 (S4) 단계는, 상기 바인더가 경화되기 전에, 상기 (S3) 단계의 결과물을 코팅 블레이드를 통해 압착하여, 상기 전극 활물질층과 상기 다공성의 제1 지지층 사이에 접착하여 일체화된 도전층을 형성하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 제45항에 있어서,상기 (S1) 단계 이전 또는 상기 (S4) 단계와 상기 (S5) 단계 사이에, 상기 집전체의 타면에, 제2 지지층을 압착하여 형성하는 단계를 더 포함하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- (S1) 집전체의 일면에, 전극 활물질 슬러리를 도포하고, 건조하여 전극 활물질층을 형성하는 단계;(S2) 상기 전극 활물질층상에, 무기물 입자와 바인더 고분자를 포함하는 유무기 혼합 슬러리를 도포하는 단계;(S3) 상기 도포된 유무기 혼합 슬러리상에 다공성의 제1 지지층을 형성하는 단계;(S4) 상기 (S3) 단계의 결과물을 압착하여, 상기 전극 활물질층과 상기 다공성의 제1 지지층 사이에 접착하여 일체화된 유무기 다공성층을 형성하여, 시트형 전극 적층체를 형성하는 단계; 및(S5) 상기 전극 적층체의 측면 전체를 둘러싸도록 봉지층을 형성하는 단계;를 포함하는 시트형 이차전지용 전극의 제조방법.
- 제49항에 있어서,상기 (S3) 단계는, 상기 바인더 고분자가 경화되기 전에, 상기 도포된 유무기 혼합 슬러리상에 상기 다공성의 제1 지지층을 형성하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 제49항에 있어서,상기 (S4) 단계는, 상기 바인더 고분자가 경화되기 전에, 상기 (S3) 단계의 결과물을 코팅 블레이드를 통해 압착하여, 상기 전극 활물질층과 상기 다공성의 제1 지지층 사이에 접착하여 일체화된 유무기 다공성층을 형성하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 제49항에 있어서,상기 (S1) 단계 이전 또는 상기 (S4) 단계와 상기 (S5) 단계 사이에, 상기 집전체의 타면에, 제2 지지층을 압착하여 형성하는 단계를 더 포함하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- (S1) 집전체의 일면에, 전극 활물질 슬러리를 도포하고, 건조하여 전극 활물질층을 형성하는 단계;(S2) 상기 전극 활물질층상에, 고분자를 포함하는 고분자 용액을 도포하는 단계;(S3) 상기 도포된 고분자 용액상에 다공성의 제1 지지층을 형성하는 단계;(S4) 상기 (S3) 단계의 결과물을 압착하여, 상기 전극 활물질층과 상기 다공성의 제1 지지층 사이에 접착하여 일체화된 다공성 고분자층을 형성하여, 시트형 전극 적층체를 형성하는 단계; 및(S5) 상기 전극 적층체의 측면 전체를 둘러싸도록 봉지층을 형성하는 단계;를 포함하는 시트형 이차전지용 전극의 제조방법.
- 제53항에 있어서,상기 고분자 용액은, 바인더 성분을 포함하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 제54항에 있어서,상기 (S3) 단계는, 상기 바인더 성분이 경화되기 전에, 상기 도포된 고분자 용액상에 상기 다공성의 제1 지지층을 형성하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 제54항에 있어서,상기 (S4) 단계는, 상기 바인더 성분이 경화되기 전에, 상기 (S3) 단계의 결과물을 코팅 블레이드를 통해 압착하여, 상기 전극 활물질층과 상기 다공성의 제1 지지층 사이에 접착하여 일체화된 다공성 고분자층을 형성하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 제53항에 있어서,상기 (S1) 단계 이전 또는 상기 (S4) 단계와 상기 (S5) 단계 사이에, 상기 집전체의 타면에, 제2 지지층을 압착하여 형성하는 단계를 더 포함하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
- 양극, 음극, 상기 양극과 상기 음극의 사이에 개재되는 세퍼레이터, 및 전해질을 포함하는 이차전지에 있어서,상기 양극 및 상기 음극 중 적어도 어느 하나는, 제1항 내지 제39항 중 어느 한 항의 이차전지용 전극인 이차전지.
- 제58항에 있어서,상기 이차전지는, 스택형, 권취형, 스택/폴딩형 또는 케이블형인 것을 특징으로 하는 이차전지.
- 내부전극;상기 내부전극의 외면을 둘러싸며 형성된 전극의 단락을 방지하는 분리층; 및상기 분리층의 외면을 둘러싸며 나선형으로 권선되어 형성된 외부전극;을 포함하되,상기 내부전극 및 상기 외부전극 중 1종 이상이 제1항 내지 제39항 중 어느 한 항의 이차전지용 전극으로 형성되는 케이블형 이차전지.
- 제60항에 있어서,상기 외부전극은, 일측 방향으로 연장된 스트립 구조인 것을 특징으로 하는 케이블형 이차전지.
- 제60항에 있어서,상기 외부전극은, 서로 겹치지 않도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
- 제62항에 있어서,상기 외부전극은, 상기 외부전극 폭의 2 배 이내의 간격을 두고 서로 이격되어 겹치지 않도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
- 제60항에 있어서,상기 외부전극은, 서로 겹치도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
- 제64항에 있어서,상기 외부전극은, 상기 서로 겹치는 부분의 폭이 상기 외부전극 폭의 0.9 배 이내가 되도록 나선형으로 권선되어 형성되는 것을 특징으로 하는 케이블형 이차전지.
- 제60항에 있어서,상기 내부전극은, 내부에 공간이 형성되어 있는 중공형 구조인 것을 특징으로 하는 케이블형 이차전지.
- 제66항에 있어서,상기 내부전극은, 나선형으로 권선된 하나 이상의 상기 이차전지용 전극을 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제66항에 있어서,상기 내부전극의 내부에 형성되어 있는 공간에, 내부전극 집전체 코어부, 전해질을 포함하는 리튬이온 공급 코어부, 또는 충전 코어부가 형성된 것을 특징으로 하는 케이블형 이차전지.
- 제68항에 있어서,상기 내부전극 집전체 코어부는, 카본나노튜브, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 제조된 것을 특징으로 하는 케이블형 이차전지.
- 제68항에 있어서,상기 리튬이온 공급 코어부는, 겔형 폴리머 전해질 및 지지체를 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제68항에 있어서,상기 리튬이온 공급 코어부는, 액체 전해질 및 다공성 담체를 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제68항에 있어서,상기 전해질은, 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC), 비닐렌카보네이트(VC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 메틸포르메이트(MF), 감마-부티로락톤(γ-BL;butyrolactone), 설포레인(sulfolane), 메틸아세테이트(MA; methylacetate), 또는 메틸프로피오네이트(MP; methylpropionate)를 사용한 비수전해액; PEO, PVdF, PVdF-HFP, PMMA, PAN 또는 PVAc를 사용한 겔형 고분자 전해질; 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 중에서 선택된 전해질을 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제68항에 있어서,상기 전해질은, 리튬염을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제73항에 있어서,상기 리튬염은, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 케이블형 이차전지.
- 제68항에 있어서,상기 충전 코어부는 와이어, 섬유상, 분말상, 메쉬, 또는 발포체 형상을 갖는 고분자 수지, 고무, 또는 무기물을 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제60항에 있어서,상기 내부전극은, 음극 또는 양극이고, 상기 외부전극은, 상기 내부전극에 상응하는 양극 또는 음극인 것을 특징으로 하는 케이블형 이차전지.
- 제60항에 있어서,상기 분리층은, 전해질층 또는 세퍼레이터인 것을 특징으로 하는 케이블형 이차전지.
- 제77항에 있어서,상기 전해질층은, PEO, PVdF, PVdF-HFP, PMMA, PAN 또는 PVAc를 사용한 겔형 고분자 전해질; 또는PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide) 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질; 중에서 선택된 전해질을 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제77항에 있어서,상기 전해질층은, 리튬염을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제77항에 있어서,상기 세퍼레이터는, 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 고분자 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈레이트로 이루어진 군에서 선택된 고분자로 제조한 다공성 고분자 기재; 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재; 또는 상기 다공성 고분자 기재의 적어도 일면상에 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 구비한 세퍼레이터인 것을 특징으로 하는 케이블형 이차전지.
- 제80항에 있어서,상기 다공성 고분자 기재는, 다공성 고분자 필름 기재, 또는 다공성 부직포 기재인 것을 특징으로 하는 케이블형 이차전지.
- 제60항에 있어서,상기 외부전극의 외면을 둘러싸도록 형성된 보호피복을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제82항에 있어서,상기 보호피복은, 고분자 수지로 형성된 것을 특징으로 하는 케이블형 이차전지.
- 제83항에 있어서,상기 고분자 수지는, PET, PVC, HDPE 및 에폭시 수지로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제83항에 있어서,상기 보호피복은, 수분 차단층을 더 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 제85항에 있어서,상기 수분 차단층은, 알루미늄 또는 액정 고분자로 형성된 것을 특징으로 하는 케이블형 이차전지.
- 전해질을 포함하는 리튬이온 공급 코어부;상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성되고, 집전체 및 전극 활물질층을 구비하는 내부전극;상기 내부전극의 외면을 둘러싸며 형성된 전극의 단락을 방지하는 분리층; 및상기 분리층의 외면을 둘러싸며 나선형으로 권선되어 형성되고, 집전체 및 전극 활물질층을 구비하는 외부전극;을 포함하되,상기 내부전극 및 상기 외부전극 중 1종 이상이 제1항 내지 제39항 중 어느 한 항의 이차전지용 전극으로 형성되는 케이블형 이차전지.
- 서로 평행하게 배치된 2 이상의 내부전극;상기 내부전극들의 외면을 함께 둘러싸며 형성된 전극의 단락을 방지하는 분리층; 및상기 분리층의 외면을 둘러싸며 나선형으로 권선되어 형성된 외부전극;을 포함하되,상기 내부전극 및 상기 외부전극 중 1종 이상이 제1항 내지 제39항 중 어느 한 항의 이차전지용 전극으로 형성되는 케이블형 이차전지.
- 전해질을 포함하는 2 이상의 리튬이온 공급 코어부;각각의 상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성되고, 집전체 및 전극 활물질층을 구비하며 서로 평행하게 배치되는 2 이상의 내부전극;상기 내부전극들의 외면을 함께 둘러싸며 형성된 전극의 단락을 방지하는 분리층; 및상기 분리층의 외면을 둘러싸며 나선형으로 권선되어 형성되고, 집전체 및 전극 활물질층을 구비하는 외부전극;을 포함하되,상기 내부전극 및 상기 외부전극 중 1종 이상이 제1항 내지 제39항 중 어느 한 항의 이차전지용 전극으로 형성되는 케이블형 이차전지.
- 제89항에 있어서,상기 내부전극은, 나선형으로 권선된 하나 이상의 상기 이차전지용 전극을 포함하는 것을 특징으로 하는 케이블형 이차전지.
- 내부전극; 및상기 내부전극의 외면을 둘러싸며 나선형으로 권선되어 형성된 외부전극;을 포함하되,상기 외부전극은 제1항 내지 제30항 중 어느 한 항의 이차전지용 전극이고,상기 다공성의 제1 지지층은, 상기 내부전극과 상기 외부전극의 단락을 방지하는 것을 특징으로 하는 케이블형 이차전지.
- 전해질을 포함하는 리튬이온 공급 코어부;상기 리튬이온 공급 코어부의 외면을 둘러싸며 형성된 내부전극; 및상기 내부전극의 외면을 둘러싸며 나선형으로 권선되어 형성된 외부전극;을 포함하되,상기 내부전극 및 상기 외부전극 중 1종 이상이 제1항 내지 제30항 중 어느 한 항의 이차전지용 전극이고,상기 다공성의 제1 지지층은, 상기 내부전극과 상기 외부전극의 단락을 방지하는 것을 특징으로 하는 케이블형 이차전지.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017516844A JP6560345B2 (ja) | 2014-10-31 | 2015-10-30 | 二次電池用電極、その製造方法、それを含む二次電池及びケーブル型二次電池 |
US15/321,460 US10826129B2 (en) | 2014-10-31 | 2015-10-30 | Electrode for secondary battery, method for manufacturing same, secondary battery comprising same, and cable-type secondary battery |
CN201580035997.7A CN106471646B (zh) | 2014-10-31 | 2015-10-30 | 二次电池用电极、其制造方法、包含其的二次电池及线缆型二次电池 |
EP15855033.5A EP3139426B1 (en) | 2014-10-31 | 2015-10-30 | Electrode for secondary battery, method for manufacturing same, secondary battery comprising same, and cable-type secondary battery |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0150767 | 2014-10-31 | ||
KR10-2014-0150760 | 2014-10-31 | ||
KR20140150760 | 2014-10-31 | ||
KR10-2014-0150754 | 2014-10-31 | ||
KR20140150754 | 2014-10-31 | ||
KR10-2014-0150766 | 2014-10-31 | ||
KR20140150767 | 2014-10-31 | ||
KR20140150766 | 2014-10-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2016068651A2 true WO2016068651A2 (ko) | 2016-05-06 |
WO2016068651A3 WO2016068651A3 (ko) | 2016-07-21 |
Family
ID=55858499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/011589 WO2016068651A2 (ko) | 2014-10-31 | 2015-10-30 | 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10826129B2 (ko) |
EP (1) | EP3139426B1 (ko) |
JP (1) | JP6560345B2 (ko) |
KR (1) | KR101766871B1 (ko) |
CN (1) | CN106471646B (ko) |
WO (1) | WO2016068651A2 (ko) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102207524B1 (ko) | 2016-09-01 | 2021-01-26 | 주식회사 엘지화학 | 리튬 이차전지용 전극의 제조방법 및 이로부터 제조된 리튬 이차전지용 전극 |
CN111279527B (zh) | 2017-06-09 | 2023-11-07 | Cps科技控股有限公司 | 铅酸电池 |
US11936032B2 (en) | 2017-06-09 | 2024-03-19 | Cps Technology Holdings Llc | Absorbent glass mat battery |
CN107389761A (zh) * | 2017-07-12 | 2017-11-24 | 中北大学 | 一种碳化硅修饰碳糊电极的制备方法 |
EP3614465B1 (en) | 2017-09-01 | 2022-01-26 | LG Energy Solution Ltd. | Method for manufacturing anode for cable-type secondary battery, anode manufactured thereby, and cable-type secondary battery including same anode |
CN107732210B (zh) * | 2017-10-19 | 2020-07-21 | 乌兰察布市大盛石墨新材料股份有限公司 | 氧化锡-石墨烯复合负极材料及其制备方法 |
KR102204304B1 (ko) | 2017-12-27 | 2021-01-18 | 주식회사 엘지화학 | 리튬 메탈 이차전지 및 그 제조 방법 |
WO2019132460A1 (ko) * | 2017-12-27 | 2019-07-04 | 주식회사 엘지화학 | 리튬 메탈 이차전지 및 그 제조 방법 |
KR102043263B1 (ko) * | 2018-04-04 | 2019-11-27 | 두산중공업 주식회사 | 바이폴라 cdi 전극, 바이폴라 cdi 전극 모듈 및 이를 포함하는 수처리 장치 |
CN108831752B (zh) * | 2018-06-20 | 2019-11-26 | 苏州大学 | 一种芳纶纤维电化学电容器及其制备方法 |
KR102301795B1 (ko) * | 2019-05-08 | 2021-09-13 | 최현성 | 카본 전극 필터를 포함하는 가정용 정수기 |
WO2021153966A1 (ko) * | 2020-01-31 | 2021-08-05 | 주식회사 엘지에너지솔루션 | 다층 구조의 무기물층을 포함하는 분리막합체전극 제조방법 및 그에 따른 분리막합체전극 |
WO2022086142A1 (ko) * | 2020-10-19 | 2022-04-28 | 주식회사 엘지에너지솔루션 | 분리막 및 이를 포함하는 리튬 이차 전지 |
CN112582717A (zh) * | 2020-12-07 | 2021-03-30 | 宁德新能源科技有限公司 | 一种电池 |
EP4258460A4 (en) * | 2021-09-28 | 2024-08-07 | Lg Energy Solution Ltd | BATTERY CELL, BATTERY MODULE AND BATTERY CELL MANUFACTURING METHOD |
CN114094120B (zh) * | 2021-11-23 | 2023-10-27 | 成都先进金属材料产业技术研究院股份有限公司 | 钒电池用一体化石墨电极及钒电池 |
KR102529173B1 (ko) * | 2022-09-20 | 2023-05-08 | 한국건설기술연구원 | 그래핀이 코팅된 셀룰로스 종이전극과 그 제조방법, 및 셀룰로스 종이전극을 이용한 미세먼지 제거장치 |
FR3145838A1 (fr) * | 2023-02-15 | 2024-08-16 | Psa Automobiles Sa | Batterie electrochimique a electrodes filaires |
CN116565127B (zh) * | 2023-07-06 | 2023-12-22 | 宁德新能源科技有限公司 | 电极组件、制备单面极片的方法、二次电池和电子设备 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2733970B2 (ja) * | 1988-07-25 | 1998-03-30 | ソニー株式会社 | 非水電解液電池 |
JP3371301B2 (ja) * | 1994-01-31 | 2003-01-27 | ソニー株式会社 | 非水電解液二次電池 |
WO1995029513A1 (en) * | 1994-04-20 | 1995-11-02 | Valence Technology, Inc. | Radiation curable frame for stacked cell construction and for edge sealing of electrochemical cells to retard dendritic short-circuits |
JPH0888019A (ja) * | 1994-09-20 | 1996-04-02 | Sony Corp | 密閉型蓄電池 |
CA2215622C (en) * | 1995-03-31 | 2003-09-02 | Mitsubishi Paper Mills Limited | Non-woven fabric for separator of non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same |
JPH11238515A (ja) * | 1998-02-20 | 1999-08-31 | Kao Corp | 非水系二次電池用負極 |
JPH11238514A (ja) * | 1998-02-20 | 1999-08-31 | Kao Corp | 非水系二次電池用正極 |
US7399322B2 (en) * | 2003-07-08 | 2008-07-15 | Bps Co., Ltd | Method of making porous polymeric separator and lithium ion polymer battery |
KR100918751B1 (ko) | 2006-07-26 | 2009-09-24 | 주식회사 엘지화학 | 분리막과의 계면 접착이 향상된 전극 및 이를 포함하는전기 화학 소자 |
CN101071860A (zh) * | 2007-06-08 | 2007-11-14 | 大连理工大学 | 一种柔性集流体 |
US8518577B2 (en) * | 2008-06-13 | 2013-08-27 | Samsung Sdi Co., Ltd. | Electrode assembly and secondary battery having the same |
JP5569515B2 (ja) * | 2009-02-25 | 2014-08-13 | 日本ゼオン株式会社 | リチウムイオン二次電池用電極 |
KR101246827B1 (ko) | 2010-11-01 | 2013-03-28 | 주식회사 아모그린텍 | 전극 조립체 및 이를 이용한 이차 전지와 그의 제조방법 |
JP2012099385A (ja) * | 2010-11-04 | 2012-05-24 | Konica Minolta Holdings Inc | 耐熱性多孔質層付き電極とその製造方法及び二次電池 |
JP2012199162A (ja) * | 2011-03-23 | 2012-10-18 | Sanyo Electric Co Ltd | ラミネート外装体二次電池 |
KR101495948B1 (ko) | 2011-07-29 | 2015-02-26 | 주식회사 엘지화학 | 파우치형 2차전지 |
EP2768062B1 (en) * | 2011-10-13 | 2016-05-18 | LG Chem, Ltd. | Cable-type secondary battery |
JP5890529B2 (ja) * | 2011-10-13 | 2016-03-22 | エルジー・ケム・リミテッド | ケーブル型二次電池 |
JP5748922B2 (ja) | 2011-10-25 | 2015-07-15 | エルジー・ケム・リミテッド | 二次電池用負極、及びそれを備える二次電池 |
KR101380586B1 (ko) * | 2011-10-25 | 2014-04-01 | 주식회사 엘지화학 | 이차전지용 음극 및 이를 구비하는 이차전지 |
KR101375158B1 (ko) * | 2011-11-17 | 2014-03-17 | 주식회사 샤인 | 전극 조립체, 이의 제조 방법, 및 전지의 충전 및 방전 방법 |
WO2014049949A1 (ja) * | 2012-09-27 | 2014-04-03 | 三洋電機株式会社 | セパレータ一体形電極及び非水電解質二次電池 |
KR101404062B1 (ko) | 2012-11-15 | 2014-06-05 | 주식회사 엘지화학 | 무선 충전이 가능한 케이블형 이차전지 |
KR101636393B1 (ko) * | 2012-11-30 | 2016-07-05 | 주식회사 엘지화학 | 가스 배출성이 개선된 전기화학소자용 기재, 그의 제조방법 및 그를 포함하는 전기화학소자 |
KR101440939B1 (ko) | 2012-12-12 | 2014-09-17 | 주식회사 엘지화학 | 이차전지용 전극, 그를 포함하는 이차전지 및 케이블형 이차전지 |
CN104067418B (zh) * | 2012-12-12 | 2016-05-18 | 株式会社Lg化学 | 二次电池用电极、包含其的二次电池和线缆型二次电池 |
KR101654680B1 (ko) | 2012-12-12 | 2016-09-06 | 주식회사 엘지화학 | 이차전지용 전극 및 그를 포함하는 케이블형 이차전지 |
KR101561188B1 (ko) | 2013-02-20 | 2015-10-16 | 에스케이이노베이션 주식회사 | 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 에어 배터리 |
JP2014203740A (ja) * | 2013-04-08 | 2014-10-27 | トヨタ自動車株式会社 | 全固体電池 |
KR101783922B1 (ko) * | 2014-06-19 | 2017-10-10 | 주식회사 엘지화학 | 케이블형 이차전지 |
-
2015
- 2015-10-30 WO PCT/KR2015/011589 patent/WO2016068651A2/ko active Application Filing
- 2015-10-30 KR KR1020150152122A patent/KR101766871B1/ko active IP Right Grant
- 2015-10-30 CN CN201580035997.7A patent/CN106471646B/zh active Active
- 2015-10-30 JP JP2017516844A patent/JP6560345B2/ja active Active
- 2015-10-30 US US15/321,460 patent/US10826129B2/en active Active
- 2015-10-30 EP EP15855033.5A patent/EP3139426B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106471646B (zh) | 2019-04-19 |
EP3139426A4 (en) | 2018-01-24 |
JP6560345B2 (ja) | 2019-08-14 |
CN106471646A (zh) | 2017-03-01 |
KR20160051660A (ko) | 2016-05-11 |
WO2016068651A3 (ko) | 2016-07-21 |
US10826129B2 (en) | 2020-11-03 |
EP3139426B1 (en) | 2019-04-24 |
KR101766871B1 (ko) | 2017-08-10 |
JP2017537429A (ja) | 2017-12-14 |
US20170222278A1 (en) | 2017-08-03 |
EP3139426A2 (en) | 2017-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016068651A2 (ko) | 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지 | |
WO2014182062A1 (ko) | 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지 | |
WO2014182059A1 (ko) | 케이블형 이차전지 | |
WO2014182058A1 (ko) | 케이블형 이차전지 | |
WO2014182060A1 (ko) | 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지 | |
WO2014182063A1 (ko) | 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지 | |
WO2014182056A1 (ko) | 케이블형 이차전지 및 그의 제조방법 | |
WO2018034526A1 (ko) | 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬 이차전지 | |
WO2014182064A1 (ko) | 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지 | |
WO2021235794A1 (ko) | 이차전지 | |
WO2014092471A1 (ko) | 이차전지용 전극, 그를 포함하는 이차전지 및 케이블형 이차전지 | |
WO2019050346A1 (ko) | 리튬 전극 및 이를 포함하는 리튬 이차전지, 및 플렉서블 이차 전지 | |
WO2016129939A1 (ko) | 케이블형 이차전지 | |
WO2022019572A1 (ko) | 이차전지용 세퍼레이터, 이의 제조방법, 이를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지 | |
WO2015080499A1 (ko) | 케이블형 이차전지 | |
WO2016068684A1 (ko) | 다층형 케이블형 이차전지 | |
WO2020159296A1 (ko) | 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 | |
WO2020242138A1 (ko) | 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지 | |
WO2022015026A1 (ko) | 이차전지용 세퍼레이터, 이의 제조방법 및 상기 세퍼레이터를 구비한 이차전지 | |
WO2021071125A1 (ko) | 리튬 이차 전지 및 리튬 이차 전지의 제조방법 | |
WO2022158951A2 (ko) | 리튬 이차전지용 세퍼레이터 및 이를 구비한 리튬 이차전지 | |
WO2020116912A1 (ko) | 플렉서블 전극, 이를 포함하는 이차전지, 및 플렉서블 이차전지 | |
WO2021194260A1 (ko) | 음극의 제조방법 | |
WO2020231088A1 (ko) | 음극의 제조방법 | |
WO2018164402A1 (ko) | 전극 조립체 및 이를 포함하는 리튬 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15855033 Country of ref document: EP Kind code of ref document: A2 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015855033 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015855033 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15321460 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2017516844 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |