WO2022019572A1 - 이차전지용 세퍼레이터, 이의 제조방법, 이를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지 - Google Patents

이차전지용 세퍼레이터, 이의 제조방법, 이를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지 Download PDF

Info

Publication number
WO2022019572A1
WO2022019572A1 PCT/KR2021/009138 KR2021009138W WO2022019572A1 WO 2022019572 A1 WO2022019572 A1 WO 2022019572A1 KR 2021009138 W KR2021009138 W KR 2021009138W WO 2022019572 A1 WO2022019572 A1 WO 2022019572A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
separator
acrylic polymer
monomer
transition temperature
Prior art date
Application number
PCT/KR2021/009138
Other languages
English (en)
French (fr)
Inventor
가경륜
권혜진
이승현
이제안
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/914,126 priority Critical patent/US20240039119A1/en
Priority to EP21845906.3A priority patent/EP4152509A1/en
Priority to CN202180047711.2A priority patent/CN115803959A/zh
Publication of WO2022019572A1 publication Critical patent/WO2022019572A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for a secondary battery, a manufacturing method thereof, a manufacturing method of a secondary battery including the separator, and a secondary battery manufactured by the same.
  • a secondary battery is a battery that can best satisfy these needs, and research on it is being actively conducted.
  • Such secondary batteries generally include a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a non-aqueous electrolyte containing an electrolyte salt and an organic solvent, and a separator interposed between the positive electrode and the negative electrode to electrically insulate them.
  • the separator In the manufacture and use of such a secondary battery, securing its safety is an important solution.
  • the separator typically uses a polyolefin-based porous substrate, but due to its material properties and manufacturing process properties, the separator exhibits extreme heat shrinkage behavior at high temperatures, etc., and thus has stability problems such as internal short circuit.
  • an organic-inorganic composite porous separator in which a mixture of inorganic particles and a binder polymer is coated on a porous polymer substrate has been proposed.
  • a technology of forming an adhesive layer having a high binder polymer content near the surface of the separator has been developed by coating a mixture of a binder polymer on the separator and moving the binder polymer to the surface of the separator through a humidified phase separation method.
  • an object of the present invention is to provide a separator for a secondary battery that includes inorganic particles and has excellent electrode adhesion, and a method for manufacturing the same.
  • Another problem to be solved by the present invention is to provide a method for manufacturing a secondary battery including the separator and a secondary battery manufactured according to the method.
  • a first layer formed on at least one surface of the porous polymer substrate and comprising a plurality of inorganic particles and a non-particulate acrylic polymer having a glass transition temperature of 15° C. or less and connecting and fixing the inorganic particles;
  • a secondary battery separator comprising a second layer comprising a particulate acrylic polymer having a glass transition temperature of 20 °C to 50 °C.
  • the non-particulate acrylic polymer may have a glass transition temperature of 0° C. or less.
  • a third embodiment according to the first or second embodiment,
  • the non-particulate acrylic polymer may include a repeating unit derived from the first monomer and a repeating unit derived from the second monomer,
  • a glass transition temperature of the first monomer may be greater than a glass transition temperature of the second monomer.
  • the first monomer may include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, or two or more of these.
  • a fifth embodiment according to the third or fourth embodiment,
  • the second monomer may include 2-ethylhexyl methacrylate, lauryl methacrylate, octadecyl methacrylate, or two or more of these.
  • the repeating unit derived from the second monomer may be included in an amount of 60 wt% or more based on 100 wt% of the non-particulate acrylic polymer.
  • a seventh embodiment according to any one of the first to sixth embodiments,
  • the particulate acrylic polymer may include a repeating unit derived from the third monomer and a repeating unit derived from the fourth monomer,
  • a glass transition temperature of the third monomer may be greater than a glass transition temperature of the fourth monomer.
  • the third monomer may include styrene, vinyl acetate, acrylonitrile, or two or more of these.
  • the ninth embodiment is according to the seventh embodiment or the eighth embodiment.
  • the fourth monomer may include methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, ethylene, or two or more thereof.
  • a weight ratio of the repeating unit derived from the third monomer to the repeating unit derived from the fourth monomer may be 1.5:8.5 to 4:6.
  • the average particle diameter of the particulate acrylic polymer may be 200 nm to 800 nm.
  • a ratio of the density of the particulate acrylic polymer to the density of the inorganic particles may be 0.5 or less.
  • the particle-type acrylic polymer may have a density of 1.5 g/m 3 or less.
  • a fourteenth embodiment according to any one of the first to thirteenth embodiments,
  • the density of the inorganic particles may be 2.0 g/m 3 or more.
  • Adhesion to the electrode of the secondary battery separator may be 30 to 200 gf/25 mm.
  • the air permeability of the secondary battery separator may be 10 to 300 sec/100 cc.
  • the adhesion between the porous polymer substrate and the first layer may be 10 to 300 gf/15 mm.
  • a secondary battery comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode
  • the separator relates to a secondary battery, characterized in that the separator for a secondary battery according to any one of the first to seventeenth embodiments.
  • It relates to a method of manufacturing a secondary battery, comprising the step of interposing the separator for a secondary battery of any one of the first to seventeenth embodiments between the positive electrode and the negative electrode and lamination by heating and pressing.
  • It relates to a secondary battery manufactured by the manufacturing method of the nineteenth embodiment.
  • a second layer comprising a particulate acrylic polymer having a glass transition temperature of 20° C. to 50° C. is formed on the upper surface of the first layer comprising inorganic particles, thereby forming inorganic particles It can have excellent adhesion to the electrode even when included.
  • the separator for secondary batteries according to an embodiment of the present invention uses a particulate acrylic polymer having a glass transition temperature of 20 to 50° C.
  • the second layer can be formed without blocking the pores of the first layer, thereby solving the resistance problem. can be improved
  • FIG. 1 is a cross-sectional view of a separator for a secondary battery according to an embodiment of the present invention.
  • Example 2 shows an SEM photograph of the particulate acrylic polymer used for the second layer in Example 1.
  • Example 3 shows an SEM photograph of the particulate acrylic polymer used for the second layer in Example 2.
  • a first layer formed on at least one surface of the porous polymer substrate and comprising a plurality of inorganic particles and a non-particulate acrylic polymer having a glass transition temperature of 15° C. or less and connecting and fixing the inorganic particles;
  • first layer It is formed on the upper surface of the first layer and characterized in that it comprises a second layer comprising a particulate acrylic polymer having a glass transition temperature of 20 to 50 °C.
  • FIG. 1 is a view schematically showing a separator for a secondary battery according to an embodiment of the present invention.
  • the separator 1 for a secondary battery includes a porous polymer substrate 10 .
  • the porous polymer substrate 10 can be used without any particular limitation as long as it can be used as a material for a separator for a secondary battery in general.
  • the porous polymer substrate is a thin film containing a polymer material, and non-limiting examples of the polymer material include polyolefin resin, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyimide, polyether. It may include at least one of a polymer resin such as ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalene.
  • porous polymer substrate a nonwoven fabric or a porous polymer film formed of the polymer material as described above, or a laminate of two or more thereof may be used.
  • the porous polymer substrate may be any one of the following a) to e).
  • a porous composite membrane having a multilayer structure comprising at least two of a) to d).
  • the thickness of the porous polymer substrate 10 may be 5 ⁇ m to 50 ⁇ m, but is not limited thereto.
  • the thickness of the porous polymer substrate is within the aforementioned range, it is possible to prevent a problem that the separator may be easily damaged during use of the battery.
  • the average pore size and pore size present in the porous polymer substrate are also not particularly limited, but may be 0.01 ⁇ m to 50 ⁇ m and 10% to 95%, respectively.
  • the porosity and average pore size of the porous polymer substrate 10 is a scanning electron microscope (SEM) image, a mercury porosimeter, a capillary flow porometer (capillary flow porometer), or pores It can be measured by the BET 6-point method by the nitrogen gas adsorption flow method using a porosimetry analyzer (Bell Japan Inc, Belsorp-II mini).
  • the separator 1 for a secondary battery includes a first layer 20 on at least one surface of the porous polymer substrate 10 .
  • the first layer 20 may be formed on one or both surfaces of the porous polymer substrate 10 .
  • the first layer 20 includes a plurality of inorganic particles 21 and a non-particulate acrylic polymer 22 having a glass transition temperature of 15° C. or less and connecting and fixing the inorganic particles 21 .
  • the first layer 20 may prevent the porous polymer substrate 10 from exhibiting extreme thermal shrinkage behavior at high temperatures due to the inorganic particles 21 , thereby improving the safety of the separator.
  • the inorganic particles 21 are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles 21 that can be used in the present invention are not particularly limited as long as oxidation and/or reduction reactions do not occur in the operating voltage range of the applied battery (eg, 0 to 5V based on Li/Li +).
  • the ionic conductivity of the electrolyte can be improved by contributing to an increase in the degree of dissociation of an electrolyte salt, for example, a lithium salt in a liquid electrolyte.
  • the inorganic particles 21 may include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more.
  • inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1) , 0 ⁇ y ⁇ 1), Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, Mg( OH) 2 , NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , AlOOH, Al(OH) 3 , SiC, TiO 2 , or mixtures thereof.
  • inorganic particles having lithium ion transfer ability to the inorganic particles 21, that is, inorganic particles containing elemental lithium but having a function of moving lithium ions without storing lithium can be used.
  • inorganic particles having lithium ion transport ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y- based glass (0 ⁇ x ⁇ 4) , 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x
  • the inorganic particles 21 are not limited, but for the formation of a uniform thickness of the first layer and an appropriate porosity, 0.01 to 10 ⁇ m, or 0.05 to 1.0 ⁇ m, or 0.2 to 1.0 ⁇ m, Alternatively, it may have an average particle diameter of 0.5 to 1.0 ⁇ m.
  • the average particle diameter of the inorganic particles 21 satisfies this range, dispersibility is maintained, so it is easy to control the physical properties of the separator, and the increase in the thickness of the first layer 20 can be avoided, so that mechanical properties are maintained. can be improved Also, due to the excessively large pore size, it is possible to reduce the probability of an internal short circuit occurring during battery charging and discharging.
  • the average particle diameter of the inorganic particles 21 and the mean particle diameter D 50 means a particle size at the 50% point of the cumulative particle number distribution of the particle diameter.
  • the particle size may be measured using a laser diffraction method. Specifically, after dispersing the powder to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (eg Microtrac S3500) to measure the diffraction pattern difference according to the particle size when the particles pass through the laser beam to measure the particle size distribution to calculate The D50 particle diameter can be measured by calculating the particle diameter at the point used as 50% of the particle number cumulative distribution according to the particle diameter in a measuring apparatus.
  • a laser diffraction particle size measuring device eg Microtrac S3500
  • the term 'non-particulate acrylic polymer' refers to an acrylic polymer that does not have a particle shape used in the first layer, and is to be distinguished from the particulate acrylic polymer included in the second layer.
  • the non-particulate acrylic polymer 22 attaches the inorganic particles 21 to each other (that is, the non-particulate acrylic polymer connects and fixes between the inorganic particles) so that the inorganic particles 21 can remain bound to each other, and the It allows the inorganic particles 21 and the porous polymer substrate 10 to maintain a binding state.
  • the glass transition temperature of the non-particulate acrylic polymer 22 is 15° C. or less.
  • the glass transition temperature of the non-particulate acrylic polymer 22 is 15° C. or less and does not have a particle shape, and is entangled with a plurality of inorganic particles 21 to form a first layer 20 on at least one surface of the porous polymer substrate 10. ) to form Therefore, the adhesion between the porous polymer substrate 10 and the first layer 20 can be secured by the non-particulate acrylic polymer 22 .
  • the non-particulate acrylic polymer 22 may have a relatively low glass transition temperature, which may be advantageous in securing adhesion between the porous polymer substrate 10 and the first layer 20 .
  • the non-particulate acrylic polymer 22 has a glass transition temperature of 12 °C or less, or 8 °C or less, 0 °C or less, or -40 °C or less, or -80 °C to 12 °C, or -80°C to 8°C, or -40°C to 8°C, -80°C to 0°C, or -40°C to 0°C.
  • the glass transition temperature of the non-particulate acrylic polymer 22 is lower, it may be more advantageous to secure adhesion between the porous polymer substrate 10 and the first layer 20 .
  • the glass transition temperature may be measured using differential scanning calorimetry (DSC). Specifically, the glass transition temperature can be measured using a differential scanning calorimeter at a temperature increase rate of 10° C./min (-50° C. to 250° C.). For example, the glass transition temperature can be measured using DSC 250 (TA).
  • DSC differential scanning calorimetry
  • the glass transition temperature of the non-particulate acrylic polymer 22 may vary depending on the type of monomer used to prepare the non-particulate acrylic polymer 22 .
  • the non-particulate acrylic polymer 22 may include a repeating unit derived from the first monomer and a repeating unit derived from the second monomer, and the glass transition temperature of the first monomer is It may be greater than the glass transition temperature of the second monomer.
  • the first monomer comprises methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, or two or more thereof. can do.
  • the first monomer has a glass transition temperature higher than that of the second monomer, so that the first layer 20 after lamination can maintain porosity by suppressing pressing of the first layer 20 during the lamination process of the electrode and the separator.
  • the glass transition temperature of the first monomer may be 20 °C or higher, or 20 °C to 107 °C, or 20 °C to 47 °C, or 47 °C to 107 °C.
  • the second monomer may include 2-ethylhexyl methacrylate, lauryl methacrylate, octadecyl methacrylate, or two or more thereof.
  • the second monomer has a glass transition temperature lower than that of the first monomer so that the first layer 20 can secure adhesion to the porous polymer substrate 10 .
  • the glass transition temperature of the second monomer is 10 °C or less, or -124 °C to 10 °C, or -100 °C to -10 °C, or -100 °C to -65 °C, or -65 °C to -10 °C days.
  • the non-particulate acrylic polymer may include a repeating unit derived from methyl methacrylate and a repeating unit derived from 2-ethylhexyl methacrylate.
  • the glass transition temperature of the non-particulate acrylic polymer 22 may vary depending on the content of each monomer even if the types of monomers used to prepare the non-particulate acrylic polymer 22 are the same.
  • the repeating unit derived from the second monomer may be included in an amount of 60 wt% or more, or 90 wt% or more, or 95 wt% or more, based on 100 wt% of the non-particulate acrylic polymer.
  • the content of the repeating unit derived from the second monomer satisfies the aforementioned range, the content of the second monomer having a lower glass transition temperature than that of the first monomer is higher than that of the first monomer, so that the first layer 20 is It may be more advantageous to secure adhesion to the porous polymer substrate 10 .
  • the weight ratio of the inorganic particles 21 to the non-particulate acrylic polymer 22 may be 20:80 to 99.9:0.1, or 50:50 to 99.5:0.5.
  • the weight ratio of the inorganic particles 21 to the non-particulate acrylic polymer 22 is within the above-mentioned range, the void space formed between the inorganic particles 21 is sufficiently formed while ensuring sufficient adhesion between the inorganic particles 21 . can be obtained
  • the finally formed first layer 20 may have excellent mechanical properties.
  • the first layer 20 may have a thickness in the range of 1 ⁇ m to 50 ⁇ m, or 2 ⁇ m to 30 ⁇ m, or 2 ⁇ m to 20 ⁇ m.
  • the average pore size of the first layer 20 may be in the range of 0.001 to 10 ⁇ m, or 0.001 to 1 ⁇ m.
  • the porosity of the first layer 20 may be in the range of 5 to 95%, in the range of 10 to 95%, in the range of 20 to 90%, or in the range of 30 to 80%.
  • the porosity corresponds to a value obtained by subtracting a volume converted to the weight and density of each component of the first layer from the volume calculated in thickness, width, and length of the first layer.
  • the porosity and average pore size of the first layer 20 is a scanning electron microscope (SEM) image, a mercury porosimeter (Mercury porosimeter), a capillary flow porometer (capillary flow porometer), Alternatively, using a porosimetry analyzer (Bell Japan Inc, Belsorp-II mini), it can be measured by the BET 6-point method by the nitrogen gas adsorption flow method.
  • SEM scanning electron microscope
  • the first layer 20 may further include a dispersant.
  • the dispersant may be used to improve the dispersibility of the inorganic particles 21 .
  • the dispersant may include carboxymethyl cellulose (CMC), polyacrylic acid (PAA), polymethacrylic acrylic acid (PMAA), or two or more of these.
  • CMC carboxymethyl cellulose
  • PAA polyacrylic acid
  • PMAA polymethacrylic acrylic acid
  • the present invention is not limited thereto.
  • the secondary battery separator 1 includes a second layer 30 on an upper surface of the first layer 20 .
  • the second layer 30 imparts adhesive force to the separator 1 , so that the surface of the separator 1 can adhere well to the electrode.
  • the second layer 30 includes a particulate acrylic polymer 31 having a glass transition temperature of 20° C. to 50° C.
  • the shape of the particulate acrylic polymer 31 is deformed by lamination to impart adhesion between the electrode and the separator.
  • the term 'particulate acrylic polymer' refers to an acrylic polymer having a particle shape included in the second layer, and is to be distinguished from the non-particulate acrylic polymer 22 included in the first layer.
  • the glass transition temperature of the particulate acrylic polymer 31 is 20° C. or more, and each independently takes on a particle shape.
  • the particulate acrylic polymer 31 has a smaller density than the inorganic particles 21, so it moves to the upper layer of the inorganic particles in the coating process, and the first layer 20 including the inorganic particles 21 ) may be formed on the upper surface of the second layer 30.
  • the particulate acrylic polymer 31 when the glass transition temperature of the particulate acrylic polymer 31 exceeds 50° C., the particulate acrylic polymer 31 has a particle shape, but when the electrode and the separator 1 are adhered Since the shape of the particles is not deformed by lamination, adhesion between the separator and the electrode is unlikely to occur.
  • the glass transition temperature of the particulate acrylic polymer 31 may be 30 °C to 45 °C.
  • the degree of deformation of the shape of the particulate acrylic polymer 31 by lamination of the electrode and the separator 1 is adjusted to control the degree of air permeability of the separator 1 , adhesion to the electrode, etc. can be further improved.
  • the ratio of the density of the particulate acrylic polymer 31 to the density of the inorganic particles 21 is 0.5 or less, 0.45 or less, or 0.42 or less.
  • the density of the particulate acrylic polymer: the density of the inorganic particles may be 0.5:1 or less, 0.45:1 or less, or 0.42:1 or less.
  • the ratio of the density of the particulate acrylic polymer 31 to the density of the inorganic particles 21 is equal to the above-mentioned range, the particulate acrylic polymer 31 is coated by the density difference with the inorganic particles 21
  • the second layer 30 may be more easily formed on the upper surface of the first layer 20 including the inorganic particles 21 by moving to the upper layer of the inorganic particles.
  • the density of the inorganic particles 21 means true density.
  • True density means the density with respect to the volume of the particle itself excluding the gap between the particle and the particle.
  • the density of the inorganic particles 21 may be measured according to a conventional true density measurement method, for example, using Micromeritics' AccuPycII-1340 equipment.
  • the density value of the inorganic particles 21 is 2.0 g/m 3 or more, or 2 g/cm 3 to 6 g/cm 3 , or 2 g/cm 3 to 4 g/cm 3 can be
  • the density of the particulate acrylic polymer 31 means true density.
  • the density of the particulate acrylic polymer 31 may be measured according to a conventional true density measurement method, for example, using Micromeritics' AccuPycII-1340 equipment.
  • the density value of the particulate acrylic polymer 31 is 1.5 g/m 3 or less, or 0.5 g/cm 3 to 1.5 g/cm 3 , or 1 g/cm 3 to 1.2 g/m cm 3 can be
  • the density value of the particulate acrylic polymer 31 may be 1.5 g/m 3 or less, and the density value of the inorganic particles may be 2.0 g/m 3 or more.
  • the density values of the particulate acrylic polymer 31 and the inorganic particles 21 satisfy the above-described range, the particulate acrylic polymer 31 and the inorganic particles 21 have a density difference between the inorganic particles 21 and the inorganic particles in the coating process.
  • the second layer 30 may be more easily formed on the upper surface of the first layer 20 including the inorganic particles 21 by moving to the
  • the glass transition temperature of the particulate acrylic polymer 31 may vary depending on the type of monomer used to prepare the particulate acrylic polymer 31 .
  • the particulate acrylic polymer may include a repeating unit derived from the third monomer and a repeating unit derived from the fourth monomer, and the glass transition temperature of the third monomer is the fourth monomer. may be greater than the glass transition temperature of
  • the third monomer may include styrene, vinyl acetate, acrylonitrile, or two or more of these.
  • the glass transition temperature of the third monomer may be 20 °C or higher, or 20 °C to 107 °C, or 28 °C to 105 °C, or 28 °C to 100 °C, or 100 °C to 105 °C.
  • the fourth monomer may include methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, ethylene, or two or more thereof.
  • the fourth monomer has a relatively low glass transition temperature, it may be advantageous for the second layer 30 to secure adhesion to the electrode.
  • the glass transition temperature of the fourth monomer may be 10 °C or less, or -124 °C to 10 °C, or -124 °C to -55 °C, or -55 °C to -22 °C, or -22 °C to 10 °C. have.
  • the particulate acrylic polymer may include a repeating unit derived from styrene and a repeating unit derived from butyl acrylate.
  • the glass transition temperature of the particulate acrylic polymer 31 may vary depending on the content of each monomer, even if the types of monomers used to prepare the particulate acrylic polymer 31 are the same.
  • the weight ratio of the repeating unit derived from the third monomer to the repeating unit derived from the fourth monomer is 1.5:8.5 to 4:6, or 2:8 to 4:6, or 2.5:7.5 to It could be 3:7.
  • the weight ratio of the repeating unit derived from the third monomer to the repeating unit derived from the fourth monomer satisfies the aforementioned range, it may be more advantageous for the second layer 30 to secure adhesion to the electrode.
  • the average particle diameter of the particulate acrylic polymer 31 is 200 nm to 800 nm nm, 250-500 nm, or 300-450 nm.
  • the average particle diameter of the particulate acrylic polymer 31 is within the above-described range, the particulate acrylic polymer 31 is easy to manufacture and the adhesion area with the electrode increases, so that the particulate acrylic polymer 31 is included.
  • the second layer 30 may have better adhesion to the electrode.
  • the average particle diameter of the particulate acrylic polymer 31 means a D 50 particle diameter
  • “D 50 particle diameter” means a particle diameter at 50% of the cumulative distribution of the number of particles according to the particle diameter.
  • the particle size may be measured using a laser diffraction method. Specifically, after dispersing the powder to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (eg Microtrac S3500) to measure the diffraction pattern difference according to the particle size when the particles pass through the laser beam to measure the particle size distribution to calculate The D50 particle diameter can be measured by calculating the particle diameter at the point used as 50% of the particle number cumulative distribution according to the particle diameter in a measuring apparatus.
  • a laser diffraction particle size measuring device eg Microtrac S3500
  • the separator for a secondary battery according to an embodiment of the present invention (1) includes a particulate acrylic polymer 31 having a glass transition temperature of 20° C. to 50° C. in the second layer 30, and non-particles having a glass transition temperature of 15° C. or less.
  • the type acrylic polymer 22 is included in the first layer 20 to include two types of acrylic polymer. Accordingly, while the separator 1 has excellent adhesion to the electrode, it is possible to secure adhesion between the first layer 20 and the porous polymer substrate 10 .
  • the secondary battery separator 1 uses the particulate acrylic polymer 31 for the second layer 30 , so that the particulate acrylic polymer 31 blocks the pores of the first layer 20 . This can be prevented, so that the air permeability is good and the resistance problem can be improved.
  • the adhesive force of the secondary battery separator (1) with the electrode is 30 to 200 gf/25 mm, or 30 to 100 gf/25 mm, or 35 to 60 gf/25 mm, or 40 to 60 gf/25 mm.
  • the adhesive force of the secondary battery separator (1) with the electrode is measured by laminating the electrode and the separator at 60° C. and 6.5 MPa using a press to prepare a specimen, and then using a double-sided tape After attaching and fixing to the glass plate, it can be measured from the strength when the separator portion of the specimen is peeled off at an angle of 180° at 25°C at a rate of 25 mm/min.
  • the air permeability of the secondary battery separator (1) is 10 to 300 sec/100 cc, or 100 to 300 sec/100 cc, or 110 to 200 sec/100 cc, or 100 to 160 sec/ It may be 100 cc.
  • the air permeability of the separator for secondary batteries (1) means the Gurley value, and 100 cc of air passes through a 1 in 2 cross section of the separator under a pressure of 12.2 in H 2 O. It may mean the time taken (seconds), that is, aeration time.
  • the air permeability of the secondary battery separator 1 may be measured by ASTM D726-94.
  • the adhesive force between the porous polymer substrate 10 and the first layer 20 may be 10 to 300 gf/15 mm, or 40 to 100 gf/15 mm.
  • the adhesive force between the porous polymer substrate 10 and the first layer 20 is determined by fixing the separator 1 on a glass plate using a double-sided tape, and then the exposed first layer 20 After firmly attaching the tape (3M transparent tape) to the tape, it can be measured by measuring the force (gf/15 mm) required to remove the tape using a two-strength measuring device.
  • the tensile strength measuring device may be 11oyd LS-1.
  • the separator for a secondary battery according to an embodiment of the present invention may be manufactured by the following manufacturing method, but is not limited thereto.
  • a porous polymer substrate is prepared.
  • the porous polymer substrate may be used as described above, and the porous polymer substrate uses a conventional method known in the art, such as a solvent, a pore former, etc. It can be prepared by forming pores through a wet method or a dry method using a stretching method.
  • an aqueous slurry containing a plurality of inorganic particles, a non-particulate acrylic polymer having a glass transition temperature of 15° C. or less, and a particulate acrylic polymer having a glass transition temperature of 20° C. to 50° C. is prepared.
  • water serves as a dispersion medium for the non-particulate acrylic polymer and the particulate acrylic polymer.
  • the method of manufacturing a separator for a secondary battery according to an embodiment of the present invention is environmentally friendly by using a non-particulate acrylic polymer and a particulate acrylic polymer dispersed in water.
  • the non-particulate acrylic polymer having a glass transition temperature of 15° C. or less, and the particle-type acrylic polymer having a glass transition temperature of 20° C. to 50° C. refer to the above description.
  • the aqueous slurry may be prepared by dispersing the non-particulate acrylic polymer and the particulate acrylic polymer in water, then adding inorganic particles and dispersing them.
  • the inorganic particles may be added in a crushed state to have a predetermined average particle diameter in advance, or the inorganic particles are added to a solution in which the non-particulate acrylic polymer and the particulate acrylic polymer are dispersed, and then the inorganic particles are mixed using a ball mill method, etc. Thus, it may be crushed and dispersed while controlling to have a predetermined average particle size.
  • the weight ratio of the inorganic particles, the non-particulate acrylic polymer having a glass transition temperature of 15° C. or less, and the particulate acrylic polymer having a glass transition temperature of 20° C. to 50° C. is 70:1 :29 to 80:5:15.
  • the non-particulate acrylic polymer is a porous polymer While it is possible to minimize the problem of increasing resistance by blocking the pores of the substrate, it is possible to secure adhesion between the inorganic particles and the porous polymer substrate.
  • a dispersant may be further included in the aqueous slurry.
  • the dispersant refer to the above description.
  • the aqueous slurry is coated on at least one surface of the porous polymer substrate.
  • the method of forming the first layer by coating the aqueous slurry on at least one surface of the porous polymer substrate is not particularly limited, as long as it is a method commonly used in the art, and is not limited as a non-limiting example. and methods such as a dip coating method, a die coating method, a roll coating method, a comma coating method, a doctor blade coating method, a reverse roll coating method, and a direct roll coating method.
  • the particle-type acrylic polymer having a glass transition temperature of 20° C. to 50° C. may have a lower density than inorganic particles. Accordingly, when the aqueous slurry is coated on the porous polymer substrate, the particles may move to the upper layer of the inorganic particles and be positioned on the surface of the separator facing the electrode.
  • the non-particulate acrylic polymer may not move to the upper layer of the inorganic particles and may be entangled with the inorganic particles and sink toward the porous polymer substrate. Accordingly, using the method for manufacturing the separator for secondary batteries according to an embodiment of the present invention, it may be possible to form the first layer and the second layer together without going through a separate process for forming the second layer.
  • the particulate acrylic polymer has a lower density than the inorganic particles and moves to the upper layer of the inorganic particles, the pores of the first layer are not blocked, so air permeability can be good, and the resistance problem can be improved.
  • the coated aqueous slurry is dried.
  • the drying may be dried by a drying method in manufacturing a conventional separator.
  • a temperature 10° C. or more higher than the glass transition temperature of the particulate acrylic polymer should not be transmitted to the separator.
  • the particle shape of the particulate acrylic polymer may have an effect of removing the residual dispersion medium without breaking down.
  • a secondary battery separator capable of improving resistance while having excellent adhesion to an electrode can be manufactured.
  • the separator for secondary batteries includes two types of acrylic polymers: a particulate acrylic polymer having a glass transition temperature of 20°C to 50°C and a non-particulate acrylic polymer having a glass transition temperature of 15°C or less. At the same time, it is possible to secure adhesion between the first layer and the porous polymer substrate.
  • a secondary battery may be manufactured using the separator for secondary battery according to the present invention.
  • the method of manufacturing a secondary battery according to an embodiment of the present invention is characterized in that it includes the step of laminating by interposing a secondary battery separator between the positive electrode and the negative electrode and heating and pressing. Through the lamination step, the shape of the particulate acrylic polymer having a glass transition temperature of 20° C. to 50° C. included in the second layer of the separator for secondary batteries is deformed to form an adhesive force between the electrode and the separator.
  • the lamination may be performed at 30°C to 150°C, or 60°C to 100°C, or 60°C to 80°C. As the lamination is performed in the above-described temperature range, the particle shape of the particulate acrylic polymer is deformed, so that it may be easier to form an adhesive force between the electrode and the separator.
  • the lamination may be performed at a pressure of 3.5 MPa to 7.8 MPa.
  • the lamination may be performed under a temperature condition of 30 °C to 150 °C, and a pressure condition of 3.5 MPa to 7.8 MPa.
  • the secondary battery separator may be interposed between the positive electrode and the negative electrode of the secondary battery, and may be interposed between adjacent cells or electrodes when a plurality of cells or electrodes are assembled to form an electrode assembly.
  • the electrode assembly may have various structures such as a simple stack type, a jelly-roll type, a stack-folding type, and a lamination-stack type.
  • the secondary battery may be manufactured according to the method for manufacturing the secondary battery of the present invention.
  • the secondary battery of the present invention may preferably be a lithium secondary battery.
  • the lithium secondary battery may include a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the electrode to be applied together with the secondary battery separator of the present invention is not particularly limited, and the electrode active material may be manufactured in a binding form to the current collector according to a conventional method known in the art.
  • a conventional negative electrode active material that can be used for the negative electrode of a conventional electrochemical device can be used, and in particular, lithium metal or lithium alloy, carbon, petroleum coke, activated carbon, A lithium adsorption material such as graphite or other carbons may be used.
  • Non-limiting examples of the positive current collector include a foil made of aluminum, nickel, or a combination thereof
  • non-limiting examples of the negative current collector include copper, gold, nickel, or a copper alloy or a combination thereof. There are manufactured foils and the like.
  • the conductive material used in the negative electrode and the positive electrode may be typically added in an amount of 1 wt% to 30 wt% based on the total weight of each active material layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and server black
  • conductive fibers such as carbon fibers and metal fibers
  • carbon fluoride such as aluminum and nickel powder
  • metal powders such as aluminum and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the binder used in the negative electrode and the positive electrode is a component that helps the bonding of the active material and the conductive material and the bonding to the current collector, and is typically 1% by weight to the total weight of each active material layer. 30% by weight may be added.
  • binders examples include polyvinylidene fluoride (PVdF), polyacrylic acid (PAA), polyvinyl alcohol, carboxyl methyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro roethylene, polyethylene, polypropylene, ethylene-propylene-dienter polymer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluororubber, various copolymers, and the like.
  • PVdF polyvinylidene fluoride
  • PAA polyacrylic acid
  • CMC carboxyl methyl cellulose
  • EPDM ethylene-propylene-dienter polymer
  • EPDM ethylene-propylene-dienter polymer
  • EPDM ethylene-propylene-dienter polymer
  • sulfonated EPDM styrene butadiene rubber
  • fluororubber
  • the electrochemical device may include an electrolyte, and the electrolyte may include an organic solvent and a lithium salt.
  • the electrolyte may include an organic solvent and a lithium salt.
  • an organic solid electrolyte or an inorganic solid electrolyte may be used as the electrolyte.
  • organic solvent examples include N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dimethoxyethane , tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid Triester, trimethoxymethane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-ibidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl pyropionate, ethyl propionate
  • An aprotic organic solvent such as these may be used.
  • the lithium salt is a material readily soluble in the organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate, imide, etc. can be used. have.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide
  • Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, aluminum trichloride, etc. may be added. have.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, or carbon dioxide gas may be further included to improve high-temperature storage characteristics.
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, polyagitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, A polymer containing an ionic dissociation group or the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates, etc. of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 and the like may be used.
  • the electrolyte injection may be performed at an appropriate stage during the battery manufacturing process according to the manufacturing process and required physical properties of the final product. That is, it may be applied before assembling the battery or in the final stage of assembling the battery.
  • the separator for an electrochemical device in addition to the general process of winding, lamination, stack, and folding processes of the separator and the electrode are possible.
  • the separator for an electrochemical device may be interposed between the anode and the cathode of the electrochemical device, and between adjacent cells or electrodes when a plurality of cells or electrodes are assembled to form an electrode assembly. may be interposed.
  • the electrode assembly may have various structures such as a simple stack type, a jelly-roll type, a stack-folding type, and a lamination-stack type.
  • Al(OH) 3 aluminum hydroxide
  • aqueous slurry for 120 minutes using a bead mill to prepare an aqueous slurry.
  • water was added so that the total solid content was 40% by weight.
  • This was coated on a cross section of a 9 ⁇ m thick polyethylene porous substrate (Toray) to a thickness of 3 ⁇ m by a bar coating method, and then dried at 60° C. to 80° C. for 30 seconds to prepare a secondary battery separator.
  • Toray polyethylene porous substrate
  • a separator for a secondary battery was prepared in the same manner as in Example 1 except that it was used.
  • a separator for a secondary battery was prepared in the same manner as in Example 1 except that it was used.
  • a secondary battery separator was prepared in the same manner as in Example 1 except that it was used.
  • a secondary battery separator was prepared in the same manner as in Example 1, except that the particulate acrylic polymer was not used.
  • Example 1 A separator for a secondary battery was manufactured in the same manner as in Example 1, except that.
  • Example 1 A separator for a secondary battery was manufactured in the same manner as in Example 1, except that.
  • a separator for a secondary battery was prepared in the same manner as in Example 1 except that it was used.
  • a separator for a secondary battery was prepared in the same manner as in Example 1 except that the non-particulate acrylic polymer was not used.
  • Evaluation Example 2 Evaluation of the properties of the second layer according to the glass transition temperature of the acrylic polymer
  • Table 1 shows the thickness, coating amount, air permeability, and adhesion to the electrode of the separators prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were evaluated.
  • the air permeability value is the time it takes for 100 cc of air to pass through the 1 in 2 cross section of the separators prepared in Examples 1 to 3 and Comparative Examples 1 to 4 under a pressure of 12.2 in H 2 O (seconds) , that is, expressed as aeration time.
  • the adhesive force between the separator and the electrode prepared in Examples 1 to 3 and Comparative Examples 1 to 4 was measured by the following method.
  • the separators prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were cut to 70 mm (length) x 25 mm (width), and the prepared negative electrode and the separator were laminated using a press at 60 ° C. and 6.5 MPa conditions to prepare a specimen. .
  • the prepared specimen was attached to a glass plate using double-sided tape and fixed, and at this time, the negative electrode was placed to face the glass plate.
  • the separator part of the specimen was peeled off at an angle of 180° at 25° C. at a rate of 25 mm/min, and the strength at this time was measured.
  • a particle-type acrylic polymer having a particle shape having a glass transition temperature of 20° C. to 50° C. is used, and particles are formed on the upper surface of the first layer including inorganic particles. Since the second layer including the type acrylic polymer can be formed, it can be confirmed that the electrode adhesion is excellent. In addition, it was confirmed that the particulate acrylic polymer did not block the pores of the first layer and thus had good air permeability.
  • Example 1 and 2 using the particle-type acrylic polymer having a particle diameter of 200 nm or more, it was confirmed that the electrode adhesion was more excellent compared to Example 3 using the particle-type acrylic polymer having a particle diameter of less than 200 nm. This seems to be because, when the separator and the electrode are laminated by lamination, the larger the particle diameter of the particulate acrylic polymer, the more the area to adhere to the electrode is increased as the shape of the particulate acrylic polymer is deformed.
  • Comparative Example 1 only the non-particulate acrylic polymer having a glass transition temperature of 15° C. or less was used, and the particle-type acrylic polymer having a glass transition temperature of 20° C. to 50° C. was not used, so that the non-particulate acrylic polymers were It was difficult to secure sufficient electrode adhesion because the second layer could not be formed on the upper surface of the first layer, only sinking toward the porous polymer substrate entangled with the inorganic particles.
  • the second layer can be formed on the upper surface of the first layer by using a particulate acrylic polymer having a particle shape having a glass transition temperature of 20° C. or higher, but the glass transition temperature of the particulate acrylic polymer is 50° C. It was confirmed that it was difficult to secure sufficient electrode adhesion because the shape of the particles was not deformed during the lamination step of the electrode and the separator.
  • Table 2 shows the adhesive force between the first layer of the separator prepared in Examples 1, 4 and Comparative Example 5 and the porous polymer substrate.
  • a tape (3M transparent tape) was firmly attached to the exposed first layer, and then 11oyd LS-1 was applied.
  • the adhesive force between the first layer of the separator and the porous polymer substrate was measured using the force (gf/15 mm) required to peel the tape using the porous polymer.
  • Examples 1 and 4 had sufficient adhesion between the first layer and the porous polymer substrate. This seems to be because the non-particulate acrylic polymer having a glass transition temperature of 15° C. or less is entangled with the inorganic particles and sinks toward the porous polymer substrate to maintain the binding state between the first layer and the porous polymer substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 다공성 고분자 기재; 상기 다공성 고분자 기재의 적어도 일면에 형성되며, 다수의 무기물 입자들 및 유리전이온도가 15℃ 이하이고 상기 무기물 입자들을 연결 및 고정시키는 비입자형 아크릴계 고분자를 포함하는 제1층; 및 상기 제1층의 상면에 형성되며, 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자를 포함하는 제2층을 포함하는 것을 특징으로 하는 이차전지용 세퍼레이터에 관한 것이다. 본 발명에 따른 이차전지용 세퍼레이터는 무기물 입자를 포함함에도 우수한 전극과의 접착력을 가지고 저항 문제를 개선할 수 있다.

Description

이차전지용 세퍼레이터, 이의 제조방법, 이를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지
본 출원은 2020년 7월 20일자로 출원된 한국 특허 출원번호 10-2020-0089709호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 이차전지용 세퍼레이터 및 이의 제조방법과 상기 세퍼레이터를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
이러한 이차전지는 일반적으로 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 전해질 염과 유기 용매를 포함하는 비수 전해액, 양극과 음극 사이에 개재되어 이들을 전기적으로 절연시키는 세퍼레이터를 포함하고 있다.
이러한 이차전지의 제조 및 사용에 있어서 이의 안전성 확보는 중요한 해결과제이다. 상기 세퍼레이터는 통상적으로 폴리올레핀계 다공성 기재를 사용하는데, 이의 재료적 특성 및 제조 공정상의 특성으로 인하여 고온 등의 상황에서 세퍼레이터가 극심한 열 수축 거동을 보임으로써 내부 단락 등의 안정성 문제를 갖고 있다. 최근 상기와 같은 문제점을 해결하기 위해 무기물 입자와 바인더 고분자의 혼합물을 다공성 고분자 기재에 코팅한 유기-무기 복합 다공성 세퍼레이터가 제안되었다.
그런데, 상기 유기-무기 복합 다공성 세퍼레이터는 이의 재료적 특성 때문에 전극과 적층하여 전극 조립체를 형성하는데 있어 층간 접착력이 충분하지 않아 전극과 상기 세퍼레이터가 서로 분리될 위험이 크다는 문제점이 존재하였다.
이를 해결하기 위하여, 바인더 고분자의 혼합물을 상기 세퍼레이터에 코팅하고 가습 상분리 방법을 통해 세퍼레이터의 표면으로 바인더 고분자를 이동시킴으로써 세퍼레이터의 표면 부근에 바인더 고분자의 함량이 높은 접착층을 형성하는 기술이 개발되었다.
그런데 상기 가습 상분리 방법은 가습량 조절이 어려워 공정성 확보가 어렵고, 유기 용매를 사용하여 환경적인 문제가 존재하였다. 또한, 유기 용매에 용해된 바인더 고분자가 다공성 고분자 기재의 기공 사이로 스며드는 문제가 존재하였다.
따라서, 무기물 입자를 포함함에도 불구하고 상기 문제를 해결할 수 있으면서 우수한 전극과의 접착력을 가지는 이차전지용 세퍼레이터에 대한 필요성이 여전히 높은 실정이다.
따라서 본 발명이 해결하고자 하는 과제는, 무기물 입자를 포함하면서도 우수한 전극 접착력을 가지는 이차전지용 세퍼레이터, 및 이의 제조방법을 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 상기 세퍼레이터를 포함하는 이차전지의 제조방법 및 이에 따라 제조된 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 양태에 따르면, 하기 구현예들의 이차전지용 세퍼레이터가 제공된다.
제1 구현예는,
다공성 고분자 기재;
상기 다공성 고분자 기재의 적어도 일면에 형성되며, 다수의 무기물 입자들 및 유리전이온도가 15℃ 이하이고 상기 무기물 입자들을 연결 및 고정시키는 비입자형 아크릴계 고분자를 포함하는 제1층; 및
상기 제1층의 상면에 형성되며, 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자를 포함하는 제2층을 포함하는 것을 특징으로 하는 이차전지용 세퍼레이터에 관한 것이다.
제2 구현예는, 제1 구현예에 있어서,
상기 비입자형 아크릴계 고분자는 유리전이온도가 0℃ 이하일 수 있다.
제3 구현예는, 제1 구현예 또는 제2 구현예에 있어서,
상기 비입자형 아크릴계 고분자가 제1 단량체로부터 유래된 반복단위와 제2 단량체로부터 유래된 반복단위를 포함할 수 있고,
상기 제1 단량체의 유리전이온도가 상기 제2 단량체의 유리전이온도보다 클 수 있다.
제4 구현예는, 제3 구현예에 있어서,
상기 제1 단량체가 메틸메타크릴레이트, 에틸메타크릴레이트, n-부틸메타크릴레이트, 이소부틸메타크릴레이트, t-부틸메타크릴레이트, 또는 이들 중 2 이상을 포함할 수 있다.
제5 구현예는, 제3 구현예 또는 제4 구현예에 있어서,
상기 제2 단량체가 2-에틸헥실메타크릴레이트, 라우릴메타크릴레이트, 옥타데실메타크릴레이트, 또는 이들 중 2 이상을 포함할 수 있다.
제6 구현예는, 제3 구현예 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 제2 단량체로부터 유래된 반복단위가 상기 비입자형 아크릴계 고분자 100 중량%을 기준으로 60 중량% 이상 포함될 수 있다.
제7 구현예는, 제1 구현예 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 입자형 아크릴계 고분자가 제3 단량체로부터 유래된 반복단위와 제4 단량체로부터 유래된 반복단위를 포함할 수 있고,
상기 제3 단량체의 유리전이온도가 상기 제4 단량체의 유리전이온도보다 클 수 있다.
제8 구현예는, 제7 구현예에 있어서,
상기 제3 단량체가 스티렌, 비닐아세테이트, 아크릴로니트릴, 또는 이들 중 2 이상을 포함할 수 있다.
제9 구현예는, 제7 구현예 또는 제8 구현예에 있어서,
상기 제4 단량체가 메틸아크릴레이트, 에틸아크릴레이트, 부틸아크릴레이트, 이소부틸아크릴레이트, 2-에틸헥실아크릴레이트, 에틸렌, 또는 이들 중 2 이상을 포함할 수 있다.
제10 구현예는, 제7 구현예 내지 제9 구현예 중 어느 한 구현예에 있어서,
제3 단량체로부터 유래된 반복단위와 제4 단량체로부터 유래된 반복단위의 중량비가 1.5:8.5 내지 4:6일 수 있다.
제11 구현예는, 제1 구현예 내지 제10 구현예 중 어느 한 구현예에 있어서,
상기 입자형 아크릴계 고분자의 평균 입경은 200 nm 내지 800 nm일 수 있다.
제12 구현예는, 제1 구현예 내지 제11 구현예 중 어느 한 구현예에 있어서,
상기 무기물 입자의 밀도에 대한 상기 입자형 아크릴계 고분자의 밀도의 비율이 0.5 이하일 수 있다.
제13 구현예는, 제1 구현예 내지 제12 구현예 중 어느 한 구현예에 있어서,
상기 입자형 아크릴계 고분자의 밀도가 1.5 g/m3 이하일 수 있다.
제14 구현예는, 제1 구현예 내지 제13 구현예 중 어느 한 구현예에 있어서,
상기 무기물 입자의 밀도가 2.0 g/m3 이상일 수 있다.
제15 구현예는, 제1 구현예 내지 제14 구현예 중 어느 한 구현예에 있어서,
상기 이차전지용 세퍼레이터의 전극과의 접착력이 30 내지 200 gf/25 mm일 수 있다.
제16 구현예는, 제1 구현예 내지 제15 구현예 중 어느 한 구현예에 있어서,
상기 이차전지용 세퍼레이터의 통기도가 10 내지 300 sec/100 cc일 수 있다.
제17 구현예는, 제1 구현예 내지 제16 구현예 중 어느 한 구현예에 있어서,
상기 다공성 고분자 기재와 상기 제1층 간의 접착력이 10 내지 300 gf/15 mm일 수 있다.
상기 과제를 해결하기 위하여, 본 발명의 일 양태에 따르면, 하기 구현예의 이차전지가 제공된다.
제18 구현예는,
양극, 음극, 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 이차전지에 있어서,
상기 세퍼레이터는 제1 구현예 내지 제17 구현예 중 어느 한 구현예의 이차전지용 세퍼레이터인 것을 특징으로 하는 이차전지에 관한 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 양태에 따르면, 하기 구현예의 이차전지의 제조방법 및 이에 따라 제조된 이차전지가 제공된다.
제19 구현예는,
양극 및 음극 사이에 제1 구현예 내지 제17 구현예 중 어느 한 구현예의 이차전지용 세퍼레이터를 개재시키고 가열가압하여 라미네이션하는 단계를 포함하는 것을 특징으로 하는 이차전지의 제조방법에 관한 것이다.
제20 구현예는,
제19 구현예의 제조방법에 의해 제조된 이차전지에 관한 것이다.
본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터는 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자를 포함하는 제2층이 무기물 입자를 포함하는 제1층의 상면에 형성됨으로써, 무기물 입자를 포함함에도 우수한 전극과의 접착력을 가질 수 있다.
또한, 본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터는 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자를 사용함으로써 제1층의 기공을 막지 않고 제2층을 형성할 수 있어 저항 문제를 개선할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터의 단면도이다.
도 2는, 실시예 1에서 제2층에 사용된 입자형 아크릴계 고분자의 SEM 사진을 나타낸 것이다.
도 3은, 실시예 2에서 제2층에 사용된 입자형 아크릴계 고분자의 SEM 사진을 나타낸 것이다.
도 4는, 실시예 3에서 제2층에 사용된 입자형 아크릴계 고분자의 SEM 사진을 나타낸 것이다.
도 5는, 비교예 2에서 제2층에 사용된 아크릴계 고분자의 SEM 사진을 나타낸 것이다.
도 6은, 비교예 3에서 제2층에 사용된 아크릴계 고분자의 SEM 사진을 나타낸 것이다.
도 7은 비교예 4에서 제2층에 사용된 입자형 아크릴계 고분자의 SEM 사진을 나타낸 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
이어지는 발명의 상세한 설명에서 사용된 특정한 용어는 편의를 위한 것이지 제한적인 것은 아니다. 본원 명세서 전체에서, '일면', 또는 '상면'은 참조가 이루어진 도면들에서의 위치들 및 방위들을 나타내며 제한적이어서는 안된다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함한다.
본원 명세서 전체에서, 어떤 층이 다른 층의 "상면"에 위치하고 있다고 할 때, 이는 어떤 층이 다른 층의 일 표면에 접해 있는 경우뿐만 아니라, 상기 두 층 사이에 또 다른 층이 존재하는 경우도 포함하는 의미이다.
본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터는
다공성 고분자 기재;
상기 다공성 고분자 기재의 적어도 일면에 형성되며, 다수의 무기물 입자들 및 유리전이온도가 15℃ 이하이고 상기 무기물 입자들을 연결 및 고정시키는 비입자형 아크릴계 고분자를 포함하는 제1층; 및
상기 제1층의 상면에 형성되며, 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자를 포함하는 제2층을 포함하는 것을 특징으로 한다.
도 1은 본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터를 개략적으로 나타낸 도면이다.
도 1을 참조하면, 이차전지용 세퍼레이터(1)는 다공성 고분자 기재(10)를 구비한다.
본 발명의 일 실시양태에서, 상기 다공성 고분자 기재(10)로는 통상적으로 이차전지용 세퍼레이터의 소재로 사용 가능한 것이라면 특별한 제한 없이 사용이 가능하다. 이러한 다공성 고분자 기재는 고분자 재료가 포함된 박막인 것으로서, 상기 고분자 재료의 비제한적인 예로는 폴리올레핀 수지, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌과 같은 고분자 수지 중 적어도 어느 하나를 포함할 수 있다. 또한, 상기 다공성 고분자 기재는 전술한 바와 같은 상기 고분자 재료로 형성된 부직포 또는 다공성 고분자 필름 또는 이 중 둘 이상의 적층물 등이 사용될 수 있다. 구체적으로 상기 다공성 고분자 기재는 하기 a) 내지 e) 중 어느 하나일 수 있다.
a) 고분자 수지를 용융 및 압출하여 성막한 다공성 필름,
b) 상기 a)의 다공성 필름이 2층 이상 적층된 다층막,
c) 고분자 수지를 용융/방사하여 얻은 필라멘트를 집적하여 제조된 부직포 웹,
d) 상기 b)의 부직포 웹이 2층 이상 적층된 다층막,
e) 상기 a) 내지 d) 중 둘 이상을 포함하는 다층 구조의 다공성 복합막.
본 발명의 일 실시양태에서, 상기 다공성 고분자 기재(10)의 두께는 5 ㎛ 내지 50 ㎛일 수 있으나, 이로 한정되지 않는다. 다공성 고분자 기재의 두께가 전술한 범위일 경우, 전지 사용 중 세퍼레이터가 쉽게 손상될 수 있는 문제를 방지할 수 있다. 한편, 상기 다공성 고분자 기재에 존재하는 평균 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 ㎛ 내지 50 ㎛ 및 10% 내지 95%일 수 있다.
본 발명에 있어서, 상기 다공성 고분자 기재(10)의 기공도 및 평균 기공 크기는 주사 전자 현미경(SEM) 이미지, 수은 포로시미터(Mercury porosimeter), 모세관 유동 기공분포 측정기(capillary flow porometer), 또는 기공 분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-II mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6 점법으로 측정할 수 있다.
도 1을 참조하면, 이차전지용 세퍼레이터(1)는 상기 다공성 고분자 기재(10)의 적어도 일면에 제1층(20)을 구비한다. 구체적으로, 상기 제1층(20)은 상기 다공성 고분자 기재(10)의 일면 또는 양면에 형성될 수 있다.
상기 제1층(20)은 다수의 무기물 입자들(21) 및 유리전이온도가 15℃ 이하이고 상기 무기물 입자들(21)을 연결 및 고정시키는 비입자형 아크릴계 고분자(22)를 포함한다. 상기 제1층(20)은 상기 무기물 입자들(21)에 의해 다공성 고분자 기재(10)가 고온에서 극심한 열 수축 거동을 보이는 것을 방지하여 세퍼레이터의 안전성을 향상시킬 수 있다.
상기 무기물 입자(21)는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자(21)는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0 ~ 5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 상기 무기물 입자(21)로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
본 발명의 일 실시양태에서, 상기 무기물 입자(21)는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자를 포함할 수 있다. 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, Mg(OH)2, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, AlOOH, Al(OH)3, SiC, TiO2, 또는 이들의 혼합체 등이 있다.
또한, 본 발명의 다른 실시양태에서, 상기 무기물 입자(21)로 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 사용할 수 있다. 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass (0<x<4, 0<y<13), 리튬란탄티타네이트(LixLayTiO3, 0<x<2, 0<y<3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w< 5), 리튬나이트라이드(LixNy, 0<x<4, 0<y<2), SiS2 계열 glass(LixSiySz, 0<x<3, 0<y<2, 0<z<4), P2S5 계열 glass(LixPySz, 0<x< 3, 0<y<3, 0<z<7), 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 일 실시양태에서, 상기 무기물 입자(21)는 제한이 없으나, 균일한 두께의 제1층 형성 및 적절한 공극률을 위하여, 0.01 내지 10 ㎛, 또는 0.05 내지 1.0 ㎛, 또는 0.2 내지 1.0 ㎛, 또는 0.5 내지 1.0 ㎛의 평균 입경을 가질 수 있다. 상기 무기물 입자(21)의 평균 입경이 이러한 범위를 만족하는 경우, 분산성이 유지되어 세퍼레이터의 물성을 조절하기가 용이하고, 제1층(20)의 두께가 증가하는 현상을 피할 수 있어 기계적 물성을 개선할 수 있다. 또한 지나치게 큰 기공 크기로 인해 전지 충·방전시 내부 단락이 일어날 확률을 감소시킬 수 있다.
이 때, 상기 무기물 입자(21)의 평균 입경은 D50 입경을 의미하며, "D50 입경"은, 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경을 의미한다. 상기 입경은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 직경을 산출함으로써, D50 입경을 측정할 수 있다.
본 발명에서, 용어 '비입자형 아크릴계 고분자'는 제1층에 사용된 입자 형상을 가지지 않는 아크릴계 고분자를 지칭하는 것으로, 제2층에 포함된 입자형 아크릴계 고분자와 구별하기 위한 것이다. 상기 비입자형 아크릴계 고분자(22)는 상기 무기물 입자들(21)이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착(즉, 비입자형 아크릴계 고분자가 무기물 입자들 사이를 연결 및 고정)시키며, 상기 무기물 입자(21)와 다공성 고분자 기재(10)가 결착된 상태를 유지할 수 있도록 한다.
상기 비입자형 아크릴계 고분자(22)의 유리전이온도는 15℃ 이하이다. 상기 비입자형 아크릴계 고분자(22)의 유리전이온도는 15℃ 이하로 입자 형상을 가지지 않고, 다수의 무기물 입자(21)들과 함께 얽혀 다공성 고분자 기재(10)의 적어도 일면에 제1층(20)을 형성한다. 따라서, 상기 비입자형 아크릴계 고분자(22)에 의해 다공성 고분자 기재(10)와 제1층(20) 사이의 접착력을 확보할 수 있다. 또한, 상기 비입자형 아크릴계 고분자(22)는 유리전이온도가 상대적으로 낮아 다공성 고분자 기재(10)와 제1층(20) 사이의 접착력을 확보하는데 유리할 수 있다.
본 발명의 일 실시양태에서, 상기 비입자형 아크릴계 고분자(22)는 유리전이온도가 12℃ 이하, 또는 8℃ 이하, 0℃ 이하, 또는 -40℃ 이하, 또는 -80℃ 내지 12℃, 또는 -80℃ 내지 8℃, 또는 -40℃ 내지 8℃, -80℃ 내지 0℃, 또는 -40℃ 내지 0℃일 수 있다. 상기 비입자형 아크릴계 고분자(22)의 유리전이온도가 낮을수록 다공성 고분자 기재(10)와 제1층(20) 사이의 접착력을 확보하는데 더욱 유리할 수 있다.
본 명세서 전체에서, 유리전이온도는 시차주사열량계(differential scanning calorimetry; DSC)를 이용하여 측정할 수 있다. 구체적으로, 시차주사열량계를 이용하여 10℃/min의 승온속도(-50℃ 내지 250℃)로 유리전이온도를 측정할 수 있다. 예컨대, DSC 250(TA社)을 이용하여 유리전이온도를 측정할 수 있다.
상기 비입자형 아크릴계 고분자(22)의 유리전이온도는 비입자형 아크릴계 고분자(22)를 제조하는데 사용된 단량체의 종류에 따라 달라질 수 있다.
본 발명의 일 실시양태에서, 상기 비입자형 아크릴계 고분자(22)는 제1 단량체로부터 유래된 반복단위와 제2 단량체로부터 유래된 반복단위를 포함할 수 있고, 상기 제1 단량체의 유리전이온도가 상기 제2 단량체의 유리전이온도보다 클 수 있다.
본 발명의 일 실시양태에서, 상기 제1 단량체는 메틸메타크릴레이트, 에틸메타크릴레이트, n-부틸메타크릴레이트, 이소부틸메타크릴레이트, t-부틸메타크릴레이트, 또는 이들 중 2 이상을 포함할 수 있다.
상기 제1 단량체는 유리전이온도가 제2 단량체보다 높아 전극과 세퍼레이터의 라미네이션 공정 시에 제1층(20)의 눌림을 억제하여 라미네이션 후의 제1층(20)이 기공도를 유지할 수 있도록 한다. 예컨대, 상기 제1 단량체의 유리전이온도는 20℃ 이상, 또는 20℃ 내지 107℃, 또는 20℃ 내지 47℃, 또는 47℃ 내지 107℃일 수 있다.
본 발명의 일 실시양태에서, 상기 제2 단량체는 2-에틸헥실메타크릴레이트, 라우릴메타크릴레이트, 옥타데실메타크릴레이트, 또는 이들 중 2 이상을 포함할 수 있다.
상기 제2 단량체는 유리전이온도가 제1 단량체보다 낮아 제1층(20)이 다공성 고분자 기재(10)와 접착력을 확보할 수 있도록 한다. 예컨대, 상기 제2 단량체의 유리전이온도는 10℃ 이하, 또는 -124℃ 내지 10℃, 또는 -100℃ 내지 -10℃, 또는 -100℃ 내지 -65℃, 또는 -65℃ 내지 -10℃일 수 있다.
본 발명의 일 실시양태에서, 상기 비입자형 아크릴계 고분자는 메틸메타크릴레이트로부터 유래된 반복단위 및 2-에틸헥실메타크릴레이트로부터 유래된 반복단위를 포함할 수 있다.
상기 비입자형 아크릴계 고분자(22)의 유리전이온도는 비입자형 아크릴계 고분자(22)를 제조하는데 사용된 단량체의 종류가 동일하더라도, 각 단량체의 함량에 따라 달라질 수 있다.
본 발명의 일 실시양태에서, 상기 제2 단량체로부터 유래된 반복단위가 상기 비입자형 아크릴계 고분자 100 중량%을 기준으로 60 중량% 이상, 또는 90 중량% 이상, 또는 95 중량 이상 포함될 수 있다. 상기 제2 단량체로부터 유래된 반복단위의 함량이 전술한 범위를 만족하는 경우, 제1 단량체의 함량에 비해 제1 단량체보다 유리전이온도가 낮은 제2 단량체의 함량이 높아 제1층(20)이 다공성 고분자 기재(10)와 접착력을 확보하는데 더욱 유리할 수 있다.
본 발명의 일 실시양태에서, 상기 제1층(20)에 포함된 무기물 입자(21)와 비입자형 아크릴계 고분자(22)의 중량비는 최종 제조되는 제1층(20)의 두께, 평균 기공 크기 및 기공도를 고려하여 결정할 수 있다.
본 발명의 일 실시양태에서, 상기 무기물 입자(21)와 비입자형 아크릴계 고분자(22)의 중량비는 20:80 내지 99.9:0.1, 또는 50:50 내지 99.5:0.5일 수 있다. 상기 무기물 입자(21)와 비입자형 아크릴계 고분자(22)의 중량비가 전술한 범위일 경우, 무기물 입자(21) 사이의 충분한 접착력을 확보하면서도 무기물 입자들(21) 사이에 형성되는 빈 공간을 충분히 확보할 수 있다. 또한, 최종 형성되는 제1층(20)이 우수한 기계적 물성을 가질 수 있다.
본 발명의 일 실시양태에서, 상기 제1층(20)은 1 ㎛ 내지 50 ㎛, 또는 2 ㎛ 내지 30 ㎛, 또는 2 ㎛ 내지 20 ㎛ 범위의 두께를 가질 수 있다.
본 발명의 일 실시양태에서, 상기 제1층(20)의 평균 기공 크기는 0.001 내지 10 ㎛, 또는 0.001 내지 1 ㎛ 범위일 수 있다. 또한, 제1층(20)의 기공도(porosity)는 5 내지 95% 범위, 10 내지 95% 범위, 20 내지 90% 범위, 또는 30 내지 80% 범위일 수 있다. 상기 기공도는 상기 제1층의 두께, 가로, 및 세로로 계산한 부피에서, 상기 제1층의 각 구성성분의 무게와 밀도로 환산한 부피를 차감(subtraction)한 값에 해당한다.
한편, 본 발명에 있어서, 상기 제1층(20)의 기공도 및 평균 기공 크기는 주사 전자 현미경(SEM) 이미지, 수은 포로시미터(Mercury porosimeter), 모세관 유동 기공분포 측정기(capillary flow porometer), 또는 기공 분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-II mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6 점법으로 측정할 수 있다.
본 발명의 일 실시양태에서, 상기 제1층(20)은 분산제를 더 포함할 수 있다.
상기 분산제는 무기물 입자(21)의 분산성을 개선시키기 위해 사용될 수 있다. 구체적으로, 본 발명의 일 실시양태에서, 상기 분산제는 카복시메틸셀룰로오스(carboxymethyl cellulose; CMC), 폴리아크릴산(polyacrylic acid; PAA), 폴리메타크릴아크릴산(PMAA), 또는 이들 중 2종 이상을 포함할 수 있으나, 이에 한정되지 않는다.
도 1을 참조하면, 이차전지용 세퍼레이터(1)는 상기 제1층(20)의 상면에 제2층(30)을 구비한다. 상기 제2층(30)은 세퍼레이터(1)에 접착력을 부여하여, 세퍼레이터(1)의 표면이 전극과 잘 접착할 수 있게 한다.
상기 제2층(30)은 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자(31)를 포함한다. 전극과 세퍼레이터를 접착할 때, 라미네이션에 의해 상기 입자형 아크릴계 고분자(31)의 형상이 변형되어 전극과 세퍼레이터 사이의 접착력이 부여된다. 본 발명에서, 용어 '입자형 아크릴계 고분자'는 제2층에 포함된 입자 형상을 띠는 아크릴계 고분자를 지칭하는 것으로, 제1층에 포함된 비입자형 아크릴계 고분자(22)와 구별하기 위한 것이다.
본 발명에서, 상기 입자형 아크릴계 고분자(31)의 유리전이온도는 20℃ 이상으로 각각 독립적으로 입자 형상을 띠게 된다.
본 발명의 일 실시양태에서, 상기 입자형 아크릴계 고분자(31)는 상기 무기물 입자(21)보다 밀도가 작아 코팅 공정에서 무기물 입자 상층부로 이동하여 상기 무기물 입자(21)를 포함하는 제1층(20)의 상면에 제2층(30)을 형성할 수 있다.
반면, 본 발명에서 상기 입자형 아크릴계 고분자(31)의 유리전이온도가 50℃를 초과하는 경우 상기 입자형 아크릴계 고분자(31)가 입자의 형상을 가지지만, 전극과 세퍼레이터(1)가 접착할 때 라미네이션에 의해 상기 입자의 형상이 변형되지 않아 세퍼레이터와 전극 간의 접착력이 발생하기 어렵다.
본 발명의 일 실시양태에서, 상기 입자형 아크릴계 고분자(31)의 유리전이온도는 30℃ 내지 45℃일 수 있다. 상기 입자형 아크릴계 고분자(31)의 유리전이온도가 30℃ 내지 45℃일 때, 전극과 세퍼레이터(1)의 라미네이션에 의한 상기 입자형 아크릴계 고분자의 형상의 변형 정도를 조절하여 세퍼레이터(1)의 통기도, 전극과의 접착력 등을 더욱 개선할 수 있다.
본 발명의 일 실시양태에서, 상기 무기물 입자(21)의 밀도에 대한 상기 입자형 아크릴계 고분자(31)의 밀도의 비율이 0.5 이하, 0.45 이하, 또는 0.42 이하일 수 있다. 예컨대, 입자형 아크릴계 고분자의 밀도 : 무기물 입자의 밀도가 0.5:1 이하, 0.45:1 이하, 또는 0.42:1 이하일 수 있다. 상기 무기물 입자(21)의 밀도에 대한 상기 입자형 아크릴계 고분자(31)의 밀도의 비율이 전술한 범위와 같을 때, 상기 입자형 아크릴계 고분자(31)가 무기물 입자(21)와의 밀도 차이에 의해 코팅 공정에서 무기물 입자 상층부로 이동하여 상기 무기물 입자(21)를 포함하는 제1층(20)의 상면에 제2층(30)이 형성되기 더욱 용이할 수 있다.
본 발명에서, 상기 무기물 입자(21)의 밀도는 진밀도를 의미한다. 진밀도란, 입자와 입자 사이의 간극을 제외한 입자 자체만의 부피에 대한 밀도를 의미한다. 본 발명의 일 실시양태에서, 상기 무기물 입자(21)의 밀도는 통상의 진밀도 측정 방법에 따라 측정될 수 있으며, 예컨대 Micromeritics사의 AccuPycII-1340 장비를 이용하여 측정할 수 있다.
본 발명의 일 실시양태에서, 상기 무기물 입자(21)의 밀도값은 2.0 g/m3 이상, 또는 2 g/cm3 내지 6 g/cm3, 또는 2 g/cm3 내지 4 g/cm3일 수 있다.
본 발명에서, 상기 입자형 아크릴계 고분자(31)의 밀도는 진밀도를 의미한다. 본 발명의 일 실시양태에서, 상기 입자형 아크릴계 고분자(31)의 밀도는 통상의 진밀도 측정 방법에 따라 측정될 수 있으며, 예컨대 Micromeritics사의 AccuPycII-1340 장비를 이용하여 측정할 수 있다.
본 발명의 일 실시양태에서, 상기 입자형 아크릴계 고분자(31)의 밀도값은 1.5 g/m3 이하, 또는 0.5 g/cm3 내지 1.5 g/cm3, 또는 1 g/cm3 내지 1.2 g/cm3 일 수 있다.
본 발명의 일 실시양태에서, 상기 입자형 아크릴계 고분자(31)의 밀도값은 1.5 g/m3 이하이고, 상기 무기물 입자의 밀도값은 2.0 g/m3 이상일 수 있다. 입자형 아크릴계 고분자(31)와 무기물 입자(21)의 밀도값이 전술한 범위를 만족하는 경우, 상기 입자형 아크릴계 고분자(31)가 무기물 입자(21)와의 밀도 차이에 의해 코팅 공정에서 무기물 입자 상층부로 이동하여 상기 무기물 입자(21)를 포함하는 제1층(20)의 상면에 제2층(30)이 형성되기 더욱 용이할 수 있다.
상기 입자형 아크릴계 고분자(31)의 유리전이온도는 입자형 아크릴계 고분자(31)를 제조하는데 사용된 단량체의 종류에 따라 달라질 수 있다.
본 발명의 일 실시양태에서, 상기 입자형 아크릴계 고분자가 제3 단량체로부터 유래된 반복단위와 제4 단량체로부터 유래된 반복단위를 포함할 수 있고, 상기 제3 단량체의 유리전이온도가 상기 제4 단량체의 유리전이온도보다 클 수 있다.
본 발명의 일 실시양태에서, 상기 제3 단량체는 스티렌, 비닐아세테이트, 아크릴로니트릴, 또는 이들 중 2 이상을 포함할 수 있다.
상기 제3 단량체는 유리전이온도가 상대적으로 높아 전극과 세퍼레이터의 라미네이션 공정 시에 제2층(30)의 눌림을 억제하여 라미네이션 후의 제2층(30)의 기공도를 유지할 수 있도록 한다. 예컨대, 상기 제3 단량체의 유리전이온도는 20℃ 이상, 또는 20℃ 내지 107℃, 또는 28℃ 내지 105℃, 또는 28℃ 내지 100℃, 또는 100℃ 내지 105℃일 수 있다.
본 발명의 일 실시양태에서, 상기 제4 단량체는 메틸아크릴레이트, 에틸아크릴레이트, 부틸아크릴레이트, 이소부틸아크릴레이트, 2-에틸헥실아크릴레이트, 에틸렌, 또는 이들 중 2 이상을 포함할 수 있다.
상기 제4 단량체는 유리전이온도가 상대적으로 낮아 제2층(30)이 전극과의 접착력을 확보하는데 유리할 수 있다. 예컨대, 상기 제4 단량체의 유리전이온도는 10℃ 이하, 또는 -124℃ 내지 10℃, 또는 -124℃ 내지 -55℃, 또는 -55℃ 내지 -22℃, 또는 -22℃ 내지 10℃일 수 있다.
본 발명의 일 실시양태에서, 상기 입자형 아크릴계 고분자는 스티렌으로부터 유래된 반복단위 및 부틸아크릴레이트로부터 유래된 반복단위를 포함할 수 있다.
상기 입자형 아크릴계 고분자(31)의 유리전이온도는 입자형 아크릴계 고분자(31)를 제조하는데 사용된 단량체의 종류가 동일하더라도, 각 단량체의 함량에 따라 달라질 수 있다.
본 발명의 일 실시양태에서, 제3 단량체로부터 유래된 반복단위와 제4 단량체로부터 유래된 반복단위의 중량비가 1.5:8.5 내지 4:6, 또는 2:8 내지 4:6, 또는 2.5:7.5 내지 3:7일 수 있다. 상기 제3 단량체로부터 유래된 반복단위와 제4 단량체로부터 유래된 반복단위의 중량비가 전술한 범위를 만족하는 경우, 제2층(30)이 전극과의 접착력을 확보하는데 더욱 유리할 수 있다.
본 발명의 일 실시양태에서, 상기 입자형 아크릴계 고분자(31)의 평균 입경은 200 nm 내지 800 nm, 250 내지 500 nm, 또는 300 내지 450 nm일 수 있다. 상기 입자형 아크릴계 고분자(31)의 평균 입경이 전술한 범위일 때, 상기 입자형 아크릴계 고분자(31)가 제조가 용이하면서도 전극과 접착하는 면적이 증가하여 상기 입자형 아크릴계 고분자(31)를 포함하는 제2층(30)이 더욱 우수한 전극과의 접착력을 가질 수 있다.
본 발명에서, 상기 입자형 아크릴계 고분자(31)의 평균 입경이란, D50 입경을 의미하며, "D50 입경"은, 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경을 의미한다. 상기 입경은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 직경을 산출함으로써, D50 입경을 측정할 수 있다.
본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터(1)는 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자(31)를 제2층(30)에, 유리전이온도가 15℃ 이하인 비입자형 아크릴계 고분자(22)를 제1층(20)에 포함하여 2종의 아크릴계 고분자를 포함한다. 이에 따라, 세퍼레이터(1)가 전극과의 우수한 접착력을 가지면서, 제1층(20)과 다공성 고분자 기재(10) 간의 접착력을 확보할 수 있다.
또한, 본 발명에 따른 이차전지용 세퍼레이터(1)는 제2층(30)에 입자형 아크릴계 고분자(31)를 사용함으로써, 상기 입자형 아크릴계 고분자(31)가 제1층(20)의 기공을 막는 것을 방지할 수 있어 통기도가 양호하고, 저항 문제를 개선할 수 있다.
본 발명의 일 실시양태에서, 상기 이차전지용 세퍼레이터(1)의 전극과의 접착력이 30 내지 200 gf/25 mm, 또는 30 내지 100 gf/25 mm, 또는 35 내지 60 gf/25 mm, 또는 40 내지 60 gf/25 mm일 수 있다.
본 발명의 일 실시양태에서, 상기 이차전지용 세퍼레이터(1)의 전극과의 접착력은 전극과 세퍼레이터를 프레스를 이용하여 60℃, 6.5MPa 조건으로 라미네이션하여 시편을 제작한 후, 이를 양면 테이프를 이용하여 유리판에 부착하여 고정한 후, 시편의 세퍼레이터 부분을 25℃에서 25mm/min 속도로 180°의 각도로 박리하였을 때의 강도로부터 측정할 수 있다.
본 발명의 일 실시양태에서, 상기 이차전지용 세퍼레이터(1)의 통기도가 10 내지 300 sec/100 cc, 또는 100 내지 300 sec/100 cc, 또는 110 내지 200 sec/100 cc, 또는 100 내지 160 sec/100 cc일 수 있다.
본 발명의 일 실시양태에서, 상기 이차전지용 세퍼레이터(1)의 통기도는 걸리값(Gurley)을 의미하며, 100 cc의 공기가 12.2 in H2O의 압력 하에서 세퍼레이터의 1 in2의 단면을 통과하는데 걸리는 시간(초), 즉 통기시간을 의미할 수 있다. 상기 이차전지용 세퍼레이터(1)의 통기도는 ASTM D726-94 방법에 의해 측정될 수 있다.
본 발명의 일 실시양태에서, 상기 다공성 고분자 기재(10)와 상기 제1층(20) 간의 접착력이 10 내지 300 gf/15 mm, 또는 40 내지 100 gf/15 mm일 수 있다.
본 발명의 일 실시양태에서, 상기 다공성 고분자 기재(10)와 상기 제1층(20) 간의 접착력은 세퍼레이터(1)를 양면 테이프를 이용하여 유리판 위에 고정시킨 후, 노출된 제1층(20)에 테이프(3M 투명 테이프)를 견고히 부착시킨 다음, 이장강도 측정장비를 이용하여 테이프를 떼어내는데 필요한 힘(gf/15 mm)을 측정하여 측정할 수 있다. 예컨대, 상기 이장강도 측정장비는 11oyd LS-1일 수 있다.
본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터는 하기와 같은 제조방법에 의해 제조될 수 있으나, 이에 의해 한정되지는 않는다.
본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터의 제조방법은
(S1) 다공성 고분자 기재를 준비하는 단계;
(S2) 다수의 무기물 입자들, 유리전이온도가 15℃ 이하인 비입자형 아크릴계 고분자, 및 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자를 포함하는 수계 슬러리를 준비하는 단계;
(S3) 상기 수계 슬러리를 상기 다공성 고분자 기재의 적어도 일면에 코팅하는 단계; 및
(S4) 상기 (S3)의 결과물을 건조하는 단계를 포함하는 것을 특징으로 한다.
이하에서는 본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터의 제조방법을 주요 부분 위주로 살펴본다.
우선, 다공성 고분자 기재를 준비한다. 상기 다공성 고분자 기재는 전술한 바와 같이 사용될 수 있으며, 상기 다공성 고분자 기재는 앞서 기재된 물질로부터 우수한 통기성 및 공극률을 확보하기 위해 당업계에 공지되어 있는 통상적인 방법, 예컨대 용매, 및 기공형성제 등을 사용하는 습식법, 또는 연신방식을 사용하는 건식법을 통하여 기공을 형성함으로써 제조될 수 있다.
그 다음, 다수의 무기물 입자들, 유리전이온도가 15℃ 이하인 비입자형 아크릴계 고분자, 및 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자를 포함하는 수계 슬러리를 준비한다.
상기 수계 슬러리에서 물은 상기 비입자형 아크릴계 고분자 및 상기 입자형 아크릴계 고분자의 분산매 역할을 한다. 본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터의 제조방법은 물에 분산되는 비입자형 아크릴계 고분자와 입자형 아크릴계 고분자를 사용함으로써, 친환경적이다.
본 발명의 일 실시양태에서, 상기 무기물 입자, 유리전이온도가 15℃ 이하인 비입자형 아크릴계 고분자, 및 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자에 대해서는 전술한 내용을 참고한다.
본 발명의 일 실시양태에서, 상기 수계 슬러리는 상기 비입자형 아크릴계 고분자 및 입자형 아크릴계 고분자를 물에 분산시킨 다음 무기물 입자를 첨가하고 이를 분산시켜 제조할 수 있다. 무기물 입자들은 미리 소정의 평균 입경을 갖도록 파쇄된 상태에서 첨가될 수 있으며, 또는 상기 비입자형 아크릴계 고분자 및 입자형 아크릴계 고분자를 분산시킨 용액에 무기물 입자를 첨가한 후 무기물 입자를 볼밀법 등을 이용하여 소정의 평균 입경을 갖도록 제어하면서 파쇄하여 분산시킬 수도 있다.
본 발명의 일 실시양태에서, 상기 수계 슬러리에서 상기 무기물 입자, 유리전이온도가 15℃ 이하인 비입자형 아크릴계 고분자, 및 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자의 중량비는 70:1:29 내지 80:5:15일 수 있다. 상기 무기물 입자, 유리전이온도가 15℃ 이하인 비입자형 아크릴계 고분자, 및 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자의 중량비가 전술한 범위일 때, 상기 비입자형 아크릴계 고분자가 다공성 고분자 기재의 기공을 막아 저항을 상승시키는 문제를 최소화할 수 있으면서도 상기 무기물 입자와 다공성 고분자 기재 사이에 접착력을 확보할 수 있다.
본 발명의 일 실시양태에서, 상기 수계 슬러리에 분산제가 더 포함될 수 있다. 상기 분산제에 대해서는 전술한 내용을 참고한다.
이후, 상기 수계 슬러리를 상기 다공성 고분자 기재의 적어도 일면에 코팅한다.
본 발명의 일 실시양태에서, 상기 수계 슬러리를 상기 다공성 고분자 기재의 적어도 일면에 코팅하여 제1층을 형성하는 방법은 당업계에서 통상적으로 사용된느 방법이라면 크게 제한되지 않으며, 비제한적인 예시로 딥(Dip) 코팅법, 다이(Die) 코팅법, 롤(roll) 코팅법, 콤마(comma) 코팅법, 닥터 블레이드 코팅법, 리버스롤 코팅법, 다이렉트롤 코팅법 등의 방법을 들 수 있다.
본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터의 제조방법에서, 상기 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자는 무기물 입자보다 밀도가 작을 수 있다. 이에 따라, 상기 수계 슬러리를 다공성 고분자 기재 상에 코팅하였을 때, 상기 입자는 무기물 입자의 상층부로 이동하여 전극과 대향하는 세퍼레이터의 표면 상에 위치할 수 있다.
반면, 상기 비입자형 아크릴계 고분자는 무기물 입자 상층부로 이동하지 못하고 무기물 입자와 함께 얽혀 다공성 고분자 기재 쪽으로 가라앉을 수 있다. 이에 따라, 본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터의 제조방법을 이용하면, 제2층을 형성하는 공정을 따로 거치지 않아도 제1층과 제2층을 함께 형성하는 것이 가능할 수 있다.
또한, 상기 입자형 아크릴계 고분자가 무기물 입자보다 밀도가 작아 무기물 입자의 상층부로 이동함에 따라 제1층의 기공을 막지 않아 통기도가 양호할 수 있고, 저항 문제를 개선할 수 있다.
그 다음, 상기 코팅된 수계 슬러리를 건조한다.
본 발명의 일 실시양태에서, 상기 건조는 통상의 세퍼레이터 제조 시 건조 방법에 의해 건조되는 것일 수 있다. 예를 들어, 상기 코팅된 수계 슬러리의 건조는 입자형 아크릴계 고분자의 유리전이온도보다 10℃ 이상 높은 온도가 분리막에 전달되지 않게 해야 한다. 건조 조건이 전술한 바와 같은 경우, 입자형 아크릴계 고분자의 입자 형상이 무너지지 않으면서도 잔류 분산매를 제거할 수 있는 효과를 가질 수 있다.
전술한 바와 같이 본 발명의 일 실시양태에 따른 이차전지용 세퍼레이터의 제조방법에 따라 우수한 전극과의 접착력을 가지면서 저항 문제를 개선할 수 있는 이차전지용 세퍼레이터를 제조할 수 있다.
상기 이차전지용 세퍼레이터는 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자와 유리전이온도가 15℃ 이하인 비입자형 아크릴계 고분자의 2종의 아크릴계 고분자를 포함함으로써, 세퍼레이터가 전극과의 우수한 접착력을 가지면서 동시에 제1층과 다공성 고분자 기재 간의 접착력도 확보할 수 있다.
본 발명의 일 실시양태에서, 본 발명에 따른 이차전지용 세퍼레이터를 이용하여 이차전지를 제조할 수 있다.
본 발명의 일 실시양태에 따른 이차전지의 제조방법은 양극 및 음극 사이에 이차전지용 세퍼레이터를 개재시키고 가열가압하여 라미네이션하는 단계를 포함하는 것을 특징으로 한다. 상기 라미네이션 단계를 통해 상기 이차전지용 세퍼레이터의 제2층에 포함된, 상기 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자의 형상이 변형되어 전극과 세퍼레이터 간의 접착력을 형성할 수 있다.
본 발명의 일 실시양태에서, 상기 라미네이션은 30℃ 내지 150℃, 또는 60℃ 내지 100℃, 또는 60℃ 내지 80℃에서 수행될 수 있다. 상기 라미네이션이 전술한 온도 범위에서 수행됨에 따라, 입자형 아크릴계 고분자의 입자 형상이 변형되어 전극과 세퍼레이터 간의 접착력을 형성하기 보다 용이할 수 있다.
또한, 본 발명의 일 실시양태에서, 상기 라미네이션은 3.5 MPa 내지 7.8 MPa의 압력에서 수행될 수 있다.
본 발명의 일 실시양태에서, 상기 라미네이션은 30℃ 내지 150℃의 온도 조건, 및 3.5 MPa 내지 7.8 MPa의 압력 조건에서 수행될 수 있다.
본 발명의 일 실시양태에서, 상기 양극 및 음극에 관한 내용은 후술하는 내용을 참고한다.
본 발명의 일 실시양태에서, 상기 이차전지용 세퍼레이터는 이차전지의 양극과 음극 사이에 개재될 수 있고, 복수의 셀 또는 전극을 집합시켜 전극조립체를 구성할 때 인접하는 셀 또는 전극 사이에 개재될 수 있다. 상기 전극조립체는 단순 스택형, 젤리-롤형, 스택-폴딩형, 라미네이션-스택형 등의 다양한 구조를 가질 수 있다.
전술한 바와 같이 본 발명의 이차전지의 제조방법에 따라 이차전지를 제조할 수 있다.
본 발명의 이차전지는 바람직하게는 리튬 이차전지일 수 있다. 상기 리튬 이차전지는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함할 수 있다.
본 발명의 이차전지용 세퍼레이터와 함께 적용될 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 전류집전체에 결착된 형태로 제조할 수 있다.
상기 전극활물질 중 양극활물질의 비제한적인 예로는 리튬 코발트 복합산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 하나 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x = 0~0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O5, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고, x = 0.01~0.3)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta이고, x = 0.01~0.1) 또는 Li2Mn3MO5 (여기서, M = Fe, Co, Ni, Cu 또는 Zn)으로 표현되는 리튬 망간 복합 산화물; 화학식 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
음극활물질의 비제한적인 예로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 사용될 수 있다.
양극 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명의 일 실시양태에서, 음극 및 양극에서 사용되는 도전재는 통상적으로 각각의 활물질층 전체 중량을 기준으로 1 중량% 내지 30 중량%으로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서버 블랙 등의 카본 블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
본 발명의 일 실시양태에서, 음극 및 양극에서 사용되는 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 각각의 활물질층 전체 중량을 기준으로 1 중량% 내지 30 중량%으로 첨가될 수 있다. 이러한 바인더의 예로는, 폴리불화비닐리덴(PVdF), 폴리아크릴산(PAA), 폴리비닐알코올, 카르복실 메틸 셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
본 발명의 일 실시양태에서, 상기 전기화학소자는 전해액을 포함하며, 상기 전해액은 유기 용매와 리튬염을 포함하는 것일 수 있다. 또한, 상기 전해액으로 유기 고체 전해질, 또는 무기 고체 전해질 등이 사용될 수 있다.
상기 유기 용매로는, 예를 들어, N-메틸-2-피롤리돈, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 포름아미드, 디메틸포름아미드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이비다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 리튬염은 상기 유기 용매에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 상기 전해액에 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
본 발명의 일 실시양태에서, 상기 전기화학소자용 세퍼레이터를 전지에 적용하는 공정으로는 일반적인 공정인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
본 발명의 일 실시양태에서, 상기 전기화학소자용 세퍼레이터는 전기화학소자의 양극과 음극 사이에 개재될 수 있고, 복수의 셀 또는 전극을 집합시켜 전극조립체를 구성할 때 인접하는 셀 또는 전극 사이에 개재될 수 있다. 상기 전극조립체는 단순 스택형, 젤리-롤형, 스택-폴딩형, 라미네이션-스택형 등의 다양한 구조를 가질 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예 및 평가예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
입자형 아크릴계 고분자(부틸아크릴레이트:스티렌 중량비 = 7:3, 유리전이온도: 43℃, 평균 입경: 200 nm, 진밀도: 1.02 g/cm3)와 비입자형 아크릴계 고분자(2-에틸헥실아크릴레이트:메틸메타크릴레이트 = 6:4, 유리전이온도: 8℃, 진밀도: 1.05 g/cm3) 및 수산화 알루미늄(Al(OH)3)(Huber社, 평균 입경: 800 nm, 진밀도: 2.4 g/cm3)을 28.5:1.5:70의 중량비로 분산매인 물에 투입한 후, 비즈밀을 이용해 25℃에서 120분 동안 밀링하고 분산시켜 수계 슬러리를 제조하였다. 여기에서 물은 전체 고형분이 40 중량%가 되도록 첨가하였다. 이를 9 μm 두께의 폴리에틸렌 다공성 기재(Toray社)의 단면에 바(Bar) 코팅 방식으로 3 μm의 두께로 코팅한 다음, 60℃ 내지 80℃에서 30초 동안 건조하여 이차전지용 세퍼레이터를 제조하였다.
실시예 2
실시예 1의 입자형 아크릴계 고분자(유리전이온도: 43℃) 대신 입자형 아크릴계 고분자(부틸아크릴레이트:스티렌 중량비 = 7.5:2.5, 유리전이온도: 40℃, 평균 입경: 380 nm, 진밀도: 1.09 g/cm3)을 사용한 것을 제외하고 실시예 1과 동일하게 이차전지용 세퍼레이터를 제조하였다.
실시예 3
실시예 1의 입자형 아크릴계 고분자(유리전이온도: 43℃) 대신 입자형 아크릴계 고분자(부틸아크릴레이트:스티렌 중량비 = 8.5:1.5, 유리전이온도: 30℃, 평균 입경: 180 nm, 진밀도: 1.09 g/cm3)을 사용한 것을 제외하고 실시예 1과 동일하게 이차전지용 세퍼레이터를 제조하였다.
실시예 4
실시예 1의 비입자형 아크릴계 고분자(유리전이온도: 8℃) 대신 비입자형 아크릴계 고분자(2-에틸헥실아크릴레이트:메틸메타크릴레이트 = 9.5:0.5, 유리전이온도: -40℃, 진밀도: 1.02 g/cm3)를 사용한 것을 제외하고 실시예 1과 동일하게 이차전지용 세퍼레이터를 제조하였다.
비교예 1
입자형 아크릴계 고분자를 사용하지 않은 것을 제외하고 실시예 1과 동일하게 이차전지용 세퍼레이터를 제조하였다.
비교예 2
실시예 1의 입자형 아크릴계 고분자(유리전이온도: 43℃) 대신 아크릴계 고분자(부틸아크릴레이트:스티렌 중량비 = 9.5:0.5, 유리전이온도: 0℃, 진밀도: 1.02 g/cm3)를 사용한 것을 제외하고 실시예 1과 동일하게 이차전지용 세퍼레이터를 제조하였다.
상기 아크릴계 고분자는 입자 형상을 가지지 않아 평균 입경의 측정이 어려웠다.
비교예 3
실시예 1의 입자형 아크릴계 고분자(유리전이온도: 43℃) 대신 아크릴계 고분자(부틸아크릴레이트:스티렌 중량비 = 9:1, 유리전이온도: 12℃, 진밀도: 1.10 g/cm3)를 사용한 것을 제외하고 실시예 1과 동일하게 이차전지용 세퍼레이터를 제조하였다.
상기 아크릴계 고분자는 입자 형상을 가지지 않아 평균 입경의 측정이 어려웠다.
비교예 4
실시예 1의 입자형 아크릴계 고분자(유리전이온도: 43℃) 대신 입자형 아크릴계 고분자(부틸아크릴레이트:스티렌 중량비 = 5:5, 유리전이온도: 60℃, 평균 입경: 360 nm, 진밀도: 1.08 g/cm3)을 사용한 것을 제외하고 실시예 1과 동일하게 이차전지용 세퍼레이터를 제조하였다.
비교예 5
비입자형 아크릴계 고분자를 사용하지 않은 것을 제외하고 실시예 1과 동일하게 이차전지용 세퍼레이터를 제조하였다.
평가예 1: 아크릴계 고분자의 유리전이온도별 형태 관찰
실시예 1 내지 3에서 사용된 입자형 아크릴계 고분자, 비교예 2에서 사용한 유리전이온도가 0℃인 아크릴계 고분자, 비교예 3에서 사용한 유리전이온도가 12℃인 아크릴계 고분자, 및 비교예 4에서 사용된 입자형 아크릴계 고분자의 SEM 사진을 각각 도 2 내지 도 7에 나타내었다.
도 2 내지 도 7로부터 유리전이온도가 20℃ 이상인 입자형 아크릴계 고분자만이 입자 형상을 가지고, 유리전이온도가 각각 0℃, 12℃로 유리전이온도가 20℃ 미만인 비교예 2 및 3의 아크릴계 고분자는 입자 형상을 가지지 않음을 확인할 수 있었다.
평가예 2: 아크릴계 고분자의 유리전이온도에 따른 제2층의 특성 평가
실시예 1 내지 3 및 비교예 1 내지 4에서 제조한 세퍼레이터의 두께, 코팅량, 통기도, 전극과의 접착력을 평가하여 표 1에 나타내었다.
통기도 측정 방법
통기도(Gurley)를 ASTM D726-94 방법에 의해 측정하였다. 이 때, 상기 통기도 값은 100 cc의 공기가 12.2 in H2O의 압력 하에서, 실시예 1 내지 3 및 비교예 1 내지 4에서 제조한 세퍼레이터의 1 in2의 단면을 통과하는데 걸리는 시간(초), 즉 통기시간으로 나타내었다.
전극과의 접착력 평가 방법
실시예 1 내지 3 및 비교예 1 내지 4에서 제조한 세퍼레이터와 전극 간의 접착력을 하기의 방법으로 측정하였다.
우선, 천연흑연, SBR, CMC 및 도전재(중량비로 90:2.5:2.5:5)를 물에 투입하여 음극 슬러리를 수득하고, 상기 음극 슬러리를 구리 박막(두께 20㎛)위에 5mg/cm2의 로딩량으로 도포한 후 건조하였다. 다음으로 이를 90℃ 8.5MPa 조건으로 압연하고 60mm(길이)x 25mm(폭)으로 절단하여 음극을 제조하였다.
실시예 1 내지 3 및 비교예 1 내지 4에서 제조한 세퍼레이터를 70mm(길이)x 25mm(폭)으로 절단하여 준비된 음극과 세퍼레이터를 프레스를 이용하여 60℃, 6.5 MPa조건으로 라미네이션하여 시편을 제작하였다. 준비된 시편을 양면 테이프를 이용하여 유리판에 부착하여 고정하였으며 이때 음극이 유리판에 대면하도록 배치하였다. 시편의 세퍼레이터 부분을 25℃에서 25mm/min 속도로 180°의 각도로 박리하고 이 때의 강도를 측정하였다.
Figure PCTKR2021009138-appb-img-000001
상기 표 1에서 확인할 수 있듯이, 실시예 1 내지 3의 경우, 유리전이온도가 20℃ 내지 50℃인 입자 형상을 가지는 입자형 아크릴계 고분자를 사용하여, 무기물 입자를 포함하는 제1층의 상면에 입자형 아크릴계 고분자를 포함하는 제2층이 형성될 수 있어 전극 접착력이 우수함을 확인할 수 있었다. 또한, 상기 입자형 아크릴계 고분자가 제1층의 기공을 막지 않아 통기도도 양호한 것을 확인할 수 있었다.
또한, 입경이 200 nm 이상인 입자형 아크릴계 고분자를 사용하는 실시예 1 및 2의 경우, 입경이 200 nm 미만인 입자형 아크릴계 고분자를 사용하는 실시예 3에 비해 더욱 전극 접착력이 우수함을 확인할 수 있었다. 이는 라미네이션에 의해 세퍼레이터와 전극이 적층될 때, 상기 입자형 아크릴계 고분자의 입경이 클수록, 입자형 아크릴계 고분자의 형상이 변형되면서 전극과 접착하는 면적이 증가하기 때문인 것으로 보인다.
반면, 비교예 1의 경우, 유리전이온도가 15℃ 이하인 비입자형 아크릴계 고분자만을 사용하고, 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자를 사용하지 않아서, 상기 비입자형 아크릴계 고분자들이 무기물 입자와 함께 얽혀 다공성 고분자 기재 쪽으로 가라앉을 뿐, 제1층의 상면에 제2층이 형성될 수 없기 때문에 충분한 전극 접착력을 확보하기 어려웠다.
비교예 2 및 3의 경우, 2종의 상이한 아크릴계 고분자를 사용하였으나, 두 아크릴계 고분자 모두 유리전이온도가 15℃ 이하로 입자 형상을 가지지 않아서, 무기물 입자와 함께 얽혀 다공성 고분자 기재 쪽으로 가라앉을 뿐, 제1층의 상면에 제2층을 형성하는 것이 어려웠다. 또한, 상기 2종의 아크릴계 고분자가 모두 입자 형상을 띠지 못하여 제1층의 기공을 막음에 따라 통기시간도 높음을 확인할 수 있었다.
비교예 4의 경우, 유리전이온도가 20℃ 이상인 입자 형상을 가지는 입자형 아크릴계 고분자를 사용하여서 제1층의 상면에 제2층을 형성할 수 있으나, 입자형 아크릴계 고분자의 유리전이온도가 50℃보다 높아 전극과 세퍼레이터의 라미네이션 단계에서 상기 입자의 형상이 변형되지 않아 충분한 전극 접착력을 확보하기 어려움을 확인할 수 있었다.
평가예 3: 제1층과 다공성 고분자 기재 간의 접착력 측정
실시예 1, 실시예 4 및 비교예 5에서 제조한 세퍼레이터의 제1층과 다공성 고분자 기재 간의 접착력을 측정하여 표 2에 나타내었다.
실시예 1, 실시예 4 및 비교예 5에서 제조한 세퍼레이터를 양면 테이프를 이용하여 유리판 위에 고정시킨 후, 노출된 제1층에 테이프(3M 투명 테이프)를 견고히 부착시킨 다음, 11oyd LS-1을 이용하여 테이프를 떼어내는데 필요한 힘(gf/15 mm)으로 세퍼레이터의 제1층과 다공성 고분자 기재 간의 접착력을 측정하였다.
Figure PCTKR2021009138-appb-img-000002
상기 표 2에서 확인할 수 있듯이, 실시예 1 및 4의 경우 제1층과 다공성 고분자 기재 간에 충분한 접착력을 가짐을 확인할 수 있었다. 이는 유리전이온도가 15℃ 이하인 비입자형 아크릴계 고분자가 무기물 입자와 함께 얽혀 다공성 고분자 기재 쪽으로 가라앉아 제1층과 다공성 고분자 기재가 결착된 상태를 유지할 수 있도록 하기 때문인 것으로 보인다.
반면, 비교예 5의 경우, 제1층과 다공성 고분자 기재 간에 충분한 접착력을 형성하기 어려움을 확인할 수 있었다. 이는 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자는 무기물 입자와 함께 얽혀 다공성 고분자 기재 쪽으로 가라앉지 않아 다공성 고분자 기재와 제1층 간에는 접착력을 형성할 수 있는 물질이 존재하지 않기 때문인 것으로 보인다.

Claims (20)

  1. 다공성 고분자 기재;
    상기 다공성 고분자 기재의 적어도 일면에 형성되며, 다수의 무기물 입자들 및 유리전이온도가 15℃ 이하이고 상기 무기물 입자들을 연결 및 고정시키는 비입자형 아크릴계 고분자를 포함하는 제1층; 및
    상기 제1층의 상면에 형성되며, 유리전이온도가 20℃ 내지 50℃인 입자형 아크릴계 고분자를 포함하는 제2층을 포함하는 것을 특징으로 하는 이차전지용 세퍼레이터.
  2. 제1항에 있어서,
    상기 비입자형 아크릴계 고분자는 유리전이온도가 0℃ 이하인 것을 특징으로 하는 이차전지용 세퍼레이터.
  3. 제1항에 있어서,
    상기 비입자형 아크릴계 고분자가 제1 단량체로부터 유래된 반복단위와 제2 단량체로부터 유래된 반복단위를 포함하고,
    상기 제1 단량체의 유리전이온도가 상기 제2 단량체의 유리전이온도보다 큰 것을 특징으로 하는 이차전지용 세퍼레이터.
  4. 제3항에 있어서,
    상기 제1 단량체가 메틸메타크릴레이트, 에틸메타크릴레이트, n-부틸메타크릴레이트, 이소부틸메타크릴레이트, t-부틸메타크릴레이트, 또는 이들 중 2 이상을 포함하는 것을 특징으로 하는 이차전지용 세퍼레이터.
  5. 제3항에 있어서,
    상기 제2 단량체가 2-에틸헥실메타크릴레이트, 라우릴메타크릴레이트, 옥타데실메타크릴레이트, 또는 이들 중 2 이상을 포함하는 것을 특징으로 하는 이차전지용 세퍼레이터.
  6. 제3항에 있어서,
    상기 제2 단량체로부터 유래된 반복단위가 상기 비입자형 아크릴계 고분자 100 중량%을 기준으로 60 중량% 이상 포함되는 것을 특징으로 하는 이차전지용 세퍼레이터.
  7. 제1항에 있어서,
    상기 입자형 아크릴계 고분자가 제3 단량체로부터 유래된 반복단위와 제4 단량체로부터 유래된 반복단위를 포함하고,
    상기 제3 단량체의 유리전이온도가 상기 제4 단량체의 유리전이온도보다 큰 것을 특징으로 하는 이차전지용 세퍼레이터.
  8. 제7항에 있어서,
    상기 제3 단량체가 스티렌, 비닐아세테이트, 아크릴로니트릴, 또는 이들 중 2 이상을 포함하는 것을 특징으로 하는 이차전지용 세퍼레이터.
  9. 제7항에 있어서,
    상기 제4 단량체가 메틸아크릴레이트, 에틸아크릴레이트, 부틸아크릴레이트, 이소부틸아크릴레이트, 2-에틸헥실아크릴레이트, 에틸렌, 또는 이들 중 2 이상을 포함하는 것을 특징으로 하는 이차전지용 세퍼레이터.
  10. 제7항에 있어서,
    제3 단량체로부터 유래된 반복단위와 제4 단량체로부터 유래된 반복단위의 중량비가 1.5:8.5 내지 4:6인 것을 특징으로 하는 이차전지용 세퍼레이터.
  11. 제1항에 있어서,
    상기 입자형 아크릴계 고분자의 평균 입경은 200 nm 내지 800 nm인 것을 특징으로 하는 이차전지용 세퍼레이터.
  12. 제1항에 있어서,
    상기 무기물 입자의 밀도에 대한 상기 입자형 아크릴계 고분자의 밀도의 비율이 0.5 이하인 것을 특징으로 하는 이차전지용 세퍼레이터.
  13. 제1항에 있어서,
    상기 입자형 아크릴계 고분자의 밀도가 1.5 g/m3 이하인 것을 특징으로 하는 이차전지용 세퍼레이터.
  14. 제1항에 있어서,
    상기 무기물 입자의 밀도가 2.0 g/m3 이상인 것을 특징으로 하는 이차전지용 세퍼레이터.
  15. 제1항에 있어서,
    상기 이차전지용 세퍼레이터의 전극과의 접착력이 30 내지 200 gf/25 mm인 것을 특징으로 하는 이차전지용 세퍼레이터.
  16. 제1항에 있어서,
    상기 이차전지용 세퍼레이터의 통기도가 10 내지 300 sec/100 cc인 것을 특징으로 하는 이차전지용 세퍼레이터.
  17. 제1항에 있어서,
    상기 다공성 고분자 기재와 상기 제1층 간의 접착력이 10 내지 300 gf/15 mm인 것을 특징으로 하는 이차전지용 세퍼레이터.
  18. 양극, 음극, 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 이차전지에 있어서,
    상기 세퍼레이터는 제1항 내지 제17항 중 어느 한 항의 이차전지용 세퍼레이터인 것을 특징으로 하는 이차전지.
  19. 양극 및 음극 사이에 제1항 내지 제17항 중 어느 한 항의 이차전지용 세퍼레이터를 개재시키고 가열가압하여 라미네이션하는 단계를 포함하는 것을 특징으로 하는 이차전지의 제조방법.
  20. 제19항의 제조방법에 의해 제조된 이차전지.
PCT/KR2021/009138 2020-07-20 2021-07-15 이차전지용 세퍼레이터, 이의 제조방법, 이를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지 WO2022019572A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/914,126 US20240039119A1 (en) 2020-07-20 2021-07-15 Separator for secondary battery, manufacturing method thereof, method for manufacturing secondary battery comprising the separator and secondary battery manufactured by the method
EP21845906.3A EP4152509A1 (en) 2020-07-20 2021-07-15 Separator for secondary battery, manufacturing method therefor, manufacturing method of secondary battery comprising same, and secondary battery manufactured thereby
CN202180047711.2A CN115803959A (zh) 2020-07-20 2021-07-15 用于二次电池的隔板、其制造方法、制造包括该隔板的二次电池的方法和由该方法制造的二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200089709 2020-07-20
KR10-2020-0089709 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022019572A1 true WO2022019572A1 (ko) 2022-01-27

Family

ID=79728847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009138 WO2022019572A1 (ko) 2020-07-20 2021-07-15 이차전지용 세퍼레이터, 이의 제조방법, 이를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지

Country Status (5)

Country Link
US (1) US20240039119A1 (ko)
EP (1) EP4152509A1 (ko)
KR (1) KR102534840B1 (ko)
CN (1) CN115803959A (ko)
WO (1) WO2022019572A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179780A1 (zh) * 2022-03-25 2023-09-28 宁德时代新能源科技股份有限公司 隔离膜及其制备方法、电池和用电装置
US20240079724A1 (en) * 2022-09-06 2024-03-07 Lg Energy Solution, Ltd. Separator for electrochemical device and an electrochemical device including same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102594964B1 (ko) * 2022-05-26 2023-10-26 주식회사 엘지에너지솔루션 유기/무기 복합 다공성 코팅층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
KR102599066B1 (ko) * 2022-06-03 2023-11-03 주식회사 엘지에너지솔루션 리튬 이차전지용 분리막 및 이의 제조방법
WO2024010413A1 (ko) * 2022-07-07 2024-01-11 주식회사 엘지에너지솔루션 전기화학소자용 분리막 및 상기 분리막의 제조 방법
KR102604351B1 (ko) * 2023-04-19 2023-11-23 한양대학교 에리카산학협력단 리튬 이차 전지용 분리막의 제조 방법, 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218696A (zh) * 2005-07-12 2008-07-09 威廉·W·严 电池隔板
KR20160020283A (ko) * 2014-08-13 2016-02-23 삼성에스디아이 주식회사 리튬이차전지용 세퍼레이터, 이를 채용한 리튬이차전지 및 그 제조방법
JP2016048670A (ja) * 2014-08-26 2016-04-07 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
KR20190083894A (ko) * 2018-01-05 2019-07-15 주식회사 엘지화학 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
KR20200034470A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
KR20200089709A (ko) 2017-11-21 2020-07-27 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 원자로 격납 건물 사용후 연료 저장조 여과 배기체

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028842A (ja) * 2013-06-28 2015-02-12 日本ゼオン株式会社 リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ、及びリチウムイオン二次電池
KR102647260B1 (ko) * 2018-07-02 2024-03-13 에스케이이노베이션 주식회사 이차전지용 복합 분리막

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218696A (zh) * 2005-07-12 2008-07-09 威廉·W·严 电池隔板
KR20160020283A (ko) * 2014-08-13 2016-02-23 삼성에스디아이 주식회사 리튬이차전지용 세퍼레이터, 이를 채용한 리튬이차전지 및 그 제조방법
JP2016048670A (ja) * 2014-08-26 2016-04-07 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
KR20200089709A (ko) 2017-11-21 2020-07-27 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 원자로 격납 건물 사용후 연료 저장조 여과 배기체
KR20190083894A (ko) * 2018-01-05 2019-07-15 주식회사 엘지화학 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
KR20200034470A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179780A1 (zh) * 2022-03-25 2023-09-28 宁德时代新能源科技股份有限公司 隔离膜及其制备方法、电池和用电装置
US20240079724A1 (en) * 2022-09-06 2024-03-07 Lg Energy Solution, Ltd. Separator for electrochemical device and an electrochemical device including same
US11949125B2 (en) * 2022-09-06 2024-04-02 Lg Energy Solution, Ltd. Separator for electrochemical device and an electrochemical device including same

Also Published As

Publication number Publication date
US20240039119A1 (en) 2024-02-01
EP4152509A1 (en) 2023-03-22
KR102534840B1 (ko) 2023-05-26
KR20220011097A (ko) 2022-01-27
CN115803959A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2022019572A1 (ko) 이차전지용 세퍼레이터, 이의 제조방법, 이를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2016068651A2 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2021235794A1 (ko) 이차전지
WO2021242072A1 (ko) 전기화학소자용 세퍼레이터 및 이를 구비한 전기화학소자
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2020141684A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2022158951A2 (ko) 리튬 이차전지용 세퍼레이터 및 이를 구비한 리튬 이차전지
WO2022015026A1 (ko) 이차전지용 세퍼레이터, 이의 제조방법 및 상기 세퍼레이터를 구비한 이차전지
WO2021153987A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이차전지
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2020242138A1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지
WO2022050801A1 (ko) 전기화학소자용 분리막 및 이의 제조방법
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2021194260A1 (ko) 음극의 제조방법
WO2022158950A2 (ko) 리튬 이차전지용 세퍼레이터 및 이를 구비한 리튬 이차전지
WO2022197095A1 (ko) 리튬 이차전지용 음극, 및 이를 구비하는 리튬 이차전지
WO2021015488A1 (ko) 이차전지의 제조방법
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2022250507A1 (ko) 전기화학소자용 세퍼레이터 및 이를 구비한 전기화학소자
WO2022080786A1 (ko) 리튬 이차전지용 음극, 이를 구비하는 리튬 이차전지 및 상기 리튬 이차전지의 제조 방법
WO2023229300A1 (ko) 리튬 이차 전지용 전극, 및 이를 포함하는 리튬 이차 전지
WO2024111806A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021845906

Country of ref document: EP

Effective date: 20221215

NENP Non-entry into the national phase

Ref country code: DE