WO2024010413A1 - 전기화학소자용 분리막 및 상기 분리막의 제조 방법 - Google Patents

전기화학소자용 분리막 및 상기 분리막의 제조 방법 Download PDF

Info

Publication number
WO2024010413A1
WO2024010413A1 PCT/KR2023/009638 KR2023009638W WO2024010413A1 WO 2024010413 A1 WO2024010413 A1 WO 2024010413A1 KR 2023009638 W KR2023009638 W KR 2023009638W WO 2024010413 A1 WO2024010413 A1 WO 2024010413A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrochemical device
spinning solution
manufacturing
polymer binder
Prior art date
Application number
PCT/KR2023/009638
Other languages
English (en)
French (fr)
Inventor
신진영
이상영
성동욱
김지은
정소미
이용혁
서지영
배동훈
방지현
Original Assignee
주식회사 엘지에너지솔루션
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220083685A external-priority patent/KR102658662B1/ko
Priority claimed from KR1020220107931A external-priority patent/KR20240029695A/ko
Application filed by 주식회사 엘지에너지솔루션, 연세대학교 산학협력단 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380016858.4A priority Critical patent/CN118476114A/zh
Publication of WO2024010413A1 publication Critical patent/WO2024010413A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention has the application date of Korean Patent Application No. 10-2022-0083685 submitted to the Korea Intellectual Property Office on July 7, 2022 and Korean Patent Application No. 10-2022-0107931 submitted to the Korea Intellectual Property Office on August 26, 2022.
  • the benefits are claimed, the entire contents of which are included in the present invention.
  • the present invention relates to a method of manufacturing a separator for an electrochemical device including a silicon-based cathode, and a separator for an electrochemical device manufactured thereby.
  • Electrochemical devices convert chemical energy into electrical energy using an electrochemical reaction.
  • lithium secondary batteries which have high energy density and voltage, long cycle life, and can be used in various fields, have been widely used.
  • a lithium secondary battery may include an electrode assembly made of a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and the electrode assembly may be manufactured by being stored in a case together with an electrolyte solution.
  • the positive electrode can provide lithium ions, and the lithium ions can pass through a separator made of a porous material and move to the negative electrode.
  • the cathode preferably has an electrochemical reaction potential close to that of lithium metal and allows insertion and desorption of lithium ions.
  • a negative electrode containing a carbon-based active material such as graphite has the advantage of being stable and having an excellent cycle life due to little change in crystal structure due to insertion and desorption of lithium ions.
  • the present invention aims to provide, in an electrochemical device including a silicon-based cathode, a separator with a structure that is not deformed or damaged even when compressed by the cathode expanding during charging, a method of manufacturing the separator, and an electrochemical device including the separator. Do it as
  • the present invention aims to provide a separator with a structure that can prevent short circuit of the electrode when an electrochemical device including a silicon-based cathode is exposed to high temperature, a method of manufacturing the separator, and an electrochemical device including the separator. Do it as
  • One aspect of the present invention is a separator for an electrochemical device including a silicon-based cathode, wherein the separator is a free-standing porous separator that does not contain a polyolefin substrate and includes a polymer binder and inorganic particles, based on the total weight of the separator. It provides a separator for an electrochemical device in which the content of the inorganic particles is greater than the content of the polymer binder.
  • the separator may include 60 to 95% by weight of the inorganic particles based on the total weight of the separator.
  • the separator may satisfy a thickness of 15 to 45 ⁇ m, and the value defined by the following equation 1 may be 1 to 18%:
  • T1 is the initial thickness of the separator
  • the T2 refers to the thickness of the separator after pressing it at 5.2 MPa and 70°C for 10 seconds in a cotton rolling mill.
  • the separator further includes a second layer formed on at least one surface of the separator, wherein the second layer includes a polymer resin different from the polymer binder, and the polymer binder may have a higher melting point than the polymer resin. there is.
  • the separator may have a thickness of 10 to 45 ⁇ m, and the rate of change in air permeability may be less than 100% when pressed at 80°C and 7.8 MPa for 10 seconds.
  • Another aspect of the present invention provides an electrochemical device including an anode, a silicon-based cathode, and a separator for an electrochemical device according to the above-described aspect, positioned between the anode and the silicon-based cathode.
  • the silicon-based negative electrode may include one or more silicon-based active materials selected from the group consisting of Si, SiOx (0 ⁇ x ⁇ 2), SiC, and Si alloy.
  • Another aspect of the present invention is a method of manufacturing a separator for an electrochemical device containing a silicon-based cathode, wherein a first spinning solution containing a polymer binder and a second spinning solution containing inorganic particles are simultaneously electrospun to produce freestanding (freestanding) material.
  • It provides a method of manufacturing a separator for an electrochemical device, comprising forming a porous separator, wherein the flow rate of the second spinning solution is greater than the flow rate of the first spinning solution.
  • the inorganic particles are SiO 2 , Al 2 O 3 , AlOOH, TiO 2 , ZrO 2 , BaSO 4 , BaTiO 3 , ZnO, MgO, Mg(OH) 2 , Al(OH) 3 , Pb(Zr,Ti)O 3 , Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, Y 2 O 3 , SiC, ZnSn (OH) 6 , Zn 2 SnO 4 , ZnSnO 3 , Sb 2 O 3 , Sb 2 O 4 and Sb 2 O 5 It may be one or more selected from the group consisting of.
  • the polymer binder may be one or more selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, polyamide, polyimide, polyetherimide, polyacrylonitrile, polyvinyl alcohol, polyaramid, and polystyrene.
  • the step of forming the freestanding porous separator may be electrospinning the first spinning solution and the second spinning solution at a flow rate ratio of 1:8 to 1:100.
  • the method of manufacturing a separator for an electrochemical device may further include pressurizing the formed free-standing porous separator at 25 to 60°C.
  • the method of manufacturing a separator for an electrochemical device further includes forming a second layer by electrospinning a third spinning solution containing a polymer resin on at least one surface of the porous separator, wherein the polymer binder contains the polymer resin. It may have a higher melting point.
  • the second layer may be formed by being placed on the porous separator and rolled.
  • the rolling may be performed at a temperature lower than the melting point of the polymer resin.
  • the polymer resin may be one or more selected from the group consisting of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyethylene glycol, polypropylene glycol, polyethylene oxide, and polymethyl methacrylate.
  • the separator for electrochemical devices according to the present invention satisfies a thickness of 15 to 45 ⁇ m, the value defined by Equation 1 above is 1 to 18% or less, and the resistance increase rate after compression is 50% or less, and contains a silicon-based active material. Even when the separator is compressed as the cathode expands, the separator is not deformed or damaged.
  • the separator for an electrochemical device further includes a second layer having a lower melting point than the porous separator containing a polymer binder and inorganic particles, and when the electrochemical device is exposed to high temperature, the pores of the second layer By keeping this closed, short circuiting of the electrode can be prevented.
  • the electrochemical device including the separator can provide improved capacity and energy density and stable cycle characteristics by using a silicon-based anode.
  • Figure 1 is a graph showing the charge/discharge efficiency (Coulombic efficiency) according to the charge/discharge cycle of the pouch cell according to Example 1 and Comparative Example 3 in Experimental Example 2 of the present invention.
  • Figure 2 is a graph showing the areal capacity according to the charge and discharge cycle of the pouch cell according to Example 1 and Comparative Example 3 in Experimental Example 2 of the present invention.
  • Figure 3 is a graph showing the thickness before and after compression of the separator according to Preparation Example 1 and Comparative Example 3 in Experimental Example 3 of the present invention.
  • Figure 4 is a graph showing (a) the ionic conductivity of the separator according to Preparation Example 1 and (b) the ionic conductivity of the separator according to Comparative Example 3 in Experimental Example 3 of the present invention.
  • Figure 5 shows (a) an SEM image of the separator according to Preparation Example 1 before pressurization, (b) an SEM image of the separator according to Preparation Example 1 after pressurization, and (c) the separator according to Comparative Example 3 in Experimental Example 3 of the present invention. (d) SEM image before pressurization, (d) SEM image after pressurization of the separator according to Comparative Example 3.
  • Figure 6 is a graph showing the air permeability of the separator according to Preparation Examples 5 to 7 before and after compression in an experimental example of the present invention.
  • electrochemical device may mean a primary battery, secondary battery, super capacitor, etc.
  • particle size means D50, which is the particle size corresponding to 50% of the cumulative distribution of particle numbers according to particle size, unless otherwise specified.
  • molecular weight refers to the weight average molecular weight (Mw), unless otherwise specified, and the weight average molecular weight is polystyrene measured by gel permeation chromatography (GPC) using monodisperse polystyrene polymer as a standard material. Corresponds to the converted molecular weight.
  • One embodiment of the present invention is a method of manufacturing a separator for an electrochemical device containing a silicon-based cathode, wherein a free-standing porous separator is produced by simultaneously electrospinning a first spinning solution containing a polymer binder and a second spinning solution containing inorganic particles.
  • a method including forming steps is provided.
  • a conventional porous separator forms a coating layer containing inorganic particles and a polymer binder on at least one side of a porous substrate, and the porous substrate uses a polyolefin substrate or nonwoven fabric manufactured through a dry or wet process.
  • the freestanding porous separator refers to a separator in which a pore structure is formed using inorganic particles and a polymer binder without a porous substrate as described above.
  • a separator that does not contain a porous substrate may be vulnerable to external forces and have low compression resistance as its outer shape is formed only with inorganic particles and a polymer binder.
  • One embodiment of the present invention provides a free-standing porous separator having excellent compression resistance by composing a high content of inorganic particles compared to the binder without using a polyolefin substrate.
  • the flow rate of the second spinning solution is greater than the flow rate of the first spinning solution in the step of forming the freestanding porous separator.
  • Compression resistance can be expressed by the resistance increase rate or thickness ratio before and after pressurizing the separator under certain conditions.
  • Excellent compression resistance means that even when the separator is pressed due to low compression resistance, the original pore structure is maintained and lithium ions can move smoothly.
  • excellent compression resistance means excellent durability against external forces, so that deformation or damage to the separator is minimized or does not occur.
  • a freestanding porous separator is manufactured by electrospinning, so that a relatively small amount of polymer binder can be used compared to other manufacturing methods such as die coating, bar coating, dip coating, and roll coating. Through this, the content of the polymer binder can be reduced and a separator with a relatively high inorganic particle content can be manufactured. At the same time, electrospinning can achieve uniform distribution of inorganic particles compared to other manufacturing methods, and is therefore suitable for manufacturing a separator with properties suitable for use in electrochemical devices including a silicon-based cathode.
  • the silicon-based negative electrode may include one or more silicon-based active materials selected from the group consisting of Si, SiOx (0 ⁇ x ⁇ 2), SiC, and Si alloy.
  • the Si alloy may include LiSi alloy, CoSi alloy, or TiSi alloy.
  • the silicon-based active material may contain 50% by weight or more of pure Si relative to the total weight. More preferably, the silicon-based active material may be composed only of pure Si.
  • Electrospinning can be performed by applying voltage between a nozzle through which a polymer solution is discharged and a current collector through which the polymer solution discharged from the nozzle is collected.
  • the nozzle is connected to a container such as a syringe that stores the polymer solution, so that the polymer solution can be supplied at a predetermined flow rate.
  • the nozzle may be charged with a positive or negative charge, and the current collector plate may be charged with an opposite charge to the nozzle or may be grounded.
  • the current collector plate may be a metal plate that collects the polymer solution radiated in the form of fibers, but its shape or size is not limited.
  • polymer droplets maintained by surface tension may form at the tip of the nozzle.
  • Coulomb's force due to the external electric field may be greater than the surface tension of the polymer droplet, and the polymer droplet may exhibit a cone shape (Taylor cone).
  • a jet of polymer fibers can be spun and stretched from the cone-shaped polymer droplets, and the polymer fibers move in the direction of the current collector and are collected. It may coagulate afterward.
  • the step of forming the freestanding porous separator includes preparing a first spinning solution containing a polymer binder.
  • the first spinning solution may be a polymer binder solution in which the polymer binder is dissolved in a solvent.
  • the polymer binder may be a polymer having a molecular weight of 100,000 to 200,000, preferably 120,000 to 180,000, and more preferably 140,000 to 160,000. If the molecular weight of the polymer binder is lower than the above range, electrospinning cannot be performed while maintaining the shape of the fiber. If the molecular weight of the polymer binder is higher than the above range, the viscosity of the second spinning solution increases, preventing smooth electrospinning.
  • the polymer binder includes polyethylene terephthalate (PET), polybutylene terephthalate, polyamide, polyimide, polyetherimide, polyacrylonitrile; It may be one or more selected from the group consisting of PAN), polyvinyl alcohol (PVA), polyaramid, and polystyrene.
  • PET polyethylene terephthalate
  • PAN polybutylene terephthalate
  • PVA polyvinyl alcohol
  • polyaramid polystyrene
  • the polymer binder may be a polymer that has excellent heat resistance at 150 to 200°C, and the manufactured separator has excellent thermal stability and can prevent internal short circuit of the electrochemical device. More preferably, the polymer binder may be at least one selected from the group consisting of polyethylene terephthalate, polyacrylonitrile, and polyphenylene oxide.
  • the solvent may be one or more organic solvents such as alcohol, acetone, dimethylacetamide (DMAc), dimethylformamide (DMF), and methylene chloride, but is not limited thereto.
  • the solvent may evaporate after forming the free-standing porous separator and not remain in the separator.
  • the first spinning solution may include about 5 to 20% by weight of the polymer binder based on the total weight.
  • the content of the polymer binder may be about 5 to 12% by weight. More preferably, the content of the polymer binder may be about 8 to 10% by weight. If the content of the polymer binder is lower than the above range, the viscosity of the second spinning solution is lowered and the fiber shape cannot be maintained during electrospinning. If the content of the polymer binder is higher than the above range, the viscosity of the first spinning solution increases, preventing smooth electrospinning.
  • the step of forming the freestanding porous separator includes preparing a second spinning solution containing inorganic particles.
  • the second spinning solution may be a dispersion of inorganic particles mixed with a dispersion medium.
  • the inorganic particles may be inorganic nanoparticles having an average particle diameter (D50) of 10 to 1,000 nm, preferably 10 to 500 nm, and more preferably 200 to 300 nm.
  • the inorganic particles may be connected to and fixed to adjacent inorganic particles by a polymer binder, which will be described later, and the interstitial volume between the inorganic particles may be formed as pores of the separator.
  • D50 average particle diameter
  • the inorganic particles may be connected to and fixed to adjacent inorganic particles by a polymer binder, which will be described later, and the interstitial volume between the inorganic particles may be formed as pores of the separator.
  • a separator with more uniform pores facilitates the movement of lithium ions and increases the impregnation rate of the electrolyte solution, which can contribute to improving battery performance.
  • the inorganic particles are SiO 2 , Al 2 O 3 , AlOOH, TiO 2 , ZrO 2 , BaSO 4 , BaTiO 3 , ZnO, MgO, Mg(OH) 2 , Al(OH) 3 , Pb(Zr,Ti)O 3 , Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, Y 2 O 3 , SiC, ZnSn( OH) 6 , Zn 2 SnO 4 , ZnSnO 3 , Sb 2 O 3 , Sb 2 O 4 and Sb 2 O 5 It may include one or more selected from the group consisting of.
  • the inorganic material may be electrochemically stable so that no chemical reaction occurs within the operating voltage range of the electrochemical device.
  • the inorganic material may be at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, TiO 2 , ZrO 2 and Al(OH) 3 .
  • the dispersion may be a colloidal solution formed by mixing the inorganic particles and the dispersion medium.
  • the dispersion medium may be water or alcohol that does not substantially dissolve the inorganic particles, but is not limited thereto.
  • the dispersion medium may evaporate after the step of forming the free-standing porous separator and not remain in the separator.
  • the second spinning solution may contain about 5 to 15% by weight of the inorganic particles based on the total weight.
  • the content of the inorganic particles may be about 8 to 12% by weight.
  • the inorganic particles exhibit uniform dispersibility in the dispersion medium within the above content range, and uniform distribution of the inorganic material in the separation membrane can be achieved.
  • the second spinning solution may further contain polymers in addition to the inorganic particles and may have viscosity.
  • the polymer may be one or more of the polymers that can be used as a polymer binder in the present invention, but may be different from the polymer binder used in the second spinning solution.
  • Preparation of the first spinning solution and preparation of the second spinning solution may be performed simultaneously or in any order.
  • the step of forming a free-standing porous separator is to form a free-standing porous separator by simultaneously electrospinning the first spinning solution and the second spinning solution.
  • One embodiment of the present invention prepares a first spinning solution containing a polymer binder and a second spinning solution containing inorganic particles, and simultaneously electrospinning them, produces a free-standing porous separator in which inorganic particles are uniformly dispersed. can do.
  • a single spinning solution must (i) have an appropriate boiling point considering evaporation after spinning, (ii) be usable for electrospinning, (iii) dissolve the polymer binder well, and (iv) disperse the inorganic particles well. It is difficult to satisfy all conditions.
  • Simultaneous electrospinning of the first spinning solution and the second spinning solution can simultaneously satisfy the above conditions (i) to (iv), and as a result, a porous separator in which inorganic particles are uniformly dispersed is manufactured without a separate dispersant. can do.
  • the first spinning solution and the second spinning solution may each be stored in a container equipped with a nozzle and then electrospun on one current collector plate.
  • the container may be a syringe, and the injection flow rate of the syringe in which the first radiation solution is stored may be higher than the injection flow rate in which the second radiation solution is stored.
  • the electrospinning method of the first spinning solution and the second spinning solution is not limited as long as it can uniformly distribute the inorganic particles and the polymer binder in the manufactured separator.
  • the first spinning liquid and the second spinning liquid may be well mixed with each other on the current collector plate and spun into a flat plate shape.
  • the first spinning solution and the second spinning solution may be electrospun at a flow rate of 1:8 to 1:100.
  • the first spinning solution may be electrospun at a flow rate of 1 to 10 ⁇ l/min.
  • the second spinning solution may be electrospun at a flow rate of 80 to 100 ⁇ l/min.
  • the first spinning solution and the second spinning solution may be spun in the form of fibers and collected on the current collector plate.
  • the method of manufacturing the separator includes leaving the freestanding porous separator at room temperature or drying it in an oven at room temperature to 60° C. to evaporate and remove the remaining solvent and dispersion that did not evaporate during the electrospinning process. It may further include.
  • the method of manufacturing a separator for an electrochemical device may further include pressurizing the separator formed in the step of forming the free-standing porous separator at 25 to 60°C.
  • the step of pressurizing the separator may include rolling the formed separator at a rolling rate of 10 to 50% and then rolling it with a rolling mill so that the thickness of the separator is 15 to 45 ⁇ m. If the rolling temperature, pressure, and rolling rate are outside the range, the inorganic particles contained in the separator may be destroyed.
  • the rolling mill may be a roll rolling mill that injects and rolls a separator while the upper and lower rolls rotate.
  • the step of pressurizing the separator may include rolling the separator to 25 to 40% in a rolling mill so that the thickness of the separator after rolling is 20 to 40 ⁇ m.
  • the separator for electrochemical devices manufactured according to the method described above is a free-standing porous separator that does not form a coating layer containing inorganic particles and a polymer binder on a porous substrate, and has a higher content of inorganic particles compared to the polymer binder, and the inorganic particles are contained in the separator. distributed evenly throughout the body.
  • the separator is not deformed or damaged even when the negative electrode containing the silicon-based active material expands, and has excellent compression resistance, so the resistance increase rate can be maintained below 50% even when the electrochemical device is repeatedly charged and discharged.
  • the method of manufacturing a separator for an electrochemical device may further include forming a second layer by electrospinning a third spinning solution containing a polymer resin on at least one surface of the freestanding porous separator.
  • the freestanding porous separator may be a first layer, and a second layer containing the polymer resin may be laminated on at least one surface of the first layer.
  • the third spinning solution may be a polymer solution in which the polymer resin is dissolved in a solvent.
  • the polymer resin is different from the polymer binder, and the polymer binder may have a higher melting point than the polymer resin.
  • the polymer resin may be a polymer having a molecular weight of 10,000 to 200,000, preferably 12,000 to 100,000, and more preferably 15,000 to 20,000. If the molecular weight of the polymer resin is lower than the above range, electrospinning cannot be performed while maintaining the shape of the fiber. If the molecular weight of the polymer resin is higher than the above range, the viscosity of the third spinning solution increases, preventing smooth electrospinning.
  • the polymer resin may be one or more selected from the group consisting of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyethylene glycol, polypropylene glycol, polyethylene oxide, and polymethyl methacrylate.
  • the solvent may be one or more organic solvents such as alcohol, acetone, dimethylacetamide (DMAc), dimethylformamide (DMF), and methylene chloride, but is not limited thereto.
  • the solvent may evaporate after forming the second layer and not remain in the separator.
  • the third spinning solution may contain about 5 to 20% by weight of the polymer resin based on the total weight.
  • the content of the polymer resin may be about 5 to 12% by weight. More preferably, the content of the polymer resin may be about 8 to 10% by weight. If the content of the polymer resin is lower than the above range, the viscosity of the third spinning solution is lowered and the fiber shape cannot be maintained during electrospinning. If the content of the polymer resin is higher than the above range, the viscosity of the third spinning solution increases, preventing smooth electrospinning.
  • Preparation of the third spinning solution may be carried out simultaneously with the preparation of the first and second spinning solutions or at a time regardless of the order.
  • the third spinning solution may be stored in a container equipped with a nozzle and then electrospun on a current collector plate.
  • the flow rate of the third spinning solution may be equal to or higher than the flow rate of the first spinning solution.
  • the third spinning solution may be spun in the form of fibers and collected on the current collector plate.
  • the forming step of the second layer may further include the step of removing the remaining solvent that did not evaporate during the electrospinning process by leaving it at room temperature after electrospinning or drying it in an oven at a temperature of room temperature to 60°C.
  • a pore structure may be formed in the second layer during the electrospinning of the third spinning solution and the evaporation of the solvent.
  • the melting point of the polymer resin may be lower than the melting point of the polymer binder, and the melting point of the second layer may be lower than the melting point of the first layer.
  • the second layer may function as a shutdown layer in the separator. For example, when a large current suddenly flows due to a short circuit in an electrochemical device and the temperature of the second layer rises above a predetermined temperature, the pore structure of the second layer first shuts down, causing a short circuit in the electrode and additional temperature. Rise can be prevented.
  • the step of laminating the second layer to the first layer may include rolling the second layer and the first layer.
  • the rolling may be performed at a temperature lower than the melting point of the polymer resin.
  • the rolling can bond the second layer and the first layer without closing the pore structure of the second layer.
  • the rolling can be performed using a roll mill that injects and rolls a separator while the upper and lower rolls rotate.
  • the separator for electrochemical devices manufactured according to the above method is a free-standing porous separator that does not include a porous substrate and includes a first layer containing a polymer binder and inorganic particles and a second layer containing a polymer resin.
  • the first layer has a high content of inorganic particles compared to the polymer binder based on the total weight of the first layer, and the inorganic particles are uniformly dispersed.
  • the separator including the first layer does not undergo deformation or damage even when the negative electrode containing the silicon-based active material expands, and has excellent compression resistance, so even when the electrochemical device is repeatedly charged and discharged, the rate of change in air permeability is low.
  • the second layer includes a polymer resin with a lower melting point than the polymer binder of the first layer, so that when the electrochemical device is exposed to a temperature higher than a predetermined temperature, the second layer is shut down first to prevent short circuit of the electrode. You can.
  • Another embodiment of the present invention provides a separator for an electrochemical device including a silicon-based cathode.
  • the separator is a freestanding porous separator that does not contain a polyolefin substrate and includes a polymer binder and inorganic particles, but the content of the inorganic particles is greater than the polymer binder based on the total weight of the separator.
  • the separator may be manufactured according to the separator manufacturing method according to the above and previous embodiments, and the same description as in the previous embodiment is replaced with the description of the above embodiment.
  • the separator is manufactured by simultaneously electrospinning a first spinning solution containing a polymer binder and a second spinning solution containing inorganic particles. During electrospinning, the flow rates of the first spinning solution and the second spinning solution can be adjusted to control the content of the polymer binder and inorganic particles contained in the separator.
  • the electrospinning flow rate of the second spinning solution is made larger than the electrospinning flow rate of the first spinning solution, so that the content of the inorganic particles is greater than the content of the polymer binder based on the total weight of the separator.
  • a separation membrane can be manufactured. Specifically, the separator may include 60 to 95% by weight of the inorganic material relative to the total weight of the separator.
  • the separator may contain 85 to 95% by weight of the inorganic material relative to the total weight.
  • the separator can provide compression resistance that can be used in an electrochemical device using a silicon-based anode.
  • the thickness of the separator may be 15 to 45 ⁇ m. Preferably, the thickness of the separator may be 20 to 40 ⁇ m. When the thickness of the separator is within the above range, deformation or damage to the separator due to expansion of the negative electrode containing the silicon-based active material can be minimized. If the thickness of the separator is lower than the above range, the separator may be damaged due to expansion of the separator. If the thickness of the separator is higher than the above range, movement of lithium ions through the separator becomes difficult.
  • the separator may have a resistance increase rate of 50% or less before and after compression. For example, when the separator is compressed for 10 seconds at 70°C and 5.2 MPa using a cotton rolling mill (Rhotec, pressing machine, V-30), the change in resistance before and after compression is within 0.01 to 1 Ohm. It can be.
  • the separation membrane may have a thickness change rate of 18% or less before and after compression, as defined by Equation 1 below.
  • the separation membrane may have a thickness change rate of 1 to 18% before and after compression. More preferably, the thickness change rate before and after compression may be 1 to 15%.
  • T1 is the initial thickness of the separator
  • the T2 refers to the thickness of the separator after pressing it in a cotton rolling mill (Rhotec pressing machine V-30) at 5.2 MPa, 70°C, and 10 seconds.
  • a separator that satisfies the resistance increase rate or the thickness change rate range maintains its pore structure before and after pressurization, enabling smooth movement of lithium ions, and even if the negative electrode containing the silicon-based active material expands, deformation or damage to the separator may be minimized or not occur.
  • the separator may not substantially change in dimensions at a high temperature of 150°C or higher, and the volume change rate may be 1.5% or less.
  • the separator may have pores with an average size of 500 to 1,000 nm and a porosity of 50 to 60%.
  • the separator may have a porosity of 100 sec/100cc or less in air permeability.
  • the separator may be a two-layer structure separator further including a second layer formed on at least one side of the separator.
  • the second layer includes a polymer resin different from the polymer binder, and the polymer binder may have a higher melting point than the polymer resin.
  • the separator may include a plurality of first or second layers.
  • a thickness ratio of the first layer and the second layer may be 3:1 to 9:1. In the above-mentioned range, damage to the separator due to expansion of the cathode can be prevented, and the shutdown function of the second layer can be secured.
  • the compression resistance of the separator can be evaluated by the rate of change in gas permeability (Gurley) values before and after compression. For example, when the separator is compressed for 10 seconds at 80°C and 7.8 MPa using a cotton rolling mill, the rate of change in air permeability before and after compression may be less than 100%.
  • a separator that satisfies the above air permeability change rate range maintains its pore structure before and after pressurization, enabling smooth movement of lithium ions, and even if the negative electrode containing the silicon-based active material expands, deformation or damage to the separator may be minimized or not occur.
  • an electrochemical device including an anode, a silicon-based cathode, and a separator as described above.
  • the electrochemical device may be a lithium secondary battery including a positive electrode that provides lithium ions.
  • the electrochemical device may further include an electrolyte solution.
  • the positive electrode and the silicon-based negative electrode may be obtained by applying and drying an active material on at least one surface of each current collector.
  • the silicon-based negative electrode can use the above-mentioned active material.
  • the current collector may be a material that has conductivity without causing chemical changes in the electrochemical device.
  • current collectors for positive electrodes include aluminum, nickel, titanium, fired carbon, and stainless steel; It may be a surface of aluminum or stainless steel treated with carbon, nickel, titanium, silver, etc., but is not limited to this.
  • current collectors for negative electrodes include copper, nickel, titanium, fired carbon, and stainless steel; It may be a surface of copper or stainless steel treated with carbon, nickel, titanium, silver, etc., but is not limited to this.
  • the current collector may be in various forms such as a thin metal plate, film, foil, net, porous material, or foam.
  • the electrolyte solution may be a non-aqueous electrolyte solution containing a lithium salt, and may include a lithium salt, a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, etc.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma.
  • -Butylo lactone 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorane, formamide, dimethylformamide, dioxoran , acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxy methane, dioxorane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbohydrate.
  • Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ether, methyl propionate, and
  • the organic solid electrolyte includes, for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, poly vinylidene fluoride, A polymerization agent containing an ionic dissociation group may be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 NLiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 Nitride, halide, sulfate, etc. of Li such as SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 may be used.
  • the lithium salt is a material that is easily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate, imide, etc. can be used.
  • the electrochemical device can be manufactured by inserting the anode, cathode, separator, and electrolyte into a case or pouch and sealing it.
  • the electrochemical device may be a cylindrical, prismatic, coin-shaped, or pouch-shaped lithium secondary battery.
  • the electrochemical device may be a cylindrical or pouch-type lithium secondary battery.
  • the lithium secondary battery is packaged or modularized as a unit cell to be used in small devices such as computers, mobile phones, and power tools, and power tools that are powered by an electric motor; Electric vehicles, including Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), etc.; Electric two-wheeled vehicles, including electric bicycles (E-bikes) and electric scooters (E-scooters); electric golf cart; It can be used in medium to large-sized devices such as power storage systems.
  • Electric vehicles including Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), etc.
  • Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters)
  • electric golf cart It can be used in medium to large-sized devices such as power storage systems.
  • a binder As a binder, 1.8 g of polyacrylonitrile (PAN) with a weight average molecular weight of 150,000 was added to 18.2 g of dimethylformamide (DMF) and stirred at 70°C at 250 rpm to prepare the first spinning solution, which is a solution of the binder. . The first spinning solution was injected into the first 10 mL syringe to which the nozzle was connected.
  • PAN polyacrylonitrile
  • DMF dimethylformamide
  • alumina Al 2 O 3
  • an inorganic material with an average particle diameter (D50) of 450 nm was added to 5.4 g of butanol (n-butanol) and 12.6 g of acetone, and then bead milled for 1 hour at room temperature. ) to prepare a second spinning solution, which is a dispersion of the inorganic material.
  • the second spinning solution was injected into a 10 mL second syringe connected to a nozzle.
  • a current collector plate measuring 10 cm ⁇ 10 cm was placed under the nozzles of the first and second syringes, and the current collector plate was grounded. A voltage of 18 kV was applied to the nozzle and current collector of each syringe, and the first syringe was simultaneously injected at 80 ⁇ l/min and the second syringe at 4.5 ⁇ l/min for about 180 minutes to prepare a separator. Afterwards, it was dried at 60°C under vacuum conditions for 12 hours to remove the remaining solvent and dispersion medium.
  • the separator was injected into a roll mill (Rhotec) and compressed to obtain a separator with a thickness of about 30 ⁇ m.
  • a separator was prepared in the same manner as in Preparation Example 1, except that the first syringe was simultaneously injected at 90 ⁇ l/min and the second syringe was injected at 4.5 ⁇ l/min.
  • a separator was prepared in the same manner as in Preparation Example 1, except that the first syringe was simultaneously injected at 55 ⁇ l/min and the second syringe was injected at 4.5 ⁇ l/min.
  • a separator was prepared in the same manner as in Preparation Example 1, except that the first syringe was simultaneously injected at 70 ⁇ l/min and the second syringe was injected at 4.5 ⁇ l/min.
  • a separator with a thickness of about 12 ⁇ m prepared in the same manner as in Preparation Example 1 was used as the first layer, and a third spinning solution was electrospun on one side of the first layer to prepare a separator.
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene
  • DMF dimethylformamide
  • a third spinning solution was prepared by stirring at 60°C and 250 rpm. The third spinning solution was injected into a third syringe to which a nozzle was connected.
  • the first layer prepared on the current collector plate was placed under the nozzle of the third syringe, and the current collector plate was grounded. A voltage of 18 kV was applied to the nozzle of the syringe and the current collector plate, and a third syringe was injected at 80 ⁇ l/min for about 180 minutes to prepare a second layer on the surface of the first layer. Afterwards, to remove the remaining solvent and dispersion medium, it was dried at 60°C under vacuum conditions for 12 hours to obtain a separator with a thickness of about 15 ⁇ m.
  • a separator with a thickness of approximately 15 ⁇ m was prepared in the same manner as Preparation Example 1.
  • a coating slurry was prepared by dispersing inorganic particles and polymer resin in an acetone solution at a weight ratio of 8:2. Specifically, a mixture of alumina and boehmite is used as the inorganic particle, and the polymer resin includes polyvinylidene fluoride-hexafluoropropylene and polychlorotrifluoroethylene with a hexafluoropropylene content of 8% by weight. A mixture of (CTFE) and cyano resin was used.
  • the coating slurry was dip coated on a polyethylene substrate with a thickness of 9 ⁇ m to form a coating layer of about 3 ⁇ m thick on both sides, and dried to obtain a separator with a thickness of about 15 ⁇ m.
  • NCMA lithium manganese complex oxide
  • a negative electrode slurry containing a carbon-based negative electrode active material was applied to a copper thin film, dried, and compressed in a roll mill to prepare a negative electrode with a porosity of 40% and a capacity per unit area of 8.5 mAh/cm 2 .
  • fluoroethylene carbonate (FEC) and ethylmethyl carbonate (EMC) were mixed at a volume ratio of 3:7, and LiPF 6 was added to prepare an electrolyte solution with a LiPF 6 concentration of 1.0M.
  • a pouch-shaped monocell was manufactured as an electrochemical device using the anode, cathode, and electrolyte prepared as above, and the separator prepared according to Preparation Example 1.
  • the anode was cut to a size of 4 ⁇ 4 cm 2 , and then the 0.5 ⁇ 1 cm 2 at the top was welded with an aluminum tab having a width of 1 cm.
  • the cathode was cut to a size of 4.5 ⁇ 4.5 cm 2 , and then the 0.5 ⁇ 1 cm 2 at the top was welded with a nickel tab having a width of 1 cm.
  • the separator was cut to a size of 5 Cells were prepared.
  • a pouch cell was manufactured in the same manner as in Example 1, except that the separator prepared according to Preparation Example 2 was used when manufacturing the electrochemical device.
  • a pouch cell was manufactured according to the same method as Example 1, except that the separator prepared according to Preparation Example 3 was used when manufacturing the electrochemical device.
  • a pouch cell was manufactured according to the same method as Example 1, except that the separator prepared according to Preparation Example 4 was used when manufacturing the electrochemical device.
  • Alumina, boehmite, and dispersant are dispersed in acetone as inorganic particles, and polyvinylidene fluoride-hexafluoropropylene and chlorotrifluoroethylene are further added as polymer binders to form a porous coating layer.
  • a slurry was prepared.
  • Alumina, boehmite, polyvinylidene fluoride-hexafluoropropylene, chlorotrifluoroethylene, and dispersant were used in a weight ratio of 66.3:11.7:15.5:4.5:2.
  • a polyethylene porous substrate with a thickness of 15 ⁇ m was coated on both sides using a dip coating method using a slurry for forming a porous coating layer.
  • the porous coating layer was formed to a thickness of 4 ⁇ m on each side, thereby producing a separator with a total thickness of 23 ⁇ m.
  • a pouch cell was manufactured according to the same method as Example 1, except that the separator manufactured according to Comparative Example 1 was used when manufacturing the electrochemical device.
  • the thickness of the separator was measured using a thickness gauge (Mitutoyo, VL-50S-B).
  • Breathability was measured using a Gurley densometer (Gurley, 4110N) to measure the time it takes for 100 cc of air to penetrate a separator with a diameter of 28.6 mm and an area of 645 mm 2 .
  • the pouch cell of Example 1 containing the separator according to Preparation Example 1 manufactured by electrospinning did not show a decrease in charge and discharge efficiency during 500 charge and discharge cycles, but the pouch cell of Comparative Example 3 It started to decrease from episode 200 and decreased by more than 5% at episode 500.
  • the pouch cell of Example 1 including the separator according to Preparation Example 1 manufactured by electrospinning showed a capacity reduction rate of less than 8% during 200 charge and discharge cycles
  • the pouch cell of Comparative Example 3 showed a capacity reduction rate of less than 8% during 200 charge and discharge cycles. Cells were found to have decreased by more than 70%.
  • Two sheets of PET film (35 ⁇ m) with an area of 5 ⁇ 5 cm 2 were placed on two sheets of A4 paper, and a separator with an area of 5 ⁇ 5 cm 2 was placed on the PET film.
  • One PET film (35 ⁇ m) with an area of 5 ⁇ 5 cm 2 was placed on the separator, and two sheets of A4 paper were placed on the PET film.
  • Pressure was applied to the A4 paper arranged up and down for 10 seconds at 70°C and 5.2 MPa using a cotton rolling mill (Rhotec, pressing machine, V-30).
  • a SUS spacer was used as a working electrode and a counter electrode, and the separator before and after the compression resistance evaluation was cut into a circle with a diameter of 19 mm and inserted between these electrodes to form a coin-shaped cell (blocking cell). ) was prepared, then the ion conductivity was measured by measuring the impedance.
  • the separator of Preparation Example 1 showed a thickness reduction of about 15% after compression, while the thickness of the separator of Comparative Example 3 decreased by about 17% after compression.
  • the separator of Preparation Example 1 showed a resistance increase rate of 23.6% before and after compression
  • the separator of Comparative Example 3 showed a resistance increase rate of 68.5% before and after compression. .
  • the separator according to Preparation Example 1 was left at 150°C for 30 minutes to confirm dimensional and volume changes.
  • the volume change rate of the separator according to Preparation Example 1 was found to be 0%.
  • the separator prepared in Preparation Examples 5 to 7 was punched to 19 ⁇ and an electrolyte was added to produce a coin cell.
  • the resistance of the coin cell was measured using an EIS (Electrochemical Impedance Spectroscopy) device.
  • the EIS device used Solartron's 1255B model, applied a frequency of 10 4 to 10 5 Hz, and recorded the X-intercept value of the measured graph. The obtained value is listed as electrical resistance in Table 2 below.
  • the electrolyte solution is a mixture of ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) in a weight ratio of 3:4:3, and 3 mol of vinylene carbonate (VC) and propane sultone (PS) as additives.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • PS propane sultone
  • the separator according to Preparation Example 5 and Preparation Example 6 included a layer containing an excessive amount of inorganic material compared to the polymer resin, and the increase in air permeability was shown to be less than 100% even after compression.
  • the separator according to Preparation Example 7 showed an increase in air permeability of 390% upon compression.
  • Heat gurley evaluation was performed while raising the temperature of the separator according to Preparation Examples 5 to 7 to confirm the shutdown temperature of the separator.
  • the air permeability of the separator was measured while increasing the temperature of the separator at a rate of 2°C/min.
  • the temperature at which the air permeability value rapidly increased was defined as the shutdown temperature, and the corresponding temperature is listed in Table 4 below.
  • a positive electrode slurry containing lithium manganese complex oxide (NCMA) as a positive electrode active material was applied to an aluminum thin film, dried, and compressed in a roll mill to prepare a positive electrode with a porosity of 26% and a capacity per unit area of 4.5 mAh/cm 2 .
  • NCMA lithium manganese complex oxide
  • a negative electrode slurry containing pure Si as a negative electrode active material was applied to a copper thin film, dried, and compressed in a roll mill to produce a negative electrode with a porosity of 40% and a capacity per unit area of 8.5 mAh/cm 2 .
  • fluoroethylene carbonate (FEC) and ethylmethyl carbonate (EMC) were mixed at a volume ratio of 3:7, and LiPF 6 was added to prepare an electrolyte solution with a LiPF 6 concentration of 1.0M.
  • a pouch-shaped monocell was manufactured as an electrochemical device using the anode, cathode, and electrolyte prepared as above, and the separators of Preparation Examples 5 to 7.
  • the anode was cut to a size of 4 cm ⁇ 4 cm, and then the top 0.5 cm ⁇ 1 cm was welded with an aluminum tab having a width of 1 cm.
  • the cathode is 4.5 cm ⁇ 4.5 cm After cutting to size, the top 0.5 cm ⁇ 1 cm was welded with a 1 cm wide nickel tab.
  • the separator was cut to a size of 5 cm Cells were prepared.
  • the jig was connected to the chamber at room temperature. Afterwards, the temperature was raised to 130°C at a temperature increase rate of 5°C/min and maintained for 30 minutes to evaluate whether or not the cell ignited. If the temperature or voltage of the cell suddenly rose and ignited during the temperature increase or while the temperature was maintained at 130°C, it was evaluated as Fail, and if the cell maintained normally after 30 minutes, it was evaluated as Pass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명은 실리콘계 음극을 포함하는 전기화학소자의 분리막 제조 방법으로서, 고분자 바인더를 포함하는 제1 방사액 및 무기물 입자를 포함하는 제2 방사액을 동시에 전기 방사하여 프리스탠딩 다공성 분리막을 형성하는 단계를 포함하며, 상기 제2 방사액의 유량은 상기 제1 방사액의 유량보다 많도록 하여, 충방전시 실리콘계 음극의 팽창에 대해 내압축성을 갖는 분리막을 제조할 수 있다.

Description

전기화학소자용 분리막 및 상기 분리막의 제조 방법
본 발명은 2022년 7월 7일에 한국특허청에 제출된 한국 특허출원 제10-2022-0083685호 및 2022년 8월 26일에 한국특허청에 제출된 한국 특허출원 제10-2022-0107931호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.
본 발명은 실리콘계 음극을 포함하는 전기화학소자의 분리막을 제조하는 방법과, 이에 따라 제조된 전기화학소자용 분리막에 관한 것이다.
전기화학소자는 전기화학 반응을 이용하여 화학적 에너지를 전기적 에너지로 전환하는 것으로, 최근에는 에너지 밀도와 전압이 높고, 사이클 수명이 길며 다양한 분야에 사용 가능한 리튬 이차 전지가 널리 사용되고 있다.
리튬 이차 전지는 양극, 음극, 양극과 음극 사이에 배치되는 분리막으로 제조되는 전극조립체를 포함할 수 있고, 상기 전극조립체가 전해액과 함께 케이스에 수납되어 제조될 수 있다. 양극은 리튬 이온을 제공할 수 있으며, 리튬 이온은 다공성 소재로 이루어지는 분리막을 통과하여 음극으로 이동할 수 있다. 음극은 전기화학 반응 전위가 리튬 금속에 가깝고, 리튬 이온의 삽입 및 탈리가 가능한 것이 바람직하다. 흑연과 같은 탄소계 활물질을 포함하는 음극은 리튬 이온의 삽입과 탈리에 따른 결정 구조의 변화가 적어 안정적이고, 우수한 사이클 수명을 나타내는 장점이 있다.
최근에는 전기자동차와 에너지 저장 장치와 같이 더 큰 용량과 더 높은 에너지 밀도를 갖는 리튬 이차 전지에 대한 수요가 증가하면서, 탄소계 활물질보다 용량이 더 높은 실리콘 등을 사용하는 비탄소계 활물질에 대한 개발이 이루어지고 있다. 그러나, 실리콘계 음극을 포함하는 리튬 이차 전지의 충전 과정에서 부피가 급격하게 팽창하기 때문에 충방전을 반복함에 따라 분리막이 변형될 수 있으며, 분리막의 변형이나 손상은 리튬 이차 전지의 절연 불량이나 수명 퇴화로 이어질 수 있다.
따라서, 실리콘계 음극을 사용하는 전기화학소자에서 음극의 팽창에도 변형이 유발되지 않는 내압축성을 갖는 분리막에 대한 연구가 이루어지고 있다.
본 발명은 실리콘계 음극을 포함하는 전기화학소자에서, 충전시 팽창하는 음극에 의해 압축되더라도 변형되거나 손상되지 않는 구조의 분리막과 상기 분리막의 제조 방법 및 상기 분리막을 포함하는 전기화학소자를 제공하는 것을 목적으로 한다.
또한, 본 발명은 실리콘계 음극을 포함하는 전기화학소자가 고온에 노출되는 경우 전극의 단락을 방지할 수 있는 구조의 분리막과 상기 분리막의 제조 방법 및 상기 분리막을 포함하는 전기화학소자를 제공하는 것을 목적으로 한다.
본 발명의 일 측면은 실리콘계 음극을 포함하는 전기화학소자의 분리막으로서, 상기 분리막은, 폴리올레핀 기재를 포함하지 않는 프리스탠딩 다공성 분리막이며, 고분자 바인더 및 무기물 입자를 포함하되, 상기 분리막의 전체 중량을 기준으로 상기 무기물 입자의 함량이 상기 고분자 바인더의 함량보다 큰 것인 전기화학소자용 분리막을 제공한다.
상기 분리막은, 상기 분리막의 전체 중량을 기준으로 상기 무기물 입자를 60 내지 95 중량%로 포함할 수 있다.
상기 분리막은, 15 내지 45 ㎛의 두께를 만족하고, 하기 식 1로 정의되는 값이 1 내지 18%일 수 있다:
[식 1]
(T1 - T2) / T1 × 100
상기 식 1에서,
상기 T1은 상기 분리막의 초기 두께이고,
상기 T2는 상기 분리막을 면 압연기에서 5.2MPa, 70℃로 10초 동안 누른 후의 두께를 의미한다.
상기 분리막은, 상기 분리막의 적어도 일면에 형성되는 제2 층을 더 포함하며, 상기 제2 층은, 상기 고분자 바인더와 상이한 고분자 수지를 포함하며, 상기 고분자 바인더는 상기 고분자 수지보다 융점이 높은 것일 수 있다.
상기 분리막은, 10 내지 45 ㎛의 두께를 만족하고, 80℃ 7.8 MPa의 압력으로 10초 동안 가압하였을 때 통기도 변화율이 100% 미만일 수 있다.
본 발명의 다른 일 측면은 양극, 실리콘계 음극, 및 상기 양극 및 상기 실리콘계 음극 사이에 위치하는, 상기 일 측면에 따른 전기화학소자용 분리막을 포함하는 전기화학소자를 제공한다.
상기 실리콘계 음극은, Si, SiOx (0<x<2), SiC 및 Si 합금으로 이루어진 군으로부터 선택되는 하나 이상의 실리콘계 활물질을 포함할 수 있다.
본 발명의 또 다른 일 측면은 실리콘계 음극을 포함하는 전기화학소자의 분리막 제조 방법으로서, 고분자 바인더를 포함하는 제1 방사액 및 무기물 입자를 포함하는 제2 방사액을 동시에 전기 방사하여 프리스탠딩(freestanding) 다공성 분리막을 형성하는 단계를 포함하며, 상기 제2 방사액의 유량은 상기 제1 방사액의 유량보다 많은 것인, 전기화학소자용 분리막의 제조 방법을 제공한다.
상기 무기물 입자는, SiO2, Al2O3, AlOOH, TiO2, ZrO2, BaSO4, BaTiO3, ZnO, MgO, Mg(OH)2, Al(OH)3, Pb(Zr,Ti)O3, Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), HfO2, SrTiO3, SnO2, CeO2, MgO, NiO, CaO, Y2O3, SiC, ZnSn(OH)6, Zn2SnO4, ZnSnO3, Sb2O3, Sb2O4 및 Sb2O5로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
상기 고분자 바인더는, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아미드, 폴리이미드, 폴리에테르이미드, 폴리아크릴로니트릴, 폴리비닐알코올, 폴리아라미드 및 폴리스티렌으로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
상기 프리스탠딩 다공성 분리막을 형성하는 단계는, 상기 제1 방사액 및 상기 제2 방사액을 1:8 내지 1:100의 유량 비율로 전기 방사하는 것일 수 있다.
상기 전기화학소자용 분리막의 제조 방법은, 상기 형성된 프리스탠딩 다공성 분리막을 25 내지 60℃에서 가압하는 단계를 더 포함할 수 있다.
상기 전기화학소자용 분리막의 제조 방법은, 상기 다공성 분리막의 적어도 일면에 고분자 수지를 포함하는 제3 방사액을 전기 방사하여 제2 층을 형성하는 단계를 더 포함하며, 상기 고분자 바인더는 상기 고분자 수지보다 융점이 높은 것일 수 있다.
상기 제2 층은 상기 다공성 분리막에 배치되고, 압연되어 형성될 수 있다.
상기 압연은 상기 고분자 수지의 융점보다 낮은 온도로 수행될 수 있다.
상기 고분자 수지는 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리에틸렌옥사이드 및 폴리메틸메타크릴레이트로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
본 발명에 따른 전기화학소자용 분리막은 15 내지 45 ㎛의 두께를 만족하고, 상기 식 1로 정의되는 값이 1 내지 18%이하이며, 압축 후 저항 상승률이 50% 이하인 것으로, 실리콘계 활물질을 포함하는 음극의 팽창에 따라 분리막이 압축되는 경우에도 분리막이 변형되거나 손상되지 않는다.
또한, 본 발명에 따른 전기화학소자용 분리막은 고분자 바인더와 무기물 입자를 포함하는 다공성 분리막 대비 융점이 낮은 제2 층을 더 포함하여, 상기 전기화학소자가 고온에 노출되는 경우 상기 제2 층의 기공이 폐쇄되도록 하여 전극의 단락을 방지할 수 있다.
따라서, 상기 분리막을 포함하는 전기화학소자는 실리콘계 음극의 사용에 따라 향상된 용량 및 에너지 밀도를 제공함과 동시에, 안정적인 사이클 특성을 제공할 수 있다.
도 1은 본 발명의 실험예 2에서 실시예 1 및 비교예 3에 따른 파우치 셀의 충방전 사이클에 따른 충방전 효율(Coulombic efficiency)을 나타낸 그래프이다.
도 2는 본 발명의 실험예 2에서 실시예 1 및 비교예 3에 따른 파우치 셀의 충방전 사이클에 따른 면적 용량(Areal capacity)을 나타낸 그래프이다.
도 3은 본 발명의 실험예 3에서 제조예 1 및 비교예 3에 따른 분리막의 압축 전후 두께를 나타낸 그래프이다.
도 4는 본 발명의 실험예 3에서 (a) 제조예 1에 따른 분리막의 이온 전도도와 (b) 비교예 3에 따른 분리막의 이온 전도도를 나타낸 그래프이다.
도 5는 본 발명의 실험예 3에서 (a) 제조예 1에 따른 분리막의 가압 전 SEM 이미지, (b) 제조예 1에 따른 분리막의 가압 후 SEM 이미지, (c) 비교예 3에 따른 분리막의 가압 전 SEM 이미지, (d) 비교예 3에 따른 분리막의 가압 후 SEM 이미지이다.
도 6은 본 발명의 실험예에서 제조예 5 내지 7에 따른 분리막의 압축 전후 통기도를 나타낸 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 각 구성을 보다 상세히 설명하나, 이는 하나의 예시에 불과할 뿐, 본 발명의 권리범위가 다음 내용에 의해 제한되지 아니한다.
본 명세서에 사용된 "포함한다"는 용어는 본 발명에 유용한 재료, 조성물, 장치, 및 방법들을 나열할 때 사용되며 그 나열된 예에 제한되는 것은 아니다.
본 명세서에 사용된 "약", "실질적으로"는 고유한 제조 및 물질 허용 오차를 감안하여, 그 수치나 정도의 범주 또는 이에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 제공된 정확하거나 절대적인 수치가 언급된 개시 내용을 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본 명세서에 사용된 "전기화학소자"는 일차 전지, 이차 전지, 슈퍼 캐퍼시터 등을 의미할 수 있다.
본 명세서에 사용된 "입경"은 다른 특별한 기재가 없는 한 입경에 따른 입자 개수 누적 분포에서 50%에 해당하는 입경인 D50을 의미한다.
본 명세서에 사용된 "분자량"은 다른 특별한 기재가 없는 한 중량 평균 분자량(Mw)을 의미하며, 중량 평균 분자량은 단분산 폴리스티렌 중합체를 표준 물질로 하여 겔 투과 크로마토그래피(GPC)에 의해 측정한 폴리스티렌 환산 분자량에 해당한다.
본 발명의 일 실시예는 실리콘계 음극을 포함하는 전기화학소자의 분리막 제조 방법으로서, 고분자 바인더를 포함하는 제1 방사액 및 무기물 입자를 포함하는 제2 방사액을 동시에 전기 방사하여 프리스탠딩 다공성 분리막을 형성하는 단계를 포함하는 방법을 제공한다.
종래의 다공성 분리막은 다공성 기재의 적어도 일면에 무기물 입자와 고분자 바인더를 포함하는 코팅층을 형성하는 것으로, 상기 다공성 기재는 건식 또는 습식 공정을 통해 제조한 폴리올레핀 기재나 부직포를 사용하였다. 상기 프리스탠딩 다공성 분리막은 상기와 같은 다공성 기재 없이, 무기물 입자와 고분자 바인더를 이용하여 기공 구조가 형성된 분리막을 의미한다. 다공성 기재를 포함하지 않는 분리막은 무기물 입자와 고분자 바인더만으로 그 외형을 형성함에 따라 외력에 취약하고 내압축성이 낮을 수 있다.
본 발명의 일 실시예는 폴리올레핀 기재의 사용 없이 바인더 대비 무기물 입자의 함량을 높게 구성하여 우수한 내압축성을 갖는 프리스탠딩 다공성 분리막을 제공한다. 구체적으로, 본 발명의 일 실시예는 상기 프리스탠딩 다공성 분리막을 형성하는 단계에서 상기 제2 방사액의 유량이 상기 제1 방사액의 유량보다 많은 것이다.
내압축성은 분리막을 일정한 조건에서 가압하기 전후의 저항 상승률이나 두께 비율로 나타낼 수 있다. 내압축성이 우수하다는 것은 내압축성이 낮아 분리막을 가압하더라도 원래의 기공 구조를 유지하여 리튬 이온이 원활하게 이동할 수 있음을 의미한다. 또한, 내압축성이 우수하다는 것은 외력에 대한 내구도가 우수하여 분리막의 변형이나 손상이 최소화되거나 일어나지 않는 것을 의미한다.
본 발명의 일 실시예는 프리스탠딩 다공성 분리막을 전기 방사로 제조함으로써, 다이 코팅, 바 코팅, 딥 코팅, 롤 코팅 등 다른 제조 방법 대비 상대적으로 적은 함량의 고분자 바인더를 사용할 수 있다. 이를 통해, 고분자 바인더의 함량은 줄이고, 상대적으로 높은 무기물 입자 함량을 갖는 분리막을 제조할 수 있다. 동시에, 전기 방사는 상기 다른 제조 방법 대비 무기물 입자의 균일한 분포를 달성할 수 있어서, 실리콘계 음극을 포함하는 전기화학소자에 사용하기에 적합한 물성의 분리막을 제조하는 데에 적합하다.
상기 실리콘계 음극은 Si, SiOx (0<x<2), SiC 및 Si 합금으로 이루어진 군으로부터 선택되는 하나 이상의 실리콘계 활물질을 포함할 수 있다. 예를 들어, 상기 Si 합금은 LiSi 합금, CoSi 합금 또는 TiSi 합금을 포함할 수 있다. 바람직하게는, 상기 실리콘계 활물질은 전체 중량 대비 순수한 Si를 50 중량% 이상으로 포함할 수 있다. 보다 바람직하게는, 상기 실리콘계 활물질은 순수한 Si만으로 이루어진 것일 수 있다.
전기 방사는 고분자 용액이 토출되는 노즐과 상기 노즐로부터 토출되는 고분자 용액이 수집되는 집전판(collector) 사이에 전압을 인가하여 수행할 수 있다. 상기 노즐은 고분자 용액을 저장하는 주사기(syringe) 등의 용기에 연결되어 상기 고분자 용액을 미리 정해진 유량으로 공급받을 수 있다. 상기 노즐은 양전하 또는 음전하로 하전되고, 상기 집전판은 상기 노즐과는 반대 전하로 하전되거나 접지될 수 있다. 예를 들어, 상기 집전판은 고분자 용액이 섬유 형태로 방사되는 것을 수집하는 금속 소재의 평판일 수 있으나, 그 형상이나 크기가 제한되는 것은 아니다.
먼저, 상기 노즐의 끝단에는 표면 장력에 의해 유지되는 고분자의 액적이 맺힐 수 있다. 이때, 상기 노즐에 약 10 내지 30kV의 고전압을 인가하면, 상기 고분자 액적의 표면 장력보다 외부 전기장에 의한 쿨롱 력(Coulomb's force)이 더 커질 수 있으며, 상기 고분자 액적은 원뿔 형상(Taylor cone)을 나타낼 수 있다. 바람직하게는, 상기 노즐에 약 12 내지 18kV의 고전압을 인가하여 고분자 섬유의 제트(jet)가 상기 원뿔 형상의 고분자 액적으로부터 방사 및 연신될 수 있으며, 상기 고분자 섬유는 상기 집전판 방향으로 이동하여 모인 후 응고될 수 있다.
상기 프리스탠딩 다공성 분리막을 형성하는 단계는 고분자 바인더를 포함하는 제1 방사액을 제조하는 것을 포함한다. 상기 제1 방사액은 고분자 바인더가 용매에 용해된 고분자 바인더 용액일 수 있다.
상기 고분자 바인더는 분자량이 100,000 내지 200,000인 고분자일 수 있고, 바람직하게는 120,000 내지 180,000일 수 있고, 보다 바람직하게는 140,000 내지 160,000일 수 있다. 고분자 바인더의 분자량이 상기 범위보다 낮으면, 섬유의 형상을 유지한 상태로 전기 방사가 이루어지지 못한다. 고분자 바인더의 분자량이 상기 범위보다 높으면 제2 방사액의 점도가 높아져 원활한 전기 방사가 이루어지지 못한다.
상기 고분자 바인더는 폴리에틸렌테레프탈레이트(polyethylene terephthalate; PET), 폴리부틸렌테레프탈레이트(polybutylene terephthalate), 폴리아미드(polyamide), 폴리이미드(polyimide), 폴리에테르이미드(polyetherimide), 폴리아크릴로니트릴(polyacrylonitrile; PAN), 폴리비닐알코올(polyvinyl alcohol; PVA), 폴리아라미드(polyaramid) 및 폴리스티렌(polystyrene)으로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. 바람직하게는, 상기 고분자 바인더는 150 내지 200℃에서 내열성이 우수한 고분자일 수 있으며, 제조되는 분리막의 열 안정성이 우수하고 전기화학소자의 내부 단락을 방지할 수 있다. 보다 바람직하게는, 상기 고분자 바인더는 폴리에틸렌테레프탈레이트, 폴리아크릴로니트릴 및 폴리페닐렌옥사이드로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
상기 용매는 알코올, 아세톤, 디메틸아세트아미드(dimethylacetamide; DMAc), 디메틸포름아미드(dimethylformamide; DMF), 메틸렌클로라이드(methylenechloride) 등 하나 이상의 유기 용매일 수 있으나, 이에 제한되는 것은 아니다. 상기 용매는 상기 프리스탠딩 다공성 분리막을 형성하는 단계 이후 증발하여 분리막에는 잔류하지 않는 것일 수 있다.
상기 제1 방사액은 전체 중량에 대해 상기 고분자 바인더를 약 5 내지 20 중량%로 포함할 수 있다. 바람직하게는, 상기 고분자 바인더의 함량은 약 5 내지 12 중량%일 수 있다. 보다 바람직하게는, 상기 고분자 바인더의 함량은 약 8 내지 10 중량%일 수 있다. 고분자 바인더의 함량이 상기 범위보다 낮으면 제2 방사액의 점도가 낮아져 전기 방사시 섬유 형상을 유지할 수 없다. 고분자 바인더의 함량이 상기 범위보다 높으면 제1 방사액의 점도가 높아져 원활한 전기 방사가 이루어지지 못한다.
상기 프리스탠딩 다공성 분리막을 형성하는 단계는 무기물 입자를 포함하는 제2 방사액을 제조하는 것을 포함한다. 상기 제2 방사액은 무기물 입자를 분산매와 혼합한 무기물 입자의 분산액일 수 있다.
상기 무기물 입자는 평균 입경(D50)이 10 내지 1,000 nm인 무기물 나노입자일 수 있고, 바람직하게는 10 내지 500 nm일 수 있고, 보다 바람직하게는 200 내지 300 nm일 수 있다. 무기물 입자는 후술할 고분자 바인더에 의해 인접한 무기물 입자와 연결 및 고정될 수 있으며, 무기물 입자 사이의 인터스티셜 볼륨 (interstitial volume)이 분리막의 기공으로서 형성될 수 있다. 무기물 입자의 평균 입경이 상기 범위에 포함되는 경우, 분리막에 균일한 기공이 형성될 수 있다. 보다 균일한 기공을 갖는 분리막은 리튬 이온의 이동이 용이하고 전해액의 함침율이 높아져 전지의 성능 향상에 기여할 수 있다.
상기 무기물 입자는 SiO2, Al2O3, AlOOH, TiO2, ZrO2, BaSO4, BaTiO3, ZnO, MgO, Mg(OH)2, Al(OH)3, Pb(Zr,Ti)O3, Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), HfO2, SrTiO3, SnO2, CeO2, MgO, NiO, CaO, Y2O3, SiC, ZnSn(OH)6, Zn2SnO4, ZnSnO3, Sb2O3, Sb2O4 및 Sb2O5으로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다. 상기 무기물은 전기화학적으로 안정하여 전기화학소자의 작동 전압 범위 내에서 화학적 반응이 일어나지 않는 것일 수 있다. 바람직하게는, 상기 무기물은 SiO2, Al2O3, AlOOH, TiO2, ZrO2 및 Al(OH)3로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
상기 분산액은 상기 무기물 입자와 상기 분산매가 혼합되어 형성되는 콜로이드 용액일 수 있다. 상기 분산매는 실질적으로 상기 무기물 입자를 용해시키지 않는 물, 알코올 등일 수 있으나, 이에 제한되는 것은 아니다. 상기 분산매는 상기 프리스탠딩 다공성 분리막을 형성하는 단계 이후 증발하여 분리막에는 잔류하지 않는 것일 수 있다.
상기 제2 방사액은 전체 중량에 대해 상기 무기물 입자를 약 5 내지 15 중량%로 포함할 수 있다. 바람직하게는, 상기 무기물 입자의 함량은 약 8 내지 12 중량%일 수 있다. 무기물 입자는 상기 함량 범위에서 분산매에 대한 균일한 분산성을 나타내며, 분리막에서 균일한 무기물의 분포를 달성할 수 있다.
상기 제2 방사액은 상기 무기물 입자 이외에도 고분자를 더 포함하여 점성을 가질 수 있다. 상기 고분자는 본 발명에서 고분자 바인더로 사용될 수 있는 고분자 중 하나 이상일 수 있으나, 상기 제2 방사액에 사용되는 고분자 바인더와는 상이한 것일 수도 있다.
제1 방사액의 제조와 제2 방사액의 제조는 동시 또는 순서에 무관하게 이시에 이루어질 수 있다.
프리스탠딩 다공성 분리막을 형성하는 단계는 상기 제1 방사액과 상기 제2 방사액을 동시에 전기 방사하여 프리스탠딩 다공성 분리막을 형성하는 것이다. 본 발명의 일 실시예는 고분자 바인더를 포함하는 제1 방사액과 무기물 입자를 포함하는 제2 방사액을 각각 준비하고, 이들을 동시 전기 방사함으로써, 무기물 입자가 균일하게 분산된 프리스탠딩 다공성 분리막을 제조할 수 있다. 단일 방사액은 (i) 방사 후 증발을 고려하여 끓는 점이 적절해야하고, (ii) 전기방사에 사용할 수 있어야 하며, (iii) 고분자 바인더를 잘 용해하고, (iv) 무기물 입자를 잘 분산시켜야 한다는 조건을 모두 만족시키기 어렵다. 상기 제1 방사액과 상기 제2 방사액의 동시 전기 방사는 상기 조건 (i) 내지 (iv)를 동시에 만족시킬 수 있으며, 그 결과로서 별도의 분산제 없이 무기물 입자가 균일하게 분산된 다공성 분리막을 제조할 수 있다.
상기 제1 방사액과 상기 제2 방사액은 각각 노즐이 구비된 용기에 저장되었다가, 하나의 집전판에 대해 전기 방사되는 것일 수 있다. 예를 들어, 상기 용기는 주사기일 수 있고, 상기 제1 방사액이 저장된 주사기의 주사 유량은 상기 제2 방사액이 저장된 주사 유량보다 많을 수 있다. 상기 제1 방사액과 상기 제2 방사액의 전기 방사 방법은, 제조되는 분리막에서 무기물 입자와 고분자 바인더가 균일하게 분포하도록 할 수 있는 것이면 제한되지 않는다. 바람직하게는, 상기 제1 방사액과 상기 제2 방사액은 상기 집전판 상에서 서로 잘 혼합되어 평판 형상이 되도록 방사되는 것일 수 있다.
상기 제1 방사액과 상기 제2 방사액은 1:8 내지 1:100의 유량 비율로 전기 방사될 수 있다. 예를 들어, 상기 제1 방사액은 1 내지 10 ㎕/min의 유량으로 전기 방사될 수 있다. 상기 제2 방사액은 80 내지 100 ㎕/min의 유량으로 전기 방사될 수 있다. 상술한 유량 비율을 만족할 때, 제조되는 분리막은 충분한 내압축성을 확보하여 실리콘계 음극을 사용하는 전기화학소자에 적용할 수 있게 된다.
상기 제1 방사액 및 상기 제2 방사액은 섬유 형태로 방사되어 상기 집전판에 모일 수 있다. 상기 분리막의 제조 방법은 상기 프리스탠딩 다공성 분리막을 형성하는 단계 이후에 상온에서 방치하거나 상온 내지 60℃의 온도의 오븐에서 건조하여 전기 방사 과정에서 증발하지 않고 잔존하는 용매와 분산액을 증발시켜 제거하는 단계를 더 포함할 수 있다.
상게 전기화학소자용 분리막의 제조 방법은 상기 프리스탠딩 다공성 분리막을 형성하는 단계에서 형성된 분리막을 25 내지 60℃에서 가압하는 단계를 더 포함할 수 있다.
상기 분리막을 가압하는 단계는 상기 형성된 분리막을 10 내지 50%의 압연율로 압연 후 분리막의 두께가 15 내지 45 ㎛가 되도록 압연기로 압연하는 것일 수 있다. 상기 압연 온도, 압력 및 압연율의 범위를 벗어나면 분리막에 포함된 무기물 입자가 파괴될 수 있다. 상기 압연기는 상부 및 하부 롤이 회전하는 사이에 분리막을 주입하여 압연하는 롤 압연기일 수 있다. 바람직하게는, 상기 분리막을 가압하는 단계는 분리막을 압연기로 25 내지 40%로 압연하여 압연 후 분리막의 두께가 20 내지 40 ㎛일 수 있다.
상기와 같은 방법에 따라 제조된 전기화학소자용 분리막은 다공성 기재에 무기물 입자와 고분자 바인더를 포함하는 코팅층을 형성하지 않는 프리스탠딩 다공성 분리막으로서, 고분자 바인더 대비 무기물 입자의 함량이 높고 무기물 입자가 상기 분리막 중에 균일하게 분산된다. 상기 분리막은 실리콘계 활물질을 포함하는 음극의 팽창에도 변형이나 손상이 일어나지 않으며, 내압축성이 우수하여 전기화학소자의 충방전을 반복하여도 저항 상승률은 50% 이하로 유지될 수 있다.
상기 전기화학소자용 분리막의 제조 방법은 상기 프리스탠딩 다공성 분리막의 적어도 일면에 고분자 수지를 포함하는 제3 방사액을 전기 방사하여 제2 층을 형성하는 단계를 더 포함할 수 있다. 상기 프리스탠딩 다공성 분리막이 제1 층일 수 있고, 상기 제1 층의 적어도 일면에 상기 고분자 수지를 포함하는 제2 층이 적층될 수 있다.
상기 제3 방사액은 상기 고분자 수지가 용매에 용해된 고분자 용액일 수 있다. 상기 고분자 수지는 상기 고분자 바인더와는 상이한 것으로, 상기 고분자 바인더는 상기 고분자 수지보다 융점이 높은 것일 수 있다.
상기 고분자 수지는 분자량이 10,000 내지 200,000인 고분자일 수 있고, 바람직하게는 12,000 내지 100,000일 수 있고, 보다 바람직하게는 15,000 내지 20,000일 수 있다. 상기 고분자 수지의 분자량이 상기 범위보다 낮으면, 섬유의 형상을 유지한 상태로 전기 방사가 이루어지지 못한다. 상기 고분자 수지의 분자량이 상기 범위보다 높으면 제3 방사액의 점도가 높아져 원활한 전기 방사가 이루어지지 못한다.
상기 고분자 수지는 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리에틸렌옥사이드 및 폴리메틸메타크릴레이트로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
상기 용매는 알코올, 아세톤, 디메틸아세트아미드(dimethylacetamide; DMAc), 디메틸포름아미드(dimethylformamide; DMF), 메틸렌클로라이드(methylenechloride) 등 하나 이상의 유기 용매일 수 있으나, 이에 제한되는 것은 아니다. 상기 용매는 상기 제2 층을 형성하는 단계 이후 증발하여 분리막에는 잔류하지 않는 것일 수 있다.
상기 제3 방사액은 전체 중량에 대해 상기 고분자 수지를 약 5 내지 20 중량%로 포함할 수 있다. 바람직하게는, 상기 고분자 수지의 함량은 약 5 내지 12 중량%일 수 있다. 보다 바람직하게는, 상기 고분자 수지의 함량은 약 8 내지 10 중량%일 수 있다. 고분자 수지의 함량이 상기 범위보다 낮으면 제3 방사액의 점도가 낮아져 전기 방사시 섬유 형상을 유지할 수 없다. 고분자 수지의 함량이 상기 범위보다 높으면 제3 방사액의 점도가 높아져 원활한 전기 방사가 이루어지지 못한다.
제3 방사액의 제조는 제1 및 제2 방사액의 제조와 동시 또는 순서에 무관하게 이시에 이루어질 수 있다.
제3 방사액은 노즐이 구비된 용기에 저장되었다가, 집전판에 대해 전기 방사되는 것일 수 있다. 상기 제3 방사액의 유량은 상기 제1 방사액의 유량과 같거나 높을 수 있다.
상기 제3 방사액은 섬유 형태로 방사되어 상기 집전판에 모일 수 있다. 상기 제2 층의 형성 단계는 전기 방사 이후 상온에서 방치하거나 상온 내지 60℃의 온도의 오븐에서 건조하여 전기 방사 과정에서 증발하지 않고 잔존하는 용매를 증발시켜 제거하는 단계를 더 포함할 수 있다. 상기 제3 방사액의 전기 방사 및 용매의 증발 과정에서 제2 층에 기공 구조가 형성될 수 있다.
상기 고분자 수지의 융점은 상기 고분자 바인더의 융점보다 낮은 것이며, 상기 제2 층의 융점은 상기 제1 층의 융점보다 낮은 것일 수 있다. 상기 제2 층은 상기 분리막에서 셧다운층으로 기능할 수 있다. 예를 들어, 전기화학소자에서 단락으로 인해 갑자기 많은 전류가 흐르면서 상기 제2 층의 온도가 미리 정해진 온도보다 높아지면, 상기 제2 층의 기공 구조가 먼저 폐쇄(shutdown)되어 전극의 단락과 추가적인 온도 상승을 방지할 수 있다.
상기 제2 층을 상기 제1 층에 적층하는 단계는, 상기 제2 층과 상기 제1 층을 압연하는 것일 수 있다. 상기 압연은 상기 고분자 수지의 융점보다 낮은 온도로 수행할 수 있다. 상기 압연은 상기 제2 층의 기공 구조를 폐쇄하지 않으면서, 상기 제2 층과 상기 제1 층을 접착시킬 수 있다. 상기 압연은, 상부 및 하부 롤이 회전하는 사이에 분리막을 주입하여 압연하는 롤 압연기를 이용할 수 있다.
상기와 같은 방법에 따라 제조된 전기화학소자용 분리막은 다공성 기재를 포함하지 않고, 고분자 바인더와 무기물 입자를 포함하는 제1 층과 고분자 수지를 포함하는 제2 층을 포함하는 프리스탠딩 다공성 분리막이다. 상기 제1 층은 상기 제1 층의 전체 중량을 기준으로 고분자 바인더 대비 무기물 입자의 함량의 함량이 높고 무기물 입자가 균일하게 분산된 것이다. 상기 제1 층을 포함하는 분리막은 실리콘계 활물질을 포함하는 음극의 팽창에도 변형이나 손상이 일어나지 않으며, 내압축성이 우수하여 전기화학소자의 충방전을 반복하여도 통기도 변화율을 낮게 나타난다. 상기 제2 층은 상기 제1 층의 고분자 바인더보다 융점이 낮은 고분자 수지를 포함하여, 상기 전기화학소자가 미리 정해진 것보다 높은 온도에 노출되는 경우 제2 층이 먼저 셧다운되어 전극의 단락을 방지할 수 있다.
본 발명의 또 다른 일 실시예는 실리콘계 음극을 포함하는 전기화학소자의 분리막을 제공한다. 상기 분리막은 폴리올레핀 기재를 포함하지 않는 프리스탠딩 다공성 분리막이며, 고분자 바인더 및 무기물 입자를 포함하되, 상기 분리막의 전체 중량을 기준으로 상기 무기물 입자의 함량이 상기 고분자 바인더보다 큰 것이다. 상기 분리막은 상기와 앞선 실시예에 따른 분리막의 제조 방법에 따라 제조된 것일 수 있으며, 앞선 실시예에서와 동일한 설명은 상기 실시예의 설명으로 갈음한다.
상기 분리막은 고분자 바인더를 포함하는 제1 방사액과 무기물 입자를 포함하는 제2 방사액을 동시에 전기 방사하여 제조되는 것이다. 전기 방사시 상기 제1 방사액과 상기 제2 방사액의 유량을 조절하여 분리막에 포함되는 고분자 바인더와 무기물 입자의 함량을 조절할 수 있다. 분리막을 제조할 때, 상기 제2 방사액의 전기 방사 유량을 상기 제1 방사액의 전기 방사 유량보다 크게 하여, 상기 분리막의 전체 중량을 기준으로 상기 무기물 입자의 함량이 상기 고분자 바인더의 함량보다 큰 분리막을 제조할 수 있다. 구체적으로, 상기 분리막은 상기 분리막의 전체 중량 대비 상기 무기물을 60 내지 95 중량%로 포함할 수 있다. 바람직하게는 상기 분리막은 전체 중량 대비 상기 무기물을 85 내지 95 중량%로 포함할 수 있다. 무기물의 함량이 상기 범위에 포함되는 경우, 분리막은 실리콘계 음극을 사용하는 전기화학소자에서 사용할 수 있는 내압축성을 제공할 수 있다.
상기 분리막의 두께는 15 내지 45 ㎛일 수 있다. 바람직하게는, 상기 분리막의 두께는 20 내지 40 ㎛일 수 있다. 분리막의 두께가 상기 범위에 포함되는 경우, 실리콘계 활물질을 포함하는 음극의 팽창에 의한 분리막의 변형이나 손상이 최소화될 수 있다. 분리막의 두께가 상기 범위보다 낮으면 분리막의 팽창에 의해 분리막이 손상될 수 있다. 분리막의 두께가 상기 범위보다 높으면 상기 분리막을 통한 리튬 이온의 이동이 어려워진다.
상기 분리막은 압축 전후의 저항 상승률이 50% 이하일 수 있다. 예를 들어, 분리막은 면 압연기(Rhotec사, pressing machine, V-30)를 이용하여 70℃, 5.2MPa의 조건으로 10초 동안 압축하였을 때, 압축 전후 저항 변화가 0.01 내지 1 옴(Ohm) 이내일 수 있다.
상기 분리막은 하기 식 1로 정의되는 압축 전후의 두께 변화율이 18% 이하일 수 있다. 바람직하게는, 분리막은 압축 전후의 두께 변화율이 1 내지 18%일 수 있다. 보다 바람직하게는 압축 전후의 두께 변화율이 1 내지 15%일 수 있다.
[식 1]
(T1 - T2) / T1 X 100
상기 식 1에서,
상기 T1은 상기 분리막의 초기 두께이고,
상기 T2는 상기 분리막을 면 압연기(Rhotec사 pressing machine V-30)에서 5.2MPa, 70℃, 10초 동안 누른 후의 두께를 의미한다.
상기 저항 상승률이나 상기 두께 변화율 범위를 만족하는 분리막은 가압 전후로 기공 구조를 유지하여 리튬 이온의 원활한 이동이 가능하고, 실리콘계 활물질을 포함하는 음극이 팽창하더라도 분리막의 변형이나 손상이 최소화되거나 일어나지 않을 수 있다.
상기 분리막은 150℃ 이상의 고온에서 치수 변화가 실질적으로 일어나지 않을 수 있으며, 부피 변화율은 1.5% 이하일 수 있다.
상기 분리막은 평균 크기 500 내지 1,000 nm의 기공을 가질 수 있으며, 50 내지 60%의 기공도를 가질 수 있다. 상기 분리막은 통기도가 100 sec/100cc 이하로 나타나는 공극률을 가질 수 있다.
상기 분리막은 상기 분리막의 적어도 일면에 형성되는 제2 층을 더 포함하는 2층 구조 분리막일 수 있다. 상기 제2 층은 상기 고분자 바인더와 상이한 고분자 수지를 포함하며, 상기 고분자 바인더는 상기 고분자 수지보다 융점이 높은 것일 수 있다.
상기 분리막은 복수 개의 제1 층 또는 제2 층을 포함할 수 있다.
상기 제1 층 및 상기 제2 층의 두께 비율은 3:1 내지 9:1일 수 있다. 상술한 범위에서 음극의 팽창에 의한 분리막 손상을 방지하면서, 제2 층의 셧다운 기능을 확보할 수 있다.
상기 분리막의 내압축성은 압축 전후 통기도(Gurley) 값의 변화율로 평가할 수 있다. 예를 들어, 분리막은 면 압연기를 이용하여 80℃, 7.8MPa의 조건으로 10초 동안 압축하였을 때, 압축 전후 통기도 변화율이 100% 미만일 수 있다.
상기와 같은 통기도 변화율 범위를 만족하는 분리막은 가압 전후로 기공 구조를 유지하여 리튬 이온의 원활한 이동이 가능하고, 실리콘계 활물질을 포함하는 음극이 팽창하더라도 분리막의 변형이나 손상이 최소화되거나 일어나지 않을 수 있다.
본 발명의 또 다른 일 실시예는 양극, 실리콘계 음극, 상기와 같은 분리막을 포함하는 전기화학소자를 제공한다. 예를 들어, 상기 전기화학소자는 리튬 이온을 제공하는 양극을 포함하는 리튬 이차 전지일 수 있다. 상기 전기화학소자는 전해액을 더 포함할 수 있다.
상기 양극 및 상기 실리콘계 음극은 각각의 집전체의 적어도 일면에 활물질이 도포 및 건조된 것일 수 있다. 실리콘계 음극은 전술한 활물질을 사용할 수 있다.
예를 들어, 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2); 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x=0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M=Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x=0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M=Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 집전체는 전기화학소자에 화학적 변화를 유발하지 않으면서 도전성을 갖는 재료가 사용될 수 있다. 예를 들어, 양극용 집전체는 알루미늄, 니켈, 티탄, 소성 탄소, 스테인리스 스틸; 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 음극용 집전체는 구리, 니켈, 티탄, 소성 탄소, 스테인리스 스틸; 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등일 수 있으나, 이에 한정되는 것은 아니다. 상기 집전체는 금속 박판, 필름, 호일, 네트, 다공질체, 발포체 등 다양한 형태일 수 있다.
상기 전해액은 리튬염을 함유하는 비수계 전해액일 수 있으며, 리튬염과 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3NLiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
상기 전기화학소자는 양극, 음극, 분리막 및 전해액을 케이스나 파우치에 삽입하고 밀봉하여 제조할 수 있다. 예를 들어, 상기 전기화학소자는 원통형, 각형, 코인형, 파우치형 리튬 이차 전지일 수 있다. 바람직하게는, 상기 전기화학소자는 원통형 또는 파우치형 리튬 이차 전지일 수 있다.
상기 리튬 이차 전지는 단위셀로서 팩 또는 모듈화되어 컴퓨터, 휴대폰, 파워 툴(power tool) 등의 소형 디바이스와, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등의 중대형 디바이스에 사용될 수 있다.
이하에서는, 구체적인 실시예 및 실험예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로서, 본 발명이 하기 실시예 및 실험예에 의해 한정되는 것은 아니다.
제조예 1
분리막의 제조
바인더로 중량 평균 분자량이 150,000인 폴리아크릴로니트릴(PAN) 1.8 g을 디메틸포름아미드(DMF) 18.2 g에 투입한 뒤 70℃에서 250rpm조건으로 교반하여 상기 바인더의 용액인 제1 방사액을 제조하였다. 제1 방사액을 노즐이 연결된 10 mL 제1 주사기에 투입하였다.
무기물로 평균 입경(D50)이 450 nm인 알루미나(Al2O3) 2.0 g을 부탄올(n-butanol) 5.4 g 및 아세톤(Acetone) 12.6g에 투입한 뒤 상온에서 1시간 동안 비드 밀링(Bead milling)으로 분산하여 상기 무기물의 분산액인 제2 방사액을 제조하였다. 제2 방사액을 노즐이 연결된 10 mL 제2 주사기에 투입하였다.
상기 제1 주사기 및 상기 제2 주사기의 노즐 아래에 10 cm × 10 cm 크기의 집전판을 배치하고, 집전판은 접지시켰다. 각 주사기의 노즐과 집전판에 18 kV의 전압을 걸고, 제1 주사기는 80 ㎕/min, 제2 주사기는 4.5 ㎕/min로 동시에 약 180분 동안 주사하여 분리막을 제조하였다. 이후, 잔존하는 용매 및 분산매의 제거를 위해 60℃, 진공 조건에서 12 시간동안 건조하였다.
상기 분리막을 롤 압연기(Rhotec 사)에 주입하고 압축하여 두께 약 30 ㎛인 분리막을 수득하였다.
제조예 2
제1 주사기는 90 ㎕/min, 제2 주사기는 4.5 ㎕/min로 동시에 주사한 것 외에는 제조예 1과 동일한 방법에 따라 분리막을 제조하였다.
제조예 3
제1 주사기는 55 ㎕/min, 제2 주사기는 4.5 ㎕/min로 동시에 주사한 것 외에는 제조예 1과 동일한 방법에 따라 분리막을 제조하였다.
제조예 4
제1 주사기는 70 ㎕/min, 제2 주사기는 4.5 ㎕/min로 동시에 주사한 것 외에는 제조예 1과 동일한 방법에 따라 분리막을 제조하였다.
제조예 5
제조예 1과 동일한 방법으로 제조한 두께 약 12 ㎛인 분리막을 제1 층으로 하여, 상기 제1 층의 일면에 제3 방사액을 전기 방사하여 분리막을 제조하였다.
구체적으로, 디메틸포름아미드(DMF)에 중량 평균 분자량이 400,000이고, 헥사플루오로프로필렌 함량이 5 중량%인 폴리비닐리덴플루오라이드-헥사플루오로프로필렌(PVDF-HFP)을 8 중량%로 투입하고, 60℃에서 250 rpm 조건으로 교반하여 제3 방사액을 제조하였다. 상기 제3 방사액을 노즐이 연결된 제3 주사기에 투입하였다.
상기 제3 주사기의 노즐 아래에 상기 집전판 상에 제조된 제1 층을 배치하고, 집전판은 접지시켰다. 주사기의 노즐과 집전판에 18 kV의 전압을 걸고, 제3 주사기를 80 ㎕/min로 약 180분 동안 주사하여 제1 층 표면 상에 제2 층을 제조하였다. 이후, 잔존하는 용매 및 분산매의 제거를 위해 60℃, 진공 조건에서 12 시간동안 건조하여 두께 약 15 ㎛인 분리막을 수득하였다.
제조예 6
제조예 1과 동일한 방법으로 두께 약 15 ㎛인 분리막을 제조하였다.
제조예 7
아세톤 용액에 무기물 입자와 고분자 수지를 8:2의 중량 비율로 분산하여 코팅 슬러리를 제조하였다. 구체적으로, 상기 무기물 입자로는 알루미나와 보헤마이트의 혼합물을 사용하고, 상기 고분자 수지로는 헥사플루오로프로필렌 함량이 8 중량%인 폴리비닐리덴플루오라이드-헥사플루오로프로필렌, 폴리클로로트리플루오로에틸렌(CTFE) 및 시아노 수지의 혼합물을 사용하였다.
상기 코팅 슬러리를 두께 9 ㎛인 폴리에틸렌 기재에 딥 코팅을 통해 양면에 약 3 ㎛ 두께의 코팅층을 형성하고, 건조하여 두께 약 15 ㎛인 분리막을 수득하였다.
실시예 1
양극의 제조
양극 활물질인 리튬 망간의 복합 산화물(NCMA)을 포함하는 양극 슬러리를 알루미늄 박막에 도포하고 건조한 뒤, 롤 압연기에서 압축하여 공극률 26%, 단위면적당 용량이 4.5 mAh/cm2인 양극을 제조하였다.
음극의 제조
탄소계 음극 활물질을 포함하는 음극 슬러리를 구리 박막에 도포하고 건조한 뒤, 롤 압연기에서 압축하여 공극률 40%, 단위면적당 용량이 8.5 mAh/cm2인 음극을 제조하였다.
전해액의 제조
유기 용매로서 플루오로에틸렌 카보네이트(FEC)와 에틸메틸 카보네이트(EMC)를 3:7의 부피 비율로 혼합하고, LiPF6를 첨가하여 LiPF6의 농도가 1.0M인 전해액을 제조하였다.
전기화학소자의 제조
상기와 같이 제조한 양극, 음극 및 전해액과, 제조예 1에 따라 제조한 분리막을 이용하여 전기화학소자로서 파우치 형태의 모노셀(mono cell)을 제조하였다.
상기 양극은 4 × 4 cm2 크기로 재단한 뒤, 상단의 0.5 × 1 cm2는 1 cm 너비를 갖는 알루미늄 탭과 웰딩하였다. 상기 음극은 4.5 × 4.5 cm2 크기로 재단한 뒤, 상단의 0.5 × 1 cm2는 1 cm 너비를 갖는 니켈 탭과 웰딩하였다. 분리막은 5 × 5 cm2 크기로 재단한 뒤, 양극, 분리막, 음극의 순서로 파우치에 넣고 파우치의 세 모서리를 250℃로 실링하여 상기 전해액 250 mL를 주액하고 진공 및 고온에서 순서대로 실링하여 파우치 셀을 제조하였다.
실시예 2
전기화학소자의 제조시 제조예 2에 따라 제조한 분리막을 사용한 것 외에는 실시예 1과 동일한 방법에 따라 파우치 셀을 제조하였다.
비교예 1
전기화학소자의 제조시 제조예 3에 따라 제조한 분리막을 사용한 것 외에는 실시예 1과 동일한 방법에 따라 파우치 셀을 제조하였다.
비교예 2
전기화학소자의 제조시 제조예 4에 따라 제조한 분리막을 사용한 것 외에는 실시예 1과 동일한 방법에 따라 파우치 셀을 제조하였다.
비교예 3
분리막의 제조
무기물 입자로 알루미나와 보헤마이트와 분산제(폴리비닐피롤리돈)를 아세톤에 분산시키고, 고분자 바인더로 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌, 클로로트리플루오로에틸렌을 더 첨가하여, 다공성 코팅층 형성용 슬러리를 제조하였다. 알루미나, 보헤마이트, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌, 클로로트리플루오로에틸렌 및 분산제는 66.3:11.7:15.5:4.5:2의 중량비로 사용하였다.
다공성 코팅층 형성용 슬러리를 이용하여 딥(dip) 코팅법으로 두께 15㎛인 폴리에틸렌 다공성 기재를 양면 코팅하였다. 다공성 코팅층은 각 면당 4㎛ 두께로 형성하여, 전체 두께 23㎛인 분리막을 제조하였다.
전기화학소자의 제조
전기화학소자의 제조시 비교예 1에 따라 제조한 분리막을 사용한 것 외에는 실시예 1과 동일한 방법에 따라 파우치 셀을 제조하였다.
실험예 1. 무기물 주사 속도에 따른 분리막 물성 및 셀 구동 여부 확인
제조예 1 내지 4에 따른 분리막을 동일한 두께로 제조하였을 때, 요구되는 압연율과 분리막의 물성으로서 통기도를 확인하여 그 결과를 하기 표 1에 나타내었다.
분리막의 두께 측정
분리막의 두께는 두께 측정기(Mitutoyo사, VL-50S-B)를 이용하여 측정하였다.
통기도 측정
통기도는 Gurley densometer(Gurley사, 4110N)를 이용하여 100 cc의 공기가 직경 28.6 mm, 면적 645 mm2의 분리막을 투과하는 데에 걸리는 시간을 측정하였다.
셀의 구동 여부 확인
상기 분리막을 포함하는 파우치 셀을 제조(실시예 1, 2, 비교예 1, 2)하였을 때, 제1 방사액의 전기 방사 유량 차이에 따른 파우치 셀의 구동 여부를 확인 그 결과를 하기 표 1에 나타내었다.
구분 제1 방사액의
전기
방사 유량
(㎛/min)
분리막의
두께
(㎛)
압연율
(%)
통기도
(sec/100cc)
셀 구동
여부
비교예 1
(제조예 3)
55 30 63 25 ×
비교예 2
(제조예 4)
70 30 50 39 ×
실시예 1
(제조예 1)
80 30 40 63
실시예 2
(제조예 2)
90 30 25 67.4
상기 표 1을 참조하면, 실시예 1 및 2에 사용된 분리막은 무기물을 바인더 대비 과량으로 포함하여 낮은 압연율을 나타내고, 정상적인 셀 구동이 가능함을 확인하였다. 반면, 비교예 1 및 2에 사용된 분리막은 높은 압연율을 나타내며 낮은 통기도를 나타내고, 셀 구동이 불가능함을 확인하였다. 이러한 결과는, 높은 압연율로 가압하는 과정에서 무기물 입자가 파괴되어 분리막의 기공이 막히거나 균일도가 낮아진 결과임을 간접적으로 나타내는 것이다.
실험예 2. 사이클에 따른 충방전 효율 및 용량 확인
실시예 1 및 비교예 3에 따른 파우치 셀의 충방전 사이클에 따른 충방전 효율(coulombic efficiency)과 면적 용량(areal capacity)을 확인하여 도 1 및 2에 각각 나타내었다.
도 1을 참조하면, 전기 방사로 제조한 제조예 1에 따른 분리막을 포함하는 실시예 1의 파우치 셀은 500회의 충방전 사이클 동안 충방전 효율의 감소가 확인되지 않았으나, 비교예 3의 파우치 셀은 200회부터 감소하기 시작하여 500회에서는 5% 이상 감소하는 것으로 나타났다.
도 2를 참조하면, 전기 방사로 제조한 제조예 1에 따른 분리막을 포함하는 실시예 1의 파우치 셀은 200회의 충방전 사이클 동안 8% 미만의 용량 감소율을 나타낸 데에 비해, 비교예 3의 파우치 셀은 70% 이상 감소한 것으로 나타났다.
이러한 결과는, 규소(pure-Si)를 포함하는 음극이 팽창함에 따라 분리막에 변형이 발생하여 파우치 셀의 수명이 퇴화된 데에서 기인한 것이다.
실험예 3. 분리막의 압축 후 물성 확인
내압축 평가
A4 용지 2장 위에 5 × 5 cm2 면적의 PET 필름(35 ㎛) 2장을 배치하고, 상기 PET 필름 위에 5 × 5 cm2 면적의 분리막을 배치하였다. 상기 분리막 위에 다시 5 × 5 cm2 면적의 PET 필름(35 ㎛) 1장을 배치하고, PET 필름 위에 A4 용지 2장을 배치하였다. 상하로 배치된 A4 용지를 면 압연기(Rhotec사, pressing machine, V-30)를 이용하여 70℃, 5.2MPa의 조건으로 10초 동안 압력을 인가하였다.
이온 전도도 측정
SUS 스페이서(spacer)를 측정 전극(working electrode) 및 대전극(counter electrode)으로 하고, 이들 전극 사이에 내압축 평가 전후의 분리막을 지름 19 mm의 원형으로 재단하고 삽입하여 코인형의 셀(blocking cell)을 제조한 후, 임피던스를 측정하여 이온 전도도를 측정하였다.
제조예 1의 분리막과 비교예 3의 분리막에 대한 내압축 평가와 이온 전도도를 측정하여 그 결과를 각각 도 3 및 4에 나타내었다. 제조예 1의 분리막과 비교예 3의 분리막에 대한 내압축 평가 전후의 SEM 이미지(×20K, 10kV)를 도 5에 나타내었다.
도 3을 참조하면, 제조예 1의 분리막은 압축 후 두께가 약 15% 감소한 데에 비해, 비교예 3의 분리막은 압축 후 두께가 약 17% 감소한 것으로 나타났다.
도 4의 (a)를 참조하면 제조예 1의 분리막은 압축 전후 저항 상승률이 23.6%로 나타났고, 도 4의 (b)를 참조하면 비교예 3의 분리막은 압축 전후 저항 상승률이 68.5%로 나타났다.
상기와 같은 결과는 제조예 1에 따른 분리막은 내압축성이 우수하여 압축 전후의 저항 상승률이 낮게 나타난 것으로, 도 5의 SEM 이미지 관찰 결과에 부합되는 것이다. 구체적으로, 도 5의 (a) 가압 전 제조예 1에 따른 분리막과 (b) 가압 후 제조예 1에 따른 분리막은 가압 전후로 기공의 구조가 잘 유지되었다. 그러나, 도 5의 (c) 가압 전 비교예 3에 따른 분리막과 도 5의 (d) 가압 후 비교예 3에 따른 분리막을 비교할 때, 비교예 3은 가압 후 기공의 일부가 막혀버리는 등 기공의 구조가 무너진 것으로 확인되었다.
실험예 4. 분리막의 내열성 확인
제조예 1에 따른 분리막을 150℃에서 30분 동안 방치하여 치수 변화 및 부피 변화를 확인하였다.
제조예 1에 따른 분리막의 부피 변화율은 0%인 것으로 나타났다.
실험예 5. 2층 구조 분리막의 물성 확인
제조예 5 내지 7에 따른 분리막의 두께, 통기도 및 전기 저항을 확인하여 그 결과를 하기 표 2에 나타내었다. 분리막의 두께와 통기도는 전술한 실험예와 동일한 방법으로 확인하였다.
전기 저항 측정
2016 사이즈의 코인셀을 제조하기 위하여, 상기 제조예 5 내지 7에서 제조된 분리막을 19 ø로 타발하고 전해액을 넣어 코인셀을 제작하였다.
상기 코인셀을 3시간 동안 방치한 후 EIS(Electrochemical Impedance Spectroscopy) 장치를 이용하여 코인셀의 저항을 측정하였다.
상기 EIS 장치는 Solartron 社의 1255B 모델을 사용하여, 104 내지 105 Hz의 주파수를 인가하였고, 측정된 그래프의 X 절편 값을 기록하여 얻은 값을 하기 표 2에 전기 저항으로 기재하였다.
상기 전해액은 에틸렌카보네이트(EC) : 디메틸카보네이트(DMC) : 에틸메틸카보네이트(EMC)를 3 : 4 : 3의 중량 비율로 혼합하고, 첨가제로서 비닐렌카보네이트(VC) 3 mol, 프로판설톤(PS) 1.5 mol, 에틸렌설페이트(ESa) 1 mol 및 리튬염 (LiPF6) 1 mol을 포함시킨 것을 사용하였다.
구분 분리막의 두께
(㎛)
통기도
(sec/100cc)
전기 저항
(Ω)
제조예 5 14.7 18 0.98
제조예 6 14.6 10 0.94
제조예 7 14.6 147 0.77
실험예 6. 2층 구조 분리막 압축에 따른 통기도 변화율 확인
제조예 5 내지 7에 따른 분리막을 압축하면서 통기도 변화를 확인하여 그 결과를 하기 표 3 및 도 6에 나타내었다.
내압축 평가
A4 용지 2장 위에 5 cm × 5 cm의 PET 필름(35 ㎛) 3장을 배치하고, 상기 PET 필름 위에 5 cm × 5 cm의 분리막을 배치하였다. 상기 분리막 위에 다시 5 cm × 5 cm의 PET 필름(35 ㎛) 1장을 배치하고, PET 필름 위에 A4 용지 2장을 배치하였다.
상하로 배치된 A4 용지를 면 압연기(Rhotec사, pressing machine, V-30)를 이용하여 ① 70℃, 5.2MPa의 조건으로 10초, ② 70℃, 7.8MPa의 조건으로 10초, ③ 80℃, 7.8MPa의 조건으로 10초 순서대로 압력을 인가하였다. 하기 표 2에 ① 내지 ③ 이후 각각의 통기도와, 압축 전후의 통기도 변화율을 나타내었다.
구분 통기도 (sec/100cc) 통기도
변화율(%)
제조예 5 22.1 26.1 27.9 55
제조예 6 12.0 12.5 14.0 40
제조예 7 227.9 367.5 573.3 390
상기 표 3 및 도 6을 참조하면, 제조예 5 및 제조예 6에 따른 분리막은 무기물을 고분자 수지 대비 과량으로 포함하는 층을 포함하여, 압축 이후에도 통기도 증가율이 100% 미만으로 나타났다. 반면, 제조예 7에 따른 분리막은 압축에 따라 통기도 증가율이 390%로 나타났다. 이러한 결과는, 제조예 7은 코팅층에 포함된 무기물 입자 및 고분자 수지의 구조 붕괴로 분리막의 기공이 막히거나 균일도가 낮아진 데에 기인한 것이다.
실험예 7. 고온 조건에서 셧다운 기능 확인
제조예 5 내지 7에 따른 분리막을 온도를 승온시키면서 Heat gurley 평가를 수행하여 분리막의 셧다운 온도를 확인하였다. 분리막의 온도를 2℃/min 속도로 승온하면서 분리막의 통기도를 측정하였고, 통기도 값이 급격하게 증가하는 시점의 온도를 셧다운 온도로 정의하였으며, 해당 온도를 하기 표 4에 기재하였다.
실험예 8. 셀 안전성 평가
양극의 제조
양극 활물질로 리튬 망간의 복합 산화물(NCMA)을 포함하는 양극 슬러리를 알루미늄 박막에 도포하고 건조한 뒤, 롤 압연기에서 압축하여 공극률 26%, 단위면적당 용량이 4.5 mAh/cm2인 양극을 제조하였다.
음극의 제조
음극 활물질로 순수한 Si를 포함하는 음극 슬러리를 구리 박막에 도포하고 건조한 뒤, 롤 압연기에서 압축하여 공극률 40%, 단위면적당 용량이 8.5 mAh/cm2인 음극을 제조하였다.
전해액의 제조
유기 용매로서 플루오로에틸렌 카보네이트(FEC)와 에틸메틸 카보네이트(EMC)를 3:7의 부피 비율로 혼합하고, LiPF6를 첨가하여 LiPF6의 농도가 1.0M인 전해액을 제조하였다.
전기화학소자의 제조
상기와 같이 제조한 양극, 음극 및 전해액과, 제조예 5 내지 7의 분리막을 이용하여 전기화학소자로서 파우치 형태의 모노셀(mono cell)을 제조하였다.
상기 양극은 4 cm × 4 cm 크기로 재단한 뒤, 상단의 0.5 cm × 1 cm는 1 cm 너비를 갖는 알루미늄 탭과 웰딩하였다. 상기 음극은 4.5 cm × 4.5 cm 크기로 재단한 뒤, 상단의 0.5 cm × 1 cm는 1 cm 너비를 갖는 니켈 탭과 웰딩하였다. 분리막은 5 cm × 5 cm 크기로 재단한 뒤, 양극, 분리막, 음극의 순서로 파우치에 넣고 파우치의 세 모서리를 250℃로 실링하여 상기 전해액 250 mL를 주액하고 진공 및 고온에서 순서대로 실링하여 파우치 셀을 제조하였다.
Hot box 평가
상기 파우치 셀을 만충시킨 상태에서 상온의 챔버에 지그를 연결하였다. 이후 5℃/min 승온 속도로 130℃까지 도달하게 한 이후, 30 분 동안 유지하면서 셀의 발화 유무를 평가하였다. 온도 승온 중, 또는 온도를 130℃로 유지하는 동안 셀의 온도나 전압이 급격하게 상승하여 발화하는 것을 Fail로 평가하였으며, 30분 경과 후 셀이 정상적으로 유지하는 것을 Pass로 평가하였다.
구분 셧다운 온도(℃) Hot box 평가 통과 여부
제조예 5 124 Pass
제조예 6 182 Fail
제조예 7 136 Fail

Claims (16)

  1. 실리콘계 음극을 포함하는 전기화학소자의 분리막으로서,
    상기 분리막은,
    폴리올레핀 기재를 포함하지 않는 프리스탠딩 다공성 분리막이며,
    고분자 바인더 및 무기물 입자를 포함하되, 상기 분리막의 전체 중량을 기준으로 상기 무기물 입자의 함량이 상기 고분자 바인더의 함량보다 큰 것인, 전기화학소자용 분리막.
  2. 제1항에 있어서,
    상기 분리막은,
    상기 분리막의 전체 중량을 기준으로 상기 무기물 입자를 60 내지 95 중량%로 포함하는 것인, 전기화학소자용 분리막.
  3. 제1항에 있어서,
    상기 분리막은,
    15 내지 45 ㎛의 두께를 만족하고, 하기 식 1로 정의되는 값이 1 내지 18%인, 전기화학소자용 분리막:
    [식 1]
    (T1 - T2) / T1 × 100
    상기 식 1에서,
    상기 T1은 상기 분리막의 초기 두께이고,
    상기 T2는 상기 분리막을 면 압연기에서 5.2MPa, 70℃로 10초 동안 누른 후의 두께를 의미한다.
  4. 제1항에 있어서,
    상기 분리막은,
    상기 분리막의 적어도 일면에 형성되는 제2 층을 더 포함하며,
    상기 제2 층은,
    상기 고분자 바인더와 상이한 고분자 수지를 포함하며, 상기 고분자 바인더는 상기 고분자 수지보다 융점이 높은 것인, 전기화학소자용 분리막.
  5. 제4항에 있어서,
    상기 분리막은,
    10 내지 45 ㎛의 두께를 만족하고, 80℃ 7.8 MPa의 압력으로 10초 동안 가압하였을 때 통기도 변화율이 100% 미만인, 전기화학소자용 분리막.
  6. 양극;
    실리콘계 음극; 및
    상기 양극 및 상기 실리콘계 음극 사이에 위치하는, 제1항 내지 제5항 중 어느 한 항에 따른 전기화학소자용 분리막을 포함하는 전기화학소자.
  7. 제6항에 있어서,
    상기 실리콘계 음극은,
    Si, SiOx (0<x<2), SiC 및 Si 합금으로 이루어진 군으로부터 선택되는 하나 이상의 실리콘계 활물질을 포함하는 것인, 전기화학소자.
  8. 실리콘계 음극을 포함하는 전기화학소자의 분리막 제조 방법으로서,
    고분자 바인더를 포함하는 제1 방사액 및 무기물 입자를 포함하는 제2 방사액을 동시에 전기 방사하여 프리스탠딩(freestanding) 다공성 분리막을 형성하는 단계를 포함하며,
    상기 제2 방사액의 유량은 상기 제1 방사액의 유량보다 많은 것인, 전기화학소자용 분리막의 제조 방법.
  9. 제8항에 있어서,
    상기 무기물 입자는,
    SiO2, Al2O3, AlOOH, TiO2, ZrO2, BaSO4, BaTiO3, ZnO, MgO, Mg(OH)2, Al(OH)3, Pb(Zr,Ti)O3, Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), HfO2, SrTiO3, SnO2, CeO2, MgO, NiO, CaO, Y2O3, SiC, ZnSn(OH)6, Zn2SnO4, ZnSnO3, Sb2O3, Sb2O4 및 Sb2O5로 이루어진 군으로부터 선택되는 하나 이상인, 전기화학소자용 분리막의 제조 방법.
  10. 제8항에 있어서,
    상기 고분자 바인더는,
    폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아미드, 폴리이미드, 폴리에테르이미드, 폴리아크릴로니트릴, 폴리비닐알코올, 폴리아라미드 및 폴리스티렌으로 이루어진 군으로부터 선택되는 하나 이상인, 전기화학소자용 분리막의 제조 방법.
  11. 제8항에 있어서,
    상기 프리스탠딩 다공성 분리막을 형성하는 단계는,
    상기 제1 방사액 및 상기 제2 방사액을 1:8 내지 1:100의 유량 비율로 전기 방사하는 것인, 전기화학소자용 분리막의 제조 방법.
  12. 제8항에 있어서,
    상기 형성된 프리스탠딩 다공성 분리막을 25 내지 60℃에서 가압하는 단계를 더 포함하는 전기화학소자용 분리막의 제조 방법.
  13. 제8항에 있어서,
    상기 다공성 분리막의 적어도 일면에 고분자 수지를 포함하는 제3 방사액을 전기 방사하여 제2 층을 형성하는 단계를 더 포함하며,
    상기 고분자 바인더는 상기 고분자 수지보다 융점이 높은 것인, 전기화학소자용 분리막의 제조 방법.
  14. 제13항에 있어서,
    상기 제2 층은 상기 다공성 분리막에 배치되고, 압연되어 형성되는 것인, 전기화학소자용 분리막의 제조 방법.
  15. 제14항에 있어서,
    상기 압연은 상기 고분자 수지의 융점보다 낮은 온도로 수행되는 것인, 전기화학소자용 분리막의 제조 방법.
  16. 제13항에 있어서,
    상기 고분자 수지는 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리에틸렌옥사이드 및 폴리메틸메타크릴레이트로 이루어진 군으로부터 선택되는 하나 이상인, 전기화학소자용 분리막의 제조 방법.
PCT/KR2023/009638 2022-07-07 2023-07-07 전기화학소자용 분리막 및 상기 분리막의 제조 방법 WO2024010413A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380016858.4A CN118476114A (zh) 2022-07-07 2023-07-07 电化学装置用隔膜及该隔膜的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0083685 2022-07-07
KR1020220083685A KR102658662B1 (ko) 2022-07-07 2022-07-07 전기화학소자용 분리막 및 상기 분리막의 제조 방법
KR10-2022-0107931 2022-08-26
KR1020220107931A KR20240029695A (ko) 2022-08-26 2022-08-26 전기화학소자용 분리막 및 상기 분리막의 제조 방법

Publications (1)

Publication Number Publication Date
WO2024010413A1 true WO2024010413A1 (ko) 2024-01-11

Family

ID=89453792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009638 WO2024010413A1 (ko) 2022-07-07 2023-07-07 전기화학소자용 분리막 및 상기 분리막의 제조 방법

Country Status (1)

Country Link
WO (1) WO2024010413A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150084637A (ko) * 2014-01-13 2015-07-22 국립대학법인 울산과학기술대학교 산학협력단 미세 다공성 복합 분리막, 그 제조방법 및 이를 포함한 전기화학소자
KR20210033327A (ko) * 2019-09-18 2021-03-26 주식회사 엘지화학 이차전지용 프리스탠딩 분리막을 포함하는 전극조립체 및 이를 포함하는 이차전지
KR20210046405A (ko) * 2019-10-18 2021-04-28 주식회사 엘지화학 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법
KR20220011097A (ko) * 2020-07-20 2022-01-27 주식회사 엘지에너지솔루션 이차전지용 세퍼레이터, 이의 제조방법, 이를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지
KR20220021894A (ko) * 2020-08-14 2022-02-22 주식회사 엘지에너지솔루션 세퍼레이터 및 이를 포함하는 전기화학소자
KR20220083685A (ko) 2019-06-03 2022-06-20 디알. 티이씨에이치엔. 올라브 올센 에이에스 하나 이상의 구조체를 고정시키는 연약지반 앵커 및 앵커를 연약지반에 배열하는 방법
KR20220107931A (ko) 2021-01-25 2022-08-02 삼성전자주식회사 수직형 낸드 플래시 메모리 소자 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150084637A (ko) * 2014-01-13 2015-07-22 국립대학법인 울산과학기술대학교 산학협력단 미세 다공성 복합 분리막, 그 제조방법 및 이를 포함한 전기화학소자
KR20220083685A (ko) 2019-06-03 2022-06-20 디알. 티이씨에이치엔. 올라브 올센 에이에스 하나 이상의 구조체를 고정시키는 연약지반 앵커 및 앵커를 연약지반에 배열하는 방법
KR20210033327A (ko) * 2019-09-18 2021-03-26 주식회사 엘지화학 이차전지용 프리스탠딩 분리막을 포함하는 전극조립체 및 이를 포함하는 이차전지
KR20210046405A (ko) * 2019-10-18 2021-04-28 주식회사 엘지화학 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법
KR20220011097A (ko) * 2020-07-20 2022-01-27 주식회사 엘지에너지솔루션 이차전지용 세퍼레이터, 이의 제조방법, 이를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지
KR20220021894A (ko) * 2020-08-14 2022-02-22 주식회사 엘지에너지솔루션 세퍼레이터 및 이를 포함하는 전기화학소자
KR20220107931A (ko) 2021-01-25 2022-08-02 삼성전자주식회사 수직형 낸드 플래시 메모리 소자 및 그 제조방법

Similar Documents

Publication Publication Date Title
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2017095074A1 (ko) 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018143733A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2018236168A1 (ko) 리튬 이차전지
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2019045399A2 (ko) 리튬 이차전지
WO2019004699A1 (ko) 리튬 이차전지
WO2023027499A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2021045542A1 (ko) 전극의 전리튬화 방법 및 장치
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022255665A1 (ko) 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019031766A2 (ko) 리튬금속과 무기물 복합박막 제조방법 및 이를 이용한 리튬 이차전지 음극의 전리튬화 방법
WO2018236166A1 (ko) 리튬 이차전지
WO2020091428A1 (ko) 리튬 이차전지
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2020091515A1 (ko) 리튬 이차전지
WO2022197095A1 (ko) 리튬 이차전지용 음극, 및 이를 구비하는 리튬 이차전지
WO2024010413A1 (ko) 전기화학소자용 분리막 및 상기 분리막의 제조 방법
WO2022050651A1 (ko) 분리막 및 이를 포함하는 이차 전지
WO2020180156A1 (ko) 음극 활물질 및 이를 포함하는 리튬이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380016858.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023835879

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023835879

Country of ref document: EP

Effective date: 20240909