WO2014174598A1 - 部品実装装置、実装ヘッド、および制御装置 - Google Patents

部品実装装置、実装ヘッド、および制御装置 Download PDF

Info

Publication number
WO2014174598A1
WO2014174598A1 PCT/JP2013/061964 JP2013061964W WO2014174598A1 WO 2014174598 A1 WO2014174598 A1 WO 2014174598A1 JP 2013061964 W JP2013061964 W JP 2013061964W WO 2014174598 A1 WO2014174598 A1 WO 2014174598A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
component
unit
head
image
Prior art date
Application number
PCT/JP2013/061964
Other languages
English (en)
French (fr)
Inventor
潔人 伊藤
渡辺 正浩
吉田 実
井上 智博
輝宣 船津
小田井 正樹
功 高平
博紀 小川
高志 三枝
豊和 高木
恵利衣 高野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/061964 priority Critical patent/WO2014174598A1/ja
Publication of WO2014174598A1 publication Critical patent/WO2014174598A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement

Definitions

  • the present invention relates to a component mounting apparatus that performs positioning using an imaging apparatus, a mounting head, and a control system thereof.
  • a large number of electronic components such as resistors and IC chips are mounted on a printed circuit board used for electronic equipment. These electronic components are automatically mounted at predetermined mounting locations by a component mounting apparatus.
  • One configuration of the component mounting apparatus includes a mounting head that can be moved to an arbitrary position in a horizontal plane by a beam mechanism, and a nozzle (suction nozzle) that sucks a component provided in the mounting head. By sucking the component supplied from the electronic component feeder with the suction nozzle, then moving the mounting head to the target mounting location with precision, lowering the suction nozzle toward the substrate, and releasing the component suction, Mount the component on the printed circuit board.
  • suction shift If the suction position of the component is shifted from the center of the nozzle (suction shift), even if the mounting head is accurately moved to the target location, the mounting position of the component is shifted due to this suction shift.
  • the position of the component mounting location (land) varies from printed circuit board to printed circuit board due to variations and deformations in the printed circuit board manufacturing process. That is, when the mounting head is moved to a predetermined component mounting position based on the design value of the board, a positional deviation occurs due to the variation, deformation, and the like.
  • the encoder value for obtaining the position of the mounting head inside the device is shifted. Therefore, even if positioning is performed based on the value read from the encoder, the mounting head position is displaced.
  • Patent Document 2 includes an imaging device that captures an image of a component sucked by a suction nozzle and a mounting position obliquely from above, and the position of the suction component relative to the mounting position based on an image signal from the imaging device.
  • a calculation means for calculating the shift and a technique for correcting the position of the component by moving the suction nozzle in a horizontal plane according to the calculated position shift are described.
  • Patent Document 3 a mounting head, a component suction nozzle, a computer that drives and controls them, and a camera that captures an image directly under the mounting head from an oblique direction are used, and a movable reflecting mirror installed in an optical path is used.
  • a system is disclosed that adjusts the deviation between the center of the attracted component and the center of the target position of the substrate from the image of the component taken by one camera and the target position of the substrate on which the component is mounted.
  • the technique described in Document 1 is a technique for recognizing an adsorption deviation after adsorbing a component. That is, it is not possible to perform correction when the mounting head stop position itself is deviated from the target mounting location.
  • Patent Documents 2 and 3 correct the relative displacement between the mounting position and the suction component by using a camera image. That is, it is possible to correct the deviation between the component and the mounting position even when there is a suction deviation or when there is a positional deviation at the stationary position of the mounting head.
  • the problem to be solved by the present invention is to provide a technique for accurately and rapidly arranging the mounting head at the mounting position by accurately moving the mounting head to the target location without increasing the tact time.
  • Typical examples of the invention disclosed in the present application include a mounting head that moves a component to a mounting position, a control unit that controls movement of the mounting head, an imaging unit installed in the mounting head, The imaging unit captures an image including the mounting position, and the control unit changes the mounting position of the mounting head based on the image before the mounting head reaches the mounting position.
  • This is a component mounting apparatus.
  • the mounting head it is possible to move the mounting head to a target location accurately and at high speed and arrange components.
  • FIG. 13 is a diagram schematically showing an operation state according to the configuration of FIG. 12.
  • FIG. 12 is the side view which showed another example of schematic structure of a mounting head.
  • drawing which showed an example of the picked-up image of the camera module in the structure of FIG.
  • It is the graph which showed the time change of the actual position of the front-end
  • Embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings as appropriate. In all the drawings, even if the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and the common description will not be repeated.
  • FIG. 1 is a perspective view showing a schematic configuration of a component mounting apparatus 100 according to the present embodiment.
  • the two directions orthogonal to each other in the horizontal plane are defined as the X-axis direction and the Y-axis direction, respectively, and the vertical direction perpendicular thereto is defined as the Z-axis direction.
  • the component mounting apparatus 100 includes a mounting head 10, an X beam mechanism 11, Y beam mechanisms 12a and 12b, a plurality (six in this example) of electronic component feeders 40 for supplying electronic components to be mounted, and a control unit 90. And a base frame 13 (only the outer shape is shown) for mounting and supporting these components.
  • the mounting head 10 includes a plurality (four in this example) of suction nozzle modules 20 and a camera module 30 mounted on each of the suction nozzle modules 20.
  • One end of the mounting head 10 (left side of the drawing) is supported by the X beam mechanism 11, and an arbitrary X in the base frame 13 is provided by a built-in drive unit (not shown: corresponding to the X beam drive unit 911 in FIG. 3). It is configured to be able to move parallel to the coordinates.
  • Both ends of the X beam mechanism 11 are supported by Y beam mechanisms 12a and 12b, and an arbitrary Y coordinate in the base frame 13 is provided by a built-in drive unit (not shown: corresponding to the Y beam drive unit 912 in FIG. 3). It can be translated in parallel.
  • the mounting head 10 is configured to be movable in the horizontal direction to an arbitrary coordinate in the base frame 13 on the XY plane in the drawing by the driving unit.
  • the electronic component feeder 40 is mounted on one end of the base frame 13 in the Y-axis direction in the figure in a form of being mounted in parallel in the X-axis direction in the figure. Further, the electronic component feeder 40 can be detached and separated as necessary, such as replacement of mounted electronic components.
  • the electronic component feeder 40 includes a component delivery unit 41 inside the apparatus in the drawing.
  • the electronic component feeder 40 holds a component tape reel (not shown) in which electronic components are sealed at a uniform interval.
  • the electronic component feeder 40 is configured to expose the electronic component mounted on the delivery unit 41 by feeding the component tape reel by a predetermined amount.
  • the control unit 90 is connected to each component by wire or wireless and gives an operation command to each component.
  • the control unit 90 is configured to acquire the current state of each component.
  • a predetermined transport mechanism (not shown) is provided so that the printed board 50 (a member to be mounted) can be transported into the component mounting apparatus 100.
  • the transported printed circuit board 50 is placed on a placing table 51 inside the base frame 13 and is held and fixed.
  • FIG. 2 is a side view showing a schematic configuration of the mounting head 10 according to the present embodiment, and shows a state in which the periphery of one component suction nozzle module 20 is viewed along the X-axis direction of FIG.
  • the mounting head 10 includes a component suction nozzle module 20 and a camera module 30.
  • the suction nozzle module 20 includes a suction nozzle 21, a Z-axis motor 22, a ⁇ -axis motor 23, a vacuum valve 24, and a frame 25 that supports these components.
  • the suction nozzle 21 is configured to be able to vacuum-suck the electronic component 60 to the lower end in the Z-axis direction (the lower side of the paper) by changing the internal pressure.
  • the Z-axis motor 22 is disposed inside the suction nozzle module 21 and has a function of translating the suction nozzle 21 (component holding unit) vertically by a predetermined distance along the Z-axis direction in the drawing.
  • the ⁇ -axis motor 23 is also disposed inside the suction nozzle module 23 and has a function of rotating the suction nozzle 21 by a predetermined angle about the nozzle axis (broken line N in the figure).
  • the vacuum valve 24 is disposed on an air flow path connecting a vacuum pump (not shown) inside the suction nozzle module 23 and the inside of the suction nozzle 21, and opens and closes the vacuum valve 24 to open the inside of the suction nozzle 21. It has a function to change the pressure.
  • the camera module 30 is fixed to the frame 25 of the suction nozzle module 20 by the support member 32 with its photographing direction (hereinafter, optical axis: broken line C in the figure) directed downward in the Z axis in the figure.
  • optical axis broken line C in the figure
  • L is a distance between the optical axis C and the nozzle axis N.
  • the camera module 30 has a lens 31.
  • the lens 31 is adjusted so that its focal point matches the substrate surface of the printed circuit board 50 held inside the apparatus. Further, the viewing angle of the lens 31 is indicated by a one-dot chain line ⁇ in the figure. That is, the camera module 30 can acquire a focused captured image of a region included in the viewing angle ⁇ on the board surface of the printed board 50. Hereinafter, this region is referred to as a visual field region of the camera module 30.
  • the visual field region of the camera module 30 includes not only the position immediately below the mounting head 10 but also the traveling direction of the mounting head 10 (in this example, the right-hand direction on the paper surface).
  • the camera module 30 acquires the captured image at a predetermined time interval.
  • the time interval has a function that can be controlled from the outside by a shooting trigger.
  • suction nozzle module 20 and one camera module 30 As described above, the configuration of one suction nozzle module 20 and one camera module 30 has been described with reference to FIG. 2, but other suction nozzle modules 20 and camera modules 30 provided in the mounting head 10 as shown in FIG. Needless to say, they have the same configuration.
  • the traveling direction and the driving direction of the mounting head 10 and the component suction nozzle 21 have been described using the X, Y, and Z axes.
  • the present invention is not limited to this. If the drive direction of the component suction nozzle 21 is different, it can be implemented. Further, the suction nozzle 21 may be a holding portion having a mechanism capable of holding and mounting components, instead of the suction type as in the present embodiment.
  • FIG. 3 is a block diagram showing an example of the configuration of the control device of the component mounting apparatus according to the present embodiment.
  • description will be made specifically for component mounting.
  • the present invention is not limited to this as long as it is a control device that controls positioning from an image, such as using a mounting head (holding unit) described later as a positioning unit. Absent.
  • the control unit 90 includes a CPU 901, a ROM (Read Only Memory) 902, and a RAM (Random Access Memory) 903, and has a function of controlling the entire mounting apparatus based on a program stored in the ROM 902 or the RAM 903. Have.
  • control unit 90 gives a movement command to the X-axis motor driving unit 911 incorporating the position encoder 9111 and acquires the current position of the mounting head 10 acquired by the position encoder 9111.
  • control unit 90 gives a movement command to the Y-axis motor driving unit 912 incorporating the position encoder 9121 and acquires the current position of the X beam mechanism 11 acquired by the position encoder 9121.
  • control unit 90 gives an up / down command to the Z-axis motor drive unit 922 and controls the current nozzle from an encoder (not shown) built in the Z-axis motor drive unit 922 in order to control the vertical movement of the suction nozzle 21. Get the position.
  • control unit 90 gives a rotation command to the ⁇ -axis motor drive unit 923, and from an encoder built in the ⁇ -axis motor drive unit 923, Get the rotation angle.
  • a suction command is given to the vacuum valve driving unit 924, and the current state (whether suction is being performed or not) is acquired.
  • the image processing unit 930 acquires image data captured by the camera module 30. Further, the image processing unit 930 gives an imaging trigger for instructing the image acquisition timing to the camera module 30. Further, the image processing unit 930 receives predetermined position information from the control unit 90, and performs predetermined image processing (details will be described later) based on the position information. Then, the image processing result is transmitted to the control unit 90.
  • Y-axis motor drive unit 912 only one Y-axis motor drive unit 912 is shown. However, when two Y-beam mechanisms are provided as shown in FIG. 1 and each needs a drive unit, the Y-axis motor drive unit 912 is shown. It is also possible to provide two.
  • control unit 90 shows a configuration in which a single CPU 901 is built in, but the present invention is not limited to this. For example, a plurality of CPUs may be incorporated. Thereby, it is possible to execute arithmetic processing necessary for operation control of each component at high speed.
  • the component mounting apparatus 100 mounts the electronic component supplied from the electronic component feeder 40 on the printed circuit board 50 as follows.
  • the control unit 90 controls the X-axis motor driving unit 911 and the Y-axis motor driving unit 912 to move the mounting head 10 above the component delivery unit 41 of the electronic component feeder 40. More specifically, the electronic component supplied by the component delivery unit 41 is moved so as to be positioned immediately below the predetermined suction nozzle 21 in the Z-axis direction.
  • the control unit 90 controls the Z-axis motor driving unit 922 and the vacuum valve driving unit 924 to lower the suction nozzle 21 to the component delivery unit 41 and start air suction. As a result, the electronic component 60 supplied by the component delivery unit is sucked to the tip of the suction nozzle 21.
  • the control unit 90 controls the Z-axis motor driving unit 922 to shorten the component suction nozzle 21 and hold the sucked electronic component 60.
  • control unit 90 controls the X-axis motor driving unit 911 and the Y-axis motor driving unit 912 to move the mounting head 10 to a predetermined location (mounting position) on the printed circuit board 50. More specifically, the component mounting nozzle 21 is moved so that the mounting location of the sucked electronic component 60 is located immediately below the Z-axis direction of the component suction nozzle 21. Finally, the control unit 90 controls the Z-axis motor driving unit 922 and the vacuum valve driving unit 924 to lower the suction nozzle 21 and release the air suction, so that the sucked electronic component is placed on the printed circuit board 50. Place the mounting.
  • the component mounting apparatus 100 repeats these operations in order to mount a plurality of electronic components on the printed board 50.
  • each procedure does not necessarily have to be executed sequentially in time series. For example, it is not necessary to lower the suction nozzle 21 after the mounting head 10 has completely moved and stopped, and the driving of the lowering of the suction nozzle 21 may be started at a timing just before resting.
  • This method needs to control the timing of each procedure with high time accuracy, but can reduce the time (takt time) required for mounting one component.
  • control for rotating the direction of the electronic component 60 in a predetermined mounting arrangement direction after the electronic component 60 is sucked and mounted on the printed circuit board 50 and the electronic component 60 are When it deviates from the central axis N of the suction nozzle 21, control for detecting and correcting the deviation is necessary.
  • control for detecting and correcting the deviation is necessary.
  • the component mounting apparatus in the component mounting apparatus according to the present embodiment, details of the operation when the sucked electronic component 60 is arranged at the component arrangement location 61 on the printed circuit board 50 will be described. explain. Needless to say, the component mounting operation described below may be used not only when the component is mounted on the member to be mounted, but also when the component is sucked and held by the delivery unit 41.
  • FIG. 4 is a flowchart illustrating an example of a method for controlling the positioning of the mounting head 10 by the control unit 90 when the electronic component 60 is disposed at a predetermined component placement location on the printed circuit board 50 in the present embodiment. .
  • the controller 90 sucks and holds the electronic component 60 from the electronic component feeder 40 by the suction nozzle 21, and then starts control to move the mounting head 10 onto the printed board 50 (S100).
  • control unit 90 calculates in advance the position coordinates of the component placement location 61 in the base frame 13 from a coordinate system determined at the time of designing the component mounting apparatus 100 and the printed circuit board 50, and the first movement target position (mounting position). ) Is set (S101). Then, movement control of the mounting head is started toward the first movement target position.
  • the control unit 90 uses the position encoder 9111 built in the X axis drive motor 911 and the position encoder 9121 built in the Y axis drive motor 912 to move the mounting head 10 on the X axis. And the current position of the X-beam mechanism. A parameter determined from the relative relationship between the mounting head coordinate system and the central axis N of the suction nozzle 21 is added to the acquired current position to obtain the current XY coordinates (hereinafter referred to as suction nozzle coordinates) of the suction nozzle 21 (S102). ).
  • the arrival determination is not a simple coordinate value coincidence determination, but indicates that the difference between the suction nozzle coordinates and the first movement target falls within a predetermined range within a predetermined time. If the suction nozzle coordinates have arrived at the first movement target, the movement ends (S199). If it has not arrived, the movement control is continued.
  • the control unit 90 performs movement control correction based on the image processing result of the image processing unit 930 (S104: details will be described later). And the control part 90 produces
  • the movement command refers to an ideal trajectory until the suction nozzle reaches the first movement target.
  • control unit 90 transmits a movement command to the X-axis motor drive unit 911 and the Y-axis motor drive unit 912 (S106), and returns to S102 again.
  • the X-axis motor drive unit 911 and the Y-axis motor 912 determine the output of each axis motor based on the received movement command based on a predetermined control algorithm, and move the mounting head 10.
  • a control algorithm for example, a proportional control method for determining the output of the motor in proportion to the difference value between the ideal trajectory of the suction nozzle and the current suction nozzle coordinates may be used. Thereafter, the processing of S102 to S106 is repeated until the movement is completed (S109).
  • FIG. 5A to 5D schematically show an operation state when the mounting head according to the present embodiment places the adsorbed electronic component 60 at the component placement location 61 on the printed circuit board 50.
  • FIG. FIG. 5A to 5D schematically show an operation state when the mounting head according to the present embodiment places the adsorbed electronic component 60 at the component placement location 61 on the printed circuit board 50.
  • the directions indicated by the Y axis and the Z axis are the same as the directions indicated by the Y axis and the Z axis in FIG. 5, the central axis of the suction nozzle 21 of the mounting head 10 is N, the optical axis of the camera module 30 is C, and the field of view is F.
  • FIG. 5A shows one state in which the mounting head 10 is moving.
  • the Y coordinate of the first moving target that is set in step S101 in FIG. 4 and Y t.
  • the true Y coordinate in the apparatus component placement locations 61 and Y r the strain on the mechanism of the component mounting apparatus 100, the error factors such as distortion and errors during processing of the printed circuit board 50 is present, as shown in FIG. 5 (a), does not coincide with Y r and Y t .
  • step S104 since the image processing result of the image processing unit 930 is used as described above, the movement control correction is not performed in the state shown in FIG.
  • the controller 90 moves the mounting head 10, as the suction nozzle 21 is moved toward the Y-coordinate Y t of the first moving target, the Y-axis motor drive unit 912 Give a directive.
  • the image processing unit 930 transmits an imaging trigger to the camera module 30 and starts imaging before the suction nozzle 21 arrives immediately above the component placement location 61.
  • the control unit 90 performs the movement control correction S104 using the image processing result of the image processing unit 930.
  • FIG. 6 shows an example of the captured image 300 captured by the camera module 30 at the time of FIG.
  • a captured image 300 includes a point c where the optical axis C of the camera module 30 intersects the printed circuit board 50, a point n where the central axis N of the suction nozzle 21 intersects the printed circuit board 50, and a component mounting location 61. Is imaged.
  • the point n is a point on the printed circuit board 50 arranged on the drive shaft of the suction nozzle 21 and is a point existing below the suction nozzle 21.
  • the visual field region F may be an imaging region that includes at least a part including the point n of the printed circuit board 50 placed on the placement table 51.
  • the visual field area F may be an area that focuses on both the mounting position of the component and a part of the mounted member existing on the drive shaft of the holding portion.
  • the photographed image 300 also captures a point (referred to as a point t) corresponding to the first movement target on the printed circuit board 50.
  • a pixel coordinate system is defined in units of the size of the pixel 301 of the captured image.
  • the pixel coordinate of the point n is (PX N , PY N )
  • the pixel coordinate of the center point r of the component mounting location 61 is (PX r , PY r )
  • the pixel coordinate of the point t is (PX t , PY t ).
  • a position vector in the pixel coordinate system from the point n to the point t (hereinafter, target position vector in the image) is (px, py)
  • a position vector in the pixel coordinate system from the point t to the point r hereinafter, in the image).
  • the error vector is ( ⁇ px, ⁇ py).
  • the captured image 300 of the camera module 30 is input to the image processing unit 930, and predetermined image processing is performed.
  • the contents of image processing in the image processing unit 930 using the captured image 300 will be described with reference to FIG.
  • FIG. 7 is a functional block diagram illustrating an example of image processing performed by the image processing unit 930 according to the present embodiment.
  • Image data is input to the image processing unit 930 from the camera module 30, and a first target position and suction nozzle coordinates are input from the control unit 90. Further, the image processing unit 930 outputs the presence / absence of component mounting location detection and the target position correction parameter to the control unit 90.
  • the image processing unit 930 includes an image data input unit 931, a component mounting location detection unit 932, a component mounting location data storage unit 933, a pixel size storage unit 934, a pixel coordinate conversion unit 935, and a pixel coordinate reverse conversion unit 936. And a functional block called a mechanism parameter storage unit 937.
  • the captured image 300 captured by the camera module 30 is input to the image data input unit 931 as image data based on a predetermined format.
  • the image data input unit 931 converts the image data into pixel data that can be processed inside the image processing unit 930.
  • the component mounting location detection unit 932 detects whether or not the component mounting location 61 where the electronic component 60 is to be placed is captured in the input captured image 300 using the pixel data. At the same time, the component mounting location detector 932 calculates the pixel coordinates of the component mounting location 61 in the image, that is, the pixel coordinates (PX r , PY r ) of the point r in the captured image 300 of FIG.
  • shape data of the component mounting location 61 is stored in advance in the component mounting location data storage unit 933.
  • a determination method (template matching) based on the degree of correlation between the pixel data of the captured image 300 and the shape data is used. Further, in order to calculate the position of the component mounting location 61, a process for obtaining a location with the highest degree of correlation is used for a portion with a high degree of correlation of the template matching.
  • the coordinate value (X t , Y t ) and the suction nozzle coordinates (X N , Y N ) of the first movement target are input to the image processing unit 930 from the control unit 90.
  • the pixel coordinate conversion unit 935 converts the relative target position vector into a pixel coordinate system using a predetermined coefficient stored in the pixel size storage unit 934. That is, the output of the pixel coordinate conversion unit 935 is the in-image target position vector (px, py) in FIG.
  • the coefficient stored in the pixel size storage unit 934 is a conversion ratio between the unit of the pixel coordinate system of the captured image 300 and the unit of the coordinate system in the apparatus. For example, when the size of one pixel in the captured image 300 corresponds to 10 ⁇ m in the in-device coordinate system, the size is 10.
  • the coefficient can be obtained from design values of the mounting head 10 such as the size of the image sensor of the camera module 30, the focal length of the lens 31 attached to the camera module 30, and the relative distance between the printed circuit board 50 and the lens 31. .
  • the calculation process may be performed in comparison with the value of the position encoder built in each axis drive motor.
  • the coordinate values (PX N , PY N ) stored in the mechanism parameter storage unit 937 are the point n where the central axis N of the suction nozzle 21 in FIG. This may be determined from the design value of the mounting head 10 in the same manner as the coefficient of the pixel size storage unit 934.
  • the component suction nozzle 21 is actually set to the same height as the printed circuit board surface. Then, the coordinates of the tip portion may be recorded.
  • the difference is calculated, and the in-image error vector ( ⁇ px, ⁇ py) is calculated.
  • the pixel coordinate reverse conversion unit 936 converts the pixel coordinate system to the in-device coordinate system, and then outputs the target position correction parameters ( ⁇ x, ⁇ y).
  • FIG. 8 is a flowchart illustrating an example of the movement control correction S104 using the target position correction parameter output from the image processing unit 930 by the control unit 90.
  • the control unit 90 obtains the coordinate values (X t , Y t ) of the first movement target and the suction nozzle coordinates (X N , Y N ) as the image processing unit 930. (S201).
  • the presence / absence of component mounting location detection and the target position correction parameters ( ⁇ x, ⁇ y) are acquired from the image processing unit 930 (S202).
  • the movement control correction is terminated (corresponding to the state of FIG. 5A).
  • the target is corrected before the mounting head 10 reaches the first movement target based on the target position correction parameters ( ⁇ x, ⁇ y). More specifically, the positioning error is removed by subtracting the target position correction parameters ( ⁇ x, ⁇ y) from the coordinate values (X t , Y t ) of the first movement target.
  • the true position Y r of the first target position Y t and the component mounting positions 61 matches.
  • control unit 90 drives the Y-axis motor so that the suction nozzle 21 moves toward the corrected Y coordinate Y t (that is, equal to Y r ) of the first movement target.
  • a movement command may be given to the unit 912.
  • control unit 90 corrects the first movement target by the movement control correction S104, and then the center axis N of the suction nozzle 21 is mounted from the current position of the suction nozzle 21 and the corrected first movement target.
  • the travel time until arrival at the location 61 can be calculated.
  • the suction nozzle 21 starts to descend (corresponding to FIG. 5C), and the mounting head 10 arrives at the target position.
  • the component 60 can be mounted and arranged (corresponding to FIG. 5D).
  • FIG. 9 is a graph showing temporal changes in the value of the movement command given by the control unit 90 in step S105 and the actual position of the tip of the suction nozzle 21.
  • the vertical axis represents the position coordinates of the Y-axis direction in FIG. 5
  • Y r is the center coordinates of the component mounting positions 61
  • Y t is the moving start point you first target.
  • the horizontal axis indicates the passage of time
  • (a) to (d) indicate the time points in FIGS. 5 (a) to (d).
  • the movement command value given in step S105 in FIG. 9 indicates the ideal movement trajectory of the suction nozzle 21 tip.
  • the actual trajectory of the tip of the suction nozzle 21 generally moves with a time delay as shown in the figure with respect to the ideal trajectory. Further, the actual trajectory of the tip of the suction nozzle 21 does not have the same shape as the ideal trajectory, and converges to a predetermined position while repeating overshooting as shown in the figure.
  • Positioning time T is a time until the trajectory overshoot falls within a predetermined distance range from the target position. The operation until the tip of the suction nozzle 21 moves to a predetermined position will be simply expressed as resting at the target position for the sake of simplicity.
  • the width of the visual field area of the camera module in FIG. 5 is defined as F
  • the movement command value is a trajectory with the position Y t as the first movement target, and the suction nozzle 21 also moves following the movement command value.
  • the component mounting part 61 is photographed by the camera module 30 (corresponding to time (b)). Then, in accordance with movement control correction S104 described above, the first moving target is corrected from Y t to Y r, movement command value, that is the ideal trajectory is updated to track towards the position Y r.
  • the suction nozzle 21, before arriving at the target position Y 1, can be removed positioning errors.
  • the component placement by the suction nozzle 21 enables the suction nozzle 21 to be lowered from the timing before the mounting head 10 stops, so immediately after the mounting head 10 stops, that is, immediately after the positioning time T elapses. (Equivalent to times (c) to (d)).
  • FIG. 10 is a graph suction nozzle 21 is shown from the arrival at the target position Y 1, the time change of the actual position of the suction nozzle 21 tip when performing position correction.
  • the suction nozzle 21 is the time to arrive at the target position Y 1 to rest as provisional positioning time T 1, the time to move from the position Y 1 to position Y r stationary as a correction time T 2 . That is, in FIG. 10, the positioning time T is the sum of T 1 and T 2 .
  • this embodiment can suction nozzle 21 is compared with the case of performing position correction after arrival at the target position Y 1, to shorten the positioning time T is there. Thereby, it is possible to shorten the time until one component is arranged.
  • the correction parameter corresponds to an angle instead of a vector. Correction can be made with the same configuration by calculating a correction parameter (rotational deviation angle) by predetermined rotation angle recognition image processing and controlling the ⁇ -axis motor.
  • the camera module 30 is attached to the mounting head 10. This has the following effects as compared with a method of fixing the fixed camera module 330 with a camera arm 331 at a predetermined position of the base frame 13 as shown in FIG. 11, for example.
  • the assembly error includes distortion and vibration of each component of the component mounting apparatus such as the camera arm 331, the base frame 13, the X-axis beam mechanism 11, and the Y-axis beam mechanism 12.
  • the assembly error included in the distance L can be minimized, and it is advantageous to improve the accuracy of the position correction parameter. .
  • the central axis of the suction nozzle 21 is set in advance, and the point n on the drive axis of the suction nozzle 21 is obtained and the coordinate value is set. If the value is set, the setting of the central axis itself may be displaced due to the assembly error and the distortion and vibration of the components as described above, which may cause an error in the mounting position.
  • the visual field region F is a region that can include the tip portion of the suction nozzle 21. Therefore, if the above-mentioned suction nozzle coordinates are calculated from the image of the tip of the suction nozzle that is actually reflected in the image, the error due to the fluctuation of the central axis that changes from moment to moment is absorbed, and the mounting position is more accurately detected. Can be obtained.
  • the mounting position of the camera module 30 in the mounting head 10 will be described in an embodiment other than the configuration shown in FIG.
  • the camera module 30 is configured to be attached to the upper side of the mounting head 30.
  • the configuration shown in FIG. 12 further includes a prism 32 and a rod lens 33 provided in parallel with the suction nozzle 21 so as to penetrate the suction nozzle module 20 in comparison with FIG.
  • suction nozzle module 20 and the camera module 30 are attached on a one-to-one basis, but the present invention is not limited to this.
  • FIG. 14 shows an example of the configuration of the mounting head 10 in which one camera module 30 is mounted on the two suction nozzle modules 20 a and 20 b of the mounting head 10.
  • An example of a captured image 300 of the camera module 30 having the configuration shown in FIG. 14 is shown in FIG.
  • na the point where the central axis of the suction nozzle 21a intersects the surface of the printed circuit board 50 is denoted by na
  • nb the point where the central axis of the suction nozzle 21b intersects the surface of the printed circuit board 50
  • the other points are the same as in FIG.
  • a position vector (hereinafter referred to as an in-image target position vector) in the pixel coordinate system from the point na to the point t is (pxa, pya)
  • pxb pyb
  • the position correction parameter is calculated by using (pxa, pyb) when the nozzle that sucks the electronic component 60 to be mounted is the suction nozzle 21a, and (pxb, pxb) when the nozzle is the suction nozzle 21b. To do.
  • the coordinates of the point na and the point nb in the photographed image are stored in advance in the mechanism parameter storage unit 937 in the image processing 930 and switched according to the suction nozzle 21 that sucks the electronic component 60. .
  • the camera module 30 is set to 1 for a plurality of suction nozzles. It may be configured to be mounted on a stand.
  • the image processing detection unit in FIG. 7 outputs a position correction parameter from the image data, the current first movement target coordinate, and the suction nozzle coordinates calculated from the position encoder 9111 and the position encoder 9121. However, if an error is included in the values of the position encoder 9111 and the position encoder 9121, an error also remains in one correction parameter.
  • FIG. 16 is a graph showing temporal changes in the actual position of the tip of the suction nozzle 21 when the movement control correction S104 is performed a plurality of times until the suction nozzle 21 stops at the target component mounting location 61.
  • S0 to S9 indicate shooting timings by the camera module 30.
  • the image control unit 930 can appropriately specify the timing of S0 to S9 within a range not exceeding the shooting interval of the camera module 30 by giving a shooting trigger to the camera module 30.
  • the value of the position encoder 9121 includes a predetermined error.
  • the movement control correction S104 is performed at the timing (S1) when the first target component mounting location 61 is photographed, the first movement target after correction also has a positioning error due to the error of the encoder 9121. Remains.
  • the control unit 90 corrects the positioning error in the movement control correction S104 according to the flowchart shown in FIG.
  • FIG. 17 is a flowchart showing an example of the movement control correction S104 using the target position correction parameter output from the image processing unit 930 by the control unit 90, and is a diagram compared with FIG.
  • step S211 for correcting the encoder value is added in parallel with step S203 for correcting the movement target. That is, the encoder value is corrected using the target position correction parameter output from the image processing unit 930.
  • the moving target is corrected at the first shooting timing (S1)
  • the encoder value is corrected at the next timing (S2)
  • the respective errors are set to predetermined values by switching the correction target in this order. It can be converged below the value.
  • an estimator that estimates the true component mounting location 61 and the true encoder value using the target position correction parameter output from the image processing unit 930 and the current encoder value is used.
  • the movement target and the encoder value can be corrected simultaneously.
  • a known estimator such as a hidden Markov model may be used.
  • the position encoder 9121 can stand still at the target position without positioning error.
  • the camera module 30 and the image processing unit 930 require high-speed operation, but perform highly accurate positioning. Is possible.
  • SYMBOLS 100 Component mounting apparatus 10 Mounting head 11 X beam mechanism 12 Y beam mechanism 13 Base frame 20 Suction nozzle module 21 Suction nozzle 22 Z axis motor 23 ⁇ axis motor 24 Vacuum valve 25 Frame 30 Camera module 31 Lens 32 Prism 33 Rod lens 40 Electron Component feeder 41 Component delivery unit 50 Printed circuit board 51 Mounting table 60 Electronic component 61 Component mounting location 90 Control unit 911 X-axis motor drive unit 912 Y-axis motor drive units 9111 and 9121 Position encoder 922 Z-axis motor drive unit 923 ⁇ -axis motor drive 924 Vacuum valve drive unit 930 Image processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

タクトタイムを増大することなく、実装ヘッドを目標箇所に正確に移動させることで、実装位置に正確かつ高速に配置する技術を提供する。部品を実装位置に移動させる実装ヘッドと、前記実装ヘッドの駆動を制御する制御手段と、前記実装ヘッドに設置された撮像部と、を備え、前記実装ヘッドが前記実装位置に到着する前に、前記撮像部は前記実装位置を含む画像を撮影し、前記制御手段は前記画像に基づいて、前記実装ヘッドの実装位置を変更させることを特徴とする部品実装装置である。

Description

部品実装装置、実装ヘッド、および制御装置
本発明は、撮像装置を用いて位置決めを行う部品実装装置、実装ヘッド、及びその制御システムに関する。
 電子機器に使用されるプリント基板には、抵抗やICチップなど多数の電子部品が実装されている。これらの電子部品は、部品実装装置によって、所定の実装箇所に自動的に実装される。
 部品実装装置の一つの構成は、ビーム機構により水平面内の任意の箇所に移動可能な実装ヘッドと、実装ヘッドに具備された部品を吸着するノズル(吸着ノズル)とを備える。電子部品フィーダから供給される部品を吸着ノズルにて吸着し、その後実装ヘッドを、目標実装箇所に精度よく移動させ、吸着ノズルを基板に向けて降下させた後に、部品吸着を解除することで、部品をプリント基板上に実装する。
 近年、電子部品の微細化が急速に進んでおり、部品の実装する位置精度の向上が求められている。電子部品を所定箇所に精度良く実装するためには、実装ヘッドを目標位置に精度よく移動させることが必要である。しかしながら、部品実装装置には、下記のような位置ずれの原因が存在する。
 部品の吸着位置がノズル中心からずれていた場合(吸着ずれ)、実装ヘッドを目標箇所に正確に移動させても、この吸着ずれのために部品の実装位置にずれが生じる。
 また、プリント基板の製造工程のばらつき、変形などにより、部品実装個所(ランド)の位置はプリント基板ごとに異なる。即ち、基板の設計値に基づいて実装ヘッドを所定の部品実装位置に移動した場合、前記ばらつき、変形などにより、位置ずれが生じる。
 さらに、装置自体の歪み、熱膨張などが発生している場合、装置内部の実装ヘッドの位置を取得するエンコーダの値にずれが生じる。従って、エンコーダから読み取った値に基づいて位置決めを行っても、実装ヘッド位置には位置ずれが生じる。
 実装する電子部品の微細化に伴い、このような複数の位置ずれ要因の割合が相対的に増大し、部品実装位置精度の低下を生じている。
 従来の部品実装装置では、フィーダから部品を吸着した後、所定の箇所にある部品認識カメラの上を通過させ、部品認識カメラによって部品とノズル中心のずれを検出し、そのずれ量を用いて実装位置に補正を加える方法が用いられている(例えば特許文献1)。
 一方、特許文献2には、吸着ノズルに吸着された部品と実装位置とを斜め上方から撮影する撮像装置を備え、撮像装置からの画像信号に基づいて、実装位置に対する吸着部品の相対的な位置ずれを算出する演算手段と、算出された位置ずれに応じて吸着ノズルを水平面内で移動させ、部品の位置を補正する技術が記載されている。
 また、特許文献3では、実装ヘッドと部品吸着ノズルと、これらを駆動制御するコンピュータと、実装ヘッド直下を斜めから撮影するカメラとを有し、光学経路に設置された移動可能な反射ミラーを用いて、1つのカメラで撮影した部品と部品を搭載する基板の目標位置の画像から、吸着された部品の中心と基板の目標位置の中心とのずれを調整するシステムが開示されている。
特開2006-287199号 特開平7-115296 US2001/0055069A1
 文献1記載の技術は、部品を吸着させた後に、吸着ずれを認識する技術である。即ち、実装ヘッドの停止位置自体が目標実装箇所して対してずれている場合の補正を行うことはできない。
 一方、特許文献2および3記載の技術は、カメラの画像を用いることで、実装位置と、吸着部品の相対的な位置ずれを補正する。即ち、吸着ずれが生じている場合や、実装ヘッドの静止位置に位置ずれが生じている場合でも、部品と実装位置のずれ補正を行うことが可能である。
 しかしながら、特許文献2および3記載の技術は、カメラの撮像範囲は常にノズル(ヘッド)の直下に設定され、実装位置と吸着部品の両方を撮影する。そのため、ノズルは必ず実装位置の直上に位置しなければならない。即ち、ヘッドが実装位置の直上に静止してからでなければ、位置ずれを補正することができない。これは、部品を吸着してから、部品を実装するまでの時間(タクトタイム)の増大につながり、生産効率が低下することが課題となる。
 即ち、本発明が解決しようとする課題は、タクトタイムを増大することなく、実装ヘッドを目標箇所に正確に移動させることで、実装位置に正確かつ高速に配置する技術を提供することにある。
 本願において開示される発明のうち代表的なものを挙げれば、部品を実装位置に移動させる実装ヘッドと、前記実装ヘッドの移動を制御する制御手段と、前記実装ヘッドに設置された撮像部と、を備え、前記撮像部は、前記実装位置を含む画像を撮影し、前記制御手段は前記画像に基づいて、前記実装ヘッドが前記実装位置に到達する前に、前記実装ヘッドの実装位置を変更させることを特徴とする部品実装装置である。
本発明によれば、実装ヘッドを目標箇所に正確かつ高速に移動させ、部品を配置することが可能となる。
部品実装装置の、概略構成を示した斜視図である。 実装ヘッドの概略構成の一例を示した側面図である。 部品実装装置の制御システムの構成の一例を示すブロック図である。 電子部品をプリント基板上の所定の部品配置個所に配置する場合の、位置決め制御方法の一例を示したフローチャートである。 電子部品をプリント基板上の部品配置個所に配置する場合の、動作の様子を模式的に示した図面である。 カメラモジュールによって撮像される撮影画像の一例を示した図面である。 画像処理部で行われる画像処理の一例を示した機能ブロック図である。 移動制御補正の一例を示したフローチャートである。 本発明にかかる、吸着ノズル先端部の実際の位置の時間変化を示したグラフである。 吸着ノズルが目標位置に到着してから位置補正を行う場合の、吸着ノズル先端部の実位置の時間変化を示したグラフである。 ベースフレームの所定の位置に固定カメラモジュールを搭載する構成を示した斜視図である。 実装ヘッドの概略構成の別なる一例を示した側面図である。 図12の構成による動作の様子を模式的に示した図面である。 実装ヘッドの概略構成の別なる一例を示した側面図である。 図14の構成におけるカメラモジュールの撮影画像の一例を示した図面である。 複数回の移動制御補正を実施した場合の、吸着ノズルの先端部の実際の位置の時間変化を示したグラフである。 移動制御補正の別なる一例を示したフローチャートである。
 本発明を実施するための形態(以下、実施形態という)について、適宜図面を参照しながら詳細に説明する。なお、全ての図面において、実施形態が異なる場合であっても、同一または相当する部材については同一の符号を付し、共通する説明は繰り返さない。
 図1は、本実施形態にかかる部品実装装置100の、概略構成を示した斜視図である。
 以下、図中矢印により示されるように、水平面内で互いに直交する二方向を、それぞれX軸方向とY軸方向とし、これらに直交する鉛直方向をZ軸方向とする。
 部品実装装置100は、実装ヘッド10と、Xビーム機構11と、Yビーム機構12aおよび12bと、搭載する電子部品を供給する複数(この例では6基)の電子部品フィーダ40と、制御部90と、これらの構成要素を搭載支持するベースフレーム13(外形のみ図示)とを備えている。実装ヘッド10は、複数(この例では4基)の吸着ノズルモジュール20と、吸着ノズルモジュール20各々に搭載されたカメラモジュール30とを備えている。
 実装ヘッド10は、その一端(紙面左側)がXビーム機構11に支持され、内蔵する駆動部(図示せず:図3のXビーム駆動部911に相当)により、ベースフレーム13内の任意のX座標に平行移動できる構成となっている。
 Xビーム機構11は、その両端をYビーム機構12aおよび12bに支持され、内蔵する駆動部(図示せず:図3のYビーム駆動部912に相当)により、ベースフレーム13内の任意のY座標に平行移動できる構成となっている。
 即ち、実装ヘッド10は、前記駆動部により、図中XY平面においてベースフレーム13内の任意の座標に水平方向に移動できる構成となっている。
 電子部品フィーダ40は、ベースフレーム13の図中Y軸方向における一端に、図中X軸方向に複数並列搭載される形で搭載される。また、電子部品フィーダ40は、搭載電子部品の交換など必要に応じて脱着・分離することができる。
 電子部品フィーダ40は、図中装置内部側に部品受け渡し部41を備える。電子部品フィーダ40は、内部に電子部品が均一間隔で封入された部品テープリール(図示されない)を保持している。電子部品フィーダ40は、前記部品テープリールを所定の分量ずつ送りだすことで、受け渡し部41に搭載する電子部品を露出させる構成となっている。
 制御部90は、有線ないし無線により前記各構成部品と接続され、各構成部品に動作指令を与える。また制御部90は、各構成部品の現在状態を取得できる構成となっている。
 部品実装装置100内部には、所定の搬送機構(図示されない)が具備され、部品実装装置100内部へプリント基板50(被実装部材)を搬送できる構成となっている。搬送されたプリント基板50は、ベースフレーム13内部の載置台51に載置され、保持、固定される。
 図2は、本実施形態にかかる実装ヘッド10の概略構成を示した側面図であり、一つの部品吸着ノズルモジュール20周辺を図1X軸方向に沿って見た様子を図示したものである。
 図2において、Y軸およびZ軸の示す方向は、図1におけるY軸およびZ軸の示す方向と一致するものとする。
 本図面において、実装ヘッド10は、部品吸着ノズルモジュール20と、カメラモジュール30とを備えている。
 吸着ノズルモジュール20は、吸着ノズル21と、Z軸モータ22と、θ軸モータ23と、真空バルブ24と、これらの構成要素を支持するフレーム25とを備えている。
吸着ノズル21は、内部圧力を変動させることで、Z軸方向下端(紙面下側)に電子部品60を真空吸着可能な構成となっている。
 Z軸モータ22は、吸着ノズルモジュール21内部に配置され、前記吸着ノズル21(部品保持部)を、図中Z軸方向にそって上下に所定の距離だけ平行移動させる機能を有する。θ軸モータ23は、同じく吸着ノズルモジュール23の内部に配置され、ノズル軸(図中の破線N)を軸として、前記吸着ノズル21を所定の角度だけ回転移動させる機能を有する。真空バルブ24は、吸着ノズルモジュール23の内部の真空ポンプ(図示されない)と前記吸着ノズル21の内部とを結ぶ空気流路上に配置され、真空バルブ24を開閉することで、前記吸着ノズル21の内部圧力を変動させる機能を有する。
 カメラモジュール30は、その撮影方向(以下、光軸:図中の破線C)を、図中Z軸下方向に向けて、支持材32により、吸着ノズルモジュール20のフレーム25に固定される。言い換えれば、カメラモジュール30は、実装ヘッド10の進行方向に固定されている。ここで、光軸Cとノズル軸N間の距離をLとする。
 また、カメラモジュール30は、レンズ31を有している。レンズ31は、その焦点が、装置内部に保持されるプリント基板50の基板面に合うように調整されている。また、レンズ31の視野角は、図中一点鎖線Φにて示される。即ち、カメラモジュール30は、プリント基板50の基板面で、視野角Φに含まれる領域の、合焦した撮像画像を取得することができる。以下、この領域をカメラモジュール30の視野領域と呼ぶ。
 図2に示されるように、カメラモジュール30の視野領域は、実装ヘッド10の直下だけではなく、実装ヘッド10の進行方向(この例では、紙面右手方向)を含む。
 また、カメラモジュール30は、所定の時間間隔で、前記撮像画像の取得を行う。前記時間間隔は、撮影トリガにより、外部から制御可能な機能を有する。
 以上、図2において、一つの吸着ノズルモジュール20と一つのカメラモジュール30との構成について説明したが、図1に示すように実装ヘッド10に具備される他の吸着ノズルモジュール20およびカメラモジュール30も同一の構成を持つことは言うまでもない。
 また、本実施例においては、実装ヘッド10および部品吸着ノズル21の進行方向・駆動方向をX,Y,Z軸を用いて説明したが、これだけに限るものではなく、実装ヘッド10の進行方向と、部品吸着ノズル21の駆動方向が異なるものであれば、実施可能である。
さらに、吸着ノズル21も、本実施例のように吸着式のものでなくでも、部品を保持及び実装可能な機構を有する保持部であればよい。
 図3は、本実施形態にかかる部品実装装置の制御装置の構成の一例を示すブロック図である。なお、本実施例では部品実装に特化して説明をするが、後述する実装ヘッド(保持部)を、位置決め部として用いるなど、画像から位置決めを制御する制御装置であれば、これに限るものではない。
 制御部90は、CPU901と、ROM(Read Only Memory)902と、RAM(Random Access Memory)903とを内蔵し、ROM902またはRAM903内に格納されたプログラムに基づき、実装装置全体の制御を行う機能を有する。
 また、制御部90は、位置エンコーダ9111を内蔵するX軸モータ駆動部911に、移動指令を与えるとともに、位置エンコーダ9111によって取得された実装ヘッド10の現在位置を取得する。同様に、制御部90は、位置エンコーダ9121を内蔵するY軸モータ駆動部912に、移動指令を与えるとともに、位置エンコーダ9121によって取得されたXビーム機構11の現在位置を取得する。
 さらに、制御部90は、吸着ノズル21の上下動作を制御するために、Z軸モータ駆動部922に昇降指令を与えるとともに、Z軸モータ駆動部922に内蔵するエンコーダ(図示されない)から現在のノズル位置を取得する。同様に、制御部90は、吸着ノズル21の回転動作を制御するために、θ軸モータ駆動部923に回転指令を与えるとともに、θ軸モータ駆動部923に内蔵するエンコーダから所定の基準方向からの回転角度を取得する。そして、吸着ノズル21による電子部品60の吸着を制御するために、真空バルブ駆動部924に吸引指令を与えるとともに、現在の状態(吸引を行っているか、行っていないか)を取得する。
 画像処理部930は、カメラモジュール30により撮影された画像データを取得する。また、画像処理部930は、カメラモジュール30に対して画像取得タイミングを指示する撮像トリガを与える。更に、画像処理部930は、制御部90より、所定の位置情報を受け取り、前記位置情報に基づき所定の画像処理(詳細内容は後述する)を行う。そして、画像処理の結果を、制御部90に送信する。
 なお、この図面ではY軸モータ駆動部912は一つのみ示されているが、図1のように二つのYビーム機構を持ち、それぞれに駆動部が必要な場合は、Y軸モータ駆動部912を二つ設ける構成でもよい。
 この例において、制御部90は単一のCPU901を内蔵する構成を示しているが、これに限るものではない。例えば、複数のCPUを内蔵してもよい。これにより、各構成要素の動作制御に必要な演算処理を高速に実行することができる。
 図1ないし図3を参照して、本実施形態にかかる部品実装装置100の全体動作について説明する。部品実装装置100は、電子部品フィーダ40から供給される電子部品を、プリント基板50に、以下のようにして実装する。
 まず、制御部90は、X軸モータ駆動部911およびY軸モータ駆動部912を制御し、実装ヘッド10を電子部品フィーダ40の部品受け渡し部41の上方に移動させる。より詳細には、所定の吸着ノズル21のZ軸方向直下に、部品受け渡し部41により供給される電子部品が位置するように移動させる。次に、制御部90は、Z軸モータ駆動部922および真空バルブ駆動部924を制御し、前記吸着ノズル21を部品受け渡し部41まで降下させ、空気吸引を開始する。これにより、部品受け渡し部によって供給された電子部品60を、前記吸着ノズル21の先端部に吸着する。そして、制御部90は、Z軸モータ駆動部922を制御して、前記部品吸着ノズル21を短縮させ、吸着した電子部品60を保持する。
 次に、制御部90は、X軸モータ駆動部911およびY軸モータ駆動部912を制御し、実装ヘッド10を、プリント基板50上の所定の箇所(実装位置)に移動させる。より具体的には、前記部品吸着ノズル21のZ軸方向直下に、吸着した前記電子部品60の実装配置箇所が位置するように移動させる。最後に、制御部90は、Z軸モータ駆動部922および真空バルブ駆動部924を制御し、吸着ノズル21を降下させ、空気吸引を解除することで、吸着した前記電子部品をプリント基板50上に実装配置する。
 部品実装装置100は、プリント基板50上に複数の電子部品を実装するために、これらの動作を繰り返す。
 なお、上記の説明において、各手順は、必ずしも時系列に逐次実行される必要はない。例えば、実装ヘッド10の移動が完全に終了し静止してから、吸着ノズル21を降下させる必要はなく、静止間際のタイミングにて吸着ノズル21の降下の駆動を開始しても良い。この方法は、各手順のタイミングを時間精度良く制御する必要があるが、一つの部品実装に要する時間(タクトタイム)の削減が実現できる。
 また、上述の説明において、電子部品60を吸着してから、プリント基板50上に実装するまでの間に、電子部品60の方向を、所定の実装配置方向に回転させる制御および、電子部品60が吸着ノズル21の中心軸Nからずれている場合、そのずれ量を検出し、補正する制御が必要となる。これらは、公知の技術により実施可能であり、本書類においては、その詳細な説明は割愛する。
 次に、図4および図5を参照して、本実施形態にかかる部品実装装置において、吸着した前記電子部品60を、前記プリント基板50上の部品配置個所61に配置する場合の動作の詳細を説明する。尚、下記に説明する部品実装の動作は、被実装部材に部品を実装させる場合のみならず、受け渡し部41にて部品を吸着・保持する場合にも用いてよいことは言うまでもない。
 以下の説明において、説明を簡単にするため、吸着ノズル21における電子部品60の吸着ずれは無いものとし、また実装配置方向と、電子部品の方向は合致しているものとする。
 図4は、本実施形態において、電子部品60を前記プリント基板50上の所定の部品配置個所に配置する場合の、制御部90による、実装ヘッド10の位置決め制御方法の一例を示したフローチャートである。
 制御部90は、吸着ノズル21により電子部品フィーダ40から電子部品60を吸着保持した後、実装ヘッド10を、プリント基板50上に移動させる制御を開始する(S100)。
 まず、制御部90は、部品実装装置100およびプリント基板50の設計時に定められる座標系などから、ベースフレーム13内における部品配置個所61の位置座標を予め計算し、第一移動目標位置(実装位置)として設定する(S101)。そして、この第一移動目標位置に向けて、実装ヘッドの移動制御を開始する。
 移動開始後、実装位置到達前において、制御部90は、X軸駆動モータ911内蔵される位置エンコーダ9111およびY軸駆動モータ912に内蔵される位置エンコーダ9121を用いて、実装ヘッド10のX軸上の現在位置およびXビーム機構の現在位置を取得する。取得した現在位置に対して、実装ヘッド座標系と吸着ノズル21の中心軸Nの相対関係から定まるパラメータを加えて、吸着ノズル21の現在XY座標(以下、吸着ノズル座標と称する)を得る(S102)。
 次に、前記吸着ノズル座標が、第一移動目標に到着しているか判定する(S103)。なお、ここで到着判定は、単純な座標値の一致判定ではなく、吸着ノズル座標と第一移動目標との差が、所定の範囲内に一定時間収まることを指す。そして、吸着ノズル座標が、第一移動目標に到着していた場合は移動を終了する(S199)。到着していない場合は、移動制御を継続する。
 移動制御を継続する場合、制御部90は、画像処理部930の画像処理結果に基づき移動制御補正を行う(S104:詳細内容は後述する)。そして、制御部90は、X軸モータ駆動部911およびY軸モータ駆動部912に与える移動指令を生成する(S105)。ここで、移動指令とは吸着ノズルが第一移動目標に到着するまでの理想的な軌道を指す。
 最後に、制御部90は、移動指令を、X軸モータ駆動部911およびY軸モータ駆動部912に送信し(S106)、再びS102に戻る。X軸モータ駆動部911およびY軸モータ912は、受信した移動指令に基づき各軸モータの出力を所定の制御アルゴリズムに基づき決定し、実装ヘッド10を移動させる。制御アルゴリズムには、例えば、前記吸着ノズルの理想軌道と現在の吸着ノズル座標の差分値に比例してモータの出力を決める比例制御法などを用いれば良い。以降、移動終了(S109)に至るまで、S102~S106の処理を繰り返す。
 図5(a)~(d)は、本実施形態にかかる実装ヘッドが、吸着した前記電子部品60を、前記プリント基板50上の部品配置個所61に配置する場合の動作の様子を模式的に示した図面である。
 なお、図5において、Y軸およびZ軸の示す方向は、図1におけるY軸およびZ軸の示す方向と一致するものとする。また、図5において、実装ヘッド10の吸着ノズル21の中心軸をN、カメラモジュール30の光軸をC、視野領域をFとする。
 図5(a)は、実装ヘッド10が移動中の一状態を示したものである。図5(a)において、図4のステップS101で設定される第一移動目標のY座標をYとする。一方、部品配置個所61の装置内における真のY座標をYとする。ここで、部品実装装置100の機構上の歪み、プリント基板50の加工時の歪みや誤差などの誤差要因が存在すると、図5(a)に示すように、YとYとは一致しない。従って、前記第一移動目標まで吸着ノズル21の先端部を移動させた場合、電子部品60の実装配置後に位置は、部品配置個所61の真の位置から、(Y-Y)の位置決め誤差が残存する。この位置決め誤差を補正するための処理が、図4におけるステップS104である。
 図5(a)において、部品配置個所61は、カメラモジュール30の視野領域Fに含まれない。前記ステップS104では、前述のように画像処理部930の画像処理結果を用いるため、図5(a)における状態では、移動制御補正は行わない。従って、図5(a)における状態では、制御部90は、実装ヘッド10を、吸着ノズル21が第一移動目標のY座標Yに向けて移動するように、Y軸モータ駆動部912に移動指令を与える。
 これと並行して、画像処理部930は、吸着ノズル21が、部品配置個所61の直上に到着する以前から、カメラモジュール30に対して、撮像トリガを送信し、撮影を開始する。
 実装ヘッド10が移動すると、図5(b)に示すように、部品配置個所61(実装位置)が、カメラモジュール30の視野領域Fに含まれるようになる。ここで、制御部90は、像処理部930の画像処理結果を用いた移動制御補正S104を行う。
 図5(b)時点での、カメラモジュール30によって撮像される撮影画像300の一例を、図6に示す。図6において、撮影画像300には、カメラモジュール30の光軸Cがプリント基板50と交わる点cと、吸着ノズル21の中心軸Nがプリント基板50と交わる点nと、部品の実装個所61とが撮像されている。
 点nは、言い換えれば吸着ノズル21の駆動軸上に配置されたプリント基板50上の点であり、吸着ノズル21の下方に存在する点である。視野領域Fは、載置台51に載置されたこのプリント基板50の、点nを含む一部分を少なくとも含むような撮像領域であればよい。
 つまり、視野領域Fは、部品の実装位置と、保持部の駆動軸上に存在する被実装部材の一部の、両方と合焦する領域であればよい。
 部品実装個所61の中心点を点rとすると、点rおよび点tは、図5におけるYおよびYに相当する。また、撮影画像300には、プリント基板50上で、第一移動目標に相当する地点(点tとする)も撮像される。
 ここで、撮像画像300において、撮像画像のピクセル301の大きさを単位とした、ピクセル座標系を定義する。以降の説明において、点nのピクセル座標を(PX,PY)、部品実装個所61の中心点rのピクセル座標を(PX,PY)、点tのピクセル座標を(PX,PY)とする。また、点nから点tへのピクセル座標系における位置ベクトル(以下、画像内目標位置ベクトル)を(px,py)とし、点tから点rへのピクセル座標系における位置ベクトル(以下、画像内誤差ベクトル)を、(Δpx,Δpy)とする。
 カメラモジュール30の撮影画像300は、画像処理部930に入力され、所定の画像処理が実施される。撮影画像300を用いた、画像処理部930における画像処理の内容を、図7を参照して説明する。
 図7は、本実施例にかかる画像処理部930で行われる画像処理の一例を示した機能ブロック図である。
 画像処理部930には、カメラモジュール30から画像データが入力され、制御部90から第一目標位置および吸着ノズル座標が入力される。また、画像処理部930は、制御部90に、部品実装個所検出有無と目標位置補正パラメータを出力する。
画像処理部930は、画像データ入力部931と、部品実装個所検出部932と、部品実装個所データ格納部933と、ピクセルサイズ格納部934と、ピクセル座標変換部935と、ピクセル座標逆変換部936と、機構パラメータ格納部937という機能ブロックを備えている。
 まず、カメラモジュール30で撮影された撮影画像300は、所定のフォーマットに基づく画像データとして、画像データ入力部931に入力される。画像データ入力部931は、前記画像データを、画像処理部930の内部で処理可能なピクセルデータに変換する。
 次に、部品実装個所検出部932は、前記ピクセルデータを用いて、入力された撮影画像300に、電子部品60を配置すべき部品実装個所61が撮影されているか検出する。同時に、部品実装個所検出部932は、画像内での部品実装個所61のピクセル座標、即ち図6の撮影画像300における点rのピクセル座標(PX,PY)を算出する。
 部品実装個所検出部932において、撮影画像300内に部品実装個所61が撮影されているか判断するためには、例えば予め部品実装個所61の形状データを、部品実装個所データ格納部933に蓄えておき、撮影画像300のピクセルデータと前記形状データとの相関度に基づき判定する方法(テンプレートマッチング)などを用いる。また、部品実装個所61の位置を算出するためには、前記テンプレートマッチングの相関度が高い部分に対して、相関度の最も高い個所を求める処理などを用いる。
 一方、画像処理部930には、制御部90より、第一移動目標の座標値(X,Y)と、吸着ノズル座標(X,Y)が入力される。
 次に、前記第一移動目標の座標値(X,Y)と前記吸着ノズル座標(X,Y)の差分、即ち吸着ノズル座標からの第一移動目標の相対位置ベクトル(以下、相対目標位置ベクトル)が計算される。
 そして、ピクセル座標変換部935は、ピクセルサイズ格納部934が格納する所定の係数を用いて、前記相対目標位置ベクトルを、ピクセル座標系へと変換する。即ち、ピクセル座標変換部935の出力が、図6における画像内目標位置ベクトル(px,py)である。
 ピクセルサイズ格納部934に格納される係数は、撮影画像300のピクセル座標系の単位と、装置内の座標系における単位の変換比率である。例えば、撮影画像300における1ピクセルの大きさが、装置内座標系における10μmに相当する場合は10となる。前記係数は、カメラモジュール30の撮像素子の大きさと、カメラモジュール30に取り付けられたレンズ31の焦点距離と、プリント基板50とレンズ31の相対距離などの実装ヘッド10の設計値から求めることができる。また、部品実装装置100の初期化時に、各軸駆動モータが内蔵する位置エンコーダの値と照らし合わせて算出処理を行ってもよい。
 そして、画面内目標位置ベクトル(px,py)に、機構パラメータ格納部937が格納する座標値(PX,PY)を加えることで、画像内における第一移動目標の座標、即ち図6における点t(PX,PY)が計算される。
 機構パラメータ格納部937に格納される座標値(PX,PY)は、図6における吸着ノズル21の中心軸Nがプリント基板50と交わる点nである。これは、前記ピクセルサイズ格納部934の係数と同様に、実装ヘッド10の設計値から定めてもよいし、部品実装装置100の初期化時に、部品吸着ノズル21を実際にプリント基板面と同じ高さに降下させ、その先端部の座標を記録しておいてもよい。
 最後に、部品実装個所検出部932によって算出された画像内部品実装個所である点r(PX,PY)と、第一移動目標の座標値である点t(PX,PY)の差分を計算し、画像内誤差ベクトル(Δpx,Δpy)を算出する。そして、ピクセル座標逆変換部936で、ピクセル座標系から装置内座標系へと変換した後、目標位置補正パラメータ(Δx,Δy)として出力する。
 図8は、制御部90による、画像処理部930が出力する前記目標位置補正パラメータを用いた移動制御補正S104の一例を示したフローチャートである。
 まず、制御部90は、前記図7に示されたように、第一移動目標の座標値(X,Y)と、吸着ノズル座標(X,Y)とを、画像処理部930に送信する(S201)。次に、画像処理部930から、部品実装個所検出有無と目標位置補正パラメータ(Δx,Δy)とを取得する(S202)。そして、前記部品実装個所検出有無に基づき、撮像画像300内に目標とする部品実装個所61が存在したか判定する(S203)。ここで、撮像画像300内に部品実装個所61が存在しなかった場合は、移動制御補正を終了する(図5(a)の状態に相当)。
 一方、撮像画像300内に部品実装個所61が存在した場合は、目標位置補正パラメータ(Δx,Δy)に基づき、実装ヘッド10が第1移動目標に到達する前に、目標を補正する。より具体的には、第一移動目標の座標値(X,Y)に標位置補正パラメータ(Δx,Δy)を差し引くことで、前記位置決め誤差を除去する。これにより図5(b)における、第一目標位置Yと部品実装個所61の真の位置Yが一致する。
 従って、図5(b)以降は、制御部90は、吸着ノズル21が補正された第一移動目標のY座標Y(即ちYと等しい)に向けて移動するように、Y軸モータ駆動部912に移動指令を与えればよい。
 更に、制御部90は、移動制御補正S104により、第一移動目標を補正された後、吸着ノズル21の現在位置と、補正された第一移動目標から、吸着ノズル21の中心軸Nが部品実装箇所61に到着するまでの移動時間を算出することができる。
 これにより、吸着ノズル21が、補正された第一移動目標に到達する前に、で、吸着ノズル21を降下を開始させ(図5(c)に相当)、実装ヘッド10が目標位置に到着した直後に、部品60の実装配置を行うことが可能となる(図5(d)に相当)。
 図9は、制御部90がステップS105与える移動指令の値と、吸着ノズル21の先端部の実際の位置の、時間変化を示したグラフである。図9において、縦軸は図5におけるY軸方向の位置座標を示し、Yは部品実装個所61の中心座標、Yは移動開始時点お第一目標とする。また、横軸は時間経過を示し、(a)~(d)は、図5(a)~(d)の時点を示している。
 図9におけるステップS105の与える移動指令値は、吸着ノズル21先端部の理想的な移動軌道を示す。吸着ノズル21の先端部の実際の軌道は、一般に前記理想軌道に対して図中に示されるような時間的な遅れを持って移動する。また、吸着ノズル21の先端部の実際の軌道は、理想軌道と同じ形状とはならず、図に示すようにオーバーシュートを繰り返しながら、所定の位置に収束する。この軌道のオーバーシュートが、目標の位置から所定の距離範囲以下に収まるまでの時間を、位置決め時間Tとする。この、吸着ノズル21の先端部が所定の位置に移動するまでの動作を、以下では説明の簡単のため、単に目標位置に静止すると表現する。
 また図9のY軸において、図5におけるカメラモジュールの視野領域の幅をFとし、図2におけるカメラモジュール光軸Cとノズル軸Nとの間の距離をLとして、D=F/2+Lによって定められる距離をDとする。
 図9の時刻(a)においては、移動指令値は位置Yを第一移動目標とした軌道であり、吸着ノズル21も移動指令値に追随して移動している。
 実装ヘッド10が移動し、YからDだけ離れた地点に吸着ノズル21の先端部が到着すると、部品実装個所61がカメラモジュール30によって撮影される(時刻(b)に相当)。そして、前述の移動制御補正S104に従い、第一移動目標がYからYへと補正され、移動指令値すなわち理想軌道も位置Yへ向けた軌道へと更新される。
 そして、吸着ノズル21が、目標位置Yに到着する以前に、位置決め誤差を除去できることができる。これにより、吸着ノズル21による部品配置は、実装ヘッド10が静止する前のタイミングから吸着ノズル21を降下させることが可能となるため、実装ヘッド10が静止した直後、即ち、位置決め時間T経過直後に行うことができる(時刻(c)~(d)に相当)。
 一方、図10は、吸着ノズル21が目標位置Yに到着してから、位置補正を行う場合の吸着ノズル21先端部の実位置の時間変化を示したグラフである。図10において、吸着ノズル21が目標位置Yに到着し静止するまでの時間を仮位置決め時間Tとし、位置Yから位置Yまで移動し静止するまでの時間を補正時間Tとする。即ち、図10において、位置決め時間Tは、TとTとの総和となる。
 図9と図10を比較して明らかなように、本実施形態は、吸着ノズル21が目標位置Yに到着してから位置補正を行う場合に比べ、位置決め時間Tを短縮することが可能である。これにより、一つの部品配置までの時間を短縮することが可能である。
 なお、本実施形態について、これまでの説明おいてY軸方向の位置ずれ誤差の補正についてのみ説明しているが、X軸方向の位置ずれの補正も、同様にして補正できることは言うまでもない。また、部品実装箇所61が、プリント基板50の加工ずれにより、回転方向に異なる場合、補正パラメータがベクトルではなく、角度に相当する。所定の回転角認識画像処理によって、補正パラメータ(回転ずれ角度)を算出し、θ軸モータを制御することによって、同様の構成にて補正できる。
 また、本実施形態において、カメラモジュール30は、実装ヘッド10に取り付けられる。これは、例えば図11に示すようなベースフレーム13の所定の位置にカメラアーム331で固定カメラモジュール330を固定する方法と比較して、次のような効果を有する。
 まず、図11に示す構成は、固定カメラモジュール330の光軸Cと、吸着ノズル21の軸との間の距離Lに大きな組み付け誤差が存在する。前記組み付け誤差には、カメラアーム331、ベースフレーム13、X軸ビーム機構11およびY軸ビーム機構12など部品実装装置の各構成要素の歪みや振動などが含まれる。
 図7において画像処理部930が位置補正パラメータを算出するためには、機構パラメータ格納部937に格納される距離Lの情報を用いる。従って、距離Lに組み付け誤差が含まれると正しく位置補正パラメータを算出することはできない。
 一方、図2に示すように実装ヘッド10にカメラモジュール30を搭載すれば、前記距離Lに含まれる組み付け誤差を最小限に抑えることができ、位置補正パラメータの精度を向上させることが利点となる。
 実施例1では、吸着ノズル21の位置座標について、予め吸着ノズル21の中心軸を設定し、吸着ノズル21の駆動軸上の点nを求めて座標値を設定したが、このように予め中心軸を設定してしまうと、前述したような組み付け誤差、構成要素の歪みや振動により、そもそもの中心軸の設定自体が位置すれを生じてしまい、実装位置に誤差を生じさせる可能性がある。
 そこで本実施例では、より正確に吸着ノズル21の位置座標を求める実施例について説明する。
 図2に示すように、本装置構成による視野領域Fは、吸着ノズル21の先端部分も含み得る領域となっている。そこで、この実際に画像に写りこんでいる吸着ノズルの先端部分の画像から、前述した吸着ノズル座標を算出すれば、時々刻々と変化する中心軸のぶれによる誤差を吸収し、より正確に実装位置を求めることが可能となる。
 本実施では、実装ヘッド10におけるカメラモジュール30の取り付け位置について、図2に示す構成以外の実施例を示す。
 図12に示すように、本実施例ではカメラモジュール30を、実装ヘッド30の上側に取り付ける構成としている。また、図12に示す構成では、図2と対比して、プリズム32と、吸着ノズルモジュール20を貫通する形で吸着ノズル21と並行に具備されるロッドレンズ33とをさらに備える。
 本構成では、Y軸と並行なカメラモジュール30の光軸Cをプリズム32によってZ軸方向に折り返し、ロッドレンズ33で吸着ノズル21に導く。これにより吸着ノズル21付近から周囲を視野範囲に含むことが出来る。
 これにより、右手方向の視野を拡張することができる。
 図13(a)に示すように、吸着ノズル21により保持した電子部品60を実装箇所61に配置するときだけではなく、図13(b)に示すように、部品フィーダ40の部品受け渡し部41から供給される電子部品60を、吸着ノズル21先端部に吸着させるときにも、カメラモジュール30によって撮像された画像を用いた位置補正を行うことができる。
 また、図2において、吸着ノズルモジュール20と、カメラモジュール30は、1対1で取り付けられると記載したが、本発明はこれに限定されるものではない。
 図14に、実装ヘッド10の二つの吸着ノズルモジュール20aおよび20bに対して、1台のカメラモジュール30を搭載した実装ヘッド10の構成の一例を示す。また、図14の構成におけるカメラモジュール30の撮影画像300の一例を、図15に示す。
 図15において、吸着ノズル21aの中心軸がプリント基板50面と交わる点をna、吸着ノズル21bの中心軸がプリント基板50面と交わる点をnbとし、他の点は図6と同一である。また、点naから点tへのピクセル座標系における位置ベクトル(以下、画像内目標位置ベクトル)を(pxa,pya)、点nbから点tへのピクセル座標系における位置ベクトルを(pxb,pyb)とする。
 図15から、画像から位置補正パラメータ(Δpx,Δpy)を算出するためには、(pxa,pya)もしくは(pxb,pyb)のどちらかが指定されればよい。すなわち、実装配置しようとしている電子部品60を吸着しているノズルが吸着ノズル21aの場合は、(pxa,pyb)、吸着ノズル21bの場合は(pxb,pxb)を用いて、位置補正パラメータを算出する。
 これには、予め画像処理930内の機構パラメータ格納部937に、撮影画像内における点naおよび点nbの座標を蓄えておき、電子部品60を吸着している吸着ノズル21に応じて切り替えればよい。
 このように、画像処理930内の機構パラメータ格納部937に、カメラモジュール30の光軸Cと、吸着ノズル21の位置関係を格納しておけば、複数の吸着ノズルに対してカメラモジュール30を1台搭載する構成でも良い。
 移動制御補正S104では、位置決めにおける様々な位置ずれ要因を除去することができる。図7における画像処理検出部は、画像データと、現在の第一移動目標座標と、位置エンコーダ9111および位置エンコーダ9121から算出される吸着ノズル座標から、位置補正パラメータを出力する。しかしながら、位置エンコーダ9111および位置エンコーダ9121の値に誤差が含まれた場合、一補正パラメータにも誤差が残存する。
 そこで、本実施例では、位置エンコーダ9121の誤差を補正する方法を示す。
 図16は、吸着ノズル21が目標とする部品実装箇所61に静止するまで、複数回の移動制御補正S104を実施した場合の、吸着ノズル21の先端部の実際の位置の時間変化を示したグラフである。ここで、S0~S9は、カメラモジュール30による撮影タイミングを示したものである。この例に示すように、画像制御部930は、撮影トリガをカメラモジュール30に与えることで、カメラモジュール30が有する撮影間隔を超えない範囲で、S0~S9のタイミングを適宜指定することができる。
 図16において、位置エンコーダ9121の値には所定の誤差が含まれているものとする。この場合、最初の目標とする部品実装箇所61が撮影されるタイミング(S1)において、移動制御補正S104を行った場合、前記エンコーダ9121の誤差により、補正後の第一移動目標にも位置決め誤差が残存する。
 次に部品実装箇所61が撮影されるタイミング(S2)において、制御部90は、移動制御補正S104で、図17に示すフローチャートに従い、位置決め誤差の補正を行う。
 図17は、制御部90による、画像処理部930が出力する前記目標位置補正パラメータを用いた移動制御補正S104の一例を示したフローチャートであって、図8と対比される図である。
 図17を参照して、図8とは異なる点は、移動目標を補正するステップS203と並行して、エンコーダ値を補正するステップS211が加わった点である。すなわち、画像処理部930が出力する前記目標位置補正パラメータを用いて、エンコーダ値を補正する。
 たとえば、初回の撮影タイミング(S1)では移動目標を補正し、次のタイミング(S2)ではエンコーダ値を補正し、以下、この順序で補正する対象を切り替えてゆくことで、それぞれの誤差を所定の値以下に収束させることができる。
 また、別なる方法では、画像処理部930の出力する前記目標位置補正パラメータと、現在のエンコーダ値とを用いて、真の部品実装箇所61と、真のエンコーダ値とを推定する推定器を用いて、移動目標とエンコーダ値とを同時に補正することもできる。この推定器には、隠れマルコフモデルなど、公知の推定器を用いればよい。
 これらにより、吸着ノズル21が目標位置に到着する前から撮影を開始し、吸着ノズル21が静止するまで撮像される複数枚のカメラモジュール30による撮影画像を用いて、移動制御補正S104を繰り返すことにより、位置エンコーダ9121の値には所定の誤差が含まれている場合でも、目標位置に位置決め誤差なく静止することができる。
 本実施例は、吸着ノズル21が静止するまでに、複数枚の撮影画像を取得するため、カメラモジュール30および画像処理部930は、高速の動作が必要となるが、精度の高い位置決めを行うことが可能となる。
 以上、本発明の具体的実施形態を詳細に説明したが、これらは開示の発明の明確な理解のために提示された実施の例である。従って、特許請求の範囲から逸脱することなく、上述の実施形態には、各種態様、変形例、および組み合わせが形成できることは言うまでもない。
100 部品実装装置
10 実装ヘッド
11 Xビーム機構
12 Yビーム機構
13 ベースフレーム
20 吸着ノズルモジュール
21 吸着ノズル
22 Z軸モータ
23 θ軸モータ
24 真空バルブ
25 フレーム
30 カメラモジュール
31 レンズ
32 プリズム
33 ロッドレンズ
40 電子部品フィーダ
41 部品受け渡し部
50 プリント基板
51 載置台
60 電子部品
61 部品実装箇所
90 制御部
911 X軸モータ駆動部
912 Y軸モータ駆動部
9111、9121 位置エンコーダ
922 Z軸モータ駆動部
923 θ軸モータ駆動部
924 真空バルブ駆動部
930 画像処理部

Claims (15)

  1. 部品を実装位置に移動させる実装ヘッドと、
    前記実装ヘッドの駆動を制御する制御手段と、
    前記実装ヘッドに設置された撮像部と、
    を備え、
    前記実装ヘッドが前記実装位置に到着する前に、
    前記撮像部は前記実装位置を含む画像を撮影し、前記制御手段は前記画像に基づいて、前記実装ヘッドの実装位置を変更させることを特徴とする部品実装装置。
  2. 前記実装ヘッドは、
    前記部品の保持及び実装を実行する保持部をさらに有し、
    前記制御手段は、
    前記実装ヘッドが前記実装位置に到達する前に、前記保持部を前記実装ヘッドの進行方向と異なる方向に駆動させ、
    前期保持部は、
    前記変更された実装位置に前記部品を実装させることを特徴とする請求項1記載の部品実装装置。
  3. 前記制御手段は、前記画像に基づいて前記保持部の駆動開始のタイミングを制御することを特徴とする請求項2記載の部品実装装置。
  4. 前記部品が実装される被実装部材を載置させる載置台をさらに有し、
    前記撮像部は、
    前記載置台に載置された前記被実装部材のうち、少なくとも前記保持部の駆動軸上に配置される部分を含むように前記画像を撮影することを特徴とする請求項2または3記載の部品実装装置。
  5. 前記撮像部は、
    前記実装位置、及び前記駆動軸上に配置された前記実装部材の、両方と合焦する光学系部材を有することを特徴とする請求項4記載の部品実装装置。
  6. 前記撮像部は、前記保持部の少なくとも一部を撮像範囲に含むように前記画像を撮影することを特徴とする請求項2記載の部品実装装置。
  7. 前記制御手段は、
    前記画像に含まれる前記実装位置の画像から、第1座標を算出し、
    前記画像に含まれる保持部の駆動軸上に配置される実装部材の画像から、第2座標を算出し、
    前記第2座標から前記第1座標までの座標ベクトルと、予め定められた前記実装位置の座標を用いて、前記部品を実装する実装位置を変更することを特徴とする請求項2記載の部品実装装置。
  8. 被実装部材を載置させる載置面と、
    前記載置面に対して水平方向に進行可能な実装ヘッドと、
    前記実装ヘッドの進行を制御する制御部と、
    を備え、
    前記実装ヘッドは、
    前記実装ヘッドの進行方向に設置された撮像部と、
    前記実装ヘッドの進行方向と異なる方向に進行可能であり、部品を前記被実装部材に実装するノズル部と、
    を有し、
    前記制御部は、
    前記実装部材の実装位置へ向けて、前記実装ヘッドの進行を開始させ、
    前記実装ヘッドが前記実装位置へ到着する前に、前記撮像部によって撮影された前記実装位置を含む画像に基づいて前記実装位置の補正し、前記ノズル部の駆動期間を制御することを特徴とする部品実装装置。
  9. 前記撮像部は、
    前記載置台に載置された前記被実装部材のうち、前記保持部の下方に配置される部分を含むように前記画像を撮影することを特徴とする請求項8記載の部品実装装置。
  10. 実装位置への進行を制御する制御手段からの信号に基づいて、所定の実装位置へ進行し、部品を実装させる実装ヘッドであって、
    前記実装ヘッドが前記実装位置に到着する前に、
    前記制御手段は、撮像部によって撮像された前記実装位置を含む画像に基づいて前記実装位置を補正し、
    前記実装ヘッドは、前記制御手段から取得した前記補正された実装位置の情報に基づいて、前記部品を実装することを特徴とする実装ヘッド。
  11. 前記実装ヘッドは、
    前記部品の保持及び実装が可能な保持部と、前記保持部を前記実装ヘッドの進行方向と異なる方向に駆動させる駆動機構とをさらに有し、
    前記実装ヘッドが前記実装位置に到達する前に、
    前記補正された実装位置の情報に基づいて、前記保持部を前記駆動機構によって駆動させ、
    前期保持部は、
    前記補正された実装位置に前記部品を実装させることを特徴とする請求項10記載の実装ヘッド。
  12. 前記撮像部によって撮像された画像は、
    前記保持部の駆動軸上に配置された、前記部品を実装させる被実装部材の少なくとも一部を含む画像であることを特徴とする請求項11記載の実装ヘッド。
  13. 所定位置へ移動可能なヘッド部と、
    前記ヘッド部を駆動させる駆動機構と、
    前記駆動機構を制御する制御部と、
    撮像部によって撮像された画像に基づいて前記ヘッド部の位置を取得するエンコーダ部と、
    前記画像を処理する画像処理部と、
    を備え、
    前記画像処理部は、前記所定位置を含む画像から、前記所定位置の位置座標を算出し、
    前記エンコーダ部は、前記画像処理部から取得した位置座標に基づいて、予め定められた前記所定位置の位置座標を補正し、
    前記制御部は、前記ヘッド部が前記所定位置へ到着する前に、前記補正された位置座標の位置に、前記ヘッド部が移動するように前記駆動機構を制御することを特徴とする制御装置。
  14. 前記制御部は、
    前記ヘッド部に具備され、前記実装ヘッドの移動方向と異なる方向に移動可能な位置決め部の駆動を制御し、
    前記ヘッド部が前記所定位置に到達する前に前記位置決め部を駆動させ、前記変更された所定位置と前記位置決め部の位置を行うことを特徴とする請求項13記載の部品実装装置。
  15. 前記画像は、前記保持部の少なくとも一部を含むように撮影された画像であることを特徴とする請求項14記載の部品実装制御装置。
PCT/JP2013/061964 2013-04-24 2013-04-24 部品実装装置、実装ヘッド、および制御装置 WO2014174598A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061964 WO2014174598A1 (ja) 2013-04-24 2013-04-24 部品実装装置、実装ヘッド、および制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061964 WO2014174598A1 (ja) 2013-04-24 2013-04-24 部品実装装置、実装ヘッド、および制御装置

Publications (1)

Publication Number Publication Date
WO2014174598A1 true WO2014174598A1 (ja) 2014-10-30

Family

ID=51791208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061964 WO2014174598A1 (ja) 2013-04-24 2013-04-24 部品実装装置、実装ヘッド、および制御装置

Country Status (1)

Country Link
WO (1) WO2014174598A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133524A (ja) * 2017-02-17 2018-08-23 株式会社Fuji 作業機
WO2019171517A1 (ja) * 2018-03-07 2019-09-12 株式会社Fuji 保持部材制御装置
CN110800391A (zh) * 2017-07-17 2020-02-14 先进装配系统有限责任两合公司 在通过贴装头进行拾取之前对元件的测量
CN111246721A (zh) * 2018-11-28 2020-06-05 Juki株式会社 安装装置及安装方法
CN111954454A (zh) * 2019-05-17 2020-11-17 松下知识产权经营株式会社 部件安装装置
WO2021060065A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 実装システム、ヘッドユニット及び撮像方法
WO2021060064A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 実装システム、ヘッドユニット及び撮像方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234600A (ja) * 2002-02-08 2003-08-22 Matsushita Electric Ind Co Ltd 部品実装機の検査方法および装置
JP2004079925A (ja) * 2002-08-22 2004-03-11 Juki Corp マーク認識装置および方法
JP2009212251A (ja) * 2008-03-04 2009-09-17 Yamaha Motor Co Ltd 部品移載装置
JP2011151273A (ja) * 2010-01-22 2011-08-04 Panasonic Corp 部品実装機、部品検出装置、及び部品実装方法
JP2011216614A (ja) * 2010-03-31 2011-10-27 Panasonic Corp 部品実装装置および部品実装方法
JP2011216616A (ja) * 2010-03-31 2011-10-27 Panasonic Corp 部品実装装置および部品実装方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234600A (ja) * 2002-02-08 2003-08-22 Matsushita Electric Ind Co Ltd 部品実装機の検査方法および装置
JP2004079925A (ja) * 2002-08-22 2004-03-11 Juki Corp マーク認識装置および方法
JP2009212251A (ja) * 2008-03-04 2009-09-17 Yamaha Motor Co Ltd 部品移載装置
JP2011151273A (ja) * 2010-01-22 2011-08-04 Panasonic Corp 部品実装機、部品検出装置、及び部品実装方法
JP2011216614A (ja) * 2010-03-31 2011-10-27 Panasonic Corp 部品実装装置および部品実装方法
JP2011216616A (ja) * 2010-03-31 2011-10-27 Panasonic Corp 部品実装装置および部品実装方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133524A (ja) * 2017-02-17 2018-08-23 株式会社Fuji 作業機
CN110800391A (zh) * 2017-07-17 2020-02-14 先进装配系统有限责任两合公司 在通过贴装头进行拾取之前对元件的测量
CN110800391B (zh) * 2017-07-17 2020-12-29 先进装配系统有限责任两合公司 在通过贴装头进行拾取之前对元件的测量
JPWO2019171517A1 (ja) * 2018-03-07 2020-12-03 株式会社Fuji 保持部材制御装置
WO2019171517A1 (ja) * 2018-03-07 2019-09-12 株式会社Fuji 保持部材制御装置
CN111246721A (zh) * 2018-11-28 2020-06-05 Juki株式会社 安装装置及安装方法
CN111246721B (zh) * 2018-11-28 2023-03-07 Juki株式会社 安装装置及安装方法
JP2020188221A (ja) * 2019-05-17 2020-11-19 パナソニックIpマネジメント株式会社 部品実装装置
CN111954454A (zh) * 2019-05-17 2020-11-17 松下知识产权经营株式会社 部件安装装置
JP7300580B2 (ja) 2019-05-17 2023-06-30 パナソニックIpマネジメント株式会社 部品実装装置
WO2021060065A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 実装システム、ヘッドユニット及び撮像方法
WO2021060064A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 実装システム、ヘッドユニット及び撮像方法
CN114302785A (zh) * 2019-09-27 2022-04-08 松下知识产权经营株式会社 安装系统、头单元以及摄像方法
CN114303361A (zh) * 2019-09-27 2022-04-08 松下知识产权经营株式会社 安装系统、头部单元以及摄像方法
CN114303361B (zh) * 2019-09-27 2024-04-19 松下知识产权经营株式会社 安装系统、头部单元以及摄像方法

Similar Documents

Publication Publication Date Title
WO2014174598A1 (ja) 部品実装装置、実装ヘッド、および制御装置
US10621745B2 (en) Component mounting device and component mounting method
JP4587877B2 (ja) 部品実装装置
US10743447B2 (en) Component mounting machine
WO2012144282A1 (ja) 電気部品装着機および電気回路製造方法
JP2019102771A (ja) 電子部品実装装置及び電子部品実装方法
JP6190229B2 (ja) 部品実装装置
JP3744251B2 (ja) 電子部品実装方法
JP6889778B2 (ja) 部品実装装置
WO2017029701A1 (ja) 部品実装装置
US8701275B2 (en) Surface mounting apparatus
JP6271514B2 (ja) 生産設備
JP4648964B2 (ja) マーク認識システム、マーク認識方法および表面実装機
JP6849815B2 (ja) 部品実装装置、撮影方法、実装順序の決定方法
JP4701037B2 (ja) 電子部品の画像取得方法及び装置
JP2009212251A (ja) 部品移載装置
TW202111455A (zh) 將部件定位在板上期望位置的方法
JP2009016673A (ja) 部品の吸着位置補正方法および部品移載装置
JP6475264B2 (ja) 部品実装機
JP7245969B2 (ja) 実装ヘッド及び部品実装装置
JP6774532B2 (ja) 部品実装装置および部品実装方法
JP4704218B2 (ja) 部品認識方法、同装置および表面実装機
JP6990309B2 (ja) 表面実装機
JP6849547B2 (ja) 部品保持具の偏心補正方法
WO2014188564A1 (ja) 部品実装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP