WO2014162937A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2014162937A1
WO2014162937A1 PCT/JP2014/058420 JP2014058420W WO2014162937A1 WO 2014162937 A1 WO2014162937 A1 WO 2014162937A1 JP 2014058420 W JP2014058420 W JP 2014058420W WO 2014162937 A1 WO2014162937 A1 WO 2014162937A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
film
element isolation
forming
isolation insulating
Prior art date
Application number
PCT/JP2014/058420
Other languages
English (en)
French (fr)
Inventor
義徳 池淵
Original Assignee
ピーエスフォー ルクスコ エスエイアールエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピーエスフォー ルクスコ エスエイアールエル filed Critical ピーエスフォー ルクスコ エスエイアールエル
Priority to DE112014001786.8T priority Critical patent/DE112014001786T5/de
Priority to US14/781,149 priority patent/US10128250B2/en
Priority to KR1020157030454A priority patent/KR20150140299A/ko
Publication of WO2014162937A1 publication Critical patent/WO2014162937A1/ja
Priority to US16/158,123 priority patent/US10475797B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device and a manufacturing method thereof in which a word line embedded in a semiconductor substrate and an element isolation region extending in the word line direction are formed in self alignment. .
  • an element isolation region is provided on the surface of a silicon substrate by an STI (shallow trench isolation) method, whereby a plurality of active regions are partitioned in a matrix.
  • the element isolation region includes a first element isolation region that isolates each active region in the bit line direction and a second element isolation region that isolates each active region in the word line direction.
  • Patent Document 1 discloses an example of such an element isolation region and an active region.
  • the word line is constituted by a conductive film embedded in the semiconductor substrate, and this word line (embedded word line) and the first element isolation region (extending in the word line direction). Element isolation regions) are formed in self-alignment with each other.
  • the widths of the word line and the first element isolation region in the bit line direction are W1 and W3, respectively, following Patent Document 1.
  • the distance in the bit line direction between the first element isolation region and the word line closest to the first element isolation region is W2. Further, the distance between two word lines passing through the same active region is W4.
  • the main surface of a semiconductor substrate is covered with a plurality of linear mask patterns each extending in the word line direction.
  • This linear mask pattern has a width in the bit line direction of 2W2 + W3, and the distance between adjacent mask patterns is set to 2W1 + W4.
  • a first sidewall insulating film having a thickness W1 in the bit line direction is formed on the sidewall of the linear mask pattern, and then the linear mask pattern is removed.
  • the first sidewall insulating film thus formed becomes an insulating film pattern that covers only the region in which the word line is embedded.
  • a second sidewall insulating film having a thickness W2 in the bit line direction is formed on the side wall of the first sidewall insulating film, and then the first sidewall insulating film is removed.
  • the second sidewall insulating film thus formed becomes an insulating film pattern having an opening exposing a region where the element isolation region is embedded and a region where the word line is embedded. Therefore, by etching the main surface of the semiconductor substrate using the second sidewall insulating film as a mask, a trench for embedding the element isolation region and the word line can be formed. Then, the inner surface of the formed trench is covered with a thin insulating film, and the conductive film is embedded in the trench, whereby the word line and the first element isolation region are formed.
  • the positions of the word line and the first element isolation region in the bit line direction are both accurately defined according to the formation position of the linear mask pattern formed first.
  • this specification as in this example, when the relative positions of the two types of buried films are determined according to the formation position of the common pattern, these two types of buried films are formed in a self-aligned manner. It is said.
  • the first element isolation region is constituted by the conductive film.
  • the first element isolation region formed in this way is based on a so-called electric field shield system, and it is necessary to continuously apply a constant voltage in order to exhibit the element isolation function. Therefore, a control circuit for applying this voltage is required, resulting in a complicated circuit.
  • the method of manufacturing a semiconductor device includes a second element extending in the first direction and intersecting the first direction by embedding the first element isolation insulating film in the main surface of the semiconductor substrate.
  • a step of forming a plurality of temporary active regions repeatedly arranged in a direction, a step of forming a sacrificial film covering the main surface, the first element isolation insulating film, the sacrificial film, and the semiconductor substrate Etching to form a plurality of first trenches defining a plurality of first active regions obtained by dividing each of the plurality of temporary active regions in the first direction; and Embedding a second element isolation insulating film in the first trench; removing the sacrificial film after embedding the second element isolation insulating film in the plurality of first trenches; After removing the sacrificial film, the second element Forming a first sidewall insulating film covering a side surface of a part of the separation insulating film protruding from the surface of the main surface
  • the gate insulating film is formed of, further characterized in that it comprises a step of forming a first wiring by embedding the first conductive film at the bottom of each of the plurality of third trenches.
  • a semiconductor device includes a semiconductor substrate, a plurality of first element isolation insulating films each embedded in a main surface of the semiconductor substrate and extending in a first direction, and a main surface of the semiconductor substrate. And a plurality of first active regions extending in a second direction intersecting the first direction and arranged in a matrix with the plurality of first element isolation insulating films.
  • First and second word trenches arranged between two adjacent in one direction, and first and second buried under gate insulating films under the first and second word trenches, respectively.
  • Word line, the first word line and the first word line A first impurity diffusion layer provided between the first word line and a first impurity diffusion layer provided between one of the two second element isolation insulating films and the first word line.
  • the word trench is formed in a self-alignment with the plurality of second element isolation insulating films.
  • the element isolation region that is self-aligned with the first wiring is constituted by the insulating film (second element isolation insulating film), a voltage is applied to the element isolation region. There is no need. Therefore, the circuit can be simplified.
  • FIGS. 1A and 1B are cross-sectional views of the semiconductor device 1 corresponding to the lines AA and BB in FIG. 1A, respectively.
  • FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIGS. 3A and 3B are cross-sectional views of the semiconductor device 1 corresponding to the lines AA and BB in FIG. 3A, respectively.
  • FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIGS. 5A and 5B are cross-sectional views of the semiconductor device 1 corresponding to the AA line and the BB line in FIG. 5A, respectively.
  • FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIG. 7A and 7B are cross-sectional views of the semiconductor device 1 corresponding to the AA line and the BB line in FIG. 7A, respectively, and FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIGS. 9A and 9B are cross-sectional views of the semiconductor device 1 corresponding to the AA line and the BB line in FIG. 9A, respectively.
  • FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIGS. 11A and 11B are cross-sectional views of the semiconductor device 1 corresponding to the AA line and the BB line in FIG. 11A, respectively.
  • FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIGS. 13A and 13B are cross-sectional views of the semiconductor device 1 corresponding to the AA line and the BB line in FIG. 13A, respectively, and FIGS.
  • FIG. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIGS. 15A and 15B are cross-sectional views of the semiconductor device 1 corresponding to the lines AA and BB in FIG. 15A, respectively.
  • FIGS. 15C and 15D are views of C in FIG. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIGS. 17A and 17B are cross-sectional views of the semiconductor device 1 corresponding to the AA line and the BB line in FIG. 17A, respectively.
  • FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIGS. 19A and 19B are cross-sectional views of the semiconductor device 1 corresponding to the lines AA and BB in FIG. 19A, respectively.
  • FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIGS. 21A and 21B are cross-sectional views of the semiconductor device 1 corresponding to the AA line and the BB line in FIG. 21A, respectively.
  • FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIGS. 23A and 23B are cross-sectional views of the semiconductor device 1 corresponding to the AA line and the BB line in FIG. 23A, respectively, and FIGS.
  • FIG. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIGS. 25A and 25B are cross-sectional views of the semiconductor device 1 corresponding to the AA line and the BB line in FIG. 25A, respectively, and
  • FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIG. (A) and (b) are the top views in the manufacturing process of the semiconductor device 1 shown to FIG. 1 (a) (b), respectively.
  • FIGS. 4 is a cross-sectional view of the semiconductor device 1 corresponding to a ⁇ C line and a DD line.
  • FIGS. 1A and 1B and FIGS. 2A to 2D drawing of the structure above an interlayer insulating film 30 described later is omitted.
  • the semiconductor device 1 is a DRAM and has a semiconductor substrate 2 (silicon substrate) as shown in FIGS.
  • the main surface of the semiconductor substrate 2 is provided with a memory cell region shown in FIG. 1A and a peripheral circuit region shown in FIG.
  • the memory cell region is a region where a large number of cell transistors and cell capacitors constituting the memory cell are arranged in a matrix.
  • the peripheral circuit region is a region where a word driver for driving the word line WL extending in the memory cell region, a column switch for connecting the bit line BL to the read / write bus, and the like are provided.
  • each active region 3a is a parallelogram in which one set of opposite sides is parallel to the Y direction. With respect to the other set of opposite sides, the active region 3a parallel to the X ′ direction inclined in the negative direction with respect to the X direction and the active region 3a parallel to the X ′′ direction inclined in the positive direction with respect to the X direction.
  • FIG. 1A shows an example in which three active regions 3a are arranged in the Y direction, but this is for easy understanding of the drawing and simplification of the description. Is placed.
  • Each active region 3a includes an element isolation insulating film 4 (first element isolation insulating film) that is a silicon oxide film extending in the X direction and an element isolation insulating film that is a silicon nitride film extending in the Y direction. It is partitioned by the film 10 (second element isolation insulating film).
  • the element isolation insulating films 4 and 10 are both embedded in the main surface of the semiconductor substrate 2 and constitute an element isolation region by the STI method described above.
  • the element isolation insulating film 4 is a silicon oxide film, but the element isolation insulating film 4 may be either a silicon oxide film or a silicon nitride film.
  • a silicon nitride film is preferably used for the element isolation insulating film 10. This is because a trench T3 (see FIG. 23A and the like) for burying the word line WL is preferably formed in the manufacturing process described later. Details will be described later.
  • the interval between the element isolation insulating films 10 adjacent in the X direction is set to 5 times (5F) the minimum processing dimension F of lithography. Therefore, the width of the active region 3a in the X direction is 5F. Further, the width of the element isolation insulating film 10 in the X direction is F. Therefore, the interval between the active regions 3a adjacent in the X direction is F. Further, the interval between the element isolation insulating films 4 adjacent in the Y direction is F, and therefore the width of the active region 3a in the Y direction is F. Further, the width in the Y direction of the element isolation insulating film 4 between the active regions 3a is F, and therefore the interval between the active regions 3a adjacent in the Y direction is F.
  • a plurality of word lines WL each extending in the Y direction and a plurality of bit lines BL each extending in the X direction are arranged.
  • Each word line WL is arranged so as to pass through a series of active regions 3a arranged in the Y direction, and two word lines WL correspond to one active region 3a.
  • Two cell transistors are arranged in each active region 3a, and two word lines WL corresponding to each active region 3a constitute a gate electrode of the cell transistor.
  • the width in the X direction of each word line WL and the separation distance between the word lines WL in each active region 3a are both equal to the minimum processing dimension F.
  • each word line WL is constituted by a buried word line constituted by a conductive film buried in the main surface of the semiconductor substrate 2.
  • a gate insulating film 18 is disposed between each word line WL and the semiconductor substrate 2.
  • each word line WL (a trench T3 described later) is formed in a self-aligned manner with respect to the element isolation insulating film 10. Therefore, there is no positional deviation between the word line WL and the element isolation insulating film 10 during manufacturing, and as a result, the X-direction between each word line WL and the adjacent element isolation insulating film 10 is reduced.
  • the separation distance is a predetermined value with high accuracy. In the example of FIG. 1A, this predetermined value is the minimum processing dimension F.
  • Each bit line BL is disposed so as to pass through a series of active regions 3a arranged in the X direction, and one bit line BL corresponds to one active region 3a.
  • the interval in the Y direction between adjacent bit lines BL and the width in the Y direction of each bit line BL are both F.
  • element isolation insulating films 10 are disposed on both sides of the active region 3a in the X direction.
  • a device isolation at the other end side in the X direction (right side) displaying the insulating film 10 and the element isolation insulating film 10 2 2.
  • two word trench T3 1, T3 2 (first and second word trench) is disposed in the lower portion thereof, respectively Word lines WL 1 and WL 2 (first and second word lines) are embedded through the gate insulating film 18.
  • the lower surfaces of the word trenches T3 1 and T3 2 are provided at a position higher than the lower surface of the element isolation insulating film 10.
  • Buried insulating films 20 1 and 20 2 are formed on the upper surfaces of the word lines WL 1 and WL 2 , respectively.
  • the buried insulating films 20 1 and 20 2 are formed so as to completely fill the corresponding word trenches T 3 1 and T 3 2 respectively, and further protrude upward from the upper ends thereof.
  • the upper surface of the embedded insulating film 20 1, 20 2 are present in higher than the main surface of the semiconductor substrate 2 position.
  • Impurity diffusion layers 14, 24 1 and 24 2 are formed on the surface of the semiconductor substrate 2 in the active region 3a. More specifically, between the word lines WL 1 and the word line WL 2 impurity diffusion layer 14, the impurity diffusion layer 24 1 between the word lines WL 1 and the element isolation insulating film 10 1, the word line WL 2 impurity diffusion layer 24 2 between the element isolation insulating film 10 2 is formed, respectively.
  • the impurity diffusion layers 14 and 24 1 constitute one and the other of the source / drain of the cell transistor using the word line WL 1 as a gate electrode, respectively. Further, the impurity diffusion layers 14 and 24 2 constitute one and the other of the source / drain of the cell transistor having the word line WL 2 as a gate electrode, respectively.
  • a bit line contact plug 15 is provided above the impurity diffusion layer 14.
  • the bit line contact plug 15 is formed so as to be sandwiched between the buried insulating films 20 1 and 20 2, and is in contact with the corresponding impurity diffusion layer 14 on the lower surface.
  • a corresponding bit line BL passes above the bit line contact plug 15.
  • the bit line BL is in contact with the bit line contact plug 15 in each passing active region 3a at the lower surface. With the above structure, the bit line BL is commonly connected to the impurity diffusion layer 14 of each active region 3a that passes therethrough.
  • a bit mask film 22 that is a silicon nitride film is formed on the upper surface of the bit line BL, and the side surfaces of the bit mask film 22 and the bit line BL are covered with a sidewall insulating film 23 that is a sidewall-shaped silicon nitride film. ing.
  • the main surface of the semiconductor substrate 2 is covered with an interlayer insulating film 30 (silicon oxide film) having an upper surface at a position higher than the upper surface of the bit mask film 22, and the upper surface of the interlayer insulating film 30 is a stopper film that is a silicon nitride film. 31 is covered.
  • the interlayer insulating film 30 is provided with a capacitor contact plug 25 corresponding to each of the impurity diffusion layers 24 1 and 24 2 .
  • Each capacitor contact plug 25 penetrates the interlayer insulating film 30 in the vertical direction, and its lower surface is connected to a corresponding impurity diffusion layer.
  • a cell capacitor C is disposed above the interlayer insulating film 30 so as to correspond to each of the impurity diffusion layers 24 1 and 24 2 .
  • Each cell capacitor C includes a lower electrode 33 for each cell capacitor C, and a capacitor insulating film 34 and an upper electrode 35 common to each cell capacitor C.
  • the lower electrode 33 of each cell capacitor C penetrates the stopper film 31 and is in contact with the upper surface of the corresponding capacitor contact plug 25.
  • the lower electrodes 33 of the two cell capacitors C adjacent in the X direction are connected by a support film 36 (silicon nitride film) for preventing collapse.
  • the upper electrode 35 is covered with a buried conductor film 37 whose upper surface is flattened, and a plate electrode 38 is disposed on the upper surface of the buried conductor film 37.
  • An interlayer insulating film 39 is formed on the upper surface of the plate electrode 38, and a wiring 41 that is a metal film is formed on the upper surface of the interlayer insulating film 39.
  • the plate electrode 38 and the wiring 41 are connected to each other by a contact plug 40 that penetrates the interlayer insulating film 39.
  • the word line WL 1 When the word line WL 1 is activated, a channel is generated between the impurity diffusion layer 14 and the impurity diffusion layer 24 1 . That is, the cell transistors of the word line WL 1 and the gate electrode is turned on, as a result, since the corresponding lower electrode 33 of the cell capacitor C and the corresponding bit line BL becomes conductive, the cell capacitor C through the bit lines BL It becomes possible to access.
  • the word line WL 1 becomes inactive, the channel between the impurity diffusion layer 14 and the impurity diffusion layer 24 1 disappears. That is, the cell transistors of the word line WL 1 and the gate electrode is turned off, as a result, since the lower electrode 33 of the cell capacitor C and the corresponding corresponding bit line BL are electrically disconnected, the cell through the bit lines BL Access to capacitor C becomes impossible.
  • a plurality of active regions 3b are arranged in the peripheral circuit region.
  • the number of transistors provided in one active region 3b and the shape of each active region 3b are actually various, but here, one transistor is provided in one active region 3b, and each An example is given in which the shape of the active region 3b is a parallelogram in which one set of opposite sides is parallel to the Y direction and the other set of opposite sides is parallel to the X ′ direction.
  • an example in which four active regions 3b are arranged at equal intervals in the Y direction is given.
  • Such an active region 3b is a region in which, for example, a transistor having the bit line BL as a gate electrode is formed, and the description will be continued below assuming this example.
  • Each active region 3b is partitioned by an element isolation insulating film 4 extending in the X direction and an element isolation insulating film 10 extending in the Y direction. These are the same as those provided in the memory cell region.
  • the planar shape of the element isolation insulating film 10 is a hollow quadrangle, and four active regions 3b are arranged inside thereof. Both ends of each active region 3b in the X direction are partitioned by an element isolation insulating film 10. On the other hand, both ends of each active region 3b in the Y direction are partitioned by the element isolation insulating film 4. In the example of FIG.
  • the interval between the element isolation insulating films 10 adjacent to each other in the X direction is 3F, and therefore the width in the X direction of each active region 3b is 3F.
  • the interval between the element isolation insulating films 4 adjacent to each other in the Y direction is set to F in accordance with the width of the bit line BL. Therefore, the width of the active region 3b in the Y direction is F. .
  • the width in the Y direction of the element isolation insulating film 4 between the active regions 3b is set to F in accordance with the interval between the bit lines BL. Therefore, the interval between the active regions 3b adjacent in the Y direction is F.
  • bit lines BL passing through the memory cell area are extended.
  • Each of the four active regions 3b shown in FIG. 1B corresponds to a different bit line BL, and therefore, four bit lines BL are shown in FIG. 1B.
  • Each bit line BL extends in the X direction also in the peripheral circuit region, and the width and interval of the bit lines BL in the peripheral circuit region are all equal to the minimum processing dimension F as mentioned above.
  • Impurity diffusion layers 50 are respectively provided on the surface of the semiconductor substrate 2 corresponding to both ends of the active region 3b in the X direction. Further, the surface of the semiconductor substrate 2 corresponding to the center in the X direction of the active region 3 b is covered with the conductive film 8 via the gate insulating film 7. Thus, one planar type MOS transistor (peripheral circuit transistor) having the conductive film 8 as a gate electrode and the impurity diffusion layers 50 on both sides thereof as sources / drains is formed in each active region 3b.
  • Bit lines BL are arranged on the upper surface of the conductive film 8 and are in contact with each other.
  • a bit mask film 22 is formed on the upper surface of the bit line BL similarly to the memory cell region, and the side surfaces of the bit mask film 22, the bit line BL, and the gate insulating film 7 are covered with a sidewall insulating film 23. .
  • a contact plug 51 for each impurity diffusion layer 50 is also provided.
  • the contact plug 51 penetrates the interlayer insulating film 30 in the vertical direction, and its lower surface is connected to the corresponding impurity diffusion layer 50.
  • a contact pad 53 for each contact plug 51 is formed on the upper surface of the interlayer insulating film 30.
  • the lower surface of the contact pad 53 is in contact with the upper surface of the corresponding contact plug 51, and the upper surface is covered with a protective silicon nitride film 54.
  • an interlayer insulating film 39 is formed directly on the upper surface of the stopper film 31 as shown in FIG. However, the position of the upper surface of the interlayer insulating film 39 is the same as that in the memory cell region.
  • the contact pad 53 is connected to the wiring 41 formed on the upper surface of the interlayer insulating film 39 by contact plugs 55 penetrating the interlayer insulating films 39 and 31 and the silicon nitride film 54.
  • peripheral circuit transistors When the bit line BL is activated, a channel is generated between the corresponding two impurity diffusion layers 50. As a result, the peripheral circuit transistor is turned on, and the two wirings 41 corresponding to the two impurity diffusion layers 50 are conducted. On the other hand, when the bit line BL is deactivated, the channel between the two corresponding impurity diffusion layers 50 disappears. As a result, the peripheral circuit transistor is turned off, and the two wirings 41 corresponding to the two impurity diffusion layers 50 are electrically disconnected.
  • each word line WL is formed in self-alignment with the element isolation insulating film 10, and the word line WL and the element isolation insulating film 10 are formed. Therefore, the widths in the X direction of the impurity diffusion layers 24 1 and 24 2 are equal to each other with high accuracy. Therefore, it is possible to obtain good electrical characteristics.
  • the element isolation insulating film 4 (the first insulating film 4 is formed on the main surface of the semiconductor substrate 2 made of p-type silicon single crystal.
  • a plurality of active regions 3c are formed in the memory cell region and a plurality of active regions 3b are formed in the peripheral circuit region.
  • the plurality of active regions 3c are regions (provisional active regions) that will later become the above-described active regions 3a, and are repeatedly arranged at equal intervals in the Y direction.
  • Each active region 3c has a shape in which the active regions 3a adjacent to each other in the X direction (see FIG. 1A) are connected to each other, and refracts in the X ′ direction and the X ′′ direction as a whole. It extends in the X direction.
  • the embedding of the element isolation insulating film 4 may be performed as follows. That is, first, a mask film (not shown) is formed on the main surface of the semiconductor substrate 2, and the main surface of the semiconductor substrate 2 is dry-etched using the mask film as a mask to form element isolation trenches. Then, a silicon oxide film having a film thickness that fills the trench is formed by a CVD (Chemical Vapor Deposition) method, and then a mask film and a silicon oxide film formed above the main surface of the semiconductor substrate 2 are formed by, for example, CMP ( The element isolation insulating film 4 embedded in the main surface of the semiconductor substrate 2 is completed by removal using a chemical (mechanical polishing) method. Although an example in which the element isolation insulating film 4 is configured using a silicon oxide film has been described here, the element isolation insulating film 4 can also be configured using a silicon nitride film as described above. .
  • a pad oxide film 5 which is a silicon oxide film having a thickness of 5 nm and a mask film which is a silicon nitride film having a thickness of 10 nm. 6 are sequentially formed on the entire surface. Then, the opening O1 in which the plurality of active regions 3b are exposed on the bottom surface is provided in the pad oxide film 5 and the mask film 6 by photolithography and dry etching using a mask film (not shown). Note that the mask film used here is removed after the opening O1 is completed.
  • a gate insulating film is formed on the main surface of the semiconductor substrate 2 exposed on the bottom surface of the opening O1, using a thermal oxidation method. 7 (second gate insulating film) is formed.
  • the gate insulating film 7 thus formed becomes a silicon oxide film.
  • a conductive film 8 (third conductive film) having an upper surface at a position exceeding the upper surface of the mask film 6 is formed by the CVD method.
  • a silicon film (conductive film) containing an impurity is formed with a thickness equal to or larger than the thickness that fills the opening O1, and then overlapped with the opening O1 in a plan view by photolithography and dry etching.
  • the silicon film formed in the region that should not be removed is removed. This makes it possible to obtain a state in which the conductive film 8 protrudes from the upper surface of the mask film 6 as shown in FIGS.
  • a sacrificial film 9 that is a 250 nm thick silicon oxide film is formed on the entire surface by CVD. Then, first, trenches T1 and T4 (first and fourth trenches) are provided in the sacrificial film 9 by photolithography and anisotropic dry etching.
  • the trench T1 is formed at a position where the element isolation insulating film 10 (see FIG. 1A) is formed in the memory cell region.
  • the trench T4 is formed at a position where the element isolation insulating film 10 (see FIG. 1B) is formed in the peripheral circuit region. More specifically, the trench T4 is provided along the outer edge of the conductive film 8. By doing so, the mask film 6 and the pad oxide film 5 do not exist in the inner region of the trench T4.
  • the mask film 6, the pad oxide film 5, and the semiconductor substrate 2 are sequentially etched by anisotropic dry etching using the sacrificial film 9 as a mask.
  • the sacrificial film 9 is also etched when the pad oxide film 5 is etched.
  • the thickness of the sacrificial film 9 is sufficiently larger than the thickness of the pad oxide film 5, the sacrificial film 9 remains sufficiently even after the pad oxide film 5 is etched.
  • the trench T1 is formed.
  • T4 is formed to form a silicon nitride film.
  • the portion formed inside the trenches T1 and T4 constitutes the above-described element isolation insulating film 10 (second element isolation insulating film).
  • the portion also formed on the upper surface of the sacrificial film 9 is removed by photolithography and dry etching, leaving only the portion formed in the region surrounded by the trench T4.
  • the silicon nitride film left on the upper surface of the sacrificial film 9 becomes the cover film 11 covering the region surrounded by the trench T4.
  • the silicon oxide film is selectively removed by wet etching, thereby removing the sacrificial film 9 as shown in FIGS. 11 (a) and 11 (b) and FIGS. 12 (a) to 12 (d).
  • a portion of the sacrificial film 9 formed in the region surrounded by the trench T4 is surrounded by the cover film 11 which is a silicon nitride film and the element isolation insulating film 10, and thus remains without being removed.
  • the element isolation insulating film 10 after the sacrificial film 9 is removed becomes a wall-like film protruding from the surface of the mask film 6.
  • the side walls of the element isolation insulating film 10 covering the side surfaces of the portions protruding from the surface of the mask film 6 are covered.
  • An insulating film 12 (first sidewall insulating film) is formed.
  • the material of the sidewall insulating film 12 is a silicon nitride film, and the amount of film formation is set so that the film thickness in the lateral direction after the etch-back becomes F (see FIG. 1A).
  • the planar shape of the sidewall insulating film 12 formed in this way is a quadrangle surrounding the element isolation insulating film 10 as shown in FIGS.
  • a sidewall insulating film 13 (second sidewall insulating film) covering the side surface of the sidewall insulating film 12 is formed.
  • a sidewall insulating film 13 (second sidewall insulating film) covering the side surface of the sidewall insulating film 12 is formed.
  • the sidewall insulating film 13 like the sidewall insulating film 12, it is preferable to use film formation by CVD and etching back. Further, the amount of the sidewall insulating film 13 to be formed is set so that the film thickness in the lateral direction after the etch-back becomes F as in the case of the sidewall insulating film 12 (see FIG. 1A).
  • the material of the sidewall insulating film 13 is a silicon oxide film.
  • the planar shape of the sidewall insulating film 13 formed in this way is a quadrangle surrounding the sidewall insulating film 12, as shown in FIGS.
  • the mask film 6 exposed on the bottom surface of the trench T2 and the pad oxide film 5 therebelow are removed by performing wet etching after covering portions other than the trench T2 with a photoresist.
  • the main surface of the semiconductor substrate 2 is exposed at the bottom surface of the trench T2.
  • an N-type impurity is present in the exposed portion of the main surface of the semiconductor substrate 2 (portion located below the trench T2).
  • a diffusion layer 14 (first impurity diffusion layer) is formed.
  • the impurity diffusion layer 14 may be formed by implanting impurity ions.
  • a silicon film (conductive film) containing impurities is formed by a CVD method, and further, etch back is performed to embed the bit line contact plug 15 (second conductive film) under the trench T2. Further, a silicon nitride film is formed by a CVD method and further etched back to form a cap insulating film 16 on the upper surface of the bit line contact plug 15. The cap insulating film 16 thus formed becomes an insulating film filling the trench T2.
  • the space formed by removing the sidewall insulating film 13 is buried in a buried film 17 that is a silicon nitride film.
  • a silicon nitride film is formed by a CVD method
  • the silicon nitride film is selectively etched using a dry etching method until the upper surface of the sidewall insulating film 13 is exposed. Thereby, the buried film 17 is completed.
  • the side wall insulating film 13 is removed by selectively etching the silicon oxide film, and the mask film 6, the pad oxide film 5, and the semiconductor substrate 2 under the side wall insulating film 13 are sequentially etched.
  • a trench T3 is formed at the place where the sidewall insulating film 13 was present.
  • the etching of the mask film 6 is preferably performed under the condition that the silicon nitride film is selectively removed. In this case, the element isolation insulating film 10, the sidewall insulating film 12, the cap insulating film 16, and The upper surface of the buried film 17 is also etched.
  • the film thicknesses of the element isolation insulating film 10, the sidewall insulating film 12, the cap insulating film 16, and the buried film 17 are masked in this process. It is necessary to set in advance so that these remain even after the film 6 is removed.
  • a word WL is formed therein.
  • a gate insulating film 18 (first gate insulating film) covering the inner surface of the trench T3 is formed by a thermal oxidation method.
  • an intervening layer 19a which is a titanium nitride film covering the gate insulating film 18 and a tungsten film 19b are sequentially formed by CVD, and further, dry etching is performed to form the intervening layer 19a and the tungsten film 19b inside the trench T3. These are etched so that the top surfaces are at the same height.
  • a conductive film 19 that is a laminated film of the intervening layer 19a and the tungsten film 19b is formed below the trench T3.
  • the conductive film 19 thus formed becomes a word line WL (first wiring) extending in the Y direction.
  • the word line WL is drawn like a single film, but this is a result of giving priority to legibility, and the actual word line
  • WL is a laminated film of an intervening layer 19a and a tungsten film 19b.
  • a silicon nitride film is formed by the CVD method to fill the trench T3 with the buried insulating film 20, and further polished by the CMP method, so that the conductive film 8 and Each upper surface of the bit line contact plug 15 is exposed.
  • a conductive film 21 which is a tungsten film is formed on the entire surface by sputtering, and silicon is further formed by plasma CVD.
  • a bit mask film 22 which is a nitride film is formed. Then, these are patterned into the shape of the bit line BL using photolithography and dry etching.
  • the conductive film 21 patterned in this way becomes the bit line BL, and contacts the bit line contact plug 15 on the lower surface in the memory cell region, and contacts the conductive film 8 on the lower surface in the peripheral circuit region.
  • the bit line BL may be a stacked film formed by stacking a plurality of types of conductive films, like the word line WL.
  • the bit line BL has a linear shape here, for example, a configuration in which a part of the bit line BL is curved may be employed.
  • the conductive film 8 and the bit line contact plug 15 are also patterned.
  • the conductive film 8 and the bit line contact plug 15 are formed below the bit line BL.
  • the portions other than the portions are removed, and the main surfaces of the element isolation insulating film 4 and the semiconductor substrate 2 are exposed.
  • the bit line contact plug 15 is separated for each bit line BL.
  • the conductive film 8 is separated for each bit line BL, and the main surface of the semiconductor substrate 2 is exposed at both ends in the X direction of each active region 3b.
  • a silicon nitride film is formed and then etched back to form a sidewall insulating film 23 on the side surface of the bit line BL and the like as shown in FIGS.
  • the pad oxide film 5, the mask film 6 and the sidewall insulating film 12 covering both ends of the active region 3a are removed, and ions are implanted into the exposed main surface of the semiconductor substrate 2.
  • the impurity diffusion layers 24 1 and 24 2 are formed.
  • the impurity diffusion layer 50 is formed by implanting ions into the main surface of the semiconductor substrate 2 exposed at both ends of the active region 3b.
  • the semiconductor device 1 is completed by fabricating an upper layer structure than the above-described cell capacitor C or the like.
  • the element isolation insulating film 10 that is self-aligned with the word line WL can be formed of an insulating film (silicon nitride film). Become. Therefore, since it is not necessary to apply a voltage to the element isolation region, the circuit can be simplified compared to the background art in which the element isolation region that is self-aligned with the word line WL is formed of a conductive film.
  • the element isolation insulating film 10, the cap insulating film 16, the sidewall insulating film 12, and the buried film 17 are formed of a silicon nitride film (first material), while the sidewall insulating film 12 is formed of a silicon oxide film (first material). Since the second material is different from the first material, only the sidewall insulating film 12 is selectively removed and the word line WL is embedded as shown in FIGS. The trench T3 can be formed. Further, since the mask film 6 made of the silicon nitride film is formed as the base of the sacrificial film 9, the wall-shaped element isolation insulating film 10 can be suitably formed as shown in FIG. Become.
  • the mask film 6 which is a silicon nitride film. Even after this etching is completed, the element isolation insulating film 10, the sidewall insulating film 12, the cap insulating film 16, Since these film thicknesses are set so that the buried film 17 remains, the subsequent etching of the semiconductor substrate 2 can be performed by etching using these films as a mask.
  • the peripheral circuit region can be formed simultaneously with the formation of the memory cell region, so that the manufacturing cost can be reduced.
  • the element isolation insulating film 10, the sidewall insulating film 12, the cap insulating film 16, and the buried film 17 are formed of a silicon nitride film, and the sidewall insulating film 12 is formed of a silicon oxide film.
  • these may be formed of other materials.
  • the distance between the element isolation insulating film 10 and the word line WL adjacent thereto, the X direction of the word line WL , And the distance between the word lines WL are set to the minimum processing dimension F.
  • the length of each portion The thickness may be a value other than the minimum processing dimension F.
  • the distance between the element isolation insulating film 10 and the adjacent word line WL, the width of the word line WL in the X direction, and the distance between the word lines WL may not be the same value.
  • These lengths are controlled by the interval in the X direction of the trench T1 (see FIG. 9A) for embedding the element isolation insulating film 10 and the sidewall insulating films 12 and 13 (see FIG. 15A). ) By controlling the film thickness in the lateral direction, and can be set to a value smaller than the minimum processing dimension F.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

ワード線WLと自己整合する素子分離領域に電圧を印加しなくてよい半導体装置を提供する。半導体装置の製造方法は、X方向に隣接する活性領域3aが互いに接続された形状の仮の活性領域を形成する工程と、犠牲膜を形成する工程と、犠牲膜も含めてエッチングすることにより、活性領域3aを区画する複数の第1のトレンチを形成する工程と、複数の第1のトレンチに素子分離用絶縁膜10を埋め込み、その後上記犠牲膜を除去する工程と、素子分離用絶縁膜10の露出側面を覆う第1のサイドウォール絶縁膜を形成と、この第1のサイドウォール絶縁膜の側面を覆う第2のサイドウォール絶縁膜を形成する工程と、第2のサイドウォール絶縁膜を形成したことによって現れる複数の第2のトレンチにキャップ絶縁膜を埋め込む工程と、第2のサイドウォール絶縁膜の位置に複数の第3のトレンチを形成し、その下部にワード線WLを形成する工程とを備える。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関し、特に半導体基板に埋め込んで形成されるワード線と、ワード線方向に延在する素子分離領域とを互いに自己整合で形成する半導体装置及びその製造方法に関する。
 DRAM(Dynamic Random Access Memory)などの半導体装置では、STI(shallow trench isolation)法によってシリコン基板の表面に素子分離領域が設けられ、これによって、複数の活性領域がマトリクス状に区画される。素子分離領域には、各活性領域をビット線方向に分離する第1の素子分離領域と、ワード線方向に分離する第2の素子分離領域とが含まれる。特許文献1には、このような素子分離領域及び活性領域の例が開示されている。
特開2012-134395号公報
 ところで、特許文献1に記載の半導体装置では、ワード線が半導体基板に埋め込んだ導電膜によって構成され、このワード線(埋込ワード線)と第1の素子分離領域(ワード線方向に延在する素子分離領域)とが互いに自己整合で形成されている。以下、この点について、詳しく説明する。なお、以下の説明では、特許文献1に倣い、ワード線及び第1の素子分離領域のビット線方向の幅をそれぞれW1,W3とする。また、第1の素子分離領域と、該第1の素子分離領域に最も近いワード線との間のビット線方向の距離をW2とする。さらに、同じ活性領域内を通過する2本のワード線の間の距離をW4とする。
 特許文献1に記載の方法では、まず初めに半導体基板の主面を、それぞれワード線方向に延在する複数の直線状のマスクパターンで覆う。この直線状マスクパターンはビット線方向の幅が2W2+W3であるものとし、かつ隣接するマスクパターン間の距離を2W1+W4に設定する。次に、直線状マスクパターンの側壁に、ビット線方向の厚みがW1である第1のサイドウォール絶縁膜を形成し、その後直線状マスクパターンを除去する。こうして形成された第1のサイドウォール絶縁膜は、ワード線を埋め込む領域のみを覆う絶縁膜パターンとなる。続いて、第1のサイドウォール絶縁膜の側壁に、ビット線方向の厚みがW2である第2のサイドウォール絶縁膜を形成し、その後第1のサイドウォール絶縁膜を除去する。こうして形成された第2のサイドウォール絶縁膜は、素子分離領域を埋め込む領域と、ワード線を埋め込む領域とを露出させる開口を有する絶縁膜パターンとなる。したがって、第2のサイドウォール絶縁膜をマスクとして半導体基板の主面をエッチングすることにより、素子分離領域及びワード線をそれぞれ埋め込むためのトレンチを形成することが可能になる。そして、形成したトレンチの内表面を薄い絶縁膜で覆い、さらにトレンチ内に導電膜を埋め込むことにより、ワード線及び第1の素子分離領域が形成される。
 以上説明した形成方法によれば、ワード線及び第1の素子分離領域それぞれのビット線方向の位置がいずれも、初めに形成した直線状マスクパターンの形成位置に応じて正確に規定される。本明細書では、この例のように、2種類の埋め込み膜の相対的な位置が共通のパターンの形成位置に応じて決定される場合、これら2種類の埋め込み膜が互いに自己整合で形成されているという。
 しかしながら、特許文献1に記載の方法によれば、ワード線だけでなく第1の素子分離領域も導電膜によって構成されることになる。こうして形成される第1の素子分離領域は、いわゆる電界シールド方式によるものであり、素子分離機能を発揮させるために一定電圧を常時印加し続ける必要がある。したがって、この電圧印加のための制御用回路が必要となり、回路の複雑化を招来していた。
 本発明による半導体装置の製造方法は、半導体基板の主面に第1の素子分離用絶縁膜を埋め込むことにより、第1の方向に延在し、かつ該第1の方向と交差する第2の方向に繰り返し配置される複数の仮の活性領域を形成する工程と、前記主面を覆う犠牲膜を形成する工程と、前記第1の素子分離用絶縁膜、前記犠牲膜、及び前記半導体基板をエッチングすることにより、前記複数の仮の活性領域のそれぞれを前記第1の方向に分割してなる複数の第1の活性領域を区画する複数の第1のトレンチを形成する工程と、前記複数の第1のトレンチに第2の素子分離用絶縁膜を埋め込む工程と、前記複数の第1のトレンチに前記第2の素子分離用絶縁膜を埋め込んだ後、前記犠牲膜を除去する工程と、前記犠牲膜を除去した後、前記第2の素子分離用絶縁膜のうち前記主面の表面から突出している部分の側面を覆う第1のサイドウォール絶縁膜を形成する工程と、前記第1のサイドウォール絶縁膜の側面を覆う第2のサイドウォール絶縁膜を形成する工程と、前記第2のサイドウォール絶縁膜を形成したことによって現れる複数の第2のトレンチにキャップ絶縁膜を埋め込む工程と、前記第2の素子分離用絶縁膜、前記キャップ絶縁膜、及び前記第1のサイドウォール絶縁膜を残しつつ前記第2のサイドウォール絶縁膜を除去し、さらに前記第2の素子分離用絶縁膜、前記キャップ絶縁膜、及び前記第1のサイドウォール絶縁膜をマスクとして前記半導体基板をエッチングすることにより複数の第3のトレンチを形成する工程と、前記複数の第3のトレンチそれぞれの内表面を覆う第1のゲート絶縁膜を形成し、さらに前記複数の第3のトレンチそれぞれの下部に第1の導電膜を埋め込むことにより第1の配線を形成する工程とを備えることを特徴とする。
 本発明による半導体装置は、半導体基板と、それぞれ前記半導体基板の主面に埋め込まれ、かつ第1の方向に延在する複数の第1の素子分離用絶縁膜と、それぞれ前記半導体基板の主面に埋め込まれ、かつ前記第1の方向と交差する第2の方向に延在し、前記複数の第1の素子分離用絶縁膜とともに、マトリクス状に配置された複数の第1の活性領域を区画する複数の第2の素子分離用絶縁膜と、前記半導体基板の主面に前記第2の方向に延在して設けられ、かつ前記複数の第2の素子分離用絶縁膜のうちの前記第1の方向に隣接する2つの間に配置された第1及び第2のワードトレンチと、それぞれ前記第1及び第2のワードトレンチの下部にゲート絶縁膜を介して埋め込まれた第1及び第2のワード線と、前記第1のワード線と前記第2のワード線との間に設けられた第1の不純物拡散層と、前記2つの第2の素子分離用絶縁膜のうちの一方と前記第1のワード線との間に設けられた第2の不純物拡散層と、前記2つの第2の素子分離用絶縁膜のうちの他方と前記第2のワード線との間に設けられた第3の不純物拡散層とを備え、前記第1及び第2のワードトレンチは、前記複数の第2の素子分離用絶縁膜に対して自己整合で形成されていることを特徴とする。
 本発明によれば、第1の配線(ワード線)と自己整合する素子分離領域が絶縁膜(第2の素子分離用絶縁膜)によって構成されることから、この素子分離領域に電圧を印加する必要がなくなる。したがって、回路を簡素化することが可能になる。
(a)は本発明の好ましい実施の形態による半導体装置1のメモリセル領域の平面図であり、(b)は半導体装置1の周辺回路領域の平面図である。 (a)(b)はそれぞれ図1(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図1(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図3(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図3(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図5(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図5(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図7(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図7(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図9(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図9(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図11(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図11(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図13(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図13(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図15(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図15(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図17(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図17(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図19(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図19(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図21(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図21(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図23(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図23(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図25(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図25(b)のC-C線、D-D線に対応する半導体装置1の断面図である。 (a)(b)はそれぞれ、図1(a)(b)に示した半導体装置1の製造工程における平面図である。 (a)(b)はそれぞれ図27(a)のA-A線、B-B線に対応する半導体装置1の断面図であり、(c)(d)はそれぞれ図27(b)のC-C線、D-D線に対応する半導体装置1の断面図である。
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
 まず、図1(a)(b)及び図2(a)~(d)を参照しながら、半導体装置1の構造について説明する。なお、図2(b)(d)では、後述する層間絶縁膜30より上の構成の描画を省略している。
 半導体装置1はDRAMであり、図2(a)~(d)に示すように半導体基板2(シリコン基板)を有している。半導体基板2の主面には、図1(a)に示すメモリセル領域と、図1(b)に示す周辺回路領域とが設けられる。メモリセル領域は、メモリセルを構成するセルトランジスタ及びセルキャパシタが、マトリクス状に多数配置される領域である。一方、周辺回路領域は、メモリセル領域内に延設するワード線WLを駆動するためのワードドライバや、ビット線BLをリードライトバスに接続するためのカラムスイッチなどが設けられる領域である。
 まずメモリセル領域内の構造について、図1(a)を参照しながら説明する。同図に示すように、メモリセル領域においては、複数の活性領域3a(第1の活性領域)がマトリクス状に配置される。別の言い方をすれば、複数の活性領域3aが、X方向(第1の方向)及びY方向(X方向と交差する方向。第2の方向)のそれぞれに繰り返し配置される。各活性領域3aの形状は、1組の対辺がY方向に平行な平行四辺形となっている。他の1組の対辺に関しては、X方向に対してマイナス方向に傾いたX'方向に平行な活性領域3aと、X方向に対してプラス方向に傾いたX''方向に平行な活性領域3aとが、X方向に見て1つおきに配置される。Y方向に並ぶ各活性領域3aの形状は、互いに同一である。なお、図1(a)ではY方向に3つの活性領域3aが並ぶ例を示しているが、これは図面を見易くして説明を簡単にするためであり、実際にはより多くの活性領域3aが配置される。
 各活性領域3aは、X方向に延在するシリコン酸化膜である素子分離用絶縁膜4(第1の素子分離用絶縁膜)と、Y方向に延在するシリコン窒化膜である素子分離用絶縁膜10(第2の素子分離用絶縁膜)とによって区画される。素子分離用絶縁膜4,10はいずれも半導体基板2の主面に埋め込まれており、上述したSTI法による素子分離領域を構成している。なお、ここでは素子分離用絶縁膜4をシリコン酸化膜としているが、素子分離用絶縁膜4としてはシリコン酸化膜又はシリコン窒化膜のいずれを用いてもよい。一方、素子分離用絶縁膜10には、シリコン窒化膜を用いることが好ましい。これは、後述する製造工程において、ワード線WL埋め込み用のトレンチT3(図23(a)等参照)を好適に形成するためである。詳しくは後述する。
 図1(a)の例では、X方向に隣接する素子分離用絶縁膜10の間隔を、リソグラフィの最小加工寸法Fの5倍(5F)としている。したがって、活性領域3aのX方向の幅は5Fとなっている。また、素子分離用絶縁膜10のX方向の幅をFとしており、したがって、X方向に隣接する活性領域3aの間隔はFとなっている。さらに、Y方向に隣接する素子分離用絶縁膜4の間隔をFとしており、したがって、活性領域3aのY方向の幅はFとなっている。また、活性領域3a間における素子分離用絶縁膜4のY方向の幅をFとしており、したがって、Y方向に隣接する活性領域3aの間隔はFとなっている。
 メモリセル領域には、それぞれY方向に延在する複数のワード線WLと、それぞれX方向に延在する複数のビット線BLとが配置される。
 各ワード線WLはY方向に並ぶ一連の活性領域3aを通過するように配置され、1つの活性領域3aに2本のワード線WLが対応している。各活性領域3aには2つずつセルトランジスタが配置され、各活性領域3aに対応する2本のワード線WLはそれぞれ、セルトランジスタのゲート電極を構成する。なお、図1(a)の例では、各ワード線WLのX方向の幅、及び、各活性領域3a内におけるワード線WL間の離隔距離は、いずれも最小加工寸法Fに等しいとしている。各ワード線WLは、図2(a)に示すように、半導体基板2の主面に埋め込まれた導電膜によって構成される埋込ワード線によって構成される。各ワード線WLと半導体基板2との間には、ゲート絶縁膜18が配置される。
 詳しい製造方法については後述するが、各ワード線WL(後述するトレンチT3)は、素子分離用絶縁膜10に対して自己整合で形成されている。したがって、製造時にワード線WLと素子分離用絶縁膜10の間で位置ズレが発生することはなく、結果として、各ワード線WLと、隣接する素子分離用絶縁膜10との間のX方向の離隔距離は、高い精度で所定の値となっている。図1(a)の例では、この所定の値を最小加工寸法Fとしている。
 各ビット線BLはX方向に並ぶ一連の活性領域3aを通過するように配置され、1つの活性領域3aに1本のビット線BLが対応している。図1(a)の例では、隣接するビット線BL間のY方向の間隔、及び各ビット線BLのY方向の幅を、いずれもFとしている。
 次に、図2(a)を参照しながら、活性領域3a内の構造について詳しく説明する。同図に示すように、活性領域3aのX方向の両側には、素子分離用絶縁膜10が配置される。なお、同図では、X方向の一端側(図面左側)にある素子分離用絶縁膜10を素子分離用絶縁膜10と表示し、X方向の他端側(図面右側)にある素子分離用絶縁膜10を素子分離用絶縁膜10と表示している。
 素子分離用絶縁膜10と素子分離用絶縁膜10の間には、2本のワードトレンチT3,T3(第1及び第2のワードトレンチ)が配置され、その下部には、それぞれゲート絶縁膜18を介してワード線WL,WL(第1及び第2のワード線)が埋め込まれている。なお、ワードトレンチT3,T3の下面は、素子分離用絶縁膜10の下面より高い位置に設けられる。ワード線WL,WLの上面には、それぞれ埋込絶縁膜20,20が形成される。埋込絶縁膜20,20はそれぞれ対応するワードトレンチT3,T3を完全に埋め尽くし、さらに、その上端から上方向に突出して形成されている。結果として、埋込絶縁膜20,20の上面は、半導体基板2の主面より高い位置に存在している。
 活性領域3a内の半導体基板2の表面には、不純物拡散層14,24,24(第1乃至第3の不純物拡散層)が形成される。具体的には、ワード線WLとワード線WLの間に不純物拡散層14が、ワード線WLと素子分離用絶縁膜10の間に不純物拡散層24が、ワード線WLと素子分離用絶縁膜10の間に不純物拡散層24が、それぞれ形成される。不純物拡散層14,24はそれぞれ、ワード線WLをゲート電極とするセルトランジスタのソース/ドレインの一方及び他方を構成する。また、不純物拡散層14,24はそれぞれ、ワード線WLをゲート電極とするセルトランジスタのソース/ドレインの一方及び他方を構成する。
 不純物拡散層14の上方には、ビット線コンタクトプラグ15が設けられる。ビット線コンタクトプラグ15は、埋込絶縁膜20,20に挟まれるようにして形成されており、下面で、対応する不純物拡散層14と接している。ビット線コンタクトプラグ15の上方には、対応するビット線BLが通過している。ビット線BLは、通過する各活性領域3a内のビット線コンタクトプラグ15と下面で接している。以上の構造により、ビット線BLは、通過する各活性領域3aの不純物拡散層14と共通に接続されている。ビット線BLの上面にはシリコン窒化膜であるビットマスク膜22が形成され、このビットマスク膜22とビット線BLの側面は、サイドウォール形状のシリコン窒化膜であるサイドウォール絶縁膜23で覆われている。
 半導体基板2の主面は、ビットマスク膜22の上面より高い位置に上面を有する層間絶縁膜30(シリコン酸化膜)で覆われ、さらに層間絶縁膜30の上面は、シリコン窒化膜であるストッパー膜31によって覆われている。層間絶縁膜30には、不純物拡散層24,24のそれぞれに対応して容量コンタクトプラグ25が設けられる。各容量コンタクトプラグ25は層間絶縁膜30を垂直方向に貫通しており、その下面は、対応する不純物拡散層と接続される。また、層間絶縁膜30の上方には、不純物拡散層24,24のそれぞれに対応して、セルキャパシタCが配置される。各セルキャパシタCは、セルキャパシタCごとの下部電極33と、各セルキャパシタCに共通の容量絶縁膜34及び上部電極35とによって構成される。各セルキャパシタCの下部電極33は、ストッパー膜31を貫通して、対応する容量コンタクトプラグ25の上面に接している。また、X方向に隣接する2つのセルキャパシタCそれぞれの下部電極33は、倒壊を防ぐためのサポート膜36(シリコン窒化膜)によって接続されている。上部電極35は、上面が平坦化された埋込導体膜37によって覆われており、埋込導体膜37の上面にはプレート電極38が配置されている。
 プレート電極38の上面には層間絶縁膜39が形成されており、層間絶縁膜39の上面には、金属膜である配線41が形成されている。プレート電極38と配線41とは、層間絶縁膜39を貫通するコンタクトプラグ40によって互いに接続される。
 以下、ワード線WLをゲート電極とするセルトランジスタを例に取り、セルトランジスタの動作について説明する。詳しい説明は割愛するが、ワード線WLをゲート電極とするセルトランジスタの動作も同様である。
 ワード線WLが活性化されると、不純物拡散層14と不純物拡散層24との間にチャネルが発生する。つまり、ワード線WLをゲート電極とするセルトランジスタがオン状態となり、その結果、対応するビット線BLと対応するセルキャパシタCの下部電極33とが導通するので、ビット線BLを通じてセルキャパシタCにアクセスすることが可能になる。
 一方、ワード線WLが非活性になると、不純物拡散層14と不純物拡散層24との間のチャネルが消滅する。つまり、ワード線WLをゲート電極とするセルトランジスタがオフ状態となり、その結果、対応するビット線BLと対応するセルキャパシタCの下部電極33とが電気的に切り離されるので、ビット線BLを通じてセルキャパシタCにアクセスすることが不可能になる。
 次に、周辺回路領域内の構造について、図1(b)を参照しながら説明する。同図に示すように、周辺回路領域には複数の活性領域3b(第2の活性領域)が配置される。1つの活性領域3b内に設けられるトランジスタの数や各活性領域3bの形状などは実際には多種多様であるが、ここでは、1つの活性領域3b内に1つのトランジスタが設けられ、かつ、各活性領域3bの形状が、1組の対辺がY方向に平行であり、他の1組の対辺がX'方向に平行である平行四辺形となっている例を挙げている。また、4つの活性領域3bが、Y方向に等間隔で配置されている例を挙げている。このような活性領域3bは、例えばビット線BLをゲート電極とするトランジスタが形成される領域であり、以下では、この例を前提にして説明を続ける。
 各活性領域3bは、X方向に延在する素子分離用絶縁膜4と、Y方向に延在する素子分離用絶縁膜10とによって区画される。これらは、メモリセル領域内に設けられるものと同じものである。素子分離用絶縁膜10の平面形状は中空の四角形であり、その内側に4つの活性領域3bが配置されている。各活性領域3bのX方向の両端は、素子分離用絶縁膜10によって区画される。一方、各活性領域3bのY方向の両端は、素子分離用絶縁膜4によって区画される。図1(b)の例ではX方向に隣接する素子分離用絶縁膜10の間隔を3Fとしており、したがって、各活性領域3bのX方向の幅は3Fとなっている。また、図示していないが、Y方向に隣接する素子分離用絶縁膜4の間隔をビット線BLの幅に合わせてFとしており、したがって、活性領域3bのY方向の幅はFとなっている。さらに、活性領域3b間における素子分離用絶縁膜4のY方向の幅をビット線BLの間隔に合わせてFとしており、したがって、Y方向に隣接する活性領域3bの間隔はFとなっている。
 周辺回路領域には、メモリセル領域を通過する複数のビット線BLが延設される。図1(b)に示した4つの活性領域3bはそれぞれ互いに異なるビット線BLに対応しており、したがって、図1(b)には4つのビット線BLが示されている。周辺回路領域においても各ビット線BLはX方向に延設されており、周辺回路領域におけるビット線BLの幅及び間隔は、上で触れたようにいずれも最小加工寸法Fに等しくなっている。
 図2(c)を参照しながら、活性領域3b内の構造について詳しく説明する。活性領域3bのX方向の両端に相当する半導体基板2の表面には、それぞれ不純物拡散層50が設けられる。また、活性領域3bのX方向の中央に相当する半導体基板2の表面は、ゲート絶縁膜7を介して導電膜8で覆われている。これにより、各活性領域3bには、導電膜8をゲート電極とし、その両側の不純物拡散層50をソース/ドレインとするプレーナ型のMOSトランジスタ(周辺回路トランジスタ)が1つずつ構成される。
 導電膜8の上面にはビット線BLが配置され、これらは互いに接触している。ビット線BLの上面には、メモリセル領域と同様にビットマスク膜22が形成され、ビットマスク膜22、ビット線BL、及びゲート絶縁膜7の側面は、サイドウォール絶縁膜23で覆われている。
 上述した層間絶縁膜30には、不純物拡散層50ごとのコンタクトプラグ51も設けられる。コンタクトプラグ51は層間絶縁膜30を垂直方向に貫通しており、その下面は、対応する不純物拡散層50と接続される。層間絶縁膜30の上面には、コンタクトプラグ51ごとのコンタクトパッド53が形成される。コンタクトパッド53の下面は対応するコンタクトプラグ51の上面と接触し、上面は保護用のシリコン窒化膜54によって覆われている。周辺回路領域においては、図2(c)に示すように、ストッパー膜31の上面に直接層間絶縁膜39が形成される。ただし、層間絶縁膜39の上面の位置は、メモリセル領域におけるものと同じである。コンタクトパッド53は、層間絶縁膜39,31及びシリコン窒化膜54を貫通するコンタクトプラグ55によって、層間絶縁膜39の上面に形成された配線41と接続される。
 周辺回路トランジスタの動作について説明する。ビット線BLが活性化されると、対応する2つの不純物拡散層50間にチャネルが発生する。これにより、周辺回路トランジスタはオン状態となり、2つの不純物拡散層50それぞれに対応する2本の配線41が導通する。一方、ビット線BLが非活性になると、対応する2つの不純物拡散層50間のチャネルが消滅する。これにより、周辺回路トランジスタはオフ状態となり、2つの不純物拡散層50それぞれに対応する2本の配線41が電気的に切り離される。
 以上説明したように、本実施の形態による半導体装置1によれば、各ワード線WLが素子分離用絶縁膜10に対して自己整合で形成されており、ワード線WLと素子分離用絶縁膜10の間に位置ズレが発生していないことから、不純物拡散層24,24それぞれのX方向の幅が高い精度で等しくなっている。したがって、良好な電気的特性を得ることが可能になっている。
 次に、図3~図28を参照しながら、半導体装置1の製造方法について詳しく説明する。
 初めに、図3(a)(b)及び図4(a)~(d)に示すように、p型のシリコン単結晶からなる半導体基板2の主面に素子分離用絶縁膜4(第1の素子分離用絶縁膜)を埋め込むことにより、メモリセル領域に複数の活性領域3cを形成するとともに、周辺回路領域に複数の活性領域3bを形成する。なお、複数の活性領域3cは、それぞれ後に上述した活性領域3aとなる領域(仮の活性領域)であり、Y方向に等間隔で繰り返し配置されている。個々の活性領域3cは、X方向に隣接する活性領域3a(図1(a)参照)が互いに接続された形状を有しており、X'方向とX''方向に屈折しながら、全体としてX方向に延在している。
 素子分離用絶縁膜4の埋め込みは、次のようにして行えばよい。すなわち、まず半導体基板2の主面に図示しないマスク膜を形成し、このマスク膜をマスクとして半導体基板2の主面をドライエッチングすることによって素子分離用のトレンチを形成する。そして、CVD(Chemical Vapor Deposition)法によってこのトレンチを埋め尽くす膜厚のシリコン酸化膜を形成し、その後、半導体基板2の主面より上側に形成されているマスク膜及びシリコン酸化膜を例えばCMP(Chemical Mechanical Polishing)法を用いて除去することによって、半導体基板2の主面に埋め込まれた素子分離用絶縁膜4が完成する。なお、ここではシリコン酸化膜を用いて素子分離用絶縁膜4を構成する例を説明したが、上述したように、シリコン窒化膜を用いて素子分離用絶縁膜4を構成することも可能である。
 次に、図5(a)(b)及び図6(a)~(d)に示すように、5nm厚のシリコン酸化膜であるパッド酸化膜5と、10nm厚のシリコン窒化膜であるマスク膜6とを順次全面に成膜する。そして、図示しないマスク膜を用いるフォトリソグラフィ及びドライエッチングによって、パッド酸化膜5及びマスク膜6に、底面に複数の活性領域3bが露出する開口部O1を設ける。なお、ここで用いたマスク膜は、開口部O1の完成後に除去しておく。
 次いで、図7(a)(b)及び図8(a)~(d)に示すように、熱酸化法を用いて、開口部O1の底面に露出した半導体基板2の主面にゲート絶縁膜7(第2のゲート絶縁膜)を形成する。こうして形成されるゲート絶縁膜7は、シリコン酸化膜となる。その後、CVD法により、開口部O1を埋め、かつ、マスク膜6の上面を超える位置に上面を有する導電膜8(第3の導電膜)を形成する。具体的には、不純物を含有するシリコン膜(導電膜)を開口部O1を埋める膜厚以上の膜厚で成膜した後、フォトリソグラフィ及びドライエッチングにより、平面的に見て開口部O1と重ならない領域に形成されたシリコン膜を除去する。これにより、図8(c)(d)に示すように、導電膜8がマスク膜6の上面から突出した状態を得ることが可能になる。
 導電膜8の形成したら、次にCVD法を用いて、250nm厚のシリコン酸化膜である犠牲膜9を全面に成膜する。そして、フォトリソグラフィ及び異方性のドライエッチングにより、まず犠牲膜9にトレンチT1,T4(第1及び第4のトレンチ)を設ける。トレンチT1は、メモリセル領域内の素子分離用絶縁膜10(図1(a)参照)が形成される位置に形成される。一方、トレンチT4は、周辺回路領域内の素子分離用絶縁膜10(図1(b)参照)が形成される位置に形成される。トレンチT4は、より具体的には導電膜8の外縁に沿って設けられる。こうすることで、トレンチT4の内側領域には、マスク膜6及びパッド酸化膜5は存在しないこととなる。
 続いて、犠牲膜9をマスクとする異方性のドライエッチングにより、マスク膜6、パッド酸化膜5、及び半導体基板2を順次エッチングする。これにより、図9(a)(b)及び図10(a)~(d)に示すように、半導体基板2の内部にまで達するトレンチT1,T4が完成する。なお、犠牲膜9とパッド酸化膜5とがともにシリコン酸化膜であることから、パッド酸化膜5をエッチングする際には犠牲膜9もエッチングされる。しかし、パッド酸化膜5の膜厚5nmに対して犠牲膜9の膜厚250nmは十分に大きいことから、パッド酸化膜5のエッチング後にも犠牲膜9は十分に残存する。
 トレンチT1,T4が形成されたら、犠牲膜9が残っている状態でCVD法を行うことにより、図11(a)(b)及び図12(a)~(d)に示すように、トレンチT1,T4を埋める膜厚のシリコン窒化膜を成膜する。このとき成膜されるシリコン窒化膜のうちトレンチT1,T4の内部に形成される部分は、上述した素子分離用絶縁膜10(第2の素子分離用絶縁膜)を構成する。一方、犠牲膜9の上面にも形成される部分については、フォトリソグラフィ及びドライエッチングにより、トレンチT4に囲まれた領域に形成された部分のみを残して除去する。こうして犠牲膜9の上面に残されたシリコン窒化膜は、トレンチT4に囲まれた領域を覆うカバー膜11となる。その後、ウエットエッチング法によってシリコン酸化膜を選択的に除去することにより、図11(a)(b)及び図12(a)~(d)に示すように、犠牲膜9を除去する。このとき、犠牲膜9のうちトレンチT4に囲まれた領域に形成された部分は、シリコン窒化膜であるカバー膜11及び素子分離用絶縁膜10で囲まれていることから、除去されずに残存する。犠牲膜9を除去した後の素子分離用絶縁膜10は、マスク膜6の表面から突出した壁状の膜となる。
 次に、図13(a)(b)及び図14(a)~(d)に示すように、素子分離用絶縁膜10のうちマスク膜6の表面から突出している部分の側面を覆うサイドウォール絶縁膜12(第1のサイドウォール絶縁膜)を形成する。サイドウォール絶縁膜12の具体的な形成方法としては、CVD法による成膜とエッチバックを用いることが好ましい。サイドウォール絶縁膜12の材料はシリコン窒化膜とし、成膜量は、エッチバック後の横方向の膜厚がFとなるように設定する(図1(a)参照)。こうして形成されたサイドウォール絶縁膜12の平面形状は、図13(a)(b)に示すように、素子分離用絶縁膜10を囲む四角形となる。
 続いて、図15(a)(b)及び図16(a)~(d)に示すように、サイドウォール絶縁膜12の側面を覆うサイドウォール絶縁膜13(第2のサイドウォール絶縁膜)を形成する。サイドウォール絶縁膜13の具体的な形成方法としては、サイドウォール絶縁膜12と同様、CVD法による成膜とエッチバックを用いることが好ましい。また、サイドウォール絶縁膜13の成膜量は、サイドウォール絶縁膜12と同様、エッチバック後の横方向の膜厚がFとなるように設定する(図1(a)参照)。一方、サイドウォール絶縁膜13の材料は、サイドウォール絶縁膜12とは異なり、シリコン酸化膜とする。こうして形成されたサイドウォール絶縁膜13の平面形状は、図15(a)(b)に示すように、サイドウォール絶縁膜12を囲む四角形となる。こうしてサイドウォール絶縁膜13を形成したことにより、X方向に隣接する活性領域3aの間に、Y方向に延伸するトレンチT2(第2のトレンチ)が形成される。
 次に、フォトレジストによってトレンチT2以外の部分を覆ったうえでウエットエッチングを行うことにより、トレンチT2の底面に露出しているマスク膜6と、その下のパッド酸化膜5を除去する。これによりトレンチT2の底面には半導体基板2の主面が露出する。続いて、図17(a)(b)及び図18(a)~(d)に示すように、半導体基板2の主面の露出部分(トレンチT2の下方に位置する部分)にN型の不純物拡散層14(第1の不純物拡散層)を形成する。不純物拡散層14の形成は、不純物イオンを注入することによって行えばよい。その後、CVD法によって不純物を含むシリコン膜(導電膜)を成膜し、さらにエッチバックを行うことにより、トレンチT2の下部にビット線コンタクトプラグ15(第2の導電膜)を埋め込む。さらに、CVD法によってシリコン窒化膜を成膜し、さらにエッチバックを行うことで、ビット線コンタクトプラグ15の上面にキャップ絶縁膜16を形成する。こうして形成されるキャップ絶縁膜16は、トレンチT2を埋める絶縁膜となる。
 次に、メモリセル領域のうちY方向に見て素子分離用絶縁膜10と重なる領域のみをフォトレジストで覆い、その他の領域で、ドライエッチングによりシリコン酸化膜を選択的に除去する。これにより、図19(a)(b)及び図20(a)~(d)に示すように、まずメモリセル領域では、サイドウォール絶縁膜13のY方向両端部が除去される。その結果、サイドウォール絶縁膜12のX方向一方側に形成されているサイドウォール絶縁膜13と、X方向他方側に形成されているサイドウォール絶縁膜13とが、互いに切り離される。また、周辺回路領域では、すべてのサイドウォール絶縁膜13が除去される。サイドウォール絶縁膜13を除去した領域では、マスク膜6が露出する。
 次に、図21(a)(b)及び図22(a)~(d)に示すように、サイドウォール絶縁膜13を除去することによってできた空間を、シリコン窒化膜である埋込膜17によって埋める。具体的には、CVD法によってシリコン窒化膜を成膜した後、ドライエッチング法を用いて、サイドウォール絶縁膜13の上面が露出するまでシリコン窒化膜を選択的にエッチングする。これにより、埋込膜17が完成する。
 続いて、シリコン酸化膜を選択的にエッチングすることによりサイドウォール絶縁膜13を除去し、さらに、サイドウォール絶縁膜13の下にあるマスク膜6、パッド酸化膜5、及び半導体基板2を順次エッチングすることにより、図23(a)(b)及び図24(a)~(d)に示すように、サイドウォール絶縁膜13のあった場所にトレンチT3を形成する。なお、マスク膜6のエッチングはシリコン窒化膜が選択的に除去される条件で行うことが好適であるが、この場合、素子分離用絶縁膜10、サイドウォール絶縁膜12、キャップ絶縁膜16、及び埋込膜17の上面もエッチングされることになる。これらの膜は以降の工程のために残しておく必要があるので、素子分離用絶縁膜10、サイドウォール絶縁膜12、キャップ絶縁膜16、及び埋込膜17の膜厚は、この工程でマスク膜6を除去した後にもこれらが残存するように、予め設定しておく必要がある。
 次に、トレンチT3を形成した後には、図25(a)(b)及び図26(a)~(d)に示すように、その内部にワードWLを形成する。具体的には、まず熱酸化法により、トレンチT3の内表面を覆うゲート絶縁膜18(第1のゲート絶縁膜)を形成する。次いで、CVD法によって、ゲート絶縁膜18を覆う窒化チタン膜である介在層19aと、タングステン膜19bとを順次成膜し、さらにドライエッチングによって、トレンチT3の内部で介在層19aとタングステン膜19bの上面が同じ高さとなるようにこれらをエッチングする。これにより、トレンチT3の下部には、介在層19aとタングステン膜19bの積層膜である導電膜19(第1の導電膜)が形成される。こうして形成した導電膜19は、Y方向に延伸するワード線WL(第1の配線)となる。なお、他の図面(図2(a)(b)など)ではワード線WLを単一の膜のように描いているが、これは見易さを優先させた結果であり、実際のワード線WLは、図26(a)(b)に示したように介在層19aとタングステン膜19bの積層膜となっている。ワード線WLの形成が終了した後には、CVD法によってシリコン窒化膜を成膜することによりトレンチT3の内部を埋込絶縁膜20で埋め、さらにCMP法による研磨を行うことで、導電膜8及びビット線コンタクトプラグ15の各上面を露出させる。
 次に、図27(a)(b)及び図28(a)~(d)に示すように、スパッタ法によって全面にタングステン膜である導電膜21を成膜し、さらに、プラズマCVD法によってシリコン窒化膜であるビットマスク膜22を成膜する。そして、フォトリソグラフィとドライエッチングを用いてこれらをビット線BLの形状にパターニングする。こうしてパターニングされた導電膜21はビット線BLとなり、メモリセル領域では下面でビット線コンタクトプラグ15と接触し、周辺回路領域では下面で導電膜8と接触する。なお、ビット線BLは、ワード線WLと同様、複数種類の導電膜を積層してなる積層膜としてもよい。また、ここではビット線BLを直線的な形状としているが、例えばビット線BLの一部を湾曲させた構成を採用することも可能である。
 ここで、導電膜21のパターニングでは、導電膜8及びビット線コンタクトプラグ15もパターニングされる。その結果、図25(a)(b)と図27(a)(b)とを比較すると理解されるように、導電膜8及びビット線コンタクトプラグ15のうちビット線BLの下に形成された部分以外の部分は除去され、素子分離用絶縁膜4及び半導体基板2の主面が露出する。これにより、メモリセル領域では、ビット線コンタクトプラグ15がビット線BLごとに分離されることとなる。一方、周辺回路領域でも、導電膜8がビット線BLごとに分離され、かつ、各活性領域3bのX方向両端部において半導体基板2の主面が露出することとなる。
 この後には、シリコン窒化膜を成膜した後エッチバックを行うことで、図2(a)(c)に示すように、ビット線BL等の側面にサイドウォール絶縁膜23を形成する。さらに、メモリセル領域においては、活性領域3aの両端部を覆っているパッド酸化膜5、マスク膜6、及びサイドウォール絶縁膜12を除去し、露出した半導体基板2の主面にイオンを注入することにより、不純物拡散層24,24を形成する。一方、周辺回路領域においても、活性領域3bの両端部に露出する半導体基板2の主面にイオンを注入することにより、不純物拡散層50を形成する。その後、上述したセルキャパシタCなどより上層の構成を作製することにより、半導体装置1が完成する。
 以上説明したように、本実施の形態による半導体装置1の製造方法によれば、ワード線WLと自己整合する素子分離用絶縁膜10を、絶縁膜(シリコン窒化膜)によって構成することが可能になる。したがって、素子分離領域に電圧を印加する必要がなくなるので、ワード線WLと自己整合する素子分離領域が導電膜によって構成されてしまう背景技術に比べ、回路を簡素化することが可能になる。
 また、素子分離用絶縁膜10、キャップ絶縁膜16、サイドウォール絶縁膜12、及び埋込膜17をシリコン窒化膜(第1の材料)で構成する一方、サイドウォール絶縁膜12をシリコン酸化膜(第1の材料とは異なる第2の材料)で構成したので、図24(a)(c)等に示すように、サイドウォール絶縁膜12のみを選択的に除去し、ワード線WLを埋め込むためのトレンチT3を形成することが可能になる。また、犠牲膜9の下地としてシリコン窒化膜からなるマスク膜6を形成したので、図12(a)等に示すように、壁状の素子分離用絶縁膜10を好適に形成することが可能になる。
 また、トレンチT3を形成する際にはシリコン窒化膜であるマスク膜6をエッチングする必要があるが、このエッチングの終了後にも素子分離用絶縁膜10、サイドウォール絶縁膜12、キャップ絶縁膜16、及び埋込膜17が残存するようこれらの膜厚を設定したので、その後に行われる半導体基板2のエッチングを、これらの膜をマスクとするエッチングにより行うことが可能になる。
 また、本実施の形態による半導体装置1の製造方法によれば、メモリセル領域の形成と同時に周辺回路領域も形成できるので、製造コストを削減することが可能になる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 例えば、上記実施の形態では、素子分離用絶縁膜10、サイドウォール絶縁膜12、キャップ絶縁膜16、及び埋込膜17をシリコン窒化膜で構成し、サイドウォール絶縁膜12をシリコン酸化膜で構成したが、トレンチT3を形成する際にサイドウォール絶縁膜12のみを選択的に除去できることを条件として、他の材料によりこれらを構成することとしてもよい。
 また、上記実施の形態では、図1(a)に示したように、各活性領域3a内において、素子分離用絶縁膜10とそれに隣接するワード線WLの間の距離、ワード線WLのX方向の幅、ワード線WL間の距離をいずれも最小加工寸法Fとしたが、素子分離用絶縁膜10とそれに隣接するワード線WLの間の距離が一定値となっている限り、各部分の長さは最小加工寸法F以外の値としても構わない。また、素子分離用絶縁膜10とそれに隣接するワード線WLの間の距離、ワード線WLのX方向の幅、ワード線WL間の距離は、それぞれ互いに同一の値でなくてもよい。これらの長さの制御は、素子分離用絶縁膜10を埋め込むためのトレンチT1(図9(a)参照)のX方向の間隔、及び、サイドウォール絶縁膜12,13(図15(a)参照)の横方向の膜厚を制御することによって行うことができ、最小加工寸法Fより小さな値とすることも可能である。
1          半導体装置
3a         活性領域(第1の活性領域)
3b         活性領域(第2の活性領域)
3c         活性領域(仮の活性領域)
4          素子分離用絶縁膜(第1の素子分離用絶縁膜)
5          パッド酸化膜
6          マスク膜
7          ゲート絶縁膜(第2のゲート絶縁膜)
8          導電膜(第3の導電膜)
9          犠牲膜(犠牲膜)
10,10,10 素子分離用絶縁膜(第2の素子分離用絶縁膜)
11         カバー膜
12         サイドウォール絶縁膜(第1のサイドウォール絶縁膜)
13         サイドウォール絶縁膜(第2のサイドウォール絶縁膜)
14         不純物拡散層(第1の不純物拡散層)
15         ビット線コンタクトプラグ(第2の導電膜)
16         キャップ絶縁膜
17         埋込膜
18         ゲート絶縁膜(第1のゲート絶縁膜)
19         導電膜(第1の導電膜)
19a        介在層
19b        タングステン膜
20,20,20 埋込絶縁膜
21         導電膜
22         ビットマスク膜
23         サイドウォール絶縁膜
24        不純物拡散層(第2の不純物拡散層)
24        不純物拡散層(第3の不純物拡散層)
25         容量コンタクトプラグ
30,39      層間絶縁膜
31         ストッパー膜
33         下部電極
34         容量絶縁膜
35         上部電極
36         サポート膜
37         埋込導体膜
38         プレート電極
40,51,55   コンタクトプラグ
41         配線
50         不純物拡散層
53         コンタクトパッド
54         シリコン窒化膜
C          セルキャパシタ
BL         ビット線(第2の配線)
O1         開口部
T1         トレンチ(第1のトレンチ)
T2         トレンチ(第2のトレンチ)
T3         トレンチ(第3のトレンチ)
T3        トレンチ(第1のワードトレンチ)
T3        トレンチ(第2のワードトレンチ)
T4         トレンチ(第4のトレンチ)
WL         ワード線(第1の配線)
WL        ワード線(第1のワード線)
WL        ワード線(第2のワード線)

Claims (14)

  1.  半導体基板の主面に第1の素子分離用絶縁膜を埋め込むことにより、第1の方向に延在し、かつ該第1の方向と交差する第2の方向に繰り返し配置される複数の仮の活性領域を形成する工程と、
     前記主面を覆う犠牲膜を形成する工程と、
     前記第1の素子分離用絶縁膜、前記犠牲膜、及び前記半導体基板をエッチングすることにより、前記複数の仮の活性領域のそれぞれを前記第1の方向に分割してなる複数の第1の活性領域を区画する複数の第1のトレンチを形成する工程と、
     前記複数の第1のトレンチに第2の素子分離用絶縁膜を埋め込む工程と、
     前記複数の第1のトレンチに前記第2の素子分離用絶縁膜を埋め込んだ後、前記犠牲膜を除去する工程と、
     前記犠牲膜を除去した後、前記第2の素子分離用絶縁膜のうち前記主面の表面から突出している部分の側面を覆う第1のサイドウォール絶縁膜を形成する工程と、
     前記第1のサイドウォール絶縁膜の側面を覆う第2のサイドウォール絶縁膜を形成する工程と、
     前記第2のサイドウォール絶縁膜を形成したことによって現れる複数の第2のトレンチにキャップ絶縁膜を埋め込む工程と、
     前記第2の素子分離用絶縁膜、前記キャップ絶縁膜、及び前記第1のサイドウォール絶縁膜を残しつつ前記第2のサイドウォール絶縁膜を除去し、さらに前記第2の素子分離用絶縁膜、前記キャップ絶縁膜、及び前記第1のサイドウォール絶縁膜をマスクとして前記半導体基板をエッチングすることにより複数の第3のトレンチを形成する工程と、
     前記複数の第3のトレンチそれぞれの内表面を覆う第1のゲート絶縁膜を形成し、さらに前記複数の第3のトレンチそれぞれの下部に第1の導電膜を埋め込むことにより第1の配線を形成する工程と
     を備えることを特徴とする半導体装置の製造方法。
  2.  前記第2の素子分離用絶縁膜、前記キャップ絶縁膜、及び前記第1のサイドウォール絶縁膜は第1の材料によって構成され、
     前記第2のサイドウォール絶縁膜は、前記第1の材料とは異なる第2の材料によって構成される
     ことを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記複数の仮の活性領域を形成した後、前記犠牲膜を形成する前にマスク膜を形成する工程をさらに備え、
     前記犠牲膜は前記第2の材料によって構成され、
     前記マスク膜は前記第1の材料によって構成される
     ことを特徴とする請求項2に記載の半導体装置の製造方法。
  4.  前記複数の第3のトレンチの形成では、前記第2のサイドウォール絶縁膜の除去によって露出した前記マスク膜のエッチングも行い、
     前記第2の素子分離用絶縁膜、前記キャップ絶縁膜、及び前記第1のサイドウォール絶縁膜の垂直方向の膜厚は、前記複数の第3のトレンチの形成における前記マスク膜のエッチングの終了後に、前記第2の素子分離用絶縁膜、前記キャップ絶縁膜、及び第1のサイドウォール絶縁膜が残存するよう設定される
     ことを特徴とする請求項3に記載の半導体装置の製造方法。
  5.  前記主面のうち、前記複数の第2のトレンチそれぞれの下方に位置する部分に第1の不純物拡散層を形成する工程と、
     前記複数の第2のトレンチそれぞれの下部に第2の導電膜を埋め込む工程とをさらに備え、
     前記キャップ絶縁膜は、前記第2の導電膜の上面に形成される
     ことを特徴とする請求項1に記載の半導体装置の製造方法。
  6.  前記第1の配線の形成後、前記複数の第3のトレンチそれぞれの上部を埋める埋込絶縁膜を形成する工程と、
     前記第2の素子分離用絶縁膜、前記キャップ絶縁膜、前記埋込絶縁膜、及び前記第1のサイドウォール絶縁膜をエッチングすることにより、前記第2の導電膜の上面を露出させる工程と、
     前記第2の導電膜の上面に接するように配置される第2の配線を形成する工程と
     をさらに備えることを特徴とする請求項5に記載の半導体装置の製造方法。
  7.  前記第2のサイドウォール絶縁膜のうち前記第2の方向の両端に相当する部分を除去するとともに、除去によって生じた空間を埋める埋込膜を形成する工程をさらに備え、
     前記複数の第3のトレンチを形成する工程では、前記第2の素子分離用絶縁膜、前記キャップ絶縁膜、前記埋込膜、及び前記第1のサイドウォール絶縁膜を残しつつ前記第2のサイドウォール絶縁膜を除去し、さらに前記第2の素子分離用絶縁膜、前記キャップ絶縁膜、前記埋込膜、及び前記第1のサイドウォール絶縁膜をマスクとして前記半導体基板をエッチングする
     ことを特徴とする請求項1に記載の半導体装置の製造方法。
  8.  前記複数の仮の活性領域を形成した後、前記犠牲膜を形成する前に、マスク膜を形成する工程と、
     それぞれ底面に前記主面が露出する開口部を前記マスク膜に設ける工程と、
     前記開口部の底面に露出した前記主面を覆う第2のゲート絶縁膜を形成し、さらに、前記開口部を埋め、かつ前記マスク膜の上面を超える位置に上面を有する第3の導電膜を形成する工程とを備え、
     前記複数の仮の活性領域を形成する工程では、前記主面に複数の第2の活性領域も形成し、
     前記開口部は、前記複数の第2の活性領域を露出させる位置に設けられ、
     前記犠牲膜の形成は、前記第3の導電膜の形成後に行われる
     ことを特徴とする請求項1に記載の半導体装置の製造方法。
  9.  前記第1の素子分離用絶縁膜及び前記半導体基板をエッチングすることにより、前記複数の第2の活性領域の周囲を囲む第4のトレンチを形成する工程と、
     前記第4のトレンチに前記第2の素子分離用絶縁膜を埋め込むとともに、前記第2及び前記第2の素子分離用絶縁膜の上面に前記第4のトレンチに囲まれた領域を覆うカバー膜を形成する工程と
     をさらに備えることを特徴とする請求項8に記載の半導体装置の製造方法。
  10.  前記第2の素子分離用絶縁膜及び前記第1のサイドウォール絶縁膜をエッチングすることにより、前記第3の導電膜の上面を露出させる工程と、
     前記第3の導電膜の上面に接するように配置される第2の配線を形成する工程と
     をさらに備えることを特徴とする請求項9に記載の半導体装置の製造方法。
  11.  半導体基板と、
     それぞれ前記半導体基板の主面に埋め込まれ、かつ第1の方向に延在する複数の第1の素子分離用絶縁膜と、
     それぞれ前記半導体基板の主面に埋め込まれ、かつ前記第1の方向と交差する第2の方向に延在し、前記複数の第1の素子分離用絶縁膜とともに、マトリクス状に配置された複数の第1の活性領域を区画する複数の第2の素子分離用絶縁膜と、
     前記半導体基板の主面に前記第2の方向に延在して設けられ、かつ前記複数の第2の素子分離用絶縁膜のうちの前記第1の方向に隣接する2つの間に配置された第1及び第2のワードトレンチと、
     それぞれ前記第1及び第2のワードトレンチの下部にゲート絶縁膜を介して埋め込まれた第1及び第2のワード線と、
     前記第1のワード線と前記第2のワード線との間に設けられた第1の不純物拡散層と、
     前記2つの第2の素子分離用絶縁膜のうちの一方と前記第1のワード線との間に設けられた第2の不純物拡散層と、
     前記2つの第2の素子分離用絶縁膜のうちの他方と前記第2のワード線との間に設けられた第3の不純物拡散層とを備え、
     前記第1及び第2のワードトレンチは、前記複数の第2の素子分離用絶縁膜に対して自己整合で形成されている
     ことを特徴とする半導体装置。
  12.  前記複数の第1の素子分離用絶縁膜はそれぞれシリコン酸化膜によって構成され、
     前記複数の第2の素子分離用絶縁膜はそれぞれシリコン窒化膜によって構成される
     ことを特徴とする請求項11に記載の半導体装置。
  13.  下面で前記第1の不純物拡散層に接するビット線コンタクトプラグと、
     下面で前記ビット線コンタクトプラグに接するビット線と
     をさらに備えることを特徴とする請求項11に記載の半導体装置。
  14.  それぞれ下面で前記第2及び第3の不純物拡散層に接する第1及び第2の容量コンタクトプラグと、
     それぞれ下面で前記第1及び第2の容量コンタクトプラグに接する第1及び第2のキャパシタと
     をさらに備えることを特徴とする請求項11に記載の半導体装置。
PCT/JP2014/058420 2013-04-01 2014-03-26 半導体装置及びその製造方法 WO2014162937A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014001786.8T DE112014001786T5 (de) 2013-04-01 2014-03-26 Halbleitervorrichtung und Herstellungsverfahren dafür
US14/781,149 US10128250B2 (en) 2013-04-01 2014-03-26 Semiconductor device and manufacturing method thereof
KR1020157030454A KR20150140299A (ko) 2013-04-01 2014-03-26 반도체 장치 및 그 제조 방법
US16/158,123 US10475797B2 (en) 2013-04-01 2018-10-11 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013076264 2013-04-01
JP2013-076264 2013-04-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/781,149 A-371-Of-International US10128250B2 (en) 2013-04-01 2014-03-26 Semiconductor device and manufacturing method thereof
US16/158,123 Division US10475797B2 (en) 2013-04-01 2018-10-11 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2014162937A1 true WO2014162937A1 (ja) 2014-10-09

Family

ID=51658235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058420 WO2014162937A1 (ja) 2013-04-01 2014-03-26 半導体装置及びその製造方法

Country Status (5)

Country Link
US (2) US10128250B2 (ja)
KR (1) KR20150140299A (ja)
DE (1) DE112014001786T5 (ja)
TW (1) TW201511230A (ja)
WO (1) WO2014162937A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151447A (zh) * 2019-06-27 2020-12-29 福建省晋华集成电路有限公司 半导体元件及其制造方法
CN112670294A (zh) * 2020-12-22 2021-04-16 长江存储科技有限责任公司 半导体器件及其制作方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876319B (zh) * 2015-12-10 2018-03-27 华邦电子股份有限公司 存储元件的制造方法
KR102617422B1 (ko) * 2016-12-19 2023-12-21 삼성전자주식회사 반도체 장치
TWI763716B (zh) * 2017-09-21 2022-05-11 聯華電子股份有限公司 隔離結構的製造方法
CN110890328B (zh) * 2018-09-11 2022-03-18 长鑫存储技术有限公司 半导体存储器的形成方法
CN111128895A (zh) * 2018-10-30 2020-05-08 长鑫存储技术有限公司 半导体器件及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263201A (ja) * 2007-04-13 2008-10-30 Qimonda Ag メモリセルアレイを備えた集積回路および集積回路の形成方法
US20110266647A1 (en) * 2008-05-05 2011-11-03 Micron Technology, Inc. Methods of Forming Isolated Active Areas, Trenches, and Conductive Lines in Semiconductor Structures and Semiconductor Structures Including the Same
JP2012134395A (ja) * 2010-12-22 2012-07-12 Elpida Memory Inc 半導体装置および半導体装置の製造方法
JP2012234964A (ja) * 2011-04-28 2012-11-29 Elpida Memory Inc 半導体装置及びその製造方法
JP2012238642A (ja) * 2011-05-10 2012-12-06 Elpida Memory Inc 半導体装置及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049707A (ja) * 2012-09-04 2014-03-17 Ps4 Luxco S A R L 半導体装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263201A (ja) * 2007-04-13 2008-10-30 Qimonda Ag メモリセルアレイを備えた集積回路および集積回路の形成方法
US20110266647A1 (en) * 2008-05-05 2011-11-03 Micron Technology, Inc. Methods of Forming Isolated Active Areas, Trenches, and Conductive Lines in Semiconductor Structures and Semiconductor Structures Including the Same
JP2012134395A (ja) * 2010-12-22 2012-07-12 Elpida Memory Inc 半導体装置および半導体装置の製造方法
JP2012234964A (ja) * 2011-04-28 2012-11-29 Elpida Memory Inc 半導体装置及びその製造方法
JP2012238642A (ja) * 2011-05-10 2012-12-06 Elpida Memory Inc 半導体装置及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151447A (zh) * 2019-06-27 2020-12-29 福建省晋华集成电路有限公司 半导体元件及其制造方法
CN112151447B (zh) * 2019-06-27 2024-05-28 福建省晋华集成电路有限公司 半导体元件及其制造方法
CN112670294A (zh) * 2020-12-22 2021-04-16 长江存储科技有限责任公司 半导体器件及其制作方法
CN112670294B (zh) * 2020-12-22 2024-04-09 长江存储科技有限责任公司 半导体器件及其制作方法

Also Published As

Publication number Publication date
US20190139965A1 (en) 2019-05-09
KR20150140299A (ko) 2015-12-15
US10128250B2 (en) 2018-11-13
US10475797B2 (en) 2019-11-12
DE112014001786T5 (de) 2015-12-24
TW201511230A (zh) 2015-03-16
US20160043090A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
WO2014162937A1 (ja) 半導体装置及びその製造方法
KR101564052B1 (ko) 반도체 소자 및 그 제조 방법.
US7994560B2 (en) Integrated circuit comprising a transistor and a capacitor, and fabrication method
JP3703885B2 (ja) 半導体記憶装置とその製造方法
US8415738B2 (en) Semiconductor memory device and manufacturing method thereof
JP5555452B2 (ja) 半導体装置及びその製造方法並びにデータ処理システム
JP2011018825A (ja) 半導体装置及びその製造方法
KR100652370B1 (ko) 플로팅 바디효과를 제거한 반도체 메모리소자 및 그제조방법
KR20150118485A (ko) 반도체 소자
US9048293B2 (en) Semiconductor device and method for manufacturing the same
JP2008288597A (ja) 半導体素子及びその製造方法並びにdramの製造方法
JP2013058676A (ja) 半導体装置及びその製造方法、並びにデータ処理システム
JP2008300623A (ja) 半導体装置及びその製造方法、並びに、データ処理システム
JP2012248686A (ja) 半導体装置及びその製造方法
JP2008288391A (ja) 半導体装置及びその製造方法
JP2007329489A (ja) 集積回路装置およびその製造方法
US20100001249A1 (en) Semiconductor device enabling further microfabrication
KR20070047069A (ko) 수직 트랜지스터를 구비한 반도체 소자 및 그 제조방법
US20160099248A1 (en) Semiconductor memory device with improved active area/word line layout
JP2012094762A (ja) 半導体装置および半導体装置の製造方法
TW201442210A (zh) 半導體裝置及其製造方法
US8969935B2 (en) Semiconductor memory device having plural cell capacitors stacked on one another and manufacturing method thereof
JP5430981B2 (ja) 半導体記憶装置及びその製造方法
JP2013168570A (ja) 半導体装置及びその製造方法
KR20090077511A (ko) 콘택홀 형성 방법 및 이를 포함하는 반도체 소자의 제조방법.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14781149

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140017868

Country of ref document: DE

Ref document number: 112014001786

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20157030454

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14778539

Country of ref document: EP

Kind code of ref document: A1