WO2014157593A1 - Vリブドベルト - Google Patents

Vリブドベルト Download PDF

Info

Publication number
WO2014157593A1
WO2014157593A1 PCT/JP2014/059050 JP2014059050W WO2014157593A1 WO 2014157593 A1 WO2014157593 A1 WO 2014157593A1 JP 2014059050 W JP2014059050 W JP 2014059050W WO 2014157593 A1 WO2014157593 A1 WO 2014157593A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
knitted fabric
layer
ribbed belt
rubber
Prior art date
Application number
PCT/JP2014/059050
Other languages
English (en)
French (fr)
Inventor
郭代 田中
裕介 雀ヶ野
善仁 登川
学 光冨
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to EP14774679.6A priority Critical patent/EP2980446B1/en
Priority to CN201480019445.2A priority patent/CN105121899B/zh
Priority to US14/781,184 priority patent/US9752650B2/en
Publication of WO2014157593A1 publication Critical patent/WO2014157593A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/10V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with metal reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a V-ribbed belt in which a friction transmission surface is covered with a knitted fabric.
  • Auxiliary machines such as automobile air compressors and alternators are driven by a belt transmission device using an engine as a drive source.
  • the transmission belt of the belt transmission device includes a stretch layer that forms a belt back surface, a compression layer provided on one side of the stretch layer, and a belt circumferential direction embedded between the stretch layer and the compression layer.
  • a V-ribbed belt having a core wire and having a plurality of V-shaped rib portions extending in the circumferential direction of the belt serving as a friction transmission surface with a pulley is often used.
  • V-ribbed belts There are two types of V-ribbed belts, one in which the rib portion is formed by polishing and the other in which it is molded with a mold. Molding the rib part with a mold does not require a polishing process, and the fabric described later can be fixed to the friction transmission surface during molding, so the manufacturing process is simplified and the yield of rubber or the like forming the belt body Can also be greatly improved.
  • V-ribbed belts for driving auxiliary equipment are required to always have high power transmission performance regardless of the weather. If the rubber is exposed on the friction transmission surface, there is a problem that the friction coefficient is high in the dry state, and if it is wet, the friction coefficient is significantly reduced by the water film formed at the interface. When water enters the engine room, water adheres between the belt and the pulley, the friction coefficient of the belt decreases, and a stick-slip noise occurs. In addition, there is a problem that rubber tends to deteriorate with time.
  • the means for covering the friction transmission surface with the cloth is suitable for the V-ribbed belt in which the rib portion is formed by a mold because the cloth can be simultaneously fixed to the friction transmission surface at the time of molding.
  • the fabric is classified into a woven fabric and a knitted fabric, and the knitted fabric (for example, see Patent Documents 1 and 2) has irregularities formed by a plurality of rib portions.
  • the knitted fabric for example, see Patent Documents 1 and 2
  • the knitted fabric is warp knitted with two different yarns, and the first yarn is a filament such as polyamide having a rate higher than 5 N / 1000 dtex at 5% elongation.
  • the second yarn is a filament such as elastic polyurethane having a rate lower than 5 cN / 1000 dtex at 5% elongation.
  • a flock layer in which short fibers such as cotton are flocked may be provided.
  • the knitted fabric includes an elastic yarn such as polyurethane and at least one non-elastic yarn, and the non-elastic yarn includes a cellulose-based fiber or yarn such as cotton. .
  • Patent Document 1 the one provided with a floc layer of cotton short fibers and the one used in Patent Document 2 using a cellulose-based non-elastic yarn such as cotton absorb a small amount of water due to the water absorption of cotton.
  • a cellulose-based non-elastic yarn such as cotton absorbs a small amount of water due to the water absorption of cotton.
  • the amount of water that enters the interface of the friction transmission surface increases, such as when driving in rainy weather, the water cannot be absorbed sufficiently, and the friction of the friction transmission surface in a wet state There is a problem that the coefficient becomes low.
  • the thing described in patent document 1 also has the difficulty which takes extra work for the flock processing of the short fiber of cotton.
  • an object of the present invention is a V-ribbed belt in which the friction transmission surface is covered with a knitted fabric, and suppresses an increase in the friction coefficient of the friction transmission surface in the dry state and a decrease in the friction coefficient of the friction transmission surface in the wet state. In other words, the difference in the coefficient of friction between the dry state and the wet state is sufficiently reduced.
  • the present invention provides a stretch layer that forms a back surface of a belt, a compression layer provided on one side of the stretch layer, and a belt embedded between the stretch layer and the compression layer.
  • a plurality of V-shaped rib portions extending in the circumferential direction of the belt, which serve as friction transmission surfaces with the pulley, and the friction transmission surfaces are covered with a knitted fabric.
  • the knitted fabric is knitted with a polyester-based composite yarn and a cellulose-based natural spun yarn
  • the polyester-based composite yarn is a bulky processed yarn
  • the knitting ratio of the cellulose-based natural spun yarn is the polyester-based composite yarn A configuration that is more than the yarn knitting ratio was adopted.
  • the rubber of the belt main body does not exude to the friction transmission surface due to the bulkiness of the bulky processed yarn, and the friction coefficient increase in the dry state and the friction coefficient decrease in the wet state of the friction transmission surface are prevented.
  • Increase the knitting ratio of water-absorbing cellulose-based natural spun yarn to increase the water absorption capacity from the friction transmission surface prevent the friction coefficient of the friction transmission surface from decreasing in the wet state, and friction in the dry and wet states The difference in coefficients can be made sufficiently small.
  • the bulky processed yarn is a processed yarn having a bulky cross section by causing the fibers to bend (crimpability) or by covering the core yarn with another yarn.
  • the knitted fabric may be either a weft knitting or a warp knitting.
  • the knitting ratio of the cellulose-based natural spun yarn is preferably 50 to 95% by mass. If the knitting ratio is less than 50% by mass, sufficient water absorption may not be ensured. If the knitting ratio exceeds 95% by mass, the proportion of cellulose-based natural spun yarns that are inferior in abrasion resistance to polyester-based composite yarns increases. This is because the abrasion resistance of the knitted fabric may be lowered.
  • the polyester composite yarn is composed of a composite yarn (PTT / PET conjugate yarn) conjugated with polytrimethylene terephthalate (PTT) and polyethylene terephthalate (PET), or a polyurethane (PU) yarn, and polyethylene terephthalate on the surface thereof.
  • a composite yarn (PET / PU covering yarn) covered with (PET) may be used.
  • PTT / PET conjugated yarn is spun into a bonded form so as not to mix the components of PTT and PET, and uses a difference in thermal shrinkage between the two to make a bulky processed yarn that has been crimped by heat treatment It is.
  • the PET / PU covering yarn is a bulky processed yarn having a PU elastic yarn as a core and a PET yarn wound around the surface thereof.
  • the water-absorbing property can be further increased by using the cellulose-based natural spun yarn as a cotton yarn.
  • the bulk of the knitted fabric coated on the friction transmission surface is increased, and more reliably preventing the rubber of the belt body from seeping out into the friction transmission surface. Can do.
  • the water-absorbing effect of the cellulose-based natural spun yarn on the friction transmission surface is further enhanced by arranging a large amount of the cellulosic natural spun yarn in the layer on the friction transmission surface side. be able to.
  • means for providing the bulky layer include means for increasing the layer of the knitted fabric and means for increasing the bulk of the bulky processed yarn.
  • the wettability of the knitted fabric with water is improved, and the water entering the friction transmission surface is wetted and spread, so that the water absorption efficiency by the cellulose-based natural spun yarn is improved. Can be increased.
  • the knitted fabric should be knitted by weft. Since the weft knitted fabric is excellent in stretchability, it can be easily attached by the frictional transmission surface having irregularities formed in the rib portions.
  • a knitted fabric is knitted with a polyester composite yarn and a cellulose natural spun yarn
  • the polyester composite yarn is a bulky processed yarn
  • the knitting ratio of the cellulose natural spun yarn is knitted with a polyester composite yarn. Since the ratio is higher than the ratio, the increase of the friction coefficient of the friction transmission surface in the dry state and the decrease of the friction coefficient of the friction transmission surface in the wet state are suppressed, and the difference in the friction coefficient between the dry state and the wet state is sufficiently Can be small.
  • FIG. 1 is a schematic perspective view illustrating an example of a belt transmission device using a V-ribbed belt according to the present invention.
  • FIG. 2 is a cross-sectional view of the V-ribbed belt along the AA section of FIG.
  • FIGS. 3A, 3B, and 3C are conceptual diagrams illustrating the water absorption effect on the friction transmission surface by the hydrophilization treatment of the knitted fabric.
  • 4A, 4B, and 4C are conceptual diagrams illustrating a method for manufacturing the V-ribbed belt of FIG.
  • FIG. 5A and FIG. 5B are conceptual diagrams illustrating a friction coefficient measurement test in a dry state and a wet state, respectively.
  • FIG. 6 is a conceptual diagram illustrating a misalignment pronunciation evaluation test.
  • FIG. 1 shows an example of a belt drive device for driving an auxiliary machine using a V-ribbed belt 1 according to the present invention.
  • This belt transmission device is the simplest example in which the drive pulley 21 and the driven pulley 22 are provided one by one, and the V-ribbed belt 1 is wound around the pulleys 21 and 22.
  • the endless V-ribbed belt 1 is formed with a plurality of V-shaped rib portions 2 extending in the belt circumferential length direction on the inner peripheral side, and the rib portions of the V-ribbed belt 1 are formed on the outer peripheral surfaces of the pulleys 21 and 22.
  • a plurality of V-shaped grooves 23 into which 2 is fitted are provided.
  • the V-ribbed belt 1 includes a stretch layer 3 that forms the belt back surface on the outer periphery side, a compression layer 4 provided on the inner periphery side of the stretch layer 3, a stretch layer 3, and a compression layer 4. And a core wire 5 extending in the circumferential direction of the belt, and a plurality of V-shaped rib portions 2 extending in the circumferential direction of the belt are formed in the compression layer 4, and the surface of the rib portion 2 serving as a friction transmission surface Is covered with a knitted fabric 6.
  • the stretch layer 3 and the compression layer 4 are both formed of a rubber composition. If necessary, an adhesive layer may be provided between the stretch layer 3 and the compression layer 4.
  • This adhesive layer is provided for the purpose of improving the adhesion between the core wire 5 and the stretched layer 3 and the compressed layer 4, but is not essential.
  • the form of the adhesive layer may be a form in which the entire core wire 5 is embedded in the adhesive layer, or a form in which the core wire 5 is embedded between the adhesive layer and the stretched layer 3 or between the compression layer 4.
  • Examples of the rubber component of the rubber composition forming the compression layer 4 include vulcanizable or crosslinkable rubbers such as diene rubbers (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, Hydrogenated nitrile rubber, mixed polymer of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt, etc.), ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber , Silicone rubber, urethane rubber, fluorinated rubber and the like.
  • diene rubbers natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, Hydrogenated nitrile rubber, mixed polymer of hydrogen
  • ethylene- ⁇ -olefin elastomer ethylene- ⁇ -olefin rubber
  • ethylene- ⁇ -olefin rubber is preferred because it has ozone resistance, heat resistance, cold resistance, and is excellent in economy.
  • the ethylene- ⁇ -olefin elastomer include ethylene- ⁇ -olefin rubber and ethylene- ⁇ -olefin-diene rubber.
  • the ⁇ -olefin include propylene, butene, pentene, methylpentene, hexene, octene and the like.
  • ⁇ -olefins can be used alone or in combination of two or more.
  • diene monomer used as a raw material include non-conjugated diene monomers such as dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene, and cyclooctadiene. These diene monomers can be used alone or in combination of two or more.
  • ethylene- ⁇ -olefin elastomer examples include ethylene- ⁇ -olefin rubber (ethylene-propylene rubber), ethylene- ⁇ -olefin-diene rubber (ethylene-propylene-diene copolymer), and the like.
  • the ratio of ethylene to ⁇ -olefin (the mass ratio of the former / the latter) is 40/60 to 90/10, preferably 45/55 to 85/15, more preferably 55/45.
  • a range of ⁇ 80/20 is preferred.
  • the proportion of diene can be selected from the range of 4 to 15% by mass, for example, 4.2 to 13% by mass, preferably 4.4 to 11.5% by mass.
  • the iodine value of the ethylene- ⁇ -olefin-diene elastomer containing a diene component is, for example, in the range of 3 to 40, preferably 5 to 30, and more preferably 10 to 20. If the iodine value is too small, vulcanization of the rubber composition will be insufficient, and wear and sticking will easily occur. If the iodine value is too large, the scorch of the rubber composition will become short and difficult to handle, and heat resistance will be increased. There is a tendency to decrease.
  • organic peroxide that crosslinks the unvulcanized rubber layer examples include diacyl peroxide, peroxyester, dialkyl peroxide (dicumyl peroxide, t-butylcumyl peroxide, 1,1-dibutylbutyloxy). 3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexane, 1,3-bis (t-butylperoxy-isopropyl) benzene, di-t- Butyl peroxide) and the like. These organic peroxides can be used alone or in combination of two or more. Further, the organic peroxide has a one-minute half-life of about 150 ° C. to 250 ° C., preferably about 175 ° C. to 225 ° C. by thermal decomposition.
  • the ratio of the vulcanizing agent or crosslinking agent (especially organic peroxide) in the unvulcanized rubber layer is 1 to 10 mass in terms of solid content with respect to 100 mass parts of the rubber component (ethylene- ⁇ -olefin elastomer etc.). Parts, preferably 1.2 to 8 parts by mass, more preferably 1.5 to 6 parts by mass.
  • the rubber composition may contain a vulcanization accelerator.
  • a vulcanization accelerator examples include thiuram accelerators, thiazole accelerators, sulfenamide accelerators, bismaleimide accelerators, urea accelerators, and the like. These vulcanization accelerators can be used alone or in combination of two or more.
  • the ratio of the vulcanization accelerator is 0.5 to 15 parts by mass, preferably 1 to 10 parts by mass, and more preferably 2 to 5 parts by mass with respect to 100 parts by mass of the rubber component in terms of solid content.
  • the rubber composition may further contain a co-crosslinking agent (crosslinking aid or co-curing agent) in order to increase the degree of cross-linking and prevent adhesive wear and the like.
  • a co-crosslinking agent crosslinking aid or co-curing agent
  • co-crosslinking agent include conventional crosslinking aids such as polyfunctional (iso) cyanurates (triallyl isocyanurate, triallyl cyanurate, etc.), polydienes (1,2-polybutadiene, etc.), and metal salts of unsaturated carboxylic acids.
  • crosslinking aids can be used alone or in combination of two or more.
  • the ratio of the crosslinking aid (the total amount when a plurality of types are combined) is 0.01 to 10 parts by weight, preferably 0.05 to 8 parts by weight, based on 100 parts by weight of the rubber component, in terms of solid content. Good.
  • the rubber composition may contain short fibers as necessary.
  • Short fibers include cellulosic fibers (cotton, rayon, etc.), polyester fibers (PET, PEN fibers, etc.), aliphatic polyamide fibers (6 nylon fibers, 66 nylon fibers, 46 nylon fibers, etc.), aromatic polyamide fibers ( p-aramid fiber, m-aramid fiber, etc.), vinylon fiber, polyparaphenylene benzobisoxazole fiber and the like.
  • These short fibers may be subjected to conventional adhesion treatment or surface treatment such as treatment with an RFL solution in order to improve dispersibility and adhesion in the rubber composition.
  • the proportion of the short fibers may be 1 to 50 parts by mass, preferably 5 to 40 parts by mass, and more preferably 10 to 35 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition may be prepared by adding conventional additives such as vulcanization aids, vulcanization retarders, reinforcing agents (carbon black, silicon oxide such as hydrous silica), fillers (clay, Calcium carbonate, talc, mica, etc.), metal oxides (zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), plasticizers (paraffinic oil, naphthenic oil, Oils such as process oil), processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, fatty acid amide, etc.), anti-aging agents (antioxidants, thermal anti-aging agents, anti-bending agents) , Ozone degradation inhibitors, etc.), colorants, tackifiers, coupling agents (silane coupling agents, etc.), stabilizers (UV absorbers, Antioxidant, antiozonants, thermal stabilizers, etc.), lubricants (graphite, molybdenum disulfide, ultrahigh mole
  • the metal oxide may act as a crosslinking agent.
  • These additives can be used alone or in combination of two or more.
  • the ratio of these additives can be selected from a conventional range depending on the type.
  • the ratio of the reinforcing agent carbon black, silica, etc.
  • the ratio of metal oxide such as zinc oxide
  • the ratio of plasticizer is 1 to
  • the proportion of 30 parts by mass preferably 5 to 25 parts by mass
  • the processing agent such as stearic acid
  • the stretch layer 3 may be formed of a rubber composition similar to that of the compression layer 4 (a rubber composition containing a rubber component such as an ethylene- ⁇ -olefin elastomer) or a cloth (reinforcing cloth) such as a canvas. May be.
  • the reinforcing cloth include cloth materials such as woven cloth, wide-angle sail cloth, knitted cloth, and non-woven cloth. Of these, preferred are woven fabrics woven in the form of plain weave, twill weave, satin weave, etc., and wide-angle canvas and knitted fabric in which the crossing angle between warp and weft is about 90 to 130 °.
  • the fibers constituting the reinforcing cloth the same fibers as the short fibers can be used.
  • the reinforcing cloth may be treated with an RFL solution (such as a dipping process), and then subjected to a coating process or the like to form a canvas with rubber.
  • the stretch layer 3 is preferably formed of the same rubber composition as the compression layer 4.
  • the same type or type of rubber as the rubber component of the compression layer 4 is often used.
  • the ratio of additives such as a vulcanizing agent or a crosslinking agent, a co-crosslinking agent, and a vulcanization accelerator can be selected from the same range as that of the rubber composition of the compression layer 4.
  • the rubber composition of the stretch layer 3 may contain short fibers similar to those of the compression layer 4 in order to suppress the generation of abnormal noise due to adhesion of the back rubber when the back surface is driven.
  • the form of the short fiber may be linear or may be a partially bent shape (for example, a milled fiber described in Japanese Patent Application Laid-Open No. 2007-120507).
  • an uneven pattern may be provided on the surface of the stretch layer 3 (belt backside).
  • the concavo-convex pattern include a knitted fabric pattern, a woven fabric pattern, a suede woven fabric pattern, an embossed pattern (for example, a dimple shape), and the size and depth are not particularly limited.
  • the core 5 is not particularly limited, and polyester fiber (polybutylene terephthalate fiber, polyethylene terephthalate fiber, polytrimethylene terephthalate fiber, polyethylene naphthalate fiber, etc.), aliphatic polyamide (nylon) fiber (6 nylon fiber, 66 Nylon fiber, 46 nylon fiber, etc.), aromatic polyamide (aramid) fiber (copolyparaphenylene, 3,4'oxydiphenylene, terephthalamide fiber, poly-p-phenylene terephthalamide fiber, etc.), polyarylate fiber, glass fiber A cord formed of carbon fiber, PBO fiber, or the like can be used. These fibers can be used alone or in combination of two or more.
  • polyester fibers having a low elastic modulus particularly low elastic polybutylene terephthalate fibers
  • nylon fibers particularly 66 nylon fibers, 46 nylon fibers
  • the fiber cannot sufficiently expand even when the flexible jacket 51 expands, and the pitch of the core 5 embedded in the V-ribbed belt 1 This is because the line is not stable, or the proper shape of the rib portion 2 is not formed.
  • the expansion coefficient of the flexible jacket 51 low (for example, about 1%).
  • the knitted fabric 6 may be a weft knitting or a warp knitting, but the weft knitting is excellent in stretchability, so that it can be easily attached by a friction transmission surface in which irregularities are formed in the rib portion 2.
  • Examples of the weft knitted in a single layer include flat knitting (Tengu knitting), rubber knitting, tack knitting, pearl knitting, etc., and those knitted in multiple layers include smooth knitting, interlock knitting, double rib Edition, single picket edition, Ponti Rome edition, Milan rib edition, double jersey edition, Kanoko edition (Omotanoko, Urakanoko, Double-sided Kanoko) and so on.
  • Examples of knitted warp knitted in a single layer include single denby and single cord, and those knitted in multiple layers include half tricot, double denby, double atlas, double cord and double tricot. .
  • the knitted fabric 6 is knitted with polyester composite yarn and cellulose natural spun yarn (for example, cotton yarn).
  • the polyester composite yarn is a bulky processed yarn.
  • the bulky processed yarn is a processed yarn having a larger cross section by causing the fibers to bend (crimpability) or by covering the core yarn with another yarn.
  • Bulky processed yarns include composite yarns (conjugate yarns), covering yarns, crimped yarns, woolly processed yarns, taslan processed yarns, interlaced yarns, etc.
  • Conjugate yarns and covering yarns are preferred.
  • the conjugate yarn has a cross-sectional structure in which two types of polymers are bonded together in the fiber axis direction.
  • crimping occurs due to the difference in shrinkage between the two polymers, resulting in a bulky yarn.
  • a composite yarn (PTT / PET conjugate yarn) conjugated with polytrimethylene terephthalate (PTT) and polyethylene terephthalate (PET), or a composite yarn (PBT) conjugated with polybutylene terephthalate (PBT) and polyethylene terephthalate (PET).
  • PET conjugate yarn a composite yarn conjugated with polytrimethylene terephthalate (PTT) and polyethylene terephthalate (PET) conjugated with polybutylene terephthalate (PBT) and polyethylene terephthalate (PET).
  • the covering yarn is a yarn in which the bulk of the entire yarn is increased by covering (covering) the periphery of the core yarn with another yarn.
  • a composite yarn PET / PU covering yarn
  • PU polyurethane
  • PA polyamide
  • PU polyurethane
  • PA polyamide
  • the cellulose-based natural spun yarn includes bamboo fiber, sugarcane fiber, seed hair fiber (cotton fiber (cotton linter), kapok, etc.), gin leather fiber (eg, hemp, kouzo, mitsumata, etc.), leaf fiber (eg, Manila hemp, Examples thereof include yarns obtained by spinning cellulose fibers (pulp fibers) derived from natural plants such as New Zealand hemp), cellulose fibers derived from animals such as wool, silk and squirt cellulose, bacterial cellulose fibers, and algal cellulose. Among these, cotton fiber is preferable in terms of excellent water absorption.
  • the knitting ratio of the cellulose-based natural spun yarn is preferably 50 to 95% by mass.
  • the knitted fabric structure may be a single layer or a multilayered knitted fabric 6, and a multilayered knitted fabric structure is preferable in order to more reliably prevent the rubber from seeping out from the belt body.
  • the bulkiness of the knitted fabric 6 is preferably 2.0 cm 3 / g or more, more preferably 2.4 cm 3 / g or more.
  • the upper limit is not particularly limited, for example, 4.0 cm 3 / g or less, or 3.5 cm 3 / g may be less.
  • Bulkiness (cm 3 / g) is obtained by dividing the thickness (cm) of the knitted fabric 6 by the mass per unit area (g / cm 2 ). It is also preferable to provide a bulky layer of the knitted fabric on the friction transmission surface in order to more surely prevent the rubber of the belt body from seeping into the friction transmission surface.
  • the knitted fabric 6 has a multi-layered knitted fabric structure, by disposing a large amount of water-absorbing cellulose-based natural spun yarn in the friction transmission surface side in the thickness direction of the knitted fabric 6, the friction transmission surface The water absorption can be further increased.
  • one layer is knitted only with cellulose-based natural spun yarn, or cellulose-based natural spun yarn and polyester-based composite yarn, and the other layer is knitted with only polyester-based composite yarn.
  • a multi-layer knitted fabric in which a large amount of cellulose-based natural spun yarn is arranged in one layer can be knitted.
  • water absorption at the friction transmission surface can be further increased.
  • the knitted fabric 6 may contain or adhere a surfactant or a hydrophilic softening agent as a hydrophilic treatment agent.
  • FIG. 3 is a conceptual diagram illustrating the behavior of water droplets adhering to the friction transmission surface when the hydrophilizing agent is contained or adhered to the knitted fabric 6 as described above.
  • the water droplets quickly wet and spread on the surface of the knitted fabric 6 subjected to the hydrophilic treatment as shown in FIG. 3 (b).
  • FIG. 3C water is absorbed by the cellulose-based natural spun yarn of the knitted fabric 6, and the water film on the friction transmission surface disappears. Therefore, a decrease in the friction coefficient of the friction transmission surface in the wet state is further suppressed.
  • hydrophilic treatment agent a surfactant or a hydrophilic softening agent can be used.
  • a method for containing or adhering these hydrophilic treatment agents to a knitted fabric a method of spraying a hydrophilic treatment agent on a knitted fabric, a method of coating a knitted fabric with a hydrophilic treatment agent, or a knitted fabric with a hydrophilic treatment agent The method of immersing in can be adopted.
  • a hydrophilizing agent as a surfactant
  • a surfactant is applied to the surface of a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface.
  • a method of incorporating a surfactant into the knitted fabric by vulcanization molding can also be employed.
  • the method of immersing the knitted fabric in the hydrophilizing agent is preferable because the hydrophilic softening agent can be contained and adhered more easily and more uniformly.
  • Surfactant is a generic term for substances that have a hydrophilic group that is easily compatible with water and a hydrophobic group (lipophilic group) that is easily compatible with oil, and works to uniformly mix polar and nonpolar substances.
  • hydrophilic group that is easily compatible with water
  • hydrophobic group lipophilic group
  • the type of surfactant is not particularly limited, and ionic surfactants, nonionic surfactants, and the like can be used.
  • the nonionic surfactant may be a polyethylene glycol type nonionic surfactant or a polyhydric alcohol type nonionic surfactant.
  • Polyethylene glycol type nonionic surfactants have a hydrophilic group formed by adding ethylene oxide to a hydrophobic base component having a hydrophobic group, such as higher alcohol, alkylphenol, higher fatty acid, higher polyhydric alcohol higher fatty acid ester, higher fatty acid amide, and polypropylene glycol. It is a given nonionic surfactant.
  • Examples of the higher alcohol as the hydrophobic base component include C 10-30 saturated alcohols such as lauryl alcohol, tetradecyl alcohol, cetyl alcohol, octadecyl alcohol, aralkyl alcohol, and C 10-26 unsaturated alcohols such as oleyl alcohol. It can be illustrated.
  • Examples of the alkylphenol include C 4-16 alkylphenol such as octylphenol and nonylphenol.
  • Higher fatty acids of the hydrophobic base component include saturated fatty acids (eg, C 10-30 saturated fatty acids such as myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, preferably C 12-28 saturated fatty acids, more preferably C 14-26 saturated fatty acids, especially C 16-22 saturated fatty acids, etc .; oxycarboxylic acids such as hydroxystearic acid, etc., unsaturated fatty acids (eg oleic acid, erucic acid, erucic acid) And C10-30 unsaturated fatty acids such as linoleic acid, linolenic acid, and eleostearic acid). These higher fatty acids may be used alone or in combination of two or more.
  • saturated fatty acids eg, C 10-30 saturated fatty acids such as myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoc
  • the polyhydric alcohol higher fatty acid ester is an ester of a polyhydric alcohol and the higher fatty acid, and has an unreacted hydroxyl group.
  • polyhydric alcohols include alkanediols (such as C 2-10 alkanediols such as ethylene glycol, propylene glycol, and butanediol), alkanetriols (such as glycerin, trimethylolethane, trimethylolpropane), and alkanetetraols (pentaerythritol, Examples thereof include diglycerin and the like, alkanehexaol (such as dipentaerythritol, sorbitol, and sorbit), alkaneoctaol (such as sucrose), and alkylene oxide adducts thereof (such as C 2-4 alkylene oxide adducts).
  • oxyethylene ethylene oxide or “ethylene glycol”
  • EO ethylene oxide
  • PO ethylene glycol
  • poly EO higher alcohol ethers poly EO 10-26 alkyl ethers such as poly EO lauryl ether and poly EO stearyl ether
  • C 10-26 such as poly EO poly PO alkyl ether
  • alkylphenol-EO adducts such as polyEO octylphenyl ether and polyEO nonylphenyl ether
  • fatty acid such as polyEO monolaurate, polyEO monooleate and polyEO monostearate Body
  • glycerol mono- or di-higher fatty acid esters -EO adduct glycerin mono- or dilaurate, glycerin mono- or dipalmitate, glyceryl mono- or distearate, EO adducts of glycerin mono- or di-C 10-26 fatty acid esters such as glycerol mono- or dioleate
  • Pentaerythritol higher fatty acid ester-EO adduct pentaerythritol mono to tri C 10-26 fatty acid ester-EO adduct such as pentaerythritol distearate-EO adduct
  • the polyhydric alcohol type nonionic surfactant is a nonionic surfactant in which a hydrophobic group such as a higher fatty acid is bonded to the polyhydric alcohol (especially alkanetriol or alkanehexaol such as glycerol, pentaerythritol, sucrose or sorbitol). It is an agent.
  • polyhydric alcohol type nonionic surfactant examples include glycerin fatty acid esters such as glycerin monostearate and glycerin monooleate, pentaerythritol fatty acid esters such as pentaerythritol monostearate and pentaerythritol beef tallow fatty acid ester, Sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monostearate, sorbitol fatty acid esters such as sorbitol monostearate, sucrose fatty acid esters, alkyl ethers of polyhydric alcohols, fatty acid amides of alkanolamines such as coconut fatty acid diethanolamide, Examples thereof include alkyl polyglycosides. These polyhydric alcohol type nonionic surfactants can also be used alone or in combination of two or more, and may be used in combination with the polyethylene glycol type nonionic surfactant.
  • the ionic surfactants are alkylbenzene sulfonate, ⁇ -olefin sulfonate, long chain fatty acid salt, alkane sulfonate, alkyl sulfate, polyEO alkyl ether sulfate ester, naphthalene sulfonate formalin condensate, alkyl Anionic surfactants such as phosphates, cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts, and amphoteric surfactants such as alkylbetaines and imidazoline derivatives may also be used.
  • Preferred surfactants are nonionic surfactants, particularly polyethylene glycol type nonionic surfactants (eg, poly EOC 10-26 alkyl ether, alkylphenol-EO adducts, polyhydric alcohol C 10-26 fatty acid ester-EO Adducts, etc.).
  • polyethylene glycol type nonionic surfactants eg, poly EOC 10-26 alkyl ether, alkylphenol-EO adducts, polyhydric alcohol C 10-26 fatty acid ester-EO Adducts, etc.
  • the hydrophilic softening agent as the hydrophilic treatment agent is a softening agent used for imparting flexibility to fiber members such as knitted fabrics and woven fabrics.
  • General softeners have various effects such as softening the fiber member, improving slippage, preventing wrinkles, and preventing shrinkage.
  • the hydrophilic softening agent is slightly inferior to the surfactant in terms of sound resistance when the belt is wet, but it can improve the flexibility of the knitted fabric. There is an effect that the rib portion 2 can be easily attached by the friction transmission surface in which irregularities are formed.
  • the hydrophilic softening agent is not particularly limited, but a polyether-modified silicone softening agent or a polyester softening agent can be used.
  • the polyether-modified silicone softener is a softener containing silicone modified with a hydrophilic polyether group.
  • the polyether-modified silicone softener may be an emulsion in which silicone is dispersed in water together with a surfactant.
  • the polyester softener is an emulsion softener in which a hydrophilic polyester resin is dispersed in water together with a surfactant. Since the polyester softener has a high affinity with polyester fibers, the polyester composite yarn in the knitted fabric has a hydrophilic property. Can be increased.
  • a part of the knitted fabric 6 is made to contain and adhere a surfactant or a hydrophilic softener by an immersion treatment in which the knitted fabric 6 is immersed in the hydrophilic treatment agent.
  • a surfactant a polyethylene glycol type nonionic surfactant was used, and the concentration of the treatment liquid was 0.5 to 30% by mass.
  • hydrophilic softener a polyether-modified silicone softener and a polyester softener were used, and the concentration of the treatment liquid was 1 to 10% by mass.
  • the solvent of the treatment liquid containing the hydrophilic treatment agent is not particularly limited, and examples thereof include general-purpose solvents such as water, hydrocarbons, ethers, and ketones. These solvents may be used alone or as a mixed solvent.
  • the immersion time is not particularly limited.
  • the immersion treatment temperature is not particularly limited, and may be performed at room temperature or under heating. Moreover, you may perform a drying process as needed after an immersion process.
  • the drying treatment may be performed, for example, at a temperature of about 50 ° C. or higher, preferably about 100 ° C. or higher.
  • the knitted fabric 6 can be subjected to an adhesion treatment for the purpose of improving adhesion with a rubber composition constituting the compression layer 4 (rubber composition forming the surface of the rib portion 2).
  • an adhesive treatment of the knitted fabric 6 an immersion treatment in a resin-based treatment solution in which an epoxy compound or an isocyanate compound is dissolved in an organic solvent (toluene, xylene, methyl ethyl ketone, etc.), resorcin-formalin-latex solution (RFL solution) )
  • an immersion treatment in a rubber paste obtained by dissolving a rubber composition in an organic solvent an organic solvent
  • adhesion treatment examples include, for example, a friction treatment in which the knitted fabric 6 and the rubber composition are passed through a calender roll and the rubber composition is imprinted on the knitted fabric 6, and a spreading treatment in which a rubber paste is applied to the knitted fabric 6.
  • a coating treatment in which a rubber composition is laminated on the knitted fabric 6 can also be employed.
  • an unvulcanized stretch layer sheet 3S is wound around an inner mold 52 having a flexible jacket 51 mounted on the outer peripheral surface, and the core wire 5 is spirally wound thereon.
  • an unvulcanized compressed layer sheet 4S and a knitted fabric 6 are sequentially wound thereon to form a molded body 10.
  • the inner mold 52 around which the molded body 10 is wound is set concentrically on the inner circumferential side of the outer mold 53 in which a plurality of rib molds 53a are formed on the inner circumferential surface.
  • a predetermined gap is provided between the inner peripheral surface of the outer mold 53 and the outer peripheral surface of the molded body 10.
  • the flexible jacket 51 is expanded toward the inner peripheral surface of the outer mold 53 at a predetermined expansion rate (for example, 1 to 6%) to compress the molded body 10.
  • the layer sheet 4S and the knitted fabric 6 are press-fitted into the rib mold 53a of the outer mold 53, and vulcanization (for example, 160 ° C., 30 minutes) is performed in that state.
  • the inner mold 52 is extracted from the outer mold 53, the vulcanized rubber sleeve 10A having the plurality of rib portions 2 is removed from the outer mold 53, and then added using a cutter.
  • the rubber rubber sleeve 10 ⁇ / b> A is cut into a predetermined width along the circumferential direction to finish the V-ribbed belt 1.
  • the manufacturing method of the V-ribbed belt 1 is not limited to the above-described method, and other known methods disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-82702 may be employed.
  • the knitting ratio is 50 to 95% by mass
  • the polyester composite yarn is PTT / PET.
  • the knitted fabric structures of Examples 1 to 4 were single layers, and the knitted fabric structures of Examples 5 to 10 were multi-layered, and many cotton yarns were arranged in the layer on the friction transmission surface side (belt surface side).
  • a knitted fabric 6 made of cellulose-based natural spun yarn and a non-cellulosic PU yarn were used, the knitted fabric structure was a single layer, and the knitting ratio of the cotton yarn was 60% by mass (comparative example) 1), a knitted fabric 6 using a cotton yarn and a PTT / PET conjugate yarn as a knitted fabric structure and a knitting ratio of the cotton yarn of 30% by mass (Comparative Example 2), and the multilayer of Example 6 A knitted fabric 6 (Comparative Example 3) in which a large amount of cotton yarn was arranged on the rubber side (compression layer side) opposite to the belt surface was prepared.
  • the knitted fabrics 6 of Examples 1 to 10 and Comparative Examples 1 to 3 were all knitted by weft knitting.
  • Table 1 also shows the bulkiness of these knitted fabrics 6.
  • the bulkiness of Examples 1 to 10 is 2.0 to 3.2 cm 3 / g
  • Comparative Example 1 is 1.6 cm 3 / g
  • Comparative Example 2 is 2.6 cm 3 / g
  • Comparative Example 3 is 3.2 cm 3. / G.
  • the rubber compositions of the rubber for the stretch layer, the rubber for the compression layer, and the rubber for adhesion treatment of the knitted fabric 6 in Examples 1 to 10 and Comparative Examples 1 to 3 are the same in composition.
  • Each V-ribbed belt 1 was manufactured by the same manufacturing method shown in FIG.
  • the rubber sheets 3S and 4S used for the stretch layer 3 and the compression layer 4 are obtained by kneading the rubber having the composition shown in Table 2 using a known method such as a Banbury mixer, and passing the kneaded rubber through a calender roll. To a predetermined thickness.
  • the rubber for adhesion treatment the rubber composition having the composition shown in Table 2 was dissolved in an organic solvent to form a rubber paste, and the knitted fabric 6 was immersed in this rubber paste.
  • the friction coefficient measurement test includes a driving pulley (Dr.) having a diameter of 121.6 mm, an idler pulley (IDL.1) having a diameter of 76.2 mm, and an idler pulley (IDL.2) having a diameter of 61.0 mm. ), An idler pulley (IDL.3) having a diameter of 76.2 mm, an idler pulley (IDL.4) having a diameter of 77.0 mm, and a driven pulley (Dn.) Having a diameter of 121.6 mm.
  • the V-ribbed belt 1 was hung on the pulley.
  • T 1 tight side tension
  • T 2 slack side tension
  • a driven pulley (Dn.) Exit side of the loose side tension T 2 are Nari lay such a constant load (180N / 6rib), tight side tension T 1 of the entrance side, the torque of the driven pulley (Dn.) This constant load Tension is applied.
  • the misalignment sound generation evaluation test includes a drive pulley (Dr.) having a diameter of 90 mm, an idler pulley (IDL.1) having a diameter of 70 mm, a misalignment pulley (W / P) having a diameter of 120 mm, and a diameter of 80 mm.
  • an idler pulley (IDL.2) having a diameter of 70 mm, and an idler pulley (IDL.3) having a diameter of 80 mm an idler pulley (IDL.1) and a misalignment pulley (W / P) was set to 135 mm, and all the pulleys were adjusted to be positioned on the same plane (misalignment angle 0 °).
  • the V-ribbed belt 1 is hung on each pulley of the test machine, the rotation speed of the drive pulley (Dr.) is 1000 rpm, the belt tension is 300 N / 6 rib under the room temperature condition, and the exit of the drive pulley (Dr.) In the vicinity, 5 cc of water is periodically poured into the friction transmission surface of the V-ribbed belt 1 (at intervals of about 30 seconds), and the misalignment pulley (W / P) is shifted toward the front side relative to the other pulleys (misalignment).
  • the V-ribbed belt 1 was run by misalignment, and the misalignment angle (sound generation limit angle) when sound generation occurred near the entrance of the misalignment pulley (W / P) was determined.
  • the sounding limit angle was similarly obtained in a dry state where water was not injected. The larger the sounding limit angle, the better the sounding resistance. If the sounding limit angle is 2 ° or more, it is determined that the sounding resistance in the dry state and the wet state is good. did.
  • the wear resistance test has a driving pulley (Dr.) having a diameter of 120 mm, an idler pulley (IDL.1) having a diameter of 75 mm, a tension pulley (Ten.) Having a diameter of 60 mm, and a driven pulley having a diameter of 120 mm. Dn.) was used in order.
  • the V-ribbed belt 1 is hung on each of these pulleys, and the rotational speed of the drive pulley (Dr.) is 4900 rpm under an atmosphere of 120 ° C., and an initial load of 91 kgf is applied to the tension pulley (Ten.).
  • Abrasion rate (mass before test ⁇ mass after test) / mass before test ⁇ 100 (%) (2)
  • the wear resistance was evaluated as ⁇ when the wear rate was 2.5% or less, ⁇ when it was more than 2.5% and 3.5% or less, and ⁇ when more than 3.5%.
  • Example 1 In the rubber oozing observation test, Examples 1 to 4 in which the knitted fabric structure was made into a single layer using a bulky processed yarn for the knitted fabric 6 and the bulkiness was 2.0 to 2.3 cm 3 / g, In Example 10 in which the property was 2.6 cm 3 / g and the polyester softener was used as the hydrophilic treatment agent, slight rubber exudation was observed, the knitted fabric structure was multilayered, and the bulkiness was 2.4 to In Examples 5 to 9 and Comparative Examples 2 and 3 which were 3.2 cm 3 / g, no rubber exudation was observed.
  • the knitted fabric structure is a single layer, and the bulkiness is 1.6 cm 3 / g, noticeable rubber exudation is observed. It was. From this test result, it can be seen that the bulkiness of the knitted fabric 6 is preferably 2.0 cm 3 / g or more, more preferably 2.4 cm 3 / g or more.
  • Example 3 the difference ⁇ between the friction coefficient ⁇ between the dry state and the wet state was 0.3 or less, and good results were obtained.
  • the difference ⁇ was 0.6, which was slightly larger than the other examples.
  • the bulkiness is 2.4 cm 3 / g or more, no rubber oozes out, the knitting ratio of the cotton yarn is 60 to 80% by mass, and the cotton yarn is arranged in a large amount on the layer on the friction transmission surface side.
  • No. 9 has a difference ⁇ of the friction coefficient ⁇ as very small as 0.1 or less, in particular, Example 6 in which the bulkiness was 3.2 cm 3 / g, and further, the knitted fabric 6 contained and adhered a hydrophilizing agent.
  • Example 8 using a nonionic surfactant as a hydrophilization treatment agent for the knitted fabric 6 was able to obtain a very good sound resistance such that no sound was produced until rib displacement even in a wet state.
  • a polyether-modified silicone softener and a polyester softener which are hydrophilic softeners, as hydrophilic treatment agents.
  • the bulky processed yarn of the polyester-based composite yarn knitting the knitted fabric is a PTT / PET conjugate yarn or PET / PU covering yarn
  • the cellulose-based natural spun yarn is a cotton yarn.
  • the bulky processed yarn can be other composite yarns, and the cellulosic natural spun yarn can also be other natural spun yarns such as silk yarn and hemp yarn.
  • the hydrophilization treatment agent is contained in and attached to the knitted fabric by dipping treatment.
  • the hydrophilization treatment agent is contained in or attached to the knitted fabric by another method such as a spray method or a coating method. You may make it make it.
  • the surfactant is knitted by applying a surfactant to the surface of the cylindrical outer mold on which the rib mold is engraved and vulcanizing it during belt manufacture. You may make it contain in cloth.
  • the surfactant used for the hydrophilization treatment of the knitted fabric is a polyethylene glycol type nonionic surfactant (polyoxyalkyl ether) which is a nonionic surfactant.
  • polyethylene glycol type nonionic surfactant polyoxyalkyl ether
  • Other nonionic surfactants and ionic surfactants can also be used.
  • the hydrophilic softening agent used for the hydrophilic treatment is a polyether-modified silicone softening agent and a polyester softening agent, other hydrophilic softening agents may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Knitting Of Fabric (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、ベルト背面を形成する伸張層(3)と、前記伸張層(3)の片面側に設けられた圧縮層(4)と、前記伸張層(3)と前記圧縮層(4)との間に埋設されベルト周長方向に延びる心線(5)とを備え、前記圧縮層(4)にプーリとの摩擦伝動面となるベルト周長方向に延びる複数のV字状リブ部(2)を形成し、前記摩擦伝動面を編布(6)で被覆したVリブドベルト(1)において、前記編布(6)がポリエステル系複合糸とセルロース系天然紡績糸で編成されており、前記ポリエステル系複合糸が嵩高加工糸であり、前記セルロース系天然紡績糸の編成比率が前記ポリエステル系複合糸の編成比率以上である、Vリブドベルト(1)に関する。

Description

Vリブドベルト
 本発明は、摩擦伝動面を編布で被覆したVリブドベルトに関する。
 自動車のエアコンプレッサやオルタネータなどの補機は、エンジンを駆動源としてベルト伝動装置を用いて駆動されている。このベルト伝動装置の伝動ベルトには、ベルト背面を形成する伸張層と、伸張層の片面側に設けられた圧縮層と、伸張層と圧縮層との間に埋設されたベルト周長方向に延びる心線とを備え、圧縮層にプーリとの摩擦伝動面となるベルト周長方向に延びる複数のV字状リブ部を形成したVリブドベルトが多く用いられている。
 前記Vリブドベルトには、リブ部の形成を研磨加工で行うものと、金型で成形するものとがある。リブ部を金型で成形するものは、研磨工程を必要とせず、後述する布帛を成形時に摩擦伝動面に固着できるので、製造工程がシンプルになり、かつ、ベルト本体を形成するゴムなどの歩留りも大幅に向上させることができる。
 近年、自動車分野では静粛化についての厳しい要求があり、補機駆動用のVリブドベルトについても発音を抑制する対策が要請されている。このベルトの発音の原因としては、ベルト速度の大きな変動や高負荷条件で発生するプーリとのスティックスリップがある。雨天走行時等には、エンジンルーム内に水が入り、ベルトとプーリ間に水が付着してベルトの摩擦係数が低下し、スリップ音が発生することもある。
 また、補機駆動用のVリブドベルトは、天候に関わらず、常に高い動力伝達性能を有することが求められる。摩擦伝動面にゴムが露出していると、ドライな状態では摩擦係数が高い問題があり、ウェットな状態になると界面に形成される水膜によって摩擦係数が著しく低下するため、雨天走行時などにエンジンルーム内に水が入ると、ベルトとプーリ間に水が付着してベルトの摩擦係数が低下し、スティックスリップ音が発生するという問題があった。また、ゴムは経時劣化が生じやすい問題もあった。
 このような問題に対して、摩擦伝動面を形成する圧縮層に短繊維を配合し、短繊維を摩擦伝動面に露出させる手段や、摩擦伝動面を繊維で形成した布帛で被覆する手段が知られている。摩擦伝動面を布帛で被覆する手段は、リブ部を金型で成形するVリブドベルトでは、成形時に布帛を摩擦伝動面に同時に固着できるので好適である。
 前記布帛は、織成した織布としたものと、編成した編布としたものとがあり、編布としたもの(例えば、特許文献1、2参照)は、複数のリブ部によって凹凸が形成された摩擦伝動面に容易に添わせることができる柔軟性を備えるとともに、ベルト本体の変形に追随して伸縮する伸縮性を容易に確保できる利点がある。
 特許文献1に記載されたものでは、前記編布を2種の異なる糸で経編したものとして、第一の糸を、5%伸長時で5N/1000dtexより高い率を有するポリアミドなどのフィラメントとし、第二の糸を、5%伸長時で5cN/1000dtexより低い率を有する弾性ポリウレタンなどのフィラメントとしている。また、綿などの短繊維をフロック加工したフロック層を設けてもよいとしている。
 特許文献2に記載されたものでは、前記編布がポリウレタンなどの弾性ヤーンと、少なくとも1種類の非弾性ヤーンを含むものとし、非弾性ヤーンが綿などのセルロースベースのファイバ又はヤーンを含むものとしている。
日本国特許第4942767号公報 日本国特表2010-539394号公報
 特許文献1、2に記載された布帛を編布とした従来のVリブドベルトは、編布が伸張してゴムが透過しやすいので、ベルト本体のゴムが摩擦伝動面に滲み出しやすい。このため、摩擦伝動面のドライ状態での摩擦係数が増大するとともに、ウェット状態での摩擦係数が低下し、両状態での摩擦係数の差を十分に小さくできず、ドライ状態とウェット状態での動力伝達性能に差が生じるとともに、ウェット状態での耐発音性が悪いという問題がある。
 また、特許文献1で綿の短繊維のフロック層を設けたものや、特許文献2で非弾性ヤーンに綿などのセルロースベースのものを用いたものは、綿の吸水性により少量の水は吸収できるが、本降りの雨天走行時のように、摩擦伝動面の界面に浸入する水の量が多くなると、これらの水を十分に吸収することができず、ウェットな状態での摩擦伝動面の摩擦係数が低くなる問題がある。特許文献1に記載されたものは、綿の短繊維のフロック加工に余分な手間がかかる難点もある。
 そこで、本発明の課題は、摩擦伝動面を編布で被覆したVリブドベルトで、ドライ状態での摩擦伝動面の摩擦係数の増大と、ウェット状態での摩擦伝動面の摩擦係数の低下を抑制し、ドライ状態とウェット状態での摩擦係数の差を十分に小さくすることである。
 上記の課題を解決するために、本発明は、ベルト背面を形成する伸張層と、前記伸張層の片面側に設けられた圧縮層と、前記伸張層と前記圧縮層との間に埋設されベルト周長方向に延びる心線とを備え、前記圧縮層にプーリとの摩擦伝動面となるベルト周長方向に延びる複数のV字状リブ部を形成し、前記摩擦伝動面を編布で被覆したVリブドベルトにおいて、前記編布がポリエステル系複合糸とセルロース系天然紡績糸で編成されており、前記ポリエステル系複合糸が嵩高加工糸であり、前記セルロース系天然紡績糸の編成比率が前記ポリエステル系複合糸の編成比率以上である構成を採用した。
 上記構成により、嵩高加工糸の嵩高さによってベルト本体のゴムが摩擦伝動面に滲み出さないようにして、摩擦伝動面のドライ状態での摩擦係数増大とウェット状態での摩擦係数低下を防止するとともに、吸水性のあるセルロース系天然紡績糸の編成比率を多くして摩擦伝動面からの吸水能力を高め、ウェット状態での摩擦伝動面の摩擦係数低下を防止し、ドライ状態とウェット状態での摩擦係数の差を十分に小さくできるようにした。
 前記嵩高加工糸は、繊維にちぢれ(捲縮性)を生じさせたり、芯糸を別の糸でカバリングしたりして、断面の嵩を大きくした加工糸である。なお、編布は緯編と経編のいずれであってもよい。
 前記セルロース系天然紡績糸の編成比率は50~95質量%とするとよい。編成比率が50質量%未満では十分な吸水性を確保することができない場合があり、95質量%を超えると、ポリエステル系複合糸よりも耐摩耗性が劣るセルロース系天然紡績糸の割合が多くなって、編布の耐摩耗性が低下する場合があるからである。
 前記ポリエステル系複合糸は、ポリトリメチレンテレフタレート(PTT)とポリエチレンテレフタレート(PET)をコンジュゲートした複合糸(PTT/PETコンジュゲート糸)、又はポリウレタン(PU)糸を芯として、その表面にポリエチレンテレフタレート(PET)をカバリングした複合糸(PET/PUカバリング糸)とするとよい。PTT/PETコンジュゲート糸は、PTTとPETの成分を混じらないように貼り合せた形に紡糸し、両者の熱収縮率の差を利用して、熱処理により捲縮性を生じさせた嵩高加工糸である。また、PET/PUカバリング糸は、PU弾性糸を芯として、その表面にPET糸を巻き付けた嵩高加工糸である。
 前記セルロース系天然紡績糸を綿糸とすることにより、吸水性をより高めることができる。
 前記編布を多層に編成されたものとすることにより、摩擦伝動面に被覆された編布の嵩高さを増加させ、ベルト本体のゴムの摩擦伝動面への滲み出しをより確実に防止することができる。
 前記多層に編成された編布の厚み方向で、前記セルロース系天然紡績糸を前記摩擦伝動面側の層に多く配することにより、摩擦伝動面でのセルロース系天然紡績糸による吸水効果をより高めることができる。
 前記摩擦伝動面に前記編布の嵩高い層を設けることにより、ベルト本体のゴムの摩擦伝動面への滲み出しをより確実に防止することができる。嵩高い層を設ける手段としては、編布の層を多くする手段や、嵩高加工糸の嵩を大きくする手段が挙げられる。
 前記編布に親水化処理剤を含有又は付着させることにより、編布の水との濡れ性を向上させ、摩擦伝動面に浸入する水を濡れ拡がらせて、セルロース系天然紡績糸による吸水効率を高めることができる。
 前記編布は緯編で編成するとよい。緯編の編布は伸縮性に優れるので、リブ部で凹凸が形成された摩擦伝動面により容易に添わせることができる。
 本発明に係るVリブドベルトは、編布をポリエステル系複合糸とセルロース系天然紡績糸で編成し、ポリエステル系複合糸を嵩高加工糸とし、セルロース系天然紡績糸の編成比率をポリエステル系複合糸の編成比率以上としたので、ドライ状態での摩擦伝動面の摩擦係数の増大と、ウェット状態での摩擦伝動面の摩擦係数の低下を抑制し、ドライ状態とウェット状態での摩擦係数の差を十分に小さくすることができる。
図1は、本発明に係るVリブドベルトを用いたベルト伝動装置の例を説明する概略斜視図である。 図2は、図1のA-A断面に沿ったVリブドベルトの横断面図である。 図3(a)、(b)及び(c)は、編布の親水化処理による摩擦伝動面での吸水効果を説明する概念図である。 図4(a)、(b)及び(c)は、図1のVリブドベルトの製造方法を説明する概念図である。 図5(a)及び図5(b)は、それぞれドライ状態とウェット状態の摩擦係数測定試験を説明する概念図である。 図6は、ミスアライメント発音評価試験を説明する概念図である。
 以下、図面に基づき、本発明の実施形態を説明する。図1は、本発明に係るVリブドベルト1を用いた補機駆動用のベルト伝動装置の例を示す。このベルト伝動装置は、1つずつの駆動プーリ21と従動プーリ22を備え、これらのプーリ21、22間にVリブドベルト1を巻き掛けた最も簡単な例である。無端状のVリブドベルト1は、内周側にベルト周長方向に延びる複数のV字状リブ部2が形成されており、各プーリ21、22の外周面には、Vリブドベルト1の各リブ部2が嵌り込む複数のV字状溝23が設けられている。
 図2に示すように、前記Vリブドベルト1は、外周側のベルト背面を形成する伸張層3と、伸張層3の内周側に設けられた圧縮層4と、伸張層3と圧縮層4との間に埋設されベルト周長方向に延びる心線5とを備え、圧縮層4にベルト周長方向に延びる複数のV字状リブ部2が形成され、摩擦伝動面となるリブ部2の表面が編布6で被覆されている。伸張層3と圧縮層4は、後述するように、いずれもゴム組成物で形成されている。なお、必要に応じて、伸張層3と圧縮層4の間に接着層を設けてもよい。この接着層は、心線5の伸張層3及び圧縮層4との接着性を向上させる目的で設けられるが、必須のものではない。接着層の形態としては、接着層に心線5全体を埋設する形態でもよく、接着層と伸張層3との間又は圧縮層4との間に心線5を埋設する形態でもよい。
 前記圧縮層4を形成するゴム組成物のゴム成分としては、加硫又は架橋可能なゴム、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、水素化ニトリルゴム、水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマーなど)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素化ゴムなどが挙げられる。
 これらのうち、硫黄や有機過酸化物を含むゴム組成物で未加硫ゴム層を形成し、未加硫ゴム層を加硫又は架橋したものが好ましく、特に、有害なハロゲンを含まず、耐オゾン性、耐熱性、耐寒性を有し、経済性にも優れる点から、エチレン-α-オレフィンエラストマー(エチレン-α-オレフィン系ゴム)が好ましい。エチレン-α-オレフィンエラストマーとしては、例えば、エチレン-α-オレフィンゴム、エチレン-α-オレフィン-ジエンゴムなどが挙げられる。α-オレフィンとしては、プロピレン、ブテン、ペンテン、メチルペンテン、ヘキセン、オクテンなどが挙げられる。これらのα-オレフィンは、単独又は2種以上を組み合わせて使用することができる。また、これらの原料となるジエンモノマーとしては、非共役ジエン系単量体、例えば、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、1,4-ヘキサジエン、シクロオクタジエンなどが挙げられる。これらのジエンモノマーは、単独又は2種以上を組み合わせて使用することができる。
 前記エチレン-α-オレフィンエラストマーの代表例としては、エチレン-α-オレフィンゴム(エチレン-プロピレンゴム)、エチレン-α-オレフィン-ジエンゴム(エチレン-プロピレン-ジエン共重合体)などが挙げられる。エチレン-α-オレフィンエラストマーにおいて、エチレンとα-オレフィンとの割合(前者/後者の質量比)は、40/60~90/10、好ましくは45/55~85/15、さらに好ましくは55/45~80/20の範囲がよい。また、ジエンの割合は、4~15質量%の範囲から選択でき、例えば、4.2~13質量%、好ましくは4.4~11.5質量%の範囲とするとよい。なお、ジエン成分を含むエチレン-α-オレフィン-ジエンエラストマーのヨウ素価は、例えば、3~40、好ましくは5~30、さらに好ましくは10~20の範囲とするとよい。ヨウ素価が小さ過ぎると、ゴム組成物の加硫が不十分となって摩耗や粘着が生じやすくなり、ヨウ素価が大き過ぎると、ゴム組成物のスコーチが短くなって扱い難くなるとともに耐熱性が低下する傾向がある。
 前記未加硫ゴム層を架橋する有機過酸化物としては、ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイド(ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、1,1-ジ-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキサン、1,3-ビス(t-ブチルパーオキシ-イソプロピル)ベンゼン、ジ-t-ブチルパーオキサイドなど)などが挙げられる。これらの有機過酸化物は、単独又は2種以上を組み合わせて使用することができる。さらに、有機過酸化物は、熱分解による1分間の半減期が150℃~250℃、好ましくは175℃~225℃程度のものがよい。
 前記未加硫ゴム層の加硫剤又は架橋剤(特に有機過酸化物)の割合は、ゴム成分(エチレン-α-オレフィンエラストマーなど)100質量部に対して、固形分換算で1~10質量部、好ましくは1.2~8質量部、さらに好ましくは1.5~6質量部とするとよい。
 前記ゴム組成物は加硫促進剤を含んでいてもよい。加硫促進剤としては、チウラム系促進剤、チアゾール系促進剤、スルフェンアミド系促進剤、ビスマレイミド系促進剤、ウレア系促進剤などが挙げられる。これらの加硫促進剤は、単独又は2種以上を組み合わせて使用することができる。加硫促進剤の割合は、固形分換算で、ゴム成分100質量部に対して、0.5~15質量部、好ましくは1~10質量部、さらに好ましくは2~5質量部とするとよい。
 また、前記ゴム組成物は、架橋度を高め、粘着摩耗などを防止するために、さらに共架橋剤(架橋助剤又は共加硫剤)を含んでいてもよい。共架橋剤としては、慣用の架橋助剤、例えば、多官能(イソ)シアヌレート(トリアリルイソシアヌレート、トリアリルシアヌレートなど)、ポリジエン(1,2-ポリブタジエンなど)、不飽和カルボン酸の金属塩((メタ)アクリル酸亜鉛、(メタ)アクリル酸マグネシウムなど)、オキシム類(キノンジオキシムなど)、グアニジン類(ジフェニルグアニジンなど)、多官能(メタ)アクリレート(エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなど)、ビスマレイミド類(N,N’-m-フェニレンビスマレイミドなど)などが挙げられる。これらの架橋助剤は、単独又は2種以上を組み合わせて使用することができる。架橋助剤(複数種を組み合わせる場合は合計量)の割合は、固形分換算で、ゴム成分100質量部に対して、0.01~10質量部、好ましくは0.05~8質量部とするとよい。
 また、前記ゴム組成物は、必要に応じて、短繊維を含んでいてもよい。短繊維としては、セルロース系繊維(綿、レーヨンなど)、ポリエステル系繊維(PET、PEN繊維など)、脂肪族ポリアミド繊維(6ナイロン繊維、66ナイロン繊維、46ナイロン繊維など)、芳香族ポリアミド繊維(p-アラミド繊維、m-アラミド繊維など)、ビニロン繊維、ポリパラフェニレンベンゾビスオキサゾール繊維などが挙げられる。これらの短繊維は、ゴム組成物中での分散性や接着性を高めるため、慣用の接着処理又は表面処理、例えばRFL液などによる処理を施してもよい。短繊維の割合は、ゴム成分100質量部に対して、1~50質量部、好ましくは5~40質量部、さらに好ましくは10~35質量部とするとよい。
 さらに、前記ゴム組成物は、必要に応じて、慣用の添加剤、例えば、加硫助剤、加硫遅延剤、補強剤(カーボンブラック、含水シリカなどの酸化ケイ素など)、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、金属酸化物(酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、可塑剤(パラフィン系オイル、ナフテン系オイル、プロセスオイルなどのオイル類など)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイドなど)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲亀裂防止剤、オゾン劣化防止剤など)、着色剤、粘着付与剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、酸化防止剤、オゾン劣化防止剤、熱安定剤など)、潤滑剤(グラファイト、二硫化モリブデン、超高分子量ポリエチレンなど)、難燃剤、帯電防止剤などを含んでいてもよい。金属酸化物は架橋剤として作用させてもよい。これらの添加剤は、単独又は2種以上を組み合わせて使用することができる。また、これらの添加剤の割合は、種類に応じて慣用の範囲から選択でき、例えば、ゴム成分100質量部に対して、補強剤(カーボンブラック、シリカなど)の割合は10~200質量部(好ましくは20~150質量部)、金属酸化物(酸化亜鉛など)の割合は1~15質量部(好ましくは2~10質量部)、可塑剤(パラフィンオイルなどのオイル類)の割合は1~30質量部(好ましくは5~25質量部)、加工剤(ステアリン酸など)の割合は0.1~5質量部(好ましくは0.5~3質量部)とするとよい。
 前記伸張層3は、前記圧縮層4と同様のゴム組成物(エチレン-α-オレフィンエラストマーなどのゴム成分を含むゴム組成物)で形成してもよく、帆布などの布帛(補強布)で形成してもよい。補強布としては、織布、広角度帆布、編布、不織布などの布材が挙げられる。これらのうち、平織、綾織、朱子織などの形態で製織した織布や、経糸と緯糸との交差角が90~130°程度の広角度帆布や編布が好ましい。補強布を構成する繊維としては、前記短繊維と同様の繊維を利用できる。補強布は、RFL液で処理(浸漬処理など)した後、コーティング処理などを施してゴム付帆布としてもよい。
 前記伸張層3は、圧縮層4と同様のゴム組成物で形成するのが好ましい。このゴム組成物のゴム成分としては、圧縮層4のゴム成分と同系統又は同種のゴムを使用することが多い。また、加硫剤又は架橋剤、共架橋剤、加硫促進剤などの添加剤の割合も、それぞれ圧縮層4のゴム組成物と同様の範囲から選択できる。
 前記伸張層3のゴム組成物には、背面駆動時に背面ゴムの粘着による異音の発生を抑制するために、圧縮層4と同様の短繊維が含まれていてもよい。短繊維の形態は直線状でもよく、一部屈曲させた形状(例えば、日本国特開2007-120507号公報に記載のミルドファイバー)のものでもよい。Vリブドベルト1の走行時には、伸張層3においてベルト周方向に亀裂が生じ、Vリブドベルト1が輪断する恐れがあるが、短繊維をベルト幅方向又はランダムな方向に配向させることでこれを防止することができる。また、背面駆動時の異音の発生を抑制するためには、伸張層3の表面(ベルト背面)に凹凸パターンを設けてもよい。凹凸パターンとしては、編布パターン、織布パターン、スダレ織布パターン、エンボスパターン(例えばディンプル形状)などが挙げられ、大きさや深さは特に限定されない。
 前記心線5としては特に限定されず、ポリエステル繊維(ポリブチレンテレフタレート繊維、ポリエチレンテレフタレート繊維、ポリトリメチレンテレフタレート系繊維、ポリエチレンナフタレート繊維など)、脂肪族ポリアミド(ナイロン)繊維(6ナイロン繊維、66ナイロン繊維、46ナイロン繊維など)、芳香族ポリアミド(アラミド)繊維(コポリパラフェニレン・3,4‘オキシジフェニレン・テレフタルアミド繊維、ポリ-p-フェニレンテレフタルアミド繊維など)、ポリアリレート繊維、ガラス繊維、カーボン繊維、PBO繊維などで形成されたコードを用いることができる。これらの繊維は、単独又は2種以上を組み合わせて使用することができる。また、これらの繊維は、後述する可撓性ジャケット51の膨張率に応じて適宜選択される。例えば、膨張率が2%を超えるような高伸張の場合は、弾性率の低いポリエステル繊維(特に低弾性ポリブチレンテレフタレート繊維)、ナイロン繊維(特に66ナイロン繊維、46ナイロン繊維)が好ましい。これは、アラミド繊維、PBO繊維などの弾性率が高い繊維では、可撓性ジャケット51が膨張しても繊維は十分に伸張することができず、Vリブドベルト1に埋設される心線5のピッチラインが安定しなかったり、適正なリブ部2の形状が形成されなかったりするためである。このため、弾性率の高い繊維を使用するには、可撓性ジャケット51の膨張率を低く設定(例えば1%程度)するのが好ましい。
 前記編布6は、緯編であっても経編であってもよいが、緯編は伸縮性に優れるので、リブ部2で凹凸が形成された摩擦伝動面により容易に添わせることができる。緯編で単層に編成されたものとしては、平編(天竺編)、ゴム編、タック編、パール編などが挙げられ、多層に編成されたものとしては、スムース編、インターロック編、ダブルリブ編、シングルピケ編、ポンチローマ編、ミラノリブ編、ダブルジャージ編、鹿の子編(表鹿の子、裏鹿の子、両面鹿の子)などが挙げられる。経編で単層に編成されたものとしては、シングルデンビー、シングルコードなどが挙げられ、多層に編成されたものとしては、ハーフトリコット、ダブルデンビー、ダブルアトラス、ダブルコード、ダブルトリコットなどが挙げられる。
 また、編布6は、ポリエステル系複合糸とセルロース系天然紡績糸(例えば綿糸)とで編成されている。ポリエステル系複合糸は嵩高加工糸である。
 嵩高加工糸は、繊維にちぢれ(捲縮性)を生じさせたり、芯糸を別の糸でカバリングしたりして、断面の嵩を大きくした加工糸である。
 嵩高加工糸には、複合糸(コンジュゲート糸)、カバリング糸、捲縮加工糸、ウーリー加工糸、タスラン加工糸、インタレース加工糸などがあるが、嵩高加工糸であるポリエステル系複合糸としては、コンジュゲート糸やカバリング糸が好ましい。
 前記コンジュゲート糸は、2種類のポリマーを繊維軸方向に貼り合わせた断面構造を持ち、製造時や加工時に熱が加わると、両ポリマーの収縮率の違いにより捲縮が生じて嵩高い糸となる。例えばポリトリメチレンテレフタレート(PTT)とポリエチレンテレフタレート(PET)をコンジュゲートした複合糸(PTT/PETコンジュゲート糸)や、ポリブチレンテレフタレート(PBT)とポリエチレンテレフタレート(PET)をコンジュゲートした複合糸(PBT/PETコンジュゲート糸)がある。また、カバリング糸は、芯糸の周囲を別の糸で覆う(カバリング)することにより、糸全体の断面の嵩を大きくした糸である。例えば、伸縮性に優れたポリウレタン(PU)糸を芯として、その表面にポリエチレンテレフタレート(PET)をカバリングした複合糸(PET/PUカバリング糸)や、PUを芯としてポリアミド(PA)をカバリングした複合糸(PA/PUカバリング糸)がある。これらの複合糸のうち、伸縮性や耐摩耗性に優れる、PTT/PETコンジュゲート糸又はPET/PUカバリング糸が好ましい。
 前記セルロース系天然紡績糸は、竹繊維、サトウキビ繊維、種子毛繊維(綿繊維(コットンリンター)、カポックなど)、ジン皮繊維(例えば、麻、コウゾ、ミツマタなど)、葉繊維(例えば、マニラ麻、ニュージーランド麻など)などの天然植物由来のセルロース繊維(パルプ繊維)、羊毛、絹、ホヤセルロースなどの動物由来のセルロース繊維、バクテリアセルロース繊維、藻類のセルロースなどを紡績した糸が例示できる。このうち、特に吸水性に優れる点で、綿繊維が好ましい。
 前記セルロース系天然紡績糸の編成比率は好ましくは50~95質量%とされている。また、編布組織は単層又は多層の編布6を使用することができ、ベルト本体のゴムの滲み出しをより確実に防止するためには多層の編布組織が好ましい。
 前記嵩高加工糸を含んで編布を編成することにより、編布の嵩高性を大きくすることができる。編布6の嵩高性は、2.0cm/g以上が好ましく、より好ましくは2.4cm/g以上である。上限は特に限定されないが、例えば4.0cm/g以下、又は3.5cm/g以下であってよい。なお、嵩高性(cm/g)は、編布6の厚み(cm)を単位面積当たりの質量(g/cm)で除したものである。また、ベルト本体のゴムの摩擦伝動面への滲み出しをより確実に防止するためには、摩擦伝動面に前記編布の嵩高い層を設けることも好ましい。
 前記編布6を多層の編布組織とする場合は、編布6の厚み方向で、吸水性のあるセルロース系天然紡績糸を摩擦伝動面側の層に多く配することにより、摩擦伝動面での吸水性をより高めることができる。
 多層の編布を編成する場合に、一方の層をセルロース系天然紡績糸のみ、又は、セルロース系天然紡績糸とポリエステル系複合糸で編成し、他方の層をポリエステル系複合糸のみで編成することにより、一方の層にセルロース系天然紡績糸を多く配した多層編布を編成することもできる。セルロース系天然紡績糸を多く配した層を摩擦伝動面側に配置することにより、摩擦伝動面での吸水性をより高めることができる。
 前記編布6には、親水化処理剤として界面活性剤や親水性柔軟剤を含有又は付着させることができる。図3は、このように親水化処理剤を編布6に含有又は付着させた場合について、摩擦伝動面に付着する水滴の挙動を説明する概念図である。図3(a)に示すように摩擦伝動面に水滴が付着すると、該水滴は、図3(b)に示すように、親水化処理された編布6の表面に速やかに濡れ拡がって水膜となり、さらに図3(c)に示すように、編布6のセルロース系天然紡績糸に吸水されて、摩擦伝動面上の水膜がなくなる。したがって、ウェット状態での摩擦伝動面の摩擦係数の低下がより抑制される。
 前記親水化処理剤としては界面活性剤や親水性柔軟剤を用いることができる。これらの親水化処理剤を編布に含有又は付着させる方法としては、編布に親水化処理剤をスプレーする方法、編布に親水化処理剤をコーティングする方法、又は編布を親水化処理剤に浸漬する方法を採用することができる。また、親水化処理剤を界面活性剤とする場合は、後述するベルトの製造方法において、内周面に複数のリブ型が刻設された筒状外型の表面に界面活性剤を塗布して加硫成形することで、界面活性剤を編布に含有させる方法も採用することができる。これらの方法のうち、簡便かつより均一に親水性柔軟剤を含有、付着させることができることから、編布を親水化処理剤に浸漬する方法が好ましい。
 界面活性剤とは、水となじみ易い親水基と、油となじみ易い疎水基(親油基)とを分子内に持つ物質の総称であり、極性物質と非極性物質とを均一に混合する働きを有する以外に、表面張力を小さくして濡れ性を高めたり、物質と物質との間に界面活性剤が介在して界面の摩擦を小さくしたりする作用がある。
 界面活性剤の種類は特に限定されず、イオン界面活性剤、非イオン界面活性剤などが使用できる。非イオン界面活性剤は、ポリエチレングリコール型非イオン界面活性剤又は多価アルコール型非イオン界面活性剤であってもよい。
 ポリエチレングリコール型非イオン界面活性剤は、高級アルコール、アルキルフェノール、高級脂肪酸、多価アルコール高級脂肪酸エステル、高級脂肪酸アミド、ポリプロピレングリコールなどの疎水基を有する疎水性ベース成分にエチレンオキシドが付加して親水基が付与された非イオン界面活性剤である。
 疎水性ベース成分としての高級アルコールとしては、例えば、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、オクタデシルアルコール、アラルキルアルコールなどのC10-30飽和アルコール、オレイルアルコールなどのC10-26不飽和アルコールなどが例示できる。アルキルフェノールとしては、オクチルフェノール、ノニルフェノールなどのC4-16アルキルフェノールなどが例示できる。
 疎水性ベース成分の高級脂肪酸としては、飽和脂肪酸(例えば、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸などのC10-30飽和脂肪酸、好ましくはC12-28飽和脂肪酸、さらに好ましくはC14-26飽和脂肪酸、特にC16-22飽和脂肪酸など;ヒドロキシステアリン酸などのオキシカルボン酸など)、不飽和脂肪酸(例えば、オレイン酸、エルカ酸、エルシン酸、リノール酸、リノレン酸、エレオステアリン酸などのC10-30不飽和脂肪酸など)などが例示できる。これらの高級脂肪酸は、単独で又は二種以上組み合わせてもよい。
 前記多価アルコール高級脂肪酸エステルは、多価アルコールと前記高級脂肪酸とのエステルであって、未反応のヒドロキシル基を有している。多価アルコールとしては、アルカンジオール(エチレングリコール、プロピレングリコール、ブタンジオールなどのC2-10アルカンジオールなど)、アルカントリオール(グリセリン、トリメチロールエタン、トリメチロールプロパンなど)、アルカンテトラオール(ペンタエリスリトール、ジグリセリンなど)、アルカンヘキサオール(ジペンタエリスリトール、ソルビトール、ソルビットなど)、アルカンオクタオール(ショ糖など)、これらのアルキレンオキサイド付加体(C2-4アルキレンオキサイド付加体など)などが例示できる。
 以下に、「オキシエチレン」、「エチレンオキサイド」又は「エチレングリコール」を「EO」で表し、「オキシプロピレン」、「プロピレンオキサイド」又は「プロピレングリコール」を「PO」で表すと、ポリエチレングリコール型非イオン界面活性剤の具体例としては、例えば、ポリEO高級アルコールエーテル(ポリEOラウリルエーテル、ポリEOステアリルエーテルなどのポリEOC10-26アルキルエーテル)、ポリEOポリPOアルキルエーテルなどのC10-26高級アルコール-EO-PO付加体;ポリEOオクチルフェニルエーテル、ポリEOノニルフェニルエーテルなどのアルキルフェノール-EO付加体;ポリEOモノラウレート、ポリEOモノオレエート、ポリEOモノステアレートなどの脂肪酸-EO付加体;グリセリンモノ又はジ高級脂肪酸エステル-EO付加体(グリセリンモノ又はジラウレート、グリセリンモノ又はジパルミテート、グリセリンモノ又はジステアレート、グリセリンモノ又はジオレートなどのグリセリンモノ又はジC10-26脂肪酸エステルのEO付加体)、ペンタエリスリトール高級脂肪酸エステル-EO付加体(ペンタエリスリトールジステアレート-EO付加体などのペンタエリスリトールモノ乃至トリC10-26脂肪酸エステル-EO付加体など)、ジペンタエリスリトール高級脂肪酸エステル-EO付加体、ソルビトール高級脂肪酸エステル-EO付加体、ソルビット高級脂肪酸エステル-EO付加体、ポリEOソルビタンモノラウレート、ポリEOソルビタンモノステアレート、ポリEOソルビタントリステアレートなどのソルビタン脂肪酸エステル-EO付加体、ショ糖高級脂肪酸エステル-EO付加体などの多価アルコール脂肪酸エステル-EO付加体;ポリEOラウリルアミノエーテル、ポリEOステアリルアミノエーテルなどの高級アルキルアミン-EO付加体;ポリEO椰子脂肪酸モノエタノールアマイド、ポリEOラウリン酸モノエタノールアマイド、ポリEOステアリン酸モノエタノールアマイド、ポリEOオレイン酸モノエタノールアマイドなどの脂肪酸アミド-EO付加体;ポリEOヒマシ油、ポリEO硬化ヒマシ油などの油脂-EO付加体;ポリPO-EO付加体(ポリEO-ポリPOブロック共重合体など)などが挙げられる。これらのポリエチレングリコール型非イオン界面活性剤は単独で又は二種以上組み合わせて使用できる。
 多価アルコール型非イオン界面活性剤は、前記多価アルコール(特に、グリセロール、ペンタエリスリトール、ショ糖、ソルビトールなどのアルカントリオール乃至アルカンヘキサオール)に高級脂肪酸などの疎水基が結合した非イオン界面活性剤である。多価アルコール型非イオン界面活性剤としては、例えば、グリセリンモノステアレート、グリセリンモノオレエートなどのグリセリン脂肪酸エステル、ペンタエリストールモノステアレート、ペンタエリストールジ牛脂脂肪酸エステルなどのペンタエリスリトール脂肪酸エステル、ソルビタンモノラウレート、ソルビタンモノステアレートなどのソルビタン脂肪酸エステル、ソルビトールモノステアレートなどのソルビトール脂肪酸エステル、ショ糖脂肪酸エステル、多価アルコールのアルキルエーテル、椰子脂肪酸ジエタノールアマイドなどのアルカノールアミン類の脂肪酸アミド、アルキルポリグリコシドなどが挙げられる。これらの多価アルコール型非イオン界面活性剤も単独で又は二種以上組み合わせて使用でき、前記ポリエチレングリコール型非イオン界面活性剤と組み合わせて使用してもよい。
 なお、イオン界面活性剤は、アルキルベンゼンスルホン酸塩、α-オレフィンスルホン酸塩、長鎖脂肪酸塩、アルカンスルホン酸塩、アルキル硫酸塩、ポリEOアルキルエーテル硫酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、アルキルリン酸塩などのアニオン界面活性剤、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩などのカチオン界面活性剤、アルキルベタイン、イミダゾリン誘導体などの両性界面活性剤などであってもよい。
 好ましい界面活性剤は、非イオン界面活性剤、特に、ポリエチレングリコール型非イオン界面活性剤(例えば、ポリEOC10-26アルキルエーテル、アルキルフェノール-EO付加体、多価アルコールC10-26脂肪酸エステル-EO付加体など)である。
 前記親水化処理剤としての親水性柔軟剤は、編布、織布などの繊維部材に柔軟性を持たせるために使用される柔軟剤に親水性を付与したものである。一般的な柔軟剤は、繊維部材をしなやかにする、滑りを良くする、しわを防止する、縮みを防止するといった様々な効果がある。親水性柔軟剤は、ベルト被水時の耐発音性では、前記界面活性剤にやや劣るものの、編布の柔軟性を向上させることができるので、編布のしわ防止やベルト製造時に巻き付けやすくなる、リブ部2で凹凸が形成された摩擦伝動面により容易に添わせることができるなどの効果がある。
 前記親水性柔軟剤としては、特に限定されないが、ポリエーテル変性シリコーン系柔軟剤や、ポリエステル系柔軟剤を使用することができる。ポリエーテル変性シリコーン系柔軟剤は、親水性のポリエーテル基で変性したシリコーンを含む柔軟剤である。ポリエーテル変性シリコーン系柔軟剤は、シリコーンを界面活性剤とともに水に分散させたエマルジョンであってもよい。
 前記ポリエステル系柔軟剤は、親水性ポリエステル樹脂を界面活性剤とともに水に分散させたエマルジョンの柔軟剤であり、ポリエステル繊維と親和性が高いので、前記編布中のポリエステル系複合糸の親水性を高めることができる。
 本実施形態では、一部の編布6について、前記親水化処理剤に編布6を浸漬する浸漬処理によって、界面活性剤又は親水性柔軟剤を含有、付着させるようにした。界面活性剤としては、ポリエチレングリコール型非イオン界面活性剤を用い、処理液の濃度は0.5~30質量%とした。また、親水性柔軟剤としては、ポリエーテル変性シリコーン系柔軟剤とポリエステル系柔軟剤を用い、処理液の濃度は1~10質量%とした。親水化処理剤を含む処理液の溶媒は特に限定されず、水、炭化水素類、エーテル類、ケトン類などの汎用の溶媒が挙げられる。これらの溶媒は単独で又は混合溶媒としてもよい。
 前記いずれの浸漬処理の場合も、浸漬時間は特に限定されない。浸漬処理温度も特に限定されず、常温下又は加温下で行ってもよい。また、浸漬処理後、必要に応じて乾燥処理を行ってもよい。乾燥処理は、例えば50℃以上、好ましくは100℃以上程度の加温下で行ってもよい。
 前記編布6には、圧縮層4を構成するゴム組成物(リブ部2の表面を形成するゴム組成物)との接着性を向上させる目的で、接着処理を施すことができる。このような編布6の接着処理としては、エポキシ化合物又はイソシアネート化合物を有機溶媒(トルエン、キシレン、メチルエチルケトンなど)に溶解させた樹脂系処理液への浸漬処理、レゾルシン-ホルマリン-ラテックス液(RFL液)への浸漬処理、ゴム組成物を有機溶媒に溶かしたゴム糊への浸漬処理が挙げられる。この他の接着処理の方法として、例えば、編布6とゴム組成物とをカレンダーロールに通して編布6にゴム組成物を刷り込むフリクション処理、編布6にゴム糊を塗布するスプレディング処理、編布6にゴム組成物を積層するコーティング処理なども採用することができる。このように編布6を接着処理することにより、圧縮層4との接着性を向上させて、Vリブドベルト1の走行時の編布6の剥離を防止することができる。また、接着処理をすることで、リブ部2の耐摩耗性を向上させることもできる。
 以下に、図4に基づいてVリブドベルト1の製造方法を説明する。まず、図4(a)に示すように、外周面に可撓性ジャケット51を装着した内型52に、未加硫の伸張層用シート3Sを巻き付けて、この上に心線5を螺旋状にスピニングし、さらにその上に未加硫の圧縮層用シート4Sと編布6とを順次巻き付けて、成形体10を作成する。この後、内周面に複数のリブ型53aを刻設した外型53の内周側に、成形体10を巻き付けた内型52を同心状にセットする。このとき、外型53の内周面と成形体10の外周面との間には所定の間隙が設けられる。
 つぎに、図4(b)に示すように、前記可撓性ジャケット51を外型53の内周面に向かって所定の膨張率(例えば1~6%)で膨張させ、成形体10の圧縮層用シート4Sと編布6を外型53のリブ型53aに圧入して、その状態で加硫処理(例えば160℃、30分)を行う。
 最後に、図4(c)に示すように、内型52を外型53から抜き取り、複数のリブ部2を有する加硫ゴムスリーブ10Aを外型53から脱型した後、カッターを用いて加硫ゴムスリーブ10Aを周長方向に沿って所定の幅にカットして、Vリブドベルト1に仕上げる。なお、Vリブドベルト1の製造方法は上記方法に限らず、例えば、日本国特開2004-82702号公報などに開示された他の公知の方法を採用することもできる。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、Vリブドベルト1の実施例として、前記編布6のセルロース系天然紡績糸に綿糸を用いて、その編成比率を50~95質量%とし、ポリエステル系複合糸にPTT/PETコンジュゲート糸を用いたもの(実施例1~3、5、6)と、ポリエステル系複合糸にPET/PUカバリング糸を用いたもの(実施例4、7)及び実施例6の編布6に、親水化処理剤として非イオン性界面活性剤であるポリエチレングリコール型非イオン界面活性剤を含有、付着させたもの(実施例8)と、親水性柔軟剤であるポリエーテル変性シリコーン系柔軟剤とポリエステル系柔軟剤をそれぞれ含有、付着させたもの(実施例9、10)を用意した。実施例1~4の編布組織は単層とし、実施例5~10の編布組織は多層として、摩擦伝動面側(ベルト表面側)の層に綿糸を多く配した。
 また、比較例として、編布6にセルロース系天然紡績糸の綿糸と非セルロース系のPU糸を用いて、編布組織を単層とし、綿糸の編成比率を60質量%としたもの(比較例1)と、編布6に綿糸とPTT/PETコンジュゲート糸を用いて編布組織を多層とし、綿糸の編成比率を30質量%としたもの(比較例2)、及び実施例6の多層の編布6においてベルト表面と反対側のゴム側(圧縮層側)に綿糸を多く配したもの(比較例3)を用意した。なお、実施例1~10及び比較例1~3の編布6は、いずれも緯編で編成した。
 また、表1には、これらの編布6の嵩高性も表示した。実施例1~10の嵩高性は2.0~3.2cm/g、比較例1は1.6cm/g、比較例2は2.6cm/g、比較例3は3.2cm/gとなっている。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~10及び比較例1~3の伸張層用ゴム、圧縮層用ゴム及び編布6の接着処理用ゴムのゴム組成は互いに同じ配合のものとし、それぞれ図4に示した同じ製造方法で各Vリブドベルト1を製造した。なお、伸張層3と圧縮層4に用いるゴムシート3S、4Sは、表2に示した配合のゴムをバンバリーミキサなどの公知の方法を用いてゴム練りを行い、この練りゴムをカレンダーロールに通して所定厚みとした。また、接着処理用ゴムは、表2に示した配合のゴム組成物を有機溶媒に溶かしてゴム糊とし、このゴム糊に編布6を浸漬処理した。
 上記実施例1~10及び比較例1~3の各Vリブドベルト1について、摩擦伝動面へのゴムの滲み出しの有無を観察するゴム滲み出し観察試験、摩擦係数測定試験、ミスアライメント発音評価試験及び耐摩耗性試験を行った。
 前記摩擦係数測定試験は、図5に示すように、直径121.6mmの駆動プーリ(Dr.)、直径76.2mmのアイドラープーリ(IDL.1)、直径61.0mmのアイドラープーリ(IDL.2)、直径76.2mmのアイドラープーリ(IDL.3)、直径77.0mmのアイドラープーリ(IDL.4)、直径121.6mmの従動プーリ(Dn.)を配置した試験機を用い、これらの各プーリにVリブドベルト1を掛架して行った。
 図5(a)に示すように、通常走行時を想定したドライ状態の試験では、室温条件下で、駆動プーリ(Dr.)の回転数を400rpm、従動プーリ(Dn.)へのベルト巻き付け角度αをπ/9ラジアン(20°)とし、一定荷重(180N/6rib)を付与してVリブドベルト1を走行させて、従動プーリ(Dn.)のトルクを上げていき、従動プーリ(Dn.)に対するVリブドベルト1の滑り速度が最大(100%スリップ)となったときの従動プーリ(Dn.)のトルク値から、(1)式を用いて摩擦係数μを求めた。
 μ=ln(T/T)/α(1)
 ここに、Tは張り側張力、Tは緩み側張力である。従動プーリ(Dn.)出側の緩み側張力Tは一定荷重(180N/6rib)となどしくなり、入側の張り側張力Tは、この一定荷重に従動プーリ(Dn.)のトルクによる張力を加えたものとなる。
 図5(b)に示すように、雨天走行時を想定したウェット状態の試験では、駆動プーリ(Dr.)の回転数を800rpm、従動プーリ(Dn.)へのベルト巻き付け角度αをπ/4ラジアン(45°)とし、従動プーリ(Dn.)の入口付近に1分間に300mlの水を注水した。その他の条件はドライ状態の試験と同じであり、(1)式を用いて摩擦係数μを求めた。
 前記ミスアライメント発音評価試験は、図6に示すように、直径90mmの駆動プーリ(Dr.)、直径70mmのアイドラープーリ(IDL.1)、直径120mmのミスアライメントプーリ(W/P)、直径80mmのテンションプーリ(Ten.)、直径70mmのアイドラープーリ(IDL.2)、直径80mmのアイドラープーリ(IDL.3)を配置した試験機を用い、アイドラープーリ(IDL.1)とミスアライメントプーリ(W/P)の軸間スパンを135mmに設定し、全てのプーリが同一平面上(ミスアライメントの角度0°)に位置するように調整した。
 そして、試験機の各プーリにVリブドベルト1を掛架して、室温条件下で、駆動プーリ(Dr.)の回転数を1000rpm、ベルト張力を300N/6ribとし、駆動プーリ(Dr.)の出口付近でVリブドベルト1の摩擦伝動面に定期的(約30秒間隔)に5ccの水を注水して、ミスアライメントプーリ(W/P)を他の各プーリに対して手前側へずらす(ミスアライメントの角度を徐々に大きくする)ミスアライメントでVリブドベルト1を走行させ、ミスアライメントプーリ(W/P)の入口付近で発音が発生するときのミスアライメントの角度(発音限界角度)を求めた。また、通常走行時を想定して、注水を行わないドライ状態についても、同様に発音限界角度を求めた。なお、この発音限界角度は大きいほど、耐発音性が優れていることを示すものであり、発音限界角度が2°以上であれば、ドライ状態及びウェット状態の耐発音性が良好であると判定した。
 前記耐摩耗性試験は、図示は省略するが、直径120mmの駆動プーリ(Dr.)、直径75mmのアイドラープーリ(IDL.1)、直径60mmのテンションプーリ(Ten.)、直径120mmの従動プーリ(Dn.)を順に配置した試験機を用いた。これらの各プーリにVリブドベルト1を掛架し、120℃の雰囲気下で、駆動プーリ(Dr.)の回転数を4900rpmとし、初荷重としてテンションプーリ(Ten.)に91kgfの軸荷重を負荷して、24時間走行させた試験前後のベルト質量を測定し、(2)式を用いて摩耗率を求めた。
 摩耗率=(試験前質量-試験後質量)/試験前質量×100(%)(2)
 なお、耐摩耗性の判定は、摩耗率が2.5%以下を◎、2.5%超3.5%以下を○、3.5%超を×とした。
 上述した各試験の結果を表1に併せて示す。前記ゴム滲み出し観察試験では、編布6に嵩高加工糸を用いて編布組織を単層とし、嵩高性が2.0~2.3cm/gとなった実施例1~4と、嵩高性が2.6cm/gで親水化処理剤としてポリエステル系柔軟剤を用いた実施例10では、わずかにゴムの滲み出しが認められ、編布組織を多層とし、嵩高性が2.4~3.2cm/gとなった実施例5~9及び比較例2、3では、ゴムの滲み出しが全く認められなかった。これに対して、編布に嵩高加工糸を用いず、かつ編布組織を単層とし、嵩高性が1.6cm/gとなった比較例1では、顕著なゴムの滲み出しが認められた。この試験結果より、編布6の嵩高性は、好ましくは2.0cm/g以上、さらに好ましくは2.4cm/g以上とするのがよいことが分かる。
 前記摩擦係数測定試験では、実施例1、2、4~10では、ドライ状態とウェット状態の摩擦係数μの差Δμがいずれも0.3以下となり、良好な結果が得られた。実施例3は、差Δμが0.6と他の実施例に比べやや大きくなった。このうち、嵩高性が2.4cm/g以上でゴムの滲み出しが全くなく、綿糸の編成比率を60~80質量%として、綿糸を摩擦伝動面側の層に多く配した実施例5~9は、摩擦係数μの差Δμが0.1以下と非常に小さく、特に嵩高性を3.2cm/gとした実施例6と、さらに編布6に親水化処理剤を含有、付着させた実施例8、9は、差Δμがなくなるという良好な結果が得られた。これに対して、ゴムの滲み出しが多い比較例1は、ドライ状態での摩擦係数μが大きくなるとともにウェット状態での摩擦係数μが小さくなり、差Δμが1.2と非常に大きくなった。また、ゴムの滲み出しはないが、綿糸の編成比率を30質量%と少なくした比較例2及び編布組織を多層とし、綿糸をゴム側(摩擦伝動面と反対側)の層に多く配した比較例3は、ウェット状態での摩擦係数μが小さくなり、差Δμが0.6~0.7とやや大きくなった。
 前記ミスアライメント発音評価試験では、ドライ状態での試験では、いずれも発音限界角度が3.7°以上と大きくなり、良好な耐発音性が得られたが、ウェット状態の試験では、比較例1~3は発音限界角度が2.0°を下回り、十分な耐発音性が得られなかった。これに対して、実施例1~10は、いずれもウェット状態でも発音限界角度も2.0°以上と大きくなり、良好な耐発音性が得られた。特に、編布6の親水化処理剤として非イオン性界面活性剤を用いた実施例8は、ウェット状態でもリブずれまで発音しないという非常に良好な耐発音性が得られた。
 前記耐摩耗性試験では、編布6にポリエステル系複合糸を用いた実施例1~10及び比較例2、3は、いずれも良好な耐摩耗性が得られた。綿糸の編成比率を80質量%と多くした実施例1、4は耐摩耗性がやや低下する傾向が認められたが、問題ない耐摩耗性が得られた。これに対して、編布6にポリエステル系複合糸を用いない比較例1は、十分な耐摩耗性が得られなかった。
 なお、表1には表示していないが、編布6に親水化処理剤として親水性柔軟剤であるポリエーテル変性シリコーン系柔軟剤とポリエステル系柔軟剤を含有、付着させた実施例8、9は、編布6の柔軟性が向上してしわが防止できるとともに、ベルト製造時に金型に巻き付けやすくなるといった効果が見られた。
 上述した実施形態では、編布を編成するポリエステル系複合糸の嵩高加工糸をPTT/PETコンジュゲート糸又はPET/PUカバリング糸とし、セルロース系天然紡績糸を綿糸としたが、ポリエステル系複合糸の嵩高加工糸は他の複合糸とすることもでき、セルロース系天然紡績糸も絹糸や麻糸などの他の天然紡績糸とすることができる。
 また、上述した実施形態では、浸漬処理によって編布に親水化処理剤を含有、付着させるようにしたが、スプレー法、コーティング法などの他の方法で親水化処理剤を編布に含有又は付着させるようにしてもよい。親水化処理剤を界面活性剤とする場合は、ベルト製造時に、リブ型が刻設された筒状外型の表面に界面活性剤を塗布して加硫成形することで、界面活性剤を編布に含有させるようにしてもよい。
 また、上述した実施形態では、編布の親水化処理に用いる界面活性剤を非イオン性界面活性剤であるポリエチレングリコール型非イオン界面活性剤(ポリオキシアルキルエーテル)としたが、界面活性剤は他の非イオン性界面活性剤やイオン性界面活性剤とすることもできる。また、同じく親水化処理に用いる親水性柔軟剤をポリエーテル変性シリコーン系柔軟剤とポリエステル系柔軟剤としたが、他の親水性柔軟剤を用いてもよい。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2013年3月29日出願の日本特許出願2013-071815及び2014年3月17日出願の日本特許出願2014-053213に基づくものであり、それらの内容はここに参照として取り込まれる。
1 Vリブドベルト
2 リブ部
3 伸長層
4 圧縮層
5 心線
6 編布
10 成形体
21 駆動プーリ
22 従動プーリ
23 V字状溝
51 可撓性ジャケット
52 内型
53 外型
53a リブ型

Claims (9)

  1.  ベルト背面を形成する伸張層と、
     前記伸張層の片面側に設けられた圧縮層と、
     前記伸張層と前記圧縮層との間に埋設されベルト周長方向に延びる心線とを備え、
     前記圧縮層にプーリとの摩擦伝動面となるベルト周長方向に延びる複数のV字状リブ部を形成し、
     前記摩擦伝動面を編布で被覆したVリブドベルトにおいて、
     前記編布がポリエステル系複合糸とセルロース系天然紡績糸で編成されており、
     前記ポリエステル系複合糸が嵩高加工糸であり、
     前記セルロース系天然紡績糸の編成比率が前記ポリエステル系複合糸の編成比率以上である、Vリブドベルト。
  2.  前記セルロース系天然紡績糸の編成比率が50~95質量%である、請求項1に記載のVリブドベルト。
  3.  前記ポリエステル系複合糸が、ポリトリメチレンテレフタレート(PTT)とポリエチレンテレフタレート(PET)をコンジュゲートした複合糸、又はポリウレタン(PU)糸を芯として、その表面にポリエチレンテレフタレート(PET)をカバリングした複合糸である、請求項1又は2に記載のVリブドベルト。
  4.  前記セルロース系天然紡績糸が綿糸である、請求項1乃至3のいずれか一項に記載のVリブドベルト。
  5.  前記編布が多層に編成されたものである、請求項1乃至4のいずれか一項に記載のVリブドベルト。
  6.  前記多層に編成された編布の厚み方向で、前記セルロース系天然紡績糸を前記摩擦伝動面側の層に多く配した、請求項5に記載のVリブドベルト。
  7.  前記摩擦伝動面に前記編布の嵩高い層を設けた、請求項1乃至6のいずれか一項に記載のVリブドベルト。
  8.  前記編布に親水化処理剤を含有又は付着させた、請求項1乃至7のいずれか一項に記載のVリブドベルト。
  9.  前記編布を緯編で編成した、請求項1乃至8のいずれか一項に記載のVリブドベルト。
     
     
PCT/JP2014/059050 2013-03-29 2014-03-27 Vリブドベルト WO2014157593A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14774679.6A EP2980446B1 (en) 2013-03-29 2014-03-27 V-ribbed belt
CN201480019445.2A CN105121899B (zh) 2013-03-29 2014-03-27 多楔带
US14/781,184 US9752650B2 (en) 2013-03-29 2014-03-27 V-ribbed belt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-071815 2013-03-29
JP2013071815 2013-03-29
JP2014-053213 2014-03-17
JP2014053213A JP6023736B2 (ja) 2013-03-29 2014-03-17 Vリブドベルト

Publications (1)

Publication Number Publication Date
WO2014157593A1 true WO2014157593A1 (ja) 2014-10-02

Family

ID=51624549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059050 WO2014157593A1 (ja) 2013-03-29 2014-03-27 Vリブドベルト

Country Status (5)

Country Link
US (1) US9752650B2 (ja)
EP (1) EP2980446B1 (ja)
JP (1) JP6023736B2 (ja)
CN (1) CN105121899B (ja)
WO (1) WO2014157593A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024389B2 (en) * 2014-05-22 2018-07-17 Bando Chemical Industries, Ltd. Power transmission belt

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6144234B2 (ja) * 2013-06-27 2017-06-07 三ツ星ベルト株式会社 伝動ベルトとその繊維部材並びに繊維部材の製造方法
WO2017110790A1 (ja) * 2015-12-22 2017-06-29 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法
JP6306267B2 (ja) * 2016-03-28 2018-04-04 バンドー化学株式会社 摩擦伝動ベルト
JP6654653B2 (ja) * 2017-01-26 2020-02-26 三ツ星ベルト株式会社 伝動用vベルトおよびその製造方法
JP6717877B2 (ja) 2017-05-24 2020-07-08 三ツ星ベルト株式会社 Vリブドベルト及びその製造方法
JP6908558B2 (ja) * 2017-05-24 2021-07-28 三ツ星ベルト株式会社 Vリブドベルト及びその製造方法
CA3064366C (en) 2017-05-24 2022-05-03 Mitsuboshi Belting Ltd. V-ribbed belt and manufacturing method for same
JP6748152B2 (ja) * 2017-07-04 2020-08-26 三ツ星ベルト株式会社 Vリブドベルト
BR112020000494A2 (pt) * 2017-07-10 2020-07-14 Liftwave, Inc. Dba Rise Robotics normalizar distribuição de tensão e minimizar abra-são de parede lateral dentro de sistemas de correia de acionamento angular
US10487914B2 (en) * 2017-08-21 2019-11-26 Highland Industries, Inc. Two-faced fabric with partially oriented yarn
DE102017219339A1 (de) * 2017-10-27 2019-05-02 Contitech Antriebssysteme Gmbh Artikel mit mehrfach abwechselnd plattierter Textilauflage
US20190178339A1 (en) * 2017-12-13 2019-06-13 Gates Corporation Toothed power transmission belt with back fabric
JP7088819B2 (ja) * 2017-12-26 2022-06-21 三ツ星ベルト株式会社 Vリブドベルト及びその製造方法
WO2019138906A1 (ja) 2018-01-10 2019-07-18 三ツ星ベルト株式会社 摩擦伝動ベルトおよびその製造方法
JP6626226B2 (ja) * 2018-02-15 2019-12-25 三ツ星ベルト株式会社 Vリブドベルトおよびその使用方法
WO2019160055A1 (ja) * 2018-02-15 2019-08-22 三ツ星ベルト株式会社 Vリブドベルトおよびその使用
JP6674061B2 (ja) * 2018-04-27 2020-04-01 三ツ星ベルト株式会社 Vリブドベルト及びその用途
JP6652678B1 (ja) 2018-10-12 2020-02-26 三ツ星ベルト株式会社 摩擦伝動ベルトおよびその製造方法
WO2020158629A1 (ja) 2019-01-28 2020-08-06 三ツ星ベルト株式会社 Vリブドベルト及びその製造方法
JP6831943B1 (ja) * 2019-10-24 2021-02-17 三ツ星ベルト株式会社 摩擦伝動ベルトおよびその製造方法
JP7323560B2 (ja) * 2021-01-29 2023-08-08 バンドー化学株式会社 摩擦伝動ベルト
WO2023055602A1 (en) * 2021-09-30 2023-04-06 Gates Corporation Power transmission belt with textile surface layer and methods of making the same
CN114717734B (zh) * 2022-05-05 2024-04-19 青岛全季服饰有限公司 一种防晒针织面料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122187A (ja) * 2000-08-14 2002-04-26 Goodyear Tire & Rubber Co:The 動力伝達ベルト
JP2004082702A (ja) 2002-06-28 2004-03-18 Mitsuboshi Belting Ltd 伝動ベルトの製造方法及びその方法で得られる伝動ベルト
JP2007120507A (ja) 2004-12-27 2007-05-17 Mitsuboshi Belting Ltd Vリブドベルト及びvリブドベルトの製造方法
JP2008115974A (ja) * 2006-11-07 2008-05-22 Mitsuboshi Belting Ltd 動力伝動用ベルト
JP2010242825A (ja) * 2009-04-03 2010-10-28 Bando Chem Ind Ltd Vリブドベルト及びその製造方法
JP2010539394A (ja) 2007-09-14 2010-12-16 ゲイツ・ユニッタ・アジア株式会社 Vリブドベルトおよびその製造方法
JP2012045895A (ja) * 2010-08-30 2012-03-08 Mitsuboshi Belting Ltd 積層体及びその製造方法並びに動力伝動用ベルト
JP4942767B2 (ja) 2006-02-16 2012-05-30 コンティテヒ・アントリープスジステーメ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 騒音特性の改良されたvリブドベルト
JP2013213576A (ja) * 2012-03-08 2013-10-17 Mitsuboshi Belting Ltd Vリブドベルト

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830685A (en) * 1970-09-10 1974-08-20 Dayco Corp Polyurethanes reinforced by polyvinyl alcohol cord
JPS596279Y2 (ja) * 1980-09-26 1984-02-27 三ツ星ベルト株式会社 Vベルト
JPS62188837A (ja) * 1986-02-12 1987-08-18 Bando Chem Ind Ltd Vリブドベルトの製造方法
DE4317652C2 (de) * 1993-05-27 1995-04-27 Schlatterer Gmbh & Co Kg Max Endloses Flachband sowie Verfahren zu seiner Herstellung
JPH07243483A (ja) 1994-03-07 1995-09-19 Bridgestone Corp 伝動ベルト
US5601877A (en) * 1994-06-09 1997-02-11 Albany International Corp. Method of seam closure for sheet transfer and other paper processing belts
JP2740753B2 (ja) * 1995-07-21 1998-04-15 バンドー化学株式会社 歯付ベルト及びその製造方法
US5858147A (en) * 1997-04-14 1999-01-12 The Goodyear Tire & Rubber Company Method of making a reinforcing fabric for power transmission belts
JP2000177025A (ja) * 1998-12-14 2000-06-27 Mitsuboshi Belting Ltd 伝動ベルトの製造方法
US20050039836A1 (en) * 1999-09-03 2005-02-24 Dugan Jeffrey S. Multi-component fibers, fiber-containing materials made from multi-component fibers and methods of making the fiber-containing materials
US6464607B1 (en) * 1999-12-15 2002-10-15 The Goodyear Tire & Rubber Company Power transmission belt
FR2812868B1 (fr) * 2000-08-09 2003-03-07 Rhodianyl Materiau de construction comprenant un renfort fibreux ou filamentaire
JP2004332160A (ja) * 2003-05-08 2004-11-25 Du Pont Toray Co Ltd 歯付ベルト用カバークロス
JP4772292B2 (ja) * 2003-05-30 2011-09-14 三ツ星ベルト株式会社 伝動ベルト
JP2005180589A (ja) * 2003-12-19 2005-07-07 Gates Unitta Asia Co 歯付ベルト
US7520121B2 (en) * 2004-03-15 2009-04-21 Kuraray Trading Co., Ltd. Composite twisted yarn
JP4360993B2 (ja) * 2004-09-17 2009-11-11 株式会社椿本チエイン 歯付ベルト
JP4672603B2 (ja) * 2005-08-31 2011-04-20 三ツ星ベルト株式会社 摩擦伝動ベルト
US8197372B2 (en) * 2006-04-07 2012-06-12 The Gates Corporation Power transmission belt
JP2008111518A (ja) 2006-10-31 2008-05-15 Mitsuboshi Belting Ltd 伝動ベルト
US7909719B2 (en) * 2008-03-14 2011-03-22 Forbo Siegling, Llc Belt
DE102009026077A1 (de) * 2009-07-01 2011-01-05 Contitech Antriebssysteme Gmbh Elastischer Antriebsriemen, insbesondere Keilrippenriemen, mit vermindertem Spannungsverlust
US9353465B2 (en) * 2010-04-20 2016-05-31 Kuraray Trading Co., Ltd. Bulked yarn and wound yarn for production of woven or knit fabric, woven or knit fabric, and method for producing the same
JP6132552B2 (ja) * 2010-08-25 2017-05-24 ダイキン工業株式会社 ベルト材
US10260175B2 (en) * 2010-11-12 2019-04-16 Sanko Tekstil Isletmeleri San. Ve Tic. A.S. Composite stretch yarn, process and fabric
JP5886215B2 (ja) * 2012-01-31 2016-03-16 三ツ星ベルト株式会社 Vリブドベルト
JP5771162B2 (ja) * 2012-03-09 2015-08-26 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法
EP2902344B1 (en) * 2012-09-28 2018-10-10 Susumu Shoji Conveyor belt and drive belt comprising knitted belt, and conveyor device using conveyor belt
CN102900809A (zh) * 2012-09-29 2013-01-30 安徽省三森纺织有限公司 以聚酯纤维为骨架的传送带

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122187A (ja) * 2000-08-14 2002-04-26 Goodyear Tire & Rubber Co:The 動力伝達ベルト
JP2004082702A (ja) 2002-06-28 2004-03-18 Mitsuboshi Belting Ltd 伝動ベルトの製造方法及びその方法で得られる伝動ベルト
JP2007120507A (ja) 2004-12-27 2007-05-17 Mitsuboshi Belting Ltd Vリブドベルト及びvリブドベルトの製造方法
JP4942767B2 (ja) 2006-02-16 2012-05-30 コンティテヒ・アントリープスジステーメ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 騒音特性の改良されたvリブドベルト
JP2008115974A (ja) * 2006-11-07 2008-05-22 Mitsuboshi Belting Ltd 動力伝動用ベルト
JP2010539394A (ja) 2007-09-14 2010-12-16 ゲイツ・ユニッタ・アジア株式会社 Vリブドベルトおよびその製造方法
JP2010242825A (ja) * 2009-04-03 2010-10-28 Bando Chem Ind Ltd Vリブドベルト及びその製造方法
JP2012045895A (ja) * 2010-08-30 2012-03-08 Mitsuboshi Belting Ltd 積層体及びその製造方法並びに動力伝動用ベルト
JP2013213576A (ja) * 2012-03-08 2013-10-17 Mitsuboshi Belting Ltd Vリブドベルト

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024389B2 (en) * 2014-05-22 2018-07-17 Bando Chemical Industries, Ltd. Power transmission belt

Also Published As

Publication number Publication date
JP2014209028A (ja) 2014-11-06
CN105121899A (zh) 2015-12-02
CN105121899B (zh) 2018-06-22
EP2980446A4 (en) 2016-11-30
JP6023736B2 (ja) 2016-11-09
US9752650B2 (en) 2017-09-05
US20160053851A1 (en) 2016-02-25
EP2980446A1 (en) 2016-02-03
EP2980446B1 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6023736B2 (ja) Vリブドベルト
JP6144234B2 (ja) 伝動ベルトとその繊維部材並びに繊維部材の製造方法
JP6198354B2 (ja) Vリブドベルト
JP6013434B2 (ja) 摩擦伝動ベルト及びその製造方法
JP6527433B2 (ja) 摩擦伝動ベルト及びその製造方法
JP5981330B2 (ja) Vリブドベルト
WO2014069588A1 (ja) 摩擦伝動ベルト及びその製造方法
JP5926543B2 (ja) 摩擦伝動ベルト及びその製造方法
JP6717877B2 (ja) Vリブドベルト及びその製造方法
WO2018216738A1 (ja) Vリブドベルト及びその製造方法
JP6690047B1 (ja) 摩擦伝動ベルト及びその製造方法
JP6908558B2 (ja) Vリブドベルト及びその製造方法
JP2022168845A (ja) 摩擦伝動ベルト
JP2020008026A (ja) Vリブドベルト及びその製造方法
JP2019132430A (ja) 摩擦伝動ベルト及びその製造方法
WO2016047781A1 (ja) 摩擦伝動ベルト及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014774679

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14781184

Country of ref document: US