WO2014153898A1 - 透明导电膜及其制备方法 - Google Patents

透明导电膜及其制备方法 Download PDF

Info

Publication number
WO2014153898A1
WO2014153898A1 PCT/CN2013/078943 CN2013078943W WO2014153898A1 WO 2014153898 A1 WO2014153898 A1 WO 2014153898A1 CN 2013078943 W CN2013078943 W CN 2013078943W WO 2014153898 A1 WO2014153898 A1 WO 2014153898A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
lead
conductive material
sensing region
electrically connected
Prior art date
Application number
PCT/CN2013/078943
Other languages
English (en)
French (fr)
Inventor
高育龙
张晟
郭胜波
陈春明
Original Assignee
南昌欧菲光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48588231&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014153898(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 南昌欧菲光科技有限公司 filed Critical 南昌欧菲光科技有限公司
Priority to KR1020137026023A priority Critical patent/KR101584798B1/ko
Priority to JP2015507366A priority patent/JP2015520444A/ja
Priority to US14/000,112 priority patent/US9392700B2/en
Publication of WO2014153898A1 publication Critical patent/WO2014153898A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to the field of conductive films, and in particular to a transparent conductive film and a method of preparing the same.
  • the transparent conductive film is a film which has good conductivity and high light transmittance in the visible light band.
  • transparent conductive films have been widely used in the fields of flat panel display, photovoltaic devices, touch panels and electromagnetic shielding, and have extremely broad market space.
  • ITO has dominated the market for transparent conductive films.
  • a plurality of processes such as exposure, development, etching, and cleaning are often required to pattern the transparent conductive film, that is, a fixed conductive region and an insulating region are formed on the surface of the substrate according to the graphic design.
  • the use of printing directly forms a metal mesh in a specified area of the substrate, which eliminates the need for a graphical process and has many advantages such as low pollution and low cost.
  • the grid line is a metal with good conductivity, is opaque, and the line width is below the resolution of the human eye; the area of the wireless strip is a light-transmitting area.
  • the surface resistance and light transmittance of the transparent conductive film can be controlled within a certain range by changing the width of the line and the shape of the mesh.
  • the grid density of the sensing area and the lead area of the position sensor is different, the grid period of the sensing area is large, the grid density is relatively large, and the grid period of the lead is small, and the grid is dense; Lead areas in the production process are prone to defects, affecting electrical conductivity, adhesion and the like.
  • a transparent conductive film comprising a transparent substrate and a polymer layer, wherein the polymer layer is disposed on the transparent substrate, and a grid-like groove is patterned on a surface of the polymer layer, the mesh groove A conductive material is filled to form a sensing region, and a periphery of the sensing region is further printed with leads, and the leads are electrically connected to a conductive material in the grid-like trench.
  • the sensing area is a visible area, and the sensing area has a light transmittance greater than 85%.
  • the leads are printed by screen printing or ink jet printing.
  • the lead wire is a grid or a line segment, and the line segment has a width of 50 ⁇ m to 200 ⁇ m, a height of 5 ⁇ m to 10 ⁇ m, a mesh width of 2 to 6 ⁇ m, and a thickness of 5 to 10 ⁇ m.
  • the mesh formed by the grooves is a regular mesh or a random irregular mesh.
  • the sensing region edge is provided with a line segment electrically connected to the conductive material in the trench, and the conductive material of the lead is electrically connected to the conductive material in the trench through the line segment;
  • the leads are gridlines and the leads are electrically connected to the conductive material within the trenches through the nodes.
  • a transparent conductive film comprising a transparent substrate having opposite first and second surfaces, wherein the first surface and the second surface are each patterned with a grid-like groove, the grid
  • the trench is filled with a conductive material to form a sensing region, the periphery of the sensing region is also printed with leads, and the leads are electrically connected to the conductive material in the grid-like trench.
  • the leads are formed by screen printing or inkjet printing.
  • the sensing region edge is provided with a line segment electrically connected to the conductive material in the trench, and the conductive material of the lead is electrically connected to the conductive material in the trench through the line segment;
  • the leads are gridlines and the leads are electrically connected to the conductive material within the trenches through the nodes.
  • a transparent conductive film comprising a transparent substrate and a polymer layer, wherein the polymer layer is disposed on the substrate, and a first groove having a grid shape is patterned on a surface of the polymer layer, the mesh shape
  • the first trench is filled with a conductive material to form a first sensing region, and a periphery of the first sensing region is further printed with a first lead, and the first lead is in the first trench and the first trench
  • the conductive material is electrically connected; a polymer layer is further disposed on the first sensing region and the first lead, and a surface of the polymer layer is patterned with a second trench having a grid shape
  • the second trench is filled with a conductive material to form a second sensing region, the periphery of the second sensing region is further printed with a second lead, and the second lead and the conductive material in the grid-shaped second trench Electrically connected, the second sensing area and the first sensing area are insulated from each other.
  • the first lead and the second lead are formed by screen printing or inkjet printing.
  • a method for preparing a transparent conductive film comprising the steps of:
  • a first lead is printed on a periphery of the sensing region, and the first lead is electrically connected to a conductive material in the first trench.
  • the method further includes the following steps:
  • the sensing regions formed on the surface of the first polymer layer are insulated from each other.
  • the conductive material is filled in the trench to form an inductive region, and the lead is formed by printing and electrically connected to the conductive material in the trench, so that the lead of the conductive film has a relatively high yield.
  • FIG. 1 is a schematic view of a transparent conductive film of Embodiment 1;
  • FIG. 2 is a schematic view showing a mesh-like groove of a transparent conductive film of Embodiment 1;
  • FIG. 3 is a flow chart showing a method of preparing a transparent conductive film of Embodiment 1;
  • FIG. 4 is a schematic view of a transparent conductive film of Embodiment 2;
  • FIG. 5 is a schematic view showing a grid-like groove of a transparent conductive film of Embodiment 2;
  • FIG. 6 and 7 are schematic views of a transparent conductive film of Embodiment 3.
  • FIG. 8 is a schematic view showing a grid-shaped first trench of the transparent conductive film of Embodiment 3;
  • FIG. 9 is a schematic view showing a grid-like second trench of the transparent conductive film of the third embodiment.
  • FIG. 12 is a schematic view showing a grid-shaped first trench of the transparent conductive film of Embodiment 4.
  • Figure 13 is a schematic view showing a grid-like second trench of the transparent conductive film of the fourth embodiment
  • FIG. 14 and 15 are perspective views of a transparent conductive film of one embodiment
  • Figure 16 is a schematic view showing the electrical connection of the sensing region and the lead of the transparent conductive film of one embodiment
  • Fig. 17 is a view showing the electrical connection of the sensing region of the transparent conductive film of one embodiment and the wiring in another manner.
  • the conventional technology uses a printing method to form a sensing region and a lead on a substrate at one time, and the transparent conductive film of the following embodiment and a method for preparing the same are: first, patterning a groove on a substrate to form a groove, and then in the groove The trench is filled with a conductive material to form a sensing region, and finally a lead is printed on the periphery of the sensing region to electrically connect the lead to the conductive material in the trench.
  • the transparent conductive film of the following embodiment and a method for preparing the same are: first, patterning a groove on a substrate to form a groove, and then in the groove The trench is filled with a conductive material to form a sensing region, and finally a lead is printed on the periphery of the sensing region to electrically connect the lead to the conductive material in the trench.
  • the transparent conductive film 100 of the present embodiment includes a substrate 110 and a first embossing layer (polymer layer) 120 coated on the substrate 110.
  • the substrate 110 has a first surface 112 and a second surface 114 opposite the first surface 112.
  • the first embossed layer 120 is applied to the first surface 112.
  • a first groove 122 having a grid shape is patterned on the first embossed layer 120.
  • the first trench 122 encloses a plurality of grids, and the grid lines are trenches.
  • the mesh can be a regular mesh, such as a regular polygon, or a random irregular mesh.
  • the first trench 122 is filled with a conductive material 124, whereby the region where the first trench 122 is located forms a first sensing region.
  • a first lead 126 is printed on the first embossed layer 120 on the periphery of the first sensing region, and the first lead 126 is electrically connected to the conductive material 124 filled in the first trench 122.
  • the first lead 126 is a mesh or a line segment, and the line segment has a width of 50 ⁇ m to 200 ⁇ m, a height of 5 ⁇ m to 10 ⁇ m, a mesh width of 2 to 6 ⁇ m, and a thickness of 5 to 10 ⁇ m.
  • the transparent conductive film 100 of the present embodiment is prepared as follows:
  • the first embossed layer 120 is patterned into a grid pattern by etching or the like, and the edge of the grid is the first trench 122.
  • the conductive material 124 is filled in the first trench 122 to form a first sensing region.
  • a conductive material 124 such as a nanosilver ink, may be filled in the first trench 122 by a doctor blade technique and then sintered to form a conductive region in the first trench 122.
  • the first embossed layer 120 may also be metallized by vacuum sputtering or electroless plating to form a conductive region.
  • the first lead 126 is printed on the periphery of the first sensing area, and the first lead 126 is electrically connected to the conductive material 124 in the first trench 122.
  • the first lead 126 is formed by screen printing or inkjet printing, and the yield is relatively high.
  • the transparent conductive film 200 includes a transparent substrate 210.
  • the substrate 210 has a first surface 212 and a second surface 214 opposite the first surface 212.
  • a first groove 222 having a grid shape is patterned on the first surface 212.
  • the first trench 222 encloses a plurality of grids, and the grid lines are trenches.
  • the mesh can be a regular mesh, such as a regular polygon, or a random irregular mesh.
  • the first trench 222 is filled with a conductive material 224, whereby the region where the first trench 222 is located forms a first sensing region.
  • the first sensing region is a visible region, and the light transmittance is greater than 85%.
  • the conductive material 224 forms a conductive region, and the mesh surrounded by the first trench 222 is a light transmitting region.
  • the first surface 212 is printed with a first lead 226 on the periphery of the first sensing region, and the first lead 226 is electrically connected to the conductive material 224 filled in the first trench 222.
  • the first lead 226 is a mesh or a line segment, and the line segment has a width of 50 ⁇ m to 200 ⁇ m, a height of 5 ⁇ m to 10 ⁇ m, a mesh width of 2 to 6 ⁇ m, and a thickness of 5 to 10 ⁇ m.
  • the preparation method of the transparent conductive film 200 of this embodiment is as follows:
  • the conductive material 224 is filled in the first trench 222 to form a first sensing region.
  • a conductive material 224 such as a nanosilver ink, may be filled in the first trench 222 by a doctor blade technique and then sintered to form a conductive region in the first trench 222.
  • first lead 226 on the periphery of the first sensing area, and the first lead 226 is electrically connected to the conductive material 224 in the first trench 222.
  • the first lead 226 is formed by screen printing or inkjet printing, and the yield is relatively high. Thus, a single-sided single-layer conductive film is provided.
  • the transparent conductive film 300 includes a transparent substrate 310.
  • the substrate 310 has a first surface 312 and a second surface 314 opposite the first surface 312.
  • a first groove 322 having a grid shape is patterned on the first surface 312.
  • the first trench 322 encloses a plurality of grids, and the grid lines are trenches.
  • the mesh can be a regular mesh, such as a regular polygon, or a random irregular mesh.
  • the first trench 322 is filled with a conductive material 324, whereby the region where the first trench 322 is located forms a first sensing region.
  • the first sensing region is a visible region, and the light transmittance is greater than 85%.
  • the conductive material 224 forms a conductive region, and the grid surrounded by the first trench 322 is a light transmitting region.
  • the first surface 312 is printed with a first lead 326 on the periphery of the first sensing region, and the first lead 326 is electrically connected to the conductive material 324 filled in the first trench 322.
  • a second groove 332 having a grid shape is patterned on the second surface 314.
  • the second trench 332 encloses a plurality of grids, and the grid lines are trenches.
  • the mesh can be a regular mesh, such as a regular polygon, or a random irregular mesh.
  • the second trench 332 is filled with a conductive material 334, whereby the region where the second trench 332 is located forms a second sensing region.
  • the second sensing region is a visible region, and the light transmittance is greater than 85%, wherein the conductive material 324 forms a conductive region, and the grid surrounded by the second trench 332 is a light transmitting region.
  • the second surface 314 is printed with a second lead 336 on the periphery of the second sensing region, and the second lead 336 is electrically connected to the second conductive material 334 filled in the second trench 332.
  • the first lead 326 and the second lead 336 are meshes or line segments, and the line segments have a width of 50 ⁇ m to 200 ⁇ m, a height of 5 ⁇ m to 10 ⁇ m, a mesh width of 2 to 6 ⁇ m, and a thickness of 5 to 10 ⁇ m.
  • the preparation method of the transparent conductive film 300 of this embodiment is as follows:
  • the conductive material 324 is filled in the first trench 322 to form a first sensing region.
  • the first lead 326 is printed on the periphery of the first sensing area, and the first lead 326 is electrically connected to the conductive material 324 in the first trench 322.
  • the first lead 326 is formed by screen printing or inkjet printing, and the yield is relatively high.
  • a second trench 332 is formed on the second surface 314, and the second conductive material 334 is filled, and finally the second lead 336 is printed.
  • a double-sided single-layer conductive film is provided.
  • the transparent conductive film 400 of the present embodiment includes a transparent substrate 410 , a first embossed adhesive layer 420 , and a second embossed adhesive layer 430 .
  • Substrate 410 has a first surface 412 and a second surface 414 opposite first surface 412.
  • a first embossed layer 420 is applied over the first surface 412.
  • a first groove 422 having a grid shape is patterned on the first embossed layer 420.
  • the first trench 422 encloses a plurality of grids, and the grid lines are trenches.
  • the mesh can be a regular mesh, such as a regular polygon, or a random irregular mesh.
  • the first trench 422 is filled with a conductive material 424, whereby the region where the first trench 422 is located forms a first sensing region.
  • a first lead 426 is printed on the first imprinting layer 420 on the periphery of the first sensing region, and the first lead 426 is electrically connected to the conductive material 424 filled in the first trench 422.
  • the second embossing layer 430 is disposed on the first embossing layer 420, and the grid-shaped second trench 432 is patterned thereon.
  • the second trench 432 encloses a plurality of grids, and the grid lines are trenches.
  • the mesh can be a regular mesh, such as a regular polygon, or a random irregular mesh.
  • the second trench 432 is filled with a second conductive material 434 to form a second sensing region.
  • a second lead 436 is printed on the periphery of the second sensing region, and the second lead 436 is electrically connected to the second conductive material 434 filled in the second trench 432.
  • the second sensing area and the first sensing area are insulated from each other.
  • a single-sided double-layer conductive film is formed. When applied to the touch field, the single-layer conductive film can support multi-touch, and the thickness of the touch device is low.
  • the transmittances of the first sensing area and the second sensing area are both greater than 85%.
  • the first lead 426 and the second lead 436 are meshes or line segments, and the line segments have a width of 50 ⁇ m to 200 ⁇ m, a height of 5 ⁇ m to 10 ⁇ m, a mesh width of 2 to 6 ⁇ m, and a thickness of 5 to 10 ⁇ m.
  • the preparation method of the transparent conductive film 400 of this embodiment is as follows:
  • a first trench 422 is patterned into a grid on the first embossed layer 420.
  • the first lead 426 is printed on the periphery of the first sensing region, and the first lead 426 is electrically connected to the conductive material 424 in the first trench 422.
  • the first lead 426 is formed by screen printing or inkjet printing, and the yield is relatively high.
  • the second conductive material 434 is filled in the second trench 432 to form a second sensing region.
  • the second lead 436 is printed on the periphery of the second sensing region, and the second lead 436 is electrically connected to the second conductive material 434 in the second trench 432.
  • the second lead 436 is formed by screen printing or inkjet printing, and the yield is relatively high.
  • the sensing region and the lead are not printed at one time, and the density of the sensing region does not need to be considered in the lead printing, and the lead yield is high.
  • the transparent conductive film 600 of the present embodiment includes a transparent substrate 610.
  • a first sensing region 620 and a first lead 630 electrically connected to the first sensing region 620, and a second sensing region 640 and a second electrical connection with the second sensing region 640 are respectively formed on two opposite surfaces of the transparent substrate 610.
  • the transparent conductive film 600 is a single-layer double-sided conductive film. It can be seen from the foregoing first embodiment to the fourth embodiment that a polymer layer may be disposed on the transparent conductive film 600, and the first and second sensing regions, and the first and second leads may be disposed on the polymer layer.
  • the first sensing region 620 and the first lead 630 are taken as an example.
  • the first sensing region 620 is formed by filling a conductive material in the first trench 660, and the first trench 660 is a grid line of the first sensing region.
  • the electrical connection is such that the edge of the first sensing area 620 is provided with a line segment 670 containing a conductive material.
  • the line segment 670 is electrically connected to the electrically conductive material in the first trench 660.
  • the line segment 670 may be formed by simultaneously forming a linear groove at the edge of the first sensing region 620 when the first groove 660 is formed, and then filling the conductive material.
  • the second sensing region 640 and the second lead 650 are taken as an example.
  • the second sensing region 640 is formed by filling a conductive material in the second trench 680, and the second trench 680 is a grid line of the second sensing region 640.
  • the second sensing area 650 is printed in a grid shape with grid lines.
  • the electrical connection is such that the grid lines of the second lead 650 and the grid lines of the second sensing area 640 are connected by a node 690. Node 690 can be set to multiple.

Abstract

本发明涉及一种透明导电膜,包括透明基底及聚合物层,所述聚合物层设于所述透明基底上,所述聚合物层表面上图形化有网格状沟槽,所述网格状沟槽中填充有导电材料以形成感应区域,所述感应区域的外围还印刷有引线,且所述引线与所述网格状沟槽中的导电材料电连接。另外,还提出一种透明导电膜的制备方法。上述透明导电膜及其制备方法,沟槽中填充导电材料后形成感应区域,而引线系用印刷的方式形成并与沟槽中的导电材料电连接,使透明导电膜的引线的良率比较高。

Description

透明导电膜及其制备方法
【技术领域】
本发明涉及导电膜领域,特别是涉及一种透明导电膜及其制备方法。
【背景技术】
透明导电膜是具有良好导电性,及在可见光波段具有高透光率的一种薄膜。目前透明导电膜已广泛应用于平板显示、光伏器件、触控面板和电磁屏蔽等领域,具有极其广阔的市场空间。
ITO一直主导着透明导电膜的市场。但是在诸如触摸屏等大多数实际应用中,往往需要曝光、显像、蚀刻及清洗等多道工序对透明导电膜进行图形化,即根据图形设计在基片表面形成固定的导电区域和绝缘区域。相较而言,使用印刷法直接在基材的指定区域形成金属网格,可以省去图形化的工艺过程,具有低污染、低成本等诸多优点。其网格线为导电性良好的金属,不透光,线宽度在人眼的分辨率以下;无线条的区域为透光区域。通过改变线条的宽度和网格形状可以在一定范围内控制透明导电膜的表面方阻和透光率。
传统印刷技术制备的导电膜中,位置传感器感应区和引线区的网格密度不同,感应区网格周期大,网格密度比较大,而引线的网格周期小,网格比较密;导致在生产过程中引线区域容易出现不良,影响导电性能、附着力等。
【发明内容】
基于此,有必要提出一种引线的导电性能及附着力好的透明导电膜及其制备方法。
一种透明导电膜,包括透明基底及聚合物层,所述聚合物层设于所述透明基底上,所述聚合物层表面上图形化有网格状沟槽,所述网格状沟槽中填充有导电材料以形成感应区域,所述感应区域的外围还印刷有引线,且所述引线与所述网格状沟槽中的导电材料电连接。
在其中一个实施例中,所述感应区域为可视区域,所述感应区域的透光率大于85%。
在其中一个实施例中,所述引线通过丝网印刷或喷墨打印形。
在其中一个实施例中,所述引线为网格或线段,且线段的宽度为50μm~200μm,高度为5μm~10μm,所述网格宽度为2~6微米,厚度为5~10微米。
在其中一个实施例中,所述沟槽形成的网格为规则网格或随机不规则网格。
在其中一个实施例中,所述感应区域边缘设有与所述沟槽内的导电材料电相连的线段,所述引线的导电材料通过所述线段与所述沟槽内的导电材料电连接;或所述引线为网格线,并且所述引线通过节点与所述沟槽内的导电材料电连接。
一种透明导电膜,包括透明基底,所述透明基底具有相对的第一表面和第二表面,所述第一表面和第二表面上均图形化有网格状沟槽,所述网格状沟槽中填充有导电材料以形成感应区域,所述感应区域的外围还印刷有引线,且所述引线与所述网格状沟槽中的导电材料电连接。
在其中一个实施例中,所述引线通过丝网印刷或喷墨打印形成。
在其中一个实施例中,所述感应区域边缘设有与所述沟槽内的导电材料电相连的线段,所述引线的导电材料通过所述线段与所述沟槽内的导电材料电连接;或所述引线为网格线,并且所述引线通过节点与所述沟槽内的导电材料电连接。
一种透明导电膜,包括透明基底及聚合物层,所述聚合物层设于所述基底上,所述聚合物层表面上图形化有网格状的第一沟槽,所述网格状的第一沟槽中填充有导电材料以形成第一感应区域,所述第一感应区域的外围还印刷有第一引线,且所述第一引线与所述网格状第一沟槽中的导电材料电连接;所述第一感应区域和第一引线之上还另设有聚合物层,所述聚合物层表面图形化有网格状的第二沟槽,所述网格状的第二沟槽中填充有导电材料以形成第二感应区域,所述第二感应区域的外围还印刷有第二引线,且所述第二引线与所述网格状第二沟槽中的导电材料电连接,所述第二感应区域与所述第一感应区域彼此绝缘。
在其中一个实施例中,所述第一引线和第二引线通过丝网印刷或喷墨打印形成。
在其中一个实施例中,所述第一、第二感应区域边缘分别设有与所述第一、第二沟槽内的导电材料电相连的线段,所述第一、第二引线的导电材料通过所述线段与所述第一、第二沟槽内的导电材料电连接;或所述第一、第二引线为网格线,且所述第一、第二引线分别通过节点与所述第一、第二沟槽内的导电材料电连接。
一种透明导电膜的制备方法,包括如下步骤:
提供设有第一聚合物层的透明基底,在所述第一聚合物层表面上图形化形成网格状第一沟槽;
在所述第一沟槽中填充导电材料,以形成感应区域;
在所述感应区域的外围印刷第一引线,且所述第一引线与所述第一沟槽中的导电材料电连接。
在其中一个实施例中,还包括如下步骤:
在所述感应区域和所述第一引线上涂第二聚合物层;
在所述第二聚合物层表面图形化形成网格状第二沟槽;
在所述第二聚合物层表面的网格状第二沟槽中填充导电材料,以形成感应区域;
在所述第二聚合物层上的感应区域外围印刷第二引线,且所述第二引线与所述第二沟槽中的导电材料电连接,所述第二聚合物层表面形成的感应区域与所述第一聚合物层表面形成的感应区域彼此绝缘。
上述透明导电膜及其制备方法,沟槽中填充导电材料后形成感应区域,而引线系用印刷的方式形成并与沟槽中的导电材料电连接,使导电膜的引线的良率比较高。
【附图说明】
图1为实施例一的透明导电膜的示意图;
图2为实施例一的透明导电膜的网格状沟槽的示意图;
图3为实施例一的透明导电膜的制备方法的流程图;
图4为实施例二的透明导电膜的示意图;
图5为实施例二的透明导电膜的网格状沟槽的示意图;
图6和图7为实施例三的透明导电膜的示意图;
图8为实施例三的透明导电膜的网格状的第一沟槽的示意图;
图9为实施例三的透明导电膜的网格状的第二沟槽的示意图;
图10和图11为实施例四的透明导电膜的示意图;
图12为实施例四的透明导电膜的网格状的第一沟槽的示意图;
图13为实施例四的透明导电膜的网格状的第二沟槽的示意图;
图14和图15为一个实施例的透明导电膜的立体示意图;
图16为一个实施例的透明导电膜的感应区域和引线一种方式的电连接的示意图;
图17为一个实施例的透明导电膜的感应区域和引线另一种方式的电连接的示意图。
【具体实施方式】
传统技术采用印刷法在基底上一次性形成感应区域和引线,而以下实施例的透明导电膜及其制备方法的构思则是:先在基底上图案化形成网格状的沟槽,然后在沟槽中填充导电材料以形成感应区域,最后在感应区域外围印刷引线,使引线与沟槽中的导电材料电连接。这样,可避免传统技术中采取印刷法生产时,由于感应区域和引线密度不同,造成的引线良率不高的缺陷,从而保证引线的导电性能及附着力。
实施例一、
请参考图1和图2,本实施例的透明导电膜100包括基底110和涂布在基底110上的第一压印胶层(聚合物层)120。
基底110具有第一表面112和与第一表面112相对的第二表面114。第一压印胶层120涂在第一表面112上。第一压印胶层120上图形化有网格状的第一沟槽122。换言之,第一沟槽122围成很多个网格,网格线是沟槽。网格可以是规则网格,如正多边形,或为随机不规则网格。第一沟槽122中填充有导电材料124,由此,第一沟槽122所在区域即形成第一感应区域。
第一压印胶层120上于第一感应区域的外围印刷有第一引线126,且第一引线126与第一沟槽122中填充的导电材料124电连接。第一引线126为网格或线段,且线段的宽度为50μm~200μm,高度为5μm~10μm,网格宽度为2~6微米,厚度为5~10微米。
本实施例中,基底110可以为透明材料制成的透明基底,如玻璃,也可以是柔性透明基底,可以应用于触控领域。第一感应区域用以供使用者触碰以实现感应。第一感应区域为可视区域,其中导电材料124所在区域为导电区,而第一沟槽122形成的网格则为透光区。第一感应区域的透光率和基底110自身的透光率以及导电区的面积大小有关,本实施例中,第一感应区域的透光率为大于85%。
请参考图3,本实施例的透明导电膜100制备方法如下:
1、在基底110的第一表面112上涂布第一压印胶层120。可采取刮涂、喷涂等手段涂布一层UV(Ultraviolet Rays,紫外线)胶。
2、在第一压印胶层120上图形化成网格状的第一沟槽122。利用蚀刻等方法在第一压印胶层120图形化成网格图案,网格的边线即为第一沟槽122。
3、在第一沟槽122中填充导电材料124,以形成第一感应区域。例如可以利用刮涂技术在第一沟槽122中填充导电材料124,如纳米银墨水,然后烧结,以在第一沟槽122中形成导电区。也可以采取真空溅射或者化学镀的方法,对第一压印胶层120进行金属化,以形成导电区。
4、在第一感应区域外围印刷第一引线126,且所述第一引线126与所述第一沟槽122中的导电材料124电连接。采取丝网印刷或喷墨打印的方式形成第一引线126,良率比较高。
实施例二、
请参考图4和图5,透明导电膜200包括透明的基底210。基底210具有第一表面212和与第一表面212相对的第二表面214。第一表面212上图形化有网格状的第一沟槽222。换言之,第一沟槽222围成很多个网格,网格线是沟槽。网格可以是规则网格,如正多边形,或为随机不规则网格。第一沟槽222中填充有导电材料224,由此,第一沟槽222所在区域即形成第一感应区域。与实施例一相同,第一感应区域为可视区域,透光率大于85%,其中导电材料224形成导电区,第一沟槽222围成的网格则为透光区。
第一表面212于第一感应区域的外围印刷有第一引线226,且第一引线226与第一沟槽222中填充的导电材料224电连接。第一引线226为网格或线段,且线段的宽度为50μm~200μm,高度为5μm~10μm,网格宽度为2~6微米,厚度为5~10微米。
本实施例的透明导电膜200制备方法如下:
1、在基底210的第一表面212上图案化形成网格状的第一沟槽222。利用蚀刻等方法在第一表面212上直接图形化成网格图案,该网格的边线即为第一沟槽222。
2、在第一沟槽222中填充导电材料224,以形成第一感应区域。例如可以利用刮涂技术在第一沟槽222中填充导电材料224,如纳米银墨水,然后烧结,以在第一沟槽222中形成导电区。
3、在第一感应区域外围印刷第一引线226,且所述第一引线226与所述第一沟槽222中的导电材料224电连接。采取丝网印刷或喷墨打印的方式形成第一引线226,良率比较高。由此,提供了一种单面单层的导电膜。
实施例三、
请参考图6至图9,透明导电膜300包括透明的基底310。基底310具有第一表面312和与第一表面312相对的第二表面314。
第一表面312上图形化有网格状的第一沟槽322。换言之,第一沟槽322围成很多个网格,网格线是沟槽。网格可以是规则网格,如正多边形,或为随机不规则网格。第一沟槽322中填充有导电材料324,由此,第一沟槽322所在区域即形成第一感应区域。与实施例一相同,第一感应区域为可视区域,透光率大于85%,其中导电材料224形成导电区,第一沟槽322围成的网格则为透光区。第一表面312于第一感应区域的外围印刷有第一引线326,且第一引线326与第一沟槽322中填充的导电材料324电连接。
第二表面314上图形化有网格状的第二沟槽332。换言之,第二沟槽332围成很多个网格,网格线是沟槽。网格可以是规则网格,如正多边形,或为随机不规则网格。第二沟槽332中填充有导电材料334,由此,第二沟槽332所在区域即形成第二感应区域。与实施例一相同,第二感应区域为可视区域,透光率大于85%,其中导电材料324形成导电区,第二沟槽332围成的网格则为透光区。第二表面314于第二感应区域的外围印刷有第二引线336,且第二引线336与第二沟槽332中填充的第二导电材料334电连接。第一引线326和第二引线336为网格或线段,且线段的宽度为50μm~200μm,高度为5μm~10μm,网格宽度为2~6微米,厚度为5~10微米。
本实施例的透明导电膜300制备方法如下:
1、在基底310的第一表面312上图案化形成网格状的第一沟槽322。
2、在第一沟槽322中填充导电材料324,以形成第一感应区域。
3、在第一感应区域外围印刷第一引线326,且所述第一引线326与所述第一沟槽322中的导电材料324电连接。采取丝网印刷或喷墨打印的方式形成第一引线326,良率比较高。
4、参照上述步骤,在第二表面314上形成第二沟槽332,并填充第二导电材料334,最后印刷第二引线336。由此,提供了一种双面单层的导电膜。
实施例四、
请参考图10至图13,本实施例的透明导电膜400包括透明基底410、第一压印胶层420、第二压印胶层430。
基底410具有第一表面412和与第一表面412相对的第二表面414。第一压印胶层420涂在第一表面412上。第一压印胶层420上图形化有网格状的第一沟槽422。换言之,第一沟槽422围成很多个网格,网格线是沟槽。网格可以是规则网格,如正多边形,或为随机不规则网格。第一沟槽422中填充有导电材料424,由此,第一沟槽422所在区域即形成第一感应区域。第一压印胶层420上于第一感应区域的外围印刷有第一引线426,且第一引线426与第一沟槽422中填充的导电材料424电连接。
第二压印胶层430设置在第一压印胶层420之上,其上图形化有网格状的第二沟槽432。换言之,第二沟槽432围成很多个网格,网格线是沟槽。网格可以是规则网格,如正多边形,或为随机不规则网格。第二沟槽432中填充有第二导电材料434,以形成第二感应区域。第二感应区域的外围印刷有第二引线436,且第二引线436与第二沟槽432中填充的第二导电材料434电连接。此外,第二感应区域与第一感应区域彼此绝缘。由此,形成了单面双层的导电膜,应用于触控领域时,能实现单片导电膜支持多点触控,且触控件的厚度较低。
本实施例中,第一感应区域及第二感应区域的透光率均大于85%。第一引线426和第二引线436为网格或线段,且线段的宽度为50μm~200μm,高度为5μm~10μm,网格宽度为2~6微米,厚度为5~10微米。
本实施例的透明导电膜400制备方法如下:
1、在基底410的第一表面412上涂布第一压印胶层420。
2、在第一压印胶层420上图形化成网格状的第一沟槽422。
3、在第一沟槽422中填充导电材料424,以形成第一感应区域。
4、在第一感应区域外围印刷第一引线426,且所述第一引线426与所述第一沟槽422中的导电材料424电连接。采取丝网印刷或喷墨打印的方式形成第一引线426,良率比较高。
5、在第一压印胶层420之上涂上第二压印胶层430。
6、在第二压印胶层430上图形化成网格状的第二沟槽432。
7、在第二沟槽432中填充第二导电材料434,以形成第二感应区域。
8、在第二感应区域外围印刷第二引线436,且所述第二引线436与所述第二沟槽432中的第二导电材料434电连接。采取丝网印刷或喷墨打印的方式形成第二引线436,良率比较高。
综上,上述实施例的透明导电膜及制备方法中,感应区域和引线并非一次印刷而成,引线印刷时无需考虑感应区域的密度问题,引线良率高。
下面结合一个具体的实施例,说明感应区域和引线电连接的方式。
请参考图14和图15,本实施例的透明导电膜600包括透明基底610。透明基底610的两个相对的表面上分别形成有第一感应区域620和与第一感应区域620电连接的第一引线630,及第二感应区域640和与第二感应区域640电连接的第一引线650。透明导电膜600是一单层双面的导电膜。由前述实施例一至实施例四可知,透明导电膜600上还可以设置聚合物层,上述第一、第二感应区域,及第一、第二引线还可以是设置在聚合物层上。
请参考图16,以第一感应区域620和第一引线630为例。第一感应区域620通过在第一沟槽660中填充导电材料形成,第一沟槽660为第一感应区域的网格线。电连接方式为:第一感应区域620边缘设有含有导电材料的线段670。线段670与第一沟槽660中的导电材料相互电连接。线段670可以采取如下方式形成:在图形化形成第一沟槽660时在第一感应区域620边缘同时形成直线状的沟槽,然后填充导电材料。
请参考图17,以第二感应区域640和第二引线650为例。第二感应区域640通过在第二沟槽680中填充导电材料形成,第二沟槽680为第二感应区域640的网格线。第二感应区650印刷成网格状,具有网格线。电连接方式为:第二引线650的网格线与第二感应区域640的网格线通过节点690连接。节点690可以设置多个。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种透明导电膜,包括透明基底及聚合物层,所述聚合物层设于所述透明基底上,其特征在于,所述聚合物层表面上图形化有网格状沟槽,所述网格状沟槽中填充有导电材料以形成感应区域,所述感应区域的外围还印刷有引线,且所述引线与所述网格状沟槽中的导电材料电连接。
  2. 根据权利要求1所述的透明导电膜,其特征在于,所述感应区域为可视区域,所述感应区域的透光率大于85%。
  3. 根据权利要求1所述的透明导电膜,其特征在于,所述引线通过丝网印刷或喷墨打印形。
  4. 根据权利要求1所述的透明导电膜,其特征在于,所述引线为网格或线段,且线段的宽度为50μm~200μm,高度为5μm~10μm,所述网格宽度为2~6微米,厚度为5~10微米。
  5. 根据权利要求1所述的透明导电膜,其特征在于,所述沟槽形成的网格为规则网格或随机不规则网格。
  6. 根据权利要求1所述的透明导电膜,其特征在于,所述感应区域边缘设有与所述沟槽内的导电材料电相连的线段,所述引线的导电材料通过所述线段与所述沟槽内的导电材料电连接;或所述引线为网格线,并且所述引线通过节点与所述沟槽内的导电材料电连接。
  7. 一种透明导电膜,包括透明基底,其特征在于,所述透明基底具有相对的第一表面和第二表面,所述第一表面和第二表面上均图形化有网格状沟槽,所述网格状沟槽中填充有导电材料以形成感应区域,所述感应区域的外围还印刷有引线,且所述引线与所述网格状沟槽中的导电材料电连接。
  8. 根据权利要求7所述的透明导电膜,其特征在于,所述引线通过丝网印刷或喷墨打印形成。
  9. 根据权利要求7所述的透明导电膜,其特征在于,所述感应区域边缘设有与所述沟槽内的导电材料电相连的线段,所述引线的导电材料通过所述线段与所述沟槽内的导电材料电连接;或所述引线为网格线,并且所述引线通过节点与所述沟槽内的导电材料电连接。
  10. 一种透明导电膜,包括透明基底及聚合物层,所述聚合物层设于所述基底上,其特征在于,所述聚合物层表面上图形化有网格状的第一沟槽,所述网格状的第一沟槽中填充有导电材料以形成第一感应区域,所述第一感应区域的外围还印刷有第一引线,且所述第一引线与所述网格状第一沟槽中的导电材料电连接;所述第一感应区域和第一引线之上还另设有聚合物层,所述聚合物层表面图形化有网格状的第二沟槽,所述网格状的第二沟槽中填充有导电材料以形成第二感应区域,所述第二感应区域的外围还印刷有第二引线,且所述第二引线与所述网格状第二沟槽中的导电材料电连接,所述第二感应区域与所述第一感应区域彼此绝缘。
  11. 根据权利要求10所述的透明导电膜,其特征在于,所述第一引线和第二引线通过丝网印刷或喷墨打印形成。
  12. 根据权利要求10所述的透明导电膜,其特征在于,所述第一、第二感应区域边缘分别设有与所述第一、第二沟槽内的导电材料电相连的线段,所述第一、第二引线的导电材料通过所述线段与所述第一、第二沟槽内的导电材料电连接;或所述第一、第二引线为网格线,且所述第一、第二引线分别通过节点与所述第一、第二沟槽内的导电材料电连接。
  13. 一种透明导电膜的制备方法,其特征在于,包括如下步骤:
    提供设有第一聚合物层的透明基底,在所述第一聚合物层表面上图形化形成网格状第一沟槽;
    在所述第一沟槽中填充导电材料,以形成感应区域;
    在所述感应区域的外围印刷第一引线,且所述第一引线与所述第一沟槽中的导电材料电连接。
  14. 根据权利要求13所述的透明导电膜的制备方法,其特征在于,还包括如下步骤:
    在所述感应区域和所述第一引线上涂第二聚合物层;
    在所述第二聚合物层表面图形化形成网格状第二沟槽;
    在所述第二聚合物层表面的网格状第二沟槽中填充导电材料,以形成感应区域;
    在所述第二聚合物层上的感应区域外围印刷第二引线,且所述第二引线与所述第二沟槽中的导电材料电连接,所述第二聚合物层表面形成的感应区域与所述第一聚合物层表面形成的感应区域彼此绝缘。
PCT/CN2013/078943 2013-03-28 2013-07-06 透明导电膜及其制备方法 WO2014153898A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137026023A KR101584798B1 (ko) 2013-03-28 2013-07-06 투명 전도성 필름 및 이의 제조방법
JP2015507366A JP2015520444A (ja) 2013-03-28 2013-07-06 透明導電膜及びその製造方法
US14/000,112 US9392700B2 (en) 2013-03-28 2013-07-06 Transparent conductive film and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310104744.3A CN103165226B (zh) 2013-03-28 2013-03-28 透明导电膜及其制备方法
CN201310104744.3 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014153898A1 true WO2014153898A1 (zh) 2014-10-02

Family

ID=48588231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078943 WO2014153898A1 (zh) 2013-03-28 2013-07-06 透明导电膜及其制备方法

Country Status (5)

Country Link
JP (1) JP2015520444A (zh)
KR (1) KR101584798B1 (zh)
CN (1) CN103165226B (zh)
TW (1) TWI509639B (zh)
WO (1) WO2014153898A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208636A1 (ja) * 2015-06-22 2016-12-29 株式会社フジクラ 配線体、配線基板、及びタッチセンサ
JPWO2016208636A1 (ja) * 2015-06-22 2017-09-07 株式会社フジクラ 配線体、配線基板、及びタッチセンサ
CN110045865A (zh) * 2019-03-06 2019-07-23 苏州蓝沛光电科技有限公司 触控屏的制备方法
WO2023025240A1 (zh) * 2021-08-27 2023-03-02 昇印光电(昆山)股份有限公司 发光模组和显示装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165226B (zh) * 2013-03-28 2015-04-08 南昌欧菲光科技有限公司 透明导电膜及其制备方法
US9392700B2 (en) 2013-03-28 2016-07-12 Nanchang O-Film Tech. Co., Ltd. Transparent conductive film and preparation method thereof
CN103365472A (zh) * 2013-07-05 2013-10-23 南昌欧菲光显示技术有限公司 偏光滤光模块及触摸显示屏
CN103345329B (zh) * 2013-07-05 2016-08-24 南昌欧菲光显示技术有限公司 滤光片组件和触摸显示屏
CN103336626B (zh) * 2013-07-05 2016-12-28 南昌欧菲光显示技术有限公司 滤光片组件及使用该滤光片组件的触摸显示屏
CN103345319B (zh) * 2013-07-05 2016-08-24 南昌欧菲光显示技术有限公司 偏光-滤光模块及使用该偏光-滤光模块的触摸显示屏
CN103336618B (zh) * 2013-07-05 2016-08-17 南昌欧菲光显示技术有限公司 偏光滤光模块与其制作方法及触摸显示屏
CN103336627B (zh) * 2013-07-05 2017-04-05 南昌欧菲光显示技术有限公司 滤光片组件及使用该滤光片组件的触摸显示屏
CN103336631A (zh) * 2013-07-05 2013-10-02 南昌欧菲光显示技术有限公司 滤光片组件、滤光片组件制作方法及触摸显示屏
CN103426504B (zh) * 2013-07-30 2017-04-05 南昌欧菲光科技有限公司 导电膜
CN103425345B (zh) * 2013-07-31 2016-10-26 南昌欧菲光科技有限公司 触摸屏屏体结构、触摸显示屏及触摸按键装置
CN103427820A (zh) * 2013-07-31 2013-12-04 南昌欧菲光科技有限公司 触摸按键装置
CN103425374A (zh) * 2013-07-31 2013-12-04 南昌欧菲光科技有限公司 触摸屏屏体结构、触摸显示屏及触摸按键装置
CN104347154B (zh) * 2013-07-31 2017-11-03 南昌欧菲光科技有限公司 一种透明导电膜
CN103427819A (zh) * 2013-07-31 2013-12-04 南昌欧菲光科技有限公司 触摸按键装置
CN103871547B (zh) * 2014-02-26 2017-09-29 南昌欧菲光科技有限公司 透明导电膜及含有该透明导电膜的电子装置
CN105655012B (zh) * 2014-11-11 2017-11-21 深圳欧菲光科技股份有限公司 电子装置、透明导电膜及其制备方法
JP6549964B2 (ja) * 2015-10-16 2019-07-24 株式会社フジクラ 配線体、配線基板、タッチセンサ、及び配線体の製造方法
CN112566365A (zh) * 2020-12-09 2021-03-26 浙江日久新材料科技有限公司 一种金属网格膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707849A (zh) * 2012-02-01 2012-10-03 南京点面光电有限公司 一种电容式触摸屏的制作方法
CN102722279A (zh) * 2012-05-09 2012-10-10 崔铮 金属网格导电层及其具备该导电层的触摸面板
CN102903423A (zh) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法
CN103165226A (zh) * 2013-03-28 2013-06-19 南昌欧菲光科技有限公司 透明导电膜及其制备方法
CN203179571U (zh) * 2013-03-28 2013-09-04 南昌欧菲光科技有限公司 透明导电膜

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3614418B1 (en) * 2008-02-28 2023-11-01 3M Innovative Properties Company Touch screen sensor
JP5259368B2 (ja) * 2008-12-15 2013-08-07 日本写真印刷株式会社 導電性ナノファイバーシート及びその製造方法
EP2544080B1 (en) * 2010-03-03 2019-08-28 Miraenanotech Co., Ltd. Capacitive touch panel and manufacturing method for same
CN102236485A (zh) * 2010-04-23 2011-11-09 比亚迪股份有限公司 一种投射式电容触摸屏
KR101051448B1 (ko) * 2010-10-26 2011-07-22 한국기계연구원 인쇄기반 금속 배선을 이용한 투명전극 제조 방법 및 그 투명전극
CN102063951B (zh) * 2010-11-05 2013-07-03 苏州苏大维格光电科技股份有限公司 一种透明导电膜及其制作方法
JP5581183B2 (ja) * 2010-11-19 2014-08-27 富士フイルム株式会社 タッチパネルの製造方法及びタッチパネル用導電性フイルム
CN102222538B (zh) * 2011-03-11 2012-12-05 苏州纳格光电科技有限公司 图形化的柔性透明导电薄膜及其制法
KR101797651B1 (ko) * 2011-06-15 2017-11-15 미래나노텍(주) 터치스크린 패널용 배선 전극 및 이를 구비하는 터치스크린 패널
JP2013045246A (ja) * 2011-08-23 2013-03-04 Dainippon Printing Co Ltd タッチパネル部材および座標検出装置
CN102708946B (zh) * 2012-05-09 2015-01-07 南昌欧菲光科技有限公司 双面图形化透明导电膜及其制备方法
CN102930922B (zh) * 2012-10-25 2015-07-08 南昌欧菲光科技有限公司 一种具有各向异性导电的透明导电膜
US20140216790A1 (en) * 2013-02-05 2014-08-07 David P. Trauernicht Conductive micro-wire structure with offset intersections

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707849A (zh) * 2012-02-01 2012-10-03 南京点面光电有限公司 一种电容式触摸屏的制作方法
CN102722279A (zh) * 2012-05-09 2012-10-10 崔铮 金属网格导电层及其具备该导电层的触摸面板
CN102903423A (zh) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法
CN103165226A (zh) * 2013-03-28 2013-06-19 南昌欧菲光科技有限公司 透明导电膜及其制备方法
CN203179571U (zh) * 2013-03-28 2013-09-04 南昌欧菲光科技有限公司 透明导电膜

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208636A1 (ja) * 2015-06-22 2016-12-29 株式会社フジクラ 配線体、配線基板、及びタッチセンサ
JPWO2016208636A1 (ja) * 2015-06-22 2017-09-07 株式会社フジクラ 配線体、配線基板、及びタッチセンサ
US10394401B2 (en) 2015-06-22 2019-08-27 Fujikura Ltd. Wiring body, wiring board, and touch sensor
CN110045865A (zh) * 2019-03-06 2019-07-23 苏州蓝沛光电科技有限公司 触控屏的制备方法
WO2023025240A1 (zh) * 2021-08-27 2023-03-02 昇印光电(昆山)股份有限公司 发光模组和显示装置

Also Published As

Publication number Publication date
KR20140126658A (ko) 2014-10-31
CN103165226A (zh) 2013-06-19
TWI509639B (zh) 2015-11-21
CN103165226B (zh) 2015-04-08
TW201438031A (zh) 2014-10-01
JP2015520444A (ja) 2015-07-16
KR101584798B1 (ko) 2016-01-12

Similar Documents

Publication Publication Date Title
WO2014153898A1 (zh) 透明导电膜及其制备方法
WO2010095798A1 (ko) 정전용량 방식의 터치스크린 패널의 제조방법
TWI541838B (zh) 透明導電膜中之導電結構、透明導電膜及製作方法
JP5766759B2 (ja) 伝導体およびその製造方法
US9977275B2 (en) Filter module comprising first and second conductive patterns embedded in a patterned grooved surface of a coating layer and touch screen having the same
TWI510993B (zh) 觸摸屏感應模組及其製作方法和顯示器
CN203350852U (zh) 静电电容耦合方式触摸面板
WO2014153899A1 (zh) 电容式触摸屏
WO2014146382A1 (zh) 触摸屏及其制造方法
WO2013166839A1 (zh) 双面图形化透明导电膜及其制备方法
WO2011149199A2 (ko) 금속박막을 이용한 터치패널 및 그 제조방법
WO2014153895A1 (zh) 电容式透明导电膜及其制造方法
WO2014059824A1 (zh) 触控面板及其制作方法
WO2014082543A1 (zh) 应用在触控面板的粘合层及其制备方法
WO2014117478A1 (zh) 引线电极及其制备方法
WO2019072204A1 (zh) 触控基板及其制作方法、显示装置
CN203179571U (zh) 透明导电膜
TW201232134A (en) Touch panel and method for manufacturing electrode member
CN107390914A (zh) 触控面板及显示设备
WO2019059589A1 (ko) 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법
CN108845704A (zh) 触控面板及其制作方法、显示装置
WO2015156467A1 (ko) 나노구조의 패턴을 구비한 광투과성 도전체 및 그 제조방법
WO2014048259A1 (zh) 触控装置结构及其制造方法
US11003290B2 (en) Sensing film with an integrated structure
CN103325441A (zh) 触控面板之导电薄膜及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14000112

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015507366

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137026023

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879841

Country of ref document: EP

Kind code of ref document: A1