WO2014153895A1 - 电容式透明导电膜及其制造方法 - Google Patents

电容式透明导电膜及其制造方法 Download PDF

Info

Publication number
WO2014153895A1
WO2014153895A1 PCT/CN2013/078909 CN2013078909W WO2014153895A1 WO 2014153895 A1 WO2014153895 A1 WO 2014153895A1 CN 2013078909 W CN2013078909 W CN 2013078909W WO 2014153895 A1 WO2014153895 A1 WO 2014153895A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
capacitive
transparent conductive
conductive material
film according
Prior art date
Application number
PCT/CN2013/078909
Other languages
English (en)
French (fr)
Inventor
高育龙
顾滢
赵云华
谢广龙
Original Assignee
南昌欧菲光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲光科技有限公司 filed Critical 南昌欧菲光科技有限公司
Priority to JP2015507365A priority Critical patent/JP5897204B2/ja
Priority to KR1020137029923A priority patent/KR101558319B1/ko
Priority to US14/000,200 priority patent/US9040833B2/en
Publication of WO2014153895A1 publication Critical patent/WO2014153895A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate

Definitions

  • the present invention relates to a touch screen and a method of fabricating the same, and more particularly to a capacitive transparent conductive film and a method of fabricating the same.
  • the capacitive touch screen works by the current sensing of the human body. For example, when the finger touches the capacitive touch screen, the user and the capacitive touch screen surface form a coupling capacitor due to the human body electric field, and for the high frequency current, the capacitance is direct The conductor, so the finger sucks a small current from the contact point. This current is distributed from the electrodes at the four corners of the capacitive touch screen, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners. The controller calculates the ratio of the four currents accurately. The location of the touch point.
  • OGS One Glass Solution
  • the benefits have three points: (1) saving a layer of glass cost and reducing the cost of a single paste; (2) reducing the weight; (3) Increased transparency.
  • OGS can better meet the ultra-thin requirements of smart terminals and enhance the display effect, which is an inevitable choice for high-end brand terminals.
  • the traditional OGS touch screen is mainly used to lay ITO on the surface of the protective glass, so that the protective glass acts both as a sensor and as a protection, and the ITO is raised on the surface of the glass.
  • the conductive material of the conventional OGS is disposed on the surface of the glass, and the ITO is raised on the surface.
  • a conductive material is easily scratched, thereby causing damage to the device, and cannot be used normally
  • the main material of OGS is ITO, the main material of ITO
  • the material is mainly rare metal indium, rare in indium material, so the cost is relatively expensive, and ITO is relatively large in resistance and large in sensitivity in making large-sized OGS; in the process of one-time imprinting in visible and non-visible areas Since the visible and non-visible areas have different mesh densities, the mesh density of the non-visible area leads is greater than the visible area mesh density, so that the processing process (eg, demolding, filling conductive materials, etc.) There is a difference, resulting in defective products in the lead area.
  • a capacitive transparent conductive film comprising:
  • a transparent substrate comprising a first surface and a second surface opposite the first surface
  • a light shielding layer formed on an edge of the first surface of the transparent substrate, the light shielding layer forming an invisible area on the first surface of the transparent substrate;
  • a sensing region is formed on the surface of the polymer layer.
  • the invisible region of the capacitive transparent conductive film has leads, the conductive material of the leads is electrically connected to the conductive material in the trench, and the leads are attached to the polymer layer s surface.
  • the conductive material of the lead is directly connected to the conductive material within the trench.
  • the sensing region edge is provided with a line segment electrically connected to a conductive material within the trench, the conductive material of the lead being electrically connected to the conductive material within the trench through the line segment.
  • the leads are gridlines and the leads are electrically connected to the conductive material within the trenches through the nodes.
  • the leads are formed in the invisible area by screen printing or inkjet printing.
  • the leads are either patterned or composed of line segments.
  • the patterned grid has a line width of 2 ⁇ m to 50 ⁇ m, the patterned grid line has a height of 5 to 10 ⁇ m, and the patterned grid has a side length of less than 100 ⁇ m.
  • the line segment has a width of 50 to 200 microns and the line segment has a height of 5 to 10 microns.
  • the light shielding layer has a width of 1 to 5 mm.
  • the trench has a width of 1 to 5 microns, a depth of 2 to 6 microns, and the trench has an aspect ratio greater than one.
  • the sensing area is a visible area, and the visible area has a light transmission greater than 89%.
  • the cells of the grid are positively multi-deformed, and the ratio of the conductive material coverage area of each cell to the total area enclosed by each cell is less than 5%.
  • a transparent protective layer is further included, the transparent protective layer covering the polymer layer to remove a surface layer of a lead output portion of the lead region.
  • the polymer layer is a UV curable layer, polyethylene terephthalate, polycarbonate or polymethyl methacrylate.
  • the transparent substrate is a transparent glass plate.
  • the conductive material is selected from the group consisting of metal, indium tin oxide, transparent high molecular material, graphene, and carbon nanotube.
  • the above-mentioned capacitive transparent conductive film has at least the following advantages:
  • the polymer layer of the above-mentioned capacitive transparent conductive film is formed with a groove for accommodating a conductive material, so that the conductive material is buried in the polymer layer, thereby effectively protecting the conductive material.
  • the conductive material of the above-mentioned capacitive transparent conductive film is distributed in the polymer layer in a mesh format, and the conductive material can be made of a material having a lower cost without using an ITO film to lay the entire surface, and therefore, the above-mentioned capacitive transparent conductive The film is lower than the conventional capacitive transparent conductive film.
  • the conductive material of the above-mentioned capacitive transparent conductive film is distributed in a mesh format, and has a small electrical resistance and a good electrical conductivity.
  • a method of manufacturing a capacitive transparent conductive film is also provided.
  • a method of manufacturing a capacitive transparent conductive film comprising the steps of:
  • Forming the polymer layer on a first surface of the transparent substrate performing patterning on the polymer layer to form the trench, and then filling the trench with the conductive material, Forming the sensing area;
  • the leads are printed by printing on the edges of the sensing regions on the surface of the polymer layer, and the leads are electrically connected to conductive material within the trenches.
  • FIG. 1 is a schematic structural view of a capacitive transparent conductive film according to an embodiment
  • FIG. 2 is a schematic view showing a grid-like groove of the capacitive transparent conductive film shown in FIG. 1;
  • FIG. 3 is a schematic structural view of another embodiment of a lead wire of the capacitive transparent conductive film shown in FIG. 1;
  • FIG. 4 is a schematic structural view of another embodiment of a lead wire of the capacitive transparent conductive film shown in FIG. 1;
  • Figure 5 is a partial schematic view of the groove shown in Figure 2;
  • Figure 6 is a plan view of the capacitive transparent conductive film shown in Figure 1;
  • FIG. 7 is a schematic structural view of another embodiment of the capacitive transparent conductive film shown in FIG. 1;
  • Fig. 8 is a flow chart showing a method of manufacturing a capacitive transparent conductive film according to an embodiment.
  • a capacitive transparent conductive film 100 includes a transparent substrate 110 , a light shielding layer 120 , and a polymer layer 130 .
  • the transparent substrate 110 serves as a carrier substrate of the capacitive transparent conductive film 100
  • the light shielding layer 120 is used to form an invisible region of the capacitive transparent conductive film 100
  • the polymer layer 130 is used to form a conductive layer of the capacitive transparent conductive film 100.
  • the transparent substrate 110 includes a first surface 111 and a second surface 113 opposite to the first surface 111.
  • the transparent substrate 110 may be a transparent glass plate or a transparent plate of other materials.
  • the light shielding layer 120 is formed on an edge of the first surface 111 of the transparent substrate 110, and the light shielding layer 120 forms an invisible area on the first surface 111 of the transparent substrate 110.
  • the light shielding layer 120 may be formed on the first surface 111 of the transparent substrate 110 by spraying.
  • the light shielding layer 120 has a width of 1 to 5 mm.
  • the polymer layer 130 is formed on the first surface 111 of the transparent substrate 110 and covers the light shielding layer 120.
  • the surface of the polymer layer 130 is patterned to form a grid-like trench 131 filled with a conductive material 140 to form a sensing region on the surface of the polymer layer 130.
  • the polymer layer 130 may be an ultraviolet curable adhesive layer (UV adhesive layer) which may be coated on the first surface 111 of the transparent substrate 110 by direct coating and cured by ultraviolet irradiation.
  • UV adhesive layer ultraviolet curable adhesive layer
  • the trench 131 has a width of 1 to 5 ⁇ m, a depth of 2 to 6 ⁇ m, and a groove 131 having an aspect ratio greater than 1.
  • the sensing area is a visible area, and the light transmittance of the visible area is greater than 89%.
  • the shape of the cell of the grid may be a regular polygon or other regular graphics.
  • the cells of the grid are positively multi-deformed, and the ratio of the coverage area of the conductive material 140 of each cell to the total area enclosed by each cell is less than 5%.
  • the regular polygon has a side length of a, a line width of b, a metal coverage area of a*b, and a regular polygon area of: nr ⁇ 2tan( ⁇ /2), where n is the length of the side, r For the radius of the inscribed circle, ⁇ is the central angle of the side length; and the ratio of the two areas is less than 5%.
  • the conductive material 140 may be selected from one of a metal, indium tin oxide, a transparent polymer material, graphene, and carbon nanotubes.
  • the edge of the polymer layer 130 is formed with a lead region corresponding to the invisible region.
  • the lead 160 has a width of 50 to 200 ⁇ m and the lead 160 has a height of 5 to 10 ⁇ m.
  • the conductive material of the lead 160 is electrically connected to the conductive material in the trench 131, and the lead 160 is attached to the surface of the light shielding layer 120.
  • the conductive material (not shown) of lead 160 is directly or indirectly connected to conductive material 140 within trench 131.
  • the sensing region edge is provided with a line segment 135 that is electrically connected to the conductive material 140 within the trench 131.
  • the conductive material of the lead 160 is electrically connected to the conductive material within the trench through the wire segment 135.
  • lead 160 is a gridline and lead 160 is electrically coupled to conductive material 140 within trench 131 by node 137.
  • the lead 160 is formed in the invisible area by screen printing or inkjet printing.
  • the lead 160 may be a patterned grid or composed of line segments.
  • the graphical grid has a line width of 4 ⁇ m to 50 ⁇ m
  • the patterned grid line has a height of 5 to 10 ⁇ m
  • the patterned grid has a side length of less than 100 ⁇ m.
  • the line segment has a width of 50 to 200 microns and the line segment has a height of 5 to 10 microns.
  • a transparent protective layer 170 covering the surface layer of the output end portion of the lead 160 of the lead layer 160 of the polymer layer 130.
  • the above-described capacitive transparent conductive film 100 has at least the following advantages:
  • the polymer layer 130 of the above-described capacitive transparent conductive film 100 is formed with a trench 131 in which the conductive material 140 is housed, so that the conductive material 140 is buried in the polymer layer 130, thereby effectively protecting the conductive material 140.
  • the conductive material 140 of the above-described capacitive transparent conductive film 100 is distributed in the polymer layer 130 in a mesh format, and the conductive material 140 can be made of a lower cost material without using an ITO film to lay the entire surface.
  • the capacitive transparent conductive film 100 is lower than a conventional capacitive transparent conductive film.
  • the conductive material 140 of the above-described capacitive transparent conductive film 100 is distributed in a mesh format, and has a small electrical resistance and a good electrical conductivity.
  • a method of manufacturing a capacitive transparent conductive film for producing the above-described capacitive transparent conductive film 100 is also provided.
  • a method for manufacturing a capacitive transparent conductive film 100 includes the following steps:
  • step S101 the light shielding layer 120 is disposed on the first surface 111 of the transparent substrate 110 to form an invisible area.
  • the edge of the glass substrate can be sprayed with ink to form an invisible area, and the width of the ink is 1 mm to 5 mm.
  • Step S102 forming a polymer layer 130 on the first surface 111 of the transparent substrate 110, performing patterning on the polymer layer 130 to form the trench 131, and then filling the trench 131 with the conductive material 140, To form a sensing area.
  • the surface of the glass substrate in S101 may be coated with UV glue, and patterned in the visible region to form a grid-like groove 131 having a width of 1 ⁇ m to 5 ⁇ m and a depth of 2 ⁇ m to 6 ⁇ m.
  • the aspect ratio is greater than one; the trench 131 is filled with a conductive material 140 to pattern the surface of the UV gel to form a sensing region.
  • step S103 the lead 160 is printed on the edge of the sensing region on the surface of the polymer layer 130 by printing, and the lead 160 is electrically connected to the conductive material 140 in the trench 131.
  • the leads 160 can be printed at the edge of the viewable area by screen printing, and the leads 160 are connected to the conductive material 140 in the grooves 131 in the visible area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

一种电容式透明导电膜(100)以及该电容式透明导电膜的制造方法。电容式透明导电膜包括:透明基板(110),透明基板包括第一表面(111)及与所述第一表面相对的第二表面(113);遮光层(120),形成于所述透明基板的第一表面的边缘,遮光层在所述透明基板的第一表面上形成不可视区域;聚合物层(130),形成于所述透明基板的第一表面上,并覆盖所述遮光层,聚合物层的表面图形化形成网格状的沟槽(131),沟槽内填充有导电材料(140),以在聚合物层的表面形成感应区域。电容式透明导电膜可有效保护导电材料、并且成本较低、导电性性能较好。

Description

电容式透明导电膜及其制造方法
【技术领域】
本发明涉及一种触摸屏及其制造方法,特别是涉及一种电容式透明导电膜及其制造方法。
【背景技术】
电容式触摸屏利用人体的电流感应进行工作的,例如,当手指触摸在电容式触摸屏上时,由于人体电场,用户和电容式触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从电容式触摸屏的位于四个角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。
OGS ( One Glass Solution , 即一体化触控 ) 将成为触控产业的主导技术方向。OGS 的好处有三点: (1) 节省了一层玻璃成本和减少了一次贴合成本;(2) 减轻了重量;(3) 增加了透光度。OGS能够较好的满足智能终端超薄化需求,并提升显示效果,是高端品牌终端的必然选择。
传统的OGS触摸屏主要是在保护玻璃表面铺设ITO,这样保护玻璃既起到传感器又起到保护作用,ITO凸起在玻璃表面。
然而,传统的OGS的导电材料设置在玻璃的表面,ITO凸起在表面,这样的导电材料容易被划伤,从而致使器件的损坏,而不能正常使用;OGS的主要材料为ITO,ITO的主要材料主要是稀有金属铟,铟材料的稀有,所以成本比较昂贵,而且ITO在做大尺寸的OGS是电阻比较大,灵敏度不好;在可视区域和非可视区域一次压印成型的过程中,由于可视区和非可视区得网格密度不同,非可视区引线的网格密度大于可视区网格密度,这样在处理的工艺上(例如:脱模、填充导电材料等)有所区别,从而致使引线区域出现不良品。
【发明内容】
鉴于上述状况,有必要提供一种可有效保护导电材料、并且成本较低、导电性性能较好的电容式透明导电膜。
一种电容式透明导电膜,其包括:
透明基板,包括第一表面及与所述第一表面相对的第二表面;
遮光层,形成于所述透明基板的第一表面的边缘,所述遮光层在所述透明基板的第一表面上形成不可视区域;及
聚合物层,形成于所述透明基板的第一表面上,并覆盖所述遮光层,所述聚合物层的表面图形化形成网格状的沟槽,所述沟槽内填充有导电材料,以在所述聚合物层的表面形成感应区域。
在其中一个实施例中,所述电容式透明导电膜的不可视区域具有引线,所述引线的导电材料与所述沟槽内的导电材料电连接,且所述引线附着于所述聚合物层的表面。
在其中一个实施例中,所述引线的导电材料与所述沟槽内的导电材料直接相连。
在其中一个实施例中,所述感应区域边缘设有与所述沟槽内的导电材料电相连的线段,所述引线的导电材料通过所述线段与所述沟槽内的导电材料电连接。
在其中一个实施例中,所述引线为网格线,并且所述引线通过节点与所述沟槽内的导电材料电连接。
在其中一个实施例中,所述引线通过丝网印刷或喷墨打印形成于不可视区域。
在其中一个实施例中,所述引线为图形化网格或由线段组成。
在其中一个实施例中,所述图形化网格线宽为2μm~50μm,所述图形化网格线的高度为5~10微米,所述图形化网格的边长小于100μm。
在其中一个实施例中,所述线段的宽度为50~200微米,所述线段的高度为5~10微米。
在其中一个实施例中,所述遮光层的宽度为1~5毫米。
在其中一个实施例中,所述沟槽的宽度为1~5微米,深度为2~6微米,并且所述沟槽的深宽比大于1。
在其中一个实施例中,所述感应区域为可视区域,并且所述可视区域的光透过率大于89%。
在其中一个实施例中,所述网格的单元格为正多变形,每个单元格的导电材料覆盖面积与所述每个单元格围成的总面积之比小于5%。
在其中一个实施例中,还包括透明保护层,所述透明保护层覆盖所述聚合物层除去所述引线区域的引线输出端部分的表层。
在其中一个实施例中,所述聚合物层为紫外光固化胶层、聚对苯二甲酸乙二酯、聚碳酸酯或聚甲基丙烯酸甲酯。
在其中一个实施例中,所述透明基板为透明玻璃板。
在其中一个实施例中,所述导电材料选自金属、氧化铟锡、透明高分子材料、石墨烯、碳纳米管中的一种。
相较于传统的透明导电膜,上述电容式透明导电膜至少具有以下优点:
(1)上述电容式透明导电膜的聚合物层上形成有收容导电材料的沟槽,使得导电材料埋入到聚合物层内,从而有效保护导电材料。
(2)上述电容式透明导电膜的导电材料采用网格式地分布在聚合物层内,并且导电材料可以采用成本较低的材料,而无需采用ITO薄膜铺设整个表面,因此,上述电容式透明导电膜相较于传统的电容式透明导电膜低。
(3)上述电容式透明导电膜的导电材料采用网格式地分布,其电阻较小,导电性能较好。
同时,还提供一种电容式透明导电膜的制造方法。
一种电容式透明导电膜的制造方法,其包括如下步骤:
在所述透明基板的第一表面的边缘设有所述遮光层,以形成所述不可视区域;
在所透明基板的第一表面上涂布形成所述聚合物层,并在所述聚合物层上进行图形化处理而形成所述沟槽,然后在所述沟槽内填充所述导电材料,以形成所述感应区域;及
通过印刷的方式在所述聚合物层的表面上的感应区域的边缘印刷所述引线,并且所述引线与所述沟槽内的导电材料电连接。
【附图说明】
图1为一实施方式的电容式透明导电膜的结构示意图;
图2为图1所示的电容式透明导电膜的网格状的沟槽的示意图;
图3为图1所示的电容式透明导电膜的引线的另一实施例的结构示意图;
图4为图1所示的电容式透明导电膜的引线的另一实施例的结构示意图;
图5为图2所示沟槽的局部示意图;
图6为图1所示的电容式透明导电膜的俯视图;
图7为图1所示的电容式透明导电膜的另一实施例的结构示意图;
图8为一实施方式的电容式透明导电膜的制造方法的流程图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1、图5及图6,一实施方式的电容式透明导电膜100,包括透明基板110、遮光层120及聚合物层130。透明基板110作为电容式透明导电膜100的承载基底,遮光层120用于形成电容式透明导电膜100的不可视区域,聚合物层130用于成型电容式透明导电膜100的导电层。
透明基板110包括第一表面111及与所述第一表面111相对的第二表面113。透明基板110可以为透明玻璃板或其他材质的透明板。
遮光层120形成于透明基板110的第一表面111的边缘,遮光层120在透明基板110的第一表面111上形成不可视区域。例如,遮光层120可以采用喷涂的方式形成在透明基板110的第一表面111上。优选地,遮光层120的宽度为1~5毫米。
请一并参阅图2及图3,聚合物层130形成于透明基板110的第一表面111上,并覆盖遮光层120。聚合物层130的表面图形化形成网格状的沟槽131,沟槽131内填充有导电材料140,以在聚合物层130的表面形成感应区域。例如,聚合物层130可以为紫外光固化胶层(UV胶层),其可采用直接涂布的方式涂覆在透明基板110的第一表面111上,并采用紫外线照射的方式固化。
优选地,沟槽131的宽度为1~5微米,深度为2~6微米,并且沟槽131的深宽比大于1。感应区域为可视区域,并且可视区域的光透过率大于89%。
需要说明的是,网格的单元格的形状可以为正多边形或其他规则图形。具体在图示的实施例中,网格的单元格为正多变形,每个单元格的导电材料140覆盖面积与每个单元格围成的总面积之比小于5%。换句话说,所述正多边形的边长为a,线宽为b,金属覆盖面积为a*b;正多边形的面积为:nr^2tan(α/2),其中n为边长数,r为内接圆半径,α为边长所对的圆心角;且两个面积之比小于5%。
另外,导电材料140可以选自金属、氧化铟锡、透明高分子材料、石墨烯、碳纳米管中的一种。
请再次参阅图1,进一步地,聚合物层130的边缘形成有与不可视区域相对应的引线区域。优选地,引线区域的引线160的宽度为50~200微米,引线160的高度为5~10微米。
引线160的导电材料与沟槽131内的导电材料电连接,且引线160附着于遮光层120的表面。引线160的导电材料(图未标)与沟槽131内的导电材料140直接或间接相连。例如,感应区域边缘设有与沟槽131内的导电材料140电相连的线段135,引线160的导电材料通过线段135与沟槽内的导电材料电连接。或者,引线160为网格线,并且引线160通过节点137与沟槽131内的导电材料140电连接。
进一步地,引线160通过丝网印刷或喷墨打印形成于不可视区域。
请参阅图3及图4,进一步地,引线160可以为图形化网格或由线段组成。图形化网格线宽为4μm~50μm,图形化网格线的高度为5~10微米,图形化网格的边长小于100μm。线段的宽度为50~200微米,线段的高度为5~10微米。
请参阅图7,进一步地,还包括透明保护层170,所述透明保护层170覆盖聚合物层130除去所述引线区域的引线160的输出端部分的表层。
相较于传统的电容式透明导电膜,上述电容式透明导电膜100至少具有以下优点:
(1)上述电容式透明导电膜100的聚合物层130上形成有收容导电材料140的沟槽131,使得导电材料140埋入到聚合物层130内,从而有效保护导电材料140。
(2)上述电容式透明导电膜100的导电材料140采用网格式地分布在聚合物层130内,并且导电材料140可以采用成本较低的材料,而无需采用ITO薄膜铺设整个表面,因此,上述电容式透明导电膜100相较于传统的电容式透明导电膜低。
(3)上述电容式透明导电膜100的导电材料140采用网格式地分布,其电阻较小,导电性能较好。
同时,还提供一种电容式透明导电膜的制造方法,用于制备上述电容式透明导电膜100。
请参阅图8,一种电容式透明导电膜100的制造方法,包括如下步骤:
步骤S101,在透明基板110的第一表面111的设有遮光层120,以形成不可视区域。
例如,可以将玻璃基底边缘喷涂油墨,形成不可视区,油墨的宽度为1mm~5mm。
步骤S102,在所透明基板110的第一表面111上涂布形成聚合物层130,并在聚合物层130上进行图形化处理而形成沟槽131,然后在沟槽131内填充导电材料140,以形成感应区域。
例如,可以将S101中的玻璃基底表面涂布UV胶,并在可视区域进行图形化形成网格状的沟槽131,沟槽131的宽度为1μm~5μm,深度为2μm~6μm,且满足深宽比大于1;沟槽131内填充导电材料140,以使UV胶表面图形化形成感应区域。
步骤S103,通过印刷的方式在聚合物层130的表面上的感应区域的边缘印刷引线160,并且引线160与沟槽131内的导电材料140电连接。
例如,可以通过丝网印刷在可视区边缘印刷引线160,引线160与可视区域内的沟槽131中的导电材料140相连接。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种电容式透明导电膜,其特征在于,包括:
    透明基板,包括第一表面及与所述第一表面相对的第二表面;
    遮光层,形成于所述透明基板的第一表面的边缘,所述遮光层在所述透明基板的第一表面上形成不可视区域;及
    聚合物层,形成于所述透明基板的第一表面上,并覆盖所述遮光层,所述聚合物层的表面图形化形成网格状的沟槽,所述沟槽内填充有导电材料,以在所述聚合物层的表面形成感应区域。
  2. 如权利要求1所述的电容式透明导电膜,其特征在于,所述电容式透明导电膜的不可视区域具有引线,所述引线的导电材料与所述沟槽内的导电材料电连接,且所述引线附着于所述聚合物层的表面。
  3. 如权利要求2所述的电容式透明导电膜,其特征在于,所述引线的导电材料与所述沟槽内的导电材料直接相连。
  4. 如权利要求2所述的电容式透明导电膜,其特征在于,所述感应区域边缘设有与所述沟槽内的导电材料电相连的线段,所述引线的导电材料通过所述线段与所述沟槽内的导电材料电连接。
  5. 如权利要求2所述的电容式透明导电膜,其特征在于,所述引线为网格线,并且所述引线通过节点与所述沟槽内的导电材料电连接。
  6. 如权利要求2所述的电容式透明导电膜,其特征在于,所述引线通过丝网印刷或喷墨打印形成于不可视区域。
  7. 如权利要求2所述的电容式透明导电膜,其特征在于,所述引线为图形化网格或由线段组成。
  8. 如权利要求7所述的电容式透明导电膜,其特征在于,所述图形化网格线宽为2μm~50μm,所述图形化网格线的高度为5~10微米,所述图形化网格的边长小于100μm。
  9. 如权利要求7所述的电容式透明导电膜,其特征在于,所述线段的宽度为50~200微米,所述线段的高度为5~10微米。
  10. 如权利要求1所述的电容式透明导电膜,其特征在于,所述遮光层的宽度为1~5毫米。
  11. 如权利要求1所述的电容式透明导电膜,其特征在于,所述沟槽的宽度为1~5微米,深度为2~6微米,并且所述沟槽的深宽比大于1。
  12. 如权利要求1所述的电容式透明导电膜,其特征在于,所述感应区域为可视区域,并且所述可视区域的光透过率大于89%。
  13. 如权利要求1所述的电容式透明导电膜,其特征在于,所述网格的单元格为正多变形,每个单元格的导电材料覆盖面积与所述每个单元格围成的总面积之比小于5%。
  14. 如权利要求2所述的电容式透明导电膜,其特征在于,还包括透明保护层,所述透明保护层覆盖所述聚合物层除去所述引线区域的引线输出端部分的表层。
  15. 如权利要求1所述的电容式透明导电膜,其特征在于,所述聚合物层为紫外光固化胶层、聚对苯二甲酸乙二酯、聚碳酸酯或聚甲基丙烯酸甲酯。
  16. 如权利要求1所述的电容式透明导电膜,其特征在于,所述透明基板为透明玻璃板。
  17. 如权利要求1所述的电容式透明导电膜,其特征在于,所述导电材料选自金属、氧化铟锡、透明高分子材料、石墨烯、碳纳米管中的一种。
  18. 一种电容式透明导电膜的制造方法,其特征在于,包括如下步骤:
    在所述透明基板的第一表面的边缘设有所述遮光层,以形成所述不可视区域;
    在所透明基板的第一表面上涂布形成所述聚合物层,并在所述聚合物层上进行图形化处理而形成所述沟槽,然后在所述沟槽内填充所述导电材料,以形成所述感应区域;及
    通过印刷的方式在所述聚合物层的表面上的感应区域的边缘印刷所述引线,并且所述引线与所述沟槽内的导电材料电连接。
PCT/CN2013/078909 2013-03-28 2013-07-05 电容式透明导电膜及其制造方法 WO2014153895A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015507365A JP5897204B2 (ja) 2013-03-28 2013-07-05 静電容量式透明導電膜及びその製造方法
KR1020137029923A KR101558319B1 (ko) 2013-03-28 2013-07-05 용량성 투명 전도 필름 및 용량성 투명 전도 필름의 제조방법
US14/000,200 US9040833B2 (en) 2013-03-28 2013-07-05 Capacitive transparent conductive film and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310105112.9 2013-03-28
CN201310105112.9A CN103247366B (zh) 2013-03-28 2013-03-28 电容式透明导电膜及其制造方法

Publications (1)

Publication Number Publication Date
WO2014153895A1 true WO2014153895A1 (zh) 2014-10-02

Family

ID=48926831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078909 WO2014153895A1 (zh) 2013-03-28 2013-07-05 电容式透明导电膜及其制造方法

Country Status (6)

Country Link
US (1) US9040833B2 (zh)
JP (1) JP5897204B2 (zh)
KR (1) KR101558319B1 (zh)
CN (1) CN103247366B (zh)
TW (1) TWI497391B (zh)
WO (1) WO2014153895A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018118116A1 (de) 2017-07-28 2019-04-04 Tdk Corporation Verfahren zur Herstellung eines elektrisch leitfähigen Substrats, einer elektronischen Vorrichtung und einer Anzeigevorrichtung
US10867898B2 (en) 2017-07-28 2020-12-15 Tdk Corporation Electroconductive substrate, electronic device and display device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164100B (zh) * 2013-03-28 2014-08-06 南昌欧菲光科技有限公司 电容式触摸屏
US10067008B2 (en) * 2015-04-22 2018-09-04 Vorbeck Materials Corp. Capacitive sensor
CN109947284A (zh) * 2017-12-21 2019-06-28 南昌欧菲显示科技有限公司 触控屏及其制备方法以及包含该触控屏的电子设备
US11639225B2 (en) 2018-04-05 2023-05-02 Koninklifke Fabriek Inventum B.V. Solid state radio frequency (SSRF) water heater device
TWI685825B (zh) * 2018-07-09 2020-02-21 希映科技股份有限公司 顯示器及其製法
US11648627B2 (en) * 2021-05-25 2023-05-16 Tpk Advanced Solutions Inc. Touch display device and formation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110137550A (ko) * 2010-06-17 2011-12-23 (주)플라웍스 투명도전 적층 필름 및 이를 포함하는 터치 패널
CN102903423A (zh) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法
CN103106953A (zh) * 2013-02-06 2013-05-15 南昌欧菲光科技有限公司 导电膜及其制备方法以及包含该导电膜的触摸屏
CN103187119A (zh) * 2013-02-06 2013-07-03 南昌欧菲光科技有限公司 导电膜及其制备方法以及包含该导电膜的触摸屏

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218651A1 (en) * 2008-02-28 2009-09-03 Sunlight Photonics Inc. Composite substrates for thin film electro-optical devices
JP5113773B2 (ja) * 2009-01-20 2013-01-09 株式会社ジャパンディスプレイイースト 表示装置
KR101786119B1 (ko) * 2009-02-26 2017-10-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 가시성이 낮은 오버레이된 미세패턴을 갖는 패턴화된 기판 및 터치 스크린 센서
JP2010211116A (ja) * 2009-03-12 2010-09-24 Hitachi Displays Ltd タッチパネル内蔵表示装置
JP2010224388A (ja) * 2009-03-25 2010-10-07 Fuji Xerox Co Ltd 液晶表示素子および液晶表示素子の製造方法
JP5726869B2 (ja) * 2009-07-16 2015-06-03 エルジー・ケム・リミテッド 伝導体およびその製造方法
US20110012841A1 (en) * 2009-07-20 2011-01-20 Teh-Zheng Lin Transparent touch panel capable of being arranged before display of electronic device
CN201583919U (zh) * 2009-11-17 2010-09-15 天马微电子股份有限公司 触摸屏及应用该触摸屏的显示装置
TW201142682A (en) * 2010-02-12 2011-12-01 Wintek Corp Surface capacitive touch panel and its fabrication method
KR20110112128A (ko) * 2010-04-06 2011-10-12 삼성전자주식회사 터치 패널의 기생 커패시턴스 보상 방법 및 장치
TW201213949A (en) * 2010-09-29 2012-04-01 Catcher Technology Co Ltd Touch panel
US8486284B2 (en) * 2010-11-17 2013-07-16 Kai-Ti Yang Method for forming a touch sensing pattern and signal wires
CN102736809A (zh) * 2011-04-08 2012-10-17 宇辰光电股份有限公司 可加速反应时间与防止干扰的触屏面板
KR101797651B1 (ko) * 2011-06-15 2017-11-15 미래나노텍(주) 터치스크린 패널용 배선 전극 및 이를 구비하는 터치스크린 패널
KR101191949B1 (ko) * 2011-06-20 2012-10-17 박준영 정전용량 터치 패널의 제조 방법 및 이에 의해 제조되는 터치 패널
JP2013008272A (ja) * 2011-06-27 2013-01-10 Toppan Printing Co Ltd 加飾透明保護基板一体型タッチパネルおよびその製造方法
JP5809475B2 (ja) * 2011-07-29 2015-11-11 三菱製紙株式会社 光透過性導電材料
JP2013045246A (ja) * 2011-08-23 2013-03-04 Dainippon Printing Co Ltd タッチパネル部材および座標検出装置
CN202677865U (zh) * 2012-05-09 2013-01-16 南昌欧菲光科技有限公司 一种基于随机网格的图形化透明导电薄膜
CN102723126B (zh) * 2012-05-09 2015-10-21 南昌欧菲光科技有限公司 一种基于随机网格的图形化透明导电薄膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110137550A (ko) * 2010-06-17 2011-12-23 (주)플라웍스 투명도전 적층 필름 및 이를 포함하는 터치 패널
CN102903423A (zh) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法
CN103106953A (zh) * 2013-02-06 2013-05-15 南昌欧菲光科技有限公司 导电膜及其制备方法以及包含该导电膜的触摸屏
CN103187119A (zh) * 2013-02-06 2013-07-03 南昌欧菲光科技有限公司 导电膜及其制备方法以及包含该导电膜的触摸屏

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018118116A1 (de) 2017-07-28 2019-04-04 Tdk Corporation Verfahren zur Herstellung eines elektrisch leitfähigen Substrats, einer elektronischen Vorrichtung und einer Anzeigevorrichtung
US10784122B2 (en) 2017-07-28 2020-09-22 Tdk Corporation Method of producing electroconductive substrate, electronic device and display device
US10867898B2 (en) 2017-07-28 2020-12-15 Tdk Corporation Electroconductive substrate, electronic device and display device
US11031330B2 (en) 2017-07-28 2021-06-08 Tdk Corporation Electroconductive substrate, electronic device and display device
US11410855B2 (en) 2017-07-28 2022-08-09 Tdk Corporation Method of producing electroconductive substrate, electronic device and display device
US11869834B2 (en) 2017-07-28 2024-01-09 Tdk Corporation Electroconductive substrate, electronic device and display device
DE102018118116B4 (de) 2017-07-28 2024-04-18 Tdk Corporation Verfahren zur Herstellung eines elektrisch leitfähigen Substrats und einer Anzeigevorrichtung

Also Published As

Publication number Publication date
TWI497391B (zh) 2015-08-21
JP2015517193A (ja) 2015-06-18
US9040833B2 (en) 2015-05-26
KR101558319B1 (ko) 2015-10-06
CN103247366A (zh) 2013-08-14
CN103247366B (zh) 2015-04-08
JP5897204B2 (ja) 2016-03-30
US20150000962A1 (en) 2015-01-01
KR20140137282A (ko) 2014-12-02
TW201437894A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2014153895A1 (zh) 电容式透明导电膜及其制造方法
WO2014153899A1 (zh) 电容式触摸屏
WO2014134897A1 (zh) 触控面板及其制造方法
WO2012099394A2 (en) Touch panel and method for manufacturing the same
WO2014131259A1 (zh) 导电玻璃基板及其制作方法
CN102722276B (zh) 触摸传感器及其制作方法、以及触摸屏液晶显示器
WO2014134896A1 (zh) 触控面板及其制造方法
WO2011149199A2 (ko) 금속박막을 이용한 터치패널 및 그 제조방법
WO2014153898A1 (zh) 透明导电膜及其制备方法
WO2014098406A1 (ko) 반사방지층을 포함하는 터치 패널 및 이의 제조 방법
TW201417116A (zh) 透明導電膜中之導電結構、透明導電膜及製作方法
WO2014153897A1 (zh) 透明导电膜
WO2014117479A1 (zh) 透明导电膜
WO2014146384A1 (zh) 触摸屏及其导电层
WO2014137147A1 (en) Conductive film, method for manufacturing the same, and electronic device including the same
WO2014134893A1 (zh) 导电网格搭桥结构及其制作方法
WO2011162461A1 (ko) 투명 전극 및 이의 제조 방법
CN107390914A (zh) 触控面板及显示设备
WO2012019530A1 (zh) 具有中间导电层的触控面板及其制作方法
CN107077249A (zh) 触敏投影屏
CN207867472U (zh) 触控面板与触控传感器卷带
CN103699253B (zh) 触控装置结构及其制造方法
WO2014036721A1 (zh) 一种液晶显示面板及其制造方法
WO2016056798A2 (ko) 전도성 필름 및 이의 제조 방법, 그리고 전도성 필름을 포함하는 터치 패널 및 디스플레이 장치
WO2014017691A1 (ko) 디스플레이용 인터페이스패널 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14000200

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015507365

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137029923

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880015

Country of ref document: EP

Kind code of ref document: A1