WO2014134897A1 - 触控面板及其制造方法 - Google Patents

触控面板及其制造方法 Download PDF

Info

Publication number
WO2014134897A1
WO2014134897A1 PCT/CN2013/079000 CN2013079000W WO2014134897A1 WO 2014134897 A1 WO2014134897 A1 WO 2014134897A1 CN 2013079000 W CN2013079000 W CN 2013079000W WO 2014134897 A1 WO2014134897 A1 WO 2014134897A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
grid
transparent insulating
conductive circuit
electrode layer
Prior art date
Application number
PCT/CN2013/079000
Other languages
English (en)
French (fr)
Inventor
何钊
Original Assignee
南昌欧菲光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲光科技有限公司 filed Critical 南昌欧菲光科技有限公司
Priority to KR1020137029939A priority Critical patent/KR101556313B1/ko
Priority to US13/985,950 priority patent/US20140253825A1/en
Priority to JP2015503751A priority patent/JP2015513751A/ja
Publication of WO2014134897A1 publication Critical patent/WO2014134897A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to a touch panel and a method of manufacturing the touch panel.
  • Touch panels are widely used in a variety of electronic devices with display screens, such as smart phones, televisions, PDAs, tablets, notebook computers, computer or electronic devices including industrial display touch processing machines, integrated computers and ultrabooks. Wait. According to the working principle, the touch panel can be divided into a capacitive type, a resistive type, and a surface light wave type.
  • the capacitive touch panel works by using the current sensing of the human body.
  • the finger touches the metal layer the user and the touch panel surface form a coupling capacitor due to the human body electric field.
  • the capacitor is a direct conductor, and the finger sucks a small current from the contact point.
  • This current flows out from the electrodes on the four corners of the touch panel, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners.
  • the controller calculates the touch point by accurately calculating the ratio of the four currents. s position.
  • the capacitive touch panel uses glass ITO or thin film ITO (that is, formed on glass or a film) to form a driving electrode and a sensing electrode pattern.
  • glass ITO or thin film ITO forms the driving electrode and the sensing electrode pattern, which has the following disadvantages: on the one hand, the ITO driving electrode or the sensing electrode protrusion is easily scratched or dropped on the surface of the glass or the surface of the transparent film, resulting in a decrease in production yield.
  • the main materials of glass ITO or thin film ITO are mainly rare metal indium, rare in indium materials, so the cost is relatively expensive, and the resistance or square resistance of ITO in making large-sized touch panels is relatively large, affecting the signal transmission speed. This leads to poor touch sensitivity, which affects the user experience of the entire electronic product.
  • the thickness of the existing touch panel is relatively thick, thereby affecting the overall thickness of the mobile phone.
  • a method of manufacturing a touch panel is also provided.
  • a touch panel comprising: a rigid transparent insulating substrate; a sensing electrode layer formed on a surface of the rigid transparent insulating substrate, comprising a plurality of independently disposed sensing electrodes; and a transparent insulating layer formed on the sensing electrode layer a driving electrode layer formed on the transparent insulating layer, comprising a plurality of independently arranged driving electrodes; each driving electrode of the driving electrode layer comprises a grid conductive circuit; the grid conductive circuit is embedded or buried In the transparent insulation layer.
  • a method for manufacturing a touch panel comprising the steps of: providing a rigid transparent insulating substrate; forming a sensing electrode layer on one side of the rigid transparent insulating substrate; forming a transparent insulating layer on the sensing electrode layer; A driving electrode layer is formed on the transparent insulating layer; the driving electrode of the driving electrode layer is a grid conductive circuit including a large number of cell grids.
  • the touch panel since the driving electrode of the touch panel is formed as a conductive mesh formed by the grid conductive circuit, the touch panel does not have a surface which is easily scratched or dropped when the film ITO is used, The cost of the touch panel is lower and the sensitivity is higher, such as higher cost and larger resistance when the size is large.
  • the touch panel of the present invention reduces the second transparent substrate and reduces the thickness of the touch panel.
  • FIG. 1 is a schematic diagram of an electronic device to which the touch panel of the present invention is applied;
  • FIG. 2 is a schematic cross-sectional view of the touch panel of the first embodiment
  • Figure 3 is a schematic cross-sectional view of a specific embodiment of Figure 2;
  • FIG. 4 is a schematic plan view showing the driving electrode layer shown in FIG. 3 formed on a transparent insulating layer;
  • Figure 5 is a schematic cross-sectional view taken along line aa' of Figure 4.
  • Figure 6 is a schematic cross-sectional view taken along line bb' of Figure 4.
  • FIG. 7 is a schematic plan view showing a surface of the sensing electrode layer shown in FIG. 3 formed on a surface of a rigid transparent insulating substrate;
  • Figure 8 is a cross-sectional view taken along line AA' of Figure 7;
  • Figure 9 is a schematic cross-sectional view taken along line BB' of Figure 7;
  • 10a and 10b are schematic diagrams showing the arrangement and shape of the sensing electrode and the driving electrode
  • 11a, 11b, 11c, and 11d are partially enlarged views respectively corresponding to the portion A in Fig. 10a or the portion B in Fig. 10b in an embodiment;
  • FIG. 12 is a flow chart of a method of manufacturing a touch panel according to an embodiment
  • FIG. 13 is a specific flowchart of step S104 in the flow shown in FIG. 12;
  • Fig. 14 is a view showing a layer structure of a driving electrode obtained in accordance with step S104 in the flow shown in Fig. 13.
  • Transparent in the transparent insulating substrate described in the present invention can be understood as “transparent” and “Substantially transparent”; “insulation” in a transparent insulating substrate is understood to mean “insulating” and “dielectric” in the present invention.
  • transparent insulating substrate as described in the present invention should be construed to include, but is not limited to, a transparent insulating substrate, a substantially transparent insulating substrate, a transparent dielectric substrate, and a substantially transparent dielectric substrate.
  • FIG. 1 is an embodiment of one of electronic devices to which the touch panel of the present invention is applied, wherein the electronic device 10 is a smart phone or a tablet computer.
  • the touch panel 100 is attached to the upper surface of the LCD display, and is used for an I/O device of one of the human-computer interactions of the electronic device. It can be understood that the touch panel 100 of the present invention can also be applied to mobile phones, mobile communication phones, televisions, tablets, notebook computers, industrial machine tools including touch screen displays, aviation touch display electronic devices, GPS electronic devices, Integrated computer and super computer equipment.
  • the touch panel 100 includes a driving electrode layer 110, a transparent insulating layer 120, a sensing electrode layer 130, and a rigid transparent insulating substrate 150.
  • the sensing electrode layer 130 is formed on one surface of the rigid transparent insulating substrate 150.
  • the driving electrode layer 110 is formed on the transparent insulating layer 120.
  • Each driving electrode of the driving electrode layer 110 includes a grid conductive circuit embedded or buried in the transparent insulating layer 120.
  • the touch panel 100 further includes at least one adhesion promoting layer 140 for increasing the adhesion between the sensing electrode layer 130 and the transparent insulating substrate 150.
  • the adhesion-promoting layer is generally optically transparent OCA (Optical) Clear Adhesive) Glue or LOCA Glue.
  • the transparent insulating layer 120 is made of an OCA adhesive, a UV adhesive, a thermosetting adhesive, or a self-drying adhesive.
  • the OCA adhesive and the UV adhesive are optically transparent adhesives to ensure light transmission of the touch panel 100. Sex.
  • the transparent insulating layer 120 is called embossing glue or the like in the industry.
  • the sensing electrode layer 130 includes a plurality of sensing electrodes 130a disposed independently.
  • the driving electrode layer 110 includes a plurality of independently disposed driving electrodes 110a, and each of the driving electrodes 110a includes a grid conductive circuit 110b.
  • the "independent setting” described in the present invention can be understood to include, but is not limited to, “independent setting", “isolation setting” or “insulation setting” and the like.
  • the sensing electrode and the driving electrode are two essential parts of the touch sensing component.
  • the sensing electrode is generally close to the touch surface of the touch panel, and the driving electrode is relatively far from the touch surface.
  • the driving electrode is connected to the scanning signal generating device, and the scanning signal generating device provides the scanning signal, and the sensing electrode generates an electrical parameter change when touched by the charging conductor to sense the touch area or the touch position.
  • the sensing electrodes of the sensing electrode layer 130 are electrically connected to the sensing detection processing module of the touch panel peripheral, and the driving electrodes of the driving electrode layer 110 and the touch panel peripherals are
  • the excitation signal module is electrically connected, and a mutual capacitance is formed between the sensing electrode and the driving electrode.
  • the coordinate data of the position the electronic device capable of processing the relevant data can determine, according to the coordinate data of the center position of the touch action, the touch action corresponding to the exact position of the touch panel attached to the display screen, thereby completing the corresponding function. Or enter an action.
  • the sensing electrode layer 130 and the driving electrode layer 110 are formed in different manners, different materials, and different processes.
  • the drive electrode layer 110 includes a plurality of mutually independent grid conductive circuits 110b.
  • the mesh conductive circuit 110b is embedded or buried in the transparent insulating layer 120.
  • the material of the grid conductive circuit 110b is selected from the group consisting of gold, silver, copper, aluminum, zinc, gold plated silver, or an alloy of at least two. The above materials are easy to obtain, and the cost is low, and in particular, the above-mentioned grid conductive circuit 110b is made of silver paste, which has good electrical conductivity and low cost.
  • the grid conductive circuit 110b is embedded or buried in the transparent insulating layer 120.
  • One of the preferred ways is to form a plurality of staggered grid grooves in the transparent insulating layer 120, the grid is conductive.
  • the circuit 110b is disposed in the recess such that the mesh conductive circuit 110b is embedded or buried in the surface of the transparent insulating layer 120.
  • the rigid transparent insulating substrate 150 to which the driving electrode 110a is attached may be firmly attached to the rigid transparent insulating substrate 150 during movement or handling, and is not easily damaged or peeled off.
  • the pitch of the conductive mesh grid circuit 110b is d 1, and 100 ⁇ m ⁇ d 1 ⁇ 600 ⁇ m; circuit 110b meshed conductive sheet resistance is R, and 0.1 ⁇ / sq ⁇ R ⁇ 200 ⁇ / sq .
  • the sheet resistance R of the grid conductive circuit 110b affects the current signal transmission speed, thereby affecting the sensitivity of the touch panel reaction. Therefore, the grid resistance R of the grid conductive circuit 110b is preferably 1 ⁇ /sq ⁇ R ⁇ 60 ⁇ /sq.
  • the sheet resistance R in this range can significantly improve the conductivity of the conductive film, significantly increase the transmission speed of the electrical signal, and the accuracy requirement is lower than 0.1 ⁇ /sq ⁇ R ⁇ 200 ⁇ /sq, that is, the conductivity is ensured. Under the premise of reducing the process requirements and reducing costs.
  • the sheet resistance of the grid conductive circuit 110b is determined by a plurality of factors such as the grid spacing, the material, and the wire diameter (line width).
  • the grid line width of the grid conductive circuit 110b is d 2 and 1 ⁇ m ⁇ d 2 ⁇ 10 ⁇ m.
  • the line width of the grid affects the light transmittance of the conductive film, and the smaller the grid line width, the better the light transmittance.
  • the grid line spacing d 1 of the conductive mesh is required to be 100 ⁇ m ⁇ d 1 ⁇ 600 ⁇ m, and the sheet resistance R of the grid conductive circuit 110b is 0.1 ⁇ /sq ⁇ R ⁇ 200 ⁇ /sq
  • the grid line width d 2 is 1 ⁇ m.
  • ⁇ d 2 ⁇ 10 ⁇ m can meet the requirements, and at the same time can improve the light transmittance of the entire touch panel.
  • the grid line width d 2 of the grid conductive circuit 110b is 2 ⁇ m ⁇ d 2 ⁇ 5 ⁇ m, the light transmission area of the touch panel is larger, the light transmittance is better, and the precision requirement is relatively low.
  • the grid conductive circuit 110b is made of a silver material and has a regular pattern, and the grid line spacing is 200 ⁇ m ⁇ 500 ⁇ m; the surface resistance of the grid conductive circuit is 4 ⁇ / sq ⁇ R ⁇ 50 ⁇ / sq, silver coating The amount is from 0.7 g/m 2 to 1.1 g/m 2 .
  • d 1 200 ⁇ m
  • the grid line width d 2 500 nm to 5 ⁇ m.
  • the value of the sheet resistance R and the amount of silver are affected by the grid line width d 2 and the depth of the filled groove. The larger the grid line width d 2 is, the larger the groove depth is filled. The resistance will increase and the amount of silver will increase.
  • d 1 300 ⁇ m
  • R 10 ⁇ /sq
  • the silver content is 0.9 to 1.0 g/m 2
  • the grid line width d 2 is 500 nm to 5 ⁇ m.
  • the value of the sheet resistance R and the amount of silver are affected by the grid line width d 2 and the depth of the filled groove. The larger the grid line width d 2 is, the larger the groove depth is filled. The resistance will increase and the amount of silver will increase.
  • d 1 500 ⁇ m
  • the grid line width d 2 500 nm to 5 ⁇ m.
  • the value of the sheet resistance R and the amount of silver are affected by the grid line width d 2 and the depth of the filled groove. The larger the grid line width d 2 is, the larger the groove depth is filled. The resistance will increase and the amount of silver will increase.
  • grid conductive circuit 110b made of a metal conductive material
  • one of transparent conductive polymer materials, graphene or carbon nanotubes may be used.
  • the sensing electrode of the sensing electrode layer 130 is made of indium tin oxide (Indium Tin). Oxide, ITO), Antimony Doped Tin Oxide (ATO), Indium Zinc (Indium Zinc) Oxide, IZO), Aluminum Zinc Oxide (AZO), Polyethylene Dioxythiophene (PEDOT) It is made of any one of transparent conductive polymer material, graphene or carbon nanotube.
  • the patterned sensing electrodes are formed by engineering etching, printing, coating, photolithography, or yellow light processing, that is, a plurality of independently disposed transparent sensing electrodes.
  • the sensing electrode layer 130 is formed directly on the surface of the rigid transparent insulating substrate 110, and the rigid transparent insulating substrate is a rigid substrate.
  • the rigid substrate is a tempered glass or transparent plastic plate, referred to as a tempered glass or a reinforced plastic plate.
  • the tempered glass comprises a functional layer having an anti-glare, hardening, anti-reflection or atomization function.
  • the functional layer having anti-glare or atomization function is formed by coating with a coating having anti-glare or atomization function, the coating includes metal oxide particles; and the functional layer having a hardening function is coated with a polymer coating having a hardening function.
  • the functional layer having an anti-reflection function is titanium dioxide plating, magnesium fluoride plating or calcium fluoride plating. It can be understood that the plastic plate having good light transmittance can also be processed as described above by the tempered glass to form the rigid transparent insulating substrate of the present invention.
  • FIG. 10a and FIG. 10b are schematic diagrams showing the arrangement and shape of the sensing electrodes and the driving electrodes of the present invention including several types of embodiments.
  • the sensing electrodes disposed independently of each other are disposed in parallel and equidistantly in a first axial direction (X-axis); the driving electrodes disposed independently of each other are disposed in parallel and equidistantly in a second axial direction (Y-axis).
  • X-axis first axial direction
  • Y-axis second axial direction
  • FIG. 10a the sensing electrode and the driving electrode are both bar-shaped and arranged in a staggered manner with each other;
  • FIG. 10b is a diamond-shaped structure in which the sensing electrode and the driving electrode are vertically staggered.
  • 11a, 11b, 11c, and 11d are partially enlarged views respectively corresponding to the portion A in Fig. 10a or the portion B in Fig. 10b, respectively, in one embodiment.
  • the grid conductive circuit shown in Figures 11a and 11b uses an irregular grid. This irregular grid conductive circuit is less difficult to manufacture and saves related processes.
  • the grid conductive circuits are shown in 11c and 11d, and the grid conductive circuits 110b are uniformly arranged regular patterns.
  • the conductive grid is evenly arranged, and the grid line spacing d 1 is equal.
  • the touch panel can be uniformly transmitted; on the other hand, the grid resistance of the grid conductive circuit (referred to as square resistance) is evenly distributed, and the resistance deviation is small. There is no need to correct the setting of the resistance deviation to make the imaging uniform. It may be a linear lattice pattern of approximately orthogonal form, a curved wavy line lattice pattern, or the like.
  • the cell grid of the grid conductive circuit can be a regular pattern, such as a triangle, a diamond or a regular polygon, or an irregular geometric figure.
  • FIG. 12 is a flow chart showing a method of manufacturing a touch panel according to an embodiment. Please refer to FIG. 3 together, and the method includes the following steps.
  • the rigid transparent insulating substrate 150 is a rigid transparent insulating substrate, wherein the rigid transparent insulating substrate may be a tempered glass and a flexible transparent panel.
  • flexible transparent panel can be selected from flexible polyethylene terephthalate (PET) and polycarbonate. Made of (PC), polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS) or polymethyl methacrylate (PMMA).
  • S102 forming a sensing electrode layer on a surface of the rigid transparent insulating substrate.
  • the transparent insulating layer 120 is exemplified by a UV glue.
  • an adhesion promoting layer 140 may be added between the rigid transparent insulating substrate 150 and the transparent insulating layer 120.
  • the driving electrode of the driving electrode layer 110 is a grid conductive circuit 110b (refer to FIG. 4) including a large number of cell grids.
  • step S104 specifically includes:
  • the transparent insulating laminate is formed into a grid groove. Referring to FIG. 14, after the transparent insulating layer 120 is pressed through the mold, a plurality of mesh grooves 170 having the same shape as the driving electrodes are formed, and the driving electrode layer 110 is formed in the mesh grooves 170.
  • S142 adding a metal paste in the grid groove, and performing blade coating and sintering curing to form a grid conductive circuit.
  • the metal paste is added to the grid groove 170, and after being scraped, the grid groove is filled with a metal paste, and then sintered and solidified to obtain a conductive mesh.
  • the metal paste is preferably a nano silver paste.
  • the metal forming the grid conductive circuit may also be alloyed with gold, silver, copper, aluminum, zinc, gold plated silver or at least two of the above metals.
  • the grid conductive circuit can also be implemented by other processes, such as a photolithography process to form the grid conductive circuit of the present invention.
  • the above method makes the driving electrode of the touch panel as a conductive mesh formed by the grid conductive circuit, so the touch panel does not exist when the film ITO is used, such as the surface is easily scratched or dropped, the cost is high, and the size is large.
  • the touch panel has lower cost and higher sensitivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明公开一种触控面板,包括:刚性透明绝缘衬底;感应电极层,形成于所述刚性透明绝缘衬底的一表面,包括若干独立设置的感应电极;透明绝缘层,形成于所述感应电极层上;驱动电极层,形成于所述透明绝缘层上,包括若干独立设置的驱动电极;所述驱动电极层的每个驱动电极包括网格导电电路;所述网格导电电路嵌入或埋入设置于透明绝缘层中。还公开一种上述触控面板的制造方法。上述触控面板成本较低、灵敏度更高。

Description

触控面板及其制造方法
【技术领域】
本发明涉及触控技术领域,特别是涉及一种触控面板和该触控面板的制造方法。
【背景技术】
触控面板被广泛应用于各种带有显示屏的电子装置中,如智能手机、电视、PDA、平板电脑、笔记本电脑、包含工业显示触摸加工机床、一体化计算机及超级本等计算机或电子设备等。触控面板按照工作原理可以分为电容式、电阻式以及表面光波式等。
电容式触控面板是利用人体的电流感应进行工作的。当手指触摸在金属层上时,由于人体电场,用户和触控面板表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分别从触控面板的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。
目前电容式触控面板都采用玻璃ITO或薄膜ITO(也即在玻璃或者薄膜上形成)形成驱动电极和感应电极图案。但是上述玻璃ITO或薄膜ITO形成驱动电极和感应电极图案存在以下几个缺点:一方面ITO驱动电极或感应电极凸起在玻璃表面或者透明薄膜表面容易被划伤或掉落,导致生产良率降低;另一方面,玻璃ITO或薄膜ITO主要材料主要是稀有金属铟,铟材料的稀有,因此成本比较昂贵,而且ITO在做大尺寸触控面板的电阻或方阻比较大,影响信号传输速度,导致触摸灵敏度差,从而影响整个电子产品用户体验感欠佳。
现有的触控面板的厚度较厚,从而影响手机的整体厚度。
【发明内容】
基于此,有必要提供一种成本较低、灵敏度更高的触控面板。
此外,还提供一种触控面板的制造方法。
一种触控面板,包括:刚性透明绝缘衬底;感应电极层,形成于所述刚性透明绝缘衬底的一表面,包括若干独立设置的感应电极;透明绝缘层,形成于所述感应电极层上;驱动电极层,形成于所述透明绝缘层上,包括若干独立设置的驱动电极;所述驱动电极层的每个驱动电极包括网格导电电路;所述网格导电电路嵌入或埋入设置于透明绝缘层中。
一种触控面板的制造方法,包括如下步骤:提供刚性透明绝缘衬底;在所述刚性透明绝缘衬底的一面形成感应电极层;在所述感应电极层上形成透明绝缘层;在所述透明绝缘层上形成驱动电极层;所述驱动电极层的驱动电极是包括大量单元网格的网格导电电路。
上述触控面板及其制造方法,由于将触控面板的驱动电极制作为网格导电电路形成的导电网格,因此触控面板不存在采用薄膜ITO时存在的诸如表面容易划伤或掉落、成本较高、大尺寸时方阻较大等问题,故触控面板的成本较低、灵敏度更高。另外,相比现有触控面板,本发明所述触控面板减少了第二透明衬底,减少了触控面板的厚度。
【附图说明】
图1是应用本发明触控面板的电子设备示意图;
图2为第一实施例的触控面板的横截面示意图;
图3为图2所示一具体实施方式的横截面示意图;
图4为图3所示驱动电极层形成于透明绝缘层上的平面示意图;
图5是图4沿aa’剖面线的截面示意图;
图6是图4沿bb’ 剖面线的截面示意图;
图7是图3所示感应电极层形成于刚性透明绝缘衬底一表面的平面示意图;
图8是图7沿AA’剖面线的截面示意图;
图9是图7沿BB’ 剖面线的截面示意图;
图10a和图10b为感应电极和驱动电极排列及形状示意图;
图11a、11b、11c及11d分别为一实施例中分别对应于图10a中的A部分或图10b中的B部分的局部放大图;
图12为一实施例的触控面板的制造方法流程图;
图13为图12所示流程中的步骤S104的具体流程图;
图14为根据图13所示流程中的步骤S104得到的驱动电极层状结构图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本发明中所描述的透明绝缘衬底中的“透明”可理解为“透明”和 “基本透明”;透明绝缘衬底中的“绝缘”在本发明中可理解为“绝缘”和“介电质(dielectric)”。因此本发明中所描述的“透明绝缘衬底”应当解释包括但不限于透明绝缘衬底、基本透明绝缘衬底、透明介电质衬底和基本透明介电质衬底。
请参阅图1,为应用本发明触控面板的电子设备其中之一的实施方式,其中所述电子设备10为智能手机或平板计算机。在上述电子设备10中,所述的触控面板100贴合于LCD显示屏的上表面,用于电子设备人机交互的其中之一的I/O设备。可以理解,在本发明的所述触控面板100还可应用于行动电话、移动通信电话、电视、平板电脑、笔记本电脑、包含触摸显示屏的工业机床、航空触摸显示电子装置、GPS电子装置、一体化计算机及超级本等计算机设备。
如图2所示,为本发明触控面板的第一实施例的横截面示意图。该触控面板100包括驱动电极层110、透明绝缘层120、感应电极层130以及刚性透明绝缘衬底150。感应电极层130形成于所述刚性透明绝缘衬底150的一表面。驱动电极层110形成于所述透明绝缘层120上,驱动电极层110的每一驱动电极包括网格导电电路,所述网格导电电路嵌入或埋入设置于透明绝缘层120中。
所述触控面板100还包括至少一增粘层140,用于增加所述感应电极层130与所述透明绝缘衬底150之间的粘合力。所述增粘层一般采用光学胶光学透明的OCA(Optical Clear Adhesive)胶或LOCA胶。
所述透明绝缘层120的材料为OCA胶、UV胶、热固胶或者自干胶等,所述OCA胶和所述UV胶均为光学透明胶,以保证所述触控面板100的透光性。当然透明绝缘层120在业界称之为压印胶等。
请参考图3,是本发明触控面板一具体实施方式横截面示意图。所述感应电极层130包括若干独立设置的感应电极130a。请一并参考图4,所述驱动电极层110包括若干独立设置的驱动电极110a,所述每一驱动电极110a包括网格导电电路110b。在本发明中所描述的“独立设置”可以理解为包括但不限于“独立设置”、“隔离设置”或“绝缘设置”等几种解释。
在电容式触控面板中,感应电极和驱动电极是触控感应组件的必不可少的两个部分。感应电极一般靠近触控面板的触摸面,驱动电极则相对远离触摸面。驱动电极连接扫描信号发生装置,由扫描信号发生装置提供扫描信号,感应电极则在被带电导体触碰时产生电参数变化,以感应触摸区域或触控位置。
其中,所述感应电极层130包含的各个感应电极与所述触控面板外设的传感侦测处理模块电连接,所述驱动电极层110的各个驱动电极与所述触控面板外设的激励信号模块电连接,所述感应电极和所述驱动电极之间形成互电容。当所述触控面板表面发生触摸动作时,触碰中心区域的互电容值会发生变化,所述触碰动作转换为电信号,经过对电容值变换区域数据的处理就可以获得触碰动作中心位置的坐标数据,可处理相关数据的电子装置就可以依据触碰动作中心位置的坐标数据判断出触碰动作对应在触控面板贴合于显示屏上的准确位置,从而完成对应的相应的功能或输入操作。
在本发明中所述感应电极层130与驱动电极层110采用不同方式、不同材料及不同工艺制成。
具体地说,请一并参考图5和图6,分别是图4沿aa’剖面线和bb’ 剖面线的截面示意图。所述驱动电极层110包括若干相互独立网格导电电路110b。所述网格导电电路110b嵌入或埋入在透明绝缘层120中。所述网格导电电路110b的材料选自金、银、铜、铝、锌、镀金的银或至少二者的合金。上述材料容易得到,且成本较低,特别是银浆制得上述网格导电电路110b,导电性能好,成本低。
可以容易地理解,网格导电电路110b嵌入或埋入在透明绝缘层120中方式居多,其中一种优选方式是在所述透明绝缘层120形成若干交错的网格凹槽,所述网格导电电路110b设置于所述凹槽,从而使得网格导电电路110b以嵌入或埋入透明绝缘层120表面。依附所述驱动电极110a的刚性透明绝缘衬底150在移动或者搬运过程中,所述驱动电极110a可牢固依附于刚性透明绝缘衬底150,不容易被损坏或者脱落。
更具体地说,所述网格导电电路110b的网格间距为d1、且100µm≤d1<600µm;网格导电电路110b的方块电阻为R、且0.1Ω/sq≤R<200Ω/sq。
所述网格导电电路110b的方块电阻R影响着电流信号传递速度,从而影响着触控面板反应灵敏度。所以所述网格导电电路110b方块电阻R优选为1Ω/sq≤R≤60Ω/sq。在这一范围内的方块电阻R,能显著提高导电膜的导电性,显著提高电信号的传输速度,且对精度的要求较0.1Ω/sq≤R<200Ω/sq低,即在保证导电性的前提下降低了工艺要求,降低了成本。当然在制造过程中,网格导电电路110b的方块电阻为R与网格间距、材料、线径(线宽)等多个因素共同决定。
所述网格导电电路110b的网格线宽为d2、且1µm≤d2≤10µm。网格的线宽影响导电膜的透光性,网格线宽越小,透光性越好。在需要导电网格的网格线间距d1为100µm≤d1<600µm,网格导电电路110b的方块电阻R为0.1Ω/sq≤R<200Ω/sq时,网格线宽d2为1µm≤d2≤10µm可满足要求,且同时能提高整个触控面板的透光性。特别是网格导电电路110b的网格线宽d2为2µm≤d2<5µm 时,触控面板透光面积越大,透光性越好,且精度要求相对较低。
在优选地实施方式中,网格导电电路110b选用银材料,且采用规则图形,网格线间距200µm ~500µm;网格导电电路表面电阻为4Ω/sq≤R<50Ω/sq,银的涂布量为0.7 g/m2~1.1 g/m2
在实施例一中,取d1=200µm、R= 4~5Ω/sq,含银量取1.1g/m2,网格线宽d2取500nm~5μm。当然,方块电阻R的取值、含银量的多少均会受到网格线宽d2和填充的凹槽深度的影响,网格线宽d2越大、填充的凹槽深度越大,方块电阻会随之有所增大、含银量也随之增加。
在实施例二中,取d1=300µm、R= 10Ω/sq,含银量取0.9~1.0g/m2,网格线宽d2取500nm~5μm。当然,方块电阻R的取值、含银量的多少均会受到网格线宽d2和填充的凹槽深度的影响,网格线宽d2越大、填充的凹槽深度越大,方块电阻会随之有所增大、含银量也随之增加。
在实施例三中,取d1=500µm、R= 30~40Ω/sq,含银量取0.7g/m2,网格线宽d2取500nm~5μm。当然,方块电阻R的取值、含银量的多少均会受到网格线宽d2和填充的凹槽深度的影响,网格线宽d2越大、填充的凹槽深度越大,方块电阻会随之有所增大、含银量也随之增加。
当然,除了选用金属导电材料制得上述网格导电电路110b之外,还可以选用透明导电高分子材料、石墨烯或者碳纳米管中的一种制得。
请一并参考图7、图8及图9,所述感应电极层130的感应电极采用氧化铟锡(Indium Tin Oxide,ITO)、氧化锡锑 (Antimony Doped Tin Oxide,ATO)、氧化铟锌(Indium Zinc Oxide,IZO)、氧化锌铝(Aluminum Zinc Oxide,AZO)、聚乙撑二氧噻吩(PEDOT) 、透明导电高分子材料、石墨烯或者碳纳米管中的任意一种材料制成。通过工程上的蚀刻、印刷、涂布、光刻、或黄光制程等工艺加工形成图案化的感应电极,即若干独立设置的透明的感应电极。
在本类实施方式中,所述感应电极层130直接形成于刚性透明绝缘衬底110的表面,而所述刚性透明绝缘衬底为刚性衬底。更具体地说,所述刚性衬底采用的经过强化处理过的玻璃或透明塑胶板,简称强化玻璃或强化塑胶板。其中所述强化玻璃包括具有防眩、硬化、增透或雾化功能的功能层。其中,具有防眩或雾化功能的功能层,由具有防眩或雾化功能的涂料涂敷形成,涂料包括金属氧化物颗粒;具有硬化功能的功能层由具有硬化功能的高分子涂料涂敷形成或直接通过化学或物理方法硬化;具有增透功能的功能层为二氧化钛镀层、氟化镁镀层或氟化钙镀层。可以理解,采用透光率良好的塑胶板也可如上述强化玻璃方式进行处理制成本发明所述的刚性透明绝缘衬底。
请参阅图10a和图10b,为本发明包含几类实施方式的感应电极和驱动电极排列及形状平面示意图。所述相互独立设置的感应电极在第一轴向(X轴)平行且等间距的设置;所述相互独立设置的驱动电极在第二轴向(Y轴)平行且等间距的设置。其中图10a感应电极和驱动电极均为方块状结构(bar)且相互垂直交错排布;图10b感应电极和驱动电极为菱形状结构且相互垂直交错排布。
图11a、11b、11c及11d分别为一实施例中分别对应于图10a中的A部分或图10b中的B部分的局部放大图。
图11a和11b所示网格导电电路采用非规则网格,这种非规则网格导电电路的制造难度较低,节省相关工序等。
11c和11d所示网格导电电路,所述网格导电电路110b为均匀布置的规则图形。导电网格布置均匀规则,网格线间距d1均相等,一方面可使触控面板透光均匀;另一方面,网格导电电路的方块电阻(简称方阻)分布均匀,电阻偏差小,无需用于补正电阻偏差的设定,使成像均匀。可以是近似正交形态的直线格子图案、弯曲的波浪线格子图案等。网格导电电路的单元网格可以为规则图形,例如三角形、菱形或正多边形等,也可以为不规则几何图形。
如图12所示,为一实施例的触控面板的制造方法流程。请一并参考图3,该方法包括如下步骤。
S101:提供刚性透明绝缘衬底。所述刚性透明绝缘衬底150采用刚性透明绝缘衬底,其中刚性透明绝缘衬底可采用强化玻璃和可挠性透明面板。其中可挠性透明面板可选用柔性聚对苯二甲酸乙二酯(PET)、聚碳酸脂 (PC)、聚乙烯 (PE)、聚氯乙烯(PVC)、聚丙烯(PP)、聚苯乙烯(PS)或聚甲基丙烯酸甲酯(PMMA)中的任意一种制成。
S102:在所述刚性透明绝缘衬底的一表面形成感应电极层。
S103:在所述感应电极层上形成透明绝缘层。透明绝缘层120示例为UV胶。其中,在本实施例中,为了增加透明绝缘层120与刚性透明绝缘衬底150的附着力,可在刚性透明绝缘衬底150和透明绝缘层120之间添加增粘层140。
S104:在所述透明绝缘层上形成驱动电极层。所述驱动电极层110的驱动电极是包括大量单元网格的网格导电电路110b(参考图4)。
参考图13~14上述步骤S104具体包括:
S141:所述透明绝缘层压印形成网格凹槽。参考图14,透明绝缘层120上经过模具压过之后,形成多个与驱动电极形状相同的网格凹槽170,驱动电极层110形成于该网格凹槽170中。
S142:在所述网格凹槽中添加金属浆料、并进行刮涂和烧结固化以形成网格导电电路。把金属浆料添加到网格凹槽170中,并经过刮涂,使网格凹槽中填充金属浆料,然后进行烧结固化即可得到导电网格。该金属浆料优选为纳米银浆。其他实施例中,形成网格导电电路的金属还可以采用金、银、铜、铝、锌、镀金的银或以上金属的至少二者的合金。
在其他的实施例中,网格导电电路还可以采用其他工艺实现,例如光刻工艺制成本发明所述网格导电电路。
上述方法将触控面板的驱动电极制作为网格导电电路形成的导电网格,因此触控面板不存在采用薄膜ITO时存在的诸如表面容易划伤或掉落、成本较高、大尺寸时方阻较大等问题,故触控面板的成本较低、灵敏度更高。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种触控面板,包括:
    刚性透明绝缘衬底;
    感应电极层,形成于所述刚性透明绝缘衬底的一表面,包括若干独立设置的感应电极;
    透明绝缘层,形成于所述感应电极层上;及
    驱动电极层,形成于所述透明绝缘层上,包括若干独立设置的驱动电极;所述驱动电极层的每个驱动电极包括网格导电电路;所述网格导电电路嵌入或埋入设置于透明绝缘层中。
  2. 根据权利要求1所述的触控面板,其特征在于,所述网格导电电路的网格间距为d1、且100µm≤d1<600µm;网格导电电路的方块电阻为R、且0.1Ω/sq≤R<200Ω/sq。
  3. 根据权利要求1所述的触控面板,其特征在于,所述透明绝缘层形成若干交错的网格凹槽,所述网格导电电路设置于所述网格凹槽。
  4. 根据权利要求1所述的触控面板,其特征在于,所述刚性透明绝缘衬底为强化玻璃。
  5. 根据权利要求1所述的触控面板,其特征在于,所述感应电极采用透明的氧化铟锡、氧化锡锑、氧化铟锌、氧化锌铝或聚乙撑二氧噻吩中的一种制成。
  6. 根据权利要求1所述的触控面板,其特征在于,所述网格导电电路的网格采用规则几何图形网格。
  7. 根据权利要求1所述的触控面板,其特征在于,所述网格导电电路的网格采用不规则几何图形网格。
  8. 根据权利要求6所述的触控面板,其特征在于,所述网格的单元网格形状为单一的三角形、菱形或正多边形。
  9. 根据权利要求3所述的触控面板,其特征在于,还包括增粘层,形成于所述感应电极层和刚性透明绝缘衬底之间。
  10. 根据权利要求9所述的触控面板,其特征在于,所述增粘层为光学透明的OCA胶或LOCA胶。
  11. 根据权利要求1所述的触控面板,其特征在于,所述网格导电电路选用银材料,网格导电电路的网格线间距200µm ~500µm;网格导电电路的方阻为4Ω/sq≤R<50Ω/sq,银的涂布量为0.7 g/m2~1.1 g/m2
  12. 根据权利要求1所述的触控面板,其特征在于,所述网格导电电路选用金、银、铜、铝、锌、镀金的银或以上金属的至少二者的合金材料中的任意一种制成。
  13. 根据权利要求1所述的触控面板,所述透明绝缘层可以是光固胶、热固胶或自干胶固化形成。
  14. 一种触控面板的制造方法,包括如下步骤:
    提供刚性透明绝缘衬底;
    在所述刚性透明绝缘衬底的一面形成感应电极层;
    在所述感应电极层上形成透明绝缘层;及
    在所述透明绝缘层上形成驱动电极层;所述驱动电极层的驱动电极是包括大量单元网格的网格导电电路。
  15. 根据权利要求14所述的触控面板的制造方法,其特征在于,所述在感应电极层上形成透明绝缘层的步骤具体包括:
    在所述透明绝缘层压印形成网格凹槽;
    在所述网格凹槽中形成所述网格导电电路。
  16. 根据权利要求15所述的触控面板的制造方法,其特征在于,所述在网格凹槽中形成网格导电电路的步骤具体包括:在所述网格凹槽中添加金属浆料、并进行刮涂和烧结固化。
  17. 根据权利要求16所述的触控面板的制造方法,其特征在于,所述金属浆料为纳米银浆。
PCT/CN2013/079000 2013-03-08 2013-07-08 触控面板及其制造方法 WO2014134897A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137029939A KR101556313B1 (ko) 2013-03-08 2013-07-08 터치 패널 및 그것의 제조 방법
US13/985,950 US20140253825A1 (en) 2013-03-08 2013-07-08 Touch panel and manufacturing method thereof
JP2015503751A JP2015513751A (ja) 2013-03-08 2013-07-08 タッチパネルおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310074917.1 2013-03-08
CN2013100749171A CN103176681A (zh) 2013-03-08 2013-03-08 触控面板及其制造方法

Publications (1)

Publication Number Publication Date
WO2014134897A1 true WO2014134897A1 (zh) 2014-09-12

Family

ID=48636607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079000 WO2014134897A1 (zh) 2013-03-08 2013-07-08 触控面板及其制造方法

Country Status (5)

Country Link
JP (1) JP2015513751A (zh)
KR (1) KR101556313B1 (zh)
CN (1) CN103176681A (zh)
TW (1) TWI604349B (zh)
WO (1) WO2014134897A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106293285A (zh) * 2015-06-09 2017-01-04 南昌欧菲光科技有限公司 触摸屏及显示装置
CN110515479A (zh) * 2018-05-22 2019-11-29 洋华光电股份有限公司 透明导电薄膜降低局部区域阻抗值的方法及其制成品
CN110794997A (zh) * 2019-11-15 2020-02-14 盐城牧东光电科技有限公司 一种石墨烯电容触摸屏及其制备方法
CN111399707A (zh) * 2020-05-08 2020-07-10 康惠(惠州)半导体有限公司 一种超薄可弯曲式电容触摸屏及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176681A (zh) * 2013-03-08 2013-06-26 南昌欧菲光科技有限公司 触控面板及其制造方法
CN103336382B (zh) * 2013-07-05 2016-07-13 南昌欧菲光显示技术有限公司 偏光-滤光模块及使用该偏光-滤光模块的触摸显示屏
CN104281307B (zh) * 2013-07-10 2019-05-03 宏达国际电子股份有限公司 触控面板
KR102187929B1 (ko) 2013-11-22 2020-12-07 엘지이노텍 주식회사 터치 윈도우 및 이를 포함하는 디스플레이 장치
CN103677413B (zh) * 2013-12-09 2016-09-21 合肥京东方光电科技有限公司 触摸面板及其制作方法、显示装置
CN103744571A (zh) * 2014-01-26 2014-04-23 苏州维业达触控科技有限公司 超薄触控传感器及其制作方法
CN105204673B (zh) * 2014-06-12 2019-03-01 宸鸿科技(厦门)有限公司 触控面板
CN105204695B (zh) * 2014-06-12 2018-08-21 宸鸿科技(厦门)有限公司 纳米银线导电层叠结构及电容式触控面板
CN104216598A (zh) * 2014-08-29 2014-12-17 合肥鑫晟光电科技有限公司 触摸基板及其制作方法、触摸显示装置
CN104407759B (zh) * 2014-12-05 2018-01-09 合肥鑫晟光电科技有限公司 一种触摸屏及其制作方法
CN205427802U (zh) * 2016-02-26 2016-08-03 意力(广州)电子科技有限公司 触控屏
CN109696976A (zh) * 2017-10-20 2019-04-30 苏州欧菲光科技有限公司 触控屏结构及电子装置
TWI678653B (zh) * 2018-11-12 2019-12-01 義隆電子股份有限公司 具有觸控功能的電子裝置及其觸控模組
CN114578990B (zh) * 2022-01-26 2023-06-23 广西大学 一种抗干扰的大尺寸触控装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903423A (zh) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法
CN102930922A (zh) * 2012-10-25 2013-02-13 南昌欧菲光科技有限公司 一种具有各向异性导电的透明导电膜
CN103176681A (zh) * 2013-03-08 2013-06-26 南昌欧菲光科技有限公司 触控面板及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063232A (zh) * 2009-11-16 2011-05-18 祥闳科技股份有限公司 电容式多点触控面板的结构及其制作方法
JP2012123570A (ja) * 2010-12-07 2012-06-28 Hitachi Chem Co Ltd 静電容量型タッチパネル用電極シート及びその製造方法、並びに静電容量型タッチパネル
CN103329077B (zh) * 2011-01-18 2017-03-15 富士胶片株式会社 透明电极板、制造透明电极板的方法及使用该透明电极板的电容式触控面板
CN202041943U (zh) * 2011-03-22 2011-11-16 深圳欧菲光科技股份有限公司 高抗干扰性的电容式触摸屏
KR101978666B1 (ko) * 2011-06-10 2019-05-15 미래나노텍(주) 터치 스크린 센서 기판, 터치 스크린 센서 및 이를 포함하는 패널
JP5681674B2 (ja) * 2011-07-11 2015-03-11 富士フイルム株式会社 導電シート、タッチパネル及び表示装置
JP2013020530A (ja) * 2011-07-13 2013-01-31 Dainippon Printing Co Ltd タッチセンサパネル部材、タッチセンサパネル部材を備えた表示装置、及びタッチセンサパネル部材の製造方法
CN102722279A (zh) * 2012-05-09 2012-10-10 崔铮 金属网格导电层及其具备该导电层的触摸面板
CN203149522U (zh) * 2013-03-08 2013-08-21 南昌欧菲光科技有限公司 触控面板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903423A (zh) * 2012-10-25 2013-01-30 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法
CN102930922A (zh) * 2012-10-25 2013-02-13 南昌欧菲光科技有限公司 一种具有各向异性导电的透明导电膜
CN103176681A (zh) * 2013-03-08 2013-06-26 南昌欧菲光科技有限公司 触控面板及其制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106293285A (zh) * 2015-06-09 2017-01-04 南昌欧菲光科技有限公司 触摸屏及显示装置
CN110515479A (zh) * 2018-05-22 2019-11-29 洋华光电股份有限公司 透明导电薄膜降低局部区域阻抗值的方法及其制成品
CN110515479B (zh) * 2018-05-22 2023-04-28 洋华光电股份有限公司 透明导电薄膜降低局部区域阻抗值的方法及其制成品
CN110794997A (zh) * 2019-11-15 2020-02-14 盐城牧东光电科技有限公司 一种石墨烯电容触摸屏及其制备方法
CN111399707A (zh) * 2020-05-08 2020-07-10 康惠(惠州)半导体有限公司 一种超薄可弯曲式电容触摸屏及其制备方法

Also Published As

Publication number Publication date
JP2015513751A (ja) 2015-05-14
CN103176681A (zh) 2013-06-26
KR20140132265A (ko) 2014-11-17
TWI604349B (zh) 2017-11-01
KR101556313B1 (ko) 2015-09-30
TW201435672A (zh) 2014-09-16

Similar Documents

Publication Publication Date Title
WO2014134897A1 (zh) 触控面板及其制造方法
WO2014134896A1 (zh) 触控面板及其制造方法
TWI536214B (zh) 觸控式螢幕及其製造方法
TWI536233B (zh) 觸控式螢幕及其製造方法
EP2928081A1 (en) Capacitive touch-sensitive device and method of making the same
US20140253826A1 (en) Touch screen and manufacturing method thereof
CN203422726U (zh) 一种on-cell结构触摸屏的液晶显示器
WO2014121580A1 (zh) 触摸感应元件及具有该触摸感应元件的触摸屏
US9081455B2 (en) Touch panel and manufacturing method thereof
US20140253825A1 (en) Touch panel and manufacturing method thereof
CN203149522U (zh) 触控面板
CN202394196U (zh) 触控感测装置及电子装置
CN204706016U (zh) 一种触摸屏
CN108196733A (zh) 一种电容式触摸屏的干膜式制备方法
CN203149544U (zh) 触摸屏
KR20140056960A (ko) 저항차 보상 장치 및 이를 구비하는 터치 패널과 그 제조 방법
CN201886454U (zh) 一种电容式触控面板
CN203149543U (zh) 触摸屏
CN221280290U (zh) 一种新式的双层柔性电路板
CN203149523U (zh) 触控面板
TWM437496U (en) Capacitive touch panel unit
TWM437497U (en) Capacitive touch panel structure
TW200521861A (en) Fabrication method for linear circuit of touch panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13985950

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015503751

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137029939

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877009

Country of ref document: EP

Kind code of ref document: A1