WO2014148454A1 - 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 - Google Patents

帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 Download PDF

Info

Publication number
WO2014148454A1
WO2014148454A1 PCT/JP2014/057221 JP2014057221W WO2014148454A1 WO 2014148454 A1 WO2014148454 A1 WO 2014148454A1 JP 2014057221 W JP2014057221 W JP 2014057221W WO 2014148454 A1 WO2014148454 A1 WO 2014148454A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
antistatic
antistatic agent
compound
group
Prior art date
Application number
PCT/JP2014/057221
Other languages
English (en)
French (fr)
Inventor
達人 中村
和清 野村
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2015506783A priority Critical patent/JP6309506B2/ja
Priority to BR112015024274A priority patent/BR112015024274A2/pt
Priority to CN201480017226.0A priority patent/CN105051146B/zh
Priority to KR1020157030034A priority patent/KR102141476B1/ko
Priority to EP14768284.3A priority patent/EP2977424B1/en
Priority to US14/778,163 priority patent/US9580545B2/en
Publication of WO2014148454A1 publication Critical patent/WO2014148454A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/46Polyesters chemically modified by esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic

Definitions

  • the present invention relates to an improvement of an antistatic agent, an antistatic agent composition, an antistatic resin composition (hereinafter also simply referred to as “resin composition”) and a molded article.
  • Thermoplastic resin is not only lightweight and easy to process, but also has excellent properties such as the ability to design a substrate according to the application, so it is an important material indispensable in modern times. is there.
  • thermoplastic resins have the property of being excellent in electrical insulation, they are frequently used for components of electrical products. However, since the thermoplastic resin is too insulating, there is a problem that it is easily charged by friction or the like.
  • thermoplastic resin attracts surrounding dust and dust, which causes a problem that the appearance of the resin molded product is impaired.
  • a precision device such as a computer may not be able to operate normally due to charging.
  • electric shock there are problems caused by electric shock. When an electric shock occurs from the resin to the human body, it not only makes the person uncomfortable, but may also cause an explosion accident where there is flammable gas or dust.
  • the most common antistatic treatment method is a method of adding an antistatic agent to the synthetic resin.
  • antistatic agents include a coating type that is applied to the surface of the resin molded body and a kneading type that is added when the resin is processed and molded, but the coating type is inferior in sustainability.
  • a large amount of organic matter is applied to the surface, there is a problem that the material touching the surface is contaminated.
  • Patent Documents 1 and 2 polyether ester amides have been proposed for imparting antistatic properties to polyolefin resins.
  • Patent Document 3 a block polymer having a structure in which a polyolefin block and a hydrophilic polymer block are repeatedly and alternately bonded has been proposed.
  • an object of the present invention is to provide an antistatic agent that can provide an excellent antistatic effect with a small addition amount, and has sufficient durability and wiping resistance.
  • Another object of the present invention is to provide a thermoplastic resin composition having sufficient durability and wiping resistance and excellent in antistatic properties.
  • another object of the present invention is to provide a molded body made of a thermoplastic resin, which is less likely to cause a drop in commercial value due to surface contamination due to static electricity or adhesion of dust.
  • the antistatic agent of the present invention comprises a block composed of a polyester (A) having carboxyl groups at both ends, and a block composed of a compound (B) having hydroxyl groups at both ends, A block polymer (C) having a structure having a carboxyl group at both ends formed by alternately and alternately bonding via an ester bond formed with the hydroxyl group, and a polyhydric alcohol compound (D) having three or more hydroxyl groups; Is composed of a polymer compound (E) having a structure formed by bonding via an ester bond formed by a carboxyl group of the block polymer (C) and a hydroxyl group of the polyhydric alcohol compound (D). It is what.
  • the polymer compound (E) further comprises a carboxyl group of the polyester (A) having carboxyl groups at both ends and a hydroxyl group of the polyhydric alcohol compound (D). It preferably contains an ester bond formed.
  • the polyester (A) has a residue obtained by removing the carboxyl group of the aliphatic dicarboxylic acid and a residue obtained by removing the hydroxyl group of the diol alternately through an ester bond.
  • the compound (B) having a hydroxyl group at both ends has the following general formula (1), It is preferable to have one or more groups represented by.
  • the compound (B) having a hydroxyl group at both ends is preferably polyethylene glycol.
  • the number average molecular weight of the block composed of the polyester (A) is 800 to 8,000 in terms of polystyrene, and the compound (B) having hydroxyl groups at both ends is used.
  • the number average molecular weight of the constituted block is preferably 400 to 6,000 in terms of polystyrene, and the number average molecular weight of the block polymer (C) is preferably 5,000 to 25,000 in terms of polystyrene.
  • the antistatic agent composition of the present invention further comprises one or more selected from the group consisting of alkali metal salts and Group 2 element salts to the antistatic agent of the present invention. It is characterized by this.
  • the antistatic resin composition of the present invention is characterized in that the antistatic agent of the present invention or the antistatic agent composition of the present invention is blended with a thermoplastic resin. is there.
  • the thermoplastic resin is preferably at least one selected from the group consisting of polyolefin resins and polystyrene resins.
  • the mass ratio of the thermoplastic resin and the antistatic agent, or the mass ratio of the thermoplastic resin and the antistatic agent composition is: The range is preferably 99/1 to 40/60.
  • the molded article of the present invention is characterized by comprising the antistatic resin composition of the present invention.
  • an antistatic agent that can provide an excellent antistatic effect with a small addition amount, and has sufficient durability and wiping resistance.
  • a thermoplastic resin composition having sufficient durability and wiping resistance and excellent in antistatic properties.
  • a molded body made of a thermoplastic resin that is less likely to cause a drop in commercial value due to surface contamination due to static electricity or adhesion of dust.
  • the polymer compound (E) comprises a block composed of a polyester (A) having carboxyl groups at both ends, and a block composed of a compound (B) having hydroxyl groups at both ends.
  • a block polymer (C) having a structure having a carboxyl group at both ends formed by alternately and alternately bonding through an ester bond formed by a carboxyl group and a hydroxyl group, and a polyhydric alcohol compound having three or more hydroxyl groups ( D) has a structure formed by bonding through an ester bond formed by the carboxyl group of the block polymer (C) and the hydroxyl group of the polyhydric alcohol compound (D).
  • the polyester (A) may have any carboxyl group at both ends, and preferably has a residue excluding the carboxyl group of the aliphatic dicarboxylic acid as represented by the following general formula (2).
  • the diol has a structure in which the residue excluding the hydroxyl group is repeatedly bonded alternately via an ester bond.
  • A1 represents a residue excluding the carboxyl group of the aliphatic dicarboxylic acid
  • A2 represents a residue excluding the hydroxyl group of the diol
  • n represents a number of 1 to 50.
  • the polyester having carboxyl groups at both ends represented by the general formula (2) can be obtained, for example, by subjecting an aliphatic dicarboxylic acid and a diol to a polycondensation reaction.
  • the aliphatic dicarboxylic acid may be a derivative of an aliphatic dicarboxylic acid (for example, an acid anhydride, an alkyl ester, an alkali metal salt, an acid halide, etc.). It is sufficient that the both ends are treated to form carboxyl groups, and the reaction for proceeding to the next block polymer (C) having a structure having carboxyl groups at both ends may be proceeded as it is.
  • the aliphatic dicarboxylic acid and its derivative may be a mixture of two or more.
  • the aliphatic dicarboxylic acid is preferably an aliphatic dicarboxylic acid having 2 to 20 carbon atoms.
  • oxalic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid examples include azelaic acid, sebacic acid, 2,5-furandicarboxylic acid, itaconic acid, 1,10-decanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, maleic acid, and fumaric acid.
  • a dicarboxylic acid having 4 to 16 carbon atoms is preferable and a dicarboxylic acid having 6 to 12 carbon atoms is more preferable from the viewpoint of melting point and heat resistance.
  • diol examples include aliphatic diols and aromatic group-containing diols.
  • the diol may be a mixture of two or more.
  • examples of the aliphatic diol include 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1,2-butanediol, and 1,3-butanediol.
  • polyester having carboxyl groups at both ends represented by the general formula (2) preferably has hydrophobicity, among aliphatic diols, polyethylene glycol having hydrophilicity is not preferable. However, this is not the case when used with other diols.
  • aromatic group-containing diol examples include bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, 1,4-benzenedimethanol, an ethylene oxide adduct of bisphenol A, Examples thereof include propylene oxide adducts of bisphenol A, polyhydroxyethyl adducts of mononuclear dihydric phenol compounds such as 1,4-bis (2-hydroxyethoxy) benzene, resorcin, and pyrocatechol.
  • diols having an aromatic group ethylene oxide adduct of bisphenol A, 1,4-bis ( ⁇ -hydroxyethoxy) benzene is preferable.
  • the polyester (A) having a carboxyl group at both ends can be obtained, for example, by subjecting the aliphatic dicarboxylic acid or derivative thereof to a polycondensation reaction with the diol.
  • the reaction ratio between the aliphatic dicarboxylic acid or its derivative and the diol is preferably an excess of the aliphatic dicarboxylic acid or its derivative so that both ends are carboxyl groups, and the molar ratio is 1 with respect to the diol. It is preferable to use in molar excess.
  • a catalyst that promotes the esterification reaction may be used.
  • the catalyst conventionally known ones such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used.
  • both ends may be treated to form a dicarboxylic acid after the reaction with the diol.
  • the reaction may proceed to the next reaction for obtaining a block polymer (C) having a structure having carboxyl groups at both ends.
  • the polyester (A) having carboxyl groups at both ends may be any one that forms an ester bond by reacting with the component (B) to form the structure of the block polymer (C). It may be protected, modified, or in the form of a precursor. Moreover, in order to suppress the oxidation of a product at the time of reaction, you may add antioxidants, such as a phenolic antioxidant, to a reaction system.
  • the compound (B) having a hydroxyl group at both ends is preferably a hydrophilic compound, more preferably a compound having one or more groups represented by the general formula (1), represented by the general formula (1).
  • a polyether having a group is more preferred, and polyethylene glycol represented by the following general formula (3) is particularly preferred.
  • m represents a number from 5 to 250. m is preferably 20 to 150 from the viewpoint of heat resistance and compatibility.
  • a compound having a hydroxyl group at both ends and having at least one group represented by the general formula (1) in addition to polyethylene glycol obtained by addition reaction of ethylene oxide, ethylene oxide and other alkylene oxides (for example, a polyether obtained by addition reaction with one or more of propylene oxide, 1,2-, 1,4-, 2,3- or 1,3-butylene oxide) can be used. But either.
  • compounds having hydroxyl groups at both ends and having one or more groups represented by the general formula (1) include compounds having a structure in which ethylene oxide is added to an active hydrogen atom-containing compound, ethylene oxide And other alkylene oxides such as propylene oxide, 1,2-, 1,4-, 2,3- or 1,3-butylene oxide and the like. These may be either random addition or block addition.
  • Examples of the active hydrogen atom-containing compound include glycol, dihydric phenol, primary monoamine, secondary diamine and dicarboxylic acid.
  • glycol examples include aliphatic glycols having 2 to 20 carbon atoms, alicyclic glycols having 5 to 12 carbon atoms, and araliphatic glycols having 8 to 26 carbon atoms.
  • Examples of the aliphatic glycol include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,3- Hexanediol, 1,4-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,2-octanediol, 1,8-octanediol, 1,10-decanediol, 1,18-octadecane Examples include diol, 1,20-eicosanediol, diethylene glycol, triethylene glycol, and thiodiethylene glycol.
  • Examples of the alicyclic glycol include 1-hydroxymethyl-1-cyclobutanol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, and 1-methyl-3,4-cyclohexanediol. 2-hydroxymethylcyclohexanol, 4-hydroxymethylcyclohexanol, 1,4-cyclohexanedimethanol, 1,1′-dihydroxy-1,1′-dicyclohexyl and the like.
  • aromatic glycol examples include dihydroxymethylbenzene, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 2-phenyl 1,3-propanediol, 2-phenyl 1,4-butanediol, 2-benzyl 1, Examples include 3-propanediol, triphenylethylene glycol, tetraphenylethylene glycol, and benzopinacol.
  • phenol having 6 to 30 carbon atoms can be used, for example, catechol, resorcinol, 1,4-dihydroxybenzene, hydroquinone, bisphenol A, bisphenol F, bisphenol S, dihydroxydiphenyl ether, dihydroxydiphenylthioether, binaphthol and These alkyls (having 1 to 10 carbon atoms) or halogen-substituted products are exemplified.
  • Examples of the primary monoamine include aliphatic primary monoamines having 1 to 20 carbon atoms, such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, s-butylamine, isobutylamine, n- Examples include pentylamine, isopentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-decylamine, n-octadecylamine and n-icosylamine.
  • Secondary diamines include aliphatic secondary diamines having 4 to 18 carbon atoms, heterocyclic secondary diamines having 4 to 13 carbon atoms, alicyclic secondary diamines having 6 to 14 carbon atoms, and the number of carbon atoms. And aromatic secondary diamines having 8 to 14 carbon atoms and secondary alkanol diamines having 3 to 22 carbon atoms.
  • Examples of the aliphatic secondary diamine include N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N′-dibutylethylenediamine, N, N′-dimethylpropylenediamine, N, N′-diethylpropylenediamine, N, N'-dibutylpropylenediamine, N, N'-dimethyltetramethylenediamine, N, N'-diethyltetramethylenediamine, N, N'-dibutyltetramethylenediamine, N, N'-dimethylhexamethylenediamine, N N, N′-diethylhexamethylenediamine, N, N′-dibutylhexamethylenediamine, N, N′-dimethyldecamethylenediamine, N, N′-diethyldecamethylenediamine, N, N′-dibutyldecamethylenediamine, etc.
  • heterocyclic secondary diamine examples include piperazine and 1-aminopiperidine.
  • Examples of the alicyclic secondary diamine include N, N′-dimethyl-1,2-cyclobutanediamine, N, N′-diethyl-1,2-cyclobutanediamine, N, N′-dibutyl-1,2- Cyclobutanediamine, N, N'-dimethyl-1,4-cyclohexanediamine, N, N'-diethyl-1,4-cyclohexanediamine, N, N'-dibutyl-1,4-cyclohexanediamine, N, N'- Examples thereof include dimethyl-1,3-cyclohexanediamine, N, N′-diethyl-1,3-cyclohexanediamine, and N, N′-dibutyl-1,3-cyclohexanediamine.
  • aromatic secondary diamines include N, N′-dimethyl-phenylenediamine, N, N′-dimethyl-xylylenediamine, N, N′-dimethyl-diphenylmethanediamine, and N, N′-dimethyl-diphenyletherdiamine.
  • Examples of the secondary alkanoldiamine include N-methyldiethanolamine, N-octyldiethanolamine, N-stearyldiethanolamine, and N-methyldipropanolamine.
  • dicarboxylic acid examples include dicarboxylic acids having 2 to 20 carbon atoms, such as aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids.
  • Examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, methyl succinic acid, dimethyl malonic acid, ⁇ -methyl glutaric acid, ethyl succinic acid, isopropyl malonic acid, adipic acid, pimelic acid, suberic acid, Examples include azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, tridecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, octadecanedicarboxylic acid and icosanedicarboxylic acid.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, ⁇ -phenylglutaric acid, ⁇ -phenyladipic acid, ⁇ -phenyladipic acid, biphenyl-2 2,2'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate and potassium 3-sulfoisophthalate.
  • Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentane dicarboxylic acid, 1,2-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 1,2-cyclohexane dicarboxylic acid, and 1,3-cyclohexane dicarboxylic acid.
  • Examples thereof include acid, 1,4-cyclohexanediacetic acid, 1,3-cyclohexanediacetic acid, 1,2-cyclohexanediacetic acid, and dicyclohexyl-4,4-dicarboxylic acid.
  • active hydrogen atom-containing compounds can be used alone or in a mixture of two or more.
  • the compound (B) having hydroxyl groups at both ends only needs to form an ester bond by reacting with the component (A) to form the structure of the block polymer (C), and the hydroxyl groups at both ends are protected. It may be modified, modified, or in the form of a precursor.
  • the block polymer (C) having a structure having a carboxyl group at both ends has a block composed of the polyester (A) and a block composed of the compound (B).
  • the block has a structure in which the block is repeatedly and alternately bonded through an ester bond formed by a carboxyl group and a hydroxyl group.
  • Such a block polymer (C) has a structure represented by the following general formula (4).
  • (A) represents a block composed of a polyester (A) having carboxyl groups at both ends
  • (B) is a block composed of a compound (B) having hydroxyl groups at both ends.
  • t is the number of repeating units, and preferably represents a number of 1 to 10. t is more preferably a number of 1 to 7, and most preferably a number of 1 to 5.
  • the block polymer (C) having a structure having carboxyl groups at both ends is obtained by polycondensation reaction between a polyester (A) having carboxyl groups at both ends and a compound (B) having hydroxyl groups at both ends.
  • the polyester (A) and the compound (B) have a structure equivalent to that having a structure in which the polyester (A) and the compound (B) are alternately and repeatedly bonded via an ester bond formed by a carboxyl group and a hydroxyl group. If so, it is not always necessary to synthesize from the polyester (A) and the compound (B).
  • a block polymer (C) having the following can be preferably obtained.
  • the compound (B) may be added to the reaction system and reacted as it is without isolating the polyester (A).
  • a catalyst that promotes the esterification reaction may be used.
  • the catalyst conventionally known ones such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used.
  • antioxidants such as a phenolic antioxidant
  • the polyhydric alcohol compound (D) used in the present invention is not particularly limited as long as it has three or more hydroxyl groups.
  • the polymer compound (E) according to the present invention comprises a block polymer (C) having a structure having carboxyl groups at both ends, and a polyhydric alcohol compound (D) having three or more hydroxyl groups. ) Of the terminal carboxyl group and the hydroxyl group of the polyhydric alcohol compound (D).
  • the polymer compound (E) may further contain an ester bond formed by the carboxyl group of the polyester (A) and the hydroxyl group of the polyhydric alcohol compound (D).
  • the carboxyl group of the block polymer (C) may be reacted with the hydroxyl group of the polyhydric alcohol compound (D).
  • the number of hydroxyl groups of the polyhydric alcohol compound to be reacted is preferably 0.1 to 4.0 equivalents, more preferably 0.5 to 3.0 equivalents, of the number of carboxyl groups of the block polymer (C) to be reacted.
  • the said reaction may be performed in various solvents and may be performed in a molten state.
  • the polyhydric alcohol compound (D) may be added to the reaction system without isolation of the block polymer (C) and reacted as it is.
  • the carboxyl group of the unreacted polyester (A) used excessively when the block polymer (C) is synthesized reacts with a part of the hydroxyl groups of the polyhydric alcohol compound (D) to form an ester bond. It may be formed.
  • the polymer compound (E) of the present invention comprises a block polymer (C) having a structure having carboxyl groups at both ends and a polyhydric alcohol compound (D) having three or more hydroxyl groups, each having a carboxyl group and a hydroxyl group. It is not always necessary to synthesize from the block polymer (C) and the polyhydric alcohol compound (D) as long as it has a structure equivalent to that having a structure bonded through an ester bond formed by.
  • the number average molecular weight of the block composed of the polyester (A) in the polymer compound (E) is preferably 800 to 8,000, more preferably 1,000 to 6,000 in terms of polystyrene. More preferably, it is 2,000 to 4,000.
  • the number average molecular weight of the block composed of the compound (B) having hydroxyl groups at both ends in the polymer compound (E) is preferably 400 to 6,000, more preferably 1,000 in terms of polystyrene. 5,000 to 5,000, more preferably 2,000 to 4,000.
  • the number average molecular weight of the block composed of the block polymer (C) having a structure having carboxyl groups at both ends in the polymer compound (E) is preferably 5,000 to 25,000 in terms of polystyrene. More preferably, it is 7,000 to 17,000, and more preferably 9,000 to 13,000.
  • the antistatic agent of the present invention is also preferably an antistatic agent composition comprising one or more selected from the group consisting of alkali metal salts and Group 2 element salts.
  • alkali metal salts and Group 2 element salts include organic acid or inorganic acid salts.
  • alkali metals include lithium, sodium, potassium, cesium, rubidium, and the like.
  • the organic acid include beryllium, magnesium, calcium, strontium, barium and the like, and examples of the organic acid include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, and lactic acid.
  • Aliphatic carboxylic acids having 1 to 12 carbon atoms such as oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid and adipic acid; aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid and salicylic acid Acid; charcoal such as methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, trifluoromethanesulfonic acid, etc.
  • Examples of the inorganic acid include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid, perchloric acid, and the like. .
  • alkali metal salts are preferable, lithium, sodium and potassium are more preferable, and lithium is most preferable.
  • acetic acid salts, perchloric acid salts, p-toluenesulfonic acid salts, and dodecylbenzenesulfonic acid salts are preferred.
  • alkali metal salt and the Group 2 salt include, for example, lithium acetate, sodium acetate, potassium acetate, lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, lithium phosphate, sodium phosphate, Potassium phosphate, lithium sulfate, sodium sulfate, magnesium sulfate, calcium sulfate, lithium perchlorate, sodium perchlorate, potassium perchlorate, lithium p-toluenesulfonate, sodium p-toluenesulfonate, p-toluenesulfonic acid
  • Examples include potassium, lithium dodecylbenzenesulfonate, sodium dodecylbenzenesulfonate, and potassium dodecylbenzenesulfonate.
  • the alkali metal salt and / or the Group 2 metal salt may be added to the polymer compound (E) used in the antistatic agent of the present invention, or may be added to the thermoplastic resin together with the polymer compound (E). May be used.
  • the blending amount of the alkali metal salt and / or the Group 2 metal salt is preferably 0.01 to 20 parts by mass, and 0.1 to 15 parts by mass with respect to 100 parts by mass of the polymer compound (E). More preferred is 1 to 10 parts by mass.
  • the antistatic agent of the present invention may be used as an antistatic agent composition by blending a surfactant.
  • a surfactant nonionic, anionic, cationic or amphoteric surfactants can be used.
  • Nonionic surfactants include polyethylene glycol type nonionic surfactants such as higher alcohol ethylene oxide adducts, fatty acid ethylene oxide adducts, higher alkylamine ethylene oxide adducts, and polypropylene glycol ethylene oxide adducts; polyethylene oxide, fatty acid esters of glycerin Polyanhydric alcohol type nonionic surfactants such as fatty acid ester of pentaerythritol, fatty acid ester of sorbit or sorbitan, alkyl ether of polyhydric alcohol, aliphatic amide of alkanolamine, etc.
  • carboxylates such as alkali metal salts of higher fatty acids
  • sulfates such as higher alcohol sulfates, higher alkyl ether sulfates, alkylbenzenes Sulfonates such as sulfonates, alkyl sulfonates, and paraffin sulfonates
  • phosphate ester salts such as higher alcohol phosphates.
  • cationic surfactants include alkyltrimethylammonium salts. Quaternary ammonium salt etc. are mentioned.
  • amphoteric surfactants include amino acid-type amphoteric surfactants such as higher alkylaminopropionates, betaine-type amphoteric surfactants such as higher alkyldimethylbetaines and higher alkyldihydroxyethylbetaines, and these are used alone or Two or more types can be used in combination.
  • anionic surfactants are preferable, and sulfonates such as alkylbenzene sulfonate, alkyl sulfonate, and paraffin sulfonate are particularly preferable.
  • the surfactant may be blended in the polymer compound (E) used in the antistatic agent of the present invention, or may be blended in a thermoplastic resin together with the polymer compound (E).
  • the compounding amount of the surfactant is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and most preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymer compound (E). preferable.
  • the antistatic agent of the present invention may be used as an antistatic agent composition by blending a polymer antistatic agent.
  • a polymer antistatic agent for example, a polymer type antistatic agent such as a known polyether ester amide can be used. Examples of the known polyether ester amide include those described in JP-A-7-10989. And polyether ester amides comprising the polyoxyalkylene adducts of bisphenol A described.
  • a block polymer having a repeating structure of 2 to 50 bonding units between a polyolefin block and a hydrophilic polymer block can be used, and examples thereof include a block polymer described in US Pat. No. 6,552,131.
  • the polymer type antistatic agent may be blended in the polymer compound (E) used in the antistatic agent of the present invention, or may be blended in a thermoplastic resin together with the polymer compound (E).
  • the blending amount of the polymer antistatic agent is preferably 0 to 50 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the polymer compound (E).
  • the antistatic agent of the present invention may be used as an antistatic agent composition by blending an ionic liquid.
  • the ionic liquid are those having a melting point of room temperature or lower, at least one of the cations or anions constituting the ionic liquid is an organic ion, and an initial conductivity of 1 to 200 mS / cm, preferably 10 to 200 mS.
  • a room temperature molten salt of / cm for example, a room temperature molten salt described in International Publication No. 95/15572.
  • Examples of cations constituting the ionic liquid include cations selected from the group consisting of amidinium, pyridinium, pyrazolium and guanidinium cations. Among these, the following are mentioned as an amidinium cation.
  • Imidazolinium cation Examples include those having 5 to 15 carbon atoms, such as 1,2,3,4-tetramethylimidazolinium and 1,3-dimethylimidazolinium;
  • Imidazolium cation Examples include those having 5 to 15 carbon atoms, such as 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium;
  • Tetrahydropyrimidinium cation Examples include those having 6 to 15 carbon atoms, such as 1,3-dimethyl-1,4,5,6-tetrahydropyrimidinium, 1,2,3,4-tetra. Methyl-1,4,5,6-tetrahydropyrimidinium;
  • Dihydropyrimidinium cation C6-20 for example, 1,3-dimethyl-1,4-dihydropyrimidinium, 1,3-dimethyl-1,6-dihydropyrimidi Ni, 8-methyl-1,8-diazabicyclo [5,4,0] -7,9-undecadienium, 8-methyl-1,8-diazabicyclo [5,4,0] -7,10-un Decadienium.
  • Examples of the pyridinium cation include those having 6 to 20 carbon atoms, such as 3-methyl-1-propylpyridinium and 1-butyl-3,4-dimethylpyridinium.
  • Examples of the pyrazolium cation include those having 5 to 15 carbon atoms, such as 1,2-dimethylpyrazolium and 1-n-butyl-2-methylpyrazolium. The following are mentioned as a guanidinium cation.
  • Guanidinium cation having an imidazolinium skeleton One having 8 to 15 carbon atoms includes, for example, 2-dimethylamino-1,3,4-trimethylimidazolinium, 2-diethylamino-1,3 , 4-trimethylimidazolinium;
  • Guanidinium cations having a tetrahydropyrimidinium skeleton and those having 10 to 20 carbon atoms such as 2-dimethylamino-1,3,4-trimethyl-1,4,5,6-tetrahydro Pyrimidinium, 2-diethylamino-1,3-dimethyl-4-ethyl-1,4,5,6-tetrahydropyrimidinium;
  • a guanidinium cation having a dihydropyrimidinium skeleton having 10 to 20 carbon atoms such as 2-dimethylamino-1,3,4-trimethyl-1,4-dihydropyrimidinium, 2-dimethylamino-1,3,4-trimethyl-1,6-dihydropyrimidinium, 2-diethylamino-1,3-dimethyl-4-ethyl-1,4-dihydropyrimidinium, 2-diethylamino-1 , 3-Dimethyl-4-ethyl-1,6-dihydropyrimidinium.
  • the above cations may be used alone or in combination of two or more. Of these, from the viewpoint of antistatic properties, an amidinium cation is preferable, an imidazolium cation is more preferable, and a 1-ethyl-3-methylimidazolium cation is particularly preferable.
  • examples of the organic acid or inorganic acid constituting the anion include the following.
  • examples of the organic acid include carboxylic acid, sulfuric acid ester, sulfonic acid and phosphoric acid ester;
  • examples of the inorganic acid include super strong acid (for example, borofluoric acid, tetrafluoroboric acid, perchloric acid, phosphorus hexafluoride). Acid, hexafluoroantimonic acid and hexafluoroarsenic acid), phosphoric acid and boric acid.
  • the organic acid and inorganic acid may be used singly or in combination of two or more.
  • a super strong acid conjugate in which the Hammett acidity function ( ⁇ H 0 ) of the anion constituting the ionic liquid is 12 to 100 is preferable.
  • Bases acids that form anions other than conjugate bases of super strong acids, and mixtures thereof.
  • halogen eg, fluorine, chlorine and bromine
  • alkyl having 1 to 12 carbon atoms
  • benzenesulfonic acid eg, p-toluenesulfonic acid and dodecylbenzenesulfonic acid.
  • examples of super strong acids include those derived from proton acids, combinations of proton acids and Lewis acids, and mixtures thereof.
  • borofluoric acid trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) imidic acid and bis (pentafluoroethylsulfonyl) imidic acid are preferable from the viewpoint of ease of synthesis.
  • Examples of the protonic acid used in combination with the Lewis acid include hydrogen halide (for example, hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide), perchloric acid, fluorosulfonic acid, methanesulfonic acid, and trifluoromethane.
  • Examples include sulfonic acid, pentafluoroethanesulfonic acid, nonafluorobutanesulfonic acid, undecafluoropentanesulfonic acid, tridecafluorohexanesulfonic acid, and mixtures thereof.
  • hydrogen fluoride is preferred from the viewpoint of the initial conductivity of the ionic liquid.
  • Lewis acid examples include boron trifluoride, phosphorus pentafluoride, antimony pentafluoride, arsenic pentafluoride, tantalum pentafluoride, and mixtures thereof.
  • boron trifluoride and phosphorus pentafluoride are preferable from the viewpoint of the initial conductivity of the ionic liquid.
  • the combination of the protonic acid and the Lewis acid is arbitrary, but examples of the super strong acid composed of these combinations include tetrafluoroboric acid, hexafluorophosphoric acid, hexafluorotantalic acid, hexafluoroantimonic acid, hexafluoride. Tantalum sulfonate, tetrafluoroboronic acid, hexafluorophosphoric acid, chloroboron trifluoride, arsenic hexafluoride and mixtures thereof.
  • a conjugate base of a super strong acid (a super strong acid comprising a proton acid and a super strong acid comprising a combination of a proton acid and a Lewis acid), and more preferred.
  • a conjugate base of a super strong acid composed of a proton acid and a super strong acid composed of a proton acid and boron trifluoride and / or phosphorus pentafluoride is particularly preferred.
  • the ionic liquid having an amidinium cation is preferable from the viewpoint of antistatic properties, the ionic liquid having a 1-ethyl-3-methylimidazolium cation is more preferable, and particularly preferable.
  • 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide is more preferable, and particularly preferable.
  • the compounding amount of the ionic liquid is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and most preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymer compound (E). preferable.
  • the antistatic agent of the present invention may be blended with a compatibilizing agent to form an antistatic agent composition.
  • blending a compatibilizing agent include a modified vinyl polymer having at least one functional group (polar group) selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group, and a polyoxyalkylene group, for example, Examples thereof include a polymer described in JP-A-3-258850, a modified vinyl polymer having a sulfonyl group described in JP-A-6-345927, or a block polymer having a polyolefin part and an aromatic vinyl polymer part. .
  • the compatibilizing agent may be blended in the polymer compound (E) used in the antistatic agent of the present invention, or may be blended in a thermoplastic resin together with the polymer compound (E).
  • the compounding amount of the compatibilizing agent is preferably 0.1 to 15 parts by mass and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymer compound (E).
  • the antistatic agent and antistatic agent composition of the present invention are particularly preferably used as an antistatic resin composition by blending with a thermoplastic resin.
  • thermoplastic resins include polypropylene, high density polyethylene, low density polyethylene, linear low density polyethylene, crosslinked polyethylene, ultrahigh molecular weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene, etc.
  • ⁇ -olefin polymers or polyolefin resins such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer and their copolymers; polyvinyl chloride, polyvinylidene chloride, chlorine Polyethylene, chlorinated polypropylene, polyvinylidene fluoride, rubber chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride-vinyl acetate ternary Copolymer, vinyl chloride-acrylic Halogen-containing resins such as acid ester copolymers, vinyl chloride-maleic acid ester copolymers, vinyl chloride-cyclohexyl maleimide copolymers; petroleum resins, coumarone resins, polystyrene, polyvinyl acetate,
  • Thermoplastic resins are isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluorine rubber, silicone rubber, olefin elastomer, styrene elastomer, polyester elastomer, nitrile elastomer, nylon. It may be an elastomer such as a base elastomer, a vinyl chloride elastomer, a polyamide elastomer, or a polyurethane elastomer. In the present invention, these thermoplastic resins may be used alone or in combination of two or more. Further, the thermoplastic resin may be alloyed.
  • thermoplastic resins include molecular weight, degree of polymerization, density, softening point, proportion of insoluble matter in solvent, degree of stereoregularity, presence or absence of catalyst residue, type and blending ratio of monomer as raw material, type of polymerization catalyst (For example, Ziegler catalyst, metallocene catalyst, etc.) can be used.
  • type of polymerization catalyst for example, Ziegler catalyst, metallocene catalyst, etc.
  • one or more selected from the group consisting of polyolefin resins, polystyrene resins and copolymers thereof are preferable from the viewpoint of antistatic properties.
  • the mass ratio of the thermoplastic resin to the antistatic agent in the antistatic resin composition of the present invention is preferably in the range of 99/1 to 40/60. Also when the antistatic agent composition of the present invention is added to the thermoplastic resin, the mass ratio of the thermoplastic resin and the antistatic agent composition is preferably in the range of 99/1 to 40/60.
  • the blending method of the polymer compound (E) into the thermoplastic resin is not particularly limited, and any commonly used method can be used. For example, by roll kneading, bumper kneading, an extruder, a kneader, etc. What is necessary is just to mix and knead
  • a high molecular compound (E) may be added to a thermoplastic resin as it is, you may add after impregnating a support
  • a carrier those known as fillers and fillers of synthetic resins, or flame retardants and light stabilizers that are solid at room temperature can be used.
  • titanium oxide powder those obtained by chemically modifying the surface of these carriers, solid ones among the flame retardants and antioxidants listed below, and the like can be mentioned.
  • these carriers those obtained by chemically modifying the surface of the carrier are preferred, and those obtained by chemically modifying the surface of the silica powder are more preferred.
  • These carriers preferably have an average particle size of 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m.
  • the polymer compound (E) As a method of blending the polymer compound (E) into the thermoplastic resin, the polymer compound (E) is synthesized while kneading the block polymer (C) and the polyhydric alcohol compound (D) simultaneously with the thermoplastic resin.
  • the polymer compound (E) and a thermoplastic resin may be mixed at the time of molding such as injection molding, and may be blended by a method of obtaining a molded product. This master batch may be blended in advance.
  • the antistatic resin composition of the present invention may contain various additives such as phenolic antioxidants, phosphorus antioxidants, thioether antioxidants, ultraviolet absorbers, hindered amine light stabilizers, etc., as necessary. Further, it can be added, whereby the resin composition of the present invention can be stabilized.
  • phenolic antioxidant examples include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-ditert-butyl-4). -Hydroxybenzyl) phosphonate, 1,6-hexamethylenebis [(3,5-ditert-butyl-4-hydroxyphenyl) propionic acid amide], 4,4'-thiobis (6-tert-butyl-m-cresol ), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-butylidenebis (6-tert-butyl) -M-cresol), 2,2′-ethylidenebis (4,6-ditert-butylphenol), 2,2′-ethylidenebis (4-secondarybutyl-6-tert-butyl) Eno
  • Examples of the phosphorus antioxidant include trisnonylphenyl phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl].
  • Phosphite tridecyl phosphite, octyl diphenyl phosphite, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-di Tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-ditert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tritert-butylphenyl) pentaerythritol diphosphite Phosphite, bis (2,4-dicumylphenyl) pe Taerythritol diphosphite, tetra (tridecyl) isopropylidene diphenol diphosphit
  • thioether-based antioxidant examples include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and pentaerythritol tetra ( ⁇ -alkylthiopropionic acid). Examples include esters.
  • the addition amount of these thioether-based antioxidants is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-Hydroxybenzophenones such as 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-ditert-butylphenyl) -5-chloro Benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-5′-tert.
  • Octylphenyl) benzotriazole 2- (2′-hydroxy-3 ′, 5′-dicumylphenyl) benzotriazole, 2 2- (methylenebis (4-tert-octyl-6- (benzotriazolyl) phenol), 2- (2′-hydroxy-3′-tert-butyl-5′-carboxyphenyl) benzotriazole and the like 2- ( 2'-hydroxyphenyl) benzotriazoles; phenyl salicylate, resorcinol monobenzoate, 2,4-ditertiarybutylphenyl-3,5-ditertiarybutyl-4-hydroxybenzoate, 2,4-ditertiary amylphenyl Benzoates such as 3,5-ditert-butyl-4-hydroxybenzoate and hexadecyl-3,5-ditert-butyl-4-hydroxybenzoate; 2-ethyl-2′-ethoxyoxanilide, 2-ethoxy Substitute
  • hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-tetramethyl-4-piperidyl) Sebacate, bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4 -Butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2, , 6,6-tetramethyl-4-piperidyl) -di (tridecyl
  • a known neutralizing agent as necessary in order to neutralize the residual catalyst in the polyolefin resin.
  • the neutralizing agent include fatty acid metal salts such as calcium stearate, lithium stearate, and sodium stearate, or fatty acid amides such as ethylene bis (stearamide), ethylene bis (12-hydroxystearamide), and stearic acid amide. Compounds, and these neutralizing agents may be used in combination.
  • the antistatic resin composition of the present invention further includes an aromatic carboxylic acid metal salt, an alicyclic alkyl carboxylic acid metal salt, an aluminum p-tert-butylbenzoate, an aromatic phosphate metal salt, if necessary.
  • Nucleating agents such as dibenzylidene sorbitol, metal soap, hydrotalcite, triazine ring-containing compound, metal hydroxide, phosphate ester flame retardant, condensed phosphate ester flame retardant, phosphate flame retardant, inorganic phosphorus Flame retardants, (poly) phosphate flame retardants, halogen flame retardants, silicon flame retardants, antimony oxides such as antimony trioxide, other inorganic flame retardant aids, other organic flame retardant aids, Fillers, pigments, lubricants, foaming agents and the like may be added.
  • triazine ring-containing compound examples include melamine, ammelin, benzguanamine, acetoguanamine, phthalodiguanamine, melamine cyanurate, melamine pyrophosphate, butylenediguanamine, norbornene diguanamine, methylene diguanamine, ethylene dimelamine, trimethylene Dimelamine, tetramethylene dimelamine, hexamethylene dimelamine, 1,3-hexylene dimelamine and the like can be mentioned.
  • metal hydroxide examples include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, Kismer 5A (magnesium hydroxide: manufactured by Kyowa Chemical Industry Co., Ltd.) and the like.
  • phosphate ester flame retardant examples include, for example, trimethyl phosphate, triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, trischloroethyl phosphate, trisdichloropropyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, Trixylenyl phosphate, octyl diphenyl phosphate, xylenyl diphenyl phosphate, trisisopropylphenyl phosphate, 2-ethylhexyl diphenyl phosphate, t-butylphenyl diphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butyl Phenyl) phosphate, isopropylphenyldiphenylphosphate, bis- ( Isopropy
  • condensed phosphate ester flame retardant examples include 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate), and the like.
  • Examples of the (poly) phosphate flame retardant include ammonium salts and amine salts of (poly) phosphoric acid such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, melamine pyrophosphate, and piperazine pyrophosphate. .
  • Examples of other inorganic flame retardant aids include inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talc, montmorillonite, and surface-treated products thereof.
  • inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talc, montmorillonite, and surface-treated products thereof.
  • TIPAQUE R-680 Titanium oxide: manufactured by Ishihara Sangyo Co., Ltd.
  • Kyowa Mag 150 magnesium oxide: manufactured by Kyowa Chemical Industry Co., Ltd.
  • DHT-4A hydrotalcite: manufactured by Kyowa Chemical Industry Co., Ltd.
  • Alkamizer 4 zinc modified hydro
  • Various commercial products such as Talsite (manufactured by Kyowa Chemical Industry Co., Ltd.) can be used.
  • examples of other organic flame retardant aids include pentaerythritol.
  • the antistatic resin composition of the present invention includes additives that are usually used in synthetic resins as necessary, for example, crosslinking agents, antifogging agents, plate-out preventing agents, surface treatment agents, plasticizers, lubricants. , Flame retardants, fluorescent agents, antifungal agents, bactericides, foaming agents, metal deactivators, mold release agents, pigments, processing aids, antioxidants, light stabilizers, etc., in a range that does not impair the effects of the present invention Can be blended.
  • additives that are usually used in synthetic resins as necessary, for example, crosslinking agents, antifogging agents, plate-out preventing agents, surface treatment agents, plasticizers, lubricants. , Flame retardants, fluorescent agents, antifungal agents, bactericides, foaming agents, metal deactivators, mold release agents, pigments, processing aids, antioxidants, light stabilizers, etc.
  • the additive blended in the antistatic resin composition of the present invention may be added directly to the thermoplastic resin, or blended into the antistatic agent or antistatic composition of the present invention and then added to the thermoplastic resin. It may be added.
  • An antistatic resin molded product can be obtained by molding the antistatic resin composition of the present invention.
  • the molding method is not particularly limited, and examples thereof include extrusion processing, calendar processing, injection molding, roll, compression molding, blow molding, rotational molding, and the like. Resin plate, sheet, film, bottle, fiber, irregular shape product Various shaped products such as these can be manufactured.
  • the molded product obtained from the antistatic resin composition of the present invention is excellent in antistatic performance and sustainability. It also has resistance to wiping.
  • the antistatic resin composition of the present invention and a molded body using the same are electric, electronic, communication, agriculture, forestry and fisheries, mining, construction, food, textile, clothing, medical, coal, petroleum, rubber, leather, automobile, precision It can be used in a wide range of industrial fields such as equipment, wood, building materials, civil engineering, furniture, printing, and musical instruments.
  • the antistatic resin composition of the present invention and the molded product thereof are printers, personal computers, word processors, keyboards, PDAs (small information terminals), telephones, copiers, facsimiles, ECRs (electronic money registers).
  • the antistatic resin composition of the present invention and the molded product thereof are a seat (filling, outer material, etc.), belt, ceiling, compatible top, armrest, door trim, rear package tray, carpet, mat, sun visor, foil cover. , Mattress cover, air bag, insulation material, suspension hand, suspension band, electric wire coating material, electrical insulation material, paint, coating material, upholstery material, flooring, corner wall, carpet, wallpaper, wall covering material, exterior material , Interior materials, roofing materials, deck materials, wall materials, pillar materials, floorboards, fence materials, frames and repetitive shapes, window and door shapes, slabs, siding, terraces, balconies, soundproofing plates, heat insulating plates, windows Automobiles such as materials, vehicles, ships, aircraft, buildings, housing and construction materials and civil engineering materials, clothing, curtains, sheets, nonwoven fabrics, plywood, synthetic fiber boards, carpets, doormats, sheets, buckets Hose, can be container, glasses, bags, cases, goggles, skis, rackets, tents, household goods of musical instruments, etc., can be
  • Mn number average molecular weight
  • GPC gel permeation chromatography
  • the obtained block polymer (C) -1 was charged with 300 g and trimethylolpropane as the polyhydric alcohol compound (D) -1 was charged with 5.6 g and polymerized at 200 ° C. under reduced pressure for 7 hours to obtain the charge of the present invention.
  • Inhibitor (E) -1 was obtained.
  • the obtained block polymer (C) -2 was charged with 300 g and trimethylolpropane as the polyhydric alcohol compound (D) -1 was charged with 5.6 g and polymerized at 200 ° C. under reduced pressure for 6 hours to obtain the charge of the present invention.
  • Inhibitor (E) -2 was obtained.
  • polyester (A) -3 150 g of polyethylene glycol having a number average molecular weight of 2,000 as the compound (B) -1 having a hydroxyl group at both ends, an antioxidant (ADK STAB AO-60) And 0.5 g of zirconium acetate were added and polymerized at 200 ° C. under reduced pressure for 7 hours to obtain a block polymer (C) -3 having a structure having carboxyl groups at both ends.
  • This block polymer (C) -3 had an acid value of 11, and a number average molecular weight Mn of 10,500 in terms of polystyrene.
  • Agent (E) -3 was obtained.
  • the obtained block polymer (C) -4 was charged with 300 g and ditrimethylolpropane as the polyhydric alcohol compound (D) -3 was charged with 6.0 g and polymerized at 200 ° C. for 8 hours under reduced pressure to obtain the charge of the present invention.
  • Inhibitor (E) -4 was obtained.
  • polyester (A) -5 150 g of polyethylene glycol having a number average molecular weight of 2,000 as the compound (B) -1 having a hydroxyl group at both ends, an antioxidant (ADK STAB AO-60) And block polymerization (C) -5 having a structure having carboxyl groups at both ends were obtained by polymerizing under reduced pressure at 200 ° C. for 7 hours.
  • This block polymer (C) -5 had an acid value of 11, and a number average molecular weight Mn of 11,000 in terms of polystyrene.
  • polyester (A) -6 200 g of polyethylene glycol having a number average molecular weight of 1,000 as the compound (B) -2 having hydroxyl groups at both ends, an antioxidant (ADK STAB AO-60) And 0.5 g of zirconium acetate were added and polymerized at 200 ° C. under reduced pressure for 7 hours to obtain a block polymer (C) -6 having a structure having carboxyl groups at both ends.
  • the block polymer (C) -6 had an acid value of 22, and a number average molecular weight Mn of 5,200 in terms of polystyrene.
  • the obtained block polymer (C) -6 was charged with 300 g and triethanolamine as polyhydric alcohol compound (D) -7 was charged with 9.0 g and polymerized at 200 ° C. for 5 hours under reduced pressure to obtain the charge of the present invention.
  • Inhibitor (E) -9 was obtained.
  • polyester (A) -7 300 g of the obtained polyester (A) -7, 240 g of polyethylene glycol having a number average molecular weight of 1,000 as the compound (B) -2 having a hydroxyl group at both ends, an antioxidant (ADK STAB AO-60) And block polymerization (C) -7 having a structure having carboxyl groups at both ends were obtained by polymerizing under reduced pressure at 200 ° C. for 6 hours.
  • This block polymer (C) -7 had an acid value of 13, and a number average molecular weight Mn of 8,200 in terms of polystyrene.
  • the antistatic agent of the present invention was charged with 300 g of the obtained block polymer (C) -7 and 12.1 g of sorbitol as the polyhydric alcohol compound (D) -8 and polymerized under reduced pressure at 200 ° C. for 12 hours. (E) -10 was obtained.
  • polyester (A) -8 300 g of the obtained polyester (A) -8, 150 g of polyethylene glycol having a number average molecular weight of 2,000 as the compound (B) -1 having a hydroxyl group at both ends, an antioxidant (ADK STAB AO-60) And 0.5 g of zirconium acetate were charged and polymerized under reduced pressure at 200 ° C. for 5 hours to obtain a block polymer (C) -8 having a structure having carboxyl groups at both ends.
  • This block polymer (C) -8 had an acid value of 19, and a number average molecular weight Mn of 7,300 in terms of polystyrene.
  • polyester (A) -9 300 g of polyethylene glycol having a number average molecular weight of 2,000 as the compound (B) -1 having a hydroxyl group at both ends, an antioxidant (ADK STAB AO-60) And block polymerization (C) -9 having a structure having carboxyl groups at both ends were obtained by polymerizing under reduced pressure at 200 ° C. for 8 hours.
  • This block polymer (C) -9 had an acid value of 8, and a number average molecular weight Mn of 14,000 in terms of polystyrene.
  • the antistatic agent of the present invention was charged with 300 g of the obtained block polymer (C) -9 and 3.6 g of glycerin as the polyhydric alcohol compound (D) -6 and polymerized at 200 ° C. for 9 hours under reduced pressure. (E) -12 was obtained.
  • polyester (A) -10 400 g of the obtained polyester (A) -10, 200 g of polyethylene glycol having a number average molecular weight of 4,000 as the compound (B) -3 having hydroxyl groups at both ends, antioxidant (ADK STAB AO-60) And 0.5 g of zirconium acetate were charged and polymerized at 200 ° C. for 8 hours under reduced pressure to obtain a block polymer (C) -10 having a structure having carboxyl groups at both ends.
  • the block polymer (C) -10 had an acid value of 9, and a number average molecular weight Mn of 13,000 in terms of polystyrene.
  • the obtained block polymer (C) -10 was charged with 300 g and trimethylolpropane as the polyhydric alcohol compound (D) -1 was charged with 5.4 g, and polymerized at 200 ° C. for 10 hours under reduced pressure to obtain the charge of the present invention.
  • Inhibitor (E) -13 was obtained.
  • the antistatic agent of the present invention was charged with 300 g of the obtained block polymer (C) -11 and 5.2 g of glycerin as the polyhydric alcohol compound (D) -6 and polymerized at 200 ° C. for 11 hours under reduced pressure. (E) -14 was obtained.
  • polyester (A) -11 200 g of polyethylene glycol having a number average molecular weight of 6,000 as the compound (B) -4 having a hydroxyl group at both ends, an antioxidant (ADK STAB AO-60) And block polymerization (C) -12 having a structure having carboxyl groups at both ends were obtained by polymerizing under reduced pressure at 200 ° C. for 8 hours.
  • This block polymer (C) -12 had an acid value of 6.2 and a number average molecular weight Mn of 17,500 in terms of polystyrene.
  • the antistatic agent of the present invention was charged with 300 g of the obtained block polymer (C) -12 and 7.3 g of pentaerythritol as the polyhydric alcohol compound (D) -2 and polymerized at 240 ° C. for 3 hours under reduced pressure. (E) -15 was obtained.
  • Comparative Production Example 2 A separable flask was charged with 328 g of 1,4-cyclohexanedimethanol, 354 g of adipic acid, 0.5 g of antioxidant (ADK STAB AO-60) and 0.5 g of zirconium acetate, and gradually increased from 160 ° C to 200 ° C. Polymerization was carried out at normal pressure for 4 hours with heating, and then at 200 ° C. for 3 hours under reduced pressure to obtain Comparative Polyester-1. Comparative polyester-1 had an acid value of 28 and a number average molecular weight Mn of 5,300 in terms of polystyrene.
  • Comparative Production Example 8 In a separable flask, 300 g of comparative polyetherester-2 having a hydroxyl group at one end obtained by the method described in Comparative Production Example 7 and 4.8 g of trimethylolpropane were charged, and the mixture was heated at 240 ° C. for 3 hours under reduced pressure. By polymerization, a comparative antistatic agent (8) was obtained. This was used for a comparative example.
  • Examples 1 to 27, Comparative Examples 1 to 11 Using the antistatic resin composition blended based on the blending amounts described in Tables 1 to 4 below, test pieces were obtained according to the test piece preparation conditions shown below. Using the obtained test piece, the surface resistivity (SR value) measurement and the water wiping resistance evaluation test were performed according to the following. Similarly, resin compositions of comparative examples were prepared with the formulations shown in Tables 5 to 6 below, and evaluated.
  • ⁇ Impact copolymer polypropylene resin composition test piece preparation conditions The antistatic resin composition blended based on the blending amount shown in the following table was subjected to conditions of 200 ° C. and 6 kg / hour using a twin screw extruder (PCM30, 60 mesh included) manufactured by Ikegai Co., Ltd. Granulation gave pellets. The obtained pellets were molded using a horizontal injection molding machine (NEX80: manufactured by Nissei Plastic Industry Co., Ltd.) under processing conditions of a resin temperature of 200 ° C. and a mold temperature of 40 ° C., and a 100 mm ⁇ 100 mm ⁇ 3 mm test piece was formed. Obtained.
  • NEX80 manufactured by Nissei Plastic Industry Co., Ltd.
  • ⁇ Homopolypropylene resin composition test piece preparation conditions The antistatic resin composition blended based on the blending amount shown in the following table was subjected to conditions of 230 ° C. and 6 kg / hour using a twin screw extruder (PCM30, 60 mesh included) manufactured by Ikekai Co., Ltd. Granulation gave pellets. The obtained pellets were molded using a horizontal injection molding machine (NEX80: manufactured by Nissei Plastic Industry Co., Ltd.) under processing conditions of a resin temperature of 230 ° C. and a mold temperature of 40 ° C., and a 100 mm ⁇ 100 mm ⁇ 3 mm test piece was formed. Obtained.
  • NEX80 manufactured by Nissei Plastic Industry Co., Ltd.
  • ⁇ ABS resin composition test piece preparation conditions The antistatic resin composition blended based on the blending amount shown in the following table was subjected to conditions of 230 ° C. and 6 kg / hour using a twin screw extruder (PCM30, 60 mesh included) manufactured by Ikekai Co., Ltd. Granulation gave pellets. The obtained pellets were molded using a horizontal injection molding machine (NEX80: manufactured by Nissei Plastic Industry Co., Ltd.) under processing conditions of a resin temperature of 230 ° C. and a mold temperature of 50 ° C., and a 100 mm ⁇ 100 mm ⁇ 3 mm test piece was formed. Obtained.
  • NEX80 manufactured by Nissei Plastic Industry Co., Ltd.
  • SR value ⁇ Method for measuring surface resistivity (SR value)>
  • the obtained test piece was stored under conditions of a temperature of 25 ° C. and a humidity of 60% RH. After storage for 1 day and 30 days of molding, the R8340 resistance meter manufactured by Advantest was used in the same atmosphere. The surface specific resistance value ( ⁇ / ⁇ ) was measured under the conditions of an applied voltage of 100 V and an applied time of 1 minute. The measurement was performed for 5 points, and the average value was obtained.
  • ⁇ Water wiping resistance evaluation test> The surface of the obtained test piece was wiped 50 times with a waste water cloth and then stored for 2 hours under conditions of a temperature of 25 ° C. and a humidity of 60%, and then an R8340 resistance meter manufactured by Advantest was used in the same atmosphere. The surface resistivity ( ⁇ / ⁇ ) was measured under the conditions of an applied voltage of 100 V and an applied time of 1 minute. The measurement was performed at 5 points, and the average value was obtained.
  • the antistatic resin composition of the example As shown in the above table, according to the antistatic resin composition of the example, an excellent antistatic effect is obtained with a small amount of the antistatic agent or the antistatic agent composition added. It was confirmed that the antistatic effect was not reduced even by wiping with water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 少ない添加量で優れた帯電防止効果を付与することができ、十分な持続性と耐拭き取り性とを備える帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体を提供する。 両末端にカルボキシル基を有するポリエステル(A)から構成されたブロック、および、両末端に水酸基を有する化合物(B)から構成されたブロックが、カルボキシル基と水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有する構造を有するブロックポリマー(C)と、水酸基を3個以上有する多価アルコール化合物(D)とが、ブロックポリマー(C)のカルボキシル基と多価アルコール化合物(D)の水酸基とにより形成されたエステル結合を介して結合してなる構造を有する高分子化合物(E)からなる帯電防止剤である。

Description

帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
 本発明は、帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物(以下、単に「樹脂組成物」とも称する)および成形体の改良に関する。
 熱可塑性樹脂は、軽量で加工が容易であるのみならず、用途に応じて基材を設計することができる等の優れた特性を有しているため、現代では欠かすことのできない重要な素材である。また、熱可塑性樹脂は電気絶縁性に優れるという特性を有するため、電気製品のコンポーネント等に頻繁に利用されている。しかし、熱可塑性樹脂はあまりにも絶縁性が高いため、摩擦等により帯電しやすいという問題がある。
 帯電した熱可塑性樹脂は周囲の埃や塵を引き付けるため、樹脂成形品の外観を損ねるという問題が生ずる。また、電子製品の中でも、例えば、コンピューター等の精密機器は、帯電により回路が正常に作動することができなくなる場合がある。さらに、電撃による問題も存在する。樹脂から人体に対して電撃が発生すると、人に不快感を与えるだけでなく、可燃性気体や粉塵のあるところでは、爆発事故を誘引する可能性もある。
 このような問題を解消するために、従来から、合成樹脂に対して帯電を防止する処理がなされている。最も一般的な帯電防止処理方法は、合成樹脂に帯電防止剤を加える方法である。このような帯電防止剤には、樹脂成形体表面に塗布する塗布型のものと、樹脂を加工成形する際に添加する練り込み型のものとがあるが、塗布型のものは持続性に劣ることに加え、表面に大量の有機物が塗布されるために、その表面に触れたものが汚染されるという問題があった。
 かかる観点から、従来、主として練り込み型の帯電防止剤が検討されており、例えば、ポリオレフィン系樹脂への帯電防止性付与のためにポリエーテルエステルアミドが提案されている(特許文献1,2)。また、ポリオレフィンのブロックと親水性ポリマーのブロックとが、繰り返し交互に結合した構造を有するブロックポリマーが提案されている(特許文献3)。
特開昭58-118838号公報 特開平3-290464号公報 特開2001-278985号公報
 しかしながら、これら従来の帯電防止剤は、樹脂に対して多量に添加しないと十分な帯電防止性能を得ることができず、また、帯電防止効果の持続性も不十分であった。また、樹脂の成形品表面を拭き取ることで、帯電防止効果が低下するという問題もあった。
 そこで本発明の目的は、少ない添加量で優れた帯電防止効果を付与することができるとともに、十分な持続性と耐拭き取り性とを備える帯電防止剤を提供することにある。また、本発明の他の目的は、十分な持続性と耐拭き取り性を備え、帯電防止性に優れる熱可塑性樹脂組成物を提供することにある。さらに、本発明の他の目的は、静電気による表面の汚染や埃の付着による商品価値の下落を生じにくい、熱可塑性樹脂からなる成形体を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、本発明を完成するに至った。すなわち、本発明の帯電防止剤は、両末端にカルボキシル基を有するポリエステル(A)から構成されたブロック、および、両末端に水酸基を有する化合物(B)から構成されたブロックが、前記カルボキシル基と前記水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有する構造を有するブロックポリマー(C)と、水酸基を3個以上有する多価アルコール化合物(D)とが、前記ブロックポリマー(C)のカルボキシル基と前記多価アルコール化合物(D)の水酸基とにより形成されたエステル結合を介して結合してなる構造を有する高分子化合物(E)からなることを特徴とするものである。
 本発明の帯電防止剤においては、前記高分子化合物(E)は、さらに、前記両末端にカルボキシル基を有するポリエステル(A)のカルボキシル基と、前記多価アルコール化合物(D)の水酸基と、により形成されたエステル結合を含むことが好ましい。また、本発明の帯電防止剤においては、前記ポリエステル(A)は、脂肪族ジカルボン酸のカルボキシル基を除いた残基と、ジオールの水酸基を除いた残基とが、エステル結合を介して繰り返し交互に結合してなる構造を有し、かつ、前記両末端に水酸基を有する化合物(B)が、下記一般式(1)、
Figure JPOXMLDOC01-appb-I000002

で示される基を一つ以上有することが好ましい。
 さらに、本発明の帯電防止剤においては、前記両末端に水酸基を有する化合物(B)は、ポリエチレングリコールであることが好ましい。さらにまた、本発明の帯電防止剤においては、前記ポリエステル(A)から構成されたブロックの数平均分子量がポリスチレン換算で800~8,000であり、前記両末端に水酸基を有する化合物(B)から構成されたブロックの数平均分子量がポリスチレン換算で400~6,000であり、かつ、前記ブロックポリマー(C)の数平均分子量が、ポリスチレン換算で5,000~25,000であることが好ましい。
 また、本発明の帯電防止剤組成物は、上記本発明の帯電防止剤に対し、さらに、アルカリ金属の塩および第2族元素の塩からなる群から選択される1種以上が配合されてなることを特徴とするものである。
 さらに、本発明の帯電防止性樹脂組成物は、熱可塑性樹脂に対し、上記本発明の帯電防止剤、または、上記本発明の帯電防止剤組成物が配合されてなることを特徴とするものである。
 本発明の帯電防止性樹脂組成物においては、前記熱可塑性樹脂は、ポリオレフィン系樹脂およびポリスチレン系樹脂からなる群から選ばれる一種以上であることが好ましい。また、本発明の帯電防止性樹脂組成物においては、前記熱可塑性樹脂と、前記帯電防止剤との質量比は、または、前記熱可塑性樹脂と、前記帯電防止剤組成物との質量比は、99/1~40/60の範囲であることが好ましい。
 さらにまた、本発明の成形体は、上記本発明の帯電防止性樹脂組成物からなることを特徴とするものである。
 本発明によれば、少ない添加量で優れた帯電防止効果を付与することができるとともに、十分な持続性と耐拭き取り性とを備える帯電防止剤を提供することができる。また、本発明によれば、十分な持続性と耐拭き取り性とを備え、帯電防止性に優れる熱可塑性樹脂組成物を提供することができる。さらに、本発明によれば、静電気による表面の汚染や埃の付着による商品価値の下落を生じにくい、熱可塑性樹脂からなる成形体を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 本発明に係る高分子化合物(E)は、両末端にカルボキシル基を有するポリエステル(A)から構成されたブロック、および、両末端に水酸基を有する化合物(B)から構成されたブロックが、各ブロックのカルボキシル基と水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有する構造を有するブロックポリマー(C)と、水酸基を3個以上有する多価アルコール化合物(D)とが、ブロックポリマー(C)のカルボキシル基と、多価アルコール化合物(D)の水酸基と、により形成されたエステル結合を介して結合してなる構造を有する。
 まず、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を構成する、両末端にカルボキシル基を有するポリエステル(A)のブロックについて説明する。かかるポリエステル(A)は、両末端にカルボキシル基を有するものであればよいが、好ましくは、下記一般式(2)で表されるような、脂肪族ジカルボン酸のカルボキシル基を除いた残基と、ジオールの水酸基を除いた残基とが、エステル結合を介して繰り返し交互に結合してなる構造を有するものとする。
Figure JPOXMLDOC01-appb-I000003
 上記一般式(2)中、A1は脂肪族ジカルボン酸のカルボキシル基を除いた残基を表し、A2はジオールの水酸基を除いた残基を表し、nは1~50の数を表す。上記一般式(2)で表される両末端にカルボキシル基を有するポリエステルは、例えば、脂肪族ジカルボン酸とジオールとを重縮合反応させることにより得られる。
 脂肪族ジカルボン酸は、脂肪族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよく、誘導体を使用してポリエステルを得た場合は、最終的に両末端を処理してカルボキシル基にすればよく、そのままの状態で、次の、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を得るための反応に進んでもよい。また、脂肪族ジカルボン酸およびその誘導体は、2種以上の混合物でもよい。
 脂肪族ジカルボン酸としては、好ましくは炭素原子数2~20の脂肪族ジカルボン酸が挙げられ、例えば、シュウ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、2,5-フランジカルボン酸、イタコン酸、1,10-デカンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ダイマー酸、マレイン酸、フマル酸等が挙げられる。これら脂肪族ジカルボン酸の中でも、融点や耐熱性の点から、炭素原子数4~16のジカルボン酸が好ましく、炭素原子数6~12のジカルボン酸がより好ましい。
 ジオールとしては、脂肪族ジオール、芳香族基含有ジオールが挙げられる。また、ジオールは、2種以上の混合物でもよい。脂肪族ジオールとしては、例えば、1,2-エタンジオール(エチレングリコール)、1,2-プロパンジオール(プロピレングリコール)、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールA、1,2-、1,3-または1,4-シクロヘキサンジオール、シクロドデカンジオール、ダイマージオール、イソソルビド、水添ダイマージオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール等が挙げられる。これら脂肪族ジオールの中でも、1,4-シクロヘキサンジメタノール、水添ビスフェノールAが、熱可塑性樹脂との相溶性と帯電防止性の観点から好ましい。
 また、上記一般式(2)で表される両末端にカルボキシル基を有するポリエステルは、疎水性を有することが好ましいので、脂肪族ジオールのうち、親水性を有するポリエチレングリコールは好ましくない。但し、これら以外のジオールとともに使用する場合はその限りではない。
 芳香族基含有ジオールとしては、例えば、ビスフェノールA、1,2-ヒドロキシベンゼン、1,3-ヒドロキシベンゼン、1,4-ヒドロキシベンゼン、1,4-ベンゼンジメタノール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、レゾルシン、ピロカテコール等の単核2価フェノール化合物のポリヒドロキシエチル付加物等が挙げられる。これら芳香族基を有するジオールの中でも、ビスフェノールAのエチレンオキサイド付加物、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンが好ましい。
 両末端にカルボキシル基を有するポリエステル(A)は、例えば、上記脂肪族ジカルボン酸またはその誘導体と、上記ジオールとを重縮合反応させることにより得ることができる。脂肪族ジカルボン酸またはその誘導体とジオールとの反応比は、両末端がカルボキシル基となるように、脂肪族ジカルボン酸またはその誘導体を過剰に使用することが好ましく、モル比で、ジオールに対して1モル過剰に使用することが好ましい。
 重縮合反応には、エステル化反応を促進する触媒を使用してもよく、触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。
 また、脂肪族ジカルボン酸の代わりに、カルボン酸エステル、カルボン酸金属塩、カルボン酸ハライド等の誘導体を使用した場合は、それらとジオールとの反応後に、両末端を処理してジカルボン酸としてもよく、そのままの状態で、次の、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を得るための反応に進んでもよい。
 両末端にカルボキシル基を有するポリエステル(A)は、(B)成分と反応することでエステル結合を形成し、ブロックポリマー(C)の構造を形成するものであればよく、両末端のカルボキシル基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。また、反応時に生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。
 次に、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を構成する、両末端に水酸基を有する化合物(B)のブロックについて説明する。
 両末端に水酸基を有する化合物(B)としては、親水性を有する化合物が好ましく、前記一般式(1)で示される基を一つ以上有する化合物がより好ましく、前記一般式(1)で示される基を有するポリエーテルがより好ましく、下記一般式(3)で表されるポリエチレングリコールが特に好ましい。
Figure JPOXMLDOC01-appb-I000004
 上記一般式(3)中、mは5~250の数を表す。mは、耐熱性や相溶性の点から、好ましくは20~150である。
 両末端に水酸基を有し、前記一般式(1)で示される基を一つ以上有する化合物としては、エチレンオキサイドを付加反応させて得られるポリエチレングリコール以外に、エチレンオキサイドと、他のアルキレンオキサイド(例えば、プロピレンオキサイド、1,2-、1,4-、2,3-または1,3-ブチレンオキサイド等)の一種以上とを付加反応させたポリエーテルが挙げられ、このポリエーテルはランダムでもブロックでもいずれでもよい。
 両末端に水酸基を有し、前記一般式(1)で示される基を一つ以上有する化合物の例をさらに挙げると、活性水素原子含有化合物に、エチレンオキサイドが付加した構造の化合物や、エチレンオキサイドおよび他のアルキレンオキサイド、例えば、プロピレンオキサイド、1,2-、1,4-、2,3-または1,3-ブチレンオキサイド等の1種以上が付加した構造の化合物が挙げられる。これらはランダム付加、ブロック付加のいずれでもよい。
 活性水素原子含有化合物としては、グリコール、2価フェノール、1級モノアミン、2級ジアミンおよびジカルボン酸が挙げられる。
 グリコールとしては、炭素原子数2~20の脂肪族グリコール、炭素原子数5~12の脂環式グリコールおよび炭素原子数8~26の芳香脂肪族グリコール等が挙げられる。
 脂肪族グリコールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,3-ヘキサンジオール、1,4-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,18-オクタデカンジオール、1,20-エイコサンジオール、ジエチレングリコール、トリエチレングリコールおよびチオジエチレングリコール等が挙げられる。
 脂環式グリコールとしては、例えば、1-ヒドロキシメチル-1-シクロブタノール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1-メチル-3,4-シクロヘキサンジオール、2-ヒドロキシメチルシクロヘキサノール、4-ヒドロキシメチルシクロヘキサノール、1,4-シクロヘキサンジメタノールおよび1,1’-ジヒドロキシ-1,1’-ジシクロヘキシル等が挙げられる。
 芳香族グリコールとしては、例えば、ジヒドロキシメチルベンゼン、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、2-フェニル1,3-プロパンジオール、2-フェニル1,4-ブタンジオール、2-ベンジル1,3-プロパンジオール、トリフェニルエチレングリコール、テトラフェニルエチレングリコールおよびベンゾピナコール等が挙げられる。
 2価フェノールとしては、炭素数6~30のフェノールが使用でき、例えば、カテコール、レゾルシノール、1,4-ジヒドロキシベンゼン、ハイドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルチオエーテル、ビナフトールおよびこれらのアルキル(炭素原子数1~10)またはハロゲン置換体等が挙げられる。
 1級モノアミンとしては、炭素原子数1~20の脂肪族1級モノアミンが挙げられ、例えば、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、s-ブチルアミン、イソブチルアミン、n-ペンチルアミン、イソペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-デシルアミン、n-オクタデシルアミンおよびn-イコシルアミン等が挙げられる。
 2級ジアミンとしては、炭素原子数4~18の脂肪族2級ジアミン、炭素原子数4~13の複素環式2級ジアミン、炭素原子数6~14の脂環式2級ジアミン、炭素原子数8~14の芳香族2級ジアミンおよび炭素原子数3~22の2級アルカノールジアミン等が挙げられる。
 脂肪族2級ジアミンとしては、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジブチルエチレンジアミン、N,N’-ジメチルプロピレンジアミン、N,N’-ジエチルプロピレンジアミン、N,N’-ジブチルプロピレンジアミン、N,N’-ジメチルテトラメチレンジアミン、N,N’-ジエチルテトラメチレンジアミン、N,N’-ジブチルテトラメチレンジアミン、N,N’-ジメチルヘキサメチレンジアミン、N,N’-ジエチルヘキサメチレンジアミン、N,N’-ジブチルヘキサメチレンジアミン、N,N’-ジメチルデカメチレンジアミン、N,N’-ジエチルデカメチレンジアミンおよびN,N’-ジブチルデカメチレンジアミン等が挙げられる。
 複素環式2級ジアミンとしては、例えば、ピペラジン、1-アミノピペリジン等が挙げられる。
 脂環式2級ジアミンとしては、例えば、N,N’-ジメチル-1,2-シクロブタンジアミン、N,N’-ジエチル-1,2-シクロブタンジアミン、N,N’-ジブチル-1,2-シクロブタンジアミン、N,N’-ジメチル-1,4-シクロヘキサンジアミン、N,N’-ジエチル-1,4-シクロヘキサンジアミン、N,N’-ジブチル-1,4-シクロヘキサンジアミン、N,N’-ジメチル-1,3-シクロヘキサンジアミン、N,N’-ジエチル-1,3-シクロヘキサンジアミン、N,N’-ジブチル-1,3-シクロヘキサンジアミン等が挙げられる。
 芳香族2級ジアミンとしては、例えば、N,N’-ジメチル-フェニレンジアミン、N,N’-ジメチル-キシリレンジアミン、N,N’-ジメチル-ジフェニルメタンジアミン、N,N’-ジメチル-ジフェニルエーテルジアミン、N,N-ジメチル-ベンジジン、N,N’-ジメチル-1,4-ナフタレンジアミン等が挙げられる。
 2級アルカノールジアミンとしては、例えば、N-メチルジエタノールアミン、N-オクチルジエタノールアミン、N-ステアリルジエタノールアミンおよびN-メチルジプロパノールアミン等が挙げられる。
 ジカルボン酸としては、炭素原子数2~20のジカルボン酸が挙げられ、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸、および脂環式ジカルボン酸等が挙げられる。
 脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、メチルコハク酸、ジメチルマロン酸、β-メチルグルタル酸、エチルコハク酸、イソプロピルマロン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、トリデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、オクタデカンジカルボン酸およびイコサンジカルボン酸等が挙げられる。
 芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、フェニルマロン酸、ホモフタル酸、フェニルコハク酸、β-フェニルグルタル酸、α-フェニルアジピン酸、β-フェニルアジピン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ナフタレンジカルボン酸、3-スルホイソフタル酸ナトリウムおよび3-スルホイソフタル酸カリウム等が挙げられる。
 脂環族ジカルボン酸としては、例えば、1,3-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジ酢酸、1,3-シクロヘキサンジ酢酸、1,2-シクロヘキサンジ酢酸およびジシクロヘキシル-4,4-ジカルボン酸等が挙げられる。
 これらの活性水素原子含有化合物は1種でも2種以上の混合物でも使用することができる。
 両末端に水酸基を有する化合物(B)は、(A)成分と反応することでエステル結合を形成し、ブロックポリマー(C)の構造を形成するものであればよく、両末端の水酸基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。
 本発明に係る両末端にカルボキシル基を有する構造を有するブロックポリマー(C)は、上記ポリエステル(A)から構成されたブロックと、上記化合物(B)から構成されたブロックとを有し、これらのブロックが、カルボキシル基と水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる構造を有する。かかるブロックポリマー(C)は、下記一般式(4)で表される構造を有する。
Figure JPOXMLDOC01-appb-I000005
 上記一般式(4)中、(A)は両末端にカルボキシル基を有するポリエステル(A)から構成されたブロックを表し、(B)は両末端に水酸基を有する化合物(B)から構成されたブロックを表し、tは繰り返し単位の繰り返しの数であり、好ましくは1~10の数を表す。tは、より好ましくは1~7の数であり、最も好ましくは1~5の数である。
 両末端にカルボキシル基を有する構造を有するブロックポリマー(C)は、両末端にカルボキシル基を有するポリエステル(A)と、両末端に水酸基を有する化合物(B)とを、重縮合反応させることによって得ることができるが、上記ポリエステル(A)と上記化合物(B)とが、カルボキシル基と水酸基により形成されたエステル結合を介して繰り返し交互に結合してなる構造を有するものと同等の構造を有するものであれば、必ずしも上記ポリエステル(A)と上記化合物(B)とから合成する必要はない。
 上記ポリエステル(A)と上記化合物(B)との反応比は、上記化合物(B)がXモルに対して、上記ポリエステル(A)がX+1モルとなるように調整すれば、両末端にカルボキシル基を有するブロックポリマー(C)を好ましく得ることができる。
 反応に際しては、上記ポリエステル(A)の合成反応の完結後に、上記ポリエステル(A)を単離せずに、上記化合物(B)を反応系に加えて、そのまま反応させてもよい。
 重縮合反応には、エステル化反応を促進する触媒を使用してもよく、触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。また、反応時に生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。
 次に、水酸基を3個以上有する多価アルコール化合物(D)について説明する。
 本発明に用いる多価アルコール化合物(D)としては、水酸基を3個以上有するものであれば特に制限されず、例えば、グリセリン、1,2,3-ブタントリオール、1,2,4-ブタントリオール、2-メチル-1,2,3-プロパントリオール、1,2,3-ペンタントリオール、1,2,4-ペンタントリオール、1,3,5-ペンタントリオール、2,3,4-ペンタントリオール、2-メチル-2,3,4-ブタントリオール、トリメチロールエタン、2,3,4-ヘキサントリオール、2-エチル-1,2,3-ブタントリオール、トリメチロールプロパン、4-プロピル-3,4,5-ヘプタントリオール、2,4-ジメチル-2,3,4-ペンタントリオール、トリエタノールアミン、トリイソプロパノールアミン、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート等の3価アルコール;ペンタエリスリトール、1,2,3,4-ペンタンテトロール、2,3,4,5-ヘキサンテトロール、1,2,4,5-ペンタンテトロール、1,3,4,5-ヘキサンテトロール、ジグリセリン、ジトリメチロールプロパン、ソルビタン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)エチレンジアミン等の4価アルコール;アドニトール、アラビトール、キシリトール、トリグリセリン等の5価アルコール;ジペンタエリスリトール、ソルビトール、マンニトール、イジトール、イノシトール、ダルシトール、タロース、アロース等の6価アルコール;さらにはトリペンタエリスリトール、ポリペンタエリスリトール等が挙げられる。かかる多価アルコール化合物(D)は、2種以上を使用してもよい。
 本発明に係る高分子化合物(E)は、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)と、3個以上の水酸基を有する多価アルコール化合物(D)とが、ブロックポリマー(C)の末端のカルボキシル基と多価アルコール化合物(D)の水酸基とにより形成されたエステル結合を介して結合してなる構造を有する。また、かかる高分子化合物(E)は、さらに、上記ポリエステル(A)のカルボキシル基と上記多価アルコール化合物(D)の水酸基とにより形成されたエステル結合を含んでいてもよい。
 高分子化合物(E)を得るためには、上記ブロックポリマー(C)のカルボキシル基と、上記多価アルコール化合物(D)の水酸基とを反応させればよい。反応させる多価アルコール化合物の水酸基の数は、反応させるブロックポリマー(C)のカルボキシル基の数の、0.1~4.0当量が好ましく、0.5~3.0当量がより好ましい。また、上記反応は、各種溶媒中で行ってもよく、溶融状態で行ってもよい。
 反応に際しては、上記ブロックポリマー(C)の合成反応の完結後に、ブロックポリマー(C)を単離せずに、反応系に多価アルコール化合物(D)を加えて、そのまま反応させてもよい。その場合、ブロックポリマー(C)を合成するときに過剰に使用した未反応のポリエステル(A)のカルボキシル基と、多価アルコール化合物(D)の一部の水酸基とが反応して、エステル結合を形成してもよい。
 本発明の高分子化合物(E)は、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)と水酸基を3個以上有する多価アルコール化合物(D)とが、それぞれのカルボキシル基と水酸基とにより形成されたエステル結合を介して結合した構造を有するものと同等の構造を有するものであれば、必ずしも上記ブロックポリマー(C)と上記多価アルコール化合物(D)とから合成する必要はない。
 本発明において、高分子化合物(E)における、ポリエステル(A)から構成されるブロックの数平均分子量は、好ましくはポリスチレン換算で800~8,000であり、より好ましくは1,000~6,000であり、さらに好ましくは2,000~4,000である。また、高分子化合物(E)における、両末端に水酸基を有する化合物(B)から構成されるブロックの数平均分子量は、好ましくはポリスチレン換算で400~6,000であり、より好ましくは1,000~5,000であり、さらに好ましくは2,000~4,000である。さらに、高分子化合物(E)における、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)から構成されるブロックの数平均分子量は、好ましくはポリスチレン換算で5,000~25,000であり、より好ましくは7,000~17,000であり、より好ましくは9,000~13,000である。
 本発明の帯電防止剤は、さらに、アルカリ金属の塩および第2族元素の塩からなる群から選択される1種以上が配合されてなる帯電防止剤組成物とすることも好ましい。
 アルカリ金属の塩および第2族元素の塩としては、有機酸または無機酸の塩が挙げられ、アルカリ金属の例としては、リチウム、ナトリウム、カリウム、セシウム、ルビジウム等が挙げられ、第2族金属の例としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられ、有機酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等の炭素原子数1~18の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の炭素原子数1~12の脂肪族ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸等の芳香族カルボン酸;メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸等の炭素原子数1~20のスルホン酸等が挙げられ、無機酸の例としては、塩酸、臭化水素酸、硫酸、亜硫酸、リン酸、亜リン酸、ポリリン酸、硝酸、過塩素酸等が挙げられる。中でも、帯電防止性の点から、アルカリ金属の塩が好ましく、リチウム、ナトリウム、カリウムがより好ましく、リチウムが最も好ましい。また、帯電防止性の点から、酢酸の塩、過塩素酸の塩、p-トルエンスルホン酸の塩、ドデシルベンゼンスルホン酸の塩が好ましい。
 アルカリ金属の塩および第2族の塩の具体例としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、リン酸リチウム、リン酸ナトリウム、リン酸カリウム、硫酸リチウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、p-トルエンスルホン酸カリウム、ドデシルベンゼンスルホン酸リチウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム等が挙げられる。これらの中で好ましいのは、酢酸リチウム、酢酸カリウム、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、塩化リチウム等である。
 アルカリ金属の塩および/または第2族金属の塩は、本発明の帯電防止剤に用いる高分子化合物(E)に配合してもよいし、高分子化合物(E)とともに熱可塑性樹脂に配合して使用してもよい。アルカリ金属の塩および/または第2族金属の塩の配合量は、高分子化合物(E)の100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、1~10質量部が最も好ましい。
 また、本発明の帯電防止剤は、界面活性剤を配合して、帯電防止剤組成物として使用してもよい。界面活性剤としては、非イオン性、アニオン性、カチオン性または両性の界面活性剤を使用することができる。非イオン性界面活性剤としては、高級アルコールエチレンオキシド付加物、脂肪酸エチレンオキシド付加物、高級アルキルアミンエチレンオキシド付加物、ポリプロピレングリコールエチレンオキシド付加物等のポリエチレングリコール型非イオン界面活性剤;ポリエチレンオキシド、グリセリンの脂肪酸エステル、ペンタエリスリットの脂肪酸エステル、ソルビット若しくはソルビタンの脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミンの脂肪族アミド等の多価アルコール型非イオン界面活性剤等が挙げられ、アニオン性界面活性剤としては、例えば、高級脂肪酸のアルカリ金属塩等のカルボン酸塩;高級アルコール硫酸エステル塩、高級アルキルエーテル硫酸エステル塩等の硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩;高級アルコールリン酸エステル塩等のリン酸エステル塩等が挙げられ、カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩等の第4級アンモニウム塩等が挙げられる。両性界面活性剤としては、高級アルキルアミノプロピオン酸塩等のアミノ酸型両性界面活性剤、高級アルキルジメチルベタイン、高級アルキルジヒドロキシエチルベタイン等のベタイン型両性界面活性剤等が挙げられ、これらは単独でまたは2種以上組み合わせて使用することができる。本発明においては、上記界面活性剤の中でも、アニオン性界面活性剤が好ましく、特に、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩が好ましい。
 界面活性剤は、本発明の帯電防止剤に用いる高分子化合物(E)に配合してもよく、高分子化合物(E)とともに熱可塑性樹脂に配合して使用してもよい。界面活性剤の配合量は、高分子化合物(E)の100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、1~10質量部が最も好ましい。
 さらに、本発明の帯電防止剤は、高分子型帯電防止剤を配合して、帯電防止剤組成物として使用してもよい。高分子帯電防止剤としては、例えば、公知のポリエーテルエステルアミド等の高分子型帯電防止剤を使用することができ、公知のポリエーテルエステルアミドとしては、例えば、特開平7-10989号公報に記載のビスフェノールAのポリオキシアルキレン付加物からなるポリエーテルエステルアミドが挙げられる。また、ポリオレフィンブロックと親水性ポリマーブロックとの結合単位が2~50の繰り返し構造を有するブロックポリマーを使用することができ、例えば、米国特許第6552131号公報記載のブロックポリマーを挙げることができる。
 高分子型帯電防止剤は、本発明の帯電防止剤に用いる高分子化合物(E)に配合してもよく、高分子化合物(E)とともに、熱可塑性樹脂に配合して使用してもよい。高分子型帯電防止剤の配合量は、高分子化合物(E)の100質量部に対して、0~50質量部が好ましく、5~20質量部がより好ましい。
 さらにまた、本発明の帯電防止剤は、イオン性液体を配合して、帯電防止剤組成物として使用してもよい。イオン性液体の例としては、室温以下の融点を有し、イオン性液体を構成するカチオンまたはアニオンのうち少なくとも一つが有機物イオンであり、初期電導度が1~200mS/cm、好ましくは10~200mS/cmである常温溶融塩であって、例えば、国際公開95/15572号公報に記載の常温溶融塩が挙げられる。
 イオン性液体を構成するカチオンとしては、アミジニウム、ピリジニウム、ピラゾリウムおよびグアニジニウムカチオンからなる群から選ばれるカチオンが挙げられる。このうち、アミジニウムカチオンとしては、下記のものが挙げられる。
(1)イミダゾリニウムカチオン
 炭素原子数5~15のものが挙げられ、例えば、1,2,3,4-テトラメチルイミダゾリニウム、1,3-ジメチルイミダゾリニウム;
(2)イミダゾリウムカチオン
 炭素原子数5~15のものが挙げられ、例えば、1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム;
(3)テトラヒドロピリミジニウムカチオン
 炭素原子数6~15のものが挙げられ、例えば、1,3-ジメチル-1,4,5,6-テトラヒドロピリミジニウム、1,2,3,4-テトラメチル-1,4,5,6-テトラヒドロピリミジニウム;
(4)ジヒドロピリミジニウムカチオン
 炭素原子数6~20のものが挙げられ、例えば、1,3-ジメチル-1,4-ジヒドロピリミジニウム、1,3-ジメチル-1,6-ジヒドロピリミジニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,9-ウンデカジエニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,10-ウンデカジエニウム。
 ピリジニウムカチオンとしては、炭素原子数6~20のものが挙げられ、例えば、3-メチル-1-プロピルピリジニウム、1-ブチル-3,4-ジメチルピリジニウムが挙げられる。ピラゾリウムカチオンとしては、炭素原子数5~15のものが挙げられ、例えば、1、2-ジメチルピラゾリウム、1-n-ブチル-2-メチルピラゾリウムが挙げられる。グアニジニウムカチオンとしては、下記のものが挙げられる。
(1)イミダゾリニウム骨格を有するグアニジニウムカチオン
 炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリニウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリニウム;
(2)イミダゾリウム骨格を有するグアニジニウムカチオン
 炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリウム;
(3)テトラヒドロピリミジニウム骨格を有するグアニジニウムカチオン
 炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4,5,6-テトラヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4,5,6-テトラヒドロピリミジニウム;
(4)ジヒドロピリミジニウム骨格を有するグアニジニウムカチオン
 炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4-ジヒドロピリミジニウム、2-ジメチルアミノ-1,3,4-トリメチル-1,6-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,6-ジヒドロピリミジニウム。
 上記カチオンは1種を単独で用いても、また、2種以上を併用しても、いずれでもよい。これらのうち、帯電防止性の観点から好ましくはアミジニウムカチオン、より好ましくはイミダゾリウムカチオン、特に好ましくは1-エチル-3-メチルイミダゾリウムカチオンである。
 イオン性液体において、アニオンを構成する有機酸または無機酸としては、下記のものが挙げられる。有機酸としては、例えば、カルボン酸、硫酸エステル、スルホン酸およびリン酸エステル;無機酸としては、例えば、超強酸(例えば、ホウフッ素酸、四フッ化ホウ素酸、過塩素酸、六フッ化リン酸、六フッ化アンチモン酸および六フッ化ヒ素酸)、リン酸およびホウ酸が挙げられる。上記有機酸および無機酸は、1種を単独で用いても、また、2種以上を併用しても、いずれでもよい。
 上記有機酸および無機酸のうち、イオン性液体の帯電防止性の観点から好ましいのは、イオン性液体を構成するアニオンのHamett酸度関数(-H)が12~100である、超強酸の共役塩基、超強酸の共役塩基以外のアニオンを形成する酸およびこれらの混合物である。
 超強酸の共役塩基以外のアニオンとしては、例えば、ハロゲン(例えば、フッ素、塩素および臭素)イオン、アルキル(炭素原子数1~12)ベンゼンスルホン酸(例えば、p-トルエンスルホン酸およびドデシルベンゼンスルホン酸)イオンおよびポリ(n=1~25)フルオロアルカンスルホン酸(例えば、ウンデカフルオロペンタンスルホン酸)イオンが挙げられる。
 また、超強酸としては、プロトン酸およびプロトン酸とルイス酸との組み合わせから誘導されるもの、およびこれらの混合物が挙げられる。超強酸としてのプロトン酸としては、例えば、ビス(トリフルオロメチルスルホニル)イミド酸、ビス(ペンタフルオロエチルスルホニル)イミド酸、トリス(トリフルオロメチルスルホニル)メタン、過塩素酸、フルオロスルホン酸、アルカン(炭素原子数1~30)スルホン酸(例えば、メタンスルホン酸、ドデカンスルホン酸等)、ポリ(n=1~30)フルオロアルカン(炭素原子数1~30)スルホン酸(例えば、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸およびトリデカフルオロヘキサンスルホン酸)、ホウフッ素酸および四フッ化ホウ素酸が挙げられる。これらのうち、合成の容易さの観点から好ましいのはホウフッ素酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド酸およびビス(ペンタフルオロエチルスルホニル)イミド酸である。
 ルイス酸と組合せて用いられるプロトン酸としては、例えば、ハロゲン化水素(例えば、フッ化水素、塩化水素、臭化水素およびヨウ化水素)、過塩素酸、フルオロスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸、トリデカフルオロヘキサンスルホン酸およびこれらの混合物が挙げられる。これらのうち、イオン性液体の初期電導度の観点から好ましいのはフッ化水素である。
 ルイス酸としては、例えば、三フッ化ホウ素、五フッ化リン、五フッ化アンチモン、五フッ化ヒ素、五フッ化タンタルおよびこれらの混合物が挙げられる。これらのうちでも、イオン性液体の初期電導度の観点から好ましいのは三フッ化ホウ素および五フッ化リンである。
 プロトン酸とルイス酸との組み合わせは任意であるが、これらの組み合わせからなる超強酸としては、例えば、テトラフルオロホウ酸、ヘキサフルオロリン酸、六フッ化タンタル酸、六フッ化アンチモン酸、六フッ化タンタルスルホン酸、四フッ化ホウ素酸、六フッ化リン酸、塩化三フッ化ホウ素酸、六フッ化ヒ素酸およびこれらの混合物が挙げられる。
 上記のアニオンのうち、イオン性液体の帯電防止性の観点から好ましいのは超強酸の共役塩基(プロトン酸からなる超強酸およびプロトン酸とルイス酸との組合せからなる超強酸)であり、さらに好ましいのはプロトン酸からなる超強酸およびプロトン酸と、三フッ化ホウ素および/または五フッ化リンとからなる超強酸の共役塩基である。
 イオン性液体のうち、帯電防止性の観点から好ましいのは、アミジニウムカチオンを有するイオン性液体、より好ましいのは1-エチル-3-メチルイミダゾリウムカチオンを有するイオン性液体、特に好ましいのは1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドである。
 イオン性液体の配合量は、高分子化合物(E)の100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、1~10質量部が最も好ましい。
 さらにまた、本発明の帯電防止剤は、相溶化剤を配合して、帯電防止剤組成物としてもよい。相溶化剤を配合することで、帯電防止剤成分と他成分や熱可塑性樹脂との相溶性を向上させることができる。かかる相溶化剤としては、カルボキシル基、エポキシ基、アミノ基、ヒドロキシル基およびポリオキシアルキレン基からなる群から選ばれる少なくとも1種の官能基(極性基)を有する変性ビニル重合体、例えば、特開平3-258850号公報に記載の重合体や、特開平6-345927号に記載のスルホニル基を有する変性ビニル重合体、あるいはポリオレフィン部分と芳香族ビニル重合体部分とを有するブロック重合体等が挙げられる。
 相溶化剤は、本発明の帯電防止剤に用いる高分子化合物(E)に配合してもよく、高分子化合物(E)とともに熱可塑性樹脂に配合して使用してもよい。相溶化剤の配合量は、高分子化合物(E)の100質量部に対して、0.1~15質量部が好ましく、1~10質量部がより好ましい。
 本発明の帯電防止剤および帯電防止剤組成物は、特に好ましくは、熱可塑性樹脂に配合して、帯電防止性樹脂組成物として使用できる。熱可塑性樹脂の例としては、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、架橋ポリエチレン、超高分子量ポリエチレン、ポリブテン-1、ポリ-3-メチルペンテン、ポリ-4-メチルペンテン等のα-オレフィン重合体またはエチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン共重合体等のポリオレフィン系樹脂およびこれらの共重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂;石油樹脂、クマロン樹脂、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、スチレンおよび/またはα-メチルスチレンと他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、AS樹脂、ABS樹脂、ACS樹脂、SBS樹脂、MBS樹脂、耐熱ABS樹脂等);ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステルおよびポリテトラメチレンテレフタレート等の直鎖ポリエステル;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;ポリフェニレンオキサイド、ポリカプロラクタムおよびポリヘキサメチレンアジパミド等のポリアミド、ポリカーボネート、ポリカーボネート/ABS樹脂、分岐ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を挙げることができる。また、熱可塑性樹脂は、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、フッ素ゴム、シリコーンゴム、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ナイロン系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー等のエラストマーであってもよい。本発明において、これらの熱可塑性樹脂は、単独で使用してもよく、2種以上を併せて使用してもよい。また、熱可塑性樹脂はアロイ化されていてもよい。
 これらの熱可塑性樹脂は、分子量、重合度、密度、軟化点、溶媒への不溶分の割合、立体規則性の程度、触媒残渣の有無、原料となるモノマーの種類や配合比率、重合触媒の種類(例えば、チーグラー触媒、メタロセン触媒等)等に関わらず使用することができる。これらの熱可塑性樹脂の中でも、帯電防止性の点から、ポリオレフィン系樹脂、ポリスチレン系樹脂およびそれらの共重合体からなる群から選ばれる一種以上が好ましい。
 本発明の帯電防止性樹脂組成物中の、熱可塑性樹脂と、帯電防止剤との質量比は、99/1~40/60の範囲が好ましい。また、熱可塑性樹脂に、本発明の帯電防止剤組成物を添加する場合も、熱可塑性樹脂と、帯電防止剤組成物との質量比は、99/1~40/60の範囲が好ましい。
 高分子化合物(E)の熱可塑性樹脂への配合方法は特に限定されず、通常使用されている任意の方法を用いることができ、例えば、ロール混練り、バンパー混練り、押し出し機、ニーダー等により混合、練り込みして配合すればよい。また、高分子化合物(E)は、そのまま熱可塑性樹脂に添加してもよいが、必要に応じて、担体に含浸させてから添加してもよい。担体に含浸させるには、そのまま加熱混合してもよいし、必要に応じて、有機溶媒で希釈してから担体に含浸させ、その後に溶媒を除去する方法でもよい。こうした担体としては、合成樹脂のフィラーや充填剤として知られているもの、または、常温で固体の難燃剤や光安定剤が使用でき、例えば、ケイ酸カルシウム粉末、シリカ粉末、タルク粉末、アルミナ粉末、酸化チタン粉末、または、これら担体の表面を化学修飾したもの、下記に挙げる難燃剤や酸化防止剤の中で固体のもの等が挙げられる。これらの担体の中でも担体の表面を化学修飾したものが好ましく、シリカ粉末の表面を化学修飾したものがより好ましい。これらの担体は、平均粒径が0.1~100μmのものが好ましく、0.5~50μmのものがより好ましい。
 高分子化合物(E)の熱可塑性樹脂への配合方法としては、ブロックポリマー(C)と、多価アルコール化合物(D)を熱可塑性樹脂と同時に練り込みながら高分子化合物(E)を合成して配合してもよく、また、射出成型等の成型時に高分子化合物(E)と、熱可塑性樹脂と、を混合して成形品を得る方法で配合してもよく、さらに、あらかじめ熱可塑性樹脂とのマスターバッチを製造しておき、このマスターバッチを配合してもよい。
 本発明の帯電防止性樹脂組成物には、必要に応じて、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤等の各種添加剤をさらに添加することができ、これにより、本発明の樹脂組成物を安定化させることができる。
 上記フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6―ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス〔3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル〕メタン、チオジエチレングリコールビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらのフェノール系酸化防止剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。これらのリン系酸化防止剤の添加量は、熱可塑性樹脂100質量部に対して0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、および、ペンタエリスリトールテトラ(β-アルキルチオプロピオン酸)エステル類が挙げられる。これらのチオエーテル系酸化防止剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-第三オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ第三アミルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β、β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。これらの紫外線吸収剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。
 上記ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン等のヒンダードアミン化合物が挙げられる。これらのヒンダードアミン系光安定剤の添加量は、熱可塑性樹脂100質量部に対して0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。
 また、熱可塑性樹脂としてポリオレフィン系樹脂を使用する場合は、必要に応じてさらに、ポリオレフィン樹脂中の残渣触媒を中和するために、公知の中和剤を添加することが好ましい。中和剤としては、例えば、ステアリン酸カルシウム、ステアリン酸リチウム、ステアリン酸ナトリウム等の脂肪酸金属塩、または、エチレンビス(ステアロアミド)、エチレンビス(12-ヒドロキシステアロアミド)、ステアリン酸アミド等の脂肪酸アミド化合物が挙げられ、これら中和剤は混合して用いてもよい。
 本発明の帯電防止性樹脂組成物には、必要に応じてさらに、芳香族カルボン酸金属塩、脂環式アルキルカルボン酸金属塩、p-第三ブチル安息香酸アルミニウム、芳香族リン酸エステル金属塩、ジベンジリデンソルビトール類等の造核剤、金属石鹸、ハイドロタルサイト、トリアジン環含有化合物、金属水酸化物、リン酸エステル系難燃剤、縮合リン酸エステル系難燃剤、ホスフェート系難燃剤、無機リン系難燃剤、(ポリ)リン酸塩系難燃剤、ハロゲン系難燃剤、シリコン系難燃剤、三酸化アンチモン等の酸化アンチモン、その他の無機系難燃助剤、その他の有機系難燃助剤、充填剤、顔料、滑剤、発泡剤等を添加してもよい。
 上記トリアジン環含有化合物としては、例えば、メラミン、アンメリン、ベンズグアナミン、アセトグアナミン、フタロジグアナミン、メラミンシアヌレート、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3-ヘキシレンジメラミン等が挙げられる。
 上記金属水酸化物としては、例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化バリウム、水酸化亜鉛、キスマー5A(水酸化マグネシウム:協和化学工業(株)製)等が挙げられる。
 上記リン酸エステル系難燃剤としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリブトキシエチルホスフェート、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、オクチルジフェニルホスフェート、キシレニルジフェニルホスフェート、トリスイソプロピルフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート等が挙げられる。
 上記縮合リン酸エステル系難燃剤の例としては、1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジキシレニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)等が挙げられる。
 上記(ポリ)リン酸塩系難燃剤の例としては、ポリリン酸アンモニウム、ポリリン酸メラミン、ポリリン酸ピペラジン、ピロリン酸メラミン、ピロリン酸ピペラジン等の(ポリ)リン酸のアンモニウム塩やアミン塩が挙げられる。
 その他の無機系難燃助剤としては、例えば、酸化チタン、酸化アルミニウム、酸化マグネシウム、ハイドロタルサイト、タルク、モンモリロナイト等の無機化合物、およびその表面処理品が挙げられ、例えば、TIPAQUE R-680(酸化チタン:石原産業(株)製)、キョーワマグ150(酸化マグネシウム:協和化学工業(株)製)、DHT-4A(ハイドロタルサイト:協和化学工業(株)製)、アルカマイザー4(亜鉛変性ハイドロタルサイト:協和化学工業(株)製)、等の種々の市販品を用いることができる。また、その他の有機系難燃助剤としては、例えば、ペンタエリスリトールが挙げられる。
 その他、本発明の帯電防止性樹脂組成物には、必要に応じて通常合成樹脂に使用される添加剤、例えば、架橋剤、防曇剤、プレートアウト防止剤、表面処理剤、可塑剤、滑剤、難燃剤、蛍光剤、防黴剤、殺菌剤、発泡剤、金属不活性剤、離型剤、顔料、加工助剤、酸化防止剤、光安定剤等を、本発明の効果を損なわない範囲で配合することができる。
 本発明の帯電防止性樹脂組成物に配合される添加剤は、熱可塑性樹脂に直接添加してもよく、本発明の帯電防止剤または帯電防止剤組成物に配合してから、熱可塑性樹脂に添加してもよい。
 本発明の帯電防止性樹脂組成物を成形することにより、帯電防止性樹脂成形体を得ることができる。成形方法としては、特に限定されるものではなく、押出加工、カレンダー加工、射出成形、ロール、圧縮成形、ブロー成形、回転成形等が挙げられ、樹脂板、シート、フィルム、ボトル、繊維、異形品等の種々の形状の成形品が製造できる。本発明の帯電防止性樹脂組成物により得られる成形体は、帯電防止性能およびその持続性に優れるものである。また、拭き取りに対する耐性も有する。
 本発明の帯電防止性樹脂組成物およびこれを用いた成形体は、電気・電子・通信、農林水産、鉱業、建設、食品、繊維、衣類、医療、石炭、石油、ゴム、皮革、自動車、精密機器、木材、建材、土木、家具、印刷、楽器等の幅広い産業分野に使用できる。
 より具体的には、本発明の帯電防止性樹脂組成物およびその成形体は、プリンター、パソコン、ワープロ、キーボード、PDA(小型情報端末機)、電話機、複写機、ファクシミリ、ECR(電子式金銭登録機)、電卓、電子手帳、カード、ホルダー、文具等の事務、OA機器、洗濯機、冷蔵庫、掃除機、電子レンジ、照明器具、ゲーム機、アイロン、コタツ等の家電機器、TV、VTR、ビデオカメラ、ラジカセ、テープレコーダー、ミニディスク、CDプレーヤー、スピーカー、液晶ディスプレー等のAV機器、コネクター、リレー、コンデンサー、スイッチ、プリント基板、コイルボビン、半導体封止材料、LED封止材料、電線、ケーブル、トランス、偏向ヨーク、分電盤、時計等の電気・電子部品および通信機器、自動車用内外装材、製版用フィルム、粘着フィルム、ボトル、食品用容器、食品包装用フィルム、製薬・医薬用ラップフィルム、製品包装フィルム、農業用フィルム、農業用シート、温室用フィルム等の用途に用いられる。
 さらに、本発明の帯電防止性樹脂組成物およびその成形体は、座席(詰物、表地等)、ベルト、天井張り、コンパーチブルトップ、アームレスト、ドアトリム、リアパッケージトレイ、カーペット、マット、サンバイザー、ホイルカバー、マットレスカバー、エアバック、絶縁材、吊り手、吊り手帯、電線被覆材、電気絶縁材、塗料、コーティング材、上張り材、床材、隅壁、カーペット、壁紙、壁装材、外装材、内装材、屋根材、デッキ材、壁材、柱材、敷板、塀の材料、骨組および繰形、窓およびドア形材、こけら板、羽目、テラス、バルコニー、防音板、断熱板、窓材等の自動車、車両、船舶、航空機、建物、住宅および建築用材料や土木材料、衣料、カーテン、シーツ、不織布、合板、合繊板、絨毯、玄関マット、シート、バケツ、ホース、容器、眼鏡、鞄、ケース、ゴーグル、スキー板、ラケット、テント、楽器等の生活用品、スポーツ用品等の各種用途に使用することができる。
 以下、本発明を実施例により、具体的に説明する。なお、以下の実施例等において、「%」および「ppm」は、特に記載がない限り、質量基準である。
 下記の製造例に従い、帯電防止剤を製造した。また、下記の製造例において数平均分子量は、下記分子量測定方法で測定した。
<分子量測定方法>
 数平均分子量(以下、「Mn」と称する)は、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定した。Mnの測定条件は以下の通りである。
装置     :日本分光(株)製GPC装置
溶媒     :テトラヒドロフラン
基準物質   :ポリスチレン
検出器    :示差屈折計(RI検出器)
カラム固定相 :昭和電工(株)製Shodex KF-804L
カラム温度  :40℃
サンプル濃度 :1mg/1mL
流量     :0.8mL/min.
注入量    :100μL
〔製造例1〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを420g、アジピン酸を485g、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60、(株)ADEKA製)を0.5g、酢酸ジルコニウムを0.5g仕込み、160℃から200℃まで徐々に昇温しながら常圧で4時間、その後200℃、減圧下で3時間重合して、ポリエステル(A)-1を得た。ポリエステル(A)-1の酸価は56、数平均分子量Mnはポリスチレン換算で3,200であった。
 次に、得られたポリエステル(A)-1を600g、両末端に水酸基を有する化合物(B)-1として数平均分子量2,000のポリエチレングリコールを400g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、200℃で7時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1を得た。このブロックポリマー(C)-1の酸価は11、数平均分子量Mnはポリスチレン換算で10,000であった。
 得られたブロックポリマー(C)-1を300g、多価アルコール化合物(D)-1としてのトリメチロールプロパンを5.6g仕込み、200℃で7時間、減圧下で重合して、本発明の帯電防止剤(E)-1を得た。
〔製造例2〕
 セパラブルフラスコに、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンを360g、アジピン酸を310g、酸化防止剤(アデカスタブAO-60)を0.4g、酢酸ジルコニウムを0.4g仕込み、160℃から220℃まで徐々に昇温しながら常圧で4時間、その後220℃、減圧下で3時間重合して、ポリエステル(A)-2を得た。ポリエステル(A)-2の酸価は56、数平均分子量Mnはポリスチレン換算で2,500であった。
 次に、得られたポリエステル(A)-2を300g、両末端に水酸基を有する化合物(B)-1として数平均分子量2,000のポリエチレングリコールを150g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、200℃で9時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2を得た。このブロックポリマー(C)-2の酸価は11、数平均分子量Mnはポリスチレン換算で10,000であった。
 得られたブロックポリマー(C)-2を300g、多価アルコール化合物(D)-1としてのトリメチロールプロパンを5.6g仕込み、200℃で6時間、減圧下で重合して、本発明の帯電防止剤(E)-2を得た。
〔製造例3〕
 セパラブルフラスコに、ビスフェノールAのエチレンオキサイド付加物を413g、アジピン酸を235g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、160℃から200℃まで徐々に昇温しながら常圧で4時間、その後200℃、減圧下で5時間重合してポリエステル(A)-3を得た。ポリエステル(A)-3の酸価は56、数平均分子量Mnはポリスチレン換算で2,100であった。
 次に、得られたポリエステル(A)-3を300g、両末端に水酸基を有する化合物(B)-1としての数平均分子量2,000のポリエチレングリコールを150g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、200℃で7時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-3を得た。このブロックポリマー(C)-3の酸価は11、数平均分子量Mnはポリスチレン換算で10,500であった。
 得られたブロックポリマー(C)-3を300g、多価アルコール化合物(D)-2としてのペンタエリスリトールを4.9g仕込み、200℃で8時間、減圧下で重合して、本発明の帯電防止剤(E)-3を得た。
〔製造例4〕
 セパラブルフラスコに、水添ビスフェノールAを382g、アジピン酸を276g、酸化防止剤(アデカスタブAO-60)を0.4g、酢酸ジルコニウムを0.4g仕込み、160℃から200℃まで徐々に昇温しながら常圧で4時間、その後200℃、減圧下で4時間重合して、ポリエステル(A)-4を得た。ポリエステル(A)-4の酸価は56、数平均分子量Mnはポリスチレン換算で2,900であった。
 次に、得られたポリエステル(A)-4を300g、両末端に水酸基を有する化合物(B)-1としての数平均分子量2,000のポリエチレングリコールを150g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、200℃で5時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-4を得た。このブロックポリマー(C)-4の酸価は11、数平均分子量Mnはポリスチレン換算で9,300であった。
 得られたブロックポリマー(C)-4を300g、多価アルコール化合物(D)-3としてのジトリメチロールプロパンを6.0g仕込み、200℃で8時間、減圧下で重合して、本発明の帯電防止剤(E)-4を得た。
〔製造例5〕
 セパラブルフラスコに、製造例1記載の方法で得られたブロックポリマー(C)-1を300g、多価アルコール化合物(D)-2としてのペンタエリスリトールを5.3g仕込み、200℃で8時間、減圧下で重合して、本発明の帯電防止剤(E)-5を得た。
〔製造例6〕
 セパラブルフラスコに、製造例1記載の方法で得られたブロックポリマー(C)-1を300g、多価アルコール化合物(D)-4としてのジペンタエリスリトールを9.9g仕込み、200℃で8時間、減圧下で重合して、本発明の帯電防止剤(E)-6を得た。
〔製造例7〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを188g、1,4-シクロヘキサンジカルボン酸を259g、酸化防止剤(アデカスタブAO-60)を0.3g、酢酸ジルコニウムを0.3g仕込み、160℃から200℃まで徐々に昇温しながら常圧で4時間、その後200℃、減圧下で5時間重合して、ポリエステル(A)-5を得た。ポリエステル(A)-5の酸価は56、数平均分子量Mnはポリスチレン換算で3,200であった。
 次に、得られたポリエステル(A)-5を300g、両末端に水酸基を有する化合物(B)-1としての数平均分子量2,000のポリエチレングリコールを150g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウム0.5gを仕込み、200℃で7時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-5を得た。このブロックポリマー(C)-5の酸価は11、数平均分子量Mnはポリスチレン換算で11,000であった。
 得られたブロックポリマー(C)-5を300g、多価アルコール化合物(D)-5としてのポリペンタエリスリトール(水酸基価13)を155g仕込み、200℃で5時間、減圧下で重合して、本発明の帯電防止剤(E)-7を得た。
〔製造例8〕
 セパラブルフラスコに製造例7に記載の方法で得られたブロックポリマー(C)-5を300g、多価アルコール化合物(D)-6としてのグリセリンを5.0g仕込み、200℃で7時間、減圧下で重合して、本発明の帯電防止剤(E)-8を得た。
〔製造例9〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを394g、コハク酸を405g、酸化防止剤(アデカスタブAO-60)を0.6g、酢酸ジルコニウムを0.6g仕込み、160℃から200℃まで徐々に昇温しながら常圧で4時間、その後200℃、減圧下で6時間重合して、ポリエステル(A)-6を得た。ポリエステル(A)-6の酸価は112、数平均分子量Mnはポリスチレン換算で1,600であった。
 次に、得られたポリエステル(A)-6を300g、両末端に水酸基を有する化合物(B)-2としての数平均分子量1,000のポリエチレングリコールを200g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、200℃で7時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-6を得た。このブロックポリマー(C)-6の酸価は22、数平均分子量Mnはポリスチレン換算で5,200であった。
 得られたブロックポリマー(C)-6を300g、多価アルコール化合物(D)-7としてのトリエタノールアミンを9.0g仕込み、200℃で5時間、減圧下で重合して、本発明の帯電防止剤(E)-9を得た。
〔製造例10〕
 セパラブルフラスコに、水添ビスフェノールAを461g、コハク酸を309g、酸化防止剤(アデカスタブAO-60)を0.4g、酢酸ジルコニウムを0.4g仕込み、160℃から200℃まで徐々に昇温しながら常圧で4時間、その後200℃、減圧下で4時間重合して、ポリエステル(A)-7を得た。ポリエステル(A)-7の酸価は112、数平均分子量Mnはポリスチレン換算で1,700であった。
 次に、得られたポリエステル(A)-7を300g、両末端に水酸基を有する化合物(B)-2としての数平均分子量1,000のポリエチレングリコールを240g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウム0.5gを仕込み、200℃で6時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-7を得た。このブロックポリマー(C)-7の酸価は13、数平均分子量Mnはポリスチレン換算で8,200であった。
 得られたブロックポリマー(C)-7を300g、多価アルコール化合物(D)-8としてのソルビトールを12.1g仕込み、200℃で12時間、減圧下で重合して、本発明の帯電防止剤(E)-10を得た。
〔製造例11〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを479g、コハク酸を439g、酸化防止剤(アデカスタブAO-60)を0.6g、酢酸ジルコニウムを0.6g仕込み、160℃から200℃まで徐々に昇温しながら常圧で4時間、その後200℃、減圧下で4時間重合して、ポリエステル(A)-8を得た。ポリエステル(A)-8の酸価は56、数平均分子量Mnはポリスチレン換算で3,100であった。
 次に、得られたポリエステル(A)-8を300g、両末端に水酸基を有する化合物(B)-1としての数平均分子量2,000のポリエチレングリコールを150g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、200℃で5時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-8を得た。このブロックポリマー(C)-8の酸価は19、数平均分子量Mnはポリスチレン換算で7,300であった。
 得られたブロックポリマー(C)-8を300g、多価アルコール化合物(D)-2としてのペンタエリスリトールを17g仕込み、200℃で38時間、減圧下で重合して、本発明の帯電防止剤(E)-11を得た。
〔製造例12〕
 セパラブルフラスコに、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンを297g、セバシン酸を364g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、220℃、減圧下で4時間重合して、ポリエステル(A)-9を得た。ポリエステル(A)-9の酸価は56、数平均分子量Mnはポリスチレン換算で2,100であった。
 次に、得られたポリエステル(A)-9を400g、両末端に水酸基を有する化合物(B)-1としての数平均分子量2,000のポリエチレングリコールを300g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウム0.5gを仕込み、200℃で8時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-9を得た。このブロックポリマー(C)-9の酸価は8、数平均分子量Mnはポリスチレン換算で14,000であった。
 得られたブロックポリマー(C)-9を300g、多価アルコール化合物(D)-6としてのグリセリンを3.6g仕込み、200℃で9時間、減圧下で重合して、本発明の帯電防止剤(E)-12を得た。
〔製造例13〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを354g、セバシン酸を538g、酸化防止剤(アデカスタブAO-60)を0.6g、酢酸ジルコニウムを0.6g仕込み、160℃から200℃まで徐々に昇温しながら常圧で4時間、その後200℃、減圧下で4時間重合して、ポリエステル(A)-10を得た。ポリエステル(A)-10の酸価は28、数平均分子量Mnはポリスチレン換算で5,200であった。
 次に、得られたポリエステル(A)-10を400g、両末端に水酸基を有する化合物(B)-3としての数平均分子量4,000のポリエチレングリコールを200g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、200℃で8時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-10を得た。このブロックポリマー(C)-10の酸価は9、数平均分子量Mnはポリスチレン換算で13,000であった。
 得られたブロックポリマー(C)-10を300g、多価アルコール化合物(D)-1としてのトリメチロールプロパンを5.4g仕込み、200℃で10時間、減圧下で重合して、本発明の帯電防止剤(E)-13を得た。
〔製造例14〕
 セパラブルフラスコに、製造例13に記載の方法で得られたポリエステル(A)-10を300g、両末端に水酸基を有する化合物(B)-3としての数平均分子量4,000のポリエチレングリコールを200g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、220℃で6時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-11を得た。このブロックポリマー(C)-11の酸価は5.6、数平均分子量Mnはポリスチレン換算で18,000であった。
 得られたブロックポリマー(C)-11を300g、多価アルコール化合物(D)-6としてのグリセリンを5.2g仕込み、200℃で11時間、減圧下で重合して、本発明の帯電防止剤(E)-14を得た。
〔製造例15〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを323g、セバシン酸を478g、酸化防止剤(アデカスタブAO-60)を0.6g、酢酸ジルコニウムを0.6g仕込み、160℃から200℃まで徐々に昇温しながら常圧で4時間、その後200℃、減圧下で4時間重合して、ポリエステル(A)-11を得た。ポリエステル(A)-11の酸価は19、数平均分子量Mnはポリスチレン換算で6,900であった。
 次に、得られたポリエステル(A)-11を400g、両末端に水酸基を有する化合物(B)-4としての数平均分子量6,000のポリエチレングリコールを200g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウム0.5gを仕込み、200℃で8時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-12を得た。このブロックポリマー(C)-12の酸価は6.2、数平均分子量Mnはポリスチレン換算で17,500であった。
 得られたブロックポリマー(C)-12を300g、多価アルコール化合物(D)-2としてペンタエリスリトールを7.3g仕込み、240℃で3時間、減圧下で重合して、本発明の帯電防止剤(E)-15を得た。
〔比較製造例1〕
 製造例1に記載の方法で、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1を合成した。これを、比較帯電防止剤(1)として比較例に用いた。
〔比較製造例2〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを328g、アジピン酸354g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、160℃から200℃まで徐々に昇温しながら常圧で4時間、その後200℃、減圧下で3時間重合して比較ポリエステル-1を得た。比較ポリエステル-1の酸価は28、数平均分子量Mnはポリスチレン換算で5,300であった。
 次に、得られた比較ポリエステル-1を400g、数平均分子量4,000のポリエチレングリコールを200g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、200℃で7時間、減圧下で重合して、両末端にカルボキシル基を有する比較ポリエーテルエステル-1を得た。この比較ポリエーテルエステル-1の酸価は9、数平均分子量Mnはポリスチレン換算で12,200であった。これを比較帯電防止剤(2)として比較例に用いた。
〔比較製造例3〕
 セパラブルフラスコに、製造例1に記載の方法で得られたブロックポリマー(C)-1を300g、ビスフェノールAのエチレンオキサイド付加物11.4g仕込み、200℃で9時間、減圧下で重合して、比較帯電防止剤(3)を得た。これを比較例に用いた。
〔比較製造例4〕
 セパラブルフラスコに、製造例1に記載の方法で得られたブロックポリマー(C)-1を300g、1,4-ブタンジオール3.3g仕込み、200℃で11時間、減圧下で重合して、比較帯電防止剤(4)を得た。これを比較例に用いた。
〔比較製造例5〕
 セパラブルフラスコに、製造例1に記載の方法で得られたブロックポリマー(C)-1を300g、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン7.1g仕込み、200℃で8時間、減圧下で重合して、比較帯電防止剤(5)を得た。これを比較例に用いた。
〔比較製造例6〕
 セパラブルフラスコに、製造例2に記載の方法で得られたブロックポリマー(C)-2を300g、1,4-シクロヘキサンジメタノール5.2g仕込み、200℃で8時間、減圧下で重合して、比較帯電防止剤(6)を得た。これを比較例に用いた。
〔比較製造例7〕
 セパラブルフラスコに、製造例1記載の方法で得られたポリエステル(A)-1を300g、数平均分子量2,000のポリエチレングリコールを300g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、200℃で8時間、減圧下で重合して、片末端が水酸基である比較ポリエーテルエステル-2を得た。この比較ポリエーテルエステル-2の酸価は5.6、数平均分子量Mnはポリスチレン換算で10,200であった。これを比較帯電防止剤(7)として比較例に用いた。
〔比較製造例8〕
 セパラブルフラスコに、比較製造例7に記載の方法で得られた片末端が水酸基である比較ポリエーテルエステル-2を300g、トリメチロールプロパン4.8gを仕込み、240℃で3時間、減圧下で重合して比較帯電防止剤(8)を得た。これを比較例に用いた。
〔比較製造例9〕
 セパラブルフラスコに、製造例1に記載の方法で得られたポリエステル(A)-1を400g、数平均分子量2,000のポリエチレングリコールを600g、酸化防止剤(アデカスタブAO-60)を0.6g、酢酸ジルコニウムを0.6g仕込み、200℃、減圧下で5時間重合して、両末端が水酸基である比較ポリエーテルエステル-3を得た。この比較ポリエーテルエステル-3の水酸基価は11、数平均分子量Mnはポリスチレン換算で10,000であった。
 得られた比較ポリエーテルエステル-3を300g、トリメチロールプロパン4.8gを仕込み、200℃で8時間、減圧下で重合して比較帯電防止剤(9)を得た。これを比較例に用いた。
〔実施例1~27,比較例1~11〕
 下記の表1~4に記載した配合量に基づいてブレンドした帯電防止性樹脂組成物を用いて、下記に示す試験片作製条件に従い、試験片を得た。得られた試験片を用いて、下記に従い、表面固有抵抗値(SR値)の測定および耐水拭き性評価試験を行った。同様にして、下記の表5~6に示す配合で、比較例の樹脂組成物を調製し、それぞれ評価を行った。
<インパクトコポリマーポリプロピレン樹脂組成物試験片作製条件>
 下記の表中に示す配合量に基づいてブレンドした帯電防止性樹脂組成物を、(株)池貝製の2軸押出機(PCM30,60mesh入り)を用いて、200℃、6kg/時間の条件で造粒し、ペレットを得た。得られたペレットを、横型射出成形機(NEX80:日精樹脂工業(株)製)を用い、樹脂温度200℃、金型温度40℃の加工条件で成形し、100mm×100mm×3mmの試験片を得た。
<ホモポリプロピレン樹脂組成物試験片作製条件>
 下記の表中に示す配合量に基づいてブレンドした帯電防止性樹脂組成物を、(株)池貝製の2軸押出機(PCM30,60mesh入り)を用いて、230℃、6kg/時間の条件で造粒し、ペレットを得た。得られたペレットを、横型射出成形機(NEX80:日精樹脂工業(株)製)を用い、樹脂温度230℃、金型温度40℃の加工条件で成形し、100mm×100mm×3mmの試験片を得た。
<ABS樹脂組成物試験片作製条件>
 下記の表中に示す配合量に基づいてブレンドした帯電防止性樹脂組成物を、(株)池貝製の2軸押出機(PCM30,60mesh入り)を用いて、230℃、6kg/時間の条件で造粒し、ペレットを得た。得られたペレットを、横型射出成形機(NEX80:日精樹脂工業(株)製)を用い、樹脂温度230℃、金型温度50℃の加工条件で成形し、100mm×100mm×3mmの試験片を得た。
<表面固有抵抗値(SR値)測定方法>
 得られた試験片を、成形加工後直ちに、温度25℃、湿度60%RHの条件下に保存し、成形加工の1日および30日保存後に、同雰囲気下で、アドバンテスト社製のR8340抵抗計を用いて、印加電圧100V、印加時間1分の条件で、表面固有抵抗値(Ω/□)を測定した。測定は5点について行い、その平均値を求めた。
<耐水拭き性評価試験>
 得られた試験片の表面を流水中ウエスで50回拭いた後、温度25℃、湿度60%の条件下で2時間保存し、その後、同雰囲気下にて、アドバンテスト社製、R8340抵抗計を用いて、印加電圧100V、印加時間1分の条件で、表面固有抵抗値(Ω/□)を測定した。測定は5点で行い、その平均値を求めた。
Figure JPOXMLDOC01-appb-T000006

*1:塩化リチウム
*2:p-トルエンスルホン酸リチウム
*3:ドデシルベンゼンスルホン酸ナトリウム
*4:1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
*5:インパクトコポリマーポリプロピレン、日本ポリプロ株式会社製:BC03B 
*6:ホモポリプロピレン、日本ポリプロ株式会社製:MA3
*7:ABS樹脂、テクノポリマー株式会社製:テクノABS110
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
*8:ポリエーテルエステルアミド系帯電防止剤、BASF社製:イルガスタットP-22
 上記表中に示したように、実施例の帯電防止性樹脂組成物によれば、少ない帯電防止剤または帯電防止剤組成物の添加量で優れた帯電防止効果が得られており、時間経過または水拭きによっても帯電防止効果が低減しないことが確かめられた。

Claims (14)

  1.  両末端にカルボキシル基を有するポリエステル(A)から構成されたブロック、および、両末端に水酸基を有する化合物(B)から構成されたブロックが、前記カルボキシル基と前記水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有する構造を有するブロックポリマー(C)と、水酸基を3個以上有する多価アルコール化合物(D)とが、前記ブロックポリマー(C)のカルボキシル基と前記多価アルコール化合物(D)の水酸基とにより形成されたエステル結合を介して結合してなる構造を有する高分子化合物(E)からなることを特徴とする帯電防止剤。
  2.  前記高分子化合物(E)が、さらに、前記両末端にカルボキシル基を有するポリエステル(A)のカルボキシル基と、前記多価アルコール化合物(D)の水酸基と、により形成されたエステル結合を含む請求項1記載の帯電防止剤。
  3.  前記ポリエステル(A)が、脂肪族ジカルボン酸のカルボキシル基を除いた残基と、ジオールの水酸基を除いた残基とが、エステル結合を介して繰り返し交互に結合してなる構造を有し、かつ、前記両末端に水酸基を有する化合物(B)が、下記一般式(1)、
    Figure JPOXMLDOC01-appb-I000001
    で示される基を一つ以上有する請求項1記載の帯電防止剤。
  4.  前記両末端に水酸基を有する化合物(B)が、ポリエチレングリコールである請求項3記載の帯電防止剤。
  5.  前記ポリエステル(A)から構成されたブロックの数平均分子量がポリスチレン換算で800~8,000であり、前記両末端に水酸基を有する化合物(B)から構成されたブロックの数平均分子量がポリスチレン換算で400~6,000であり、かつ、前記ブロックポリマー(C)の数平均分子量が、ポリスチレン換算で5,000~25,000である請求項1記載の帯電防止剤。
  6.  請求項1記載の帯電防止剤に対し、さらに、アルカリ金属の塩および第2族元素の塩からなる群から選択される1種以上が配合されてなることを特徴とする帯電防止剤組成物。
  7.  熱可塑性樹脂に対し、請求項1記載の帯電防止剤が配合されてなることを特徴とする帯電防止性樹脂組成物。
  8.  熱可塑性樹脂に対し、請求項6記載の帯電防止剤組成物が配合されてなることを特徴とする帯電防止性樹脂組成物。
  9.  前記熱可塑性樹脂が、ポリオレフィン系樹脂およびポリスチレン系樹脂からなる群から選ばれる一種以上である請求項7記載の帯電防止性樹脂組成物。
  10.  前記熱可塑性樹脂が、ポリオレフィン系樹脂およびポリスチレン系樹脂からなる群から選ばれる一種以上である請求項8記載の帯電防止性樹脂組成物。
  11.  前記熱可塑性樹脂と、前記帯電防止剤との質量比が、99/1~40/60の範囲である請求項7記載の帯電防止性樹脂組成物。
  12.  前記熱可塑性樹脂と、前記帯電防止剤組成物との質量比が、99/1~40/60の範囲である請求項8記載の帯電防止性樹脂組成物。
  13.  請求項7記載の帯電防止性樹脂組成物からなることを特徴とする成形体。
  14.  請求項8記載の帯電防止性樹脂組成物からなることを特徴とする成形体。
PCT/JP2014/057221 2013-03-21 2014-03-18 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体 WO2014148454A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015506783A JP6309506B2 (ja) 2013-03-21 2014-03-18 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
BR112015024274A BR112015024274A2 (pt) 2013-03-21 2014-03-18 agente antiestático, composição de agente antiestático, composição de resina antiestática e artigo moldado
CN201480017226.0A CN105051146B (zh) 2013-03-21 2014-03-18 抗静电剂、抗静电剂组合物、抗静电性树脂组合物以及成型体
KR1020157030034A KR102141476B1 (ko) 2013-03-21 2014-03-18 대전 방지제, 대전 방지제 조성물, 대전 방지성 수지 조성물 및 성형체
EP14768284.3A EP2977424B1 (en) 2013-03-21 2014-03-18 Antistatic agent, antistatic agent composition, antistatic resin composition, and molded article
US14/778,163 US9580545B2 (en) 2013-03-21 2014-03-18 Antistatic agent, antistatic agent composition, antistatic resin composition, and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-059077 2013-03-21
JP2013059077 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014148454A1 true WO2014148454A1 (ja) 2014-09-25

Family

ID=51580133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057221 WO2014148454A1 (ja) 2013-03-21 2014-03-18 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体

Country Status (8)

Country Link
US (1) US9580545B2 (ja)
EP (1) EP2977424B1 (ja)
JP (1) JP6309506B2 (ja)
KR (1) KR102141476B1 (ja)
CN (1) CN105051146B (ja)
BR (1) BR112015024274A2 (ja)
TW (1) TWI613286B (ja)
WO (1) WO2014148454A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158224A1 (ja) * 2015-03-30 2016-10-06 株式会社Adeka 有機溶剤の容器および管用帯電防止性樹脂組成物並びにポリオレフィン系帯電防止性繊維
JP2016188312A (ja) * 2015-03-30 2016-11-04 株式会社Adeka 有機溶剤の容器および管用帯電防止性樹脂組成物、並びに、これを用いた容器および管
JP2016191165A (ja) * 2015-03-31 2016-11-10 株式会社Adeka ポリオレフィン系帯電防止性繊維およびそれを用いた布帛
KR20170038009A (ko) * 2014-07-22 2017-04-05 가부시키가이샤 아데카 대전 방지제, 대전 방지제 조성물, 대전 방지성 수지 조성물 및 성형체
JP2017114927A (ja) * 2015-12-21 2017-06-29 株式会社Adeka 帯電防止性樹脂組成物
US10053536B2 (en) 2015-01-19 2018-08-21 Adeka Corporation Antistatic resin composition, and container and packaging material which use same
US10323166B2 (en) 2015-03-31 2019-06-18 Adeka Corporation Resin additive composition and antistatic thermoplastic resin composition
WO2020202642A1 (ja) * 2019-03-29 2020-10-08 株式会社Adeka 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体
WO2020203619A1 (ja) * 2019-03-29 2020-10-08 株式会社Adeka 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
WO2021006192A1 (ja) * 2019-07-10 2021-01-14 三菱電機株式会社 熱可塑性樹脂組成物、成形品および製品
JP2021014566A (ja) * 2019-07-10 2021-02-12 三菱電機株式会社 熱可塑性樹脂組成物、成形品および製品

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066070A1 (ja) 2017-09-29 2019-04-04 古河電気工業株式会社 成形品
JP7252128B2 (ja) * 2017-09-29 2023-04-04 古河電気工業株式会社 成形品
CN111183188A (zh) 2017-09-29 2020-05-19 古河电气工业株式会社 成型品
WO2019088140A1 (ja) 2017-10-31 2019-05-09 古河電気工業株式会社 成形品
TWI789469B (zh) * 2018-04-09 2023-01-11 德商魯道夫公司 用於加工纖維及紡織品之組成物及其用途
CN110628004B (zh) * 2019-09-09 2021-08-31 浙江恒澜科技有限公司 一种两亲性大分子抗静电剂及其制备方法
JP6807478B1 (ja) * 2020-05-28 2021-01-06 三洋化成工業株式会社 帯電防止剤
CN115397919B (zh) * 2021-06-18 2023-08-22 三洋化成工业株式会社 热塑性树脂用抗静电剂

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118838A (ja) 1981-12-29 1983-07-15 アト・シミ 新規なポリオレフイン系の組成物
JPH03258850A (ja) 1990-03-06 1991-11-19 Toray Ind Inc 熱可塑性樹脂組成物
JPH03290464A (ja) 1990-04-05 1991-12-20 Toray Ind Inc 熱可塑性樹脂組成物
JPH06345927A (ja) 1993-03-19 1994-12-20 Sanyo Chem Ind Ltd 樹脂組成物
JPH0710989A (ja) 1993-04-16 1995-01-13 Sanyo Chem Ind Ltd ポリエーテルエステルアミドおよび樹脂組成物
WO1995015572A1 (en) 1993-12-03 1995-06-08 Sanyo Chemical Industries, Ltd. Electrolytic solution and electrochemical element prepared therefrom
JPH11269391A (ja) * 1998-03-23 1999-10-05 Teijin Ltd 永久帯電防止性に優れる熱可塑性樹脂組成物およびそれから成形されたエレクトロニクス分野の搬送用冶具
JP2001278985A (ja) 1999-02-10 2001-10-10 Sanyo Chem Ind Ltd ブロックポリマー及びこれからなる帯電防止剤
US6552131B1 (en) 1999-02-10 2003-04-22 Sanyo Chemical Industries, Ltd. Block polymer and antistatic agent comprising the same
JP2005154728A (ja) * 2003-06-18 2005-06-16 Sanyo Chem Ind Ltd 透明性樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035989A2 (en) * 1998-12-18 2000-06-22 Eastman Chemical Company Copolyesters with antistatic properties and high clarity
JP2000248186A (ja) * 1999-02-26 2000-09-12 Teijin Ltd 樹脂組成物およびそれからなるエレクトロニクス分野の搬送用冶具
EP1351867A1 (en) * 2001-01-15 2003-10-15 Ciba SC Holding AG Antistatic flexible intermediate bulk container
US20030124367A1 (en) * 2001-12-06 2003-07-03 George Scott Ellery Antistatic polyester-polyethylene glycol compositions
KR101046555B1 (ko) 2003-06-18 2011-07-05 산요가세이고교 가부시키가이샤 투명성 수지 조성물
JP4927449B2 (ja) * 2005-06-30 2012-05-09 三洋化成工業株式会社 帯電防止性生分解性樹脂組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118838A (ja) 1981-12-29 1983-07-15 アト・シミ 新規なポリオレフイン系の組成物
JPH03258850A (ja) 1990-03-06 1991-11-19 Toray Ind Inc 熱可塑性樹脂組成物
JPH03290464A (ja) 1990-04-05 1991-12-20 Toray Ind Inc 熱可塑性樹脂組成物
JPH06345927A (ja) 1993-03-19 1994-12-20 Sanyo Chem Ind Ltd 樹脂組成物
JPH0710989A (ja) 1993-04-16 1995-01-13 Sanyo Chem Ind Ltd ポリエーテルエステルアミドおよび樹脂組成物
WO1995015572A1 (en) 1993-12-03 1995-06-08 Sanyo Chemical Industries, Ltd. Electrolytic solution and electrochemical element prepared therefrom
JPH11269391A (ja) * 1998-03-23 1999-10-05 Teijin Ltd 永久帯電防止性に優れる熱可塑性樹脂組成物およびそれから成形されたエレクトロニクス分野の搬送用冶具
JP2001278985A (ja) 1999-02-10 2001-10-10 Sanyo Chem Ind Ltd ブロックポリマー及びこれからなる帯電防止剤
US6552131B1 (en) 1999-02-10 2003-04-22 Sanyo Chemical Industries, Ltd. Block polymer and antistatic agent comprising the same
JP2005154728A (ja) * 2003-06-18 2005-06-16 Sanyo Chem Ind Ltd 透明性樹脂組成物

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102424656B1 (ko) 2014-07-22 2022-07-22 가부시키가이샤 아데카 대전 방지제, 대전 방지제 조성물, 대전 방지성 수지 조성물 및 성형체
KR20170038009A (ko) * 2014-07-22 2017-04-05 가부시키가이샤 아데카 대전 방지제, 대전 방지제 조성물, 대전 방지성 수지 조성물 및 성형체
EP3173454A4 (en) * 2014-07-22 2018-01-31 Adeka Corporation Antistatic agent, antistatic agent composition, antistatic resin composition, and molded body
US10138402B2 (en) 2014-07-22 2018-11-27 Adeka Corporation Antistatic agent, antistatic agent composition, antistatic resin composition, and molded body
US10053536B2 (en) 2015-01-19 2018-08-21 Adeka Corporation Antistatic resin composition, and container and packaging material which use same
JP2016188312A (ja) * 2015-03-30 2016-11-04 株式会社Adeka 有機溶剤の容器および管用帯電防止性樹脂組成物、並びに、これを用いた容器および管
WO2016158224A1 (ja) * 2015-03-30 2016-10-06 株式会社Adeka 有機溶剤の容器および管用帯電防止性樹脂組成物並びにポリオレフィン系帯電防止性繊維
US10308852B2 (en) 2015-03-30 2019-06-04 Adeka Corporation Antistatic resin composition and polyolefin antistatic fiber for container and pipe for organic solvent
JP2016191165A (ja) * 2015-03-31 2016-11-10 株式会社Adeka ポリオレフィン系帯電防止性繊維およびそれを用いた布帛
US10323166B2 (en) 2015-03-31 2019-06-18 Adeka Corporation Resin additive composition and antistatic thermoplastic resin composition
JP2017114927A (ja) * 2015-12-21 2017-06-29 株式会社Adeka 帯電防止性樹脂組成物
WO2020203619A1 (ja) * 2019-03-29 2020-10-08 株式会社Adeka 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
WO2020202642A1 (ja) * 2019-03-29 2020-10-08 株式会社Adeka 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体
JP7339331B2 (ja) 2019-03-29 2023-09-05 株式会社Adeka 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体
WO2021006192A1 (ja) * 2019-07-10 2021-01-14 三菱電機株式会社 熱可塑性樹脂組成物、成形品および製品
JP2021014566A (ja) * 2019-07-10 2021-02-12 三菱電機株式会社 熱可塑性樹脂組成物、成形品および製品
DE112020003292T5 (de) 2019-07-10 2022-05-19 Mitsubishi Electric Corporation Thermoplastische Harzzusammensetzung, Formartikel und Erzeugnis

Also Published As

Publication number Publication date
US20160289375A1 (en) 2016-10-06
KR20150135376A (ko) 2015-12-02
EP2977424A1 (en) 2016-01-27
EP2977424B1 (en) 2017-11-22
TWI613286B (zh) 2018-02-01
CN105051146A (zh) 2015-11-11
TW201502264A (zh) 2015-01-16
CN105051146B (zh) 2017-07-11
JPWO2014148454A1 (ja) 2017-02-16
BR112015024274A2 (pt) 2017-07-18
JP6309506B2 (ja) 2018-04-11
EP2977424A4 (en) 2016-11-09
US9580545B2 (en) 2017-02-28
KR102141476B1 (ko) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6309506B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6275654B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6377437B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6453003B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6452993B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2017128681A (ja) 帯電防止性熱可塑性樹脂組成物およびそれを成形してなる成形体
WO2019021944A1 (ja) 高分子化合物、これを含む組成物、これらを含む樹脂組成物、およびその成形体
JP7329934B2 (ja) 組成物、これを含有する樹脂組成物、およびその成形体
JP6472669B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2022021149A (ja) 組成物、これを含有する合成樹脂組成物およびその成形体
JP2019006951A (ja) ブロックポリマー、これを含む組成物、これらを含む樹脂組成物およびその成型体
JP2019006950A (ja) 高分子化合物、これを含む組成物、これらを含む樹脂組成物およびその成型体
JP2022044863A (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物およびその成形体
JP2019116523A (ja) 高分子化合物、これを含有する組成物、これらを含有する樹脂組成物およびその成形体
WO2020203619A1 (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
JP2020164711A (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物およびその成形体
WO2019021943A1 (ja) 組成物、これを含む樹脂組成物、およびその成形体
JP2017128678A (ja) 帯電防止性熱可塑性樹脂組成物およびそれを成形してなる成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017226.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506783

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14778163

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030034

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014768284

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014768284

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024274

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024274

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150921