WO2014148258A1 - ジスルホニルアミンアルカリ金属塩の製造方法 - Google Patents
ジスルホニルアミンアルカリ金属塩の製造方法 Download PDFInfo
- Publication number
- WO2014148258A1 WO2014148258A1 PCT/JP2014/055622 JP2014055622W WO2014148258A1 WO 2014148258 A1 WO2014148258 A1 WO 2014148258A1 JP 2014055622 W JP2014055622 W JP 2014055622W WO 2014148258 A1 WO2014148258 A1 WO 2014148258A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- salt
- alkali metal
- disulfonylamine
- amine
- fluorosulfonyl
- Prior art date
Links
- 0 *S(NS(*)(=O)=O)(=O)=O Chemical compound *S(NS(*)(=O)=O)(=O)=O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/086—Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C303/00—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
- C07C303/36—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
- C07C303/40—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/48—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing a disulfonylamine alkali metal salt. More specifically, the present invention relates to a method for producing a high purity disulfonylamine alkali metal salt with a low temperature history and at a low cost.
- This application claims priority based on Japanese Patent Application No. 2013-055571 filed in Japan on March 18, 2013, the contents of which are incorporated herein by reference.
- Disulfonylamine alkali metal salt is a compound useful for an electrolyte of a secondary battery, an additive to the electrolyte of a secondary battery, etc. (Patent Document 1).
- Patent Document 1 Disulfonylamine alkali metal salt is a compound useful for an electrolyte of a secondary battery, an additive to the electrolyte of a secondary battery, etc.
- Patent Document 1 it is known that the smaller the impurities contained in the electrolyte of the secondary battery, the better the discharge capacity and charge / discharge current efficiency (Non-Patent Document 1). For this reason, development of a method for producing a disulfonylamine alkali metal salt with high purity is in progress.
- Patent Document 2 proposes a method for producing a high-purity disulfonylamine salt characterized by contacting a reaction solution with an alkaline aqueous solution for removing impurities after fluorination reaction of bis (chlorosulfonyl) amine. Yes.
- Patent Document 3 a step of concentrating the disulfonylamine alkali metal salt solution while bubbling gas into the reaction solution containing the disulfonylamine alkali metal salt and / or concentrating the disulfonylamine alkali metal salt solution by thin film distillation.
- a process for producing a disulfonylamine alkali metal salt characterized in that it comprises the step of:
- Patent Document 4 after a bis (fluorosulfonyl) amine ammonium salt is obtained by reacting a bis (chlorosulfonyl) amine ammonium salt with hydrogen fluoride, an alkali metal is added to the obtained bis (fluorosulfonyl) amine ammonium salt.
- a method for producing a bis (fluorosulfonyl) amine alkali metal salt characterized by reacting a compound or the like has been proposed.
- an object of the present invention is to provide a method for producing a high-purity disulfonylamine alkali metal salt with a low temperature history and at a low cost.
- a disulfonylamine onium salt represented by the formula [I] in an organic solvent is subjected to a cation exchange reaction to form a disulfonylamine alkali metal salt represented by the formula [II] (hereinafter, disulfonylamine alkali metal). Salt [II]), and a step of filtering the organic solvent solution containing the disulfonylamine alkali metal salt with a filter having a retention particle size of 0.1 to 10 ⁇ m to obtain a filtrate.
- a method for producing a sulfonylamine alkali metal salt is a cation exchange reaction to form a disulfonylamine alkali metal salt represented by the formula [II] (hereinafter, disulfonylamine alkali metal).
- R 1 and R 2 each independently represents a fluorinated alkyl group having 1 to 6 carbon atoms, or a fluorine atom, and at least one of R 1 or R 2 is a fluorine atom. It is.
- R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxyalkyl group having 1 to 6 carbon atoms; Two groups out of 3 , R 4 , R 5 and R 6 may be combined to form a 5- to 8-membered ring containing a nitrogen atom to which they are bonded as a ring-constituting atom.
- M + represents an alkali metal cation
- R 1 and R 2 represent the same as those in formula [I].
- [2] The production method according to [1], wherein the filter is a membrane filter.
- [3] The production method according to [1] or [2], wherein the organic solvent is an ester solvent.
- [4] The production method according to [1] or [2], wherein the organic solvent is isopropyl acetate.
- [5] The production method according to any one of [1] to [4], further comprising a step of concentrating the filtrate at a temperature of 0 to 70 ° C. after the filtration step.
- [6] The production method according to [5], wherein the filtrate is concentrated at a temperature of 0 to 50 ° C. after the filtration step.
- the method further includes the steps of washing the organic solvent solution with water to remove onium cations from the organic solvent solution after the cation exchange reaction step and before the filtration step.
- the manufacturing method as described in any one of these.
- a high purity disulfonylamine alkali metal salt [II] can be produced with a low temperature history and at a low cost.
- the method for producing a disulfonylamine alkali metal salt according to the present invention includes a step of subjecting a disulfonylamine onium salt to a cation exchange reaction in an organic solvent to form a disulfonylamine alkali metal salt [II], and the disulfonylamine
- the method includes a step of obtaining an filtrate by filtering an organic solvent solution containing an alkali metal salt with a filter.
- the disulfonylamine onium salt used in the present invention is a compound represented by the formula [I] (hereinafter sometimes referred to as disulfonylamine onium salt [I]).
- the disulfonylamine onium salt [I] includes a disulfonylamine anion represented by the formula [III] (hereinafter sometimes referred to as disulfonylamine anion [III]) and an onium cation represented by the formula [IV] (hereinafter referred to as “disulfonylamine anion [III]”). , Sometimes referred to as onium cation [IV]).
- R 1 and R 2 each independently represents a fluorinated alkyl group having 1 to 6 carbon atoms, or a fluorine atom, and at least one of R 1 or R 2 is a fluorine atom. is there.
- the number of carbon atoms constituting the fluorinated alkyl group in R 1 and R 2 is 1 to 6, preferably 1 to 4, and more preferably 1 to 2.
- Fluoroalkyl groups include fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group, difluoroethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, 3,3,3- Trifluoropropyl group, perfluoro-n-propyl group, fluoropropyl group, perfluoroisopropyl group, fluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, perfluoro-n-butyl group, perfluoroisobutyl group, Perfluoro-t-butyl group, perfluoro-sec-butyl group, fluoropentyl group, perfluoropentyl group, perfluoropentyl group,
- a trifluoromethyl group, a pentafluoroethyl group or a perfluoro-n-propyl group is preferable, and a trifluoromethyl group or a pentafluoroethyl group is more preferable.
- disulfonylamine anion [III] examples include bis (fluorosulfonyl) amine anion, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine anion, N- (fluorosulfonyl) -N- (penta Fluoroethylsulfonyl) amine anion.
- bis (fluorosulfonyl) amine anions in which R 1 and R 2 are both fluorine atoms are preferred.
- R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. It represents an alkyl group, and two of R 3 , R 4 , R 5 and R 6 may be combined to form a 5- to 8-membered ring containing a nitrogen atom to which they are bonded as a ring-constituting atom.
- the number of carbon atoms constituting the alkyl group in R 3 , R 4 , R 5 and R 6 is 1 to 6, preferably 1 to 4, more preferably 1 to 2. is there.
- the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, pentyl group, isopentyl group, t-pentyl group, hexyl group, and isohexyl group. And so on.
- a methyl group, an ethyl group, and a propyl group are preferable.
- the number of carbon atoms constituting the alkoxyalkyl group in R 3 , R 4 , R 5 and R 6 is 2 to 6, preferably 2 to 4, more preferably 2 to 3 It is.
- the alkoxyalkyl group include methoxymethyl group, ethoxymethyl group, isopropoxymethyl group, t-butoxymethyl group, propoxymethyl group, butoxymethyl group, 2-methoxyethyl group, 2-ethoxyethyl group, 2-isopropoxyethyl. Group, 2-methoxypropyl group, 2-t-butoxyethyl group, 2-propoxyethyl group and the like. Among these, a methoxymethyl group, an ethoxymethyl group, and an ethoxyethyl group are preferable.
- onium cation [IV] examples include ammonium cation, dimethyl ammonium cation, trimethyl ammonium cation, tetramethyl ammonium cation, diethyl ammonium cation, triethyl ammonium cation, tetraethyl ammonium cation, tetrabutyl ammonium cation, pyrrolidinium cation, Peridinium cation, 4-morpholinium cation, 1,1-dimethylpyrrolidinium cation, 1,1-dimethylpiperidinium cation, 1-ethyl-1-methylpyrrolidinium cation, 1-ethyl-1-methyl Piperidinium cation, 1-methyl-1-propylpyrrolidinium cation, 1-methyl-1-propylpiperidinium cation, 1- (methoxymethyl) -1-methyl Lori pyridinium cation, 1-and the like (methoxymethyl) -1
- the molar ratio of the disulfonylamine anion [III] and the onium cation [IV] is not particularly limited. Since the disulfonylamine anion [III] is a monovalent anion and the onium cation [IV] is a monovalent cation, it is usually a salt having a molar ratio of 1: 1.
- the disulfonylamine onium salt [I] is not particularly limited by the method of obtaining it.
- the disulfonylamine onium salt [I] may be a commercially available product, or may be produced by a known method described in JP 2010-168249 A.
- disulfonylamine onium salt [I] examples include bis (fluorosulfonyl) amine ammonium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine ammonium salt, N- (fluorosulfonyl) -N -(Pentafluoroethylsulfonyl) amine ammonium salt, bis (fluorosulfonyl) amine dimethyl ammonium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine dimethyl ammonium salt, N- (fluorosulfonyl) -N- (Pentafluoroethylsulfonyl) amine dimethyl ammonium salt, bis (fluorosulfonyl) amine trimethyl ammonium salt, N- (fluorosulfonyl) -N- (trifluoromethyl
- the organic solvent used in the production method of the present invention is not particularly limited, but a solvent capable of dissolving disulfonylamine onium salt and disulfonylamine alkali metal salt is preferable.
- a solvent capable of dissolving disulfonylamine onium salt and disulfonylamine alkali metal salt is preferable.
- preferred organic solvents include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethoxymethane, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxane.
- ester solvents such as ethyl acetate, isopropyl acetate, and butyl acetate are preferable, and isopropyl acetate is more preferable from the viewpoint that a higher purity disulfonylamine alkali metal salt [II] can be obtained. From the viewpoint of reducing the temperature when the filtrate is concentrated after the filtration step, isopropyl acetate is preferred among the ester solvents.
- an alkali metal compound is used in the cation exchange reaction.
- the alkali metal compound include hydroxides such as LiOH, NaOH, KOH, RbOH, and CsOH, carbonates such as Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , and Cs 2 CO 3 , Hydrogen carbonate such as LiHCO 3 , NaHCO 3 , KHCO 3 , RbHCO 3 , CsHCO 3 , chloride such as LiCl, NaCl, KCl, RbCl, CsCl, bromide such as LiBr, NaBr, KBr, RbBr, CsBr, LiF, NaF , Fluorides such as KF, RbF, CsF, alkoxide compounds such as CH 3 OLi, EtOLi, t-BuOK, t-BuONa, hydride compounds such as NaH, KH, LiH, and i-Pr
- the amount of the alkali metal compound used is preferably 1 mol to 10 mol, more preferably 1 mol to 5 mol, relative to 1 mol of the disulfonylamine onium salt [I].
- the cation exchange reaction can be performed, for example, by mixing disulfonylamine onium salt [I] and an alkali metal compound in an organic solvent.
- the temperature during the cation exchange reaction is not particularly limited, but is preferably 0 ° C. to 200 ° C., more preferably 10 ° C. to 100 ° C.
- the time required for the reaction varies depending on the reaction scale, but is preferably 0.1 hour to 48 hours, more preferably 0.5 hour to 24 hours.
- the disulfonylamine onium salt [I] is converted to the disulfonylamine alkali metal salt represented by the formula [II] by this cation exchange reaction step.
- M + represents an alkali metal cation
- R 1 and R 2 represent the same as those in the formula [I].
- the disulfonylamine alkali metal salt [II] is a salt comprising the disulfonylamine anion [III] and an alkali metal cation M + .
- alkali metal cation examples include a lithium cation, a sodium cation, a potassium cation, and a cesium cation.
- the molar ratio of the disulfonylamine anion [III] and the alkali metal cation M + is not particularly limited. Since the disulfonylamine anion [III] is a monovalent anion and the alkali metal cation M + is a monovalent cation, it is usually a salt having a molar ratio of 1: 1.
- disulfonylamine alkali metal salt [II] include bis (fluorosulfonyl) amine lithium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine lithium salt, N- (fluorosulfonyl)- N- (pentafluoroethylsulfonyl) amine lithium salt bis (fluorosulfonyl) amine sodium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine sodium salt, N- (fluorosulfonyl) -N- (penta Fluoroethylsulfonyl) amine sodium salt bis (fluorosulfonyl) amine potassium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine potassium salt, N- (fluorosulfononyl
- an organic solvent solution containing the disulfonylamine alkali metal salt [II] obtained by the cation exchange reaction is washed with water to remove onium from the organic solvent solution. It is preferable to remove cations.
- the method of washing is not particularly limited. For example, it can be carried out by adding water to an organic solvent solution and stirring well, then leaving the mixture to separate into an organic solvent phase and an aqueous phase, and removing the aqueous phase. This extraction operation may be performed batchwise or continuously.
- an organic solvent solution containing disulfonylamine alkali metal salt [II] is filtered with a filter.
- the organic solvent solution may be one obtained immediately after the cation exchange reaction, one obtained after extraction with water, or one prepared by adjusting the concentration to be described later by a known method.
- filter media such as nonwoven fabric, cellulose, activated carbon and diatomaceous earth were filled.
- a filter etc. can be mentioned.
- membrane filters are preferred.
- the filter media for membrane filters, hollow fiber membrane filters, and pleated membrane filters are made of polyolefin such as polyethylene, ultra-high density polyethylene, and polypropylene, made of fluororesin such as PTFE, nylon, cellulose fiber, glass fiber, stainless steel fiber It is preferably made of silica, silica, polycarbonate, cotton, polyethersulfone or cellulose acetate.
- these filters may contain an ion exchanger such as a cation exchange resin, or a cation charge control agent that generates a zeta potential in the organic solvent solution to be filtered.
- the filter used in the production method of the present invention has a retained particle diameter of preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
- a filter having a reserved particle diameter in such a range fine impurities can be removed, and high-purity disulfonylamine alkali metal salt [II] can be obtained. Note that if the retained particle diameter is too small, the filter tends to be clogged. Conversely, if the retained particle diameter is too large, the ability to remove fine impurities tends to be low.
- the filtrate is preferably concentrated at a temperature of 0 to 70 ° C., more preferably 0 to 50 ° C. after the above-described filtration step.
- the concentration operation is preferably performed under reduced pressure.
- the disulfonylamine alkali metal salt [II] obtained by carrying out the production method of the present invention has a greatly reduced content of impurities, particularly chloride ions, fluorine ions and sulfate ions.
- the high-purity disulfonylamine alkali metal salt [II] obtained by the production method of the present invention can be suitably used as an ion conductor material constituting an electrochemical device such as a lithium ion secondary battery.
- Synthesis Example 1 (Synthesis of di (fluorosulfonyl) amine ammonium salt) 2.14 parts by mass of di (chlorosulfonyl) amine was charged into a fluororesin reaction vessel. 17.6 parts by mass of butyl acetate and 1.78 parts by mass of NH 4 F were added thereto, and the mixture was refluxed at 75 ° C. for 4 hours to be reacted. After completion of the reaction, the mixture was cooled to room temperature, and 2.5 parts by mass of water was added to extract water-soluble components. The aqueous phase was removed and the organic phase was concentrated to give di (fluorosulfonyl) amine ammonium salt.
- Example 1 Synthesis of di (fluorosulfonyl) amine lithium salt (hereinafter referred to as LFSI) 19.8 g (0.10 mol) of di (fluorosulfonyl) amine ammonium salt obtained in Synthesis Example 1 was added with 60 mL of isopropyl acetate and water. Lithium oxide monohydrate (5.5 g, 0.13 mol) was added, and the mixture was heated to reflux for 1.5 hours at an absolute pressure of 9.333 kPa and a temperature of 27 ° C. to 33 ° C. The resulting liquid was cooled to 25 ° C.
- LFSI di (fluorosulfonyl) amine lithium salt
- the organic phases were mixed and the water-soluble component was extracted three times with 5 ml of water, and the obtained organic phase was put in a reaction vessel equipped with a Dean-Stark tube at a temperature of 3 Water was removed by refluxing under reduced pressure while adding 130 ml of isopropyl acetate in the middle at 3.5 ° C.
- Crystals were precipitated by adding 180 ml of methylene chloride dropwise to the concentrated LFSI solution. Thereafter, the crystals were separated by filtration under reduced pressure. The crystals separated by filtration were washed with 90 ml of methylene chloride and dried under vacuum at room temperature for 8 hours. 4.41 g of LFSI was obtained. The obtained LFSI had an F ⁇ content of 46 ppm, a Cl ⁇ content of less than 5 ppm, and an SO 4 2 ⁇ content of 10 ppm.
- Example 2 (Synthesis of LFSI) 100 mL of isopropyl acetate and 5.5 g (0.13 mol) of lithium hydroxide monohydrate were added to 19.8 g (0.10 mol) of the di (fluorosulfonyl) amine ammonium salt obtained in Synthesis Example 1, and absolute pressure was added. The mixture was heated to reflux at 9.333 kPa and a temperature of 27 ° C. to 33 ° C. for 1.5 hours. The obtained liquid was cooled to 25 ° C., and 20 ml of water was added thereto for extraction. Separated into an organic phase and an aqueous phase, 50 mL of isopropyl acetate was added to the aqueous phase to extract water-insoluble components.
- the organic phases obtained by the extraction operation were combined, and water-soluble components were extracted three times with 5 mL of water.
- the obtained organic phase was put into a reaction vessel equipped with a Dean-Stark tube and refluxed under reduced pressure at a temperature of 35 ° C. and an absolute pressure of 10.66 to 13.33 kPa for 5 hours to remove moisture.
- the obtained organic solvent solution was filtered with a filter (Kiriyama No. 5B, retention particle diameter 4 ⁇ m). Of 75.2 g of the obtained LFSI solution, 41.9 g was put in a rotary evaporator, evaporated at 40 ° C., and concentrated to an LFSI concentration of 56.4% by mass.
- Crystals were precipitated by adding 100 ml of methylene chloride dropwise to the concentrated LFSI solution. Thereafter, the crystals were separated by filtration under reduced pressure. The crystals separated by filtration were washed with 45 ml of methylene chloride and dried under vacuum at room temperature for 8 hours. 2.69 g of LFSI was obtained. The obtained LFSI had an F ⁇ content of less than 5 ppm, a Cl ⁇ content of 6 ppm, and an SO 4 2 ⁇ content of 6 ppm.
- Example 3 (Synthesis of LFSI) 100 mL of isopropyl acetate and 5.5 g (0.13 mol) of lithium hydroxide monohydrate were added to 19.8 g (0.10 mol) of the di (fluorosulfonyl) amine ammonium salt obtained in Synthesis Example 1, and absolute pressure was added. The mixture was heated to reflux at 9.333 kPa and a temperature of 27 ° C. to 33 ° C. for 1.5 hours. The obtained liquid was cooled to 25 ° C., and 20 ml of water was added thereto for extraction. Separated into an organic phase and an aqueous phase, 50 mL of isopropyl acetate was added to the aqueous phase to extract water-insoluble components.
- the organic phases obtained by the extraction operation were combined, and water-soluble components were extracted three times with 5 mL of water.
- the obtained organic phase was put into a reaction vessel equipped with a Dean-Stark tube and refluxed under reduced pressure at a temperature of 35 ° C. and an absolute pressure of 10.66 to 13.33 kPa for 5 hours to remove moisture.
- the obtained organic solvent solution was filtered with a filter (Kiriyama No. 5B, retention particle diameter 4 ⁇ m). 33.3 g of 75.2 g of the obtained LFSI solution was placed in a rotary evaporator, evaporated at 60 ° C., and concentrated to an LFSI concentration of 67.4% by mass.
- Crystals were precipitated by adding 80 ml of methylene chloride dropwise to the concentrated LFSI solution. Thereafter, the crystals were separated by filtration under reduced pressure. The crystals separated by filtration were washed with 45 ml of methylene chloride and dried under vacuum at room temperature for 8 hours. LFSI 5.00 g was obtained. The obtained LFSI had an F ⁇ content of 66 ppm, a Cl ⁇ content of less than 5 ppm, and an SO 4 2 ⁇ content of 76 ppm.
- Example 4 (Synthesis of LFSI) Lithium hydroxide monohydrate (15.9 g, 0.36 mol) was added to 153.2 g of a butyl acetate solution containing 41.8 g (0.2 mol) of the di (fluorosulfonyl) amine ammonium salt obtained in Synthesis Example 1. The mixture was added and heated to reflux at an absolute pressure of 5.33 kPa and a temperature of 31 ° C. to 32 ° C. for 4 hours. The obtained liquid was filtered (Kiriyama No. 5B, retained particle diameter 4 ⁇ m) to remove insolubles (LiOH, etc.). The obtained filtrate was extracted by adding 100 ml of butyl acetate and 30 ml of water.
- the organic phase and the aqueous phase were separated, and the organic phase was extracted twice with 10 ml of water.
- the organic phase was placed in a rotary evaporator and concentrated at 60 ° C. to a LFSI concentration of 58.8% by mass. Crystals were precipitated by dropping 160 ml of methylene chloride into the concentrated LFSI solution. Thereafter, the crystals were separated by filtration under reduced pressure. The obtained crystals were washed with 320 ml of methylene chloride and dried under vacuum at room temperature for 7 hours. 14.96 g of LFSI was obtained. The obtained LFSI had an F ⁇ content of 11 ppm, a Cl ⁇ content of 11 ppm, and an SO 4 2 ⁇ content of 77 ppm.
- high-purity disulfonylamine alkali metal salt [II] can be produced with a low temperature history and at a low cost, which is industrially useful.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Secondary Cells (AREA)
Abstract
Description
本願は、2013年3月18日に、日本に出願された特願2013-055571号に基づき優先権を主張し、その内容をここに援用する。
そこで、本発明の課題は高純度のジスルホニルアミンアルカリ金属塩を低い温度履歴で且つ低コストで製造する方法を提供することにある。
前記ジスルホニルアミンアルカリ金属塩を含有する有機溶媒溶液を保留粒子径0.1~10μmのフィルターでろ過してろ液を得る工程を含む
ジスルホニルアミンアルカリ金属塩の製造方法。
(式〔I〕中、R1およびR2は、それぞれ独立して、1~6個の炭素原子を有するフッ化アルキル基、またはフッ素原子を示し、R1またはR2の少なくとも一方はフッ素原子である。
R3、R4、R5およびR6は、それぞれ独立して、水素原子、1~6個の炭素原子を有するアルキル基、または1~6個の炭素原子を有するアルコキシアルキル基を示し、R3、R4、R5およびR6のうち2つの基が一緒になってそれらが結合する窒素原子を環構成原子として含む5~8員環を形成してもよい。)
〔3〕 有機溶媒がエステル系溶媒である〔1〕または〔2〕に記載の製造方法。
〔4〕 有機溶媒が酢酸イソプロピルである〔1〕または〔2〕に記載の製造方法。
〔5〕 ろ過工程の後、ろ液を0~70℃の温度で濃縮する工程をさらに含む〔1〕~〔4〕のいずれかひとつに記載の製造方法。
〔6〕 ろ過工程の後、ろ液を0~50℃の温度で濃縮することを特徴とする〔5〕に記載の製造方法。
〔7〕 カチオン交換反応させる工程の後で、ろ過する工程の前に、前記有機溶媒溶液を水で洗浄して該有機溶媒溶液からオニウムカチオンを除去する工程をさらに含む〔1〕~〔6〕のいずれかひとつに記載の製造方法。
〔8〕 濃縮工程の後、ジスルホニルアミンアルカリ金属塩を晶析させる工程をさらに含む〔5〕~〔7〕のいずれかひとつに記載の製造方法。
式〔II〕中、M+は、アルカリ金属カチオンを示し、R1およびR2は式〔I〕におけるものと同じものを示す。ジスルホニルアミンアルカリ金属塩〔II〕は、前記ジスルホニルアミンアニオン〔III〕と、アルカリ金属カチオンM+からなる塩である。
フッ素樹脂製反応容器に、ジ(クロロスルホニル)アミン2.14質量部を仕込んだ。これに酢酸ブチル17.6質量部およびNH4F1.78質量部を添加し、75℃で4時間還流して反応させた。反応終了後、室温に冷却し、水2.5質量部を加えて水溶成分を抽出した。水相を取り除き、有機相を濃縮して、ジ(フルオロスルホニル)アミンアンモニウム塩を得た。
合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩19.8g(0.10mol)に酢酸イソプロピル60mLおよび水酸化リチウム・1水和物5.5g(0.13mol)を添加し、絶対圧力9.333kPa、温度27℃~33℃で、1.5時間加熱還流した。得られた液を25℃に冷却し、これに酢酸イソプロピル50mlと水20mlを添加して抽出した。有機相と水相とを分け、水相に酢酸イソプロピル50mLを添加して非水溶性成分を抽出した。当該抽出操作で得られた有機相を混ぜ合わせ、水5mlで水溶性成分の抽出を3回行った。得られた有機相を、ディーンシュターク管を備え付けた反応容器に入れて、温度35℃、絶対圧力約13.33kPaで3.5時間、途中に酢酸イソプロピル130mlを添加しながら、減圧還流して、水分を除去した。得られた有機溶媒溶液を保留粒子径1.0μmのメンブレンフィルターでろ過した。ろ液をロータリーエバポレーターに入れて40℃で蒸発させて、LFSI濃度57.9質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン160mlを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。濾別された結晶を塩化メチレン45mLで洗浄し、室温で8時間真空下で乾燥させた。LFSI4.58gが得られた。得られたLFSIは、F-含有量が5ppm未満、Cl-含有量が5ppm未満、SO4 2-含有量が5ppm未満であった。
合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩19.8g(0.10mol)に酢酸イソプロピル60mlおよび水酸化リチウム・1水和物5.5g(0.13mol)を添加し、絶対圧力9.333kPa、温度27℃~34℃で、1.5時間加熱還流した。得られた液を25℃に冷却し、これに酢酸イソプロピル50mlと水26mlを添加して抽出した。有機相と水相とに分け、水相に酢酸イソプロピル50mlを添加して非水溶性成分を抽出した。当該抽出操作で得られた有機相を混ぜ合わせ、水5mlで水溶性成分の抽出を3回行った。得られた有機相を、ディーンシュターク管を備え付けた反応容器に入れて、温度35℃、絶対圧力約7.99kPaで5時間、減圧還流して、水分を除去した。得られた有機溶媒溶液をロータリーエバポレーターに入れて40℃で蒸発させて、LFSI濃度54.4質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン180mlを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。濾別された結晶を塩化メチレン90mlで洗浄し、室温で8時間真空下で乾燥させた。LFSI4.41gが得られた。得られたLFSIは、F-含有量が46ppm、Cl-含有量が5ppm未満、SO4 2-含有量が10ppmであった。
合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩19.8g(0.10mol)に酢酸イソプロピル100mLおよび水酸化リチウム・1水和物5.5g(0.13mol)を添加し、絶対圧力9.333kPa、温度27℃~33℃で、1.5時間加熱還流した。得られた液を25℃に冷却し、これに水20mlを添加して抽出した。有機相と水相とに分け、水相に酢酸イソプロピル50mLを添加して非水溶性成分を抽出した。当該抽出操作で得られた有機相を混ぜ合わせ、水5mLで水溶性成分の抽出を3回行った。得られた有機相を、ディーンシュターク管を備え付けた反応容器に入れて、温度35℃、絶対圧力10.66~13.33kPaで5時間、減圧還流して、水分を除去した。得られた有機溶媒溶液を(桐山No.5B、保留粒子径4μm)のフィルターでろ過した。得られたLFSI溶液75.2gのうち41.9gをロータリーエバポレーターに入れて、40℃で蒸発させて、LFSI濃度56.4質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン100mlを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。濾別された結晶を塩化メチレン45mlで洗浄し、室温で8時間真空下で乾燥させた。LFSI2.69gが得られた。得られたLFSIはF-含有量が5ppm未満、Cl-含有量が6ppm、SO4 2-含有量が6ppmであった。
合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩19.8g(0.10mol)に酢酸イソプロピル100mLおよび水酸化リチウム・1水和物5.5g(0.13mol)を添加し、絶対圧力9.333kPa、温度27℃~33℃で、1.5時間加熱還流した。得られた液を25℃に冷却し、これに水20mlを添加して抽出した。有機相と水相とに分け、水相に酢酸イソプロピル50mLを添加して非水溶性成分を抽出した。当該抽出操作で得られた有機相を混ぜ合わせ、水5mLで水溶性成分の抽出を3回行った。得られた有機相を、ディーンシュターク管を備え付けた反応容器に入れて、温度35℃、絶対圧力10.66~13.33kPaで5時間、減圧還流して、水分を除去した。得られた有機溶媒溶液を(桐山No.5B、保留粒子径4μm)のフィルターでろ過した。得られたLFSI溶液75.2gのうち33.3gをロータリーエバポレーターに入れて、60℃で蒸発させて、LFSI濃度67.4質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン80mlを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。濾別された結晶を塩化メチレン45mlで洗浄し、室温で8時間真空下で乾燥させた。LFSI5.00gが得られた。得られたLFSIはF-含有量が66ppm、Cl-含有量が5ppm未満、SO4 2-含有量が76ppmであった。
合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩を356.7g(1.80mol)含有する酢酸ブチル溶液1306.6gに水酸化リチウム・1水和物98.2g(2.34mol)を添加し、絶対圧力8.67kPa、温度31℃~35℃で、4時間加熱還流した。得られた液を25℃に冷却し、水182mLを添加して抽出した。有機相と水相とに分け、水相に酢酸ブチル900mLを添加して非水溶性成分を抽出した。当該抽出操作で得られた有機相を混ぜ合わせ、水20mLで水溶性成分の抽出を4回行った。得られた有機溶媒溶液をロータリーエバポレーターに入れて、60℃で蒸発させて、LFSI濃度56.9質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン1450mLを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。得られた結晶を塩化メチレン600mLで洗浄し、室温で9時間真空下で乾燥させた。LFSI114.8gが得られた。得られたLFSIは、F-含有量が288ppm、Cl-含有量が10ppm、SO4 2-含有量が49ppmであった。
合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩を41.8g(0.2mol)含有する酢酸ブチル溶液153.2gに水酸化リチウム・1水和物15.9g(0.36mol)を添加し、絶対圧力5.33kPa、温度31℃~32℃で、4時間加熱還流した。得られた液をろ過(桐山No.5B、保留粒子径4μm)し、不溶分(LiOH等)を除去した。得られたろ液に酢酸ブチル100mlおよび水30mlを添加して抽出した。有機相と水相とに分け、有機相を水10mlで水溶性成分の抽出を2回行った。有機相をロータリーエバポレーターに入れて、60℃でLFSI濃度58.8質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン160mlを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。得られた結晶を塩化メチレン320mlで洗浄し、室温で7時間真空下で乾燥させた。LFSI14.96gが得られた。得られたLFSIは、F-含有量が11ppm、Cl-含有量が11ppm、SO4 2-含有量が77ppmであった。
Claims (8)
- 有機溶媒中で式〔I〕
(式〔I〕中、R1およびR2は、それぞれ独立して、1~6個の炭素原子を有するフッ化アルキル基、またはフッ素原子を示し、R1またはR2の少なくとも一方はフッ素原子である。
R3、R4、R5およびR6は、それぞれ独立して、水素原子、1~6個の炭素原子を有するアルキル基、または1~6個の炭素原子を有するアルコキシアルキル基を示し、R3、R4、R5およびR6のうち2つの基が一緒になってそれらが結合する窒素原子を環構成原子として含む5~8員環を形成してもよい。)で表されるジスルホニルアミンオニウム塩を、カチオン交換反応させて、式〔II〕
(式〔II〕中、M+は、アルカリ金属カチオンを示し、R1およびR2は式〔I〕におけるものと同じものを示す。)で表されるジスルホニルアミンアルカリ金属塩にする工程、および
前記ジスルホニルアミンアルカリ金属塩を含有する有機溶媒溶液を保留粒子径0.1~10μmのフィルターでろ過してろ液を得る工程を含むジスルホニルアミンアルカリ金属塩の製造方法。 - フィルターがメンブレンフィルターである請求項1に記載の製造方法。
- 有機溶媒がエステル系溶媒である請求項1または2に記載の製造方法。
- 有機溶媒が酢酸イソプロピルである請求項1または2に記載の製造方法。
- ろ過工程の後、ろ液を0~70℃の温度で濃縮する工程をさらに含む請求項1~4のいずれかひとつに記載の製造方法。
- ろ過工程の後、ろ液を0~50℃の温度で濃縮することを特徴とする請求項5に記載の製造方法。
- カチオン交換反応させる工程の後で、ろ過する工程の前に、前記有機溶媒溶液を水で洗浄して該有機溶媒溶液からオニウムカチオンを除去する工程をさらに含む請求項1~6のいずれかひとつに記載の製造方法。
- 濃縮工程の後、ジスルホニルアミンアルカリ金属塩を晶析させる工程をさらに含む請求項5~7のいずれかひとつに記載の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015506689A JP6303177B2 (ja) | 2013-03-18 | 2014-03-05 | ジスルホニルアミンアルカリ金属塩の製造方法 |
KR1020157025235A KR101741939B1 (ko) | 2013-03-18 | 2014-03-05 | 디술포닐아민알칼리 금속염의 제조 방법 |
US14/773,964 US9950929B2 (en) | 2013-03-18 | 2014-03-05 | Method for producing disulfonylamine alkali metal salt |
ES14768419.5T ES2687897T3 (es) | 2013-03-18 | 2014-03-05 | Método para producir sal de metal alcalino de disulfonilamina |
CN201480014935.3A CN105121335A (zh) | 2013-03-18 | 2014-03-05 | 二磺酰胺碱金属盐的制造方法 |
EP14768419.5A EP2977349B1 (en) | 2013-03-18 | 2014-03-05 | Method for producing disulfonylamine alkali metal salt |
CA2904489A CA2904489C (en) | 2013-03-18 | 2014-03-05 | Method for producing disulfonylamine alkali metal salt |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-055571 | 2013-03-18 | ||
JP2013055571 | 2013-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014148258A1 true WO2014148258A1 (ja) | 2014-09-25 |
Family
ID=51579947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/055622 WO2014148258A1 (ja) | 2013-03-18 | 2014-03-05 | ジスルホニルアミンアルカリ金属塩の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US9950929B2 (ja) |
EP (1) | EP2977349B1 (ja) |
JP (1) | JP6303177B2 (ja) |
KR (1) | KR101741939B1 (ja) |
CN (1) | CN105121335A (ja) |
CA (1) | CA2904489C (ja) |
ES (1) | ES2687897T3 (ja) |
TW (1) | TWI607988B (ja) |
WO (1) | WO2014148258A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017052689A (ja) * | 2013-11-18 | 2017-03-16 | 日本曹達株式会社 | ジスルホニルアミド塩の顆粒または粉末 |
JP2017514779A (ja) * | 2014-04-18 | 2017-06-08 | アルケマ フランス | フルオロスルホニル基を含むイミドの調製 |
JP2017210392A (ja) * | 2016-05-27 | 2017-11-30 | 株式会社日本触媒 | 電解液材料の製造方法 |
CN107710492A (zh) * | 2015-06-23 | 2018-02-16 | 株式会社日本触媒 | 导电性材料及其制备方法和精制方法,以及使用了该导电性材料的非水电解液和抗静电剂 |
JP2018052760A (ja) * | 2016-09-27 | 2018-04-05 | 株式会社日本触媒 | ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法 |
JPWO2018021185A1 (ja) * | 2016-07-26 | 2019-05-16 | 東ソー・ファインケム株式会社 | ハロゲン化物が低減された重合性官能基を有するスルホンイミドの有機溶剤溶液 |
JP2020500132A (ja) * | 2016-12-08 | 2020-01-09 | アルケマ フランス | LiFSIを乾燥及び精製するための方法 |
JP2020500133A (ja) * | 2016-12-08 | 2020-01-09 | アルケマ フランス | リチウムビス(フルオロスルホニル)イミド塩を乾燥及び精製するための方法 |
JP2021526500A (ja) * | 2018-06-01 | 2021-10-07 | アルケマ フランス | リチウム ビス(フルオロスルホニル)イミド塩を精製するための方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10020538B2 (en) | 2015-11-13 | 2018-07-10 | Uchicago Argonne, Llc | Salts for multivalent ion batteries |
KR101718292B1 (ko) * | 2015-11-26 | 2017-03-21 | 임광민 | 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법 |
US10892520B2 (en) | 2017-01-20 | 2021-01-12 | Massachusetts Institute Of Technology | Sulfonimide salts for battery applications |
KR102396198B1 (ko) | 2017-04-10 | 2022-05-10 | 샌트랄 글래스 컴퍼니 리미티드 | 포스포릴이미드염의 제조방법, 당해 염을 포함하는 비수전해액의 제조방법 및 비수 이차 전지의 제조방법 |
FR3081724A1 (fr) * | 2018-06-01 | 2019-12-06 | Arkema France | Procede de purification du sel de lithium de bis(fluorosulfonyl)imide |
FR3081722A1 (fr) * | 2018-06-01 | 2019-12-06 | Arkema France | Composition a base de sel de lithium de bis(fluorosulfonyl)imide |
FR3081857B1 (fr) * | 2018-06-01 | 2022-05-06 | Arkema France | Composition de sel de lithium de bis(fluorosulfonyl)imide |
FR3081725A1 (fr) * | 2018-06-01 | 2019-12-06 | Arkema France | Procede de purification d'un sel de lithium du bis(fluorosulfonyl)imide |
KR102181108B1 (ko) * | 2019-09-11 | 2020-11-20 | (주)부흥산업사 | 리튬 비스(플루오로술포닐)이미드와 그 제조방법 |
EP4324788A1 (en) * | 2021-04-12 | 2024-02-21 | Ep Chemtech Co., Ltd. | Lithium salt of bisfluorosulfonylimide comprising cesium ion or rubidium ion |
KR20240051958A (ko) | 2021-08-27 | 2024-04-22 | 스페셜티 오퍼레이션스 프랑스 | 플루오로설포닐이미드 염을 제조하기 위한 반응 증류 공정 |
CN117246982A (zh) * | 2022-06-10 | 2023-12-19 | 时代思康新材料有限公司 | 双氟磺酰亚胺锂和提纯双氟磺酰亚胺锂的方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08511274A (ja) | 1994-03-21 | 1996-11-26 | サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク | 良好な耐食性を示すイオン性伝導材料 |
JP2000086617A (ja) * | 1998-09-08 | 2000-03-28 | Kanto Denka Kogyo Co Ltd | ビスパーフルオロアルキルスルホンイミド化合物の製造方法 |
JP2003192661A (ja) * | 2001-12-17 | 2003-07-09 | Three M Innovative Properties Co | 非水溶媒中におけるフルオロアルキルスルホニル基含有アルカリ金属塩の製造方法及びその使用方法 |
JP2010168249A (ja) | 2009-01-22 | 2010-08-05 | Nippon Shokubai Co Ltd | フルオロスルホニルイミド類およびその製造方法 |
WO2011065502A1 (ja) | 2009-11-27 | 2011-06-03 | 株式会社日本触媒 | フルオロスルホニルイミド塩およびフルオロスルホニルイミド塩の製造方法 |
WO2011149095A1 (ja) | 2010-05-28 | 2011-12-01 | 株式会社日本触媒 | フルオロスルホニルイミドのアルカリ金属塩およびその製造方法 |
WO2012108284A1 (ja) | 2011-02-10 | 2012-08-16 | 日本曹達株式会社 | フルオロスルホニルイミドアンモニウム塩の製造方法 |
WO2012117961A1 (ja) * | 2011-03-03 | 2012-09-07 | 日本曹達株式会社 | フルオロスルホニルイミドアンモニウム塩の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003108284A (ja) | 2001-09-28 | 2003-04-11 | Victor Co Of Japan Ltd | 画像コンテンツ配信システム及び画像表示装置 |
US20090163586A1 (en) * | 2007-12-20 | 2009-06-25 | Astrazeneca Ab | Bis-(Sulfonylamino) Derivatives in Therapy 205 |
WO2009123328A1 (en) | 2008-03-31 | 2009-10-08 | Nippon Shokubai Co., Ltd. | Sulfonylimide salt and method for producing the same |
WO2009132241A2 (en) * | 2008-04-24 | 2009-10-29 | 3M Innovative Properties Company | Proton conducting materials |
TWI406869B (zh) * | 2010-09-01 | 2013-09-01 | Nippon Catalytic Chem Ind | An alkali metal salt of fluosulfonyl imide and a process for producing the same |
SG192235A1 (en) * | 2011-03-03 | 2013-09-30 | Nippon Soda Co | Process for producing fluorine-containing sulfonylimide salt |
-
2014
- 2014-03-05 ES ES14768419.5T patent/ES2687897T3/es active Active
- 2014-03-05 EP EP14768419.5A patent/EP2977349B1/en not_active Not-in-force
- 2014-03-05 JP JP2015506689A patent/JP6303177B2/ja not_active Expired - Fee Related
- 2014-03-05 CA CA2904489A patent/CA2904489C/en active Active
- 2014-03-05 WO PCT/JP2014/055622 patent/WO2014148258A1/ja active Application Filing
- 2014-03-05 KR KR1020157025235A patent/KR101741939B1/ko active IP Right Grant
- 2014-03-05 CN CN201480014935.3A patent/CN105121335A/zh active Pending
- 2014-03-05 US US14/773,964 patent/US9950929B2/en active Active
- 2014-03-07 TW TW103107852A patent/TWI607988B/zh not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08511274A (ja) | 1994-03-21 | 1996-11-26 | サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク | 良好な耐食性を示すイオン性伝導材料 |
JP2000086617A (ja) * | 1998-09-08 | 2000-03-28 | Kanto Denka Kogyo Co Ltd | ビスパーフルオロアルキルスルホンイミド化合物の製造方法 |
JP2003192661A (ja) * | 2001-12-17 | 2003-07-09 | Three M Innovative Properties Co | 非水溶媒中におけるフルオロアルキルスルホニル基含有アルカリ金属塩の製造方法及びその使用方法 |
JP2010168249A (ja) | 2009-01-22 | 2010-08-05 | Nippon Shokubai Co Ltd | フルオロスルホニルイミド類およびその製造方法 |
WO2011065502A1 (ja) | 2009-11-27 | 2011-06-03 | 株式会社日本触媒 | フルオロスルホニルイミド塩およびフルオロスルホニルイミド塩の製造方法 |
WO2011149095A1 (ja) | 2010-05-28 | 2011-12-01 | 株式会社日本触媒 | フルオロスルホニルイミドのアルカリ金属塩およびその製造方法 |
WO2012108284A1 (ja) | 2011-02-10 | 2012-08-16 | 日本曹達株式会社 | フルオロスルホニルイミドアンモニウム塩の製造方法 |
WO2012117961A1 (ja) * | 2011-03-03 | 2012-09-07 | 日本曹達株式会社 | フルオロスルホニルイミドアンモニウム塩の製造方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2977349A1 * |
YOSHIHARU MATSUDA ET AL.: "Effects of Electrolyte Imide Salt Purity on Negative Electrode Charge-Discharge Characteristics in Lithium Secondary Cells", PROCEEDINGS OF THE 68TH CONFERENCE OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, 25 March 2001 (2001-03-25), pages 232 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10214419B2 (en) | 2013-11-18 | 2019-02-26 | Nippon Soda Co., Ltd. | Granules or powder of disulfonylamide salt and method for producing same |
JP2017052689A (ja) * | 2013-11-18 | 2017-03-16 | 日本曹達株式会社 | ジスルホニルアミド塩の顆粒または粉末 |
JP2017514779A (ja) * | 2014-04-18 | 2017-06-08 | アルケマ フランス | フルオロスルホニル基を含むイミドの調製 |
CN107710492A (zh) * | 2015-06-23 | 2018-02-16 | 株式会社日本触媒 | 导电性材料及其制备方法和精制方法,以及使用了该导电性材料的非水电解液和抗静电剂 |
KR20180020135A (ko) | 2015-06-23 | 2018-02-27 | 가부시기가이샤 닛뽕쇼꾸바이 | 도전성 재료와 그 제조방법 및 정제방법, 및 이 도전성 재료를 사용한 비수전해액 및 대전방지제 |
KR102542990B1 (ko) * | 2015-06-23 | 2023-06-12 | 가부시기가이샤 닛뽕쇼꾸바이 | 도전성 재료와 그 제조방법 및 정제방법, 및 이 도전성 재료를 사용한 비수전해액 및 대전방지제 |
EP3316381A4 (en) * | 2015-06-23 | 2019-02-27 | Nippon Shokubai Co., Ltd. | CONDUCTIVE MATERIAL AND MANUFACTURING METHOD AND CLEANING PROCESS THEREFOR AND WATER-FREE ELECTROLYTE SOLUTION AND ANTISTATIC AGENT USING THE SAID CONDUCTIVE MATERIAL |
US10461365B2 (en) | 2015-06-23 | 2019-10-29 | Nippon Shokubai Co., Ltd. | Conductive material and manufacturing method and purification method for same, and non aqueous electrolyte solution and antistatic agent using said conductive material |
JP7042018B2 (ja) | 2016-05-27 | 2022-03-25 | 株式会社日本触媒 | 電解液材料の製造方法 |
JP2017210392A (ja) * | 2016-05-27 | 2017-11-30 | 株式会社日本触媒 | 電解液材料の製造方法 |
JPWO2018021185A1 (ja) * | 2016-07-26 | 2019-05-16 | 東ソー・ファインケム株式会社 | ハロゲン化物が低減された重合性官能基を有するスルホンイミドの有機溶剤溶液 |
JP2018052760A (ja) * | 2016-09-27 | 2018-04-05 | 株式会社日本触媒 | ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法 |
JP2020500133A (ja) * | 2016-12-08 | 2020-01-09 | アルケマ フランス | リチウムビス(フルオロスルホニル)イミド塩を乾燥及び精製するための方法 |
US11084723B2 (en) | 2016-12-08 | 2021-08-10 | Arkema France | Method for drying and purifying LiFSI |
JP2020500132A (ja) * | 2016-12-08 | 2020-01-09 | アルケマ フランス | LiFSIを乾燥及び精製するための方法 |
US11316200B2 (en) | 2016-12-08 | 2022-04-26 | Arkema France | Method for drying and purifying lithium bis(fluorosulfonyl)imide salt |
JP2021526500A (ja) * | 2018-06-01 | 2021-10-07 | アルケマ フランス | リチウム ビス(フルオロスルホニル)イミド塩を精製するための方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2904489A1 (en) | 2014-09-25 |
US20160016797A1 (en) | 2016-01-21 |
CA2904489C (en) | 2017-02-14 |
US9950929B2 (en) | 2018-04-24 |
ES2687897T3 (es) | 2018-10-29 |
KR101741939B1 (ko) | 2017-05-30 |
TWI607988B (zh) | 2017-12-11 |
KR20150119310A (ko) | 2015-10-23 |
EP2977349A1 (en) | 2016-01-27 |
EP2977349A4 (en) | 2016-08-03 |
EP2977349B1 (en) | 2018-08-08 |
TW201443008A (zh) | 2014-11-16 |
JPWO2014148258A1 (ja) | 2017-02-16 |
CN105121335A (zh) | 2015-12-02 |
JP6303177B2 (ja) | 2018-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6303177B2 (ja) | ジスルホニルアミンアルカリ金属塩の製造方法 | |
JP6139944B2 (ja) | フルオロスルホニルイミドのアルカリ金属塩の製造方法 | |
US9985317B2 (en) | Alkali metal salt of fluorosulfonyl imide, and production method therefor | |
ES2634678T3 (es) | Método de fabricación para la sal amónica de fluorosulfonilimida | |
KR101345271B1 (ko) | 플루오로설포닐이미드염 및 플루오로설포닐이미드염의 제조방법 | |
WO2017204302A1 (ja) | ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法および非水系電解液の製造方法 | |
JP5208782B2 (ja) | フルオロスルホニルイミド類およびその製造方法 | |
JP6370852B2 (ja) | ジスルホニルアミド塩の顆粒または粉末 | |
JP4621783B2 (ja) | フルオロスルホニルイミド類およびその製造方法 | |
JP2018535181A (ja) | ビス(フルオロスルホニル)−イミド及びこの塩を調製する方法 | |
JP5401336B2 (ja) | フルオロスルホニルイミド塩の製造方法 | |
JP5402634B2 (ja) | 精製された含フッ素ビススルホニルイミドのアンモニウム塩の製造方法 | |
JP2016088809A (ja) | フルオロスルホニルイミド塩の製造方法 | |
JP6718511B2 (ja) | フッ素含有スルホニルアミド化合物の製造方法 | |
WO2015056625A1 (ja) | ジスルホニルアミド塩およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14768419 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015506689 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014768419 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2904489 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14773964 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157025235 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |