WO2014148191A1 - ガスエンジンの燃焼制御装置 - Google Patents

ガスエンジンの燃焼制御装置 Download PDF

Info

Publication number
WO2014148191A1
WO2014148191A1 PCT/JP2014/054049 JP2014054049W WO2014148191A1 WO 2014148191 A1 WO2014148191 A1 WO 2014148191A1 JP 2014054049 W JP2014054049 W JP 2014054049W WO 2014148191 A1 WO2014148191 A1 WO 2014148191A1
Authority
WO
WIPO (PCT)
Prior art keywords
knocking
cylinder
return
gas fuel
gas
Prior art date
Application number
PCT/JP2014/054049
Other languages
English (en)
French (fr)
Inventor
鈴木 元
秀樹 西尾
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480010866.9A priority Critical patent/CN105026738B/zh
Priority to US14/777,470 priority patent/US9964053B2/en
Priority to EP14768042.5A priority patent/EP2957753B1/en
Priority to KR1020157025419A priority patent/KR101755969B1/ko
Publication of WO2014148191A1 publication Critical patent/WO2014148191A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1522Digital data processing dependent on pinking with particular means concerning an individual cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/025Failure diagnosis or prevention; Safety measures; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a combustion control device for a gas engine, and more particularly to a combustion control device for knocking.
  • a power generation facility using a gas engine using natural gas or city gas as a main fuel is installed from the viewpoint of a clean energy source.
  • the fuel supply valve provided in each cylinder is controlled and the ignition timing is controlled.
  • abnormal combustion such as knocking or misfire may occur. It is necessary to detect and avoid abnormal combustion such as knocking and misfire at an early stage.
  • Patent Document 1 Japanese Patent No. 4688916
  • Patent Document 2 Japanese Patent No. 4247842
  • This Patent Document 1 detects an exhaust temperature for each cylinder of a gas engine, detects a cylinder in which knocking or misfire has occurred, reduces the fuel supply amount to the cylinder having the maximum exhaust temperature, and minimizes the exhaust temperature.
  • the load leveling control for increasing the fuel supply amount to the cylinder is executed, and the fuel supply is stopped or decreased for a predetermined period for the cylinder in which knocking or misfire has occurred. Further, it is shown that the cylinders that are countermeasures against knocking or misfire are excluded from the cylinders of the load leveling control.
  • Patent Document 2 shows a knock control device for a gas engine, and the magnitude of knocking detected by a knocking sensor is generated in each cylinder based on a calculated value of occurrence frequency of knocking that exceeds a predetermined value.
  • the average value of the frequency is compared with the frequency of occurrence in the cylinder. If the frequency of occurrence in the cylinder is equal to or higher than the average value of the frequency of occurrence, the gas injection amount is reduced for the cylinder, If the occurrence frequency in the cylinder is equal to or less than a predetermined frequency from the average value of the occurrence frequency, it is indicated that the gas injection amount to the cylinder is increased.
  • Patent Document 1 and Patent Document 2 described above as a countermeasure technique when knocking or misfire occurs, the supply of gas fuel is stopped or reduced with respect to the cylinder in which knocking has occurred, It discloses that the ignition timing is retarded, and does not disclose the return control for returning the gas fuel increase amount or the gas fuel injection timing or the ignition timing again after executing the countermeasure control.
  • An object of the present invention is to provide a combustion control device for a gas engine that prevents an unstable combustion state such as a misfire from falling during a return by appropriately performing control.
  • the present invention has been made to solve such a problem, and in a combustion control device for a gas engine, knocking determination means for determining occurrence of knocking in each cylinder, and occurrence of knocking is determined by the knocking occurrence determination means.
  • the knocking occurs after the stop or decrease, and the knocking reducing means for reducing the supply of gas fuel to the other cylinders where knocking does not occur and the supply of gas fuel to other cylinders where knocking does not occur.
  • the supply of gas fuel to the knocking cylinder is stopped or reduced, and the supply of gas fuel is also reduced to other cylinders that do not generate knocking. .
  • the air-fuel ratio for the knocking cylinder is shifted to the lean side, and the occurrence of knocking is suppressed.
  • the gas fuel is reduced in response to an instruction to reduce the load due to a predetermined decrease in the power generation output in order to prevent overload for the other cylinders in which knocking does not occur.
  • the knocking determining means determines that knocking has not occurred, the supply of the reduced or stopped gas fuel is restored to the original state. That is, the required gas fuel amount for the required load is restored.
  • the return is caused to recover from the stopped or reduced state of the gas fuel by the first return means, and in the other cylinders other than the knock occurrence cylinder, the second return means is used to return from the reduced state of the gas fuel. . Then, the return time in the first return means is made shorter than the return time in the second return means, and the return of the knocking cylinder is prioritized. For this reason, first, the cylinder in which knocking has occurred is restored, and if there is no abnormality again, that is, it is confirmed again that abnormal combustion such as knocking or misfiring will not recur, In contrast, the return can be terminated. Therefore, the return control can be performed reliably and stably.
  • the first return means and the second return means perform the return control when knocking does not occur within a predetermined time after the gas fuel is stopped or reduced by the knock reduction means. It may be configured to start.
  • the rate of increase of gas fuel in the first return means is set larger than the rate of increase of gas fuel in the second return means.
  • the return time of the first return means can be made shorter than the return time of the second return means by making the increase rate of the gas fuel in the first return means larger than the increase rate of the gas fuel in the second return means.
  • the first return means may be set to return in a short time, for example, 2 to 3 seconds after starting the return control.
  • the amount of gas fuel reduced by the knocking reducing means is set to be larger for the knocking cylinder than for other cylinders where knocking does not occur.
  • the amount of reduction of the gas fuel set by the knocking reduction means at that time may be further added to reduce.
  • the knocking reduction and the subsequent return control can be stably performed by further reducing the gas fuel supply amount at that time.
  • the return control when returning to the optimal operation by increasing again is appropriately performed, It can prevent falling into unstable combustion states, such as misfire.
  • the gas fuel is stopped or returned from the reduced state by the first return means, and the gas fuel is returned from the reduced state by the second return means in the cylinders other than the knocking cylinder.
  • the return time of the first return means is made shorter than the return time of the second return means so that the return of the cylinder in which knocking has occurred is prioritized and finished, so that the knocking reoccurs.
  • FIG. 1 is a system diagram showing the overall configuration of a combustion control apparatus for a gas engine according to a first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional explanatory view showing a structure around a combustion chamber of the gas engine shown in FIG. 1. It is a flowchart of a combustion control apparatus. The return state of the gas fuel by the return means is shown, (A) shows the case of a cylinder other than the knocking cylinder, (B) shows the case of the knocking cylinder, and (C) shows a comparative example. It is explanatory drawing which shows a knocking area
  • FIG. 1 shows an overall configuration of a combustion control apparatus for a gas engine according to a first embodiment of the present invention
  • FIG. 2 is a partial sectional view around a combustion chamber.
  • a gas engine hereinafter simply referred to as an engine
  • the crankshaft 2 of the engine 1 is provided with a flywheel 3, and a generator 5 is directly attached to the flywheel 3.
  • a gas fuel control device 7 that controls the amount of gas fuel supplied into each cylinder of the engine 1 and an ignition device 9 that ignites the gas fuel supplied into each cylinder are provided.
  • a piston 13 slidably fitted in the cylinder 11 a main combustion chamber 17 defined between the upper surface of the piston 13 and the inner surface of the cylinder block 15, the main combustion chamber 17 is provided with an intake port 19 connected to 17, an intake valve 21 for opening and closing the intake port 19, and the like.
  • a gas mixer 25 is installed in the supply pipe 23 upstream of the intake port 19, a gas supply pipe 27 is connected, and a gas adjustment valve 29 is provided in the gas supply pipe 27 to adjust the amount of fuel gas.
  • the supplied fuel gas and the air supplied through the air supply pipe 23 are premixed by the gas mixer 25. Then, it reaches the intake valve 21 via the intake port 19, and the premixed gas mixture is supplied to the main combustion chamber 17 by opening the intake valve 21.
  • the air supply pipe 23, the gas supply pipe 27, the gas regulating valve 29 provided in the gas supply pipe 27, and the gas mixer 25 shown in FIG. 2 are provided for each cylinder.
  • an ignition device 9 is provided for each cylinder in the cylinder bed 31 that forms the upper part of the main combustion chamber 17 of each cylinder.
  • the ignition device 9 has a structure in which a sub-combustion chamber (sub-chamber) and a spark plug (not shown) are provided.
  • the sub-chamber fuel gas supplied to the sub-chamber is ignited by the spark plug, and the sub-chamber is ignited.
  • the generated flame is injected into the main combustion chamber 17 to burn the mixed gas in the main combustion chamber 17.
  • the ignition device 9 is ignited by an ignition plug at an appropriate timing based on signals from the rotation speed sensor 42, the crank angle sensor 45, and the load sensor 47, and injects a flame into the main combustion chamber 17. Yes.
  • an exhaust port 35 is connected to the main combustion chamber 17, and exhaust gas after combustion is discharged from the main combustion chamber 17 by opening the exhaust valve 37.
  • An exhaust pipe 39 (not shown) is connected to the downstream side of the exhaust port 35, and an exhaust supercharger (not shown) is attached to the exhaust pipe 39.
  • An in-cylinder pressure sensor 41 that detects the in-cylinder pressure in the main combustion chamber 17 is provided for each cylinder, and the flywheel 3 is provided with a rotation speed sensor 42 that detects the engine speed and a crank angle sensor 45.
  • the generator 5 is provided with a load sensor 47 for detecting the load of the generator 5, that is, the engine load. Signals from these sensors are input to a combustion control device 43 described later.
  • the combustion control device 43 in the engine 1 having the above configuration mainly detects an abnormal combustion state from the change in the in-cylinder pressure in the main combustion chamber 17 of each cylinder based on a signal from the in-cylinder pressure sensor 41, Knocking determination means 49 for determining whether knocking has occurred or not is provided.
  • the knocking determination means 49 determines the occurrence of knocking
  • the first knocking reduction means 51 that stops or reduces the supply of gas fuel to the knocking occurrence cylinder, and other cylinders other than the knocking occurrence cylinder
  • second knocking reducing means 53 for reducing the supply of gas fuel
  • knocking reducing means 55 constituted by the second knocking reducing means 55.
  • the first knock reduction means 51 stops or reduces the gas fuel for the cylinder in which knocking has occurred. Therefore, the gas fuel is stopped or reduced by controlling the opening of the gas regulating valve 29 provided in the gas supply pipe 27.
  • the reduction rate may be set so as to reduce the supply amount at that time by 2 to 3%. Further, since the reduction control becomes complicated, the supply of gas fuel may be uniformly stopped.
  • the reduction amount of 2 to 3% is a gas fuel reduction amount necessary for shifting the air-fuel ratio to the lean side in order to suppress knocking.
  • the second knocking reduction means 53 reduces the gas fuel to the cylinders other than the knocking cylinder. In this case, since it is a cylinder in which knocking has not occurred, it is not a reduction in gas fuel for shifting the air-fuel ratio to the lean side. In order to prevent overloading by increasing the load sharing of other cylinders (by increasing the load of other cylinders by operating the cover mechanism), the load of the power generation output is reduced.
  • the knocking occurrence cylinder The first return means 57 for returning from the stopped or reduced state of the gas fuel to the amount of gas fuel before the occurrence of knocking, and the gas before the torque reduction from the reduced state of the gas fuel in other cylinders other than the knocking occurrence cylinder Second return means 59 for returning to the fuel amount.
  • combustion control device 43 further sets the return time in the first return means 57 to be shorter than the return time of the second return means 59, and prioritizes the return of the knocking cylinder to other cylinders that do not generate knocking. Configured to do.
  • the cylinder is first restored to the state where knocking has occurred, and if an abnormality does not occur again, that is, after confirming whether or not abnormal combustion such as knocking or misfiring will occur again or while confirming
  • the return is also finished for the other cylinders where knocking does not occur. Therefore, the return control can be performed reliably and stably.
  • the reduction or return of the gas fuel by the first knocking reduction means 51, the second knocking reduction means 53, the first return means 57, and the second return means 59 of the combustion control device 43 is performed by the gas fuel control device 7. This is done by controlling the opening of the gas regulating valve 29 that constitutes.
  • step S2 in-cylinder pressure of each cylinder is detected in step S1.
  • step S2 it is determined whether knocking has occurred, and it is determined whether knocking has occurred. The process is repeated until it occurs. If it has occurred, the cylinder in which knocking has occurred is specified in step S3.
  • step S4 the amount of gas fuel for the knocking cylinder is reduced or stopped, and the air-fuel ratio is shifted to lean (t0 in the time chart of FIG. 4B). Thereafter, in step S5, the system waits for a certain period of time with the gas amount reduced or stopped (t0 to t1 in the time chart of FIG. 4B).
  • step S6 it is determined whether knocking has occurred during the standby. When it is determined in step S6 that knocking has not occurred, in step S7, it is returned at time ta (t1 to t2 in the time chart of FIG. 4B). In the next step S8, it is determined whether or not knocking has occurred during the return operation. If knocking has not occurred in step S8, the process ends in step S9, assuming that the return is complete. If it is determined in step S8 that knocking has occurred, the process returns to step S4 and is repeated.
  • step S10 the amount of gas fuel with respect to other cylinders where no knocking occurs is reduced (t0 in the time chart of FIG. 4A).
  • This reduction in the amount of gas fuel is set as a reduction amount of gas fuel commensurate with a load reduction of 2 to 3% KW of the power generation output in order to prevent overload.
  • step S11 the system waits for a certain time in the gas amount reduced state (t0 to t1 in the time chart of FIG. 4A).
  • step S12 it is determined whether knocking has occurred during the standby. If it is determined in step S12 that knocking has not occurred, it is returned over time tb (t1 to t3 in the time chart of FIG. 4A) in step S14. In the next step S15, it is determined whether knocking has occurred during the return operation. If knocking has not occurred in step S15, the process ends in step S16, assuming that the return is complete. If it is determined in step S15 that knocking has occurred, the process returns to step S10 and is repeated.
  • the above steps S10 to S16 have the same processing flow as steps S4 to S9.
  • step S13 a constant load reduction is performed on all the cylinders and the gas fuel amount is reduced accordingly.
  • FIG. 4 shows a return state by the first return means 57 and the second return means 59.
  • (A) is for the cylinders other than the knocking cylinder, and shows the case by the second return means 59
  • (B) is for the knocking cylinder and shows the case by the first return means 57
  • ( C) shows, as a comparative example, an example in which the supply amount of gas fuel is reduced along a constant load reduction for all cylinders.
  • the recovery time tb in the present invention, longer than the recovery time ta
  • the gas fuel is gradually increased at the time of return from the state where the temperature in the combustion chamber is lowered, and instability of combustion appears and misfire is likely to occur.
  • such an unstable return can be avoided by increasing the amount of gas fuel at once at the return time ta (a time shorter than the return time tb).
  • the start of return of the first return means 57 and the second return means 59 is started at the same time as t1, but the second return means shown in FIG.
  • the start time of 59 may be started from time t2 when the return by the first return means 57 is completed.
  • FIG. 5 shows regions where abnormal combustion (knocking, misfire) of the engine 1 occurs, and shows the respective regions with the air-fuel ratio ⁇ on the horizontal axis and the engine output P on the vertical axis.
  • the engine 1 of the present embodiment is operating at a high output and is operated at a substantially constant rotation at the point P1. It is easy to move to the operating point P2 in the knocking region due to fluctuations in power generation load and environmental conditions. When moving to the knocking region, it is necessary to respond from the knocking region to the normal operation region by reducing the output or leaning the air-fuel ratio. In the present embodiment, knocking is avoided by shifting the air-fuel ratio to the lean side by a 2-3% reduction in the amount of gas fuel at the time of operation for the cylinder in which knocking occurs.
  • the gas fuel is stopped or reduced for the knocking cylinder, and in the subsequent return control to the optimum operation, the fuel is misfired in order to increase the gas fuel appropriately. It can prevent falling into unstable combustion state.
  • the first return means 57 returns the gas fuel from the stopped or reduced state
  • the second return means 59 returns the gas fuel from the reduced state in the cylinders other than the knocking cylinder.
  • the return time in the first return means 57 is made shorter than the return time of the second return means 59, giving priority to the return of the cylinder in which knocking has occurred, and then the return of other cylinders in which knocking has not occurred. Therefore, the return control can be performed reliably and stably.
  • the return control when returning to the optimal operation by increasing the amount again is performed appropriately, and thus misfires, etc. Since it can prevent falling into an unstable combustion state, it is suitable for use in a combustion control device of a gas engine for a generator.

Abstract

ノッキング発生気筒に対するガス燃料の停止若しくは減少を実施した後に、再度増量させて最適運転に復帰する際の復帰制御を適切に行うことで、復帰時において失火等の不安定燃焼状態に陥ることを防止することを目的とし、ノッキングの発生を判定するノッキング判定手段(49)と、ノッキング発生気筒に対してガス燃料の供給を停止または減少させるとともに、ノッキング発生のない他の気筒に対してもガス燃料の供給を減少させるノッキング低減手段(55)と、ノッキング発生気筒においてガス燃料の停止または減少状態から復帰させる第1復帰手段(57)と、ノッキング発生気筒以外の他の気筒においてガス燃料の減少状態から復帰させる第2復帰手段(59)と、を備え、第1復帰手段(57)における復帰時間を第2復帰手段(59)の復帰時間より短くし、ノッキング発生気筒の復帰を優先して行うことを特徴とする。

Description

ガスエンジンの燃焼制御装置
 本発明は、ガスエンジンの燃焼制御装置に関し、特に、ノッキングに対する燃焼制御装置に関する。
 主燃料として、天然ガスや都市ガスを用いたガスエンジンによる発電設備がクリーンエネルギー源の観点から設置されている。
 安定かつ効率的な運転を行わせるために、各気筒に設けられ燃料供給弁の制御、および着火タイミングの制御を行っているが、ノッキングや失火等の異常燃焼が生じることがある。このノッキングや失火等の異常燃焼を早期に検出して、回避することが必要である。
 ノッキングの回避のために、ノッキングを生じた気筒に対してガス燃料の供給を停止したり減少させ、また、着火タイミングを遅角させたりすることがある。例えば、特許文献1(特許第4688916号公報)、特許文献2(特許第4247842号公報)が知られている。
 この特許文献1には、ガスエンジンの気筒毎に排気温度を検出するとともに、ノッキングまたは失火が出現した気筒を検出し、排気温度が最大である気筒に対する燃料供給量を減少させ、排気温度が最小である気筒に対する燃料供給量を増加させる負荷平準化制御を実行するとともに、ノッキングまたは失火が発生した気筒に対して、燃料の供給を所定期間停止または減少させる。さらに、このノッキングまたは失火対策をしている気筒を前記負荷平準化制御の気筒から除外して実施することが示されている。
 また、特許文献2には、ガスエンジンのノッキング制御装置について示され、ノッキングセンサーによって検出されたノッキングの大きさが、所定値以上のノッキングの発生頻度の計算値を基に、各シリンダでの発生頻度の平均値と、当該シリンダでの発生頻度とを比較して、当該シリンダでの発生頻度が発生頻度の平均値より所定頻度以上であれば、当該シリンダに対してガス噴射量を低減させ、当該シリンダでの発生頻度が発生頻度の平均値より所定頻度以下であれば、当該シリンダに対するガス噴射量を増加させることが示されている。
 また、同様にパイロット燃料噴射時期における噴射時期について、および火花点火時期の点火時期について、遅らすことおよび進めることが開示されている。
特許第4688916号公報 特許第4247842号公報
 しかし、前述の特許文献1、および特許文献2においては、いずれもノッキングもしくは失火が生じた際の対策技術として、ノッキングを生じた気筒に対してガス燃料の供給を停止したり減少させ、また、着火タイミングを遅角させたりすることを開示するものであり、対策制御を実行した後再び、ガス燃料の増量もしくはガス燃料の噴射タイミングや点火タイミングを復帰させる復帰制御までは開示していない。
 また、この復帰制御を適切に行わないと復帰時に再度失火やノッキングが生じる問題がある。特に、ノッキングの対策としてガス燃料の供給を、停止または減少させることによって、燃焼室内の温度が低下する。このため、ガス燃料の復帰制御において単に増量しただけでは復帰の際に失火等の異常燃焼が再度生じる恐れがある。
 そこで、本発明はかかる技術的課題に鑑みなされたものであり、ガスエンジンにおけるノッキング対策としてノッキング発生気筒に対するガス燃料の停止若しくは減少を実施した後に、再度増量させて最適運転に復帰する際の復帰制御を適切に行うことで、復帰時において失火等の不安定燃焼状態に陥ることを防止するガスエンジンの燃焼制御装置を提供することを目的とする。
 本発明はかかる課題を解決するためになされたものであり、ガスエンジンの燃焼制御装置において、各気筒のノッキングの発生を判定するノッキング判定手段と、該ノッキング発生判定手段によってノッキングの発生を判定したときに、ノッキング発生気筒に対してガス燃料の供給を停止または減少させるとともに、ノッキング発生のない他の気筒に対してガス燃料の供給を減少させるノッキング低減手段と、前記停止または減少後にノッキングが発生していないと判定したときに、前記ノッキング発生気筒においてガス燃料の停止または減少状態から復帰させる第1復帰手段と、前記ノッキング発生気筒以外の他の気筒においてガス燃料の減少状態から復帰させる第2復帰手段と、を備え、前記第1復帰手段における復帰時間を前記第2復帰手段の復帰時間より短くし、ノッキング発生気筒の復帰を優先して行うことを特徴とする。
 本発明によれば、ノッキングの発生を判定したときに、ノッキング発生気筒に対してガス燃料の供給を停止または減少させるとともに、ノッキング発生のない他の気筒に対してもガス燃料の供給を減少させる。
 これによって、ノッキング発生気筒に対する空燃比がリーン側にシフトしてノッキングの発生が抑えられる。また、ノッキング発生のない他の気筒に対しても、過負荷を防止するために所定の発電出力低下による負荷下げの指示により、ガス燃料が低減される。
 このガス燃料の減少若しくは停止によってノッキングの発生が抑制され、その後に、ノッキング判定手段によってノッキングが発生していないと判定したときには、その低減もしくは停止したガス燃料の供給を回復させて、元の状態すなわち要求負荷に対する要求ガス燃料量まで復帰させる。
 この復帰は、ノッキング発生気筒においては、第1復帰手段によってガス燃料の停止または減少状態から回復させ、ノッキング発生気筒以外の他の気筒においては、第2復帰手段によってガス燃料の減少状態から復帰させる。そして、第1復帰手段における復帰時間を第2復帰手段の復帰時間より短くし、ノッキング発生気筒の復帰を優先して行う。
 このため、まずノッキングが発生した気筒を復帰させて、再度異常が発生しなければ、つまり再度ノッキングや、失火等の異常燃焼が再発しないかを確認してから、ノッキング発生のない他の気筒に対しても復帰を終了させるようにできる。従って、復帰制御を確実かつ安定的に行うことができる。
 また、本発明において、好ましくは、前記第1復帰手段および第2復帰手段は、前記ノッキング低減手段によってガス燃料を停止または減少した後の所定時間内に、ノッキングの発生がないときに復帰制御を開始するように構成するとよい。
 このように、ノッキング低減手段によってガス燃料を停止または減少した後に所定時間の待機時間を設けることで、その間に再発がないかを判定できるため、復帰制御を確実かつ安定的に行うことができる。
 また、本発明において、好ましくは、前記第1復帰手段におけるガス燃料の増加率を、前記第2復帰手段におけるガス燃料の増加率より大きく設定するとよい。
 このように、第1復帰手段におけるガス燃料の増加率を、第2復帰手段におけるガス燃料の増加率より大きくすることで、第1復帰手段における復帰時間を第2復帰手段の復帰時間より短くできる。
 さらに、第1復帰手段を短時間で、例えば復帰制御を開始後2~3秒間で復帰するように設定するとよい。ガス燃料を絞ることで、ノッキング対策は有効にできるが、反面燃焼温度の低下によって燃焼室内温度が低下しているため、復帰時に徐々にガス燃料を増量していくと、燃焼の不安定性が顕著に現れ、失火するおそれがある。このため、一気にガス燃料の増量を実施することで、このような不安定な復帰を回避できる。
 また、本発明において、好ましくは、前記ノッキング低減手段によるガス燃料低減量は、ノッキング発生気筒に対する方がノッキング発生のない他の気筒より大きく設定されるとよい。
 ノッキング発生気筒に対しては、ノッキングを抑制するために、空燃比をリーン側にシフトするためのガス燃料低減量であり、ノッキングの発生していない他の気筒に対しては、ノッキングを生じている気筒が1気筒であるとすると、その分だけ他の気筒の負荷分担が増加して過負荷になることを防止するために、発電出力の負荷下げに伴う低減量である。
 従って、ノッキング発生気筒に対する方がノッキング発生のない他の気筒より大きく設定されることによって、ノッキングの低減制御を効果的に行うことができる。
 また、本発明において、好ましくは、前記所定時間内にノッキングが再発した場合に、その時点において前記ノッキング低減手段によって設定されるガス燃料の低減量をさらに付加して低減させるとよい。
 このように、待機時間中にノッキングが再発した場合には、その時点において、さらにガス燃料供給量を低減することでノッキングの低減と、その後の復帰制御とを安定的に行うことができる。
 本発明によれば、ガスエンジンにおけるノッキング対策としてノッキング発生気筒に対するガス燃料の停止若しくは減少を実施した後に、再度増量させて最適運転に復帰する際の復帰制御を適切に行うことで、復帰時において失火等の不安定燃焼状態に陥ることを防止することができる。
 すなわち、第1復帰手段によってガス燃料の停止または減少状態から復帰させ、ノッキング発生気筒以外の他の気筒においては、第2復帰手段によってガス燃料の減少状態から復帰させる。
 ガス燃料を増量して復帰させる際に、第1復帰手段における復帰時間を第2復帰手段の復帰時間より短くして、ノッキングが発生した気筒の復帰を優先させて終了するようにし、ノッキングの再発を確認してから、ノッキング発生のない他の気筒の復帰を終了させるようにできる。これによって、復帰制御を確実かつ安定的に行うことができる。
本発明の第1実施形態に係るガスエンジンの燃焼制御装置の全体構成を示すシステム図である。 図1に示すガスエンジンの燃焼室周りの構造を示す一部断面説明図である。 燃焼制御装置のフローチャートである。 復帰手段によるガス燃料の復帰状態を示し、(A)はノッキング発生気筒以外の他の気筒の場合を示し、(B)はノッキング発生気筒の場合を示し、(C)は比較例を示す。 横軸に空燃比λ、縦軸にエンジン出力Pをとって、ノッキング領域と失火領域を示す説明図である。
 以下、本発明に係る実施形態について図面を用いて詳細に説明する。なお、以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。 
 図1は、本発明の第1実施例に係るガスエンジンの燃焼制御装置の全体構成を示し、図2は燃焼室周りの部分断面図である。
 図1において、ガスエンジン(以下単にエンジンという)1は、天然ガスや都市ガス等のガス燃料を主燃料とする、多気筒4サイクルエンジンである。エンジン1のクランクシャフト2にはフライホイール3が備えられ、フライホイール3には発電機5が直接取り付けられている。
 また、エンジン1の各気筒内に供給するガス燃料の供給量を制御するガス燃料制御装置7、および各気筒内に供給されたガス燃料を着火する着火装置9が設けられている。
 図2に示すように、シリンダ11内を往復摺動自在に嵌合されたピストン13、ピストン13の上面とシリンダブロック15の内面との間に区画形成される主燃焼室17、該主燃焼室17に接続された吸気ポート19、該吸気ポート19を開閉する吸気弁21等を備えている。
 また、吸気ポート19の上流側の給気管23には、ガスミキサー25が設置され、ガス供給管27が接続され、該ガス供給管27に設けられて燃料ガス量を調整するガス調整弁29を通して供給された燃料ガスと、給気管23を通して供給された空気とがガスミキサー25で予混合される。
 そして、吸気ポート19を経て吸気弁21に達し、吸気弁21の開弁によって主燃焼室17に予混合された混合ガスが供給される。
 なお、図2に示した給気管23、ガス供給管27、該ガス供給管27に設けられたガス調整弁29、およびガスミキサー25は、それぞれの気筒毎に設けられている。
 また、各気筒の主燃焼室17の上部を形成するシリンダベッド31には、着火装置9がそれぞれの気筒毎に設けられている。この着火装置9は、図示しない副燃焼室(副室)および点火プラグを設けた構造となっており、副室内に供給された副室用の燃料ガスを点火プラグよって着火して、副室内で生成された火炎が主燃焼室17内に噴射されて、主燃焼室17内の混合ガスを燃焼する構造になっている。
 この着火装置9は、回転数センサ42、クランク角センサ45、負荷センサ47からの信号を基に、適切なタイミングで点火プラグによって着火されて火炎を主燃焼室17内に噴射するようになっている。
 また、主燃焼室17には排気ポート35が接続され、排気弁37の開弁によって燃焼後の排ガスが主燃焼室17から排出されるようになっている。また、排気ポート35の下流側には図示されない排気管39が接続され、排気管39には図示されない排気過給機が装着されている。
 また、主燃焼室17内の筒内圧力を検出する筒内圧センサ41が気筒毎に設置され、フライホイール3には、エンジン回転数を検出する回転数センサ42、およびクランク角センサ45が設けられ、発電機5には、発電機5の負荷つまりエンジン負荷を検出する負荷センサ47が設けられている。
 これら各センサからの信号は、後述する燃焼制御装置43に入力されている。
 次に、以上の構成を備えたエンジン1における燃焼制御装置43について説明する。
 燃焼制御装置43は、図1に示すように、主に、前記筒内圧センサ41からの信号を基に各気筒の主燃焼室17内の筒内圧力の変化から燃焼状況が異常燃焼状態、特にノッキングを発生しているか否かを判定するノッキング判定手段49を備えている。
 また、このノッキング判定手段49によってノッキングの発生を判定したときに、ノッキング発生気筒に対してガス燃料の供給を停止または減少させる第1ノッキング低減手段51と、ノッキング発生気筒以外の他の気筒に対してガス燃料の供給を減少させる第2ノッキング低減手段53と、から構成されるノッキング低減手段55を有している。
 第1ノッキング低減手段51はノッキング発生している気筒に対して、ガス燃料の停止、または減少を行う。従って、ガス供給管27に設けられたガス調整弁29の開度を制御することで、ガス燃料の停止、または減少を行う。
 例えば、ノッキングが発生したと判定した時点で、その時の供給量に対して2~3%の減少を行うように低減率を設定しておくとよい。また、減少制御が複雑化するため、一律にガス燃料の供給を停止処理としてもよい。
 この2~3%の減少量はノッキングを抑制するために、空燃比をリーン側にシフトするために必要なガス燃料低減量である。
 また、第2ノッキング低減手段53は、ノッキング発生気筒以外の他の気筒に対して、ガス燃料の減少を行う。この場合には、ノッキングは発生していない気筒であるため、空燃比をリーン側にシフトするためのガス燃料の低減ではなく、ノッキングを生じている気筒が1気筒であるとすると、その分だけ他の気筒の負荷分担が増加されることで(カバナ機構が作動して他の気筒の負荷が増大することで)過負荷になることを防止するため、発電出力の負荷下げを行う。
 例えば、約50%負荷で運転中に18気筒中の1気筒がノッキングでガス燃料の供給を停止した場合を想定すると、発電出力の2~3%KWの負荷下げを行い、それに見合うガス燃料の低減量として設定される。
 以上のように、ノッキング発生気筒と、ノッキング発生気筒以外の他の気筒とに対するガス燃料の低減量を異ならして低減することで、効率良いノッキングの抑制効果が得られる。
 さらに、前記第1、第2ノッキング低減手段51、53によるガス燃料の停止または減少の状態で所定時間待機している間に、再発つまりノッキングの発生がないと判定したときに、前記ノッキング発生気筒においてガス燃料の停止または減少状態から、ノッキング発生前のガス燃料量まで復帰させる第1復帰手段57と、前記ノッキング発生気筒以外の他の気筒においてもガス燃料の減少状態から、トルク下げ前のガス燃料量まで復帰させる第2復帰手段59と、を備えている。
 そして、燃焼制御装置43は、さらに、前記第1復帰手段57における復帰時間を前記第2復帰手段59の復帰時間より短くし、ノッキング発生気筒の復帰をノッキング発生のない他の気筒に優先して行うように構成されている。
 このように、まずノッキングが発生した気筒に対して復帰するようにして、再度異常が発生しなければ、つまり再度ノッキングや、失火等の異常燃焼が発生しないかを確認してから若しくは確認しながら、ノッキング発生のない他の気筒に対しても復帰を終了させるようにしている。従って、復帰制御を確実かつ安定的に行うことができる。
 また、燃焼制御装置43の前記第1ノッキング低減手段51、第2ノッキング低減手段53、さらに、第1復帰手段57、第2復帰手段59によるガス燃料の低減や復帰は、ガス燃料制御装置7を構成する前記ガス調整弁29の開度を制御することで行われる。
 次に、図3のフローチャートを参照して、燃焼制御装置43の制御フローについて説明する。
 まず、運転を開始すると、ステップS1で、各気筒の筒内圧を検出する。ステップS2で、ノッキングの判定を行い、ノッキングが発生しているか否かが判定され、発生するまで繰り返され、発生している場合には、ステップS3で、ノッキング発生気筒を特定する。
 次に、ステップS4で、ノッキング発生気筒に対するガス燃料量の低減若しくは停止を行い、空燃比をリーンにシフトする(図4(B)のタイムチャートのt0)。その後ステップS5で、ガス量低減もしくは停止状態で一定時間待機する(図4(B)のタイムチャートのt0~t1)。
 そして、ステップS6で、その待機中にノッキングが発生したか否かを判定する。ステップS6でノッキングが発生していないと判定した場合には、ステップS7で、時間ta(図4(B)のタイムチャートのt1~t2)で復帰させる。次のステップS8ではその復帰作動中に、ノッキングが発生しているか否かを判定する。
 ステップS8でノッキングが発生していなければ、ステップS9で復帰は完了したとして終了する。
 また、ステップS8でノッキングが発生していると判定すれば、ステップS4に戻って繰り返す。
 一方、ステップS3で、ノッキング発生気筒を特定した後に、次に、ステップS10で、ノッキング発生のない他の気筒に対するガス燃料量の低減が行われる(図4(A)のタイムチャートのt0)。このガス燃料量の低減は、過負荷を防止するために発電出力の2~3%KWの負荷下げに見合うガス燃料の低減量として設定される。
 その後、ステップS11で、ガス量低減状態で一定時間待機する(図4(A)のタイムチャートのt0~t1)。
 そして、ステップS12で、その待機中にノッキングが発生したか否かを判定する。ステップS12でノッキングが発生していないと判定した場合には、ステップS14で時間tb(図4(A)のタイムチャートのt1~t3)かけて復帰させる。次のステップS15ではその復帰作動中に、ノッキングが発生しているか否かを判定する。
 ステップS15でノッキングが発生していなければ、ステップS16で復帰は完了したとして終了する。
 また、ステップS15でノッキングが発生していると判定すれば、ステップS10に戻って繰り返す。
 以上のステップS10~S16は、ステップS4~S9と同様の処理の流れになっている。
 また、ステップS6、およびステップS12において、待機中にノッキングが発生した場合には、ステップS13に進んで、全気筒に対して、一定の負荷下げを行いそれに伴うガス燃料量の低下を実行する。
 図4に、第1復帰手段57、第2復帰手段59による復帰状態を示す。
 (A)はノッキング発生気筒以外の他の気筒に対するものであり、第2復帰手段59による場合を示し、(B)はノッキング発生気筒に対するものであり、第1復帰手段57による場合を示し、(C)は比較例として、全気筒に対して一定の負荷下げに沿ったガス燃料の供給量を減少させる例を示す。
 図4(C)の比較例は、図に示すように、全気筒に対して、一定の負荷下げを行ってから、待機時間経過後に、復帰時間tb(本発明では復帰時間taより長い時間)をかけて復帰するので、燃焼室内温度が低下している状態から、復帰時に徐々にガス燃料を増量していくこととなり、燃焼の不安定性が現れ、失火を生じやすい。
 本実施形態のように、復帰時間ta(復帰時間tbより短い時間)で一気にガス燃料の増量を実施することで、このような不安定な復帰を回避できる。
 また、図4(A)、(B)に示すように、第1復帰手段57および第2復帰手段59の復帰開始時をt1と同時に開始しているが、(A)に示す第2復帰手段59の開始時点を、第1復帰手段57による復帰が完了するt2時点から開始するようにしてもよい。このように、第1復帰手段57による復帰が完了するt2時点から開始するようにすることで、ノッキング発生気筒での復帰中にノッキングや失火の再発が生じないことを確認でき、その後ノッキング発生気筒以外の他の気筒を復帰させることで、復帰制御が安定して確実に行うことができる。
 図5には、エンジン1の異常燃焼(ノッキング、失火)が生じる領域を示し、横軸に空燃比λ、縦軸にエンジン出力Pをとってそれぞれの領域を示している。
 本実施形態のエンジン1は、高出力運転をしており、P1の点で、ほぼ一定回転で運転されている。発電負荷や環境条件の変動等で、ノッキング領域の運転点P2に移動しやすい。ノッキング領域へ移動した場合には、ノッキング領域から通常運転領域へは、出力低下若しくは空燃比のリーン化によって対応する必要がある。
 本実施形態では、ノッキング発生気筒に対して、その運転時点のガス燃料量に対して2~3%の減少によって、空燃比をリーン側にシフトして、ノッキングを回避することを行っている。
 以上の本実施形態によれば、エンジン1におけるノッキング対策としてノッキング発生気筒に対するガス燃料の停止若しくは減少を実施し、その後の最適運転への復帰制御において、ガス燃料を適切に増量するため復帰に失火等の不安定燃焼状態に陥ることを防止できる。
 すなわち、第1復帰手段57によってガス燃料の停止または減少状態から復帰させ、ノッキング発生気筒以外の他の気筒においては、第2復帰手段59によってガス燃料の減少状態から復帰させる。
 その復帰の際に、第1復帰手段57における復帰時間を第2復帰手段59の復帰時間より短くし、ノッキングが発生した気筒の復帰を優先し、その次にノッキング発生のない他の気筒の復帰を終了させるようにしているので、復帰制御を確実かつ安定的に行うことができる。
 本発明によれば、ガスエンジンにおけるノッキング対策としてノッキング発生気筒に対するガス燃料の停止若しくは減少を実施した後に、再度増量させて最適運転に復帰する際の復帰制御を適切に行うことで、失火等の不安定燃焼状態に陥ることを防止できるので、発電機用のガスエンジンの燃焼制御装置への利用に適している。
 1  エンジン(ガスエンジン)
 5  発電機
 7  ガス燃料制御装置
 9  着火装置
 41 筒内圧センサ
 42 回転数センサ
 43 燃焼制御装置
 45 クランク角センサ
 47 負荷センサ
 49 ノッキング判定手段
 51 第1ノッキング低減手段
 53 第2ノッキング低減手段
 55 ノッキング低減手段
 57 第1復帰手段
 59 第2復帰手段
 

Claims (5)

  1.  ガスエンジンの燃焼制御装置において、
     各気筒のノッキングの発生を判定するノッキング判定手段と、
     該ノッキング発生判定手段によってノッキングの発生を判定したときに、ノッキング発生気筒に対してガス燃料の供給を停止または減少させるとともに、ノッキング発生のない他の気筒に対してガス燃料の供給を減少させるノッキング低減手段と、
     前記停止または減少後にノッキングが発生していないと判定したときに、前記ノッキング発生気筒においてガス燃料の停止または減少状態から復帰させる第1復帰手段と、
     前記ノッキング発生気筒以外の他の気筒においてガス燃料の減少状態から復帰させる第2復帰手段と、を備え、
     前記第1復帰手段における復帰時間を前記第2復帰手段の復帰時間より短くし、ノッキング発生気筒の復帰を優先して行うことを特徴とするガスエンジンの燃焼制御装置。
  2.  第1復帰手段および第2復帰手段は、前記ノッキング低減手段によってガス燃料を停止または減少した後の所定時間内に、ノッキングの発生がないときに復帰制御を開始するように構成したことを特徴とする請求項1記載のガスエンジンの燃焼制御装置。
  3.  前記第1復帰手段におけるガス燃料の増加率を、前記第2復帰手段におけるガス燃料の増加率より大きく設定したことを特徴とする請求項1記載のガスエンジンの燃焼制御装置。
  4.  前記ノッキング低減手段によるガス燃料低減量は、ノッキング発生気筒に対する方がノッキング発生のない他の気筒より大きく設定されることを特徴とする請求項1乃至3の何れか1項記載のガスエンジンの燃焼制御装置。
  5.  前記所定時間内にノッキングが再発した場合に、その時点において前記ノッキング低減手段によって設定されるガス燃料の低減量をさらに付加して低減させることを特徴とする請求項2記載のガスエンジンの燃焼制御装置。
PCT/JP2014/054049 2013-03-19 2014-02-20 ガスエンジンの燃焼制御装置 WO2014148191A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480010866.9A CN105026738B (zh) 2013-03-19 2014-02-20 燃气发动机的燃烧控制装置
US14/777,470 US9964053B2 (en) 2013-03-19 2014-02-20 Combustion control device for gas engine
EP14768042.5A EP2957753B1 (en) 2013-03-19 2014-02-20 Fuel control device for gas engine
KR1020157025419A KR101755969B1 (ko) 2013-03-19 2014-02-20 가스 엔진의 연소 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-056776 2013-03-19
JP2013056776A JP5951537B2 (ja) 2013-03-19 2013-03-19 ガスエンジンの燃焼制御装置

Publications (1)

Publication Number Publication Date
WO2014148191A1 true WO2014148191A1 (ja) 2014-09-25

Family

ID=51579883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054049 WO2014148191A1 (ja) 2013-03-19 2014-02-20 ガスエンジンの燃焼制御装置

Country Status (6)

Country Link
US (1) US9964053B2 (ja)
EP (1) EP2957753B1 (ja)
JP (1) JP5951537B2 (ja)
KR (1) KR101755969B1 (ja)
CN (1) CN105026738B (ja)
WO (1) WO2014148191A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105526013A (zh) * 2014-10-17 2016-04-27 福特环球技术公司 用于发动机爆震控制的判断方法和系统
US9964053B2 (en) 2013-03-19 2018-05-08 Mitsubishi Heavy Industries, Ltd. Combustion control device for gas engine
EP3244048A4 (en) * 2015-01-08 2018-08-22 Mitsubishi Heavy Industries, Ltd. Knocking control method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11952935B2 (en) * 2011-12-16 2024-04-09 Transportation Ip Holdings, Llc Systems and method for controlling auto-ignition
FR3048262B1 (fr) * 2016-02-26 2018-03-16 Peugeot Citroen Automobiles Sa Procede de limitation de charge d'un moteur thermique en cas de detection de combustions anormales
CN108533413B (zh) * 2017-03-01 2020-10-09 联合汽车电子有限公司 一种发动机早燃检测优化方法及系统
JP2021076029A (ja) * 2019-11-05 2021-05-20 三菱重工エンジン&ターボチャージャ株式会社 ガスエンジンの再着火処理装置、再着火方法およびプログラム
US20220163005A1 (en) * 2020-11-23 2022-05-26 Transportation Ip Holdings, Llc Methods and systems for engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185270A (ja) * 1989-12-15 1991-08-13 Toyota Motor Corp 内燃機関の点火時期制御装置
JPH0579440A (ja) * 1991-09-19 1993-03-30 Hitachi Ltd 点火時期制御装置
JPH0828319A (ja) * 1994-05-10 1996-01-30 Nippondenso Co Ltd 内燃機関の燃料噴射制御装置
JP4247842B2 (ja) 2006-03-16 2009-04-02 三井造船株式会社 ガスエンジンのノッキング制御装置
JP2009281251A (ja) * 2008-05-21 2009-12-03 Toyota Motor Corp 内燃機関の点火時期制御装置
JP2010084739A (ja) * 2008-10-02 2010-04-15 Kawasaki Heavy Ind Ltd ガスエンジンのノッキング制御装置
JP4688916B2 (ja) 2008-10-01 2011-05-25 川崎重工業株式会社 ガスエンジンの制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820374B2 (ja) * 1977-10-11 1983-04-22 日産自動車株式会社 内燃機関用電子制御燃料噴射装置
US4243009A (en) * 1979-09-27 1981-01-06 Brunswick Corporation Detonation control apparatus for outboard motor
DE4002207A1 (de) * 1990-01-26 1991-08-01 Bosch Gmbh Robert Katalysatorschutzverfahren
DE19709395C2 (de) * 1997-03-07 1998-12-24 Bosch Gmbh Robert Verfahren zur Klopfregelung in Mehrzylinder-Brennkraftmaschinen
DE19908729A1 (de) * 1999-03-01 2000-09-07 Bosch Gmbh Robert Kraftstoffeinspritzverfahren für eine Brennkraftmaschine
US6662788B2 (en) * 2002-04-16 2003-12-16 Lance E. Nist Remote metering for gaseous fuels and oxidizers
US6863034B2 (en) * 2003-01-17 2005-03-08 Robert D. Kern Method of controlling a bi-fuel generator set
US7533634B2 (en) * 2004-03-10 2009-05-19 Tgi, Inc. Process for use with dual-fuel systems
FI119395B (fi) 2004-03-15 2008-10-31 Waertsilae Finland Oy Adaptiivinen kuormantasausjärjestelmä
JP4424178B2 (ja) * 2004-11-30 2010-03-03 スズキ株式会社 多気筒エンジンの失火検出装置
JP2006183548A (ja) * 2004-12-27 2006-07-13 Nippon Soken Inc 内燃機関の制御装置
JP4466864B2 (ja) 2005-09-21 2010-05-26 三菱自動車工業株式会社 内燃機関の制御装置
JP3968112B2 (ja) * 2006-01-11 2007-08-29 ヤンマー株式会社 副室式ガス機関の制御方法
US7302932B2 (en) * 2006-03-17 2007-12-04 Ford Global Technologies, Llc Pre-ignition detection and mitigation
US7665452B2 (en) * 2006-03-17 2010-02-23 Ford Global Technologies, Llc First and second spark plugs for improved combustion control
JP2010112244A (ja) * 2008-11-05 2010-05-20 Fujitsu Ten Ltd 制御装置、及び制御方法
JP2011185142A (ja) * 2010-03-08 2011-09-22 Toyota Motor Corp 多気筒内燃機関の制御装置
WO2012057691A1 (en) 2010-10-29 2012-05-03 Afv Alternative Fuel Vehicle Dual fuel engine system
JP5675466B2 (ja) * 2011-03-31 2015-02-25 三菱重工業株式会社 エンジンの燃焼診断信号異常時のパイロット噴射タイミング制御方法および装置
US9038596B2 (en) * 2011-12-02 2015-05-26 Ford Global Technologies, Llc Method and system for pre-ignition control
JP5951537B2 (ja) 2013-03-19 2016-07-13 三菱重工業株式会社 ガスエンジンの燃焼制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185270A (ja) * 1989-12-15 1991-08-13 Toyota Motor Corp 内燃機関の点火時期制御装置
JPH0579440A (ja) * 1991-09-19 1993-03-30 Hitachi Ltd 点火時期制御装置
JPH0828319A (ja) * 1994-05-10 1996-01-30 Nippondenso Co Ltd 内燃機関の燃料噴射制御装置
JP4247842B2 (ja) 2006-03-16 2009-04-02 三井造船株式会社 ガスエンジンのノッキング制御装置
JP2009281251A (ja) * 2008-05-21 2009-12-03 Toyota Motor Corp 内燃機関の点火時期制御装置
JP4688916B2 (ja) 2008-10-01 2011-05-25 川崎重工業株式会社 ガスエンジンの制御装置
JP2010084739A (ja) * 2008-10-02 2010-04-15 Kawasaki Heavy Ind Ltd ガスエンジンのノッキング制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2957753A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9964053B2 (en) 2013-03-19 2018-05-08 Mitsubishi Heavy Industries, Ltd. Combustion control device for gas engine
CN105526013A (zh) * 2014-10-17 2016-04-27 福特环球技术公司 用于发动机爆震控制的判断方法和系统
CN105526013B (zh) * 2014-10-17 2020-12-04 福特环球技术公司 用于发动机爆震控制的判断方法和系统
EP3244048A4 (en) * 2015-01-08 2018-08-22 Mitsubishi Heavy Industries, Ltd. Knocking control method

Also Published As

Publication number Publication date
EP2957753A4 (en) 2016-03-09
US9964053B2 (en) 2018-05-08
JP2014181615A (ja) 2014-09-29
EP2957753B1 (en) 2017-08-30
US20160032847A1 (en) 2016-02-04
EP2957753A1 (en) 2015-12-23
CN105026738A (zh) 2015-11-04
KR101755969B1 (ko) 2017-07-19
CN105026738B (zh) 2017-10-20
KR20150119356A (ko) 2015-10-23
JP5951537B2 (ja) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5951537B2 (ja) ガスエンジンの燃焼制御装置
JP4247842B2 (ja) ガスエンジンのノッキング制御装置
JP2012002088A (ja) 内燃機関の制御装置
JP4893499B2 (ja) 筒内直接噴射式火花点火内燃機関の制御装置及び制御方法
JP4765745B2 (ja) 内燃機関の着火時期制御システム
JP2008095539A (ja) 予混合圧縮着火内燃機関
JP2006144645A (ja) 内燃機関の制御装置および制御方法
JP6467170B2 (ja) ターボチャージャを備えたエンジンの制御装置およびこれを用いた制御方法
JP2010127175A (ja) ディーゼルエンジンの燃焼制御装置
JP2015014229A (ja) 内燃機関の異常燃焼回避装置
JP2008002303A (ja) エンジンの失火時出力あるいは負荷制限運転方法及びその装置
JP2021067223A (ja) 内燃機関制御装置
JP2014173497A (ja) 内燃機関の点火時期制御装置
JP4803117B2 (ja) 内燃機関の始動制御装置
JP2010127087A (ja) 内燃機関の燃焼制御装置
JP2007278088A (ja) 内燃機関の燃料噴射制御装置
JP4454433B2 (ja) 内燃機関の点火時期制御方法
JP2009138673A (ja) 内燃機関の点火制御システム
JP2007263043A (ja) 内燃機関の燃焼制御システム
JPH08177589A (ja) 筒内噴射エンジンの燃焼制御方法
JP5652579B1 (ja) 内燃機関の制御装置および制御方法
KR20190073175A (ko) 엔진의 소음 저감 시스템
JP2008267292A (ja) 内燃機関の制御システム
JP2018091272A (ja) 内燃機関の制御装置
WO2016035173A1 (ja) 圧縮比可変型内燃機関の燃料対応制御装置及び燃料対応制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010866.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768042

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014768042

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014768042

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14777470

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157025419

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE