WO2014147819A1 - 車両および非接触給電システム - Google Patents

車両および非接触給電システム Download PDF

Info

Publication number
WO2014147819A1
WO2014147819A1 PCT/JP2013/058296 JP2013058296W WO2014147819A1 WO 2014147819 A1 WO2014147819 A1 WO 2014147819A1 JP 2013058296 W JP2013058296 W JP 2013058296W WO 2014147819 A1 WO2014147819 A1 WO 2014147819A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
power
unit
transmission unit
vehicle
Prior art date
Application number
PCT/JP2013/058296
Other languages
English (en)
French (fr)
Inventor
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2015506511A priority Critical patent/JPWO2014147819A1/ja
Priority to DE112013006857.5T priority patent/DE112013006857T5/de
Priority to CN201380074911.2A priority patent/CN105142958A/zh
Priority to KR1020157030436A priority patent/KR20150134394A/ko
Priority to BR112015018487A priority patent/BR112015018487A2/pt
Priority to US14/653,518 priority patent/US20160001669A1/en
Priority to PCT/JP2013/058296 priority patent/WO2014147819A1/ja
Publication of WO2014147819A1 publication Critical patent/WO2014147819A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a vehicle and a non-contact power supply system, and more particularly, to an alignment technique between a power transmission unit and a power reception unit in the non-contact power supply system.
  • Patent Document 1 discloses a charging system in which electric power is transmitted in a non-contact manner between a power receiving coil provided in a vehicle and a power transmitting coil provided on the ground.
  • bonds electromagnetically with a side coil is disclosed.
  • JP2011-120387A Patent Document 2
  • JP2011-193617A Patent Document 3
  • the structure by which the raising / lowering apparatus which makes a receiving coil approach a power transmission coil is provided in the vehicle side is disclosed.
  • the positional relationship between the power transmission unit and the power reception unit at the time of power transmission is suitable for power transmission. It is important to park in. Further, when the power transmission unit or the power reception unit is movable after parking as disclosed in the above-mentioned patent document, in order to obtain a desired power transmission efficiency, the power transmission unit during power transmission is used. In addition, the final positional relationship of the power reception unit needs to be within a predetermined range.
  • the present invention has been made to solve such problems, and an object of the present invention is to achieve a desired power transmission efficiency in a non-contact power feeding system provided with a moving device that moves a power transmission unit or a power reception unit. It is to secure.
  • the vehicle according to the present invention can receive electric power from the power transmission device in a contactless manner.
  • the vehicle includes a power receiving unit that receives power in a non-contact manner from a power transmitting unit included in the power transmitting device, a moving device configured to be able to move the power receiving unit in a direction approaching the power transmitting unit from a standby position, and a control Device.
  • the control device includes a first detection operation for detecting the position of the power transmission unit in a state where the power reception unit is located at the standby position, and a state where the power reception unit is located closer to the power transmission unit than the standby position It is possible to perform a second detection operation for detecting the position of the power transmission unit.
  • the control device detects that the power transmission unit is located in the first predetermined range in the first detection operation, and the power transmission unit is located in the second predetermined range in the second detection operation. When this is detected, power transmission from the power transmission device is started.
  • the vehicle further includes a detection unit for detecting the power transmission unit.
  • the control device performs a first detection operation using the detection unit, and performs a second detection operation using the power reception unit.
  • the distance between the detection unit and the power transmission unit is shorter than the distance between the standby position and the power transmission unit in a state where the vehicle is positioned at a position where power can be transmitted from the power transmission device.
  • control device performs the second detection operation after moving the power reception unit to a position where power reception is to be started.
  • the detection unit includes a plurality of magnetic sensors capable of detecting the magnetism of an electromagnetic field generated by power transmission from the power transmission unit.
  • the control device recognizes the position of the power transmission unit based on the magnetic distribution detected by the plurality of magnetic sensors.
  • the control device starts power transmission from the power transmission unit according to a timer value determined based on information related to the power transmission start time set by the user.
  • the control device executes the second detection operation in response to the elapse of the time corresponding to the timer value.
  • the difference between the natural frequency of the power transmission unit and the natural frequency of the power reception unit is ⁇ 10% or less of the natural frequency of the power transmission unit or the natural frequency of the power reception unit.
  • the coupling coefficient between the power transmission unit and the power reception unit is 0.6 or more and 0.8 or less.
  • the power receiving unit includes at least a magnetic field that vibrates at a specific frequency formed between the power receiving unit and the power transmitting unit, and an electric field that vibrates at a specific frequency formed between the power receiving unit and the power transmitting unit. Power is received from the power transmission unit through one side.
  • the contactless power supply system supplies electric power from the power transmission unit to the power reception unit in a contactless manner.
  • the non-contact power supply system includes a moving device configured to be able to move at least one of the power transmission unit and the power reception unit in a direction in which the power transmission unit and the power reception unit approach from the standby position, and a control device.
  • the control device includes a first detection operation for detecting a positional relationship between the power transmission unit and the power reception unit in a state where the power transmission unit and the power reception unit are located at the standby position, and between the power transmission unit and the power reception unit. It is possible to perform the second detection operation for detecting the positional relationship when the distance is closer than when the power transmission unit and the power reception unit are in the standby position.
  • the control device detects that the positional relationship satisfies the first predetermined condition in the first detection operation, and detects that the positional relationship satisfies the second predetermined condition in the second detection operation. If this happens, power transmission from the power transmission unit is started.
  • the positions of the power transmission unit and the power receiving unit during the parking operation and when the power transmission unit and the power receiving unit are approached by the moving device After the relationship is confirmed and it is confirmed that the positional relationship between the power transmission unit and the power reception unit satisfies the predetermined condition in both sides, power transmission is performed. As a result, it is possible to perform power transmission while ensuring a desired power transmission efficiency.
  • FIG. 1 is an overall configuration diagram of a non-contact power feeding system for a vehicle according to an embodiment of the present invention. It is a figure for demonstrating operation
  • FIG. 1 is an overall configuration diagram of a non-contact power feeding system 10 according to the present embodiment.
  • contactless power supply system 10 includes a vehicle 100 and a power transmission device 200.
  • the power transmission device 200 includes a power supply device 210 and a power transmission unit 220.
  • the power supply device 210 generates AC power having a predetermined frequency.
  • the power supply device 210 receives electric power from the commercial power supply 400 to generate high-frequency AC power, and supplies the generated AC power to the power transmission unit 220.
  • the power transmission unit 220 outputs electric power in a non-contact manner to the power reception unit 110 of the vehicle 100 via an electromagnetic field generated around the power transmission unit 220.
  • the power supply device 210 includes a communication unit 230, a power transmission ECU 240 that is a control device, a power supply unit 250, and an impedance adjustment unit 260.
  • the power transmission unit 220 includes a resonance coil 221 and a capacitor 222.
  • the power supply unit 250 is controlled by a control signal MOD from the power transmission ECU 240, and converts power received from an AC power supply such as the commercial power supply 400 into high-frequency power.
  • the power supply unit 250 supplies the converted high-frequency power to the resonance coil 221 via the impedance adjustment unit 260.
  • the power supply unit 250 outputs a transmission voltage Vtr and a transmission current Itr detected by a voltage sensor and a current sensor (not shown) to the power transmission ECU 240, respectively.
  • the impedance adjustment unit 260 is for adjusting the input impedance of the power transmission unit 220, and typically includes a reactor and a capacitor. Impedance adjustment unit 260 is controlled by control signal SE10 from power transmission ECU 240.
  • the resonance coil 221 transfers the electric power transmitted from the power supply unit 250 to the resonance coil 111 included in the power reception unit 110 of the vehicle 100 in a non-contact manner.
  • the resonance coil 221 and the capacitor 222 constitute an LC resonance circuit. Note that power transmission between the power reception unit 110 and the power transmission unit 220 will be described later with reference to FIG.
  • the communication unit 230 is a communication interface for performing wireless communication between the power transmission device 200 and the vehicle 100, and exchanges information INFO with the communication unit 160 on the vehicle 100 side.
  • the communication unit 230 receives vehicle information transmitted from the communication unit 160 on the vehicle 100 side, a signal instructing start and stop of power transmission, and the like, and outputs the received information to the power transmission ECU 240.
  • Communication unit 230 transmits information such as power transmission voltage Vtr and power transmission current Itr from power transmission ECU 240 to vehicle 100.
  • the power transmission ECU 240 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer.
  • the power transmission ECU 240 inputs a signal from each sensor and outputs a control signal to each device.
  • Each device in the power supply device 210 is controlled. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • the vehicle 100 includes an elevating mechanism 105, a power receiving unit 110, a matching unit 170, a rectifier 180, a charging relay CHR185, a power storage device 190, a system main relay SMR115, a power control unit PCU (Power Control Unit) 120, , Motor generator 130, power transmission gear 140, drive wheel 150, vehicle ECU (Electronic Control Unit) 300 as a control device, communication unit 160, voltage sensor 195, current sensor 196, and position detection sensor 165.
  • a power control unit PCU Power Control Unit
  • PCU Power Control Unit
  • an electric vehicle is described as an example of vehicle 100, but the configuration of vehicle 100 is not limited to this as long as the vehicle can travel using electric power stored in the power storage device.
  • Other examples of the vehicle 100 include a hybrid vehicle equipped with an engine and a fuel cell vehicle equipped with a fuel cell.
  • the power receiving unit 110 is provided near the floor panel of the vehicle 100 and includes a resonance coil 111 and a capacitor 112.
  • the resonance coil 111 receives electric power from the resonance coil 221 included in the power transmission device 200 in a non-contact manner.
  • the resonance coil 111 and the capacitor 112 constitute an LC resonance circuit.
  • the power receiving unit 110 is mounted on the lifting mechanism 105.
  • the elevating mechanism 105 uses, for example, a link mechanism or the like to move the power reception unit 110 from the standby position (broken line) to a power reception scheduled position (hereinafter also referred to as “power reception position”) facing the power transmission unit 220. .)
  • the elevating mechanism 105 is driven by, for example, a motor (not shown) to move the power receiving unit 110 from the standby position to the power receiving position.
  • the power receiving position may be set to a predetermined height from the power transmission unit 220 or may be a position where the power receiving unit 110 is in contact with the power transmission unit 220.
  • the distance between the position detection sensor 165 and the power transmission unit 220 is the standby position and the power transmission. It becomes shorter than the distance between the parts 220 (or the power receiving position).
  • the elevating mechanism 105 includes a ratchet mechanism, and the movement of the power receiving unit 110 below the power receiving position is limited, but the power receiving unit 110 can be moved above the power receiving position. Thereby, when the vehicle height becomes low, it is possible to absorb the fluctuation in the distance between the floor panel and the power receiving unit 110.
  • Matching unit 170 is typically configured to include a reactor and a capacitor, and adjusts the input impedance of a load to which the power received by resonant coil 111 is supplied.
  • the rectifier 180 rectifies the AC power received from the resonance coil 111 via the matching unit 170, and outputs the rectified DC power to the power storage device 190.
  • the rectifier 180 may include a diode bridge and a smoothing capacitor (both not shown).
  • a so-called switching regulator that performs rectification using switching control may be used.
  • a static rectifier such as a diode bridge in order to prevent a malfunction of the switching element due to the generated electromagnetic field.
  • the CHR 185 is electrically connected between the rectifier 180 and the power storage device 190.
  • CHR185 is controlled by a control signal SE2 from vehicle ECU 300, and switches between supply and interruption of power from rectifier 180 to power storage device 190.
  • the power storage device 190 is a power storage element configured to be chargeable / dischargeable.
  • the power storage device 190 includes, for example, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery, and a power storage element such as an electric double layer capacitor.
  • the power storage device 190 is connected to the rectifier 180. Power storage device 190 stores the power received by power reception unit 110 and rectified by rectifier 180. The power storage device 190 is also connected to the PCU 120 via the SMR 115. Power storage device 190 supplies power for generating vehicle driving force to PCU 120. Further, power storage device 190 stores the electric power generated by motor generator 130. The output of power storage device 190 is, for example, about 200V.
  • power storage device 190 is provided with a voltage sensor and a current sensor for detecting voltage VB of power storage device 190 and input / output current IB, respectively. These detection values are output to vehicle ECU 300. Vehicle ECU 300 calculates the state of charge of power storage device 190 (also referred to as “SOC (State Of Charge)”) based on voltage VB and current IB.
  • SOC State Of Charge
  • SMR 115 is electrically connected between power storage device 190 and PCU 120.
  • SMR 115 is controlled by control signal SE ⁇ b> 1 from vehicle ECU 300, and switches between supply and interruption of power between power storage device 190 and PCU 120.
  • the PCU 120 is configured to include a converter and an inverter (not shown).
  • the converter is controlled by a control signal PWC from vehicle ECU 300 to convert the voltage from power storage device 190.
  • the inverter is controlled by a control signal PWI from vehicle ECU 300 and drives motor generator 130 using electric power converted by the converter.
  • the motor generator 130 is an AC rotating electric machine, for example, a permanent magnet type synchronous motor including a rotor in which a permanent magnet is embedded.
  • the output torque of the motor generator 130 is transmitted to the drive wheel 150 via the power transmission gear 140.
  • the vehicle 100 travels using this torque.
  • the motor generator 130 can generate power by the rotational force of the drive wheels 150 during regenerative braking of the vehicle 100. Then, the generated power is converted by PCU 120 into charging power for power storage device 190.
  • the power storage device 190 can be charged using the power generated by the rotation of the engine.
  • the communication unit 160 is a communication interface for performing wireless communication between the vehicle 100 and the power transmission device 200, and exchanges information INFO with the communication unit 230 of the power transmission device 200.
  • Information INFO output from communication unit 160 to power transmission device 200 includes vehicle information from vehicle ECU 300, a signal for instructing start and stop of power transmission, a switching command for impedance adjustment unit 260 of power transmission device 200, and the like. .
  • vehicle ECU 300 includes a CPU, a storage device, and an input / output buffer, and inputs a signal from each sensor and outputs a control signal to each device. Control. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • the position detection sensor 165 is provided on the lower surface of the floor panel of the vehicle 100, for example.
  • the position detection sensor 165 is a sensor for detecting the power transmission unit 220 in order to confirm the position of the parking position in the parking space where the power transmission unit 220 is provided.
  • the position detection sensor 165 is, for example, a magnetic detection sensor, and determines the magnitude of a magnetic field generated by electric power transmitted from the power transmission unit 220 for position detection during execution of the parking operation (hereinafter also referred to as “test power transmission”).
  • the detected signal SIG is output to ECU 300.
  • ECU 300 determines whether the parking position is appropriate based on detection signal SIG detected by position detection sensor 165, and prompts the user to stop the vehicle. Alternatively, when vehicle 100 is provided with an automatic parking function, ECU 300 automatically stops the vehicle based on detection signal SIG.
  • FIG. 3 is a diagram illustrating an example of a positional relationship between the power transmission unit 220 and the position detection sensor 165 when the vehicle 100 is appropriately parked with respect to the power transmission unit 220.
  • the resonance coil 221 for power transmission of the power transmission unit 220 is wound around the ferrite core 225 so that its winding axis is in the horizontal direction (X-axis direction in FIG. 3).
  • Four sensors are used as the sensor 165.
  • FIG. 4 shows an example in which the distribution of the magnetic field generated when power is transmitted in the power transmission unit 220 as shown in FIG.
  • the distribution of the magnetic field is expressed by contour lines, and the strength of the magnetic field increases from the surrounding area AR2 toward the area AR1.
  • the position detection sensor 165 has the same distance in the X-axis direction from the origin and the Y-axis from the origin in the orthogonal coordinates (XY axis) with the winding center of the resonance coil 221 for power transmission as the origin. They are arranged so that the distances in the directions are the same, that is, they are symmetrical with respect to the origin.
  • the magnitudes of the magnetic fields detected by the position detection sensors 165 are substantially the same. Therefore, when performing the parking operation, it is possible to determine whether or not the power transmission unit 220 is located within the first predetermined range based on the difference in the magnitude of the magnetic field detected by each position detection sensor 165.
  • the position detection sensor 165 is not limited to the magnetic detection sensor as described above, and may be, for example, an RFID reader for detecting an RFID attached to the power transmission unit 220, or a step or reference of the power transmission unit 220. It may be a distance sensor for detecting the height of a point. When such another type of sensor is used, for example, the position is recognized by the distribution of the received intensity from each RFID, or the position is recognized by the height distribution detected by each distance sensor.
  • the power receiving unit 110 is moved from the standby position to the power receiving position, so that the power receiving unit 110 is stored at the standby position as in the parking operation. Then, position detection using the power receiving unit 110 is difficult. Therefore, the position detection sensor 165 is required for detecting the position of the power transmission unit 220 during the parking operation.
  • the voltage sensor 195 is connected in parallel to the resonance coil 111 and detects the received voltage Vre received by the power receiving unit 110.
  • the current sensor 196 is provided on a power line connecting the resonance coil 111 and the matching unit 170, and detects the received current Ire.
  • the detected values of the power reception voltage Vre and the power reception current Ire are transmitted to the vehicle ECU 300 and used for calculation of power transmission efficiency and the like.
  • the power receiving unit 110 and the power transmitting unit 220 are provided with the resonance coils 111 and 221.
  • the electromagnetic induction coil 113 that can transmit and receive power by electromagnetic induction with the resonance coil. , 223 can be provided.
  • an electromagnetic induction coil is connected to the power supply unit 250 and power from the power supply unit 250 is transmitted to the resonance coil 221 by electromagnetic induction.
  • the electromagnetic induction coil 113 is connected to the rectifier 180, and the electric power received by the resonance coil 111 is extracted by electromagnetic induction and transmitted to the rectifier 180.
  • FIG. 5 is an equivalent circuit diagram when power is transmitted from power transmission device 200 to vehicle 100.
  • power transmission unit 220 of power transmission device 200 includes a resonance coil 221, a capacitor 222, and an electromagnetic induction coil 223.
  • the electromagnetic induction coil 223 is provided, for example, substantially coaxially with the resonance coil 221 at a predetermined interval from the resonance coil 221.
  • the electromagnetic induction coil 223 is magnetically coupled to the resonance coil 221 by electromagnetic induction, and supplies high frequency power supplied from the power supply device 210 to the resonance coil 221 by electromagnetic induction.
  • the resonance coil 221 forms an LC resonance circuit together with the capacitor 222. As will be described later, an LC resonance circuit is also formed in the power receiving unit 110 of the vehicle 100.
  • the difference between the natural frequency of the LC resonant circuit formed by the resonant coil 221 and the capacitor 222 and the natural frequency of the LC resonant circuit of the power receiving unit 110 is ⁇ 10% or less of the natural frequency of the former or the latter.
  • the resonance coil 221 receives electric power from the electromagnetic induction coil 223 by electromagnetic induction, and transmits the electric power to the power receiving unit 110 of the vehicle 100 in a non-contact manner.
  • the electromagnetic induction coil 223 is provided to facilitate power feeding from the power supply device 210 to the resonance coil 221.
  • the power supply device 210 is directly connected to the resonance coil 221 without providing the electromagnetic induction coil 223. Also good.
  • the capacitor 222 is provided to adjust the natural frequency of the resonance circuit. When a desired natural frequency is obtained using the stray capacitance of the resonance coil 221, the capacitor 222 is not provided. Also good.
  • the power receiving unit 110 of the vehicle 100 includes a resonance coil 111, a capacitor 112, and an electromagnetic induction coil 113.
  • the resonance coil 111 and the capacitor 112 form an LC resonance circuit.
  • the natural frequency of the LC resonance circuit formed by the resonance coil 111 and the capacitor 112 and the natural frequency of the LC resonance circuit formed by the resonance coil 221 and the capacitor 222 in the power transmission unit 220 of the power transmission device 200 The difference is ⁇ 10% of the former natural frequency or the latter natural frequency.
  • the resonance coil 111 receives power from the power transmission unit 220 of the power transmission device 200 in a non-contact manner.
  • the electromagnetic induction coil 113 is provided, for example, substantially coaxially with the resonance coil 111 at a predetermined interval from the resonance coil 111.
  • the electromagnetic induction coil 113 is magnetically coupled to the resonance coil 111 by electromagnetic induction, takes out the electric power received by the resonance coil 111 by electromagnetic induction, and outputs it to the electric load device 118.
  • the electrical load device 118 is an electrical device that uses the power received by the power receiving unit 110, and specifically represents the electrical devices after the rectifier 180 (FIG. 1).
  • the electromagnetic induction coil 113 is provided for facilitating extraction of electric power from the resonance coil 111, and the rectifier 180 may be directly connected to the resonance coil 111 without providing the electromagnetic induction coil 113.
  • the capacitor 112 is provided to adjust the natural frequency of the resonance circuit. When a desired natural frequency is obtained using the stray capacitance of the resonance coil 111, the capacitor 112 is not provided. Also good.
  • high-frequency AC power is supplied from the power supply device 210 to the electromagnetic induction coil 223, and power is supplied to the resonance coil 221 using the electromagnetic induction coil 223. Then, energy (electric power) moves from the resonance coil 221 to the resonance coil 111 through a magnetic field formed between the resonance coil 221 and the resonance coil 111 of the vehicle 100. The energy (electric power) moved to the resonance coil 111 is taken out using the electromagnetic induction coil 113 and transmitted to the electric load device 118 of the vehicle 100.
  • the difference between the natural frequency of power transmission unit 220 of power transmission device 200 and the natural frequency of power reception unit 110 of vehicle 100 is the natural frequency of power transmission unit 220 or the specific frequency of power reception unit 110. It is ⁇ 10% or less of the frequency.
  • the power transmission efficiency can be increased.
  • the difference between the natural frequencies is larger than ⁇ 10%, there is a possibility that the power transmission efficiency becomes smaller than 10% and the power transmission time becomes longer.
  • the natural frequency of the power transmission unit 220 (power reception unit 110) means a vibration frequency when the electric circuit (resonance circuit) constituting the power transmission unit 220 (power reception unit 110) freely vibrates.
  • the natural frequency when the braking force or the electrical resistance is substantially zero is the resonance frequency of the power transmission unit 220 (power reception unit 110). Also called.
  • FIG. 6 is a diagram illustrating a simulation model of the power transmission system.
  • FIG. 7 is a diagram illustrating the relationship between the deviation of the natural frequencies of the power transmission unit and the power reception unit and the power transmission efficiency.
  • the power transmission system 89 includes a power transmission unit 90 and a power reception unit 91.
  • the power transmission unit 90 includes a first coil 92 and a second coil 93.
  • the second coil 93 includes a resonance coil 94 and a capacitor 95 provided in the resonance coil 94.
  • the power receiving unit 91 includes a third coil 96 and a fourth coil 97.
  • the third coil 96 includes a resonance coil 99 and a capacitor 98 connected to the resonance coil 99.
  • the inductance of the resonance coil 94 is an inductance Lt
  • the capacitance of the capacitor 95 is a capacitance C1.
  • the inductance of the resonance coil 99 is an inductance Lr
  • the capacitance of the capacitor 98 is a capacitance C2.
  • the horizontal axis indicates the deviation (%) of the natural frequency
  • the vertical axis indicates the power transmission efficiency (%) at a constant frequency current.
  • the deviation (%) in natural frequency is expressed by the following equation (3).
  • the power transmission efficiency can be increased to a practical level by setting. Furthermore, when the natural frequency of the second coil 93 and the third coil 96 is set so that the absolute value of the deviation (%) of the natural frequency is 5% or less of the natural frequency of the third coil 96, the power transmission efficiency is further increased. This is more preferable.
  • the simulation software employs electromagnetic field analysis software (JMAG (registered trademark): manufactured by JSOL Corporation).
  • power transmission unit 220 of power transmission device 200 and power reception unit 110 of vehicle 100 are formed between power transmission unit 220 and power reception unit 110, and a magnetic field that vibrates at a specific frequency and power transmission Power is exchanged in a non-contact manner through at least one of an electric field that is formed between the unit 220 and the power receiving unit 110 and vibrates at a specific frequency.
  • the coupling coefficient ⁇ between the power transmission unit 220 and the power reception unit 110 is preferably 0.1 or less, and power is transmitted from the power transmission unit 220 to the power reception unit 110 by causing the power transmission unit 220 and the power reception unit 110 to resonate with each other by an electromagnetic field. Is transmitted.
  • the “magnetic field of a specific frequency” typically has a relationship with the power transmission efficiency and the frequency of the current supplied to the power transmission unit 220.
  • the power transmission efficiency when power is transmitted from the power transmission unit 220 to the power reception unit 110 varies depending on various factors such as the distance between the power transmission unit 220 and the power reception unit 110.
  • the natural frequency (resonance frequency) of the power transmission unit 220 and the power reception unit 110 is f0
  • the frequency of the current supplied to the power transmission unit 220 is f3
  • the air gap between the power transmission unit 220 and the power reception unit 110 is the air gap AG.
  • FIG. 8 is a graph showing the relationship between the power transmission efficiency when the air gap AG is changed and the frequency f3 of the current supplied to the power transmission unit 220 with the natural frequency f0 fixed.
  • the horizontal axis indicates the frequency f3 of the current supplied to the power transmission unit 220
  • the vertical axis indicates the power transmission efficiency (%).
  • the efficiency curve L1 schematically shows the relationship between the power transmission efficiency when the air gap AG is small and the frequency f3 of the current supplied to the power transmission unit 220. As shown in the efficiency curve L1, when the air gap AG is small, the peak of power transmission efficiency occurs at frequencies f4 and f5 (f4 ⁇ f5).
  • the two peaks when the power transmission efficiency is increased change so as to approach each other.
  • the efficiency curve L2 when the air gap AG is larger than the predetermined distance, the power transmission efficiency has one peak, and the power transmission efficiency is obtained when the frequency of the current supplied to the power transmission unit 220 is the frequency f6. Becomes a peak.
  • the efficiency curve L3 When the air gap AG is further increased from the state of the efficiency curve L2, the peak of power transmission efficiency is reduced as shown by the efficiency curve L3.
  • the following methods can be considered as methods for improving the power transmission efficiency.
  • the frequency of the current supplied to the power transmission unit 220 is made constant in accordance with the air gap AG, and the capacitance of the capacitor 222 or the capacitor 112 is changed, so that the power transmission unit 220 and the power reception unit 110 can be changed. It is conceivable to change the power transmission efficiency characteristics between the two. Specifically, the capacitances of the capacitor 222 and the capacitor 112 are adjusted so that the power transmission efficiency reaches a peak in a state where the frequency of the current supplied to the power transmission unit 220 is constant. In this method, the frequency of the current flowing through the power transmission unit 220 and the power reception unit 110 is constant regardless of the size of the air gap AG.
  • the second method is a method of adjusting the frequency of the current supplied to the power transmission unit 220 based on the size of the air gap AG.
  • the power transmission characteristic is the efficiency curve L1
  • a current having a frequency f4 or f5 is supplied to the power transmission unit 220.
  • the frequency characteristic is the efficiency curves L2 and L3
  • the current having the frequency f6 is supplied to the power transmission unit 220.
  • the frequency of the current flowing through power transmission unit 220 and power reception unit 110 is changed in accordance with the size of air gap AG.
  • the frequency of the current flowing through the power transmission unit 220 is a fixed constant frequency
  • the frequency flowing through the power transmission unit 220 is a frequency that changes as appropriate depending on the air gap AG.
  • a current having a specific frequency set so as to increase the power transmission efficiency is supplied to the power transmission unit 220 by the first method, the second method, or the like.
  • a magnetic field electromagnettic field
  • the power receiving unit 110 receives power from the power transmitting unit 220 through a magnetic field that is formed between the power receiving unit 110 and the power transmitting unit 220 and vibrates at a specific frequency.
  • the “magnetic field oscillating at a specific frequency” is not necessarily a magnetic field having a fixed frequency.
  • the frequency of the current supplied to the power transmission unit 220 is set, but the power transmission efficiency is the horizontal direction of the power transmission unit 220 and the power reception unit 110.
  • the frequency changes due to other factors such as a deviation, and the frequency of the current supplied to the power transmission unit 220 may be adjusted based on the other factors.
  • FIG. 9 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the strength of the electromagnetic field.
  • the electromagnetic field is composed of three components.
  • the curve k1 is a component that is inversely proportional to the distance from the wave source, and is referred to as a “radiated electromagnetic field”.
  • a curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induction electromagnetic field”.
  • the curve k3 is a component inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic magnetic field”.
  • the wavelength of the electromagnetic field is “ ⁇ ”
  • the distance at which the strengths of “radiation electromagnetic field”, “induction electromagnetic field”, and “electrostatic magnetic field” are substantially equal can be expressed as ⁇ / 2 ⁇ .
  • the “electrostatic magnetic field” is a region where the intensity of the electromagnetic wave suddenly decreases with the distance from the wave source.
  • the near field evanescent field in which the “electrostatic magnetic field” is dominant.
  • the coupling coefficient ((kappa)) between the power transmission part 220 and the power receiving part 110 is about 0.3 or less, for example, Preferably, it is 0.1 or less.
  • a coupling coefficient ( ⁇ ) in the range of about 0.1 to 0.3 can also be employed.
  • the coupling coefficient ( ⁇ ) is not limited to such a value, and may take various values that improve power transmission.
  • the coupling coefficient ⁇ varies depending on the distance between the power transmission unit and the power reception unit.
  • the coupling coefficient ⁇ is, for example, about 0.6 to 0.8.
  • the coupling coefficient ⁇ is 0.6 or less depending on the distance between the power transmission unit and the power reception unit.
  • the coupling coefficient ⁇ is 0.3 or less.
  • the coupling between the power transmitting unit 220 and the power receiving unit 110 in the power transmission is, for example, “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, “electromagnetic field (electromagnetic field) resonant coupling”, “ Electric field (electric field) resonance coupling ".
  • the “electromagnetic field (electromagnetic field) resonance coupling” means a coupling including any of “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, and “electric field (electric field) resonance coupling”.
  • the power transmission unit 220 and the power reception unit 110 are formed by coils as described above, the power transmission unit 220 and the power reception unit 110 are mainly coupled by a magnetic field (magnetic field), and are referred to as “magnetic resonance coupling” or “magnetic field”. (Magnetic field) resonance coupling "is formed.
  • a magnetic field magnetic field
  • an antenna such as a meander line may be employed for the power transmission unit 220 and the power reception unit 110.
  • the power transmission unit 220 and the power reception unit 110 are mainly based on an electric field (electric field).
  • the “electric field (electric field) resonance coupling” is formed.
  • the moving device when a link mechanism is used for the moving device, the moving device also changes its horizontal position as it moves up and down in the vertical direction. Therefore, in such a case, even if the position of the power transmission unit is confirmed using the power reception unit in a state where the power reception unit is in the standby position, the positions of the power transmission unit and the power reception unit in the actual power reception position close to each other A relationship cannot be guaranteed.
  • the power receiving unit may collide with these objects and damage them during parking operation. is there. Therefore, in the vehicle having the above-described configuration, it is difficult to accurately detect the position of the power transmission unit during the parking operation using the power reception unit.
  • a detector for detecting the power transmission unit is provided on the vehicle side separately from the power reception unit, and the position of the power transmission unit is detected using the added detector during parking operation.
  • first detection operation the power receiving unit is moved to the power receiving position by the moving device, and then the position of the power transmitting unit is detected using the power transmission efficiency based on the received power of the power receiving unit (hereinafter referred to as “second detection”). Also referred to as “operation”.)
  • power transmission for charging the power storage device is started in response to detecting that the position of the power transmission device is within the predetermined range.
  • FIG. 10 and 11 are time charts showing an outline of the charging operation in the present embodiment.
  • FIG. 10 is a time chart when the charging operation is subsequently performed after the vehicle is parked.
  • FIG. 11 is a time chart in a case where a timer function for starting a charging operation after a predetermined time has elapsed after parking of the vehicle based on a user setting. 10 and 11, time is shown on the vertical axis, and temporal operations of the user, the vehicle 100, and the power transmission device 200 are schematically shown.
  • the power transmission device 200 starts test power transmission for parking position alignment (P310).
  • vehicle 100 magnetic field generated by test power transmission is detected by position detection sensor 165, and based on the output of position detection sensor 165, power transmission unit 220 is positioned within a predetermined range (first predetermined range) from power reception unit 110. It is determined whether or not (P210).
  • vehicle 100 determines that power transmission unit 220 is located within a predetermined range from power reception unit 110, vehicle 100 guides the user to stop the vehicle.
  • the vehicle 100 performs parking operation based on this recognition. Note that the power output in the test power transmission is set to be smaller than the power for charging the power storage device 190.
  • the vehicle 100 determines whether or not the power transmission unit 220 is located within a predetermined range from the power reception unit 110 based on the output from the position detection sensor 165, and the power transmission unit When 220 is located within the predetermined range, a signal indicating completion of parking is notified to the user (P220). In response to this, the vehicle 100 is stopped by the user, and when the vehicle 100 is stopped by the operation of the ignition switch or the ignition key and the vehicle 100 is set in the Ready-OFF state (P110), the vehicle 100 Operates the lifting mechanism 105 to lower the power receiving unit 110 to a position (power receiving position) facing the power transmitting unit 220 (P230).
  • the vehicle 100 receives the power of the test power transmission from the power transmitting unit 220 by the power receiving unit 110, and the power transmitting unit 220 and the power receiving unit based on the power transmission efficiency (power receiving efficiency). It is confirmed again whether the positional relationship with 110 is within a predetermined range (second predetermined range) (P240). When the positional relationship between the power transmission unit 220 and the power reception unit 110 is good, the vehicle 100 transmits a signal indicating that to the power transmission device 200, and in response to this, the power transmission device 200 performs the test power transmission. Is stopped (P320).
  • the power transmission device 200 starts power transmission for charging the power storage device 190 (P330).
  • Vehicle 100 receives power transmitted from power transmission device 200 at power reception unit 110, and executes a charging process for power storage device 190 (P250).
  • vehicle 100 stops the charging operation, and the user and power transmission device 200 is notified of the end of charging (P260). Then, vehicle 100 operates lifting mechanism 105 to return power reception unit 110 to the standby position (P270). On the other hand, power transmission device 200 stops the power transmission operation based on the charging end notification from vehicle 100 (P340).
  • the position detection of the power transmission unit 220 using the position detection sensor 165 in P210 corresponds to the aforementioned “first detection operation”. Further, the position detection of the power transmission unit 220 using the power transmission efficiency based on the power received by the power reception unit 110 in P240 corresponds to the above-described “second detection operation”.
  • vehicle 100 in the first detection operation (P210), when the parking operation to a predetermined position in the parking space is completed, vehicle 100 notifies the user of a signal indicating the completion of parking (P220). ). In response to this, the vehicle 100 is stopped by the user, and when the vehicle 100 is stopped by the operation of the ignition switch or the ignition key and the vehicle 100 is set in the Ready-OFF state (P110), the vehicle 100 Calculates the time until the start of charging based on the charging start time or charging completion time set by the user. At this time, the power transmission device 200 stops the test power transmission in response to being Ready-OFF (P320). Then, vehicle 100 delays the start of the actual charging operation as a standby state until the calculated time until the start of charging elapses (P225).
  • the vehicle 100 When the above timer expires and the charging start time arrives, the vehicle 100 notifies the power transmission device 200 to resume test power transmission (P321), and lowers the lifting mechanism 105 to the power receiving position to transmit power to the power receiving unit 110. Close to the unit 220 (P230).
  • the vehicle 100 calculates the power transmission efficiency based on the received power received by the power receiving unit 110 and the information related to the transmitted power transmitted from the power transmission device 200, and receives the power. It is confirmed whether the power transmitting unit 220 is within a predetermined range (second predetermined range) from the power receiving unit 100 at the position (P240).
  • the vehicle 100 stops the test power transmission from the power transmission device 200 (P322).
  • the power transmission device 200 next starts power transmission using larger power than the test power transmission in order to charge the power storage device 190 (P330). Then, vehicle 100 executes the charging process of power storage device 190 using the power received from power transmission device 200 (P250).
  • FIG. 12 is a flowchart for explaining readjustment control of the power receiving unit position executed during power transmission in the present embodiment.
  • Each step in the flowchart shown in FIG. 12 is realized by executing a program stored in advance in vehicle ECU 300 or power transmission ECU 240 at a predetermined cycle.
  • step S 100 vehicle 100 transmits a request signal to start communication with power transmission device 200 at step (hereinafter, step is abbreviated as S) 100.
  • step S 300 step is abbreviated as step S.
  • vehicle ECU 300 determines whether or not a response signal from power transmission device 200 with respect to the request signal has been received, that is, whether or not communication with power transmission device 200 has been established. If communication with power transmission device 200 has not been established (NO in S110), the process returns to S110, and vehicle ECU 300 continues to monitor the response signal from power transmission device 200.
  • the process proceeds to S120, and a parking operation in a parking space where power transmission device 200 is installed is started by a user operation or an automatic parking function. Is done. With the start of the parking operation, the power transmission ECU 240 starts test power transmission from the power transmission unit 220 (S310).
  • vehicle ECU 300 detects the magnetic force transmitted from power transmission unit 220 using position detection sensor 165, so that movement to the predetermined parking position is completed, that is, power transmission unit 220 is a power reception unit. It is determined whether or not a predetermined range (first predetermined range) from 110 is reached. If the movement to the predetermined parking position has not been completed (NO in S130), the process returns to S130, and vehicle ECU 300 continues the parking operation while performing position confirmation with position detection sensor 165.
  • a predetermined range first predetermined range
  • vehicle ECU300 determines whether there is a timer setting by a user in S150. If there is no timer setting by the user (NO in S150), the process proceeds to S170.
  • vehicle ECU 300 delays the start of the charging operation until the set timer elapses. In S160, vehicle ECU 300 determines whether the set timer count-up is completed and the charging start time has come.
  • the vehicle ECU 300 causes the power transmission device 200 to start test power transmission again (S ⁇ b> 321) and starts to lower the lifting mechanism 105 in order to move the power reception unit 110 to the power reception position facing the power transmission unit 220. .
  • step S180 the vehicle ECU 300 receives power supplied by the test power transmission from the power transmission device 200, and checks whether the positions of the power transmission unit 220 and the power reception unit 110 at the power reception position are appropriate. Calculate transmission efficiency (power reception efficiency).
  • vehicle ECU 300 determines that power transmission unit 220 is within a predetermined range (second predetermined range) from power reception unit 110 at the power reception position, depending on whether or not the calculated power transmission efficiency is greater than or equal to a predetermined value. It is determined whether or not.
  • the process proceeds to S200, and vehicle ECU 300 stops the lowering operation of lifting mechanism 105 and stops test power transmission from power transmission device 200. (S322).
  • the power transmission ECU 240 starts power transmission using power larger than the test power transmission after stopping the test power transmission (S330).
  • vehicle ECU 300 starts the charging process (S210).
  • power storage device 190 is fully charged, or when the charging operation is terminated based on an instruction to stop charging by the user, vehicle ECU 300 transmits notification to power transmission device 200 that charging operation is terminated. Thereafter, vehicle ECU 300 raises lifting mechanism 105 to return power reception unit 110 to the standby position, and ends communication with power transmission device 220 (S220).
  • power transmission device 220 stops power transmission to vehicle 100 in response to the notification of the end of charging (S340).
  • the process proceeds to S195, and vehicle ECU 300 determines whether the position of lifting mechanism 105 has reached the lower limit.
  • the “lower limit” includes a case where the lower limit of the operable range of the lifting mechanism 105 and a case where the lifting mechanism 105 cannot be lowered further when the power receiving unit 110 contacts the power transmission unit 220 or the like.
  • the process is returned to S190, and the vehicle ECU 300 performs the lowering operation of the lifting mechanism 105 and the power transmission efficiency is equal to or higher than a predetermined value. Continue to monitor whether or not.
  • vehicle ECU 300 determines that sufficient power transmission efficiency cannot be obtained within the movable range of lifting mechanism 105, and S205.
  • the elevator mechanism 105 is raised to return the power receiving unit 110 to the standby position, and the charging of the power storage device 190 is stopped (S215).
  • the power transmission device 200 stops the test power transmission to the vehicle 100 (S322).
  • the case where the power transmission efficiency is calculated while lowering the lifting mechanism 105 and the lifting mechanism 105 is stopped in response to the power transmission efficiency becoming a predetermined value or more has been described.
  • a predetermined fixed position such as a position where the power reception unit 110 is in contact with the power transmission unit 220 or a gap between the power reception unit 110 and the power transmission unit 220 has a predetermined value is set as the power reception position.
  • Whether or not to start the charging operation may be determined based on the power transmission efficiency after moving the power receiving unit 110 to the power receiving position.
  • the second detection operation using the power receiving unit 110 may be performed while the test power transmission is continued. Further, when the timer function is used, the second detection operation may be performed using electric power for charging power storage device 190. However, it is more preferable to use the power of the test transmission as shown in FIGS. 11 and 12 because it reduces wasteful power release during position confirmation.
  • the power receiving unit when parking is completed, the power receiving unit is lowered by the lifting mechanism to perform the second detection operation, and then the lifting mechanism is raised to return the power receiving unit to the standby position, and then the timer standby is started. You may make it do.
  • the stop position (the position of the power transmission unit) is determined using the position detection sensor while the power reception unit is in the standby position, and the power reception unit is set to the power reception position.
  • the start of the charging operation can be determined using the calculated power transmission efficiency. Accordingly, the stopping accuracy of the vehicle can be improved in the parking operation, and the charging operation can be suppressed from being executed while the power transmission efficiency is reduced. Thereby, in the non-contact power feeding system, it is possible to perform power transmission while ensuring a desired power transmission efficiency.
  • 10 contactless power supply system 89 power transmission system, 90, 220, 220A power transmission unit, 91, 110 power reception unit, 92, 93, 96, 97 coil, 94, 99, 111, 221 resonance coil, 95, 98, 112, 222 capacitor, 100 vehicle, 105 lifting mechanism, 113, 223 electromagnetic induction coil, 115 SMR, 118 electrical load device, 120 PCU, 130 motor generator, 140 power transmission gear, 150 drive wheels, 160, 230 communication unit, 165 position detection Sensor, 170 matcher, 180 rectifier, 190 power storage device, 195 voltage sensor, 196 current sensor, 200 power transmission device, 210 power supply device, 225 ferrite core, 240 power transmission ECU, 250 power supply unit, 260 impedance adjustment unit, 00 vehicle ECU, 400 commercial power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 非接触給電システム(10)は、送電部(220)から車両(100)の受電部(110)に非接触で電力を供給することが可能である。非接触給電システムは、待機位置から送電部に接近する方向に受電部を移動させる昇降機構(105)と、昇降機構を制御するための車両ECU(300)とを備える。車両ECUは、受電部が待機位置に位置している状態において送電部の位置を検出する第1の検出動作、および、受電部が待機位置よりも送電部に近接した受電位置に位置している状態において送電部の位置を検出する第2の検出動作を行なうことが可能に構成される。そして、車両ECUは、第1および第2の検出動作の双方において送電部が所定範囲内に位置していることが検出された場合に、送電部からの送電を開始させる。

Description

車両および非接触給電システム
 本発明は、車両および非接触給電システムに関し、より特定的には、非接触給電システムにおける送電部と受電部との間の位置合わせ技術に関する。
 電源コードや送電ケーブルを用いない非接触のワイヤレス電力伝送が近年注目されており、車両外部の電源(以下「外部電源」とも称する。)からの電力によって車載の蓄電装置を充電可能な電気自動車やハイブリッド車両等への適用が提案されている。
 このような非接触給電システムにおいては、電力伝送効率を向上させるために、送電側と受電側との位置合わせを適切にすることが重要となる。そして、いくつかのシステムにおいては、送電部と受電部とを接近させるために、送電部あるいは受電部を移動することができる機構を設ける構成が提案されている。
 特開2011-036107号公報(特許文献1)は、車両に備えられる受電側コイルと地面に設けられた送電側コイルとの間で非接触で電力を伝達する充電システムにおいて、送電側コイルと受電側コイルとが互いに電磁的に結合する位置関係となるように送電側コイルの位置を調整する位置調整部が設けられる構成が開示される。
 また、特開2011-120387号公報(特許文献2)および特開2011-193617号公報(特許文献3)においては、車両の非接触給電システムにおいて、車両に備えられる受電コイルを昇降させることによって、受電コイルを送電コイルに接近させる昇降装置が車両側に設けられる構成が開示される。
特開2011-036107号公報 特開2011-120387号公報 特開2011-193617号公報
 非接触給電システムにおいて車両に搭載された蓄電装置を充電する場合、送電装置が設けられた駐車スペースにおいて、電力伝送時における送電部と受電部との位置関係が電力伝送に適した位置となるように駐車することが重要である。また、上述の特許文献に開示されるような、駐車後に送電部あるいは受電部が移動可能な構成である場合には、所望の電力伝送効率を得るためには、電力伝送を行なう際の送電部および受電部の最終的な位置関係が所定の範囲内となることが必要となる。
 この送電部と受電部との間の位置関係が不適切であると、電力伝送効率が低下した状態で電力伝送が行なわれてしまうので、送電装置からの無駄な電力の放出、および充電時間の延長を招いてしまう。
 本発明は、このような課題を解決するためになされたものであって、その目的は、送電部もしくは受電部を移動させる移動装置が設けられた非接触給電システムにおいて、所望の電力伝送効率を確保することである。
 本発明による車両は、送電装置から非接触で電力を受電することが可能である。車両は、送電装置に含まれる送電部から非接触で電力を受電する受電部と、待機位置から送電部に接近する方向に、受電部を移動することが可能に構成された移動装置と、制御装置とを備える。制御装置は、受電部が待機位置に位置している状態において送電部の位置を検出する第1の検出動作、および、受電部が待機位置よりも送電部に近接した位置に位置している状態において送電部の位置を検出する第2の検出動作を行なうことが可能である。制御装置は、第1の検出動作において送電部が第1の所定範囲内に位置していることが検出され、かつ第2の検出動作において送電部が第2の所定範囲内に位置していることが検出された場合に、送電装置からの送電を開始させる。
 好ましくは、車両は、送電部を検出するための検出部をさらに備える。制御装置は、検出部を用いて第1の検出動作を行ない、受電部を用いて第2の検出動作を行なう。
 好ましくは、送電装置からの送電が可能な位置に車両が位置付けられた状態において、検出部と送電部との間の距離は、待機位置と送電部との間の距離よりも短い。
 好ましくは、制御装置は、受電を開始する予定位置まで受電部を移動した後に第2の検出動作を行なう。
 好ましくは、検出部は、送電部からの送電によって生成される電磁場の磁気を検出可能な複数の磁気センサを含む。制御装置は、複数の磁気センサによって検出された磁気の分布に基づいて送電部の位置を認識する。
 好ましくは、制御装置は、ユーザによって設定された送電開始時間に関連する情報に基づいて定められるタイマ値に従って送電部からの送電を開始する。制御装置は、タイマ値に対応する時間が経過したことに応答して第2の検出動作を実行する。
 好ましくは、送電部の固有周波数と受電部の固有周波数との差は、送電部の固有周波数または受電部の固有周波数の±10%以下である。
 好ましくは、送電部と受電部との結合係数は0.6以上0.8以下である。
 好ましくは、受電部は、受電部と送電部との間に形成される特定の周波数で振動する磁界、および、受電部と送電部との間に形成される特定の周波数で振動する電界の少なくとも一方を通じて送電部から受電する。
 本発明による非接触給電システムは、送電部から受電部に非接触で電力を供給する。非接触給電システムは、待機位置から送電部と受電部とが接近する方向に、送電部および受電部の少なくと一方を移動することが可能に構成された移動装置と、制御装置とを備える。制御装置は、送電部および受電部が待機位置に位置している状態において送電部と受電部との間の位置関係を検出する第1の検出動作、ならびに、送電部と受電部との間の距離が送電部および受電部が待機位置にある場合よりも近接している状態において位置関係を検出する第2の検出動作を行なうことが可能である。制御装置は、第1の検出動作において位置関係が第1の所定条件を満たしていることが検出され、かつ第2の検出動作において位置関係が第2の所定条件を満たしていることが検出された場合に、送電部からの送電を開始させる。
 本発明によれば、送電部もしくは受電部を移動させる移動装置が設けられた非接触給電システムにおいて、駐車動作時および移動装置による送電部と受電部との接近時に送電部と受電部との位置関係が確認され、双方において送電部と受電部との間の位置関係が所定条件を満たすことが確認された後に電力伝送が行なわれる。これによって、所望の電力伝送効率を確保しながら電力伝送を行なうことが可能となる。
本発明の実施の形態に従う車両の非接触給電システムの全体構成図である。 図1における昇降機構の動作を説明するための図である。 位置検出センサと送電部との位置関係を説明するための第1の図である。 位置検出センサと送電部との位置関係を説明するための第2の図である。 送電装置から車両への電力伝送時の等価回路図である。 電力伝送システムのシミュレーションモデルを示す図である。 送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。 固有周波数を固定した状態で、エアギャップを変化させたときの電力伝送効率と、送電部に供給される電流の周波数との関係を示すグラフである。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 本実施の形態における位置確認制御の概要を説明するための図である。 本実施の形態において、タイマ機能を用いた場合の位置確認制御の概要を説明するための図である。 本実施の形態における位置確認制御処理を説明するためのフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 (非接触給電システムの構成)
 図1は、本実施の形態に従う非接触給電システム10の全体構成図である。図1を参照して、非接触給電システム10は、車両100と、送電装置200とを備える。
 送電装置200は、電源装置210と、送電部220とを含む。電源装置210は、所定の周波数を有する交流電力を発生する。一例として、電源装置210は、商用電源400から電力を受けて高周波の交流電力を発生し、その発生した交流電力を送電部220へ供給する。そして、送電部220は、送電部220の周囲に発生する電磁界を介して、車両100の受電部110へ非接触で電力を出力する。
 電源装置210は、通信部230と、制御装置である送電ECU240と、電源部250と、インピーダンス調整部260とを含む。また、送電部220は、共振コイル221と、キャパシタ222とを含む。
 電源部250は、送電ECU240からの制御信号MODによって制御され、商用電源400などの交流電源から受ける電力を高周波の電力に変換する。そして、電源部250は、その変換した高周波電力を、インピーダンス調整部260を介して共振コイル221へ供給する。
 また、電源部250は、図示されない電圧センサ,電流センサによってそれぞれ検出される送電電圧Vtrおよび送電電流Itrを送電ECU240へ出力する。
 インピーダンス調整部260は、送電部220の入力インピーダンスを調整するためのものであり、典型的には、リアクトルとキャパシタとを含んで構成される。インピーダンス調整部260は、送電ECU240からの制御信号SE10によって制御される。
 共振コイル221は、電源部250から伝達された電力を、車両100の受電部110に含まれる共振コイル111へ非接触で電力を転送する。共振コイル221はキャパシタ222とともにLC共振回路を構成する。なお、受電部110と送電部220との間の電力伝送については、図4を用いて後述する。
 通信部230は、送電装置200と車両100との間で無線通信を行なうための通信インターフェースであり、車両100側の通信部160と情報INFOの授受を行なう。通信部230は、車両100側の通信部160から送信される車両情報、ならびに、送電の開始および停止を指示する信号等を受信し、受信したこれらの情報を送電ECU240へ出力する。また、通信部230は、送電ECU240からの送電電圧Vtrおよび送電電流Itr等の情報を車両100へ送信する。
 送電ECU240は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、電源装置210における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 車両100は、昇降機構105と、受電部110と、整合器170と、整流器180と、充電リレーCHR185と、蓄電装置190と、システムメインリレーSMR115と、パワーコントロールユニットPCU(Power Control Unit)120と、モータジェネレータ130と、動力伝達ギヤ140と、駆動輪150と、制御装置である車両ECU(Electronic Control Unit)300と、通信部160と、電圧センサ195と、電流センサ196と、位置検出センサ165とを含む。
 なお、本実施の形態においては、車両100として電気自動車を例として説明するが、蓄電装置に蓄えられた電力を用いて走行が可能な車両であれば車両100の構成はこれに限られない。車両100の他の例としては、エンジンを搭載したハイブリッド車両や、燃料電池を搭載した燃料電池車などが含まれる。
 受電部110は、車両100のフロアパネル付近に設けられ、共振コイル111と、キャパシタ112とを含む。
 共振コイル111は、送電装置200に含まれる共振コイル221から非接触で電力を受電する。共振コイル111は、キャパシタ112とともにLC共振回路を構成する。
 受電部110は、昇降機構105上に搭載される。昇降機構105は、図2に示されるように、たとえばリンク機構などを用いて、受電部110を待機位置(破線)から、送電部220に対向する受電予定位置(以下、「受電位置」とも称する。)(実線)まで移動させるための移動装置である。昇降機構105は、車両100が駐車スペースの所定位置に停止した後に、たとえば図示されないモータ等により駆動されることによって、受電部110を待機位置から受電位置に移動する。
 なお、受電位置は、送電部220から予め定められた高さに定められてもよいし、受電部110が送電部220に接する位置とされてもよい。
 また、図2に示されるように、車両100が駐車スペースの所定位置に停止した状態においては、位置検出センサ165と送電部220(または、受電位置)との間の距離は、待機位置と送電部220(または、受電位置)との間の距離よりも短くなる。
 さらに、昇降機構105はラチェット機構を含み、受電位置より下方への受電部110の移動は制限されるが、受電位置よりも上方への受電部110の移動が可能となるように構成される。これによって、車高が低くなった場合に、フロアパネルと受電部110との間隔の変動を吸収することができる。
 共振コイル111により受電した電力は、整合器170を介して整流器180へ出力される。整合器170は、典型的には、リアクトルとキャパシタとを含んで構成され、共振コイル111により受電された電力が供給される負荷の入力インピーダンスを調整する。
 整流器180は、整合器170を介して共振コイル111から受けた交流電力を整流し、その整流された直流電力を蓄電装置190に出力する。整流器180としては、たとえば、ダイオードブリッジおよび平滑用のキャパシタ(いずれも図示せず)を含む構成とすることができる。整流器180として、スイッチング制御を用いて整流を行なう、いわゆるスイッチングレギュレータを用いることも可能である。整流器180が受電部110に含まれる場合には、発生する電磁場に伴うスイッチング素子の誤動作等を防止するために、ダイオードブリッジのような静止型の整流器とすることがより好ましい。
 CHR185は、整流器180と蓄電装置190との間に電気的に接続される。CHR185は、車両ECU300からの制御信号SE2により制御され、整流器180から蓄電装置190への電力の供給と遮断とを切換える。
 蓄電装置190は、充放電可能に構成された電力貯蔵要素である。蓄電装置190は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池や、電気二重層キャパシタなどの蓄電素子を含んで構成される。
 蓄電装置190は、整流器180に接続される。そして、蓄電装置190は、受電部110で受電され、かつ整流器180で整流された電力を蓄電する。また、蓄電装置190は、SMR115を介してPCU120とも接続される。蓄電装置190は、車両駆動力を発生させるための電力をPCU120へ供給する。さらに、蓄電装置190は、モータジェネレータ130で発電された電力を蓄電する。蓄電装置190の出力は、たとえば200V程度である。
 蓄電装置190には、いずれも図示しないが、蓄電装置190の電圧VBおよび入出力される電流IBをそれぞれ検出するための電圧センサおよび電流センサが設けられる。これらの検出値は、車両ECU300へ出力される。車両ECU300は、この電圧VBおよび電流IBに基づいて、蓄電装置190の充電状態(「SOC(State Of Charge)」とも称する。)を演算する。
 SMR115は、蓄電装置190とPCU120との間に電気的に接続される。そして、SMR115は、車両ECU300からの制御信号SE1によって制御され、蓄電装置190とPCU120との間での電力の供給と遮断とを切換える。
 PCU120は、いずれも図示しないが、コンバータやインバータを含んで構成される。コンバータは、車両ECU300からの制御信号PWCにより制御されて蓄電装置190からの電圧を変換する。インバータは、車両ECU300からの制御信号PWIにより制御されて、コンバータで変換された電力を用いてモータジェネレータ130を駆動する。
 モータジェネレータ130は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。
 モータジェネレータ130の出力トルクは、動力伝達ギヤ140を介して駆動輪150に伝達される。車両100は、このトルクを用いて走行する。モータジェネレータ130は、車両100の回生制動時には、駆動輪150の回転力によって発電することができる。そして、その発電電力は、PCU120によって蓄電装置190の充電電力に変換される。
 また、モータジェネレータ130の他にエンジン(図示せず)が搭載されたハイブリッド自動車では、エンジンおよびモータジェネレータ130を協調的に動作させることによって、必要な車両駆動力が発生される。この場合、エンジンの回転による発電電力を用いて、蓄電装置190を充電することも可能である。
 通信部160は、車両100と送電装置200との間で無線通信を行なうための通信インターフェースであり、送電装置200の通信部230と情報INFOの授受を行なう。通信部160から送電装置200へ出力される情報INFOには、車両ECU300からの車両情報や、送電の開始および停止を指示する信号、ならびに送電装置200のインピーダンス調整部260の切換指令などが含まれる。
 車両ECU300は、いずれも図1には図示しないがCPU、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、車両100における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 位置検出センサ165は、たとえば、車両100のフロアパネル下面に設けられる。位置検出センサ165は、送電部220が設けられた駐車スペースにおける駐車位置の位置確認のために、送電部220を検出するためのセンサである。位置検出センサ165は、たとえば、磁気検出センサであり、駐車動作実行中に位置検出のために送電部220から送電される電力(以下、「テスト送電」とも称する。)により生じる磁界の大きさを検出し、その検出信号SIGをECU300へ出力する。ECU300は、位置検出センサ165で検出された検出信号SIGに基づいて駐車位置の適否を判定し、ユーザに対して車両の停止を促す。あるいは、車両100に自動駐車機能が設けられる場合には、ECU300は、検出信号SIGに基づいて車両を自動停止させる。
 図3は、車両100が送電部220に対して適切に駐車された場合の、送電部220と位置検出センサ165との位置関係の一例を示す図である。図3の例においては、送電部220の送電用の共振コイル221はその巻回軸が水平方向(図3中のX軸方向)となるようにフェライトコア225に巻回されており、位置検出センサ165として4つのセンサが用いられている。
 図3のような送電部220において送電を行なった場合に生じる磁界の分布をシミュレーションした例を図4に示す。図4においては、磁界の分布が等高線により表現されており、周囲の領域AR2から領域AR1に向かって磁界の強さが大きくなっている。
 位置検出センサ165は、送電用の共振コイル221の巻回中心を原点とする直交座標(X-Y軸)において、原点からのそれぞれのX軸方向の距離が同じで、かつ原点からのY軸方向の距離が同じとなるように、すなわち原点に対して互いに対称となるように配置される。これによって、車両100が送電部220に対して適切な位置に駐車された場合には、各位置検出センサ165で検出される磁界の大きさがほぼ同じになる。したがって、駐車動作を行なう際に、各位置検出センサ165で検出された磁界の大きさの差によって、送電部220が第1の所定範囲内に位置しているか否かを判定することができる。
 なお、位置検出センサ165は、上記のような磁気検出センサに限られず、たとえば、送電部220に貼付されたRFIDを検出するためのRFIDリーダであってもよいし、送電部220の段差や基準点の高さを検出するための距離センサであってもよい。このような他のタイプのセンサを用いる場合には、たとえば各RFIDからの受信強度の分布によって位置を認識したり、各距離センサで検出された高さの分布によって位置を認識したりする。
 本実施の形態のような昇降機構105が設けられる構成においては、受電部110が待機位置から受電位置へ移動されるため、駐車動作実行中のように待機位置に受電部110が格納された状態では、受電部110を用いた位置検出は困難である。そのため、駐車動作中の送電部220の位置検出のために位置検出センサ165が必要となる。
 再び図1を参照して、電圧センサ195は、共振コイル111に並列に接続され、受電部110で受電された受電電圧Vreを検出する。電流センサ196は、共振コイル111と整合器170とを結ぶ電力線に設けられ、受電電流Ireを検出する。受電電圧Vreおよび受電電流Ireの検出値は、車両ECU300に送信され、電力伝送効率の演算等に用いられる。
 なお、図1においては、受電部110および送電部220に、共振コイル111,221が設けられる構成を示したが、これに加えて、共振コイルと電磁誘導により電力を授受可能な電磁誘導コイル113,223がそれぞれ設けられる構成とすることも可能である。この場合には、図1には示さないが、送電部220においては電磁誘導コイルが電源部250に接続されて、電源部250からの電力を電磁誘導により共振コイル221に伝達する。また、受電部110においては電磁誘導コイル113が整流器180に接続されて、共振コイル111で受電した電力を電磁誘導により取出して整流器180に伝達する。
 (電力伝送の原理)
 次に、図5~図9を用いて、非接触による電力伝送の原理について説明する。なお、なお、図5~図9においては、受電部および送電部に電磁誘導コイルが設けられる場合を例として説明する。図5は、送電装置200から車両100への電力伝送時の等価回路図である。図5を参照して、送電装置200の送電部220は、共振コイル221と、キャパシタ222と、電磁誘導コイル223とを含む。
 電磁誘導コイル223は、共振コイル221と所定の間隔をおいて、たとえば共振コイル221と略同軸上に設けられる。電磁誘導コイル223は、電磁誘導により共振コイル221と磁気的に結合し、電源装置210から供給される高周波電力を電磁誘導により共振コイル221へ供給する。
 共振コイル221は、キャパシタ222とともにLC共振回路を形成する。なお、後述するように、車両100の受電部110においてもLC共振回路が形成される。共振コイル221およびキャパシタ222によって形成されるLC共振回路の固有周波数と、受電部110のLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%以下である。そして、共振コイル221は、電磁誘導コイル223から電磁誘導により電力を受け、車両100の受電部110へ非接触で送電する。
 なお、電磁誘導コイル223は、電源装置210から共振コイル221への給電を容易にするために設けられるものであり、電磁誘導コイル223を設けずに共振コイル221に電源装置210を直接接続してもよい。また、キャパシタ222は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル221の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ222を設けない構成としてもよい。
 車両100の受電部110は、共振コイル111と、キャパシタ112と、電磁誘導コイル113とを含む。共振コイル111は、キャパシタ112とともにLC共振回路を形成する。上述のように、共振コイル111およびキャパシタ112によって形成されるLC共振回路の固有周波数と、送電装置200の送電部220における、共振コイル221およびキャパシタ222によって形成されるLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%である。そして、共振コイル111は、送電装置200の送電部220から非接触で受電する。
 電磁誘導コイル113は、共振コイル111と所定の間隔をおいて、たとえば共振コイル111と略同軸上に設けられる。電磁誘導コイル113は、電磁誘導により共振コイル111と磁気的に結合し、共振コイル111によって受電された電力を電磁誘導により取出して電気負荷装置118へ出力する。なお、電気負荷装置118は、受電部110によって受電された電力を利用する電気機器であり、具体的には、整流器180(図1)以降の電気機器を包括的に表わしたものである。
 なお、電磁誘導コイル113は、共振コイル111からの電力の取出しを容易にするために設けられるものであり、電磁誘導コイル113を設けずに共振コイル111に整流器180を直接接続してもよい。また、キャパシタ112は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル111の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ112を設けない構成としてもよい。
 送電装置200において、電源装置210から電磁誘導コイル223へ高周波の交流電力が供給され、電磁誘導コイル223を用いて共振コイル221へ電力が供給される。そうすると、共振コイル221と車両100の共振コイル111との間に形成される磁界を通じて共振コイル221から共振コイル111へエネルギ(電力)が移動する。共振コイル111へ移動したエネルギ(電力)は、電磁誘導コイル113を用いて取出され、車両100の電気負荷装置118へ伝送される。
 上述のように、この電力伝送システムにおいては、送電装置200の送電部220の固有周波数と、車両100の受電部110の固有周波数との差は、送電部220の固有周波数または受電部110の固有周波数の±10%以下である。このような範囲に送電部220および受電部110の固有周波数を設定することで電力伝送効率を高めることができる。一方、上記の固有周波数の差が±10%よりも大きくなると、電力伝送効率が10%よりも小さくなり、電力伝送時間が長くなるなどの弊害が生じる可能性がある。
 なお、送電部220(受電部110)の固有周波数とは、送電部220(受電部110)を構成する電気回路(共振回路)が自由振動する場合の振動周波数を意味する。なお、送電部220(受電部110)を構成する電気回路(共振回路)において、制動力または電気抵抗を実質的に零としたときの固有周波数は、送電部220(受電部110)の共振周波数とも呼ばれる。
 図6および図7を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。図6は、電力伝送システムのシミュレーションモデルを示す図である。また、図7は、送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。
 図6を参照して、電力伝送システム89は、送電部90と、受電部91とを備える。送電部90は、第1コイル92と、第2コイル93とを含む。第2コイル93は、共振コイル94と、共振コイル94に設けられたキャパシタ95とを含む。受電部91は、第3コイル96と、第4コイル97とを備える。第3コイル96は、共振コイル99とこの共振コイル99に接続されたキャパシタ98とを含む。
 共振コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。また、共振コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、第2コイル93の固有周波数f1は、下記の式(1)によって示され、第3コイル96の固有周波数f2は下記の式(2)によって示される。
  f1=1/{2π(Lt×C1)1/2} … (1)
  f2=1/{2π(Lr×C2)1/2} … (2)
 ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、第2コイル93および第3コイル96の固有周波数のズレと電力伝送効率との関係を図7に示す。なお、このシミュレーションにおいては、共振コイル94および共振コイル99の相対的な位置関係は固定とし、さらに、第2コイル93に供給される電流の周波数は一定である。
 図7に示すグラフのうち、横軸は固有周波数のズレ(%)を示し、縦軸は一定周波数の電流における電力伝送効率(%)を示す。固有周波数のズレ(%)は、下記の式(3)によって示される。
  (固有周波数のズレ)={(f1-f2)/f2}×100(%) … (3)
 図7から明らかなように、固有周波数のズレ(%)が0%の場合には、電力伝送効率は100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は40%程度となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は10%程度となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は5%程度となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、第3コイル96の固有周波数の10%以下の範囲となるように第2コイル93および第3コイル96の固有周波数を設定することで、電力伝送効率を実用的なレベルに高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が第3コイル96の固有周波数の5%以下となるように第2コイル93および第3コイル96の固有周波数を設定すると、電力伝送効率をさらに高めることができるのでより好ましい。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
 再び図5を参照して、送電装置200の送電部220および車両100の受電部110は、送電部220と受電部110との間に形成され、かつ、特定の周波数で振動する磁界と、送電部220と受電部110との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、非接触で電力を授受する。送電部220と受電部110との結合係数κは0.1以下が好ましく、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220から受電部110へ電力が伝送される。
 ここで、送電部220の周囲に形成される特定の周波数の磁界について説明する。「特定の周波数の磁界」は、典型的には、電力伝送効率と送電部220に供給される電流の周波数と関連性を有する。そこで、まず、電力伝送効率と、送電部220に供給される電流の周波数との関係について説明する。送電部220から受電部110に電力を伝送するときの電力伝送効率は、送電部220および受電部110間の距離などの様々な要因よって変化する。たとえば、送電部220および受電部110の固有周波数(共振周波数)をf0とし、送電部220に供給される電流の周波数をf3とし、送電部220および受電部110の間のエアギャップをエアギャップAGとする。
 図8は、固有周波数f0を固定した状態で、エアギャップAGを変化させたときの電力伝送効率と、送電部220に供給される電流の周波数f3との関係を示すグラフである。図8を参照して、横軸は、送電部220に供給される電流の周波数f3を示し、縦軸は、電力伝送効率(%)を示す。効率曲線L1は、エアギャップAGが小さいときの電力伝送効率と、送電部220に供給される電流の周波数f3との関係を模式的に示す。この効率曲線L1に示すように、エアギャップAGが小さい場合には、電力伝送効率のピークは周波数f4,f5(f4<f5)において生じる。エアギャップAGを大きくすると、電力伝送効率が高くなるときの2つのピークは、互いに近づくように変化する。そして、効率曲線L2に示すように、エアギャップAGを所定距離よりも大きくすると、電力伝送効率のピークは1つとなり、送電部220に供給される電流の周波数が周波数f6のときに電力伝送効率がピークとなる。エアギャップAGを効率曲線L2の状態よりもさらに大きくすると、効率曲線L3に示すように電力伝送効率のピークが小さくなる。
 たとえば、電力伝送効率の向上を図るため手法として次のような手法が考えられる。第1の手法としては、エアギャップAGにあわせて、送電部220に供給される電流の周波数を一定として、キャパシタ222やキャパシタ112のキャパシタンスを変化させることで、送電部220と受電部110との間での電力伝送効率の特性を変化させる手法が考えられる。具体的には、送電部220に供給される電流の周波数を一定とした状態で、電力伝送効率がピークとなるように、キャパシタ222およびキャパシタ112のキャパシタンスを調整する。この手法では、エアギャップAGの大きさに関係なく、送電部220および受電部110に流れる電流の周波数は一定である。
 また、第2の手法としては、エアギャップAGの大きさに基づいて、送電部220に供給される電流の周波数を調整する手法である。たとえば、電力伝送特性が効率曲線L1となる場合には、周波数f4またはf5の電流を送電部220に供給する。周波数特性が効率曲線L2,L3となる場合には、周波数f6の電流を送電部220に供給する。この場合においては、エアギャップAGの大きさに合わせて送電部220および受電部110に流れる電流の周波数を変化させることになる。
 第1の手法では、送電部220を流れる電流の周波数は、固定された一定の周波数となり、第2の手法では、送電部220を流れる周波数は、エアギャップAGによって適宜変化する周波数となる。第1の手法や第2の手法などによって、電力伝送効率が高くなるように設定された特定の周波数の電流が送電部220に供給される。送電部220に特定の周波数の電流が流れることで、送電部220の周囲には、特定の周波数で振動する磁界(電磁界)が形成される。受電部110は、受電部110と送電部220との間に形成され、かつ特定の周波数で振動する磁界を通じて送電部220から電力を受電している。したがって、「特定の周波数で振動する磁界」とは、必ずしも固定された周波数の磁界とは限らない。なお、上記の例では、エアギャップAGに着目して、送電部220に供給される電流の周波数を設定するようにしているが、電力伝送効率は、送電部220および受電部110の水平方向のズレ等のように他の要因によっても変化するものであり、当該他の要因に基づいて、送電部220に供給される電流の周波数を調整する場合がある。
 なお、上記の説明では、共振コイルとしてヘリカルコイルを採用した例について説明したが、共振コイルとして、メアンダラインなどのアンテナなどを採用した場合には、送電部220に特定の周波数の電流が流れることで、特定の周波数の電界が送電部220の周囲に形成される。そして、この電界を通して、送電部220と受電部110との間で電力伝送が行なわれる。
 この電力伝送システムにおいては、電磁界の「静電磁界」が支配的な近接場(エバネッセント場)を利用することで、送電および受電効率の向上が図られている。
 図9は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図9を参照して、電磁界は3つの成分から成る。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。なお、電磁界の波長を「λ」とすると、「輻射電磁界」と「誘導電磁界」と「静電磁界」との強さが略等しくなる距離は、λ/2πと表わすことができる。
 「静電磁界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、この実施の形態に係る電力伝送システムでは、この「静電磁界」が支配的な近接場(エバネッセント場)を利用してエネルギ(電力)の伝送が行なわれる。すなわち、「静電磁界」が支配的な近接場において、近接する固有周波数を有する送電部220および受電部110(たとえば一対のLC共振コイル)を共鳴させることにより、送電部220から他方の受電部110へエネルギ(電力)を伝送する。この「静電磁界」は遠方にエネルギを伝播しないので、遠方までエネルギを伝播する「輻射電磁界」によってエネルギ(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギ損失で送電することができる。
 このように、この電力伝送システムにおいては、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220と受電部110との間で非接触によって電力が伝送される。そして、送電部220と受電部110との間の結合係数(κ)は、たとえば、0.3以下程度であり、好ましくは、0.1以下である。当然のことながら、結合係数(κ)を0.1~0.3程度の範囲も採用することができる。結合係数(κ)は、このような値に限定されるものでなく、電力伝送が良好となる種々の値をとり得る。
 なお、結合係数κは、送電部と受電部との間の距離によって変動する。電力伝送時における送電部と受電部との間のエアギャップが小さいときには、結合係数κは、たとえば、0.6~0.8程度である。なお、当然のことながら、送電部と受電部との間の距離によっては、結合係数κは、0.6以下となる。そして、送電部と受電部とが離れた状態で電力伝送が実施されると、結合係数κは、0.3以下となる。
 なお、電力伝送における、上記のような送電部220と受電部110との結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電磁界(電磁場)共振結合」、「電界(電場)共振結合」等という。「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。
 送電部220と受電部110とが上記のようにコイルによって形成される場合には、送電部220と受電部110とは、主に磁界(磁場)によって結合し、「磁気共鳴結合」または「磁界(磁場)共鳴結合」が形成される。なお、送電部220と受電部110とに、たとえば、メアンダライン等のアンテナを採用することも可能であり、この場合には、送電部220と受電部110とは、主に電界(電場)によって結合し、「電界(電場)共鳴結合」が形成される。
 (位置確認制御の説明)
 上述のような、移動装置を用いて、通常走行時には受電部を待機位置に配置し、電力伝送時には受電部下降して送電部に近接させる構成を有する場合、送電部と受電部とが近接した状態で送電部と受電部との間の結合が良好となるように、コイルのインダクタンスやキャパシタのキャパシタンスなどの各種のパラメータが設計される。そのため、受電部が待機位置にある状態では、送電部と受電部との距離が設計値よりも大きく、送電部から出力される電力を十分に受電できない傾向にある。そのため、車両を駐車スペースの所定位置に駐車する際に、受電部の受電電力に基づいた電力伝送効率を用いて、送電部の位置を検出することが困難となる場合が生じる。
 特に、図2で示したように、移動装置にリンク機構が用いられる場合には、移動装置は、垂直方向の昇降に伴って水平方向の位置も変化する。そのため、このような場合には、受電部が待機位置にある状態で受電部を用いて送電部の位置を確認したとしても、送電部と受電部とが近接した実際の受電位置における互いの位置関係を保障することはできない。
 一方で、駐車動作の際に、移動装置により受電位置に対応した高さまで予め受電部を下降させた状態にして、受電部を用いて送電部の位置を確認することも可能ではあるが、送電部の上面高さが想定よりも高かったり、縁石のような地面から突出した他の物体があった場合には、駐車動作中に受電部がこれらの物体に衝突して損傷してしまうおそれがある。そのため、上述のような構成を有する車両においては、受電部を用いて駐車動作時に送電部の位置を正確に検出することは困難である。
 そのため、本実施の形態においては、車両側に、送電部を検出するための検出器が受電部とは別に設けられ、駐車動作時にはこの追加された検出器を用いて送電部の位置が検出される(以下、「第1の検出動作」とも称する。)。さらに、駐車完了後、移動装置によって受電部が受電位置に移動された後に、受電部の受電電力に基づいた電力伝送効率を用いて送電部の位置検出が行なわれる(以下、「第2の検出動作」とも称する。)。そして、この第1の検出動作および第2の検出動作の双方において、送電装置の位置が所定範囲内であることが検出されたことに応答して、蓄電装置を充電するための送電が開始される。このような、2段階の位置検出動作を用いた位置確認制御を行なうことによって、電力伝送効率が低下した状態のまま送電が行なわれる状態を回避することができる。
 以下、図10~図12を用いて、本実施の形態における、送電装置の位置確認制御について説明する。
 図10および図11は、本実施の形態における充電動作の概要を示すタイムチャートである。図10は、車両駐車後に引き続いて充電動作が行なわれる場合のタイムチャートである。一方、図11は、ユーザの設定に基づいて、車両駐車後、所定の時間が経過した後に充電動作を開始するタイマ機能が用いられる場合のタイムチャートである。図10および図11においては、縦軸に時間が示されており、ユーザ,車両100,送電装置200の時間的な動作が概略的に示されている。
 図1および図10を参照して、蓄電装置190の充電を行なうために、車両100が送電装置200が設置された駐車スペース付近に到来すると、通信待機の状態の車両100から通信を確立するための要求信号が送信される(P200)。これに応答して、送電装置200から通信開始のための応答信号が車両100に対して送信され(P300)、これによって、車両100と送電装置200との間の通信が確立する。
 その後、ユーザによる駐車動作が開始されると(P100)、送電装置200は、駐車位置合わせのためのテスト送電を開始する(P310)。車両100は、テスト送電によって生じる磁界を位置検出センサ165により検出し、位置検出センサ165の出力に基づいて、受電部110から所定範囲(第1の所定範囲)内に送電部220が位置しているか否かを判定する(P210)。そして、車両100は、送電部220が受電部110から所定の範囲内に位置していると判断すると、ユーザに対して車両を停車するように案内する。また、自動駐車機能を有している場合には、車両100は、この認識に基づいて駐車動作を実行する。なお、テスト送電において出力される電力は、蓄電装置190を充電する場合の電力よりも小さく設定される。
 所定の位置への駐車動作が完了すると、車両100は、位置検出センサ165からの出力に基づいて、送電部220が受電部110から所定範囲内に位置しているか否かを判定し、送電部220が所定範囲内に位置している場合には、駐車完了を示す信号をユーザに通知する(P220)。これに応答して、ユーザにより車両100が停止され、イグニッションスイッチまたはイグニッションキーの操作によって、車両100の停止操作が行なわれて、車両100がReady-OFF状態にされると(P110)、車両100は、昇降機構105を動作させて受電部110を送電部220に対向する位置(受電位置)へと下降させる(P230)。
 受電位置への受電部110の配置が完了すると、車両100は、送電部220からのテスト送電の電力を受電部110により受け、電力伝送効率(受電効率)に基づいて、送電部220と受電部110との位置関係が所定範囲内(第2の所定範囲)であるかを再度確認する(P240)。そして、送電部220と受電部110との位置関係が良好である場合には、車両100は、その旨を示す信号を送電装置200に送信し、これに応答して、送電装置200はテスト送電を停止する(P320)。
 その後、送電装置200は、蓄電装置190を充電するための電力の送電を開始する(P330)。車両100は、送電装置200から送電される電力を受電部110で受け、蓄電装置190の充電処理を実行する(P250)。
 蓄電装置190が満充電状態となって充電が完了した場合、あるいは、ユーザからの操作によって充電動作の終了が指示された場合には、車両100は、充電動作を停止するとともに、ユーザおよび送電装置200に対して充電の終了を通知する(P260)。そして、車両100は、昇降機構105を動作させて、受電部110を待機位置へ戻す(P270)。一方、送電装置200は、車両100からの充電終了通知に基づいて送電動作を停止する(P340)。
 なお、上記の説明において、P210における位置検出センサ165を用いた送電部220の位置検出が先述の「第1の検出動作」に対応する。また、P240における受電部110で受電した電力に基づく電力伝送効率を用いた送電部220の位置検出が先述の「第2の検出動作」に対応する。
 次に、図11を用いて、タイマ機能を用いた場合について説明する。図11においては、図10のタイムチャートにP225の動作が追加されたものとなっている。図11において、図10と重複する動作の説明については繰り返さない。
 図1および図11を参照して、第1の検出動作(P210)において、駐車スペース内の所定位置への駐車動作が完了すると、車両100は、駐車完了を示す信号をユーザに通知する(P220)。これに応答して、ユーザにより車両100が停止され、イグニッションスイッチまたはイグニッションキーの操作によって、車両100の停止操作が行なわれて、車両100がReady-OFF状態にされると(P110)、車両100は、ユーザによって設定された充電開始時刻あるいは充電完了時刻に基づいて充電開始までの時間を演算する。このとき、送電装置200はReady-OFFとされたことに応答してテスト送電を停止する(P320)。そして、車両100は、演算された充電開始までの時間が経過するまで、待機状態として実際の充電動作の開始を遅延する(P225)。
 上記のタイマが経過して充電開始時刻が到来すると、車両100は、送電装置200に通知してテスト送電を再開させる(P321)とともに、昇降機構105を受電位置まで下降させて受電部110を送電部220へ近接させる(P230)。
 送電装置200からのテスト送電が開始されると、車両100は、受電部110によって受電した受電電力と、送電装置200から送信される送電電力に関する情報とに基づいて電力伝送効率を演算し、受電位置において送電部220が受電部100から所定の範囲(第2の所定範囲)内であるかを確認する(P240)。
 送電部220と受電部100との位置関係が良好である場合には、車両100は、送電装置200からのテスト送電を停止させる(P322)。送電装置200は、テスト送電を停止すると、次に蓄電装置190を充電するためにテスト送電よりも大きな電力をを用いた送電を開始する(P330)。そして、車両100は、送電装置200から受電した電力を用いて蓄電装置190の充電処理を実行する(P250)。
 以降は、図10で説明と同様に、充電が終了されたこと(P260)に伴って、受電部110が待機位置に戻され(P270)、送電装置200からの送電が停止される(P340)。
 図12は、本実施の形態において、電力伝送中に実行される受電部位置の再調整制御を説明するためのフローチャートである。図12に示されるフローチャート中の各ステップについては、車両ECU300あるいは送電ECU240に予め格納されたプログラムを所定周期で実行することによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
 図12を参照して、車両100は、ステップ(以下、ステップをSと略す。)100にて、送電装置200との通信を開始するために要求信号を送信する。送電ECU240は、この要求信号を受信して車両100を確認すると、車両100との通信を開始するために応答信号を車両100に対して送信する(S300)。
 車両ECU300は、S110にて、上記の要求信号に対する送電装置200からの応答信号を受信したか否か、すなわち送電装置200との通信が確立したか否かを判定する。送電装置200との通信が確立していない場合(S110にてNO)は、処理がS110に戻されて、車両ECU300は、送電装置200からの応答信号の監視を継続する。
 送電装置200との通信が確立した場合(S110にてYES)は、処理がS120に進められて、ユーザ操作あるいは自動駐車機能により、送電装置200が設置されている駐車スペースへの駐車動作が開始される。駐車動作の開始に伴って、送電ECU240は、送電部220からのテスト送電を開始する(S310)。
 そして、S130にて、車両ECU300は、位置検出センサ165を用いて送電部220から送出される磁力を検出することによって、所定の駐車位置への移動が完了したか、すなわち送電部220が受電部110から所定の範囲(第1の所定範囲)内となったか否かを判定する。所定の駐車位置への移動が完了していない場合(S130にてNO)は、処理がS130に戻されて、車両ECU300は、位置検出センサ165での位置確認を行ないながら駐車動作を継続する。
 所定の駐車位置への移動が完了した場合(S130にてYES)は、S140にて、自動駐車機能あるいはユーザ操作によって駐車動作が停止される。そして、ユーザの操作によりReady-OFFとされたことに応答して、送電ECU240は、テスト送電を停止する(S320)。
 そして、車両ECU300は、S150にて、ユーザによるタイマ設定があるか否かを判定する。ユーザによるタイマ設定がない場合(S150にてNO)は、処理がS170に進められる。
 ユーザによるタイマ設定がある場合(S150にてYES)は、車両ECU300は、設定されたタイマが経過するまで充電動作の開始を遅延する。そして、車両ECU300は、S160において、設定されたタイマカウントアップが完了し、充電開始時刻が到来したか否かを判定する。
 タイマカウントアップが完了しておらず充電開始時刻が到来していない場合(S160にてNO)は、処理がS160に戻され、車両ECU300は、充電開始時刻が到来するまで充電動作の待機状態を継続する。一方、充電開始時刻が到来した場合(S160にてYES)は、処理がS170に進められる。
 S170においては、車両ECU300は、送電装置200に対して再度テスト送電を開始させるとともに(S321)、受電部110を送電部220に対向する受電位置まで移動させるために昇降機構105の下降を開始する。
 車両ECU300は、S180にて、送電装置200からテスト送電により供給された電力を受電し、受電位置における送電部220と受電部110との位置が適切であるか否かを確認するために、電力伝送効率(受電効率)を演算する。そして、S190にて、車両ECU300は、演算された電力伝送効率が所定値以上であるか否かによって、受電位置において送電部220が受電部110から所定範囲(第2の所定範囲)内にあるか否かを判定する。
 電力伝送効率が所定値以上である場合(S190にてYES)は、処理がS200に進められて、車両ECU300は、昇降機構105の下降動作を停止するとともに、送電装置200からのテスト送電を停止させる(S322)。送電ECU240は、テスト送電停止後、テスト送電よりも大きな電力を用いた送電を開始する(S330)。車両ECU300は、これに応答して充電処理を開始する(S210)。そして、蓄電装置190が満充電状態となったこと、あるいはユーザによる充電停止の指示に基づいて充電動作が終了すると、車両ECU300は充電動作を終了する旨の通知を送電装置200へ送信する。その後、車両ECU300は、昇降機構105を上昇して受電部110を待機位置へ戻し、送電装置220との通信を終了する(S220)。一方、送電装置220は、充電終了の通知に応答して、車両100への送電を停止する(S340)。
 S190にて、電力伝送効率が所定値未満である場合(S190にてNO)は、処理がS195に進められて、車両ECU300は、昇降機構105の位置が下限に到達したか否かを判定する。ここで「下限」とは、昇降機構105の動作可能範囲の下限である場合、および受電部110が送電部220などに接することにより昇降機構105がそれ以上下降できない場合を含む。
 昇降機構105の位置が下限に到達していない場合(S195にてNO)は、処理がS190に戻されて、車両ECU300は、昇降機構105の下降動作を行ないつつ、電力伝送効率が所定値以上となったか否かを継続して監視する。
 一方、昇降機構105の位置が下限に到達した場合(S195にてYES)は、車両ECU300は、昇降機構105の可動範囲内においては、十分な電力伝送効率を得ることができないと判断し、S205にて昇降機構105を上昇させて受電部110を待機位置に戻し、蓄電装置190の充電の実行を中止する(S215)。これに応答して、送電装置200は車両100へのテスト送電を停止する(S322)。
 なお、上記のフローチャートにおいては、昇降機構105を下降させながら電力伝送効率を演算し、電力伝送効率が所定値以上となったことに応答して昇降機構105を停止させる場合について説明した。しかしながら、たとえば、受電部110が送電部220と接する位置、または受電部110と送電部220とのギャップが所定値となる位置のような、予め定められた固定位置を受電位置とする場合には、受電位置へ受電部110を移動させた後の電力伝送効率に基づいて充電動作を開始するか否かを判断するようにしてもよい。
 また、上記のフローチャートにおいては、図11で説明したように、駐車動作の停止に応答して送電装置200からのテスト送電を停止する場合を例として説明した。しかしながら、タイマ機能を用いない場合には、図10で説明したように、テスト送電を継続した状態で受電部110を用いた第2の検出動作を行なうようにしてもよい。さらに、タイマ機能を用いる場合において、第2の検出動作を蓄電装置190を充電するための電力を用いて実行するようにしてもよい。ただし、図11,図12のようにテスト送電の電力を用いるほうが、位置確認の際の無駄な電力の放出を低減するのでより好ましい。
 さらに、タイマ機能を用いる場合に、駐車完了時に昇降機構により受電部を下降させて第2の検出動作を行ない、その後昇降機構を上昇させて受電部を待機位置に戻してから、タイマ待機を開始するようにしてもよい。
 以上のような処理に従って制御を行なうことによって、駐車実行時においては受電部が待機位置にある状態で位置検出センサを用いて停止位置(送電部の位置)を決定し、受電部が受電位置に移動後は演算された電力伝送効率を用いて充電動作の開始を決定することができる。これによって、駐車動作において車両の停止精度を向上できるとともに、電力伝送効率が低下したままの状態で充電動作が実行されてしまうことを抑制することができる。これによって、非接触給電システムのいて、所望の電力伝送効率を確保しながら電力伝送を行なうことが可能となる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 非接触給電システム、89 電力伝送システム、90,220,220A 送電部、91,110 受電部、92,93,96,97 コイル、94,99,111,221 共振コイル、95,98,112,222 キャパシタ、100 車両、105 昇降機構、113,223 電磁誘導コイル、115 SMR、118 電気負荷装置、120 PCU、130 モータジェネレータ、140 動力伝達ギヤ、150 駆動輪、160,230 通信部、165 位置検出センサ、170 整合器、180 整流器、190 蓄電装置、195 電圧センサ、196 電流センサ、200 送電装置、210 電源装置、225 フェライトコア、240 送電ECU、250 電源部、260 インピーダンス調整部、300 車両ECU、400 商用電源。

Claims (10)

  1.  送電装置から非接触で電力を受電可能な車両であって、
     前記送電装置に含まれる送電部から非接触で電力を受電する受電部と、
     待機位置から前記送電部に接近する方向に、前記受電部を移動することが可能に構成された移動装置と、
     前記受電部が前記待機位置に位置している状態において前記送電部の位置を検出する第1の検出動作、および、前記受電部が前記待機位置よりも前記送電部に近接した位置に位置している状態において前記送電部の位置を検出する第2の検出動作を行なうことが可能な制御装置とを備え、
     前記制御装置は、前記第1の検出動作において前記送電部が第1の所定範囲内に位置していることが検出され、かつ前記第2の検出動作において前記送電部が第2の所定範囲内に位置していることが検出された場合に、前記送電装置からの送電を開始させる、車両。
  2.  前記送電部を検出するための検出部をさらに備え、
     前記制御装置は、前記検出部を用いて前記第1の検出動作を行ない、前記受電部を用いて前記第2の検出動作を行なう、請求項1に記載の車両。
  3.  前記送電装置からの送電が可能な位置に前記車両が位置付けられた状態において、前記検出部と前記送電部との間の距離は、前記待機位置と前記送電部との間の距離よりも短い、請求項2に記載の車両。
  4.  前記制御装置は、受電を開始する予定位置まで前記受電部を移動した後に前記第2の検出動作を行なう、請求項2に記載の車両。
  5.  前記検出部は、前記送電部からの送電によって生成される電磁場の磁気を検出可能な複数の磁気センサを含み、
     前記制御装置は、前記複数の磁気センサによって検出された磁気の分布に基づいて、前記送電部の位置を認識する、請求項2に記載の車両。
  6.  前記制御装置は、ユーザによって設定された送電開始時間に関連する情報に基づいて定められるタイマ値に従って、前記送電部からの送電を開始するように構成され、
     前記制御装置は、前記タイマ値に対応する時間が経過したことに応答して、前記第2の検出動作を実行する、請求項1に記載の車両。
  7.  前記送電部の固有周波数と前記受電部の固有周波数との差は、前記送電部の固有周波数または前記受電部の固有周波数の±10%以下である、請求項1に記載の車両。
  8.  前記送電部と前記受電部との結合係数は0.6以上0.8以下である、請求項1に記載の車両。
  9.  前記受電部は、前記受電部と前記送電部との間に形成される特定の周波数で振動する磁界、および、前記受電部と前記送電部との間に形成される特定の周波数で振動する電界の少なくとも一方を通じて、前記送電部から受電する、請求項1に記載の車両。
  10.  送電部から受電部に非接触で電力を供給する非接触給電システムであって、
     待機位置から前記送電部と前記受電部とが接近する方向に、前記送電部および前記受電部の少なくと一方を移動することが可能に構成された移動装置と、
     前記送電部および前記受電部が前記待機位置に位置している状態において前記送電部と前記受電部との間の位置関係を検出する第1の検出動作、ならびに、前記送電部と前記受電部との間の距離が前記送電部および前記受電部が前記待機位置にある場合よりも近接している状態において前記位置関係を検出する第2の検出動作を行なうことが可能な制御装置とを備え、
     前記制御装置は、前記第1の検出動作において前記位置関係が第1の所定条件を満たしていることが検出され、かつ前記第2の検出動作において前記位置関係が第2の所定条件を満たしていることが検出された場合に、前記送電部からの送電を開始させる、非接触給電システム。
PCT/JP2013/058296 2013-03-22 2013-03-22 車両および非接触給電システム WO2014147819A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015506511A JPWO2014147819A1 (ja) 2013-03-22 2013-03-22 車両および非接触給電システム
DE112013006857.5T DE112013006857T5 (de) 2013-03-22 2013-03-22 Fahrzeug und kontaktloses Leistungsversorgungssystem
CN201380074911.2A CN105142958A (zh) 2013-03-22 2013-03-22 车辆和非接触供电系统
KR1020157030436A KR20150134394A (ko) 2013-03-22 2013-03-22 차량 및 비접촉 급전 시스템
BR112015018487A BR112015018487A2 (pt) 2013-03-22 2013-03-22 veículo e sistema de alimentação de potência sem contato
US14/653,518 US20160001669A1 (en) 2013-03-22 2013-03-22 Vehicle And Contactless Power Feeding System
PCT/JP2013/058296 WO2014147819A1 (ja) 2013-03-22 2013-03-22 車両および非接触給電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058296 WO2014147819A1 (ja) 2013-03-22 2013-03-22 車両および非接触給電システム

Publications (1)

Publication Number Publication Date
WO2014147819A1 true WO2014147819A1 (ja) 2014-09-25

Family

ID=51579548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058296 WO2014147819A1 (ja) 2013-03-22 2013-03-22 車両および非接触給電システム

Country Status (7)

Country Link
US (1) US20160001669A1 (ja)
JP (1) JPWO2014147819A1 (ja)
KR (1) KR20150134394A (ja)
CN (1) CN105142958A (ja)
BR (1) BR112015018487A2 (ja)
DE (1) DE112013006857T5 (ja)
WO (1) WO2014147819A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021149367A (ja) * 2020-03-18 2021-09-27 本田技研工業株式会社 駐車支援システム
JP2022182112A (ja) * 2021-05-27 2022-12-08 本田技研工業株式会社 照射装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9643505B2 (en) * 2013-04-26 2017-05-09 Toyota Jidosha Kabushiki Kaisha Power receiving device, power transmitting device, power transfer system, and parking assisting device
JP6144176B2 (ja) * 2013-10-15 2017-06-07 日東電工株式会社 磁界空間を形成可能な無線電力伝送装置及びその形成方法
JP6213353B2 (ja) * 2014-04-04 2017-10-18 トヨタ自動車株式会社 受電装置およびそれを備える車両
JP6229708B2 (ja) 2015-12-15 2017-11-15 トヨタ自動車株式会社 車両及び非接触電力伝送システム
CN105691227A (zh) * 2016-01-21 2016-06-22 天长市瑞通电气有限公司 一种电动汽车新型无线充电装置
US10688874B2 (en) * 2016-06-14 2020-06-23 Intel Corporation Vehicular inductive power transfer systems and methods
JP6761962B2 (ja) * 2016-10-21 2020-09-30 パナソニックIpマネジメント株式会社 移動体および無線電力伝送システム
JP2022025563A (ja) * 2020-07-29 2022-02-10 Tdk株式会社 送電装置、ワイヤレス電力伝送システム及び情報通信システム
JP2023000392A (ja) * 2021-06-17 2023-01-04 トヨタ自動車株式会社 地上給電装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226945A (ja) * 2009-02-25 2010-10-07 Maspro Denkoh Corp 移動体の電力供給システム
JP2012249405A (ja) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd 非接触給電装置、車両及び非接触給電システム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4442517B2 (ja) * 2005-06-07 2010-03-31 パナソニック電工株式会社 非接触給電装置及び自律移動装置用給電システム
US7825543B2 (en) * 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
JP2007204014A (ja) * 2006-02-06 2007-08-16 Denso Corp 保安システム
JP2010093180A (ja) * 2008-10-10 2010-04-22 Showa Aircraft Ind Co Ltd 非接触給電装置
JP2010183804A (ja) * 2009-02-09 2010-08-19 Maspro Denkoh Corp 移動体の電力供給システム,及び,移動体
JP2011036107A (ja) * 2009-08-05 2011-02-17 Hino Motors Ltd 充電システムおよび車両
JP2011120387A (ja) * 2009-12-03 2011-06-16 Mitsubishi Motors Corp 電動車両の充電制御装置
JP5077340B2 (ja) * 2009-12-25 2012-11-21 トヨタ自動車株式会社 非接触受電装置およびその製造方法
JP5509883B2 (ja) * 2010-01-29 2014-06-04 株式会社オートネットワーク技術研究所 車両用無線充電装置
JP2011193617A (ja) * 2010-03-15 2011-09-29 Hino Motors Ltd 車両の非接触給電装置及び方法
US10343535B2 (en) * 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
JP4868093B2 (ja) * 2010-04-21 2012-02-01 トヨタ自動車株式会社 車両の駐車支援装置およびそれを備える電動車両
EP2580844A4 (en) * 2010-06-11 2016-05-25 Mojo Mobility Inc WIRELESS POWER TRANSFER SYSTEM SUPPORTING INTEROPERABILITY AND MULTIPOLAR MAGNETS FOR USE WITH THIS SYSTEM
KR101232036B1 (ko) * 2010-10-13 2013-02-12 한국과학기술원 비접촉 전력전달 장치 및 자기유도 방식의 급전장치
JP5574107B2 (ja) * 2010-10-13 2014-08-20 三菱自動車工業株式会社 車両用充電装置
US9281875B2 (en) * 2011-02-28 2016-03-08 Mitsubishi Electric Research Laboratories, Inc. System and method for automatically optimizing wireless power
JP5692378B2 (ja) * 2011-06-20 2015-04-01 トヨタ自動車株式会社 非接触受電装置および非接触送受電システム
WO2013003527A1 (en) * 2011-06-28 2013-01-03 Wireless Ev Charge, Llc Alignment, verification, and optimization of high power wireless charging systems
JP2013031289A (ja) * 2011-07-28 2013-02-07 Nippon Soken Inc 電源装置、非接触送電装置、車両、および非接触電力伝送システム
JP2013042564A (ja) * 2011-08-11 2013-02-28 Nippon Soken Inc 電力伝送システムおよび電力伝送装置
JP5780894B2 (ja) * 2011-09-16 2015-09-16 株式会社半導体エネルギー研究所 非接触給電システム
US9971353B2 (en) * 2012-07-03 2018-05-15 Qualcomm Incorporated Systems, methods, and apparatus related to electric vehicle parking and wireless charging
WO2014041655A1 (ja) * 2012-09-13 2014-03-20 トヨタ自動車株式会社 非接触給電システム、ならびにそれに用いられる送電装置および車両

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226945A (ja) * 2009-02-25 2010-10-07 Maspro Denkoh Corp 移動体の電力供給システム
JP2012249405A (ja) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd 非接触給電装置、車両及び非接触給電システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021149367A (ja) * 2020-03-18 2021-09-27 本田技研工業株式会社 駐車支援システム
JP7000483B2 (ja) 2020-03-18 2022-01-19 本田技研工業株式会社 駐車支援システム
JP2022182112A (ja) * 2021-05-27 2022-12-08 本田技研工業株式会社 照射装置

Also Published As

Publication number Publication date
US20160001669A1 (en) 2016-01-07
DE112013006857T5 (de) 2015-12-03
BR112015018487A2 (pt) 2017-07-18
KR20150134394A (ko) 2015-12-01
JPWO2014147819A1 (ja) 2017-02-16
CN105142958A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2014147819A1 (ja) 車両および非接触給電システム
JP5991372B2 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP6119756B2 (ja) 非接触給電システムおよび送電装置
JP5747863B2 (ja) 車両、受電装置、送電装置および非接触給電システム
JP5643270B2 (ja) 車両および非接触給電システム
US9673664B2 (en) Wireless power reception apparatus, wireless power transmission apparatus, and wireless power transmission and reception system
JP5678921B2 (ja) 送電ユニット、送電装置、受電装置、車両、および非接触給電システム
WO2014147818A1 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP5794203B2 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP5884830B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
JP6003696B2 (ja) 変換ユニット
JP5867329B2 (ja) 受電装置および車両
JP2013126326A (ja) 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム
JP2014103802A (ja) 送電装置および電力伝送システム
JP6222107B2 (ja) 車両
JP5884698B2 (ja) 非接触受電装置
JP2013132141A (ja) 電力伝送システム
JP6020220B2 (ja) 充電装置、電力出力装置および変換ユニット
JP6003573B2 (ja) 送電装置、受電装置およびそれを備える車両、ならびに電力伝送システム
JP2015035872A (ja) 非接触受電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074911.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14653518

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015506511

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015018487

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 112013006857

Country of ref document: DE

Ref document number: 1120130068575

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20157030436

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13878971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015018487

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150731