JP2013132141A - 電力伝送システム - Google Patents

電力伝送システム Download PDF

Info

Publication number
JP2013132141A
JP2013132141A JP2011280393A JP2011280393A JP2013132141A JP 2013132141 A JP2013132141 A JP 2013132141A JP 2011280393 A JP2011280393 A JP 2011280393A JP 2011280393 A JP2011280393 A JP 2011280393A JP 2013132141 A JP2013132141 A JP 2013132141A
Authority
JP
Japan
Prior art keywords
power transmission
power
antenna
voltage
foreign object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011280393A
Other languages
English (en)
Inventor
Takashi Sugawara
隆 菅原
Hiroyuki Yamakawa
博幸 山川
Yasuo Ito
泰雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2011280393A priority Critical patent/JP2013132141A/ja
Publication of JP2013132141A publication Critical patent/JP2013132141A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

【課題】異物の存在を認識することが可能で、電力伝送に伴い異物が発熱したり、電力伝送効率が低下したりすることがない電力伝送システムを提供する。
【解決手段】本発明の電力伝送システムは、送電アンテナ140から受電アンテナ210に対して、電磁場を介して電気エネルギーを伝送する電力伝送システムであって、所定の周波数の交流電圧を出力するインバータ部130と、前記インバータ部130からの交流電圧が入力される前記送電アンテナ140と、前記インバータ部130で出力する交流電圧の電圧と周波数とを制御する送電制御部150と、前記送電アンテナ140と前記受電アンテナ210との間の異物を検出する際、前記受電アンテナ210と、前記受電アンテナ210で受電した電力を負荷に供給する回路とを切り離すことを特徴とする。
【選択図】 図1

Description

本発明は、磁気共鳴方式の磁気共鳴アンテナが用いられるワイヤレス電力伝送システムに関する。
近年、電源コードなどを用いることなく、ワイヤレスで電力(電気エネルギー)を伝送する技術の開発が盛んとなっている。ワイヤレスで電力を伝送する方式の中でも、特に注目されている技術として、磁気共鳴方式と呼ばれるものがある。この磁気共鳴方式は2007年にマサチューセッツ工科大学の研究グループが提案したものであり、これに関連する技術は、例えば、特許文献1(特表2009−501510号公報)に開示されている。
磁気共鳴方式のワイヤレス電力伝送システムは、送電側アンテナの共振周波数と、受電側アンテナの共振周波数とを同一とすることで、送電側アンテナから受電側アンテナに対し、効率的にエネルギー伝達を行うものであり、電力伝送距離を数十cm〜数mとすることが可能であることが大きな特徴の一つである。
上記のような磁気共鳴方式のワイヤレス電力伝送システムを、電気自動車のような移動体に対する電力伝送に適用する場合は、移動体側に受電アンテナを搭載し、地中部に送電アンテナを埋設するような構成とすることが提案されている。
例えば、特許文献2(特開2010−68657号公報)には、所定周波数の交流電力を出力する交流電力出力手段と、地面側に設けられた第1共鳴コイル、及び該第1共鳴コイルと対向配置された電気自動車搭載の第2共鳴コイルと、該第2共鳴コイルで受電された電力が充電されるバッテリとから構成されるワイヤレス電力送信装置が開示されている。
特表2009−501510号公報 特開2010−68657号公報
上記のような電力伝送システムにおいては、送電アンテナが地中部に埋設されるようにして設けられる構成が採用されるため、例えば、何らかの落下物が送電アンテナの近傍に落ちたままとなり、そこに異物として存在してしまう、といったシチュエーションが考えられる。ところで、電力伝送中に送電アンテナと受電アンテナとの間に、例えば、スチール缶などのような異物が存在すると、電力伝送実行中にスチール缶が発熱すると共に、電力の伝送効率が低下する、といった問題があった。ところが、従来の電力伝送システムにおいては、送電アンテナと受電アンテナとの間に、上記のような異物が存在する可能性については全く考慮されておらず、対策が求められていた。
上記問題を解決するために、請求項1に係る発明は、送電アンテナから受電アンテナに対して、電磁場を介して電気エネルギーを伝送する電力伝送システムであって、所定の周波数の交流電圧を出力するインバータ部と、前記インバータ部からの交流電圧が入力される前記送電アンテナと、前記インバータ部で出力する交流電圧の電圧と周波数とを制御する送電制御部と、前記送電アンテナと前記受電アンテナとの間の異物を検出する際、前記受電アンテナと、前記受電アンテナで受電した電力を負荷に供給する回路とを切り離す受
電制御部と、を有することを特徴とする。
また、請求項2に係る発明は、請求項1に記載の電力伝送システムにおいて、前記受電アンテナと、前記受電アンテナで受電した電力を負荷に供給する回路との間に設けられたスイッチと、前記送電アンテナと前記受電アンテナとの間の異物の検出を行う異物検出モードと、前記送電アンテナから前記受電アンテナに対して実際に電力を伝送する電力伝送モードと、を有し、前記受電制御部は、前記異物検出モードでは前記スイッチをオフとする制御を行い、前記電力伝送モードでは前記スイッチをオンとする制御を行うことを特徴とする。
また、請求項3に係る発明は、請求項2に記載の電力伝送システムにおいて、前記送電制御部は、前記異物検出モードでは、前記インバータ部で出力する交流電圧の周波数を固定し、電圧を漸増させる制御を行うことを特徴とする。
また、請求項4に係る発明は、請求項3に記載の電力伝送システムにおいて、さらに、前記インバータ部に入力される電流を検出する電流検出部を備え、前記送電制御部が、前記異物検出モードで電圧を漸増させる制御中に、前記電流検出部によって所定値以上の電流を検出したときの電圧によって、異物の存否の判定を行うことを特徴とする。
また、請求項5に係る発明は、請求項3又は請求項4に記載の電力伝送システムにおいて、前記送電制御部は、前記異物検出モードで電圧を漸増させる制御によって、電圧が所定の上限に達した場合、前記電流検出部で検出される電流が、所定値以下であるときには、異物が存在すると判定することを特徴とする。
本発明に係る電力伝送システムによれば、異物検出モードを有することで、異物の存在を認識することが可能となるので、電力伝送に伴い、異物が発熱したり、或いは、電力伝送効率が低下したりしてしまうことがない。
また、本発明に係る電力伝送システムによれば、受電制御部は、異物検出モードでは、スイッチをオフとし受電アンテナをオープンとする制御を行うので、異物の存否の判定の精度が向上する。
本発明の実施形態に係る電力伝送システムのブロック図である。 本発明の実施形態に係る電力伝送システムを車両に搭載した例を模式的に示す図である。 本発明の実施形態に係る電力伝送システムのインバータ部を示す図である。 電池の充電プロファイルとインバータ部の制御の関係を示す図である。 本発明の実施形態に係る電力伝送システムにおける異物検出の様子を説明する図である。 異物検出の際、受電アンテナを電気的浮遊状態とするメリットを説明する図である。 本発明の実施形態に係る電力伝送システムにおける電力伝送処理のフローチャートを示す図である。 異物検出のアルゴリズムを具体的に説明する図である。 本発明の実施形態に係る電力伝送システムにおける受電側システムの処理フローチャートを示す図である。 本発明の他の実施形態に係る電力伝送システムにおける受電側システムの処理フローチャートを示す図である。 送電アンテナ140と受電アンテナ210とを近接させたときの送電効率の周波数依存性例を示す図である。 第1極値周波数における電流と電界の様子を模式的に示す図である。 第2極値周波数における電流と電界の様子を模式的に示す図である。 2つの極値を与える極値周波数のうち磁気壁が生じる極値周波数(第1周波数)での特性を示す図である。 2つの極値を与える極値周波数のうち電気壁が生じる極値周波数(第2周波数)での特性を示す図である。
以下、本発明の実施形態を図面を参照しつつ説明する。図1は本発明の実施形態に係る電力伝送システムのブロック図であり、図2は本発明の実施形態に係る電力伝送システム100を車両に搭載した例を模式的に示す図である。本発明の電力伝送システム100は、例えば、電気自動車(EV)やハイブリッド電気自動車(HEV)などの車両搭載電池への充電のためのシステムに用いるのに好適である。このために、車両の底面部においては、受電を行うことを可能にする受電アンテナ210が配されてなる。
本実施形態に係る電力伝送システム100では、上記のような車両に対して電力を非接触で伝送するため、当該車両を停車させることが可能な停車スペースに設けられる。車両充電用のスペースである当該停車スペースには、本実施形態に係る電力伝送システム100の送電アンテナ140などが地中部に埋設されるような構成となっている。車両のユーザーは本実施形態に係る電力伝送システムが設けられている停車スペースに車両を停車させて、送電アンテナ140から車両に搭載されている受電アンテナ210に対して、電磁場を介し電気エネルギーを伝送する。
本実施形態に係る電力伝送システム100は、上記のような利用形態であることから、送電アンテナ140と受電アンテナ210との間の位置関係が電力伝送を行うたびに変化し、最適な電力伝送効率を与える周波数についてもこれに伴い変化することとなる。そこで、車両停車後、すなわち、送電アンテナ140と受電アンテナ210と間の位置関係がフィックスした後、実際の充電の電力伝送を行う際には、電力伝送効率が最高となるように、送電アンテナに入力される電圧の周波数を決定するようにしている。
車両充電設備(送電側)における整流昇圧部120は、商用電源などのAC電源部110からの交流電圧を一定の直流に変換するコンバータと、このコンバータからの出力を所定の電圧に昇圧するものである。この整流昇圧部120で生成される電圧の設定は送電制御部150から制御可能となっている。
インバータ部130は、整流昇圧部120から供給される直流電圧から所定の交流電圧を生成して、送電アンテナ140に入力する。図3は本発明の実施形態に係る電力伝送システムのインバータ部を示す図である。インバータ部130は、例えば図3に示すように、フルブリッジ方式で接続されたQA乃至QDからなる4つの電界効果トランジスタ(FET)によって構成されている。
本実施形態においては、直列接続されたスイッチング素子QAとスイッチング素子QBの間の接続部T1と、直列接続されたスイッチング素子QCとスイッチング素子QDとの間の接続部T2との間に送電アンテナ140が接続される構成となっており、スイッチング素子QAとスイッチング素子QDがオンのとき、スイッチング素子QBとスイッチング素子QCがオフとされ、スイッチング素子QBとスイッチング素子QCがオンのとき、スイッチング素子QAとスイッチング素子QDがオフとされることで、接続部T1と接続部T2との間に矩形波の交流電圧を発生させる。
上記のようなインバータ部130を構成するスイッチング素子QA乃至QDに対する駆動信号は送電制御部150から入力されるようになっている。また、インバータ部130を駆動させるための周波数は送電制御部150から制御することができるようになっている。
上記のようなインバータ部130からの出力は送電アンテナ140に供給される。この送電アンテナ140は、インダクタンス成分を有するコイルから構成されており、対向するようにして配置される車両搭載の受電アンテナ210と共鳴することで、送電アンテナ140から出力される電気エネルギーを受電アンテナ210に送ることができるようになっている。
なお、インバータ部130からの出力を、送電アンテナ140に入力する際には、いったん、不図示の整合器によってインピーダンスを整合させるようにしてもよい。整合器は所定の回路定数を有する受動素子から構成することができる。
本発明の実施形態に係る電力伝送システムでは、電力伝送システム100の送電側の送電アンテナ140から、受電側の受電アンテナ210へ効率的に電力を伝送する際、送電アンテナ140の共振周波数と、受電アンテナ210の共振周波数とを同一とすることで、送電側アンテナから受電側アンテナに対し、効率的にエネルギー伝達を行うようにしている。
インバータ部130に対する入力される電圧V1及び電流I1、インバータ部130から出力される電圧V2及び電流I2及び電圧V2と電流I2との位相差θは送電制御部150によって検出されるようになっている。これにより、送電制御部150は、検出される電圧V1及び電流I1からインバータ部130に入力される入力電力(W1=V1×I1)、及び
、検出される電圧V2及び電流I2及び電圧V2と電流I2との位相差θからインバータ部130から出力される出力電力(W2=V2×I2×cosθ)を取得することができるよう
になっている。
また、送電制御部150は、検出される電圧V1及び電流I1によって、インバータ部130から送電アンテナ140側をみたときのインピーダンスを取得することができるようになっている。
送電制御部150は、CPUとCPU上で動作するプログラムを保持するROMとCPUのワークエリアであるRAMなどからなる汎用の情報処理部を有しており、検出された電圧V1、電流I1、電圧V2、電流I2位相差θから上記のように電力値、インピーダンス値などを取得することができるようになっていたり、或いは、後述するような各アルゴリズムに基づいて、送電側のシステム全体の制御を行ったりすることができるようになっている。
送電制御部150は、整流昇圧部120によって出力される直流電圧の電圧と、インバータ部130で出力される交流電圧の周波数を制御して、実際の充電の電力伝送を実行するが、このような制御を行う際には記憶部160が参照されることによって周波数などが決定される。記憶部160は、記憶手段に記憶され、送電制御部150によって参照可能に構成されている。
送電制御部150は、送電アンテナ140から受電アンテナ210に対して、実際に電力を伝送し、車両側システムの電池240などの負荷に電力を投入する電力伝送モードと、送電アンテナ140と受電アンテナ210との間の異物の検出を行う異物検出モードと
、を有しており、これらのモードの制御を行うプログラムなども記憶部160に記憶されている。各モード実行のために、記憶部160に記憶されているプログラムは送電制御部150により参照される。
また、記憶部160には、各データテーブル、チャートなどが記憶されており、送電制御部150は異物検出モードのとき、記憶部160に記憶された各データテーブル、チャートなどを参照して、送電アンテナ140近傍における異物の存否を判定するようになっている。これにより、本発明に係る電力伝送システム100では、異物の存在を認識することが可能となるので、電力伝送に伴い、異物が発熱したり、或いは、電力伝送効率が低下したりしてしまうことがない。
また、通信部170は車両側の通信部270と無線通信を行い、車両との間でデータの送受を可能にする構成である。通信部170によって受信したデータは送電制御部150に転送され処理されるようになっている。また、送電制御部150は所定情報を、通信部170を介して車両側に送信することができるようになっている。
次に、車両側に設けられている電力伝送システム100の構成について説明する。車両の受電側のシステムにおいて、受電アンテナ210は、送電アンテナ140と共鳴することによって、送電アンテナ140から出力される電気エネルギーを受電するものである。
受電アンテナ210で受電された交流電力は、整流器220において整流され、整流さ
れた電力は充電器230を通して電池240に蓄電されるようになっている。充電器230は受電制御部250からの指令に基づいて電池240の蓄電を制御する。
受電アンテナ210と整流器220との間にスイッチSWが設けられており、このスイッチSWが受電制御部250からオンオフ制御が可能に構成されている。受電制御部250により、スイッチSWがOPEN状態となることにより、受電アンテナ210は電気的に浮いた状態となり、これにより、異物検出モード実行下で、より精度高く、送電アンテナ140と受電アンテナ210との間の異物を検出することが可能となる。
充電器230から電池240に対して入力される電圧V3及び電流I3は受電制御部25
0によって検出されるようになっている。検出された電圧V3及び電流I3により、受電制御部250は、充電器230を制御して、電池240の適切な充電プロファイルに沿うよ
うに電池240の充電を制御することができるように構成されている。充電器230には
、電流センサおよび電圧センサが設けられており、出力電圧をフィードバック制御することにより、電池240を定電流充電モード、定電力充電モード、定電圧充電モードのいずれかの充電モードで充電させるかを選択することができるようになっている。
受電制御部250はCPUとCPU上で動作するプログラムを保持するROMとCPUのワークエリアであるRAMなどからなる汎用の情報処理部を有しており、図示されている受電制御部250と接続される各構成と協働するように動作する。
受電制御部250と接続されている充電プロファイル260は 電池240の充電プロファイルを記憶すると共に、受電制御部250をこのプロファイルに沿って動作させるためのアルゴリズムが記憶されている。図4は電池240の充電プロファイル260を示す図である。この充電プロファイル260は電池240の充電プロファイルの一例を示すものであり、電池240を充電するためには、その他のプロファイルを用いるようにしてもよい。
また、図4では電池240の蓄電量がほとんどない状態からの充電プロファイルを示す
ものである。この充電プロファイル260においては、まず一定の電力Pconstで電池2
40の充電を行う定出力充電(CP制御)が行われる。次に、電池240の端部電圧がVfとなったら、一定の充電電圧を維持する定電圧充電(CV制御)が行われる。そして、定電圧充電時、電池240に流れこむ電流がIminとなったら、充電を終了する。
また、通信部270は送電側の通信部170と無線通信を行い、送電側システムとの間でデータの送受を可能にする構成である。通信部270によって受信したデータは受電制御部250に転送され処理されるようになっている。また、受電制御部250は所定情報を、通信部270を介して送電側に送信することができるようになっている。例えば、受電制御部250は、定電力(CP)充電モード、或いは定電圧(CV)充電モードのどの充電モードで、電池240の充電を行っているかに係る情報を車両充電設備側のシステムに送信することができるようになっている。
また、通信部270は受電制御部250で検出される電池240の電圧V3に係る情報
を、送電側システムに送信することができるようになっている。また、車両側のシステムは、通信部270を利用し送電側システムの通信部170と通信することで、車両が送電側システムに接近していることなどを、送電側システムに対して報知することができるようになっている。
次に、以上のように構成される本発明の電力伝送システム100における異物検出の具体的な方法について説明する。図5は本発明の実施形態に係る電力伝送システム100における異物検出の様子を説明する図である。
本発明における異物検出方法は、異物検出モードとして実行されるものであり、車両が充電スペースに駐車され、電力伝送モードにより実際の電力伝送が実行される前段としての、異物の検出に用いられることが想定されている。すなわち、図5(A)に示すように、車両が充電スペースにアクセスした後、図5(B)に示すように、車両が充電スペースに停車してから実行されるものである。
本発明に係る電力伝送システムにおける異物検出モードは、受電アンテナ210と、この受電アンテナ210で受電した電力を電池240などの負荷に供給する回路群との間の電路に設けられたスイッチSWがOPENの状態で実施されることを大きな特徴の1つとしている。
図6は異物検出の際、受電アンテナ210を電気的浮遊状態とするメリットを説明する図である。図6において、横軸はインバータ部130における駆動周波数を、また、縦軸はインバータ部130に対する入力される電圧V1及び電流I1に基づいて求められたインピーダンスZを示している。
図6の実線で囲まれる(A)は、受電アンテナ210が開放状態(浮遊状態)で送電アンテナ140と受電アンテナ210の間に異物が無い場合においてインピーダンスZが取り得る領域を示しており、図6の一点鎖線で囲まれる(B)は、受電アンテナ210が開放状態(浮遊状態)で送電アンテナ140と受電アンテナ210の間にある異物が有る場合においてインピーダンスZが取り得る領域を示しており、異物の材質や形状によってインピーダンスZが取り得る領域(B)は変化する。図6の点線で囲まれる(C)は、受電
アンテナ210が負荷と接続された状態(SWがSHORT状態)で送電アンテナ140と受電アンテナ210の間に異物が無い場合においてインピーダンスZが取り得る領域を示しており、図6の二点鎖線で囲まれる(D)は、受電アンテナ210が負荷と接続された状態(SWがSHORT状態)で送電アンテナ140と受電アンテナ210の間にある異物が有る場合においてインピーダンスZが取り得る領域を示しており、異物の材質や形
状によってインピーダンスZが取り得る領域(D)は変化する。
図6では、(C)と(D)の領域は、全ての周波数で互いに重畳するのに対して、(A)と(B)の領域は、例えば周波数がfdであるときには、重なり合うことがなく、明確
に別離している。すなわち、これは、受電アンテナ210が負荷と接続された状態(SWがSHORT状態)である場合より、受電アンテナ210が開放状態(浮遊状態)である場合の方が、送電アンテナ140と受電アンテナ210間における異物の存否検出を、より精度高く行い得ることを示している。
次に、以上のように構成される、本実施形態に係る電力伝送システムにおいて、電力伝送を行う際のシーケンスについて、図7に基づいて説明する。図7は本発明の実施形態に係る電力伝送システムにおける電力伝送処理のフローチャートを示す図である。このフローチャートは、送電制御部150により実行されるものである。また、図7に示すフローチャートでは、ステップS109以外のステップは、異物検出モードとして実行されるものである。そして、ステップS109は電力伝送モードとして実行されるものである。
図7において、ステップS100で処理が開始されると続いて、ステップS101に進み、 インバータ部130における駆動周波数を、異物検出周波数に設定する。この異物検出周波数としては、例えば、先のfdを用いることができる。次のステップS102で
は、インバータ部130の出力電圧を異物検出開始電圧Vsに設定する。この異物検出開始電圧Vsとしては、送電、受電の2つのアンテナの配置関係にかかわらず、システムが故障しない、0V以上の最も安全な電圧値が利用される。
なお、異物検出周波数として用いるfdは、図7に示すものより、より高い周波数のも
のを利用する方が検出精度上有利であるはあるが、電波に関連する法規・規制を遵守する観点からも、システムの動作周波数の範囲のうち比較的高いものを利用するとよい。
図8は、図7のフローチャートに示すアルゴリズムを、実現象と対応させて説明する図である。図8において示されるVsが異物検出開始電圧である。
ステップS103では、インバータ部130に入力される検出電流値I1が所定値を超
えたか否かが判定される。ステップS103における判定がYESであるときにはステップS104に、また、判定がNOであるときにはステップS108に進む。
ステップS104では、インバータ部130に入力されている電圧値が、下限電圧未満であるか否かが判定される。この判定で用いられる下限電圧(図8参照)とは、受電アンテナ210が開放であり、異物が無い場合の下限の電圧である。
ステップS104の判定がNOであるときには、図6の(A)の領域内で、送電側システムが動作したことに相当するので、送電アンテナ140と受電アンテナ210との間には、異物はないものと判定し、ステップS105に進み、インバータ部130の出力電圧を0とし、さらに、ステップS106で、通信部170を介して、異物検出終了をした旨、受電側システムに通知する。
なお、受電側システムに通信部270が設けられていないような場合には、ステップS106では、一定時間の待ちを行う。通信部270が設けられていないような場合に対応する受電側システムのフローチャートは図10に示される。
ステップS107では、電力伝送を開始する。このステップS107による処理が、これまで説明した電力伝送モードに対応するものである。ステップS112で処理を終了す
る。
一方、ステップS104における判定がYESである場合には、図6の(A)の領域を下限側で逸脱したことに相当するので異物があるものと判定し、ステップS110に進み、インバータ部130の出力電圧を0とし、さらにステップS111で不図示のインターフェイス手段により異常表示を行ったり、通信部170を介して受電側システムに異常を通知したりして、ステップS112で処理を終了する。
また、ステップS103における判定がNOであるときに進むステップS108では、上限電圧を超えたか否かが判定される。この判定で用いられる上限電圧(図8参照)とは、受電アンテナ210が開放であり、異物が無い場合の上限の電圧である。この判定がNOであるときにはステップS109に進み、インバータ部130の出力電圧を所定刻み分(図8参照におけるΔV)上げることで漸増させ、さらにステップS103に戻る。
一方、ステップS108における判定がYESであるときには、図6の(A)の領域を上限側で逸脱したことに相当するので異物があるものと判定し、ステップS110に進み、インバータ部130の出力電圧を0とし、さらにステップS111で不図示のインターフェイス手段により異常表示を行ったり、通信部170を介して受電側システムに異常を通知したりして、ステップS112で処理を終了する。
次に、以上のような送電側システムに対応する受電側システムにおける処理を説明する。図9は本発明の実施形態に係る電力伝送システムにおける受電側システムの処理フローチャートを示す図である。このフローチャートは、送電制御部150により実行されるものである。
図9において、ステップS200で処理が開始されると、続いてステップS201に進み、スイッチSWをOPEN(受電アンテナに何もつながない)にする。
続く、ステップS202では、送電側システムから通信部270を介して「異物検出終了」の通知があったか否かが判定される。この判定がNOである場合にはステップS202をループし、YESである場合にはステップS203に抜ける。
ステップS203では、スイッチSWをSHORT(受電アンテナに負荷を接続)にし、ステップS204で処理を終了する。
以上のような、本発明に係る電力伝送システムによれば、異物検出モードを有することで、異物の存在を認識することが可能となるので、電力伝送に伴い、異物が発熱したり、或いは、電力伝送効率が低下したりしてしまうことがない。
また、本発明に係る電力伝送システムによれば、受電制御部250は、異物検出モードでは、スイッチSWをオフとし受電アンテナ210をオープンとする制御を行うので、異物の存否の判定の精度が向上する。
次に、受電側システムに通信部270などが設けられておらず、システム間での通信ができない場合の実施形態に(ステップS108で、一定時間の待ちを行う場合に対応する実施形態)ついて説明する。
図10は本発明の他の実施形態に係る電力伝送システムにおける受電側システムの処理フローチャートを示す図である。このフローチャートは、送電制御部150により実行されるものである。
図10において、ステップS300で処理が開始されると、続いてステップS301に進み、スイッチSWをOPEN(受電アンテナに何もつながない)にする。
続く、ステップS302では、異物の判定に係る所定時間待機する。
ステップS303では、スイッチSWをSHORT(受電アンテナに負荷を接続)にし、ステップS304で処理を終了する。
図10に示す実施形態においては、これまで説明した実施形態と同様の効果を享受することが可能となると共に、車両側システムに通信部が設けられていないような場合でも、円滑に異物検出モード・電力伝送モードを実行することが可能となる。
ここで、ワイヤレス電力伝送システムにおける伝送効率の極値を与える周波数について説明する。前記システムの電力伝送時においては、伝送効率の極値を与える周波数が2つ存在することがある。このような2つのうちのいずれの周波数を選択する方がシステムにとって最適であるかについて説明する。
図11は送電アンテナ140と受電アンテナ210とを近接させたときの送電効率の周波数依存性例を示す図である。
磁気共鳴方式のワイヤレス電力伝送システムにおいては、図11に示すように、第1極値周波数fm、第2極値周波数feの2つがあるが、電力伝送を行うときには、これらのいずれかの周波数でこれを行うことが好ましい。
図12は第1極値周波数における電流と電界の様子を模式的に示す図である。第1極値周波数においては、送電アンテナ140のコイルに流れる電流と、受電アンテナ210のコイルに流れる電流とで位相が等しくなり、磁界ベクトルが揃う位置が送電アンテナ140のコイルや受電アンテナ210のコイルの中央部付近となる。この状態を、送電アンテナ140と受電アンテナ210との間の対称面に対して磁界の向きが垂直となる磁気壁が生じているものとして考える。
また、図13は第2極値周波数における電流と電界の様子を模式的に示す図である。第2極値周波数においては、送電アンテナ140のコイルに流れる電流と、受電アンテナ210のコイルに流れる電流とで位相がほぼ逆となり、磁界ベクトルが揃う位置が送電アンテナ140のコイルや受電アンテナ210のコイルの対称面付近となる。この状態を、送電アンテナ140と受電アンテナ210との間の対称面に対して磁界の向きが水平となる電気壁が生じているものとして考える。
なお、以上のような電気壁や磁気壁などの概念に関しては、居村岳広、堀洋一「電磁界共振結合による伝送技術」IEEJ Journal,Vol.129,No.7,2009、或いは、居村岳広、岡部浩之、内田利之、堀洋一「等価回路から見た非接触電力伝送の磁界結合と電界結合に関する研究」IEEJ Trans.IA,Vol.130,No.1,2010などに記載されているものを本明細書においては準用している。
本発明において、極値を与える周波数として、第1極値周波数、第2極値周波数の2つがある場合については、送電アンテナ140と受電アンテナ210との間の対称面に電気壁が生じる極値周波数を選定する理由について説明する。
図14は2つの極値を与える極値周波数のうち磁気壁が生じる極値周波数(第1周波数
)での特性を示す図である。図14(A)は電池240(負荷)の負荷変化変動に伴う送電側の電圧(V1)、電流(I1)の変動の様子を示す図であり、図14(B)は電池240(負荷)の負荷変化変動に伴う受電側の電圧(V3)、電流(I3)の変動の様子を示す図である。図14に示すような特性によれば、受電側で電池240(負荷)の負荷増大と共に、電圧が増大する特性があることがわかる。
以上のような磁気壁が生じる周波数においては、電池240側からみて受電アンテナ210が定電流源として見えるものである。このような受電アンテナ210が定電流源のように動作する周波数で、電力伝送を行った場合に、仮に負荷側である電池240などの不具合により緊急停止が起きたとすると、受電アンテナ210の両端部の電圧が上昇してしまうこととなる。
一方、図15は2つの極値を与える極値周波数のうち電気壁が生じる極値周波数(第2周波数)での特性を示す図である。図15(A)は電池240(負荷)の負荷変化変動に伴う送電側の電圧(V1)、電流(I1)の変動の様子を示す図であり、図15(B)は電池240(負荷)の負荷変化変動に伴う受電側の電圧(V3)、電流(I3)の変動の様子を示す図である。図15に示すような特性によれば、受電側で電池240(負荷)の負荷増大と共に、電流が減少する特性があることがわかる。
以上のような電気壁が生じる周波数においては、電池240側からみて受電アンテナ210が定電圧源として見えるものである。このような受電アンテナ210が定電圧源のように動作する周波数で、電力伝送を行った場合に、仮に負荷側である電池240などの不具合により緊急停止が起きたとしても、受電アンテナ210の両端部の電圧が上昇することはない。したがって、本発明に係る電力伝送システムによれば、負荷が急激に低下した際に電圧が高圧になることがなく、安定して電力伝送を行うことが可能となるのである。
図14の特性においては、受電側の電池240(負荷)にとっては、充電回路が電流源として見えることとなり、図15の特性においては、受電側の電池240(負荷)にとっては、充電回路が電圧源として見えることとなる。負荷が増大することに伴い、電流が減少する図15に示す特性の方が、電池240(負荷)にとっては好ましいので、本実施形態においては、第1極値周波数、第2極値周波数の2つがある場合については、送電アンテナ140と受電アンテナ210との間の対称面に電気壁が生じる極値周波数を選定するようにしている。
このような本発明に係る電力伝送システムによれば、伝送効率の極値を与える周波数が2つ存在することがある場合でも、電力伝送時の最適な周波数を迅速に決定することができ、効率的な電力伝送を短時間で行うことが可能となる。
また、2つの極値を与える周波数が2つある場合に、送電アンテナ140と受電アンテナ210との間の対称面に電気壁が生じる極値周波数を選定すると、電池240(負荷)にとって、充電回路が電圧源として見えるので、充電制御により電池240への出力が変動した際にインバータ部130の出力も伴って増減するために扱いやすい、というメリットがある。また、受電制御部250が緊急停止した際にも供給電力も自動的に最小化するため無駄な装置も必要ない。
また、2つの極値を与える周波数が2つある場合に、送電アンテナ140と受電アンテナ210との間の対称面に電気壁が生じる極値周波数を選定すると、受電制御部250からみて整流器220が電圧源として見えるので、充電制御により電池240への出力が変動した際に整流昇圧部120の出力も伴って増減するために扱いやすい、というメリットがある。
これに対して、2つの極値を与える周波数が2つある場合に、送電アンテナ140と受電アンテナ210との間の対称面に磁気壁が生じる極値周波数を選定すると、受電制御部250が出力を小さくした際に伴って供給電圧を制御する必要がありそのための通信手段や検知手段が必要となり、コストがかかることとなる。
100・・・電力伝送システム
110・・・AC電源部
120・・・整流昇圧部
130・・・インバータ部
140・・・送電アンテナ
150・・・送電制御部
160・・・記憶部
170・・・通信部
180・・・撮像部
210・・・受電アンテナ
220・・・整流器
230・・・充電器
240・・・電池
250・・・受電制御部
260・・・充電プロファイル
270・・・通信部

Claims (5)

  1. 送電アンテナから受電アンテナに対して、電磁場を介して電気エネルギーを伝送する電力伝送システムであって、
    所定の周波数の交流電圧を出力するインバータ部と、
    前記インバータ部からの交流電圧が入力される前記送電アンテナと、
    前記インバータ部で出力する交流電圧の電圧と周波数とを制御する送電制御部と、
    前記送電アンテナと前記受電アンテナとの間の異物を検出する際、前記受電アンテナと、前記受電アンテナで受電した電力を負荷に供給する回路とを切り離す受電制御部と、
    を有することを特徴とする電力伝送システム。
  2. 前記受電アンテナと、前記受電アンテナで受電した電力を負荷に供給する回路との間に設けられたスイッチと、
    前記送電アンテナと前記受電アンテナとの間の異物の検出を行う異物検出モードと、
    前記送電アンテナから前記受電アンテナに対して実際に電力を伝送する電力伝送モードと、を有し、
    前記受電制御部は、前記異物検出モードでは前記スイッチをオフとする制御を行い、
    前記電力伝送モードでは前記スイッチをオンとする制御を行うことを特徴とする請求項1に記載の電力伝送システム。
  3. 前記送電制御部は、前記異物検出モードでは、前記インバータ部で出力する交流電圧の周波数を固定し、電圧を漸増させる制御を行うことを特徴とする請求項2に記載の電力伝送システム。
  4. さらに、前記インバータ部に入力される電流を検出する電流検出部を備え、
    前記送電制御部が、前記異物検出モードで電圧を漸増させる制御中に、前記電流検出部によって所定値以上の電流を検出したときの電圧によって、異物の存否の判定を行うことを特徴とする請求項3に記載の電力伝送システム。
  5. 前記送電制御部は、前記異物検出モードで電圧を漸増させる制御によって、電圧が所定の上限に達した場合、前記電流検出部で検出される電流が、所定値以下であるときには、異物が存在すると判定することを特徴とする請求項3又は請求項4に記載の電力伝送システム。
JP2011280393A 2011-12-21 2011-12-21 電力伝送システム Pending JP2013132141A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280393A JP2013132141A (ja) 2011-12-21 2011-12-21 電力伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280393A JP2013132141A (ja) 2011-12-21 2011-12-21 電力伝送システム

Publications (1)

Publication Number Publication Date
JP2013132141A true JP2013132141A (ja) 2013-07-04

Family

ID=48909309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280393A Pending JP2013132141A (ja) 2011-12-21 2011-12-21 電力伝送システム

Country Status (1)

Country Link
JP (1) JP2013132141A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027239A (ja) * 2013-07-29 2015-02-05 キヤノン株式会社 電力伝送システム、並びに、受電装置、送電装置およびそれらの制御方法
JP2016067068A (ja) * 2014-09-22 2016-04-28 キヤノン株式会社 電子機器
JP2016067066A (ja) * 2014-09-22 2016-04-28 キヤノン株式会社 給電装置及び電子機器
JP2017034733A (ja) * 2015-07-28 2017-02-09 トヨタ自動車株式会社 非接触充電システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027239A (ja) * 2013-07-29 2015-02-05 キヤノン株式会社 電力伝送システム、並びに、受電装置、送電装置およびそれらの制御方法
JP2016067068A (ja) * 2014-09-22 2016-04-28 キヤノン株式会社 電子機器
JP2016067066A (ja) * 2014-09-22 2016-04-28 キヤノン株式会社 給電装置及び電子機器
JP2017034733A (ja) * 2015-07-28 2017-02-09 トヨタ自動車株式会社 非接触充電システム

Similar Documents

Publication Publication Date Title
JP5988191B2 (ja) 電力伝送システム
US9270138B2 (en) Electric power transmission system
WO2013002319A1 (ja) 電力伝送システム
US10052963B2 (en) Contactless power transfer system and method of controlling the same
WO2013129451A1 (ja) 電力伝送システム
US9666359B2 (en) Vehicle, power receiving device, power transmitting device, and contactless power supply system
WO2013145488A1 (ja) 電力伝送システム
JP6119756B2 (ja) 非接触給電システムおよび送電装置
WO2012132413A1 (ja) 電力伝送システム
US20150224883A1 (en) Vehicle and contactless power supply system
WO2013168281A1 (ja) 送電装置、受電装置、車両、および非接触給電システム
WO2012073349A1 (ja) 非接触給電設備、車両および非接触給電システムの制御方法
US20140138199A1 (en) Power transmitting device and power transfer system
JP2013211933A (ja) 電力伝送システム
JP2013158188A (ja) 電力伝送システム
US10787085B2 (en) Vehicle, power transmission device, and power feeding system
JP2013126307A (ja) 電力伝送システム
JP2013135491A (ja) アンテナ
JP2013038893A (ja) 電力伝送システム
JP2013132141A (ja) 電力伝送システム
JP2013212033A (ja) 電力伝送システム
JP2013212034A (ja) 電力伝送システム
JP2013157944A (ja) アンテナ
JP2014197935A (ja) 電力伝送システム
JP2014121142A (ja) 送電機器及び非接触電力伝送装置