JP2013126326A - 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム - Google Patents

非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム Download PDF

Info

Publication number
JP2013126326A
JP2013126326A JP2011274494A JP2011274494A JP2013126326A JP 2013126326 A JP2013126326 A JP 2013126326A JP 2011274494 A JP2011274494 A JP 2011274494A JP 2011274494 A JP2011274494 A JP 2011274494A JP 2013126326 A JP2013126326 A JP 2013126326A
Authority
JP
Japan
Prior art keywords
power
power transmission
unit
coil
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011274494A
Other languages
English (en)
Inventor
Hiroshi Nakamura
浩史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011274494A priority Critical patent/JP2013126326A/ja
Priority to US13/687,691 priority patent/US20130154384A1/en
Publication of JP2013126326A publication Critical patent/JP2013126326A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

【課題】送電装置から受電装置に非接触で電力伝送を行なう非接触給電システムにおいて、電力伝送に使用するコイルを適切に選択しつつ、電力伝送に与える影響を抑制する。
【解決手段】非接触給電システム10は、送電装置200に含まれる送電部220から車両100に含まれる受電部110へ非接触で電力を伝達する。送電部220は、複数のコイルユニットを含み、各コイルユニットは、共振コイル221と、共振コイル221に接続されるキャパシタ222と、キャパシタ222に並列に接続されたスイッチSW2とを有する。各コイルユニットのスイッチSW2は、キャパシタの両端を電気的に接続または非接続とするように切換えが可能である。送電ECU240は、送電部220および受電部110の位置に基づいて、複数のコイルユニットの中から送電に使用するコイルユニットを選択し、選択されたコイルユニットに対応するスイッチSW2を非接続とし、選択されなかったコイルユニットに対応するスイッチSW2を接続する。
【選択図】図2

Description

本発明は、非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システムに関し、より特定的には、送電装置から受電装置へ非接触で電力を伝達する技術に関する。
電源コードや送電ケーブルを用いない非接触のワイヤレス電力伝送が近年注目されており、車両外部の電源(以下「外部電源」とも称する。)によって車載の蓄電装置を充電可能な電気自動車やハイブリッド車両等への適用が提案されている。
特開2010−183812号公報(特許文献1)は、車両に搭載された蓄電装置を外部電源によって非接触で充電可能な車両において、送電装置および受電装置(移動体)の少なくとも一方に配置された電力伝送用の複数のコイル(共鳴コイル)のうち、電力伝送効率が高くなるコイルの組合せを選択して電力伝送を行なう構成を開示する。
このように非接触で電力伝送を行なう場合には、送電装置と受電装置との位置関係が伝送効率に影響する。特開2010−183812号公報(特許文献1)に開示される構成においては、送電装置および受電装置の少なくとも一方に、電力伝送に用いられる複数のコイルが配置される。そして、電力伝送を行なう場合に、複数のコイルの中で電力伝送効率が高くなるものが選択される。そのため、送電装置に対して移動体である受電装置の停止位置の精度が緩和された状態で効率よく電力伝送を行なうことができる。
特開2010−183812号公報 特開2006−244214号公報 特開2009−106136号公報
しかしながら、特開2010−183812号公報(特許文献1)に開示される構成においては、複数の共鳴コイルのうちで電力伝送に使用する共鳴コイルの選択は、共鳴コイルに電力を供給する1次コイルの切換えにより実行される。この場合、電力伝送が実行される際に、選択されなかった共鳴コイルが、電力伝送を行なっている共鳴コイルと電磁的に干渉することによって、電力伝送に影響をおよぼすおそれがある。しかしながら、特開2010−183812号公報(特許文献1)においては、この点については考慮されていなかった。
本発明は、このような課題を解決するためになされたものであって、その目的は、送電装置から受電装置に非接触で電力伝送を行なう非接触給電システムにおいて、電力伝送に使用するコイルを適切に選択しつつ、電力伝送に与える影響を抑制することである。
本発明による非接触受電装置は、受電部と、受電部で受電された電力を使用する電気負荷装置とを備え、送電装置から非接触で受電する。受電部は、送電装置に含まれる送電部から非接触で電力を受電する。受電部は、コイルと、コイルに接続されたキャパシタと、キャパシタに並列に接続され、キャパシタの両端を電気的に接続または非接続とするように切換えが可能な切換装置とを含む。
好ましくは、非接触受電装置は、切換装置が非接続にされている状態において、送電部から受電を行なう。
好ましくは、非接触受電装置は、切換装置を制御する制御装置をさらに備える。制御装置は、送電部から受電を行なう場合に切換装置を非接続にする。
好ましくは、受電部は、上記コイルとは異なる他のコイルと、他のコイルに接続された他のキャパシタと、他のキャパシタに並列に接続され、他のキャパシタの両端を電気的に接続または非接続とするように切換えが可能な他の切換装置とをさらに含む。
好ましくは、非接触受電装置は、切換装置および他の切換装置を制御するための制御装置をさらに備える。制御装置は、受電に使用するコイルに対応する切換装置を非接続にする。
好ましくは、制御装置は、送電部および受電部の位置に基づいて、受電に使用するコイルを選択する。
好ましくは、制御装置は、受電に使用しないコイルに対応する切換装置を接続する。
好ましくは、送電部の固有周波数と受電部の固有周波数との差は、送電部の固有周波数または受電部の固有周波数の±10%以下である。
好ましくは、送電部と受電部との結合係数は0.1以下である。
好ましくは、受電部は、受電部と送電部との間に形成され、かつ、特定の周波数で振動する磁界と、受電部と送電部との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、送電部から受電する。
好ましくは、受電部は、キャパシタに直列に接続された他のキャパシタと、他のキャパシタに並列に接続され、他のキャパシタの両端を電気的に接続または非接続とするように切換えが可能な他の切換装置とをさらに含む。非接触受電装置は、切換装置および他の切換装置が非接続にされている状態において、送電部から受電を行なう。
本発明による非接触送電装置は、送電部と、送電部に電力を供給する電源部とを備え、受電装置に非接触で電力を送電する。送電部は、受電装置に含まれる受電部に非接触で電力を送電する。送電部は、コイルと、コイルに接続されたキャパシタと、キャパシタに並列に接続され、キャパシタの両端の電気的な接続および非接続の切換えが可能な切換装置とを含む。
好ましくは、非接触送電装置は、切換装置が非接続にされている状態で、受電部への送電を行なう。
好ましくは、送電部は、コイルとは異なる他のコイルと、他のコイルに接続された他のキャパシタと、他のキャパシタに並列に接続され、キャパシタの両端を電気的に接続または非接続とするように切換えが可能な他の切換装置とをさらに含む。
好ましくは、非接触送電装置は、切換装置および他の切換装置を制御するための制御装置をさらに備える。制御装置は、送電に使用するコイル対応する切換装置を非接続にする。
好ましくは、制御装置は、送電部および受電部の位置に基づいて、送電に使用するコイルを選択する。
本発明による車両は、送電装置から非接触で電力を受電する。車両は、送電装置に含まれる送電部から非接触で受電する受電部と、受電部で受電された電力を使用する電気負荷装置とを備える。受電部は、コイルと、コイルに接続されたキャパシタと、キャパシタに並列に接続され、キャパシタの両端を電気的に接続または非接続とするように切換えが可能な切換装置とを含む。
本発明による非接触給電システムは、送電装置から車両へ非接触で電力を伝達する。非接触給電システムは、送電装置に含まれる送電部と、車両に含まれる受電部と、制御装置とを備える。送電部は、複数のコイルユニットを含む。複数のコイルユニットの各々は、コイルと、コイルに接続されるキャパシタと、キャパシタに並列に接続され、キャパシタの両端を電気的に接続または非接続とするように切換えが可能な切換装置とを有する。制御装置は、送電部および受電部の位置に基づいて、複数のコイルユニットの中から送電に使用するコイルユニットを選択する。制御装置は、選択されたコイルユニットに対応する切換装置を非接続とし、選択されなかったコイルユニットに対応する切換装置を接続するように制御する。
本発明による非接触給電システムは、送電装置から車両へ非接触で電力を伝達する。非接触給電システムは、送電装置に含まれる送電部と、車両に含まれる受電部と、制御装置とを備える。受電部は、複数のコイルユニットを含む。複数のコイルユニットの各々は、コイルと、コイルに接続されるキャパシタと、キャパシタに並列に接続され、キャパシタの両端を電気的に接続または非接続とするように切換えが可能な切換装置とを有する。制御装置は、送電部および受電部の位置に基づいて、複数のコイルユニットの中から受電に使用するコイルユニットを選択する。制御装置は、選択されたコイルユニットに対応する切換装置を非接続とし、選択されなかったコイルユニットに対応する切換装置を接続するように制御する。
本発明によれば、送電装置から受電装置に非接触で電力伝送を行なう非接触給電システムにおいて、電力伝送に使用するコイルを適切に選択しつつ、電力伝送に与える影響を抑制することができる。
本発明の実施の形態1に従う車両給電システム10の全体構成図である。 図1に示す車両および送電装置の構成を詳細に説明する機能ブロック図である。 送電装置から車両への電力伝送時の等価回路図である。 電力伝送システムのシミュレーションモデルを示す図である。 送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。 固有周波数を固定した状態で、エアギャップを変化させたときの電力伝送効率と、送電部に供給される電流の周波数との関係を示すグラフである。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 電力伝送に使用しない場合(非選択時)における、コイルユニットの等価回路と、共振周波数およびQ値を表わす式を示した図である。 電力伝送に使用する場合(選択時)における、コイルユニットの等価回路と、共振周波数およびQ値を表わす式を示した図である。 実施の形態1において、ECUで実行されるコイル選択制御を説明するためのフローチャートである。 複数のコンデンサおよびスイッチを有するコイルユニットの変形例における、非選択時の共振周波数およびQ値を表わす式を示した図である。 複数のコンデンサおよびスイッチを有するコイルユニットの変形例における、選択時の共振周波数およびQ値を表わす式を示した図である。 実施の形態2において、送電装置が複数の送電コイルを含む場合の、コイル選択制御の概要を説明するための図である。 実施の形態2において、ECUで実行されるコイル選択制御を説明するためのフローチャートである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態1]
図1は、この発明の実施の形態1による車両給電システムの全体構成図である。図1を参照して、車両給電システム10は、車両100と、送電装置200とを備える。車両100は、受電部110と、通信部160とを含む。
受電部110は、車体底面に設置され、送電装置200の送電部220(後述)から出力される高周波の交流電力を電磁界を介して非接触で受電する。なお、受電部110の構成については、送電部220の構成、ならびに送電部220から受電部110への電力伝送とともに、後ほど説明する。通信部160は、車両100が送電装置200と通信を行なうための通信インターフェースである。
送電装置200は、電源装置210と、送電部220と、通信部230とを含む。電源装置210は、所定の周波数を有する交流電力を発生する。一例として、電源装置210は、図示されない系統電源から電力を受けて高周波の交流電力を発生し、その発生した交流電力を送電部220へ供給する。
送電部220は、駐車場の床面に設置され、電源装置210から高周波の交流電力の供給を受ける。そして、送電部220は、送電部220の周囲に発生する電磁界を介して車両100の受電部110へ非接触で電力を出力する。なお、送電部220の構成についても、受電部110の構成、ならびに送電部220から受電部110への電力伝送とともに、後ほど説明する。通信部230は、送電装置200が車両100と通信を行なうための通信インターフェースである。
車両給電システム10においては、送電装置200の送電部220から車両100の受電部110へ非接触で電力が伝送される。送電装置200から車両100へ効率よく電力を伝送するためには、受電部110と送電部220との位置合わせを精度よく行なう必要がある。
図2は、図1に示した給電システム10の詳細構成図である。図2を参照して、送電装置200は、上述のように、電源装置210と、送電部220とを含む。電源装置210は、通信部230に加えて、制御装置である送電ECU240と、電源部250と、整合器260とをさらに含む。また、送電部220は、共振コイル221と、キャパシタ222と、電磁誘導コイル223、キャパシタ222に並列に接続された切換装置であるスイッチSW2とを含む。
電源部250は、送電ECU240からの制御信号MODによって制御され、商用電源などの交流電源から受ける電力を高周波の電力に変換する。そして、電源部250は、その変換した高周波電力を、整合器260を介して電磁誘導コイル223へ供給する。
整合器260は、送電装置200と車両100との間のインピーダンスをマッチングさせるための回路である。整合器260は、電源部250と送電部220との間に設けられ、内部のインピーダンスを変更可能に構成される。一例として、整合器260は、可変キャパシタとコイルとによって構成され(図示せず)、可変キャパシタの容量を変化させることによってインピーダンスを変更することができる。この整合器260においてインピーダンスを変更することによって、送電装置200のインピーダンスを車両100のインピーダンスと整合させることができる(インピーダンスマッチング)。なお、図2においては、整合器260は、電源部250と分離して設けられる構成として記述されているが、電源部250が整合器260の機能を含むようにしてもよい。
共振コイル221は、車両100の受電部110に含まれる共振コイル111へ非接触で電力を転送する。なお、受電部110と送電部220との間の電力伝送については、図3を用いて後述する。
通信部230は、上述のように、送電装置200と車両100との間で無線通信を行なうための通信インターフェースである。通信部230は、車両100側の通信部160から送信される車両情報、ならびに、送電の開始および停止を指示する信号を受信し、これらの情報を送電ECU240へ出力する。
送電ECU240は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、電源装置210における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。また、送電ECU240は、制御信号CTR2によって、送電部220に含まれるスイッチSW2を制御する。
車両100は、受電部110および通信部160に加えて、充電リレーCHR170と、整流器180と、蓄電装置190と、システムメインリレーSMR115と、パワーコントロールユニットPCU(Power Control Unit)120と、モータジェネレータ130と、動力伝達ギヤ140と、駆動輪150と、制御装置である車両ECU(Electronic Control Unit)300と、ユーザインターフェース(I/F)165とを含む。受電部110は、共振コイル111と、キャパシタ112と、電磁誘導コイル113と、キャパシタ112に並列に接続された切換装置であるスイッチSW1とを含む。
なお、本実施の形態においては、車両100として電気自動車を例として説明するが、蓄電装置に蓄えられた電力を用いて走行が可能な車両であれば車両100の構成はこれに限られない。車両100の他の例としては、エンジンを搭載したハイブリッド車両や、燃料電池を搭載した燃料電池車などが含まれる。
共振コイル111は、送電装置200に含まれる共振コイル221から非接触で電力を受電する。
整流器180は、電磁誘導コイル113からCHR170を介して受ける交流電力を整流し、その整流された直流電力を、蓄電装置190に出力する。整流器180としては、たとえば、ダイオードブリッジおよび平滑用のキャパシタ(いずれも図示せず)を含む構成とすることができる。整流器180として、スイッチング制御を用いて整流を行なう、いわゆるスイッチングレギュレータを用いることも可能であるが、整流器180が受電部110に含まれる場合もあり、発生する電磁場に伴うスイッチング素子の誤動作等を防止するために、ダイオードブリッジのような静止型の整流器とすることがより好ましい。
CHR170は、受電部110と整流器180との間に電気的に接続される。CHR170は、車両ECU300からの制御信号SE2により制御され、受電部110から整流器180への電力の供給と遮断とを切換える。
蓄電装置190は、充放電可能に構成された電力貯蔵要素である。蓄電装置190は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池や、電気二重層キャパシタなどの蓄電素子を含んで構成される。
蓄電装置190は、整流器180に接続され、受電部110で受電されかつ整流器180で整流された電力を蓄電する。また、蓄電装置190は、SMR115を介してPCU120とも接続される。蓄電装置190は、車両駆動力を発生させるための電力をPCU120へ供給する。さらに、蓄電装置190は、モータジェネレータ130で発電された電力を蓄電する。蓄電装置190の出力はたとえば200V程度である。
蓄電装置190には、いずれも図示しないが、蓄電装置190の電圧VBおよび入出力される電流IBを検出するための電圧センサおよび電流センサが設けられる。これらの検出値は、車両ECU300へ出力される。車両ECU300は、この電圧VBおよび電流IBに基づいて、蓄電装置190の充電状態(「SOC(State Of Charge)」とも称される。)を演算する。
SMR115は、蓄電装置190とPCU120との間に電気的に接続される。そして、SMR115は、車両ECU300からの制御信号SE1によって制御され、蓄電装置190とPCU120との間での電力の供給と遮断とを切換える。
PCU120は、いずれも図示しないが、コンバータやインバータを含む。コンバータは、車両ECU300からの制御信号PWCにより制御されて蓄電装置190からの電圧を変換する。インバータは、車両ECU300からの制御信号PWIにより制御されて、コンバータで変換された電力を用いてモータジェネレータ130を駆動する。
モータジェネレータ130は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。
モータジェネレータ130の出力トルクは、動力伝達ギヤ140を介して駆動輪150に伝達されて、車両100を走行させる。モータジェネレータ130は、車両100の回生制動動作時には、駆動輪150の回転力によって発電することができる。そして、その発電電力は、PCU120によって蓄電装置190の充電電力に変換される。
また、モータジェネレータ130の他にエンジン(図示せず)が搭載されたハイブリッド自動車では、このエンジンおよびモータジェネレータ130を協調的に動作させることによって、必要な車両駆動力が発生される。この場合、エンジンの回転による発電電力を用いて、蓄電装置190を充電することも可能である。
通信部160は、上述のように、車両100と送電装置200との間で無線通信を行なうための通信インターフェースである。通信部160は、車両ECU300からの、車両情報を送電装置200へ出力する。また、通信部160は、送電装置200からの送電の開始および停止を指示する信号を送電装置200へ出力する。
ユーザインターフェース165は、ユーザ操作の入力およびユーザへの情報の出力を行なう。ユーザインターフェース165は、たとえば、ユーザ操作による外部充電の開始を指示する指令を受ける。また、ユーザインターフェース165は、受電部110と送電部220との位置情報や、蓄電装置190の充電状態などの情報をユーザに提供する。
車両ECU300は、いずれも図1には図示しないがCPU、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、車両100における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。また、車両ECU300は、制御信号CTR1によって、受電部110に含まれるスイッチSW1を制御する。
次に、送電装置200から車両100への電力伝送について説明する。
図3は、送電装置200から車両100への電力伝送時の等価回路図である。図3を参照して、送電装置200の送電部220は、電磁誘導コイル223と、共振コイル221と、キャパシタ222とを含む。
電磁誘導コイル223は、共振コイル221と所定の間隔をおいて、たとえば共振コイル221と略同軸上に設けられる。電磁誘導コイル223は、電磁誘導により共振コイル221と磁気的に結合し、電源装置210から供給される高周波電力を電磁誘導により共振コイル221へ供給する。
共振コイル221は、キャパシタ222とともにLC共振回路を形成する。なお、後述するように、車両100の受電部110においてもLC共振回路が形成される。共振コイル221およびキャパシタ222によって形成されるLC共振回路の固有周波数と、受電部110のLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%以下である。そして、共振コイル221は、電磁誘導コイル223から電磁誘導により電力を受け、車両100の受電部110へ非接触で送電する。
なお、電磁誘導コイル223は、電源装置210から共振コイル221への給電を容易にするために設けられるものであり、電磁誘導コイル223を設けずに共振コイル221に電源装置210を直接接続してもよい。また、キャパシタ222は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル221の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ222を設けない構成としてもよい。
車両100の受電部110は、共振コイル111と、キャパシタ112と、電磁誘導コイル113とを含む。共振コイル111は、キャパシタ112とともにLC共振回路を形成する。上述のように、共振コイル111およびキャパシタ112によって形成されるLC共振回路の固有周波数と、送電装置200の送電部220における、共振コイル221およびキャパシタ222によって形成されるLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%である。そして、共振コイル111は、送電装置200の送電部220から非接触で受電する。
電磁誘導コイル113は、共振コイル111と所定の間隔をおいて、たとえば共振コイル111と略同軸上に設けられる。電磁誘導コイル113は、電磁誘導により共振コイル111と磁気的に結合し、共振コイル111によって受電された電力を電磁誘導により取出して、整流器180(図2)以降の電気機器を包括的に表わした電気負荷装置118へ出力する。
なお、電磁誘導コイル113は、共振コイル111からの電力の取出しを容易にするために設けられるものであり、電磁誘導コイル113を設けずに共振コイル111に整流器180を直接接続してもよい。また、キャパシタ112は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル111の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ112を設けない構成としてもよい。
送電装置200において、電源装置210から電磁誘導コイル223へ高周波の交流電力が供給され、電磁誘導コイル223を用いて共振コイル221へ電力が供給される。そうすると、共振コイル221と車両100の共振コイル111との間に形成される磁界を通じて共振コイル221から共振コイル111へエネルギ(電力)が移動する。共振コイル111へ移動したエネルギ(電力)は、電磁誘導コイル113を用いて取出され、車両100の電気負荷装置118へ伝送される。
上述のように、この電力伝送システムにおいては、送電装置200の送電部220の固有周波数と、車両100の受電部110の固有周波数との差は、送電部220の固有周波数または受電部110の固有周波数の±10%以下である。このような範囲に送電部220および受電部110の固有周波数を設定することで電力伝送効率を高めることができる。一方、上記の固有周波数の差が±10%よりも大きくなると、電力伝送効率が10%よりも小さくなり、電力伝送時間が長くなるなどの弊害が生じる。
なお、送電部220(受電部110)の固有周波数とは、送電部220(受電部110)を構成する電気回路(共振回路)が自由振動する場合の振動周波数を意味する。なお、送電部220(受電部110)を構成する電気回路(共振回路)において、制動力または電気抵抗を実質的に零としたときの固有周波数は、送電部220(受電部110)の共振周波数とも呼ばれる。
図4および図5を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。図4は、電力伝送システムのシミュレーションモデルを示す図である。また、図5は、送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。
図4を参照して、電力伝送システム89は、送電部90と、受電部91とを備える。送電部90は、第1コイル92と、第2コイル93とを含む。第2コイル93は、共振コイル94と、共振コイル94に設けられたキャパシタ95とを含む。受電部91は、第3コイル96と、第4コイル97とを備える。第3コイル96は、共振コイル99とこの共振コイル99に接続されたキャパシタ98とを含む。
共振コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。また、共振コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、第2コイル93の固有周波数f1は、下記の式(1)によって示され、第3コイル96の固有周波数f2は、下記の式(2)によって示される。
f1=1/{2π(Lt×C1)1/2} … (1)
f2=1/{2π(Lr×C2)1/2} … (2)
ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、第2コイル93および第3コイル96の固有周波数のズレと電力伝送効率との関係を図5に示す。なお、このシミュレーションにおいては、共振コイル94および共振コイル99の相対的な位置関係は固定とし、さらに、第2コイル93に供給される電流の周波数は一定である。
図5に示すグラフのうち、横軸は固有周波数のズレ(%)を示し、縦軸は一定周波数の電流での電力伝送効率(%)を示す。固有周波数のズレ(%)は、下記の式(3)によって示される。
(固有周波数のズレ)={(f1−f2)/f2}×100(%) … (3)
図5からも明らかなように、固有周波数のズレ(%)が0%の場合には、電力伝送効率は100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は40%程度となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は10%程度となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は5%程度となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、第3コイル96の固有周波数の10%以下の範囲となるように第2コイル93および第3コイル96の固有周波数を設定することで、電力伝送効率を実用的なレベルに高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が第3コイル96の固有周波数の5%以下となるように第2コイル93および第3コイル96の固有周波数を設定すると、電力伝送効率をさらに高めることができるのでより好ましい。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
再び図2を参照して、送電装置200の送電部220および車両100の受電部110は、送電部220と受電部110との間に形成され、かつ、特定の周波数で振動する磁界と、送電部220と受電部110との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、非接触で電力を授受する。送電部220と受電部110との結合係数κは0.1以下が好ましく、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220から受電部110へ電力が伝送される。
ここで、送電部220の周囲に形成される特定の周波数の磁界について説明する。「特定の周波数の磁界」は、典型的には、電力伝送効率と送電部220に供給される電流の周波数と関連性を有する。そこで、まず、電力伝送効率と、送電部220に供給される電流の周波数との関係について説明する。送電部220から受電部110に電力を伝送するときの電力伝送効率は、送電部220および受電部110間の距離などの様々な要因よって変化する。たとえば、送電部220および受電部110の固有周波数(共振周波数)をf0とし、送電部220に供給される電流の周波数をf3とし、送電部220および受電部110の間のエアギャップをエアギャップAGとする。
図6は、固有周波数f0を固定した状態で、エアギャップAGを変化させたときの電力伝送効率と、送電部220に供給される電流の周波数f3との関係を示すグラフである。図6を参照して、横軸は、送電部220に供給される電流の周波数f3を示し、縦軸は、電力伝送効率(%)を示す。効率曲線L1は、エアギャップAGが小さいときの電力伝送効率と、送電部220に供給される電流の周波数f3との関係を模式的に示す。この効率曲線L1に示すように、エアギャップAGが小さい場合には、電力伝送効率のピークは周波数f4,f5(f4<f5)において生じる。エアギャップAGを大きくすると、電力伝送効率が高くなるときの2つのピークは、互いに近づくように変化する。そして、効率曲線L2に示すように、エアギャップAGを所定距離よりも大きくすると、電力伝送効率のピークは1つとなり、送電部220に供給される電流の周波数が周波数f6のときに電力伝送効率がピークとなる。エアギャップAGを効率曲線L2の状態よりもさらに大きくすると、効率曲線L3に示すように電力伝送効率のピークが小さくなる。
たとえば、電力伝送効率の向上を図るため手法として次のような手法が考えられる。第1の手法としては、エアギャップAGにあわせて、送電部220に供給される電流の周波数を一定として、キャパシタ222やキャパシタ112のキャパシタンスを変化させることで、送電部220と受電部110との間での電力伝送効率の特性を変化させる手法が考えられる。具体的には、送電部220に供給される電流の周波数を一定とした状態で、電力伝送効率がピークとなるように、キャパシタ222およびキャパシタ112のキャパシタンスを調整する。この手法では、エアギャップAGの大きさに関係なく、送電部220および受電部110に流れる電流の周波数は一定である。なお、電力伝送効率の特性を変化させる手法としては、送電装置200の整合器260を利用する手法や、車両100において整流器180と蓄電装置190との間に設けられるコンバータ(図示せず)を利用する手法などを採用することも可能である。
また、第2の手法としては、エアギャップAGの大きさに基づいて、送電部220に供給される電流の周波数を調整する手法である。たとえば、電力伝送特性が効率曲線L1となる場合には、周波数f4またはf5の電流を送電部220に供給する。周波数特性が効率曲線L2,L3となる場合には、周波数f6の電流を送電部220に供給する。この場合においては、エアギャップAGの大きさに合わせて送電部220および受電部110に流れる電流の周波数を変化させることになる。
第1の手法では、送電部220を流れる電流の周波数は、固定された一定の周波数となり、第2の手法では、送電部220を流れる周波数は、エアギャップAGによって適宜変化する周波数となる。第1の手法や第2の手法などによって、電力伝送効率が高くなるように設定された特定の周波数の電流が送電部220に供給される。送電部220に特定の周波数の電流が流れることで、送電部220の周囲には、特定の周波数で振動する磁界(電磁界)が形成される。受電部110は、受電部110と送電部220との間に形成され、かつ特定の周波数で振動する磁界を通じて送電部220から電力を受電している。したがって、「特定の周波数で振動する磁界」とは、必ずしも固定された周波数の磁界とは限らない。なお、上記の例では、エアギャップAGに着目して、送電部220に供給される電流の周波数を設定するようにしているが、電力伝送効率は、送電部220および受電部110の水平方向のずれ等のように他の要因によっても変化するものであり、当該他の要因に基づいて、送電部220に供給される電流の周波数を調整する場合がある。
なお、上記の説明では、共振コイルとしてヘリカルコイルを採用した例について説明したが、共振コイルとして、メアンダラインなどのアンテナなどを採用した場合には、送電部220に特定の周波数の電流が流れることで、特定の周波数の電界が送電部220の周囲に形成される。そして、この電界をとおして、送電部220と受電部110との間で電力伝送が行われる。
この電力伝送システムにおいては、電磁界の「静電磁界」が支配的な近接場(エバネッセント場)を利用することで、送電および受電効率の向上が図られている。
図7は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図7を参照して、電磁界は3つの成分から成る。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。なお、電磁界の波長を「λ」とすると、「輻射電磁界」と「誘導電磁界」と「静電磁界」との強さが略等しくなる距離は、λ/2πと表わすことができる。
「静電磁界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、この実施の形態1に係る電力伝送システムでは、この「静電磁界」が支配的な近接場(エバネッセント場)を利用してエネルギ(電力)の伝送が行なわれる。すなわち、「静電磁界」が支配的な近接場において、近接する固有周波数を有する送電部220および受電部110(たとえば一対のLC共振コイル)を共鳴させることにより、送電部220から他方の受電部110へエネルギ(電力)を伝送する。この「静電磁界」は遠方にエネルギを伝播しないので、遠方までエネルギを伝播する「輻射電磁界」によってエネルギ(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギ損失で送電することができる。
このように、この電力伝送システムにおいては、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220と受電部110との間で非接触で電力が伝送される。そして、送電部220と受電部110との間の結合係数(κ)は、好ましくは0.1以下である。なお、結合係数(κ)は、この値に限定されるものではなく、電力伝送が良好となる種々の値をとり得る。一般的に、電磁誘導を利用した電力伝送では、送電部と受電部と間の結合係数(κ)は1.0に近いものとなっている。
なお、電力伝送における、上記のような送電部220と受電部110との結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電磁界(電磁場)共振結合」、「電界(電場)共振結合」等という。「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。
送電部220と受電部110とが上記のようにコイルによって形成される場合には、送電部220と受電部110とは、主に磁界(磁場)によって結合し、「磁気共鳴結合」または「磁界(磁場)共鳴結合」が形成される。なお、送電部220と受電部110とに、たとえば、メアンダライン等のアンテナを採用することも可能であり、この場合には、送電部220と受電部110とは、主に電界(電場)によって結合し、「電界(電場)共鳴結合」が形成される。
上述のような電力伝送システムにおいては、共振コイルの固有周波数に対応した電磁界が共振コイルに作用すると、それに応答して電力伝送が実行される。しかしながら、実際に電力伝送の実行が必要ではない場合に、たとえば図2の送電装置200において受電側の車両100がない状態で電源部250から送電部220に電力が給電されたときには、送電部220によって電磁界が発生してしまい、不必要に周囲へ電磁界を漏洩させてしまうおそれがある。
また、車両100においても、蓄電装置190の充電が必要でない場合に、送電装置200によって電磁界が発生されたときには、受電部110において不必要に受電が行なわれて、受電部においてエネルギが蓄えられてしまうおそれがある。たとえば、共通の送電部で複数の受電装置(車両)に電力伝送を行なうような場合においては、充電が必要な車両のみが受電できるようにすることが望ましい。
そこで、実施の形態1においては、実際に電力伝送を実行する必要がある場合に限って、送電部あるいは受電部における共振コイルが送電,受電を行なうようにできるコイル選択制御を実行する。
図8および図9を用いて、本実施の形態1におけるコイル選択制御の概要を説明する。図8は、コイルユニットを電力伝送に使用しない場合(非選択時)の、コイルユニットの等価回路、ならびに共振周波数およびQ値を表わす式を示した図である。また、図9は、コイルユニットを電力伝送に使用する場合(選択時)の、コイルユニットの等価回路、ならびに共振周波数およびQ値を表わす式を示した図である。
まず、図8を参照して、コイルを電力伝送に使用しない場合には、共振コイルのキャパシタに並列に接続されたスイッチSWが導通状態(オン状態)とされる。これにより、キャパシタの両端がスイッチSWを介して短絡され、回路においてキャパシタによる充電動作が実質的に行なわれなくなる。
このとき、キャパシタのキャパシタンスをC、コイルのリアクタンスおよび抵抗成分をそれぞれL,Rとし、スイッチSWの接続抵抗をRonとすると、この状態における共振周波数fonおよびQ値(Qon)は、図示されるように、それぞれ以下の式(4),(5)のように表われる。
on=1/(2π√L) … (4)
on=ωL/(R+Ron) … (5)
一方、コイルを電力伝送に使用する場合(図9)は、共振コイルのキャパシタに並列に接続されたスイッチSWが非導通状態(オフ状態)とされる。この場合の共振周波数foffおよびQ値(Qoff)は、それぞれ以下の式(6),(7)のように表われる。
off=1/{2π(L×C)1/2} … (6)
off=ωL/R … (7)
上記の式(4)〜(7)からわかるように、fon>foff(=電磁場周波数)であり、Qon<Qoffとなる。このように、スイッチSWをオンにした場合には、共振周波数を電磁場周波数からずらすことができるので、コイルが電磁場と共振しにくくなり電力伝送が実行されなくなる。
また、スイッチをオフにした場合は、所定の電磁場周波数に適合した共振周波数を得ることができ、さらにスイッチSWに含まれる接触抵抗成分によるQ値への影響は生じない。
上記のようなスイッチSWを、キャパシタに直列に接続するとともに電力伝送に使用する場合にスイッチSWを接続するような構成とすることによって、コイルユニットの選択および非選択を切換えることも可能であるが、その場合には、コイルを選択した場合(スイッチSWオン)に、回路にスイッチSWの抵抗成分Ronが含まれてしまうため、Q値が低下してしまう。これによって、電力の伝送効率に影響が生じ得る。
そのため、実施の形態1のように、コイルのキャパシタに並列にスイッチSWを接続することによって、コイルの選択および非選択を切換えることができるとともに、コイル選択時のQ値の低下を排除することが可能となる。
図10は、実施の形態1におけるコイル選択制御処理の詳細を説明するためのフローチャートである。図10および以降の図14で後述するフローチャートは、送電ECU240あるいは車両ECU300に予め格納されたプログラムがメインルーチンから呼び出されて、所定周期で実行されることによって処理が実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
なお、図10においては、図2の送電装置200の送電部220に含まれる共振コイル221にスイッチSW2が設けられ、送電ECU240でこのスイッチSW2が制御される場合を例として説明するが、車両100側の受電部110のスイッチSW1が車両ECU300によって制御される場合についても以下と同様の処理が適用可能である。
また、車両ECU300で制御を行なって送電部220のスイッチSW2が切換えられる場合、および、送電ECU240で制御を行なって受電部110のスイッチSW1が切換えられる場合にも、同様に適用可能である。
図2および図10を参照して、送電ECU240は、ステップ(以下、ステップをSと略す。)100にて、車両100が所定の停止位置へ停止したか否かを判定する。
車両100の停止が完了していない場合(S100にてNO)は、電力伝送は実行されないので、以降の処理がスキップされて、送電ECU240は処理を終了する。
車両100の停止が完了した場合(S100にてYES)は、処理がS110に進められ、送電ECU240は、次に、給電開始指示がされたか否かを判定する。この給電開始指示は、ユーザの操作によって直接入力される操作信号、あるいは、タイマー充電が行なわれる場合には、送電ECU240におけるタイマー回路(図示せず)や車両ECU300から送信される開始信号によって行われる。
給電開始指示がない場合(S110にてNO)は、処理がS125に進められて、送電ECU240は、送電部220のスイッチSW2をオン状態として、コイルを非選択に設定する。これにより、たとえ電源部250から送電部220に電力が供給された場合であっても、電磁誘導コイル223で発生する電磁場に対して共振コイル221が共振しないので、車両100への電力伝送は行なわれない。
一方、給電開始指示がある場合(S110にてYES)は、処理がS120に進められて、送電ECU240は、送電部220のスイッチSW2をオフ状態とする。これにより、共振コイル221の共振周波数が電磁場周波数に対応した共振周波数に設定される。これにより、共振コイル221が電磁誘導コイル223で発生する電磁場に対して共振し、電力伝送ができるようになる。
そして、送電ECU240は、S130にて、電源部250を制御して送電部220に電力を供給し、車両100への送電処理を実行する。
送電ECU240は、S140にて、車両ECU300からの蓄電装置190が満充電となったことを示す信号、もしくはユーザからの操作信号などによって、給電終了指示を受信したか否かを判定する。
給電終了指示が受信されていない場合(S140にてNO)は、処理がS130に戻されて、送電ECU240は、給電終了指示を受信するまで送電処理を継続する。
給電終了指示を受信した場合(S140にてYES)は、処理がS150に進められ、送電ECU240は、電源部250から送電部220への電力供給を停止し、送電処理を停止する。なお、図10には明示されていないが、S150における送電処理の停止に伴って、送電部220のスイッチSW2がオン状態に設定される。
なお、上述のように、相手側の装置に所定の動作を行なわせる場合、たとえば車両ECU300で上記の処理が実行され送電部220のスイッチSW2を制御するような場合には、コイルの選択および非選択、ならびに、送電処理の実行および停止については、送電ECU240に当該動作を実行させるために、車両ECU300から送電ECU240へ通信部160,230を介して動作のための指示が送信される。
以上のような処理に従って制御を行なうことによって、非接触により電力伝送が行なわれる非接触給電システムにおいて、電力伝送に使用するコイルを適切に選択することができるとともに、電力伝送が行なわれる場合のQ値の低下を抑制して電力伝送に与える影響を排除することができる。
なお、上記においては、電力伝送の要否に応じてスイッチの導通,非導通を切換える構成を説明したが、スイッチが導通状態(すなわち、非選択状態)の場合にも電力伝送を実行可能とすることを排除するものではない。ただし、上述のように、コイルが選択されている状態ではQ値の低下が抑制されて電力の伝送効率が良好となるので、スイッチが非導通とされてコイルが選択された状態で電力伝送を行なうことが好ましい。
[実施の形態1の変形例]
上記の実施の形態においては、共振コイルに設けられるスイッチが1つの場合について説明したが、このようなスイッチが共振コイルに複数設けられるような態様であってもよい。
図11および図12は、3つのキャパシタを有する共振コイルにおいて、3つのキャパシタの各々にそれぞれ並列に接続される3つのスイッチSW_A,SW_B,SW_Cが設けられる場合の、実施の形態1における図8、図9に対応する図である。
この場合においても、電力伝送にコイルを使用しない場合(図11)には、少なくとも1つのスイッチがオン状態に設定される。これによって、共振コイルの共振周波数を電磁場周波数からずらすことができる。
また、電力伝送にコイルを使用する場合(図12)は、すべてのスイッチがオフ状態に設定される。これによって、共振コイルの共振周波数を電磁場周波数に適合した(一致した)周波数に設定することができ、さらに、Q値へのスイッチの抵抗成分の影響を排除することができる。
[実施の形態2]
実施の形態1およびその変形例においては、送電装置側および受電装置(車両)側の共振コイルが1つずつである場合に、給電の実行,非実行でコイルの選択を切換える構成について説明した。
ところで、上述のように、非接触給電システムにおいては送電側の共振コイルと受電側の共振コイルの位置ずれによって電力伝送効率が影響を受ける。そのため、送電装置の送電部へ車両を停止させる場合には、送電部と受電部との位置が一致するように停止位置を調整することが必要とされる。
しかしながら、送電部と受電部との位置を完全に一致させるように停車させることは困難であり、また、車両の受電部の搭載位置によっては、送電部への完全な位置合わせができない場合が生じ得る。
このような課題に対処するために、図13に示されるように、送電装置側の送電部に複数の共振コイルを設け、上記のような位置合わせの精度を緩和する手法が採用される場合がある。この場合、送電装置側における複数の共振コイルのうち、受電装置の受電部に対応する受電範囲外の共振コイルでも送電が行なわれると、全体の伝送効率の低下や漏洩電磁界の増加、および実際に電力伝送に寄与している共振コイルとそうでない共振コイルとの間の電磁界の干渉が生じるおそれがある。
そのため、実施の形態2では、送電側および受電側の少なくとも一方に複数の共振コイルを有する構成において、図13に示されるように、実際に電力伝送に寄与する範囲の共振コイルのみを選択するとともにそれ以外の範囲の共振コイルを非選択とする構成を採用する。そして、この共振コイルの選択を、実施の形態1と同様に、各共振コイルのキャパシタに並列に接続されたスイッチを制御することによって行なう。
このような構成とすることによって、電力伝送に与える影響を抑制しつつ、送電部と受電部との位置合わせの精度を緩和することができる。
なお、図13においては、送電側の共振コイルが複数設けられる場合の例が示されているが、逆に、送電側の1つの共振コイルに対して、受電側に複数の共振コイルが設けられる構成であってもよい。また、送電側および受電側の双方が複数の共振コイルを含み、互いに重なり合う範囲の共振コイルのみが選択されて電力伝送が行なわれるような構成であってもよい。
図14は、実施の形態2に従う非接触給電システムで実行されるコイル選択制御を説明するためのフローチャートである。図14は、実施の形態1における図10のフローチャートの、ステップS120,S125に代えて、S115,S120A,S125Aが追加されたものとなっている。図14において、図10と重複するステップの説明は繰り返さない。
なお、図14においては、送電部に複数の共振コイルが設けられ、図10における説明と同様に送電装置のECUにおいて当該コイル選択制御が実行される場合を例として説明するが、本制御は、送電側および受電側の少なくとも一方に複数の共振コイルが設けられる構成に適用可能である。したがって、送電側および受電側の双方に複数の共振コイルが設けられてもよい。また、本制御は、送電側のECUおよび受電側のECUのどちらで実行されてもよい。
図2および図14を参照して、車両100の受電部110が送電部220の送電可能範囲内となるように車両が停止される(S100にてYES)と、送電ECU240は、S110にて、給電開始指示を受信したか否かを判定する。
給電開始指示を受信していない場合(S110にてNO)は、S125Aに処理が進められ、送電ECU240は、送電部220に含まれる複数の共振コイルについてスイッチをすべてオフ状態に設定し、処理を終了する。
給電開始指示を受信した場合(S110にてYES)は、S115に処理が進められ、送電ECU240は、車両の停止位置、すなわち受電部110の共振コイル111の位置を検出する。
そして、S120Aにて、送電ECU240は、検出された共振コイル111の位置に対応する送電部220の共振コイルのスイッチをオフ状態とし、電力伝送に使用する共振コイルとして選択する。さらに、送電ECU240は、電力伝送に使用しない共振コイルについてのスイッチをオン状態として非選択とする。なお、送電側および受電側の双方の共振コイルが複数である場合には、たとえば、送電範囲および受電範囲が重なり合う部分の共振コイルが電力送信に使用する共振コイルとして選択される。
その後、送電ECU240は、給電終了指示を受信するまで送電処理を継続する(S130〜S150)。
以上のような処理に従って制御を実行することによって、送電装置および受電装置の少なくともいずれか一方に複数の共振コイルを有する非接触給電システムにおいて、電力伝送に使用する共振コイルを適切に選択し、選択されなかった共振コイルによる電力伝送への影響を抑制することが可能となる。
また、図13に示したように、共振コイルを複数設けることによって、1つの共振コイルで負担する電力が分散されるため、共振コイルに設けられるキャパシタの耐圧を下げることができる。
さらに、1つの送電装置を用いて、複数の受電装置に電力を伝送する場合に、特定の受電対象装置のある場所にのみ電磁界を発生させることができる。
また、電力伝送が行なわれる場合に、実際の電力伝送に寄与しない共振コイルへ電力が伝播してしまう「ホッピング」を防止でき、伝送効率の低下を抑制することもできる。
さらに、上記の実施の形態においては、車両の位置を検出してコイルを選択する構成としているが、車両の位置検出に代えて、伝送効率に基づいて選択するコイルを決定するようにしてもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 給電システム、89 電力伝送システム、90,220 送電部、91,110 受電部、92,93,96,97 コイル、94,99,111,221 共振コイル、95,98,112,222 キャパシタ、100 車両、113,223 電磁誘導コイル、115 SMR、118 電気負荷装置、120 PCU、130 モータジェネレータ、140 動力伝達ギヤ、150 駆動輪、160,230 通信部、165 ユーザインターフェース、170 CHR、180 整流器、190 蓄電装置、200 送電装置、210 電源装置、240 送電ECU、250 電源部、260 整合器、300 車両ECU、SW スイッチ。

Claims (22)

  1. 送電装置から非接触で受電するための非接触受電装置であって、
    前記送電装置に含まれる送電部から非接触で受電する受電部と、
    前記受電部で受電された電力を使用する電気負荷装置とを備え、
    前記受電部は、
    コイルと、
    前記コイルに接続されたキャパシタと、
    前記キャパシタに並列に接続され、前記キャパシタの両端を電気的に接続または非接続とするように切換えが可能な切換装置とを含む、非接触受電装置。
  2. 前記非接触受電装置は、前記切換装置が非接続にされている状態において、前記送電部から受電を行なう、請求項1に記載の非接触受電装置。
  3. 前記切換装置を制御する制御装置をさらに備え、
    前記制御装置は、前記送電部から受電を行なう場合に前記切換装置を非接続にする、請求項1に記載の非接触受電装置。
  4. 前記受電部は、前記コイルとは異なる他のコイルと、
    前記他のコイルに接続された他のキャパシタと、
    前記他のキャパシタに並列に接続され、前記他のキャパシタの両端を電気的に接続または非接続とするように切換えが可能な他の切換装置とをさらに含む、請求項1に記載の非接触受電装置。
  5. 前記切換装置および前記他の切換装置を制御するための制御装置をさらに備え、
    前記制御装置は、受電に使用するコイルに対応する切換装置を非接続にする、請求項4に記載の非接触受電装置。
  6. 前記制御装置は、前記送電部および前記受電部の位置に基づいて、前記受電に使用するコイルを選択する、請求項5に記載の非接触受電装置。
  7. 前記制御装置は、受電に使用しないコイルに対応する切換装置を接続する、請求項3または5に記載の非接触受電装置。
  8. 前記送電部の固有周波数と前記受電部の固有周波数との差は、前記送電部の固有周波数または前記受電部の固有周波数の±10%以下である、請求項1に記載の非接触受電装置。
  9. 前記送電部と前記受電部との結合係数は0.1以下である、請求項1に記載の非接触受電装置。
  10. 前記受電部は、前記受電部と前記送電部との間に形成され、かつ、特定の周波数で振動する磁界と、前記受電部と前記送電部との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、前記送電部から受電する、請求項1に記載の非接触受電装置。
  11. 前記受電部は、
    前記キャパシタに直列に接続された他のキャパシタと、
    前記他のキャパシタに並列に接続され、前記他のキャパシタの両端を電気的に接続または非接続とするように切換えが可能な他の切換装置とをさらに含み、
    前記非接触受電装置は、前記切換装置および前記他の切換装置が非接続にされている状態において、前記送電部から受電を行なう、請求項1に記載の非接触受電装置。
  12. 受電装置に非接触で送電するための非接触送電装置であって、
    前記受電装置に含まれる受電部に非接触で送電する送電部と、
    前記送電部に電力を供給する電源部とを備え、
    前記送電部は、
    コイルと、
    前記コイルに接続されたキャパシタと、
    前記キャパシタに並列に接続され、前記キャパシタの両端の電気的な接続および非接続の切換えが可能な切換装置とを含む、非接触送電装置。
  13. 前記非接触送電装置は、前記切換装置が非接続にされている状態で、前記受電部への送電を行なう、請求項12に記載の非接触送電装置。
  14. 前記送電部は、前記コイルとは異なる他のコイルと、
    前記他のコイルに接続された他のキャパシタと、
    前記他のキャパシタに並列に接続され、前記キャパシタの両端を電気的に接続または非接続とするように切換えが可能な他の切換装置とをさらに含む、請求項12に記載の非接触送電装置。
  15. 前記切換装置および前記他の切換装置を制御するための制御装置をさらに備え、
    前記制御装置は、送電に使用するコイル対応する切換装置を非接続にする、請求項14に記載の非接触送電装置。
  16. 前記制御装置は、前記送電部および前記受電部の位置に基づいて、前記送電に使用するコイルを選択する、請求項15に記載の非接触送電装置。
  17. 前記送電部の固有周波数と前記受電部の固有周波数との差は、前記送電部の固有周波数または前記受電部の固有周波数の±10%以下である、請求項12に記載の非接触送電装置。
  18. 前記送電部と前記受電部との結合係数は0.1以下である、請求項12に記載の非接触送電装置。
  19. 前記送電部は、前記受電部と前記送電部との間に形成され、かつ、特定の周波数で振動する磁界と、前記受電部と前記送電部との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、前記受電部へ送電する、請求項12に記載の非接触送電装置。
  20. 送電装置から非接触で受電するための車両であって、
    前記送電装置に含まれる送電部から非接触で受電する受電部と、
    前記受電部で受電された電力を使用する電気負荷装置とを備え、
    前記受電部は、
    コイルと、
    前記コイルに接続されたキャパシタと、
    前記キャパシタに並列に接続され、前記キャパシタの両端を電気的に接続または非接続とするように切換えが可能な切換装置とを含む、車両。
  21. 送電装置から車両へ非接触で電力を伝達する非接触給電システムであって、
    前記送電装置に含まれる送電部と、
    前記車両に含まれる受電部と、
    制御装置とを備え、
    前記送電部は、
    複数のコイルユニットを含み、
    前記複数のコイルユニットの各々は、
    コイルと、
    前記コイルに接続されるキャパシタと、
    前記キャパシタに並列に接続され、前記キャパシタの両端を電気的に接続または非接続とするように切換えが可能な切換装置とを有し、
    前記制御装置は、前記送電部および前記受電部の位置に基づいて、前記複数のコイルユニットの中から送電に使用するコイルユニットを選択し、
    前記制御装置は、選択されたコイルユニットに対応する切換装置を非接続とし、選択されなかったコイルユニットに対応する切換装置を接続するように制御する、非接触給電システム。
  22. 送電装置から車両へ非接触で電力を伝達する非接触給電システムであって、
    前記送電装置に含まれる送電部と、
    前記車両に含まれる受電部と、
    制御装置とを備え、
    前記受電部は、
    複数のコイルユニットを含み、
    前記複数のコイルユニットの各々は、
    コイルと、
    前記コイルに接続されるキャパシタと、
    前記キャパシタに並列に接続され、前記キャパシタの両端を電気的に接続または非接続とするように切換えが可能な切換装置とを有し、
    前記制御装置は、前記送電部および前記受電部の位置に基づいて、前記複数のコイルユニットの中から受電に使用するコイルユニットを選択し、
    前記制御装置は、選択されたコイルユニットに対応する切換装置を非接続とし、選択されなかったコイルユニットに対応する切換装置を接続するように制御する、非接触給電システム。
JP2011274494A 2011-12-15 2011-12-15 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム Pending JP2013126326A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011274494A JP2013126326A (ja) 2011-12-15 2011-12-15 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム
US13/687,691 US20130154384A1 (en) 2011-12-15 2012-11-28 Contactless power receiving device, vehicle, contactless power transmitting device, and contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011274494A JP2013126326A (ja) 2011-12-15 2011-12-15 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム

Publications (1)

Publication Number Publication Date
JP2013126326A true JP2013126326A (ja) 2013-06-24

Family

ID=48609404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011274494A Pending JP2013126326A (ja) 2011-12-15 2011-12-15 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム

Country Status (2)

Country Link
US (1) US20130154384A1 (ja)
JP (1) JP2013126326A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087693A1 (ja) 2013-12-11 2015-06-18 トヨタ自動車株式会社 非接触送電装置
WO2016067447A1 (ja) * 2014-10-31 2016-05-06 富士通株式会社 受電器、及び、電力伝送システム
JP2017131008A (ja) * 2016-01-19 2017-07-27 富士通株式会社 送電器,受電器および無線電力伝送システム
JP2018207783A (ja) * 2018-10-04 2018-12-27 株式会社Soken 無線給電装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9697951B2 (en) * 2012-08-29 2017-07-04 General Electric Company Contactless power transfer system
KR20140076993A (ko) * 2012-12-13 2014-06-23 엘지이노텍 주식회사 무선 전력 장치
CN108429359B (zh) * 2013-09-04 2021-05-04 恩智浦美国有限公司 具有宽输入电压范围的无线电力发射器及其操作方法
JP6156115B2 (ja) * 2013-12-13 2017-07-05 トヨタ自動車株式会社 送電装置
JP6160504B2 (ja) * 2014-02-20 2017-07-12 トヨタ自動車株式会社 受電装置
JP6531942B2 (ja) * 2015-07-21 2019-06-19 パナソニックIpマネジメント株式会社 送電装置
EP3139466A1 (en) * 2015-09-07 2017-03-08 Continental Automotive GmbH Power conversion module for inductive charging for vehicles and method for operating a power conversion module
US10714960B2 (en) * 2015-12-22 2020-07-14 Intel Corporation Uniform wireless charging device
CN105939064A (zh) * 2016-06-01 2016-09-14 中惠创智无线供电技术有限公司 互补型无线供电发射机
CN105958665A (zh) * 2016-06-01 2016-09-21 中惠创智无线供电技术有限公司 单控串联谐振电路
US10848004B2 (en) 2016-06-01 2020-11-24 Zonecharge (Shenzhen) Wireless Power Technology Co, Ltd. Resonance circuit, wireless power supply transmitter, switch circuit and full-bridge transmitting circuit
CN106026422A (zh) * 2016-08-03 2016-10-12 中惠创智无线供电技术有限公司 开关电路以及多控串联谐振电路
JP2018117404A (ja) * 2017-01-16 2018-07-26 株式会社Soken 無線給電装置の送電ユニット
CN116250162A (zh) * 2020-11-17 2023-06-09 华为技术有限公司 无线充电设备和终端设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187916A (ja) * 1996-12-27 1998-07-21 Rohm Co Ltd 非接触icカード通信システムにおける応答器
JP2006006948A (ja) * 2004-06-24 2006-01-12 Ethicon Endo Surgery Inc 閉ループ経皮エネルギー伝達(tet)式の電力伝達調整回路を有する医療用移植片
JP2009273213A (ja) * 2008-05-02 2009-11-19 Olympus Corp 無線給電システム
JP2010183812A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 共鳴型非接触充電システム
JP2010226890A (ja) * 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd 非接触電力伝送装置
WO2010125864A1 (ja) * 2009-04-27 2010-11-04 株式会社村田製作所 ワイヤレス電力伝送端末
JP2011523270A (ja) * 2008-05-13 2011-08-04 クゥアルコム・インコーポレイテッド ワイヤレス電力伝達のための受信アンテナ
JP2011188733A (ja) * 2010-02-12 2011-09-22 Semiconductor Energy Lab Co Ltd 移動体、無線給電システムおよび無線給電方法
JP2011211874A (ja) * 2010-03-30 2011-10-20 Panasonic Electric Works Co Ltd 非接触給電システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8922066B2 (en) * 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187916A (ja) * 1996-12-27 1998-07-21 Rohm Co Ltd 非接触icカード通信システムにおける応答器
JP2006006948A (ja) * 2004-06-24 2006-01-12 Ethicon Endo Surgery Inc 閉ループ経皮エネルギー伝達(tet)式の電力伝達調整回路を有する医療用移植片
JP2009273213A (ja) * 2008-05-02 2009-11-19 Olympus Corp 無線給電システム
JP2011523270A (ja) * 2008-05-13 2011-08-04 クゥアルコム・インコーポレイテッド ワイヤレス電力伝達のための受信アンテナ
JP2010183812A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 共鳴型非接触充電システム
JP2010226890A (ja) * 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd 非接触電力伝送装置
WO2010125864A1 (ja) * 2009-04-27 2010-11-04 株式会社村田製作所 ワイヤレス電力伝送端末
JP2011188733A (ja) * 2010-02-12 2011-09-22 Semiconductor Energy Lab Co Ltd 移動体、無線給電システムおよび無線給電方法
JP2011211874A (ja) * 2010-03-30 2011-10-20 Panasonic Electric Works Co Ltd 非接触給電システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087693A1 (ja) 2013-12-11 2015-06-18 トヨタ自動車株式会社 非接触送電装置
JP2016208836A (ja) * 2013-12-11 2016-12-08 トヨタ自動車株式会社 誘導システム、車両および送電装置
EP3293855A1 (en) 2013-12-11 2018-03-14 Toyota Jidosha Kabushiki Kaisha Contactless power transmission device
US10173540B2 (en) 2013-12-11 2019-01-08 Toyota Jidosha Kabushiki Kaisha Contactless power transmission device
WO2016067447A1 (ja) * 2014-10-31 2016-05-06 富士通株式会社 受電器、及び、電力伝送システム
JPWO2016067447A1 (ja) * 2014-10-31 2017-07-27 富士通株式会社 受電器、及び、電力伝送システム
US10177605B2 (en) 2014-10-31 2019-01-08 Fujitsu Limited Power receiver and power transmitting system
JP2017131008A (ja) * 2016-01-19 2017-07-27 富士通株式会社 送電器,受電器および無線電力伝送システム
JP2018207783A (ja) * 2018-10-04 2018-12-27 株式会社Soken 無線給電装置

Also Published As

Publication number Publication date
US20130154384A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP2013126326A (ja) 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム
JP6119756B2 (ja) 非接触給電システムおよび送電装置
JP5643270B2 (ja) 車両および非接触給電システム
JP5700133B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
JP5794203B2 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP5692163B2 (ja) 車両、および送電装置
JP5747863B2 (ja) 車両、受電装置、送電装置および非接触給電システム
JP5991372B2 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP5884830B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
US8816537B2 (en) Contactless electric power receiving apparatus, contactless electric power transmitting apparatus, contactless electric power feeding system, and vehicle
JP5664544B2 (ja) 非接触受電装置および非接触充電システム
JP5678921B2 (ja) 送電ユニット、送電装置、受電装置、車両、および非接触給電システム
JP5720780B2 (ja) 受電装置、車両、および非接触給電システム
JP2013005614A (ja) 送電装置、受電装置、車両、および非接触給電システム
WO2013042229A1 (ja) 非接触送電装置、非接触受電装置および非接触送受電システム
JPWO2014147818A1 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP5884698B2 (ja) 非接触受電装置
JP6015491B2 (ja) 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム
JP6003573B2 (ja) 送電装置、受電装置およびそれを備える車両、ならびに電力伝送システム
JP2015027224A (ja) 非接触受電装置
JPWO2013042229A1 (ja) 非接触送電装置、非接触受電装置および非接触送受電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106