WO2013042229A1 - 非接触送電装置、非接触受電装置および非接触送受電システム - Google Patents

非接触送電装置、非接触受電装置および非接触送受電システム Download PDF

Info

Publication number
WO2013042229A1
WO2013042229A1 PCT/JP2011/071498 JP2011071498W WO2013042229A1 WO 2013042229 A1 WO2013042229 A1 WO 2013042229A1 JP 2011071498 W JP2011071498 W JP 2011071498W WO 2013042229 A1 WO2013042229 A1 WO 2013042229A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
power transmission
coils
state
Prior art date
Application number
PCT/JP2011/071498
Other languages
English (en)
French (fr)
Inventor
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/234,553 priority Critical patent/US20140191586A1/en
Priority to PCT/JP2011/071498 priority patent/WO2013042229A1/ja
Priority to CN201180073565.7A priority patent/CN103814502A/zh
Priority to EP11872648.8A priority patent/EP2747245A1/en
Priority to KR1020147010169A priority patent/KR20140067134A/ko
Publication of WO2013042229A1 publication Critical patent/WO2013042229A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This invention relates to a non-contact power transmission device, a non-contact power reception device, and a non-contact power transmission / reception system.
  • Patent Document 1 discloses an electric vehicle in which a secondary coil connected to a power storage device for power is provided at the bottom of a vehicle body and charged by an external charging power source during parking.
  • a primary coil connected to an external charging power source is provided at a parking location of an electric vehicle, and the primary coil is electromagnetically coupled to a secondary coil at the bottom of the vehicle body of the electric vehicle to supply power to the power storage device. The thing is disclosed.
  • At least one of the primary coil and the secondary coil is supported by a coil moving means that can be driven up and down.
  • the power transmission device can cope with the power receiving unit having a different position.
  • the power receiver can perform the same response.
  • the power transmission coil or the power reception coil is moved in order to align the positions of the power transmission / reception units on the primary side and the secondary side, the power transmission facility or the vehicle power reception unit is increased, and the cost is increased.
  • An object of the present invention is to provide a non-contact power transmission device, a non-contact power reception device, and a non-contact power transmission / reception system in which the positions of the power transmission unit and the power reception unit can be adjusted and maintenance labor is reduced.
  • the present invention is a non-contact power transmission device that receives power from an AC power source and transmits power to the power receiving device, and a plurality of first coils based on the positions of the power receiving device. And a control device for selecting a coil to be used for power transmission from the coil to the power receiving device.
  • Each of the plurality of first coils is configured to be able to switch between a first state in which power can be transmitted to the power receiving device and a second state in which the efficiency of transmitting power to the power receiving device is lower than in the first state.
  • the control device sets a coil selected to be used for power transmission to the first state, and sets a coil not used for power transmission to the second state.
  • each of the plurality of first coils is configured to be capable of changing a capacitance.
  • the control device switches between the first state and the second state by changing the capacitance for each of the plurality of first coils.
  • each of the plurality of first coils includes any one of a capacitor whose capacitance can be changed by the control device and a switch whose capacitance can be disconnected by the control device.
  • the contactless power transmission device further includes at least one second coil connected to an AC power source.
  • the second coil is formed by one conductive wire, and one second coil is provided in common for the plurality of first coils.
  • the second coil transmits electric power to the plurality of first coils by electromagnetic induction.
  • the plurality of first coils include a capacitor provided in common to the plurality of first coils, a plurality of coil main body portions, and a selection switch for selectively connecting the capacitors to the plurality of coil main body portions.
  • each of the plurality of first coils is adjusted so that the natural frequency is equal to the coil included in the power receiving device in the first state, and the natural frequency is different from that of the coil included in the power receiving device in the second state. To be adjusted.
  • each of the plurality of first coils is adjusted such that the difference between the natural frequency and the coil included in the power receiving device in the first state is within ⁇ 10%, and the coil included in the power receiving device in the second state Is adjusted so that the difference in natural frequency differs by more than ⁇ 10%.
  • the coupling coefficient between each of the plurality of first coils and the coil included in the power receiving device is 0.1 or less.
  • the coil selected to be used for power transmission is formed between the power receiving device and the non-contact power transmitting device, and oscillates at a specific frequency between the power receiving device and the non-contact power transmitting device. Power is transmitted to the power receiving device through at least one of the electric field that is formed and vibrates at a specific frequency.
  • the plurality of first coils are arranged along a predetermined direction at a pitch narrower than the coil diameter of the plurality of first coils.
  • the plurality of first coils are arranged along a predetermined direction at a pitch narrower than half the coil diameter of the plurality of first coils.
  • the present invention is a non-contact power receiving device that receives power from a power transmitting device and transmits a plurality of first coils for transmitting power to an electrical load, and a plurality of positions based on the position of the power transmitting device.
  • a control device that selects a coil to be used for receiving power from the power transmission device from among the first coils.
  • Each of the plurality of first coils is configured to be able to switch between a first state in which power can be received from the power transmission device and a second state in which the efficiency of receiving power from the power transmission device is lower than in the first state.
  • the control device sets a coil selected to be used for power reception to the first state, and sets a coil not used for power reception to the second state.
  • each of the plurality of first coils is configured to be capable of changing a capacitance.
  • the control device switches between the first state and the second state by changing the capacitance for each of the plurality of first coils.
  • each of the plurality of first coils is adjusted such that a difference between the natural frequency and the coil included in the power transmission device in the first state is within ⁇ 10%, and the coil included in the power transmission device in the second state Is adjusted so that the difference in natural frequency differs by more than ⁇ 10%.
  • the coupling coefficient between each of the plurality of first coils and the coil included in the power transmission device is 0.1 or less.
  • the coil selected to be used for power reception is formed between the power transmission device and the non-contact power reception device, and oscillates at a specific frequency between the power transmission device and the non-contact power reception device. Electric power is received from the power transmission device through at least one of an electric field that is formed and vibrates at a specific frequency.
  • the plurality of first coils are arranged at a pitch narrower than half the coil diameter of the plurality of first coils.
  • the present invention is a non-contact power transmission / reception system including a power reception device and a non-contact power transmission device.
  • the non-contact power transmission device receives power from an AC power source and transmits power to the power receiving device from among the plurality of first coils for transmitting power to the power receiving device and the position of the power receiving device.
  • a control device for selecting a coil to be used.
  • Each of the plurality of first coils is configured to be able to switch between a first state in which power can be transmitted to the power receiving device and a second state in which the efficiency of transmitting power to the power receiving device is lower than in the first state.
  • the control device sets a coil selected to be used for power transmission to the first state, and sets a coil not used for power transmission to the second state.
  • the present invention is a non-contact power transmission / reception system including a power transmission device and a non-contact power reception device.
  • the contactless power receiving device receives power from the power transmission device and receives power from the power transmission device from among the plurality of first coils for transmitting power to the electrical load and the position of the power transmission device.
  • a control device for selecting a coil to be used.
  • Each of the plurality of first coils is configured to be able to switch between a first state in which power can be received from the power transmission device and a second state in which the efficiency of receiving power from the power transmission device is lower than in the first state.
  • the control device sets a coil selected to be used for power reception to the first state, and sets a coil not used for power reception to the second state.
  • the present invention it is possible to realize a non-contact power transmission device, a non-contact power reception device, and a non-contact power transmission / reception system in which the position of the coil used for power transmission and the coil used for power reception can be adjusted, and maintenance work is reduced.
  • FIG. 1 is an overall configuration diagram of a contactless power transmission / reception system according to an embodiment of the present invention. It is a figure for demonstrating the principle of the power transmission by the resonance method. It is the figure which showed the relationship between the distance from an electric current source (magnetic current source), and the intensity
  • FIG. 6 is a diagram for explaining the arrangement of coil units 221A to 221C.
  • FIG. 3 is a diagram showing a configuration of a power transmission unit 220.
  • FIG. It is a figure for demonstrating the relationship between a self-resonance coil and the resonance possible range. It is an example of arrangement
  • FIG. 12 is an example of arrangement of self-resonant coils when the arrangement pitch is closer than in the example of FIG. 11. It is a figure for demonstrating the preferable arrangement
  • FIG. 1 is an overall configuration diagram of a non-contact power transmission / reception system according to an embodiment of the present invention.
  • the non-contact power transmission / reception system 10 includes a vehicle 100 and a power transmission device 200.
  • Vehicle 100 includes a power receiving unit 110, a camera 120, and a communication unit 130.
  • the power receiving unit 110 is installed, for example, on the bottom surface of the vehicle body, and is configured to receive power transmitted from the power transmitting unit 220 of the power transmitting apparatus 200 in a non-contact manner.
  • the power receiving unit 110 includes a self-resonant coil described later, and receives power from the power transmitting unit 220 in a non-contact manner by resonating with a self-resonant coil included in the power transmitting unit 220 via an electromagnetic field.
  • the camera 120 is provided to detect the positional relationship between the power reception unit 110 and the power transmission unit 220, and is attached to the vehicle body so that, for example, the rear of the vehicle can be photographed.
  • the communication unit 130 is a communication interface for performing communication between the vehicle 100 and the power transmission device 200.
  • the power transmission device 200 includes a high frequency power supply device 210, a power transmission unit 220, and a communication unit 240.
  • the high frequency power supply device 210 converts, for example, commercial AC power supplied from a system power supply into high frequency power and outputs the high frequency power to the power transmission unit 220.
  • the power transmission unit 220 is fixed to the floor of the parking lot, and is configured to send the high frequency power supplied from the high frequency power supply device 210 to the power receiving unit 110 of the vehicle 100 in a non-contact manner.
  • the power transmission unit 220 includes a self-resonant coil and transmits power to the power reception unit 110 in a non-contact manner by resonating with the self-resonance coil included in the power reception unit 110 via an electromagnetic field.
  • Communication unit 240 is a communication interface for performing communication between power transmission device 200 and vehicle 100.
  • high-frequency power is transmitted from the power transmission unit 220 of the power transmission device 200, and the self-resonance coil included in the power reception unit 110 of the vehicle 100 and the self-resonance coil included in the power transmission unit 220 are electromagnetic fields.
  • the electric power is supplied from the power transmission device 200 to the vehicle 100 by resonating with the vehicle.
  • the power transmission method based on electromagnetic resonance has the characteristics that the power transmission distance can be made larger than that of the power transmission method based on electromagnetic induction, and the tolerance for alignment is large. However, if the allowable width is exceeded, efficient power transmission and reception cannot be performed.
  • a plurality of self-resonant coils are provided in the power transmission unit 220 or the power reception unit 110, and the positions of the power transmission side self-resonance coil and the power reception side self-resonance coil are determined.
  • a self-resonant coil in which the deviation falls within an allowable width is selected to perform power transmission / reception.
  • the driver parks the vehicle at the parking position based on the image taken by the camera 120.
  • the camera 120 is not necessarily used when parking.
  • a self-resonant coil having a good positional relationship is selected and power is transmitted and received.
  • non-contact power feeding method used in the non-contact power transmission / reception system 10 according to this embodiment will be described.
  • power is supplied from power transmission device 200 to vehicle 100 using a resonance method.
  • FIG. 2 is a diagram for explaining the principle of power transmission by the resonance method.
  • this resonance method in the same way as two tuning forks resonate, two LC resonance coils having the same natural frequency resonate in an electromagnetic field (near field), and thereby, from one coil. Electric power is transmitted to the other coil via an electromagnetic field.
  • the primary coil 320 is connected to the high-frequency power source 310, and high-frequency power is supplied to the primary self-resonant coil 330 that is magnetically coupled to the primary coil 320 by electromagnetic induction.
  • the primary self-resonant coil 330 is an LC resonator having an inductance and stray capacitance of the coil itself, and resonates with a secondary self-resonant coil 340 having the same resonance frequency as the primary self-resonant coil 330 via an electromagnetic field (near field). .
  • energy electrical power moves from the primary self-resonant coil 330 to the secondary self-resonant coil 340 via the electromagnetic field.
  • the energy (electric power) transferred to the secondary self-resonant coil 340 is taken out by the secondary coil 350 magnetically coupled to the secondary self-resonant coil 340 by electromagnetic induction and supplied to the load 360.
  • power transmission by the resonance method is realized when the Q value indicating the resonance intensity between the primary self-resonant coil 330 and the secondary self-resonant coil 340 is greater than 100, for example.
  • the primary self-resonant coil 330 of the power transmission unit and the secondary self-resonant coil 340 of the power reception unit are resonated (resonated) by an electromagnetic field to change from the power transmission unit to the power reception unit.
  • Electric power is transmitted, and the coupling coefficient ( ⁇ ) between the power transmission unit and the power reception unit is 0.1 or less.
  • the coupling coefficient ( ⁇ ) between the power transmission unit and the power reception unit is close to 1.0.
  • the secondary self-resonant coil 340 and the secondary coil 350 correspond to the power receiving unit 110 in FIG. 1
  • the primary coil 320 and the primary self-resonant coil 330 correspond to the power transmission unit 220 in FIG. 1.
  • FIG. 3 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the intensity of the electromagnetic field.
  • the electromagnetic field includes three components.
  • the curve k1 is a component that is inversely proportional to the distance from the wave source, and is referred to as a “radiated electromagnetic field”.
  • a curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induction electromagnetic field”.
  • the curve k3 is a component inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic magnetic field”.
  • the resonance method energy (electric power) is transmitted using this near field (evanescent field). That is, by using a near field to resonate a pair of resonators (for example, a pair of LC resonance coils) having the same natural frequency, one resonator (primary self-resonant coil) and the other resonator (two Energy (electric power) is transmitted to the next self-resonant coil. Since this near field does not propagate energy (electric power) far away, the resonance method transmits power with less energy loss than electromagnetic waves that transmit energy (electric power) by "radiation electromagnetic field” that propagates energy far away. be able to.
  • FIG. 4 is a diagram illustrating a simulation model of the power transmission system.
  • FIG. 5 is a diagram illustrating the relationship between the deviation of the natural frequency between the power transmission device and the power reception device and the efficiency.
  • the power transmission system 89 includes a power transmission device 90 and a power reception device 91.
  • the power transmission device 90 includes an electromagnetic induction coil 92 and a power transmission unit 93.
  • the power transmission unit 93 includes a resonance coil 94 and a capacitor 95 provided in the resonance coil 94.
  • the power receiving device 91 includes a power receiving unit 96 and an electromagnetic induction coil 97.
  • the power receiving unit 96 includes a resonance coil 99 and a capacitor 98 connected to the resonance coil 99.
  • the inductance of the resonance coil 94 is defined as an inductance Lt
  • the capacitance of the capacitor 95 is defined as a capacitance C1.
  • An inductance of the resonance coil 99 is an inductance Lr
  • a capacitance of the capacitor 98 is a capacitance C2.
  • the horizontal axis indicates the deviation (%) of the natural frequency
  • the vertical axis indicates the transmission efficiency (%) at a constant frequency.
  • the deviation (%) in the natural frequency is expressed by the following equation (3).
  • the power transmission efficiency can be increased to a practical level. Furthermore, if the natural frequency of each power transmission unit and the power receiving unit is set so that the absolute value of the deviation (%) of the natural frequency is 5% or less of the natural frequency of the power receiving unit 96, the power transmission efficiency can be further increased. It is more preferable.
  • the simulation software employs electromagnetic field analysis software (JMAG (registered trademark): manufactured by JSOL Corporation).
  • FIG. 6 is a configuration diagram showing details of the vehicle 100 shown in FIG. 1.
  • vehicle 100 includes a power storage device 150, a system main relay SMR1, a boost converter 162, inverters 164, 166, motor generators 172, 174, an engine 176, a power split device 177, Drive wheel 178.
  • Vehicle 100 further includes a secondary self-resonant coil 112, a secondary coil 114, a rectifier 140, a DC / DC converter 142, a system main relay SMR2, and a voltage sensor 190.
  • Vehicle 100 further includes a control device 180, a camera 120, a communication unit 130, and a power supply button 122.
  • This vehicle 100 is equipped with an engine 176 and a motor generator 174 as power sources.
  • Engine 176 and motor generators 172 and 174 are connected to power split device 177.
  • Vehicle 100 travels with a driving force generated by at least one of engine 176 and motor generator 174.
  • the power generated by the engine 176 is divided into two paths by the power split device 177. That is, one is a path transmitted to the drive wheel 178 and the other is a path transmitted to the motor generator 172.
  • Motor generator 172 is an AC rotating electrical machine, and includes, for example, a three-phase AC synchronous motor in which a permanent magnet is embedded in a rotor. Motor generator 172 generates power using the kinetic energy of engine 176 divided by power split device 177. For example, when the state of charge of power storage device 150 (also referred to as “SOC (State Of Charge)”) becomes lower than a predetermined value, engine 176 starts and power is generated by motor generator 172 to store power. Device 150 is charged.
  • SOC State Of Charge
  • the motor generator 174 is also an AC rotating electric machine, and includes, for example, a three-phase AC synchronous motor in which a permanent magnet is embedded in a rotor, like the motor generator 172.
  • Motor generator 174 generates a driving force using at least one of the electric power stored in power storage device 150 and the electric power generated by motor generator 172. Then, the driving force of motor generator 174 is transmitted to driving wheel 178.
  • motor generator 174 when braking the vehicle or reducing acceleration on the down slope, the mechanical energy stored in the vehicle as kinetic energy or positional energy is used for rotational driving of the motor generator 174 via the drive wheels 178, and the motor generator 174 is Operates as a generator.
  • motor generator 174 operates as a regenerative brake that converts running energy into electric power and generates braking force.
  • the electric power generated by motor generator 174 is stored in power storage device 150.
  • the power split device 177 can use a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so as to be able to rotate and is coupled to the crankshaft of the engine 176.
  • the sun gear is coupled to the rotation shaft of motor generator 172.
  • the ring gear is connected to the rotation shaft of motor generator 174 and drive wheel 178.
  • the power storage device 150 is a rechargeable DC power source, and includes, for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery. Power storage device 150 stores electric power supplied from DC / DC converter 142 and also stores regenerative power generated by motor generators 172 and 174. Power storage device 150 supplies the stored power to boost converter 162.
  • a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • Power storage device 150 stores electric power supplied from DC / DC converter 142 and also stores regenerative power generated by motor generators 172 and 174. Power storage device 150 supplies the stored power to boost converter 162.
  • a large-capacity capacitor can also be used as the power storage device 150, and temporarily stores the power supplied from the power transmission device 200 (FIG. 1) and the regenerative power from the motor generators 172 and 174, and boosts the stored power. Any power buffer that can be supplied to the converter 162 may be used.
  • System main relay SMR1 is arranged between power storage device 150 and boost converter 162.
  • System main relay SMR1 electrically connects power storage device 150 to boost converter 162 when signal SE1 from control device 180 is activated, and power storage device 150 and boost converter when signal SE1 is deactivated.
  • the electric path to 162 is cut off.
  • Boost converter 162 boosts the voltage on positive line PL ⁇ b> 2 to a voltage equal to or higher than the voltage output from power storage device 150 based on signal PWC from control device 180.
  • Boost converter 162 includes a DC chopper circuit, for example.
  • Inverters 164 and 166 are provided corresponding to motor generators 172 and 174, respectively. Inverter 164 drives motor generator 172 based on signal PWI 1 from control device 180, and inverter 166 drives motor generator 174 based on signal PWI 2 from control device 180. Inverters 164 and 166 include, for example, a three-phase bridge circuit.
  • the secondary self-resonant coil 112 is connected to the capacitor 111 at both ends via a switch (relay 113).
  • the switch (relay 113) When the switch (relay 113) is in a conductive state, the secondary self-resonant coil 112 is connected to the primary resonant coil and the electromagnetic field via the electromagnetic resonance field. Resonate. Power is received from the power transmission device 200 by this resonance.
  • FIG. 6 shows an example in which the capacitor 111 is provided, the primary self-resonant coil may be adjusted so as to resonate with the stray capacitance of the coil instead of the capacitor.
  • the secondary self-resonant coil 112 has a large Q value indicating the distance from the primary self-resonant coil of the power transmission device 200 and the resonance strength between the primary self-resonant coil and the secondary self-resonant coil 112 (for example, Q> 100). And the number of turns is appropriately set so that ⁇ indicating the degree of coupling is small (for example, ⁇ ⁇ 0.1).
  • the secondary coil 114 is disposed at a position where it can be magnetically coupled to the secondary self-resonant coil 112 by electromagnetic induction.
  • the secondary coil 114 takes out the electric power received by the secondary self-resonant coil 112 by electromagnetic induction and outputs it to the rectifier 140.
  • the secondary self-resonant coil 112 and the secondary coil 114 form the power receiving unit 110 shown in FIG.
  • the rectifier 140 rectifies the AC power extracted by the secondary coil 114. Based on signal PWD from control device 180, DC / DC converter 142 converts the power rectified by rectifier 140 into a voltage level of power storage device 150 and outputs the voltage level to power storage device 150.
  • System main relay SMR2 is arranged between DC / DC converter 142 and power storage device 150.
  • System main relay SMR2 electrically connects power storage device 150 to DC / DC converter 142 when signal SE2 from control device 180 is activated, and power storage device 150 when signal SE2 is deactivated.
  • the electric circuit between the DC / DC converter 142 is cut off.
  • Voltage sensor 190 detects voltage VR between rectifier 140 and DC / DC converter 142 and outputs the detected value to control device 180.
  • a resistor 144 and a relay 146 connected in series are provided between the rectifier 140 and the DC / DC converter 142.
  • the relay 146 is controlled to be in a conductive state by the control device 180 when adjusting the vehicle position or selecting a self-resonant coil to be used.
  • Control device 180 generates signals PWC, PWI1, and PWI2 for driving boost converter 162 and motor generators 172 and 174, respectively, based on accelerator opening, vehicle speed, and other signals from various sensors. Control device 180 outputs generated signals PWC, PWI1, and PWI2 to boost converter 162 and inverters 164 and 166, respectively. When the vehicle travels, control device 180 activates signal SE1 to turn on system main relay SMR1, and deactivates signal SE2 to turn off system main relay SMR2.
  • the control device 180 When determining a parking position or selecting a self-resonant coil to be used prior to charging, the control device 180 transmits information (voltage and current) of power transmitted from the power transmission device 200 from the power transmission device 200.
  • the detection value of the voltage VR received through the communication unit 130 and detected by the voltage sensor 190 is received from the voltage sensor 190.
  • the control apparatus 180 performs the display which guides the said vehicle to the power transmission unit 220 (FIG. 1) of the power transmission apparatus 200, or selects the self-resonance coil to be used after the parking position is determined.
  • Car parking control is executed as described above.
  • control device 180 transmits a power supply command to the power transmission device 200 via the communication unit 130 and activates the signal SE2 to turn on the system main relay SMR2. Then, control device 180 generates a signal PWD for driving DC / DC converter 142 and outputs the generated signal PWD to DC / DC converter 142. In this way, power supply is started in earnest from the power transmission device to the power reception device.
  • FIG. 7 is a block diagram showing a configuration of power transmission device 200 in FIG.
  • power transmission device 200 includes a high frequency power supply device 210 and a power transmission unit 220.
  • the high frequency power supply device 210 includes a communication unit 240, a power transmission ECU 242 that is a control device, a high frequency power supply unit 250, and a matching unit 212.
  • the power transmission unit 220 includes coil units 221A to 221C arranged at different positions and relays 226A to 226C for selectively connecting the coil units to the matching unit 212.
  • the number of the coil units 221A to 221C arranged by shifting the positions is three is shown, the number of coil units may be two or four or more.
  • the high frequency power supply unit 250 is controlled by a control signal from the power transmission ECU 242 and converts the power received from the commercial power source into high frequency power.
  • the high frequency power supply unit 250 supplies the converted high frequency power to the primary coil of the power transmission unit 220 via the matching unit 212.
  • the matching unit 212 is a circuit for matching the impedance between the power transmission device 200 and the vehicle power receiving device.
  • Matching device 212 includes a variable capacitor and a variable inductor.
  • Matching device 212 is controlled by a control signal supplied from power transmission ECU 242, and the variable capacitor and variable inductor are adjusted so that the impedance of power transmission device 200 matches the impedance on the power reception device side of the vehicle.
  • matching device 212 outputs a signal indicating that the impedance adjustment is completed to power transmission ECU 242.
  • the power transmission ECU 242 selects any one of the relays 226A to 226C to make it conductive, and selects a coil unit to be used.
  • the selected coil unit among the coil units 221A to 221C transfers electric power to the secondary self-resonant coil 112 included in the power receiving unit 110 of the vehicle by electromagnetic resonance.
  • the natural frequency of the primary self-resonant coil selected from power transmission unit 220 and the natural frequency of the secondary self-resonant coil used for power reception in power reception unit 110 are: The same natural frequency.
  • the natural frequency of the self-resonant coil means a vibration frequency when the electric circuit including the coil and the capacitor of the self-resonant coil freely vibrates.
  • the “resonant frequency of the self-resonant coil” means an intrinsic frequency when the braking force or the electrical resistance is zero in an electric circuit including the coil and the capacitor of the power transmission unit.
  • the same natural frequency includes not only the case where the frequency is completely the same, but also the case where the natural frequency is substantially the same.
  • “The natural frequency is substantially the same” means that the natural frequency of the primary self-resonant coil and the natural frequency of the secondary self-resonant coil are 10 times the natural frequency of the primary self-resonant coil or the natural frequency of the secondary self-resonant coil. Means within%.
  • the communication unit 240 is a communication interface for performing wireless communication between the power transmission device 200 and the vehicle.
  • the communication unit 240 receives battery information and power transmission start and stop instructions transmitted from the vehicle-side communication unit 130, and outputs these information to the power transmission ECU 242.
  • Communication unit 240 receives a signal indicating that the impedance adjustment from matching unit 212 has been completed from power transmission ECU 242, and outputs it to the vehicle side.
  • the power transmission ECU 242 includes a CPU, a storage device, and an input / output buffer.
  • the power transmission ECU 242 inputs a signal from each sensor or the like and outputs a control signal to each device. Control each device. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • FIG. 8 is a diagram for explaining the arrangement of the coil units 221A to 221C.
  • coil units 221A to 221C are arranged in the power transmission unit 220 with their positions shifted.
  • the position of the power transmission side coil unit that increases the power transmission efficiency differs depending on the parking position of the vehicle 100 and the position where the power receiving unit 110 is provided in the vehicle 100.
  • the coil unit arranged at the most suitable position among the coil units 221A to 221C is selected for use in power transmission.
  • FIG. 8 illustrates a case where a plurality of coil units are included on the power transmission unit side and only one coil unit is included on the vehicle side, but a plurality of coil units are included on the vehicle side. There may be a case where there is only one coil unit on the power transmission unit side, or a case where a plurality of coil units are provided on both the vehicle side and the power transmission unit side.
  • FIG. 9 is a diagram illustrating a configuration of the power transmission unit 220.
  • the power receiving unit 110 is also shown in FIG.
  • the relative positional relationship between the power transmission unit and the power receiving unit varies depending on the parking position of the vehicle, but it is difficult to request a highly accurate parking position each time the vehicle is parked. Further, in order to standardize contactless charging by the resonance method, the power transmission device needs to correspond to various power receiving coil mounting positions in each vehicle. Therefore, in the present embodiment, a plurality of self-resonant coils on the power transmission unit side are installed.
  • the vehicle-side power receiving unit 110 includes a secondary self-resonant coil 112, a capacitor 111, and a secondary coil 114.
  • the power transmission unit 220 includes coil units 221A to 221C arranged at different positions and relays 226A to 226C for selectively connecting the coil units to the matching unit 212.
  • the coil unit 221A includes a primary coil 225A, a primary self-resonant coil 222A, a capacitor 223A, and a relay 224A that connects the capacitor 223A to the primary self-resonant coil 222A.
  • the coil unit 221B includes a primary coil 225B, a primary self-resonant coil 222B, a capacitor 223B, and a relay 224B that connects the capacitor 223B to the primary self-resonant coil 222B.
  • the coil unit 221C includes a primary coil 225C, a primary self-resonant coil 222C, a capacitor 223C, and a relay 224C that connects the capacitor 223C to the primary self-resonant coil 222C.
  • Relays 226A to 226C are used to select which of the primary coils 225A to 225C is connected to the matching unit 212.
  • the relay corresponding to the selected primary coil is turned on, and the other relays are turned off.
  • the relays 224A to 224C are also controlled in correspondence with the control of the relays 226A to 226C.
  • the relays 224A to 224C are set to non-conduction, the self-resonant coils 222A to 222C are out of resonance with the self-resonant coil 112 of the power receiving unit 110. Therefore, the relay corresponding to the self-resonant coil to be used is turned on, and the other relays are set to non-conductive.
  • the relay control described above is performed by the power transmission ECU 242 in FIG.
  • FIG. 10 is a diagram for explaining the relationship between the self-resonant coil and the resonance possible range.
  • resonable area 402 exists for self-resonant coil 400 on the power transmission side.
  • the power-reception-side self-resonance coil 400 and the power-reception-side self-resonance coil can resonate.
  • the allowable position deviation range varies depending on various conditions, for example, D / 2.
  • FIG. 11 shows an arrangement example of the self-resonant coils when the arrangement pitch is separated.
  • self-resonant coils 400 ⁇ / b> A and 400 ⁇ / b> B on the power transmission device side have resonable areas 402 ⁇ / b> A and 402 ⁇ / b> B, respectively.
  • the resonable area 402A and the resonable area 402B do not overlap.
  • the power-reception-side self-resonant coil When the power-reception-side self-resonant coil is arranged at the position 410A, it can resonate with the self-resonance coil 400A on the power transmission device side. Accordingly, the self-resonant coil 400A is selected and used for power transmission.
  • the self-resonant coil on the power receiving side is arranged at the position 410B, it can resonate with the self-resonant coil 400B on the power transmission device side. Therefore, the self-resonant coil 400B is selected and used for power transmission.
  • FIG. 12 shows an arrangement example of the self-resonant coils when the arrangement pitch is closer than that in the example of FIG.
  • self-resonant coils 400 ⁇ / b> A and 400 ⁇ / b> B on the power transmission device side have resonable areas 402 ⁇ / b> A and 402 ⁇ / b> B, respectively.
  • the resonable area 402A and the resonable area 402B overlap.
  • the power-reception-side self-resonant coil 400A can resonate.
  • the resonance frequency (natural frequency) of the self-resonant coil selected for power transmission is made to coincide with the resonance frequency of the self-resonant coil on the power receiving side, and the resonance of the non-selected self-resonant coil Control is performed to shift the frequency.
  • FIG. 13 is a diagram for explaining a preferable arrangement pitch of a plurality of self-resonant coils.
  • the arrangement pitch (the distance between the center and the center or the center of gravity and the center of gravity) P of the plurality of self-resonant coils with respect to the coil diameter D of each self-resonant coil is P ⁇ D, more preferably P ⁇ D / 2.
  • the arrangement pitch is narrowed, multiple of the self-resonant coils may resonate. Therefore, the capacitors other than the self-resonant coil to be used are separated from each other or the capacitor capacity is changed so that the resonance frequency is shifted so as not to resonate. .
  • the self-resonant coil that is not used has a power transmission efficiency significantly lower than that of the self-resonant coil that is used, so that no current flows through the self-resonant coil that is not used or does not interfere with the self-resonant coil that is used even if it flows. Weak current.
  • a plurality of primary side self-resonant coils are arranged in a range where they interfere with each other, and in order to avoid interference of the primary side coil, the resonance capacitor is separated by a relay, and only an appropriate coil is selected and resonated.
  • non-contact power transmission / reception system of the first embodiment it is possible to realize non-contact charging even at different power receiving coil mounting positions of various vehicles.
  • FIG. 14 is a diagram illustrating a configuration of the power transmission unit 220A. For ease of understanding, FIG. 14 also shows the power receiving unit 110.
  • the vehicle-side power receiving unit 110 includes a secondary self-resonant coil 112, a capacitor 111, and a secondary coil 114.
  • power transmission unit 220A includes a single turn primary coil 225D instead of primary coils 225A to 225C in the configuration of power transmission unit 220 shown in FIG.
  • One roll means that it can be realized seamlessly with a single coil winding as in a single stroke. Since there is only one primary coil, the relays 226A to 226C in FIG. 9 are not necessary in the first modification of the first embodiment.
  • the same effect as the configuration shown in FIG. 9 can be obtained, and further, the wiring and relays of the primary coil (electromagnetic induction coil) can be reduced.
  • FIG. 15 is a diagram illustrating a configuration of the power transmission unit 220B.
  • the power receiving unit 110 is also shown in FIG. 15 for easy understanding.
  • the vehicle-side power receiving unit 110 includes a secondary self-resonant coil 112, a capacitor 111, and a secondary coil 114.
  • power transmission unit 220B includes a single turn primary coil 225D instead of primary coils 225A to 225C in the configuration of power transmission unit 220 shown in FIG.
  • One roll means that it can be realized seamlessly with a single coil winding as in a single stroke.
  • the primary coil 225D is the same as that shown in FIG. Since there is only one primary coil in the second modification of the first embodiment, the relays 226A to 226C in FIG. 9 are not necessary.
  • the capacitor 223 is shared by the three self-resonant coils 222A to 222C.
  • One electrode of the capacitor 223 is directly connected to one end of each of the self-resonant coils 222A to 222C.
  • the other electrode of the capacitor 223 is connected to the other end of each of the self-resonant coils 222A to 222C via relays 224A to 224C, respectively.
  • the capacitor 223 is preferably disposed inside the self-resonant coil 222B disposed in the center.
  • the same effect as the configuration shown in FIGS. 9 and 14 can be obtained, and furthermore, the number of capacitors can be reduced by sharing the capacitors, and the arrangement of the capacitors can be further devised. Since the length of the wiring can be reduced, the cost can be further reduced.
  • FIG. 16 is a diagram illustrating a configuration of the power transmission unit 220C.
  • the power receiving unit 110 is also shown in FIG. 16 for easy understanding.
  • the vehicle-side power receiving unit 110 includes a secondary self-resonant coil 112, a capacitor 111, and a secondary coil 114.
  • power transmission unit 220C includes a single turn primary coil 225D in place of primary coils 225A to 225C in the configuration of power transmission unit 220 shown in FIG.
  • One roll means that it can be realized seamlessly with a single coil winding as in a single stroke.
  • the primary coil 225D is the same as that shown in FIGS. Since there is only one primary coil in the third modification of the first embodiment, the relays 226A to 226C in FIG. 9 are not necessary.
  • variable capacitors 228A to 228C connected to three self-resonant coils 222A to 222C, respectively.
  • the self-resonant coil is selected by setting the capacitor capacity value of the unused self-resonant coil to be outside the resonating capacity value range, instead of the relays as shown in FIGS. 9, 14, and 15. To do.
  • the same effects as those shown in FIGS. 9, 14 and 15 can be obtained, and the capacitance value of the self-resonant coil used can be finely adjusted by employing a variable capacitor.
  • the efficiency when the secondary coil is displaced can be ensured by finely adjusting the capacitance value.
  • Embodiment 2 In Embodiment 1, the example which provides a some self-resonance coil in the power transmission apparatus side was shown. Instead of this, a plurality of self-resonant coils may be provided on the power receiving device side. Embodiment 2 will describe such an example.
  • FIG. 17 is a diagram showing a configuration of the power receiving unit 110D.
  • FIG. 9 also shows a power transmission unit 220D.
  • the relative positional relationship between the power transmission unit and the power receiving unit varies depending on the parking position of the vehicle, but it is difficult to request a highly accurate parking position each time the vehicle is parked.
  • the power receiving device needs to correspond to various power transmission coil mounting positions in the power transmitting device. Therefore, in the second embodiment, a plurality of self-resonant coils on the power receiving unit side are installed.
  • the power transmission unit 220D on the power transmission device side includes a primary self-resonant coil 222, a capacitor 223, and a primary coil 225.
  • the power receiving unit 110D includes coil units 121A to 121C arranged at different positions, and relays 115A to 115C for selectively connecting the coil units to the rectifier 140.
  • the coil unit 121A includes a secondary coil 114A, a secondary self-resonant coil 112A, a capacitor 111A, and a relay 113A that connects the capacitor 111A to the secondary self-resonant coil 112A.
  • the coil unit 121B includes a secondary coil 114B, a secondary self-resonant coil 112B, a capacitor 111B, and a relay 113B that connects the capacitor 111B to the secondary self-resonant coil 112B.
  • the coil unit 121C includes a secondary coil 114C, a secondary self-resonant coil 112C, a capacitor 111C, and a relay 113C that connects the capacitor 111C to the secondary self-resonant coil 112C.
  • Relays 115A to 115C are used to select which of the secondary coils 114A to 114C is connected to the rectifier 140.
  • the relay corresponding to the selected primary coil is turned on, and the other relays are turned off.
  • the relays 113A to 113C are also controlled in correspondence with the control of the relays 115A to 115C.
  • the secondary self-resonant coils 112A to 112C are shifted in resonance frequency from the primary self-resonant coil 223 of the power transmission unit 220D when the relays 113A to 113C are set to be non-conductive. Therefore, the relay corresponding to the self-resonant coil to be used is turned on, and the other relays are set to non-conductive.
  • the above relay control is performed by the control device 180 of FIG.
  • the arrangement pitch of the plurality of self-resonant coils 112A to 112C provided on the power receiving side is the same as the case where a plurality of self-resonant coils are provided on the power transmission side described with reference to FIGS. That is, the arrangement pitch (the distance between the center and the center or the center of gravity and the center of gravity) P of the plurality of self-resonant coils with respect to the coil diameter D of each self-resonant coil is P ⁇ D, more preferably P ⁇ D / 2. To do. If the arrangement pitch is narrowed, multiple of the self-resonant coils may resonate. Therefore, the capacitors other than the self-resonant coil to be used are separated from each other or the capacitor capacity is changed so that the resonance frequency is shifted so as not to resonate. .
  • a plurality of secondary side self-resonant coils are arranged in a range where they interfere with each other, and in order to avoid interference of the secondary side coil, the resonance capacitor is separated by a relay, and only an appropriate coil is selected and resonated.
  • charging can be realized in a non-contact manner even at different power transmission coil positions of various power transmission devices.
  • FIG. 18 is a diagram illustrating a configuration of the power receiving unit 110E. For easy understanding, FIG. 18 also shows a power transmission unit 220D.
  • the power transmission unit 220D on the power transmission device side includes a primary self-resonant coil 222, a capacitor 223, and a primary coil 225.
  • the power receiving unit 110E includes a single secondary coil 114D instead of the secondary coils 114A to 114C in the configuration of the power receiving unit 110D shown in FIG.
  • One roll means that it can be realized seamlessly with a single coil winding as in a single stroke. Since there is only one secondary coil, the relays 115A to 115C in FIG. 17 are not necessary.
  • Secondary self-resonant coils 112A to 112C, capacitors 111A to 111C, and relays 113A to 113C are the same as in FIG. 17, and therefore description thereof will not be repeated here.
  • the same effect as the configuration shown in FIG. 17 can be obtained, and further, the wiring and relays of the secondary coil (electromagnetic induction coil) can be reduced.
  • FIG. 19 is a diagram illustrating a configuration of the power receiving unit 110F. For easy understanding, FIG. 19 also shows a power transmission unit 220D.
  • the power transmission unit 220D on the power transmission device side includes a primary self-resonant coil 222, a capacitor 223, and a primary coil 225.
  • the power receiving unit 110F includes a single secondary coil 114D instead of the secondary coils 114A to 114C in the configuration of the power receiving unit 110D shown in FIG.
  • One roll means that it can be realized seamlessly with a single coil winding as in a single stroke. Since there is only one secondary coil, the relays 115A to 115C in FIG. 17 are not necessary.
  • the capacitor 111 is shared by the three self-resonant coils 112A to 112C.
  • One electrode of the capacitor 111 is directly connected to one end of each of the self-resonant coils 112A to 112C.
  • the other electrode of the capacitor 111 is connected to each other end of the self-resonant coils 112A to 112C via relays 113A to 113C, respectively.
  • the capacitor 111 is preferably disposed inside the self-resonant coil 112B disposed in the center.
  • FIG. 20 is a diagram illustrating a configuration of the power receiving unit 110G. For ease of understanding, FIG. 20 also shows a power transmission unit 220D.
  • the power transmission unit 220D on the power transmission device side includes a primary self-resonant coil 222, a capacitor 223, and a primary coil 225.
  • the power receiving unit 110G includes a single secondary coil 114D instead of the secondary coils 114A to 114C in the configuration of the power receiving unit 110D shown in FIG.
  • One roll means that it can be realized seamlessly with a single coil winding as in a single stroke. Since there is only one secondary coil, the relays 115A to 115C in FIG. 17 are not necessary.
  • variable capacitors 118A to 118C connected to three self-resonant coils 112A to 112C, respectively.
  • the self-resonant coil is selected by making the capacitance of the capacitor variable and setting the capacitance value of the unused self-resonant coil outside the resonating capacitance value range instead of the relays as shown in FIGS.
  • the same effect as the configuration shown in FIGS. 17 and 18 can be obtained, and furthermore, by employing a variable capacitor, the capacitance value of the self-resonant coil to be used can be finely adjusted. The efficiency when the secondary coil is displaced can also be ensured by finely adjusting the capacitance value.
  • FIG. 21 shows a first modification of the coil shape.
  • FIG. 21 shows an example of a square coil.
  • the coil diameter may be the diameter of the inscribed circle.
  • the outer diameter width in the translation direction may be the coil diameter D.
  • FIG. 22 shows a second modification of the coil shape.
  • FIG. 22 shows an example of a triangular coil.
  • the coil diameter may be the diameter of the inscribed circle.
  • the outer diameter width in the translation direction may be the coil diameter D.
  • FIG. 23 shows a third modification of the coil shape.
  • FIG. 23 shows an example of a so-called clover-shaped coil.
  • the coil diameter may be the diameter of the inscribed circle.
  • the outer diameter width in the translation direction may be the coil diameter D.
  • the arrangement pitch P of each figure was described as the distance moved in parallel, the distance between the center of the figure and the center or the center of gravity and the center of gravity may be used as the pitch P.
  • the arrangement pitch (the distance between the center and the center or the center of gravity and the center of gravity) P of the plurality of self-resonant coils is P ⁇ D, and more preferably P ⁇ D / 2. Thereby, the position which cannot resonate can be reduced as much as possible.
  • the non-contact power transmission device receives power from at least one second coil (primary coils 225A to 225C; 225D) connected to an AC power source and the second coil, and supplies power to the power receiving device.
  • a control device power transmission that selects a plurality of first coils (primary self-resonant coils 222A to 222C) to transmit power and a coil to be used for power transmission to the power receiving device from among the plurality of first coils based on the position of the power receiving device.
  • ECU 242 power transmission
  • Each of the plurality of first coils is configured to be able to switch between a first state in which power can be transmitted to the power receiving device and a second state in which the efficiency of transmitting power to the power receiving device is lower than in the first state.
  • the control device sets a coil selected to be used for power transmission to the first state, and sets a coil not used for power transmission to the second state.
  • selecting the coil to be used based on the position of the power receiving apparatus means selecting the coil based on the position of the power receiving unit or the power receiving coil in addition to selecting the coil to be used based on the vehicle position. Including. That is, the present invention can be applied even when the vehicle position and the power receiving unit or the power receiving coil position are not necessarily linked. Moreover, that efficiency falls also means that efficiency falls to zero (power transmission becomes impossible).
  • each of the plurality of first coils (primary self-resonant coils 222A to 222C) is configured to be capable of changing a capacitance.
  • the control device switches between the first state and the second state by changing the capacitance for each of the plurality of first coils.
  • each of the plurality of first coils includes a capacitor (capacitors 228A to 228C) whose capacitance can be changed by a control device, as shown in FIG. 14, as shown in FIG. 15, includes any one of switches (relays 224A to 224C) capable of separating the capacitance by the control device.
  • the second coil (primary coil 225D) is formed by one conductive wire, and is connected to the plurality of first coils (primary self-resonant coils 222A to 222C). One is provided in common.
  • the plurality of first coils include a capacitor (capacitor 223) provided in common to the plurality of first coils, and a plurality of coil main body portions. (222A to 222C) and selection switches (relays 224A to 224C) for selectively connecting capacitors to the plurality of coil main body portions.
  • each of the plurality of first coils is adjusted such that the natural frequency is equal to the coil included in the power receiving device in the first state, and in the second state, It is adjusted so that the natural frequency is different from the included coil. That is, in the case shown in FIGS. 9, 14, and 15, the corresponding relay is turned on in the first state, and the corresponding relay is turned off in the second state.
  • the corresponding variable capacitor is controlled so that the resonance frequency is equal to the self-resonance coil 112 in the first state, and the resonance frequency is different from that of the self-resonance coil 112 in the second state.
  • the variable capacitor is controlled.
  • Other configurations may be used as long as the resonance frequency can be shifted.
  • the second state includes a state where power transmission is not possible, but also includes a state where transmission efficiency is deteriorated but power transmission is not possible.
  • each of the plurality of first coils has a natural frequency difference within ⁇ 10% of the coil (secondary self-resonant coil 112) included in the power receiving device in the first state. In the second state, it is adjusted so that the difference in natural frequency is greater than ⁇ 10% from the coil (secondary self-resonant coil 112) included in the power receiving device.
  • the coupling coefficient between each of the plurality of first coils (primary self-resonant coils 222A to 222C) and the coil (secondary self-resonant coil 112) included in the power receiving device is 0.1. It is as follows.
  • each of the plurality of first coils is a primary resonance coil configured to be able to change the resonance frequency.
  • the power receiving device includes a secondary resonance coil (secondary self-resonance coil 112) that receives power transmitted from the primary resonance coil by magnetic field resonance.
  • the coil (one of the primary self-resonant coils 222A to 222C) selected to be used for power transmission is formed between the power receiving device and the non-contact power transmitting device, and has a magnetic field that vibrates at a specific frequency.
  • the power is transmitted to the power receiving device through at least one of an electric field that is formed between the power receiving device and the non-contact power transmitting device and vibrates at a specific frequency.
  • the second coil transmits electric power to the plurality of first coils (primary self-resonant coils 330) by electromagnetic induction as described in FIG.
  • the plurality of first coils are arranged along a predetermined direction at a pitch narrower than the coil diameter of the plurality of first coils.
  • the plurality of first coils are arranged along a predetermined direction at a pitch (P) narrower than a half (D / 2) of the coil diameter of the plurality of first coils.
  • the present invention is a contactless power receiving device, and as shown in FIGS. 17 to 20, at least one second coil (secondary coils 114A to 114C; 114D) connected to an electrical load.
  • a plurality of first coils (secondary self-resonant coils 112A to 112C) that receive power from the power transmission device and transmit power to the second coil, and a plurality of first coils based on the position of the power transmission device
  • a control device control device 180 of vehicle 100 that selects a coil to be used for receiving power from the power transmission device.
  • Each of the plurality of first coils is configured to be capable of switching between a first state in which power can be received from the power transmission device and a second state in which the efficiency of receiving power from the power transmission device is lower than the first state,
  • the control device sets a coil selected to be used for power reception to the first state, and sets a coil not used for power reception to the second state. Note that “decreasing efficiency” also means that efficiency decreases to zero (it becomes impossible to receive power).
  • each of the plurality of first coils (secondary self-resonant coils 112A to 112C) is configured to be capable of changing the capacitance.
  • the control device 180 switches between the first state and the second state by changing the capacitance for each of the plurality of first coils.
  • each of the plurality of first coils has a natural frequency difference within ⁇ 10% from the coil (primary self-resonant coil 222) included in the power transmission device in the first state.
  • the natural frequency difference is adjusted to be larger than ⁇ 10% from the coil (primary self-resonant coil 222) included in the power transmission device.
  • the coupling coefficient between each of the plurality of first coils (secondary self-resonant coils 112A to 112C) and the coil (primary self-resonant coil 222) included in the power transmission device is 0.1. It is as follows.
  • the coil (one of the secondary self-resonant coils 112A to 112C) selected to be used for power reception is formed between the power transmission device and the non-contact power reception device and vibrates at a specific frequency.
  • Power is received from the power transmission device through at least one of an electric field that is formed between the power transmission device and the non-contact power reception device and vibrates at a specific frequency.
  • the plurality of first coils (secondary self-resonant coils 112A to 112C) have a pitch (D / 2) narrower than the half of the coil diameter (D / 2) of the plurality of first coils. P).
  • the present invention is a contactless power transmission / reception system including a power reception device (110) and a contactless power transmission device.
  • the non-contact power transmission device receives power from at least one second coil (primary coils 225A to 225C; 225D) connected to an AC power source and the second coil, and supplies power to the power receiving device.
  • a control device power transmission
  • selects a plurality of first coils primary self-resonant coils 222A to 222C
  • a coil to be used for power transmission to the power receiving device from among the plurality of first coils based on the position of the power receiving device.
  • ECU 242 power transmission
  • Each of the plurality of first coils is configured to be able to switch between a first state in which power can be transmitted to the power receiving device and a second state in which the efficiency of transmitting power to the power receiving device is lower than in the first state.
  • the control device sets a coil selected to be used for power transmission to the first state, and sets a coil not used for power transmission to the second state. In addition, that efficiency falls also means that efficiency falls to zero (power transmission becomes impossible).
  • the present invention is a non-contact power transmission / reception system including a power transmission device (220D) and a non-contact power reception device.
  • the non-contact power receiving device receives power from at least one second coil (secondary coils 114A to 114C; 114D) connected to the electric load and the power transmitting device,
  • a plurality of first coils (secondary self-resonant coils 112A to 112C) that transmit power to the coil and a coil to be used for receiving power from the power transmission device are selected from the plurality of first coils based on the position of the power transmission device Control device (control device 180 of vehicle 100).
  • Each of the plurality of first coils is configured to be able to switch between a first state in which power can be received from the power transmission device and a second state in which the efficiency of receiving power from the power transmission device is lower than in the first state.
  • the control device sets a coil selected to be used for power reception to the first state, and sets a coil not used for power reception to the second state.
  • electromagnetic resonance coupling As described above, in the power transmission system according to the present embodiment, power is transmitted from the power transmission unit to the power reception unit by causing the power transmission unit and the power reception unit to resonate with the electromagnetic field.
  • electromagnetic resonance coupling “magnetic field (magnetic field) resonance coupling”, “electromagnetic field (electromagnetic field) resonance coupling” or “electric field (electric field) resonance coupling” "
  • Electromagnetic field (electromagnetic field) resonance coupling means a coupling including any of “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, and “electric field (electric field) resonance coupling”.
  • the power transmission unit and the power reception unit described in this specification employ a coil-shaped antenna, the power transmission unit and the power reception unit are mainly coupled by a magnetic field (magnetic field).
  • the unit is “magnetic resonance coupling” or “magnetic field (magnetic field) resonance coupling”.
  • an antenna such as a meander line can be employed as the power transmission unit and the power reception unit.
  • the power transmission unit and the power reception unit are mainly coupled by an electric field (electric field).
  • the power transmission unit and the power reception unit are “electric field (electric field) resonance coupled”.
  • the power transmission unit and the power reception unit including the electromagnetic induction coil are exemplified, but the present invention can also be applied to a resonance type non-contact power transmission / reception apparatus that does not include the electromagnetic induction coil.
  • Non-contact power transmission / reception system 100 vehicles, 110, 110D, 110E, 110F, 110G power receiving units, 111, 111A to 111C, 223, 223A to 223C, 228A to 228C capacitors, 112 secondary self-resonant coils, 113, 113A to 113C, 115A to 115C, 146, 224A to 224C, 226A to 226C relay, 114, 114A to 114D, 350 secondary coil, 118A to 118C, 228A to 228C variable capacitor, 120 camera, 121A to 121C, 221A to 221C coil Unit, 122 power supply button, 130, 240 communication unit, 140 rectifier, 142 converter, 144 resistor, 150 power storage device, 162 boost converter, 164, 166 Barter, 172, 174 motor generator, 176 engine, 177 power split device, 178 drive wheel, 180 control device, 190 voltage sensor, 200 power transmission device, 210 high frequency power supply device,

Abstract

 非接触送電装置は、交流電源から電力を受け、受電装置に電力を送電するための複数の第1コイル(222A~222C)と、受電装置の位置に基づいて、複数の第1コイルのうちから受電装置への送電に使用するコイルを選択する制御装置(242)とを備える。複数の第1コイルの各々は、受電装置に電力を送電可能な第1状態と第1状態よりも受電装置に電力を送電する効率が低下する第2状態とに切り替えることが可能に構成され、制御装置は、送電に使用することを選択したコイルを第1状態に設定し、送電に使用しないコイルを第2状態に設定する。

Description

非接触送電装置、非接触受電装置および非接触送受電システム
 この発明は、非接触送電装置、非接触受電装置および非接触送受電システムに関する。
 近年、電気自動車やハイブリッド自動車等の電動車両や携帯電話やパーソナルコンピュータ等の携帯型機器などの装置に、非接触で給電を行なう技術が盛んに検討されている。
 これらの装置に充電等するたびに外部の電源装置とこれらの装置を有線でコネクタなどを使用して接続するのでは、ユーザにとって煩わしい。車両であれば駐車すれば自動的に充電が始まり、携帯型機器では送電装置の近傍に置けば自動的に充電または給電が開始されることが望ましい。
 しかし、自動的に充電等を開始するためには、受電する装置と送電装置との位置関係を合わせる必要がある。特開平9-213378号公報(特許文献1)は、車体底部に動力用蓄電装置に連なる二次コイルが設けられた電気自動車を、その駐車中に外部充電用電源によって充電するための電気自動車の充電システムであって、外部充電用電源に連なる一次コイルを電気自動車の駐車箇所に設け、その一次コイルを電気自動車の車体底部の二次コイルに電磁結合させて動力用蓄電装置に電力を供給するものを開示している。
 この電気自動車用充電システムでは、一次コイル及び二次コイルの少なくとも一方が昇降駆動可能なコイル移動手段にて支持されている。
特開平9-213378号公報 特開2010-246348号公報 特開2010-183812号公報 特開2010-279239号公報
 上記特開平9-213378号公報のように、コイルを機械的に移動させる可動部を設けると、注油等のメンテナンスが必要となったり永年使用の耐久性を考慮したりする必要があり不便である。車両に駐車支援装置を搭載し駐車位置の精度を向上させることも考えられるが、駐車支援装置をすべての車両に搭載することは現実的ではない。
 また、電動車両や携帯型機器の受電部の配置は、車種、機種ごとに異なることも考えられるので、送電装置は受電部の位置が異なるものに対しても対応できることが望ましい。逆に、送電装置の送電部の位置が固定されている場合、受電装置側で同様な対応ができることも望ましい。
 特に車両の場合、一次側と二次側の送受電部の位置を合わせるために送電コイルまたは受電コイルを移動させると、送電設備または車両受電部が大きくなり、コストが高くなる。
 この発明の目的は、送電部と受電部の位置調整が可能でメンテナンスの手間が軽減された非接触送電装置、非接触受電装置および非接触送受電システムを提供することである。
 この発明は、要約すると、非接触送電装置であって、交流電源から電力を受け、受電装置に電力を送電するための複数の第1コイルと、受電装置の位置に基づいて、複数の第1コイルのうちから受電装置への送電に使用するコイルを選択する制御装置とを備える。複数の第1コイルの各々は、受電装置に電力を送電可能な第1状態と第1状態よりも受電装置に電力を送電する効率が低下する第2状態とに切り替えることが可能に構成される。制御装置は、送電に使用することを選択したコイルを第1状態に設定し、送電に使用しないコイルを第2状態に設定する。
 好ましくは、複数の第1コイルの各々は、キャパシタンスを変更することが可能に構成される。制御装置は、複数の第1コイルの各々についてキャパシタンスを変更することによって第1状態と第2状態とを切り替える。
 好ましくは、複数の第1コイルの各々は、制御装置によってキャパシタンスが変更可能なコンデンサと、制御装置によってキャパシタンスを切り離し可能なスイッチとのいずれか一方を含む。
 より好ましくは、非接触送電装置は、交流電源に接続された少なくとも1つの第2コイルをさらに備える。第2コイルは、1本の導電線によって形成され、複数の第1コイルに対して共通に1つ設けられる。
 さらに好ましくは、第2コイルは複数の第1コイルに対して、電磁誘導によって電力を送電する。
 より好ましくは、複数の第1コイルは、複数の第1コイルに共通して設けられるコンデンサと、複数のコイル本体部と、複数のコイル本体部にコンデンサを選択的に接続する選択スイッチとを含む。
 好ましくは、複数の第1コイルの各々は、第1状態において受電装置に含まれるコイルと固有周波数が等しくなるように調整され、第2状態において、受電装置に含まれるコイルとは固有周波数が異なるように調整される。
 好ましくは、複数の第1コイルの各々は、第1状態において受電装置に含まれるコイルと固有周波数の差が±10%以内となるように調整され、第2状態において、受電装置に含まれるコイルとは固有周波数の差が±10%より大きく異なるように調整される。
 より好ましくは、第1状態において、複数の第1のコイルの各々と受電装置に含まれるコイルとの結合係数は、0.1以下である。
 より好ましくは、送電に使用することを選択したコイルは、受電装置と非接触送電装置との間に形成され、かつ特定の周波数で振動する磁界と、受電装置と非接触送電装置との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、受電装置に電力を送電する。
 好ましくは、複数の第1コイルは、複数の第1コイルのコイル径よりも狭いピッチで所定方向に沿って配置される。
 好ましくは、複数の第1コイルは、複数の第1コイルのコイル径の半分よりも狭いピッチで所定方向に沿って配置される。
 この発明は、他の局面においては、非接触受電装置であって、送電装置から電力を受け、電気負荷に電力を送電するための複数の第1コイルと、送電装置の位置に基づいて、複数の第1コイルのうちから送電装置からの受電に使用するコイルを選択する制御装置とを備える。複数の第1コイルの各々は、送電装置から電力を受電可能な第1状態と第1状態よりも送電装置から電力を受電する効率が低下する第2状態とに切り替えることが可能に構成される。制御装置は、受電に使用することを選択したコイルを第1状態に設定し、受電に使用しないコイルを第2状態に設定する。
 好ましくは、複数の第1コイルの各々は、キャパシタンスを変更することが可能に構成される。制御装置は、複数の第1コイルの各々についてキャパシタンスを変更することによって第1状態と第2状態とを切り替える。
 好ましくは、複数の第1コイルの各々は、第1状態において送電装置に含まれるコイルと固有周波数の差が±10%以内となるように調整され、第2状態において、送電装置に含まれるコイルとは固有周波数の差が±10%より大きく異なるように調整される。
 より好ましくは、第1状態において、複数の第1のコイルの各々と送電装置に含まれるコイルとの結合係数は、0.1以下である。
 より好ましくは、受電に使用することを選択したコイルは、送電装置と非接触受電装置との間に形成され、かつ特定の周波数で振動する磁界と、送電装置と非接触受電装置との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、送電装置から電力を受電する。
 好ましくは、複数の第1コイルは、複数の第1コイルのコイル径の半分よりも狭いピッチで配置される。
 この発明は、さらに他の局面では、非接触送受電システムであって、受電装置と、非接触送電装置を備える。非接触送電装置は、交流電源から電力を受け、受電装置に電力を送電するための複数の第1コイルと、受電装置の位置に基づいて、複数の第1コイルのうちから受電装置への送電に使用するコイルを選択する制御装置とを含む。複数の第1コイルの各々は、受電装置に電力を送電可能な第1状態と第1状態よりも受電装置に電力を送電する効率が低下する第2状態とに切り替えることが可能に構成される。制御装置は、送電に使用することを選択したコイルを第1状態に設定し、送電に使用しないコイルを第2状態に設定する。
 この発明は、さらに他の局面では、非接触送受電システムであって、送電装置と、非接触受電装置を備える。非接触受電装置は、送電装置から電力を受け、電気負荷に電力を送電するための複数の第1コイルと、送電装置の位置に基づいて、複数の第1コイルのうちから送電装置からの受電に使用するコイルを選択する制御装置とを備える。複数の第1コイルの各々は、送電装置から電力を受電可能な第1状態と第1状態よりも送電装置から電力を受電する効率が低下する第2状態とに切り替えることが可能に構成される。制御装置は、受電に使用することを選択したコイルを第1状態に設定し、受電に使用しないコイルを第2状態に設定する。
 本発明によれば、送電に使用するコイルと受電に使用するコイルの位置調整が可能でメンテナンスの手間が軽減された非接触送電装置、非接触受電装置および非接触送受電システムが実現できる。
この発明の実施の形態による非接触送受電システムの全体構成図である。 共鳴法による送電の原理を説明するための図である。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 電力伝送システムのシミュレーションモデルを示す図である。 送電装置と受電装置との間の固有周波数のズレと効率の関係を示す図である。 図1に示した車両100の詳細を示す構成図である。 図1の送電装置200の構成を示したブロック図である。 コイルユニット221A~221Cの配置を説明するための図である。 送電ユニット220の構成を示した図である。 自己共振コイルと共鳴可能範囲の関係を説明するための図である。 配置ピッチが離れている場合の自己共振コイルの配置例である。 配置ピッチが図11の例よりも近づいた場合の自己共振コイルの配置例である。 複数の自己共振コイルの好ましい配置ピッチを説明するための図である。 送電ユニット220Aの構成を示した図である。 送電ユニット220Bの構成を示した図である。 送電ユニット220Cの構成を示した図である。 受電ユニット110Dの構成を示した図である。 受電ユニット110Eの構成を示した図である。 受電ユニット110Fの構成を示した図である。 受電ユニット110Gの構成を示した図である。 コイル形状の第1の変形例である。 コイル形状の第2の変形例である。 コイル形状の第3の変形例である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 図1は、この発明の実施の形態による非接触送受電システムの全体構成図である。
 図1を参照して、非接触送受電システム10は、車両100と、送電装置200とを備える。車両100は、受電ユニット110と、カメラ120と、通信ユニット130とを含む。
 受電ユニット110は、たとえば、車体底面に設置され、送電装置200の送電ユニット220から送出される電力を非接触で受電するように構成される。詳しくは、受電ユニット110は、後に説明する自己共振コイルを含み、送電ユニット220に含まれる自己共振コイルと電磁場を介して共鳴することにより送電ユニット220から非接触で受電する。カメラ120は、受電ユニット110と送電ユニット220との位置関係を検知するために設けられ、たとえば車両後方を撮影可能に車体に取付けられる。通信ユニット130は、車両100と送電装置200との間で通信を行なうための通信インターフェースである。
 送電装置200は、高周波電源装置210と、送電ユニット220と、通信ユニット240とを含む。高周波電源装置210は、たとえば系統電源から供給される商用交流電力を高周波の電力に変換して送電ユニット220へ出力する。
 送電ユニット220は、駐車場の床面に固定され、高周波電源装置210から供給される高周波電力を車両100の受電ユニット110へ非接触で送出するように構成される。詳しくは、送電ユニット220は、自己共振コイルを含み、受電ユニット110に含まれる自己共振コイルと電磁場を介して共鳴することにより受電ユニット110へ非接触で送電する。通信ユニット240は、送電装置200と車両100との間で通信を行なうための通信インターフェースである。
 この非接触送受電システム10においては、送電装置200の送電ユニット220から高周波の電力が送出され、車両100の受電ユニット110に含まれる自己共振コイルと送電ユニット220に含まれる自己共振コイルとが電磁場を介して共鳴することにより、送電装置200から車両100へ給電される。
 ここで、送電装置200から車両100への給電に際し、車両100の受電ユニット110の内部の自己共振コイルと送電装置200の送電ユニット220内部の自己共振コイルとの位置合わせを行なう必要がある。
 電磁界共鳴による送電方式は、電磁誘導による送電方式よりも送電距離を大きくでき、また位置合わせに対する許容幅も大きいという特徴がある。しかし、その許容幅を超えてしまうと効率よい送受電ができない。
 このため、後に図7以降で詳細に説明するが、本実施の形態では複数の自己共振コイルを送電ユニット220または受電ユニット110に設けておき、送電側自己共振コイルと受電側自己共振コイルの位置ずれが許容幅に収まる自己共振コイルを選択して送受電を行なう。
 位置合わせは、まず、カメラ120によって撮影される画像に基づいて運転者が駐車位置に車両を駐車する。なお、駐車の際に必ずしもカメラ120を使用しなくてもよい。そして、その後、位置関係が良好な自己共振コイルが選択されて送受電が行なわれる。
 次に、この実施の形態による非接触送受電システム10に用いられる非接触給電方法について説明する。この実施の形態による非接触送受電システム10では、共鳴法を用いて送電装置200から車両100への給電が行なわれる。
 図2は、共鳴法による送電の原理を説明するための図である。
 図2を参照して、この共鳴法では、2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが電磁場(近接場)において共鳴することによって、一方のコイルから他方のコイルへ電磁場を介して電力が伝送される。
 具体的には、高周波電源310に一次コイル320を接続し、電磁誘導により一次コイル320と磁気的に結合される一次自己共振コイル330へ高周波電力を給電する。一次自己共振コイル330は、コイル自身のインダクタンスと浮遊容量とによるLC共振器であり、一次自己共振コイル330と同じ共振周波数を有する二次自己共振コイル340と電磁場(近接場)を介して共鳴する。そうすると、一次自己共振コイル330から二次自己共振コイル340へ電磁場を介してエネルギー(電力)が移動する。二次自己共振コイル340へ移動したエネルギー(電力)は、電磁誘導により二次自己共振コイル340と磁気的に結合される二次コイル350によって取出され、負荷360へ供給される。なお、共鳴法による送電は、一次自己共振コイル330と二次自己共振コイル340との共鳴強度を示すQ値がたとえば100よりも大きいときに実現される。
 また、本実施の形態に係る電力伝送システムにおいては、送電ユニットの一次自己共振コイル330と受電ユニットの二次自己共振コイル340とを電磁界によって共鳴(共振)させることで送電ユニットから受電ユニットに電力を送電しており、送電ユニットと受電ユニットとの間の結合係数(κ)は、0.1以下である。なお、一般的に電磁誘導を利用した電力伝送では、送電ユニットと受電ユニットと間の結合係数(κ)は1.0に近いものとなっている。
 なお、図1との対応関係については、二次自己共振コイル340および二次コイル350が図1の受電ユニット110に対応し、一次コイル320および一次自己共振コイル330が図1の送電ユニット220に対応する。
 図3は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。
 図3を参照して、電磁界は3つの成分を含む。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。
 この中でも波源からの距離とともに急激に電磁波の強度が減少する領域があるが、共鳴法では、この近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、近接場を利用して、同じ固有振動数を有する一対の共鳴器(たとえば一対のLC共振コイル)を共鳴させることにより、一方の共鳴器(一次自己共振コイル)から他方の共鳴器(二次自己共振コイル)へエネルギー(電力)を伝送する。この近接場は遠方にエネルギー(電力)を伝播しないので、遠方までエネルギーを伝播する「輻射電磁界」によりエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。
 図4は、電力伝送システムのシミュレーションモデルを示す図である。
 図5は、送電装置と受電装置との間の固有周波数のズレと効率の関係を示す図である。
 図4および図5を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。電力伝送システム89は、送電装置90と、受電装置91とを備える。送電装置90は、電磁誘導コイル92と、送電部93とを含む。送電部93は、共鳴コイル94と、共鳴コイル94に設けられたキャパシタ95とを含む。
 受電装置91は、受電部96と、電磁誘導コイル97とを備える。受電部96は、共鳴コイル99とこの共鳴コイル99に接続されたキャパシタ98とを含む。
 共鳴コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。共鳴コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、送電部93の固有周波数f1は、下記の式(1)によって示され、受電部96の固有周波数f2は、下記の式(2)によって示される。
 f1=1/{2π(Lt×C1)1/2}・・・(1)
 f2=1/{2π(Lr×C2)1/2}・・・(2)
 ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、送電部93および受電部96の固有周波数のズレと、電力伝送効率との関係を図3に示す。なお、このシミュレーションにおいては、共鳴コイル94および共鳴コイル99の相対的な位置関係は固定した状態であって、さらに、送電部93に供給される電流の周波数は一定である。
 図5に示すグラフのうち、横軸は、固有周波数のズレ(%)を示し、縦軸は、一定周波数での伝送効率(%)を示す。固有周波数のズレ(%)は、下記式(3)によって示される。
 (固有周波数のズレ)={(f1-f2)/f2}×100(%)・・・(3)
 図5からも明らかなように、固有周波数のズレ(%)が±0%の場合には、電力伝送効率は、100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は、40%となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は、10%となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は、5%となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、受電部96の固有周波数の10%以下の範囲となるように各送電部および受電部の固有周波数を設定することで電力伝送効率を実用的なレベルに高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が受電部96の固有周波数の5%以下となるように、各送電部および受電部の固有周波数を設定すると、電力伝送効率をさらに高めることができるのでより好ましい。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
 図6は、図1に示した車両100の詳細を示す構成図である。
 図6を参照して、車両100は、蓄電装置150と、システムメインリレーSMR1と、昇圧コンバータ162と、インバータ164,166と、モータジェネレータ172,174と、エンジン176と、動力分割装置177と、駆動輪178とを含む。
 車両100は、さらに、二次自己共振コイル112と、二次コイル114と、整流器140と、DC/DCコンバータ142と、システムメインリレーSMR2と、電圧センサ190とを含む。
 車両100は、さらに、制御装置180と、カメラ120と、通信ユニット130と、給電ボタン122とを含む。
 この車両100は、エンジン176およびモータジェネレータ174を動力源として搭載する。エンジン176およびモータジェネレータ172,174は、動力分割装置177に連結される。そして、車両100は、エンジン176およびモータジェネレータ174の少なくとも一方が発生する駆動力によって走行する。エンジン176が発生する動力は、動力分割装置177によって2経路に分割される。すなわち、一方は駆動輪178へ伝達される経路であり、もう一方はモータジェネレータ172へ伝達される経路である。
 モータジェネレータ172は、交流回転電機であり、たとえばロータに永久磁石が埋設された三相交流同期電動機を含む。モータジェネレータ172は、動力分割装置177によって分割されたエンジン176の運動エネルギーを用いて発電する。たとえば、蓄電装置150の充電状態(「SOC(State Of Charge)」とも称される。)が予め定められた値よりも低くなると、エンジン176が始動してモータジェネレータ172により発電が行なわれ、蓄電装置150が充電される。
 モータジェネレータ174も、交流回転電機であり、モータジェネレータ172と同様に、たとえばロータに永久磁石が埋設された三相交流同期電動機を含む。モータジェネレータ174は、蓄電装置150に蓄えられた電力およびモータジェネレータ172により発電された電力の少なくとも一方を用いて駆動力を発生する。そして、モータジェネレータ174の駆動力は、駆動輪178に伝達される。
 また、車両の制動時や下り斜面での加速度低減時には、運動エネルギーや位置エネルギーとして車両に蓄えられた力学的エネルギーが駆動輪178を介してモータジェネレータ174の回転駆動に用いられ、モータジェネレータ174が発電機として作動する。これにより、モータジェネレータ174は、走行エネルギーを電力に変換して制動力を発生する回生ブレーキとして作動する。そして、モータジェネレータ174により発電された電力は、蓄電装置150に蓄えられる。
 動力分割装置177は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車を使用することができる。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン176のクランクシャフトに連結される。サンギヤは、モータジェネレータ172の回転軸に連結される。リングギヤはモータジェネレータ174の回転軸および駆動輪178に連結される。
 蓄電装置150は、再充電可能な直流電源であり、たとえばリチウムイオン電池やニッケル水素電池などの二次電池を含む。蓄電装置150は、DC/DCコンバータ142から供給される電力を蓄えるほか、モータジェネレータ172,174によって発電される回生電力も蓄える。そして、蓄電装置150は、その蓄えた電力を昇圧コンバータ162へ供給する。
 なお、蓄電装置150として大容量のキャパシタも採用可能であり、送電装置200(図1)から供給される電力やモータジェネレータ172,174からの回生電力を一時的に蓄え、その蓄えた電力を昇圧コンバータ162へ供給可能な電力バッファであれば如何なるものでもよい。
 システムメインリレーSMR1は、蓄電装置150と昇圧コンバータ162との間に配設される。システムメインリレーSMR1は、制御装置180からの信号SE1が活性化されると、蓄電装置150を昇圧コンバータ162と電気的に接続し、信号SE1が非活性化されると、蓄電装置150と昇圧コンバータ162との間の電路を遮断する。昇圧コンバータ162は、制御装置180からの信号PWCに基づいて、正極線PL2の電圧を蓄電装置150から出力される電圧以上の電圧に昇圧する。なお、この昇圧コンバータ162は、たとえば直流チョッパ回路を含む。
 インバータ164,166は、それぞれモータジェネレータ172,174に対応して設けられる。インバータ164は、制御装置180からの信号PWI1に基づいてモータジェネレータ172を駆動し、インバータ166は、制御装置180からの信号PWI2に基づいてモータジェネレータ174を駆動する。なお、インバータ164,166は、たとえば三相ブリッジ回路を含む。
 二次自己共振コイル112は、両端がスイッチ(リレー113)を介してコンデンサ111に接続されており、スイッチ(リレー113)が導通状態となったときに送電装置200の一次共振コイルと電磁場を介して共鳴する。この共鳴により送電装置200から受電が行なわれる。なお、図6ではコンデンサ111を設けた例を示したが、コンデンサに代えてコイルの浮遊容量によって共振するように、一次自己共振コイルとの調整をしてもよい。
 なお、二次自己共振コイル112については、送電装置200の一次自己共振コイルとの距離や、一次自己共振コイルと二次自己共振コイル112との共鳴強度を示すQ値が大きく(たとえばQ>100)なり、かつその結合度を示すκが小さく(たとえばκ<0.1)なるようにその巻数が適宜設定される。
 二次コイル114は、二次自己共振コイル112と電磁誘導により磁気結合可能な位置に配設される。この二次コイル114は、二次自己共振コイル112により受電された電力を電磁誘導により取出して整流器140へ出力する。なお、二次自己共振コイル112および二次コイル114は、図1に示した受電ユニット110を形成する。
 整流器140は、二次コイル114によって取出された交流電力を整流する。DC/DCコンバータ142は、制御装置180からの信号PWDに基づいて、整流器140によって整流された電力を蓄電装置150の電圧レベルに変換して蓄電装置150へ出力する。
 システムメインリレーSMR2は、DC/DCコンバータ142と蓄電装置150との間に配設される。システムメインリレーSMR2は、制御装置180からの信号SE2が活性化されると、蓄電装置150をDC/DCコンバータ142と電気的に接続し、信号SE2が非活性化されると、蓄電装置150とDC/DCコンバータ142との間の電路を遮断する。電圧センサ190は、整流器140とDC/DCコンバータ142との間の電圧VRを検出し、その検出値を制御装置180へ出力する。
 整流器140とDC/DCコンバータ142との間には直列に接続された抵抗144およびリレー146が設けられる。リレー146は、車両100が非接触給電を行なう場合に、車両位置を調整したり、使用する自己共振コイルを選択したりする際に制御装置180によって導通状態に制御される。
 制御装置180は、アクセル開度や車両速度、その他種々のセンサからの信号に基づいて、昇圧コンバータ162およびモータジェネレータ172,174をそれぞれ駆動するための信号PWC,PWI1,PWI2を生成する。制御装置180は、生成した信号PWC,PWI1,PWI2をそれぞれ昇圧コンバータ162およびインバータ164,166へ出力する。そして、車両の走行時、制御装置180は、信号SE1を活性化してシステムメインリレーSMR1をオンさせるとともに、信号SE2を非活性化してシステムメインリレーSMR2をオフさせる。
 充電に先立って行われる、駐車位置の決定や、使用する自己共振コイルの選択の際には、制御装置180は、送電装置200から送出される電力の情報(電圧および電流)を送電装置200から通信ユニット130を介して受け、電圧センサ190によって検出される電圧VRの検出値を電圧センサ190から受ける。そして、制御装置180は、これらのデータに基づいて、送電装置200の送電ユニット220(図1)へ当該車両を誘導する表示を行なったり、駐車位置決定後は使用する自己共振コイルを選択したりするように車両の駐車制御を実行する。
 送電ユニット220への駐車制御が完了すると、制御装置180は、通信ユニット130を介して送電装置200へ給電指令を送信するとともに、信号SE2を活性化してシステムメインリレーSMR2をオンさせる。そして、制御装置180は、DC/DCコンバータ142を駆動するための信号PWDを生成し、その生成した信号PWDをDC/DCコンバータ142へ出力する。こうして、送電装置から受電装置に向けて本格的に給電が開始される。
 図7は、図1の送電装置200の構成を示したブロック図である。
 図7を参照して、送電装置200は、高周波電源装置210と、送電ユニット220とを含む。高周波電源装置210は、通信ユニット240と、制御装置である送電ECU242と、高周波電源部250と、整合器212とを含む。また、送電ユニット220は、位置をずらして配置されたコイルユニット221A~221Cと、コイルユニットを整合器212に選択的に接続するためのリレー226A~226Cとを含む。なお、位置をずらして配置されたコイルユニット221A~221Cが3つである例を示したが、コイルユニットの数は2つでも、4つ以上であってもよい。
 高周波電源部250は、送電ECU242からの制御信号によって制御され、商用電源から受ける電力を高周波の電力に変換する。
 そして、高周波電源部250は、その変換した高周波電力を、整合器212を介して送電ユニット220の一次コイルへ供給する。
 整合器212は、送電装置200と車両の受電装置との間のインピーダンスをマッチングさせるための回路である。整合器212は、可変コンデンサおよび可変インダクタを含んで構成される。整合器212は、送電ECU242から与えられる制御信号により制御され、送電装置200のインピーダンスが車両の受電装置側のインピーダンスに合致するように可変コンデンサおよび可変インダクタが調整される。また、整合器212は、インピーダンス調整が完了したことを示す信号を送電ECU242へ出力する。
 送電ECU242は、リレー226A~226Cのいずれかを選択して導通させ、使用するコイルユニットを選択する。
 コイルユニット221A~221Cのうちの選択されたコイルユニットは、車両の受電ユニット110に含まれる二次自己共振コイル112へ、電磁共鳴により電力を転送する。
 本実施の形態に係る電力伝送システムにおいては、送電ユニット220のうち選択された一次自己共振コイルの固有周波数と、受電ユニット110中の受電に使用される二次自己共振コイルの固有周波数とは、同じ固有周波数とされている。
 「自己共振コイルの固有周波数」とは、自己共振コイルのコイルおよびキャパシタを含む電気回路が自由振動する場合の振動周波数を意味する。なお、「自己共振コイルの共振周波数」とは、送電ユニットのコイルおよびキャパシタを含む電気回路で、制動力または電気抵抗をゼロとしたときの固有周波数を意味する。
 本明細書において、「同じ固有周波数」とは、完全に同じ場合だけでなく、固有周波数が実質的に同じ場合も含む。「固有周波数が実質的に同じ」とは、一次自己共振コイルの固有周波数と二次自己共振コイルの固有周波数との差が一次自己共振コイルの固有周波数または二次自己共振コイルの固有周波数の10%以内の場合を意味する。
 通信ユニット240は、送電装置200と車両との間で無線通信を行なうための通信インターフェースである。通信ユニット240は、車両側の通信ユニット130から送信されるバッテリ情報や送電の開始および停止の指示を受信し、これらの情報を送電ECU242へ出力する。また、通信ユニット240は、整合器212からのインピーダンス調整が完了したことを示す信号を送電ECU242から受け、それを車両側へ出力する。
 送電ECU242は、いずれも図7には図示しないがCPU、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、高周波電源装置210における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 図8は、コイルユニット221A~221Cの配置を説明するための図である。図8を参照して、送電ユニット220の内部には、コイルユニット221A~221Cが位置をずらせて配置されている。車両100の駐車位置や、車両100において受電ユニット110が設けられている位置によって、送電効率が高くなる送電側コイルユニットの位置は異なる。
 したがって、送電装置200では、コイルユニット221A~221Cのうちから最も適した位置に配置されているコイルユニットが送電に使用するために選択される。
 なお、図8には、送電ユニット側に複数のコイルユニットが含まれており、車両側には1つのコイルユニットしかない場合を例示したが、車両側に複数のコイルユニットが含まれており、送電ユニット側には1つのコイルユニットしかない場合や、車両側、送電ユニット側の両方に複数のコイルユニットが設けられる場合であってもよい。
 以下に複数のコイルユニットの詳細について配置、構成のバリエーションをいくつか説明する。
 [実施の形態1の送電ユニットの構成]
 図9は、送電ユニット220の構成を示した図である。なお、理解の容易のため図9には、受電ユニット110も示されている。
 送電ユニットと受電ユニットとの相対的な位置関係は車両の駐車位置によって異なるが、駐車のたびに高精度な駐車位置を要求するのは困難である。また、共鳴法での非接触充電を標準化するためには、各車両における様々な受電コイル搭載位置に送電装置が対応する必要がある。そこで、本実施の形態では、送電ユニット側の自己共振コイルを複数設置する。
 車両側の受電ユニット110は、二次自己共振コイル112と、コンデンサ111と、二次コイル114とを含む。
 これに対し、送電ユニット220は、位置をずらして配置されたコイルユニット221A~221Cと、コイルユニットを整合器212に選択的に接続するためのリレー226A~226Cとを含む。
 コイルユニット221Aは、一次コイル225Aと、一次自己共振コイル222Aと、コンデンサ223Aと、コンデンサ223Aを一次自己共振コイル222Aに接続するリレー224Aとを含む。
 コイルユニット221Bは、一次コイル225Bと、一次自己共振コイル222Bと、コンデンサ223Bと、コンデンサ223Bを一次自己共振コイル222Bに接続するリレー224Bとを含む。
 コイルユニット221Cは、一次コイル225Cと、一次自己共振コイル222Cと、コンデンサ223Cと、コンデンサ223Cを一次自己共振コイル222Cに接続するリレー224Cとを含む。
 一次コイル225A~225Cのいずれを整合器212に接続するかを選択するためにリレー226A~226Cが使用される。選択された一次コイルに対応するリレーは導通され、他のリレーは非導通とされる。
 リレー226A~226Cの制御に対応させて、リレー224A~224Cについても制御が行なわれる。自己共振コイル222A~222Cは、リレー224A~224Cが非導通に設定されると、受電ユニット110の自己共振コイル112とは共振周波数がずれる。したがって、使用する自己共振コイルに対応するリレーが導通され、他のリレーは非導通に設定される。以上のリレーの制御は、図7の送電ECU242によって行なわれる。
 次に、送電側に設けられた複数の自己共振コイル222A~222Cの配置ピッチについて説明する。なお、受電側に複数の自己共振コイルを設ける場合であっても同様なことがいえる。
 図10は自己共振コイルと共鳴可能範囲の関係を説明するための図である。図10を参照して、送電側の自己共振コイル400に対して、共鳴可能エリア402が存在する。すなわち、受電側の自己共振コイルが共鳴可能エリア402の内部に収まるように配置された場合に送電側の自己共振コイル400と受電側の自己共振コイルが共鳴可能である。
 自己共振コイル400の直径(または外径)をDとすれば、位置ずれ許容範囲は、種々の条件によって異なるが、たとえばD/2である。
 図11は、配置ピッチが離れている場合の自己共振コイルの配置例である。
 図11を参照して、送電装置側の自己共振コイル400Aおよび400Bは、それぞれ共鳴可能エリア402Aおよび402Bを有する。この配置例では、共鳴可能エリア402Aと共鳴可能エリア402Bとは重なっていない。
 受電側の自己共振コイルが位置410Aに配置された場合、送電装置側の自己共振コイル400Aと共鳴可能である。したがって、自己共振コイル400Aが選択され、送電に使用される。
 同様に、受電側の自己共振コイルが位置410Bに配置された場合、送電装置側の自己共振コイル400Bと共鳴可能である。したがって、自己共振コイル400Bが選択され、送電に使用される。
 しかし、受電側の自己共振コイルが位置410Xに配置された場合には、送電側の自己共振コイル400Aおよび400Bのいずれも共鳴することはできない。したがって、軸Y-Y上を受電側の自己共振コイルが移動した場合に共鳴不可能な位置ができてしまう。
 図12は、配置ピッチが図11の例よりも近づいた場合の自己共振コイルの配置例である。
 図12を参照して、送電装置側の自己共振コイル400Aおよび400Bは、それぞれ共鳴可能エリア402Aおよび402Bを有する。この配置例では、共鳴可能エリア402Aと共鳴可能エリア402Bとは重なっている。
 したがって、受電側の自己共振コイルがY-Y軸上においてちょうど送電側の自己共振コイル400Aおよび400Bの中間位置410Xに配置された場合でも、送電装置側の自己共振コイル400Aと共鳴可能である。
 しかし、図12に示した場合には、ちょうど両方の送電側自己共振コイルに共鳴可能な位置が存在するので、たとえば送電側の自己共振コイル400Aから位置410Xに配置された受電側の自己共振コイルに送電された電力は、送電側の自己共振コイル400Bに戻ってしまう場合も懸念される。
 このような場合は共鳴がうまくいかずに送電効率が落ちてしまう。このため、本実施の形態では、送電するために選択された自己共振コイルの共振周波数(固有振動数)のみを受電側の自己共振コイルの共振周波数と一致させ、非選択の自己共振コイルの共振周波数をずらすように制御が行なわれる。
 図13は、複数の自己共振コイルの好ましい配置ピッチを説明するための図である。
 図13に示すように、本願発明者によれば、配置ピッチPがコイル径Dに対してD/2<P<Dの関係になる場合には、実用可能であり、P=D/2またはP<D/2であるほうがより実用に好ましい。
 したがって、各々の自己共振コイルのコイル径Dに対して複数の自己共振コイルの配置ピッチ(中心と中心または重心と重心の距離)Pは、P<Dとし、より好ましくはP≦D/2とする。配置ピッチを狭くすると、自己共振コイルのうち複数が共振することがあるので、使用する自己共振コイル以外はコンデンサを切り離すまたはコンデンサ容量を変更するなどして、共振周波数をずらせて共振しないようにする。これにより、使用しない自己共振コイルは使用する自己共振コイルと比べて送電効率が大きく低下し、使用しない自己共振コイルには電流が流れないか、流れても使用する自己共振コイルに干渉しない程度の弱い電流となる。
 すなわち、一次側自己共振コイルをコイル間で干渉する範囲に複数配置し、一次側コイルの干渉を避けるために、リレーによって共鳴用コンデンサを分離し、適切なコイルのみ選択して共鳴させる。
 実施の形態1の非接触送受電システムでは、様々な車両の異なる受電コイル搭載位置においても、非接触で充電を実現することが可能となる。
 また複数コイルで密集した給電可能エリアを作る場合においても、互いに干渉することなく給電を実現することが可能となる。
 [実施の形態1の変形例1]
 図14は、送電ユニット220Aの構成を示した図である。なお、理解の容易のため図14には、受電ユニット110も示されている。
 車両側の受電ユニット110は、二次自己共振コイル112と、コンデンサ111と、二次コイル114とを含む。
 これに対し、送電ユニット220Aは、図9に示した送電ユニット220の構成において一次コイル225A~225Cに代えてひと巻の一次コイル225Dを含む。ひと巻というのは一筆書きのようにコイル用の巻線1本でつなぎ目なく実現できることを意味する。一次コイルは1つしかないので、実施の形態1の変形例1では図9のリレー226A~226Cは不要となる。
 自己共振コイル222A~222C、コンデンサ223A~223Cおよびリレー224A~224Cについては、図9と同様であるので、ここでは説明は繰返さない。
 図14に示した例でも図9に示した構成と同様な効果が得られると共に、さらに、一次コイル(電磁誘導コイル)の配線やリレーを削減させることができる。
 [実施の形態1の変形例2]
 図15は、送電ユニット220Bの構成を示した図である。なお、理解の容易のため図15には、受電ユニット110も示されている。
 車両側の受電ユニット110は、二次自己共振コイル112と、コンデンサ111と、二次コイル114とを含む。
 これに対し、送電ユニット220Bは、図9に示した送電ユニット220の構成において一次コイル225A~225Cに代えてひと巻の一次コイル225Dを含む。ひと巻というのは一筆書きのようにコイル用の巻線1本でつなぎ目なく実現できることを意味する。一次コイル225Dは、図14で示したものと同じである。実施の形態1の変形例2でも一次コイルは1つしかないので、図9のリレー226A~226Cは不要となる。
 さらに図15に示した構成は、コンデンサ223を3つの自己共振コイル222A~222Cで共用する。コンデンサ223の一方電極は、自己共振コイル222A~222Cの各一方端と直結されている。そして、コンデンサ223の他方電極は、自己共振コイル222A~222Cの各他方端とそれぞれリレー224A~224Cを介して接続されている。このような回路構成とするには、コンデンサ223の配置は、中央に配置される自己共振コイル222Bの内側に配置することが好ましい。
 図15に示した例でも図9および図14に示した構成と同様な効果が得られると共に、さらに、コンデンサを共用することでコンデンサの数を減らすことができ、さらにコンデンサの配置を工夫することで配線の長さも削減することができるので、さらなるコストダウンを図ることができる。
 [実施の形態1の変形例3]
 図16は、送電ユニット220Cの構成を示した図である。なお、理解の容易のため図16には、受電ユニット110も示されている。
 車両側の受電ユニット110は、二次自己共振コイル112と、コンデンサ111と、二次コイル114とを含む。
 これに対し、送電ユニット220Cは、図9に示した送電ユニット220の構成において一次コイル225A~225Cに代えてひと巻の一次コイル225Dを含む。ひと巻というのは一筆書きのようにコイル用の巻線1本でつなぎ目なく実現できることを意味する。一次コイル225Dは、図14および図15で示したものと同じである。実施の形態1の変形例3でも一次コイルは1つしかないので、図9のリレー226A~226Cは不要となる。
 さらに図16に示した構成は、3つの自己共振コイル222A~222Cにそれぞれ接続される可変容量コンデンサ228A~228Cを含む。図9、図14、図15のようなリレーではなく、コンデンサの容量を可変とし、使用しない自己共振コイルのコンデンサ容量値を共鳴する容量値範囲の外に設定することにより、自己共振コイルの選択を行なう。
 図16に示した例でも図9、図14および図15に示した構成と同様な効果が得られると共に、さらに、可変容量コンデンサを採用することにより、使用する自己共振コイルの容量値も微調整が可能となり、二次側コイルが位置ずれしたときの効率も容量値を微調整することによって確保することができる。
 [実施の形態2]
 実施の形態1では、送電装置側に複数の自己共振コイルを設ける例を示した。これに代えて、受電装置側に複数の自己共振コイルを設けてもよい。実施の形態2ではそのような例について説明する。
 図17は、受電ユニット110Dの構成を示した図である。なお、理解の容易のため図9には、送電ユニット220Dも示されている。
 送電ユニットと受電ユニットとの相対的な位置関係は車両の駐車位置によって異なるが、駐車のたびに高精度な駐車位置を要求するのは困難である。また、共鳴法での非接触充電を標準化するためには、送電装置における様々な送電コイル搭載位置に受電装置が対応する必要があるケースも考えられる。そこで、実施の形態2では、受電ユニット側の自己共振コイルを複数設置する。
 送電装置側の送電ユニット220Dは、一次自己共振コイル222と、コンデンサ223と、一次コイル225とを含む。
 これに対し、受電ユニット110Dは、位置をずらして配置されたコイルユニット121A~121Cと、コイルユニットを整流器140に選択的に接続するためのリレー115A~115Cとを含む。
 コイルユニット121Aは、二次コイル114Aと、二次自己共振コイル112Aと、コンデンサ111Aと、コンデンサ111Aを二次自己共振コイル112Aに接続するリレー113Aとを含む。
 コイルユニット121Bは、二次コイル114Bと、二次自己共振コイル112Bと、コンデンサ111Bと、コンデンサ111Bを二次自己共振コイル112Bに接続するリレー113Bとを含む。
 コイルユニット121Cは、二次コイル114Cと、二次自己共振コイル112Cと、コンデンサ111Cと、コンデンサ111Cを二次自己共振コイル112Cに接続するリレー113Cとを含む。
 二次コイル114A~114Cのいずれを整流器140に接続するかを選択するためにリレー115A~115Cが使用される。選択された一次コイルに対応するリレーは導通され、他のリレーは非導通とされる。
 リレー115A~115Cの制御に対応させて、リレー113A~113Cについても制御が行なわれる。二次自己共振コイル112A~112Cは、リレー113A~113Cが非導通に設定されると、送電ユニット220Dの一次自己共振コイル223とは共振周波数がずれる。したがって、使用する自己共振コイルに対応するリレーが導通され、他のリレーは非導通に設定される。以上のリレーの制御は、図6の制御装置180によって行なわれる。
 受電側に設けられた複数の自己共振コイル112A~112Cの配置ピッチについては、図10~図13で説明した送電側に複数の自己共振コイルを設ける場合と同じである。すなわち、各々の自己共振コイルのコイル径Dに対して複数の自己共振コイルの配置ピッチ(中心と中心または重心と重心の距離)Pは、P<Dとし、より好ましくはP≦D/2とする。配置ピッチを狭くすると、自己共振コイルのうち複数が共振することがあるので、使用する自己共振コイル以外はコンデンサを切り離すまたはコンデンサ容量を変更するなどして、共振周波数をずらせて共振しないようにする。
 すなわち、二次側自己共振コイルをコイル間で干渉する範囲に複数配置し、二次側コイルの干渉を避けるために、リレーによって共鳴用コンデンサを分離し、適切なコイルのみ選択して共鳴させる。
 実施の形態2の非接触送受電システムでは、様々な送電装置の異なる送電コイル位置においても、非接触で充電を実現することが可能となる。
 [実施の形態2の変形例1]
 図18は、受電ユニット110Eの構成を示した図である。なお、理解の容易のため図18には、送電ユニット220Dも示されている。
 送電装置側の送電ユニット220Dは、一次自己共振コイル222と、コンデンサ223と、一次コイル225とを含む。
 これに対し、受電ユニット110Eは、図17に示した受電ユニット110Dの構成において二次コイル114A~114Cに代えてひと巻の二次コイル114Dを含む。ひと巻というのは一筆書きのようにコイル用の巻線1本でつなぎ目なく実現できることを意味する。二次コイルは1つしかないので、図17のリレー115A~115Cは不要となる。
 二次自己共振コイル112A~112C、コンデンサ111A~111Cおよびリレー113A~113Cについては、図17と同様であるので、ここでは説明は繰返さない。
 図18に示した例でも図17に示した構成と同様な効果が得られると共に、さらに、二次コイル(電磁誘導コイル)の配線やリレーを削減させることができる。
 [実施の形態2の変形例2]
 図19は、受電ユニット110Fの構成を示した図である。なお、理解の容易のため図19には、送電ユニット220Dも示されている。
 送電装置側の送電ユニット220Dは、一次自己共振コイル222と、コンデンサ223と、一次コイル225とを含む。
 これに対し、受電ユニット110Fは、図17に示した受電ユニット110Dの構成において二次コイル114A~114Cに代えてひと巻の二次コイル114Dを含む。ひと巻というのは一筆書きのようにコイル用の巻線1本でつなぎ目なく実現できることを意味する。二次コイルは1つしかないので、図17のリレー115A~115Cは不要となる。
 さらに図19に示した構成は、コンデンサ111を3つの自己共振コイル112A~112Cで共用する。コンデンサ111の一方電極は、自己共振コイル112A~112Cの各一方端と直結されている。そして、コンデンサ111の他方電極は、自己共振コイル112A~112Cの各他方端とそれぞれリレー113A~113Cを介して接続されている。このような回路構成とするには、コンデンサ111の配置は、中央に配置される自己共振コイル112Bの内側に配置することが好ましい。
 図19に示した例でも図17および図18に示した構成と同様な効果が得られると共に、さらに、コンデンサを共用することでコンデンサの数を減らすことができ、さらにコンデンサの配置を工夫することで配線の長さも削減することができるので、さらなるコストダウンを図ることができる。
 [実施の形態2の変形例3]
 図20は、受電ユニット110Gの構成を示した図である。なお、理解の容易のため図20には、送電ユニット220Dも示されている。
 送電装置側の送電ユニット220Dは、一次自己共振コイル222と、コンデンサ223と、一次コイル225とを含む。
 これに対し、受電ユニット110Gは、図17に示した受電ユニット110Dの構成において二次コイル114A~114Cに代えてひと巻の二次コイル114Dを含む。ひと巻というのは一筆書きのようにコイル用の巻線1本でつなぎ目なく実現できることを意味する。二次コイルは1つしかないので、図17のリレー115A~115Cは不要となる。
 さらに図20に示した構成は、3つの自己共振コイル112A~112Cにそれぞれ接続される可変容量コンデンサ118A~118Cを含む。図17~図19のようなリレーではなく、コンデンサの容量を可変とし、使用しない自己共振コイルのコンデンサ容量値を共鳴する容量値範囲の外に設定することにより、自己共振コイルの選択を行なう。
 図20に示した例でも図17および図18に示した構成と同様な効果が得られると共に、さらに、可変容量コンデンサを採用することにより、使用する自己共振コイルの容量値も微調整が可能となり、二次側コイルが位置ずれしたときの効率も容量値を微調整することによって確保することができる。
 [各実施の形態において適用可能なコイル形状]
 上記の各実施の形態においては、コイル形状は円形や四角形の場合を示したが、コイル形状は種々の形状に変形して本発明を適用することが可能である。
 図21は、コイル形状の第1の変形例である。図21には、正方形のコイルの例が示されている。コイル径は内接円の直径としてもよいが、図21に示すようにコイルをピッチPだけ平行移動させた位置に複数配置する場合、平行移動方向の外径幅をコイル径Dとしてもよい。
 図22は、コイル形状の第2の変形例である。図22には、三角形のコイルの例が示されている。コイル径は内接円の直径としてもよいが、図22に示すようにコイルをピッチPだけ平行移動させた位置に複数配置する場合、平行移動方向の外径幅をコイル径Dとしてもよい。
 図23は、コイル形状の第3の変形例である。図23には、いわゆるクローバ形状のコイルの例が示されている。コイル径は内接円の直径としてもよいが、図23に示すようにコイルをピッチPだけ平行移動させた位置に複数配置する場合、平行移動方向の外径幅をコイル径Dとしてもよい。
 なお、各図形の配置ピッチPは、平行移動させた距離として記載したが、図形の中心と中心または重心と重心の距離をピッチPとしてもよい。これらの場合において、複数の自己共振コイルの配置ピッチ(中心と中心または重心と重心の距離)Pは、P<Dとし、より好ましくはP≦D/2とする。これにより、共鳴できない位置を極力減らすことができる。
 最後に再び図を参照して実施の形態1,2について総括する。
 図9等に示すように、非接触送電装置は、交流電源に接続された少なくとも1つの第2コイル(一次コイル225A~225C;225D)と、第2コイルから電力を受け、受電装置に電力を送電する複数の第1コイル(一次自己共振コイル222A~222C)と、受電装置の位置に基づいて、複数の第1コイルのうちから受電装置への送電に使用するコイルを選択する制御装置(送電ECU242)とを備える。複数の第1コイルの各々は、受電装置に電力を送電可能な第1状態と第1状態よりも受電装置に電力を送電する効率が低下する第2状態とに切り替えることが可能に構成される。制御装置は、送電に使用することを選択したコイルを第1状態に設定し、送電に使用しないコイルを第2状態に設定する。なお、受電装置の位置に基づいて使用するコイルを選択するとは、車両位置に基づいて使用するコイルを選択するということ以外にも、受電ユニットや受電コイルの位置に基づいてコイルを選択することも含む。すなわち、車両位置と受電ユニットや受電コイル位置とが必ずしも連動しない場合でも本発明は適用可能である。また、効率が低下するとは、効率がゼロまで低下する(送電不可能となる)ことも含む意味である。
 好ましくは、複数の第1コイル(一次自己共振コイル222A~222C)の各々は、キャパシタンスを変更することが可能に構成される。制御装置は、複数の第1コイルの各々についてキャパシタンスを変更することによって第1状態と第2状態とを切り替える。
 より好ましくは、複数の第1コイル(一次自己共振コイル222A~222C)の各々は、図16に示すように、制御装置によってキャパシタンスが変更可能なコンデンサ(コンデンサ228A~228C)と、図9、図14、図15に示すように、制御装置によってキャパシタンスを切り離し可能なスイッチ(リレー224A~224C)とのいずれか一方を含む。
 より好ましくは、図14~図16に示すように、第2コイル(一次コイル225D)は、1本の導電線によって形成され、複数の第1コイル(一次自己共振コイル222A~222C)に対して共通に1つ設けられる。
 より好ましくは、図15に示すように、複数の第1コイル(一次自己共振コイル222A~222C)は、複数の第1コイルに共通して設けられるコンデンサ(コンデンサ223)と、複数のコイル本体部(222A~222C)と、複数のコイル本体部にコンデンサを選択的に接続する選択スイッチ(リレー224A~224C)とを含む。
 好ましくは、複数の第1コイル(一次自己共振コイル222A~222C)の各々は、第1状態において受電装置に含まれるコイルと固有周波数が等しくなるように調整され、第2状態において、受電装置に含まれるコイルとは固有周波数が異なるように調整される。すなわち、図9,図14,図15に示す場合では、第1状態では対応するリレーがオン状態とされ、第2状態では対応するリレーがオフ状態とされる。また、図16に示す場合では、第1状態では共振周波数が自己共振コイル112と等しくなるように対応する可変容量コンデンサが制御され、第2状態では共振周波数が自己共振コイル112と異なるように対応する可変容量コンデンサが制御される。なお、共振周波数をずらすことができれば他の構成であっても良い。この場合、第2状態は、送電が不可能となる状態も含むが、送電するには効率は悪くなるが送電不可能な状態ではない状態も含む。
 好ましくは、複数の第1コイル(一次自己共振コイル222A~222C)の各々は、第1状態において受電装置に含まれるコイル(二次自己共振コイル112)と固有周波数の差が±10%以内となるように調整され、第2状態において、受電装置に含まれるコイル(二次自己共振コイル112)とは固有周波数の差が±10%より大きく異なるように調整される。
 より好ましくは、第1状態において、複数の第1のコイル(一次自己共振コイル222A~222C)の各々と受電装置に含まれるコイル(二次自己共振コイル112)との結合係数は、0.1以下である。
 より好ましくは、複数の第1コイル(一次自己共振コイル222A~222C)の各々は、共鳴周波数を変更可能に構成された一次共鳴コイルである。受電装置は、一次共鳴コイルから磁界共鳴により送電された電力を受ける二次共鳴コイル(二次自己共振コイル112)を含む。
 より好ましくは、送電に使用することを選択したコイル(一次自己共振コイル222A~222Cのいずれか)は、受電装置と非接触送電装置との間に形成され、かつ特定の周波数で振動する磁界と、受電装置と非接触送電装置との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、受電装置に電力を送電する。
 さらに好ましくは、図2でも代表的な説明をしたように、第2コイル(一次コイル320)は複数の第1コイル(一次自己共振コイル330)に対して、電磁誘導によって電力を送電する。
 好ましくは、図13について説明したように、複数の第1コイルは、複数の第1コイルのコイル径よりも狭いピッチで所定方向に沿って配置される。
 好ましくは、図13の下段について説明したように、複数の第1コイルは、複数の第1コイルのコイル径の半分(D/2)よりも狭いピッチ(P)で所定方向に沿って配置される。
 この発明は、他の局面では、非接触受電装置であって、図17~図20に示したように、電気負荷に接続された少なくとも1つの第2コイル(二次コイル114A~114C;114D)と、送電装置から電力を受け、第2コイルに電力を送電する複数の第1コイル(二次自己共振コイル112A~112C)と、送電装置の位置に基づいて、複数の第1コイルのうちから送電装置からの受電に使用するコイルを選択する制御装置(車両100の制御装置180)とを備える。複数の第1コイルの各々は、送電装置から電力を受電可能な第1状態と第1状態よりも送電装置から電力を受電する効率が低下する第2状態とに切り替えることが可能に構成され、制御装置は、受電に使用することを選択したコイルを第1状態に設定し、受電に使用しないコイルを第2状態に設定する。なお、効率が低下するとは、効率がゼロまで低下する(受電不可能となる)ことも含む意味である。
 好ましくは、複数の第1コイル(二次自己共振コイル112A~112C)の各々は、キャパシタンスを変更することが可能に構成される。制御装置180は、複数の第1コイルの各々についてキャパシタンスを変更することによって第1状態と第2状態とを切り替える。
 好ましくは、複数の第1コイル(二次自己共振コイル112A~112C)の各々は、第1状態において送電装置に含まれるコイル(一次自己共振コイル222)と固有周波数の差が±10%以内となるように調整され、第2状態において、送電装置に含まれるコイル(一次自己共振コイル222)とは固有周波数の差が±10%より大きく異なるように調整される。
 より好ましくは、第1状態において、複数の第1のコイル(二次自己共振コイル112A~112C)の各々と送電装置に含まれるコイル(一次自己共振コイル222)との結合係数は、0.1以下である。
 より好ましくは、受電に使用することを選択したコイル(二次自己共振コイル112A~112Cのいずれか)は、送電装置と非接触受電装置との間に形成され、かつ特定の周波数で振動する磁界と、送電装置と非接触受電装置との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、送電装置から電力を受電する。
 好ましくは、図13の下段で説明したように、複数の第1コイル(二次自己共振コイル112A~112C)は、複数の第1コイルのコイル径の半分(D/2)よりも狭いピッチ(P)で配置される。
 この発明は、さらに他の局面では、非接触送受電システムであって、受電装置(110)と、非接触送電装置を備える。非接触送電装置は、図9等に示すように、交流電源に接続された少なくとも1つの第2コイル(一次コイル225A~225C;225D)と、第2コイルから電力を受け、受電装置に電力を送電する複数の第1コイル(一次自己共振コイル222A~222C)と、受電装置の位置に基づいて、複数の第1コイルのうちから受電装置への送電に使用するコイルを選択する制御装置(送電ECU242)とを含む。複数の第1コイルの各々は、受電装置に電力を送電可能な第1状態と第1状態よりも受電装置に電力を送電する効率が低下する第2状態とに切り替えることが可能に構成される。制御装置は、送電に使用することを選択したコイルを第1状態に設定し、送電に使用しないコイルを第2状態に設定する。なお、効率が低下するとは、効率がゼロまで低下する(送電不可能となる)ことも含む意味である。
 この発明は、さらに他の局面では、非接触送受電システムであって、送電装置(220D)と、非接触受電装置を備える。非接触受電装置は、図17~図20に示したように、電気負荷に接続された少なくとも1つの第2コイル(二次コイル114A~114C;114D)と、送電装置から電力を受け、第2コイルに電力を送電する複数の第1コイル(二次自己共振コイル112A~112C)と、送電装置の位置に基づいて、複数の第1コイルのうちから送電装置からの受電に使用するコイルを選択する制御装置(車両100の制御装置180)とを備える。複数の第1コイルの各々は、送電装置から電力を受電可能な第1状態と第1状態よりも送電装置から電力を受電する効率が低下する第2状態とに切り替えることが可能に構成される。制御装置は、受電に使用することを選択したコイルを第1状態に設定し、受電に使用しないコイルを第2状態に設定する。
 上記のように本実施の形態に係る電力伝送システムにおいては、送電ユニットと受電ユニットとを電磁界によって共鳴させることで送電ユニットから受電ユニットに電力を送電させている。このような電力伝送における送電ユニットと受電ユニットとの結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電磁界(電磁場)共振結合」または「電界(電場)共振結合」という。
 「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。
 本明細書中で説明した送電ユニットと受電ユニットとは、コイル形状のアンテナが採用されているため、送電ユニットと受電ユニットとは主に、磁界(磁場)によって結合しており、送電ユニットと受電ユニットとは、「磁気共鳴結合」または「磁界(磁場)共鳴結合」している。
 なお、送電ユニットと受電ユニットとして、たとえば、メアンダラインなどのアンテナを採用することも可能であり、この場合には、送電ユニットと受電ユニットとは主に、電界(電場)によって結合している。このときには、送電ユニットと受電ユニットとは、「電界(電場)共振結合」している。
 また、本実施の形態では、電磁誘導コイルを含んだ送電ユニット、受電ユニットを例示したが、電磁誘導コイルを含まない共鳴型非接触送受電装置にも本発明は適用可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 非接触送受電システム、100 車両、110,110D,110E,110F,110G 受電ユニット、111,111A~111C,223,223A~223C,228A~228C コンデンサ、112 二次自己共振コイル、113,113A~113C,115A~115C,146,224A~224C,226A~226C リレー、114,114A~114D,350 二次コイル、118A~118C,228A~228C 可変容量コンデンサ、120 カメラ、121A~121C,221A~221C コイルユニット、122 給電ボタン、130,240 通信ユニット、140 整流器、142 コンバータ、144 抵抗、150 蓄電装置、162 昇圧コンバータ、164,166 インバータ、172,174 モータジェネレータ、176 エンジン、177 動力分割装置、178 駆動輪、180 制御装置、190 電圧センサ、200 送電装置、210 高周波電源装置、212 整合器、220,220A~220D 送電ユニット、222,222A~222C,223,330 一次自己共振コイル、225,225A~225D,320 一次コイル、230 発光部、242 送電ECU、250 高周波電源部、310 高周波電源、360 負荷、D コイル径、P 配置ピッチ、PL2 正極線、SMR1,SMR2 システムメインリレー。

Claims (20)

  1.  交流電源から電力を受け、受電装置に電力を送電するための複数の第1コイル(222A~222C)と、
     前記受電装置の位置に基づいて、前記複数の第1コイルのうちから前記受電装置への送電に使用するコイルを選択する制御装置(242)とを備え、
     前記複数の第1コイルの各々は、前記受電装置に電力を送電可能な第1状態と前記第1状態よりも前記受電装置に電力を送電する効率が低下する第2状態とに切り替えることが可能に構成され、
     前記制御装置は、送電に使用することを選択したコイルを前記第1状態に設定し、送電に使用しないコイルを前記第2状態に設定する、非接触送電装置。
  2.  前記複数の第1コイルの各々は、キャパシタンスを変更することが可能に構成され、
     前記制御装置は、前記複数の第1コイルの各々についてキャパシタンスを変更することによって前記第1状態と前記第2状態とを切り替える、請求項1に記載の非接触送電装置。
  3.  前記複数の第1コイルの各々は、前記制御装置によってキャパシタンスが変更可能なコンデンサ(228A~228C)と、前記制御装置によってキャパシタンスを切り離し可能なスイッチ(224A~224C)とのいずれか一方を含む、請求項2に記載の非接触送電装置。
  4.  前記交流電源に接続された少なくとも1つの第2コイル(225A~225C;225D)をさらに備え、
     前記第2コイル(225D)は、1本の導電線によって形成され、前記複数の第1コイルに対して共通に1つ設けられる、請求項2に記載の非接触送電装置。
  5.  前記第2コイルは前記複数の第1コイルに対して、電磁誘導によって電力を送電する、請求項4に記載の非接触送電装置。
  6.  前記複数の第1コイルは、
     前記複数の第1コイルに共通して設けられるコンデンサ(223)と、
     複数のコイル本体部(222A~222C)と、
     前記複数のコイル本体部に前記コンデンサを選択的に接続する選択スイッチ(224A~224C)とを含む、請求項2に記載の非接触送電装置。
  7.  前記複数の第1コイルの各々は、前記第1状態において前記受電装置に含まれるコイルと固有周波数が等しくなるように調整され、前記第2状態において、前記受電装置に含まれるコイルとは固有周波数が異なるように調整される、請求項1に記載の非接触送電装置。
  8.  前記複数の第1コイルの各々は、前記第1状態において前記受電装置に含まれるコイルと固有周波数の差が±10%以内となるように調整され、前記第2状態において、前記受電装置に含まれるコイルとは固有周波数の差が±10%より大きく異なるように調整される、請求項1に記載の非接触送電装置。
  9.  前記第1状態において、前記複数の第1のコイルの各々と前記受電装置に含まれるコイルとの結合係数は、0.1以下である、請求項8に記載の非接触送電装置。
  10.  前記送電に使用することを選択したコイルは、前記受電装置と前記非接触送電装置との間に形成され、かつ特定の周波数で振動する磁界と、前記受電装置と前記非接触送電装置との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、前記受電装置に電力を送電する、請求項8に記載の非接触送電装置。
  11.  前記複数の第1コイルは、前記複数の第1コイルのコイル径よりも狭いピッチで所定方向に沿って配置される、請求項1~5のいずれか1項に記載の非接触送電装置。
  12.  前記複数の第1コイルは、前記複数の第1コイルのコイル径の半分よりも狭いピッチで所定方向に沿って配置される、請求項1~5のいずれか1項に記載の非接触送電装置。
  13.  送電装置から電力を受け、電気負荷に電力を送電するための複数の第1コイル(112A~112C)と、
     前記送電装置の位置に基づいて、前記複数の第1コイルのうちから前記送電装置からの受電に使用するコイルを選択する制御装置(180)とを備え、
     前記複数の第1コイルの各々は、前記送電装置から電力を受電可能な第1状態と前記第1状態よりも前記送電装置から電力を受電する効率が低下する第2状態とに切り替えることが可能に構成され、
     前記制御装置は、受電に使用することを選択したコイルを前記第1状態に設定し、受電に使用しないコイルを前記第2状態に設定する、非接触受電装置。
  14.  前記複数の第1コイルの各々は、キャパシタンスを変更することが可能に構成され、
     前記制御装置は、前記複数の第1コイルの各々についてキャパシタンスを変更することによって前記第1状態と前記第2状態とを切り替える、請求項13に記載の非接触受電装置。
  15.  前記複数の第1コイルの各々は、前記第1状態において前記送電装置に含まれるコイルと固有周波数の差が±10%以内となるように調整され、前記第2状態において、前記送電装置に含まれるコイルとは固有周波数の差が±10%より大きく異なるように調整される、請求項13に記載の非接触受電装置。
  16.  前記第1状態において、前記複数の第1のコイルの各々と前記送電装置に含まれるコイルとの結合係数は、0.1以下である、請求項15に記載の非接触受電装置。
  17.  前記受電に使用することを選択したコイルは、前記送電装置と前記非接触受電装置との間に形成され、かつ特定の周波数で振動する磁界と、前記送電装置と前記非接触受電装置との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、前記送電装置から電力を受電する、請求項15に記載の非接触受電装置。
  18.  前記複数の第1コイルは、前記複数の第1コイルのコイル径の半分よりも狭いピッチで配置される、請求項13または14に記載の非接触受電装置。
  19.  非接触送受電システムであって、
     受電装置(110)と、
     非接触送電装置を備え、前記非接触送電装置は、
     交流電源から電力を受け、前記受電装置に電力を送電するための複数の第1コイル(222A~222C)と、
     前記受電装置の位置に基づいて、前記複数の第1コイルのうちから前記受電装置への送電に使用するコイルを選択する制御装置(242)とを含み、
     前記複数の第1コイルの各々は、前記受電装置に電力を送電可能な第1状態と前記第1状態よりも前記受電装置に電力を送電する効率が低下する第2状態とに切り替えることが可能に構成され、
     前記制御装置は、送電に使用することを選択したコイルを前記第1状態に設定し、送電に使用しないコイルを前記第2状態に設定する、非接触送受電システム。
  20.  非接触送受電システムであって、
     送電装置(220D)と、
     非接触受電装置を備え、前記非接触受電装置は、
     前記送電装置から電力を受け、電気負荷に電力を送電するための複数の第1コイル(112A~112C)と、
     前記送電装置の位置に基づいて、前記複数の第1コイルのうちから前記送電装置からの受電に使用するコイルを選択する制御装置(180)とを備え、
     前記複数の第1コイルの各々は、前記送電装置から電力を受電可能な第1状態と前記第1状態よりも前記送電装置から電力を受電する効率が低下する第2状態とに切り替えることが可能に構成され、
     前記制御装置は、受電に使用することを選択したコイルを前記第1状態に設定し、受電に使用しないコイルを前記第2状態に設定する、非接触送受電システム。
PCT/JP2011/071498 2011-09-21 2011-09-21 非接触送電装置、非接触受電装置および非接触送受電システム WO2013042229A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/234,553 US20140191586A1 (en) 2011-09-21 2011-09-21 Wireless power transmission apparatus, wireless power reception apparatus, and wireless power transmission and reception system
PCT/JP2011/071498 WO2013042229A1 (ja) 2011-09-21 2011-09-21 非接触送電装置、非接触受電装置および非接触送受電システム
CN201180073565.7A CN103814502A (zh) 2011-09-21 2011-09-21 非接触送电装置、非接触受电装置以及非接触送受电系统
EP11872648.8A EP2747245A1 (en) 2011-09-21 2011-09-21 Contactless power transmission device, contactless power receiving device and contactless power transceiver system
KR1020147010169A KR20140067134A (ko) 2011-09-21 2011-09-21 비접촉 송전 장치, 비접촉 수전 장치 및 비접촉 송수전 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071498 WO2013042229A1 (ja) 2011-09-21 2011-09-21 非接触送電装置、非接触受電装置および非接触送受電システム

Publications (1)

Publication Number Publication Date
WO2013042229A1 true WO2013042229A1 (ja) 2013-03-28

Family

ID=47914040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071498 WO2013042229A1 (ja) 2011-09-21 2011-09-21 非接触送電装置、非接触受電装置および非接触送受電システム

Country Status (5)

Country Link
US (1) US20140191586A1 (ja)
EP (1) EP2747245A1 (ja)
KR (1) KR20140067134A (ja)
CN (1) CN103814502A (ja)
WO (1) WO2013042229A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510608B2 (ja) * 2011-03-11 2014-06-04 トヨタ自動車株式会社 コイルユニット、車両、外部給電装置および車両充電システム
WO2015020432A1 (ko) * 2013-08-07 2015-02-12 엘지이노텍(주) 무선전력 송신장치
WO2015137431A1 (ja) * 2014-03-14 2015-09-17 株式会社村田製作所 受電用コイル構造体およびワイヤレス給電システム
JP2015186426A (ja) * 2014-03-26 2015-10-22 株式会社エクォス・リサーチ 受電システム
JP2016541223A (ja) * 2013-09-27 2016-12-28 クアルコム,インコーポレイテッド 誘導電力伝達システムにおけるデバイスの位置合わせ
JP2017041996A (ja) * 2015-08-21 2017-02-23 国立大学法人横浜国立大学 電気機械エネルギー変換装置
JP6091701B1 (ja) * 2015-08-03 2017-03-08 三菱電機エンジニアリング株式会社 電力伝送装置及びアンテナ
JP2017112743A (ja) * 2015-12-16 2017-06-22 洪 恩姫 ワイヤレス給電装置
CN113904468A (zh) * 2021-10-29 2022-01-07 军事科学院系统工程研究院军事新能源技术研究所 一种功率自适应的磁耦合无线电能传输充电方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076804A1 (ja) * 2011-11-22 2013-05-30 トヨタ自動車株式会社 車両および電力伝送システム
US9895988B2 (en) * 2012-03-14 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Electricity supply device, electricity reception device, and electricity supply system
JP5979227B2 (ja) * 2012-05-09 2016-08-24 トヨタ自動車株式会社 車両
JP6124119B2 (ja) * 2013-03-29 2017-05-10 パナソニックIpマネジメント株式会社 給電装置及び受電装置
JP6092017B2 (ja) * 2013-06-25 2017-03-08 ルネサスエレクトロニクス株式会社 送電装置、非接触給電システム、及び制御方法
US9187006B2 (en) * 2013-09-05 2015-11-17 Volkswagen Ag Vehicle positioning for wireless charging systems
JP6003853B2 (ja) * 2013-09-11 2016-10-05 トヨタ自動車株式会社 車両
TWI520462B (zh) * 2014-07-24 2016-02-01 友達光電股份有限公司 無線電能傳輸裝置與方法
KR102312409B1 (ko) * 2014-11-10 2021-10-13 현대모비스 주식회사 차량 무선 충전 가이드 시스템 및 방법
WO2016076480A1 (ko) * 2014-11-13 2016-05-19 엘지전자 주식회사 무선 전력 전송 장치, 무선 전력 수신 장치 및 무선 충전 시스템
US10110018B2 (en) 2014-12-23 2018-10-23 Intel Corporation Wireless power repeating
US20160241061A1 (en) 2015-02-17 2016-08-18 Qualcomm Incorporated Clover leaf and butterfly coil structures for flat wireless coupling profiles in wireless power transfer applications
US9944190B2 (en) * 2015-03-07 2018-04-17 Hyundai Motor Company Interoperable EV wireless charging system based on air gap between primary and secondary coils
CN104779717A (zh) * 2015-04-29 2015-07-15 浙江大学 用于三维叠层芯片的磁耦合谐振无线供电系统及其控制方法
US20160352133A1 (en) * 2015-05-26 2016-12-01 Intel Corporation Wireless power transmitting coil disposed at an input device
KR20170024999A (ko) * 2015-08-27 2017-03-08 엘지이노텍 주식회사 무선 전력 송신 장치 및 그 제어 방법
EP3139466A1 (en) * 2015-09-07 2017-03-08 Continental Automotive GmbH Power conversion module for inductive charging for vehicles and method for operating a power conversion module
US20170237292A1 (en) * 2016-02-12 2017-08-17 Qualcomm Incorporated Reconfigurable multi-mode antenna for wireless power transfer
CN106571654A (zh) * 2016-02-29 2017-04-19 中兴新能源汽车有限责任公司 汽车充电装置及充电方法
US11305663B2 (en) * 2017-03-27 2022-04-19 General Electric Company Energy efficient hands-free electric vehicle charger for autonomous vehicles in uncontrolled environments
JP6979288B2 (ja) * 2017-06-13 2021-12-08 日立チャネルソリューションズ株式会社 送電器、受電器、送受電システム、自動取引装置および送受電方法
JP6687294B1 (ja) * 2018-08-21 2020-04-22 三菱電機株式会社 非接触給電用の送電制御装置、非接触給電用の送電制御方法、非接触給電用の送電装置、および、非接触給電システム
EP4199306A4 (en) * 2020-12-28 2024-04-17 Samsung Electronics Co Ltd ELECTRONIC DEVICE WITH IMPROVED WIRELESS CHARGING EFFICIENCY
WO2022170424A1 (en) * 2021-02-09 2022-08-18 The Governing Council Of The University Of Toronto Excitation-quadrature-quadrature transmitter wireless power transfer system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213378A (ja) 1996-01-30 1997-08-15 Sumitomo Wiring Syst Ltd 電気自動車用充電システム
JP2009106136A (ja) * 2007-10-25 2009-05-14 Toyota Motor Corp 電動車両および車両用給電装置
JP2010183812A (ja) 2009-02-09 2010-08-19 Toyota Industries Corp 共鳴型非接触充電システム
JP2010246348A (ja) 2009-04-09 2010-10-28 Fujitsu Ten Ltd 受電装置、及び送電装置
JP2010279239A (ja) 2009-05-28 2010-12-09 Korea Electronics Telecommun 無線電力伝送装置および電子装置
JP2011167031A (ja) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc 移動体給電装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041318A1 (ja) * 2008-10-09 2010-04-15 トヨタ自動車株式会社 非接触受電装置およびそれを備える車両
KR101213090B1 (ko) * 2011-07-14 2012-12-18 유한회사 한림포스텍 무선전력 전송장치용 코어 어셈블리 및 그를 구비하는 무선전력 전송장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213378A (ja) 1996-01-30 1997-08-15 Sumitomo Wiring Syst Ltd 電気自動車用充電システム
JP2009106136A (ja) * 2007-10-25 2009-05-14 Toyota Motor Corp 電動車両および車両用給電装置
JP2010183812A (ja) 2009-02-09 2010-08-19 Toyota Industries Corp 共鳴型非接触充電システム
JP2010246348A (ja) 2009-04-09 2010-10-28 Fujitsu Ten Ltd 受電装置、及び送電装置
JP2010279239A (ja) 2009-05-28 2010-12-09 Korea Electronics Telecommun 無線電力伝送装置および電子装置
JP2011167031A (ja) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc 移動体給電装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012124029A1 (ja) * 2011-03-11 2014-07-17 トヨタ自動車株式会社 コイルユニット、車両、外部給電装置および車両充電システム
JP5510608B2 (ja) * 2011-03-11 2014-06-04 トヨタ自動車株式会社 コイルユニット、車両、外部給電装置および車両充電システム
US9912198B2 (en) 2013-08-07 2018-03-06 Lg Innotek Co., Ltd. Wireless power transmission device
WO2015020432A1 (ko) * 2013-08-07 2015-02-12 엘지이노텍(주) 무선전력 송신장치
KR20150017637A (ko) * 2013-08-07 2015-02-17 엘지이노텍 주식회사 무선전력 송신장치
KR102125917B1 (ko) * 2013-08-07 2020-07-08 엘지이노텍 주식회사 무선전력 송신장치
CN105556799A (zh) * 2013-08-07 2016-05-04 Lg伊诺特有限公司 无线电力传送装置
JP2016541223A (ja) * 2013-09-27 2016-12-28 クアルコム,インコーポレイテッド 誘導電力伝達システムにおけるデバイスの位置合わせ
WO2015137431A1 (ja) * 2014-03-14 2015-09-17 株式会社村田製作所 受電用コイル構造体およびワイヤレス給電システム
JPWO2015137431A1 (ja) * 2014-03-14 2017-04-06 株式会社村田製作所 受電用コイル構造体およびワイヤレス給電システム
JP2015186426A (ja) * 2014-03-26 2015-10-22 株式会社エクォス・リサーチ 受電システム
JP6091701B1 (ja) * 2015-08-03 2017-03-08 三菱電機エンジニアリング株式会社 電力伝送装置及びアンテナ
JP2017041996A (ja) * 2015-08-21 2017-02-23 国立大学法人横浜国立大学 電気機械エネルギー変換装置
JP2017112743A (ja) * 2015-12-16 2017-06-22 洪 恩姫 ワイヤレス給電装置
CN113904468A (zh) * 2021-10-29 2022-01-07 军事科学院系统工程研究院军事新能源技术研究所 一种功率自适应的磁耦合无线电能传输充电方法
CN113904468B (zh) * 2021-10-29 2022-04-12 军事科学院系统工程研究院军事新能源技术研究所 一种功率自适应的磁耦合无线电能传输充电方法

Also Published As

Publication number Publication date
EP2747245A1 (en) 2014-06-25
CN103814502A (zh) 2014-05-21
KR20140067134A (ko) 2014-06-03
US20140191586A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
WO2013042229A1 (ja) 非接触送電装置、非接触受電装置および非接触送受電システム
JP5692372B2 (ja) 車両および電力送受電システム
JP5700133B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
JP5768878B2 (ja) 車両
JP5263391B2 (ja) 非接触受電装置およびそれを備える車両
EP3620326B1 (en) Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
JP6119756B2 (ja) 非接触給電システムおよび送電装置
JP5392358B2 (ja) 非接触受電装置、非接触送電装置
JP5884830B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
WO2013069089A1 (ja) 車両の受電装置、送電装置および非接触送受電システム
JP2013126326A (ja) 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム
JP2011120382A (ja) 非接触給電設備、非接触受電装置および非接触給電システム
JP5287115B2 (ja) 車両の受電制御装置およびそれを備える車両
JPWO2013042229A1 (ja) 非接触送電装置、非接触受電装置および非接触送受電システム
JP5962613B2 (ja) 非接触受電装置
JP2015027224A (ja) 非接触受電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534533

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234553

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011872648

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147010169

Country of ref document: KR

Kind code of ref document: A