WO2013076804A1 - 車両および電力伝送システム - Google Patents

車両および電力伝送システム Download PDF

Info

Publication number
WO2013076804A1
WO2013076804A1 PCT/JP2011/076860 JP2011076860W WO2013076804A1 WO 2013076804 A1 WO2013076804 A1 WO 2013076804A1 JP 2011076860 W JP2011076860 W JP 2011076860W WO 2013076804 A1 WO2013076804 A1 WO 2013076804A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
receiving device
battery
unit
power receiving
Prior art date
Application number
PCT/JP2011/076860
Other languages
English (en)
French (fr)
Inventor
達 中村
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013545681A priority Critical patent/JP5825356B2/ja
Priority to PCT/JP2011/076860 priority patent/WO2013076804A1/ja
Priority to CN201180074976.8A priority patent/CN103946045B/zh
Priority to US14/357,695 priority patent/US9969281B2/en
Priority to EP11876115.4A priority patent/EP2783890B1/en
Priority to KR1020147016692A priority patent/KR20140099276A/ko
Publication of WO2013076804A1 publication Critical patent/WO2013076804A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0416Arrangement in the rear part of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a vehicle and a power transmission system.
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-253131
  • a power receiving device including a power receiving unit is mounted on the vehicle side.
  • a power receiving device including a power receiving unit
  • mount the power receiving device in a limited space of the vehicle. Therefore, it is necessary to examine the arrangement relationship between the power receiving device and the vehicle-mounted object arranged on the vehicle side. There is.
  • the present invention has been made to solve the above-described problems, and provides a vehicle and a power transmission system including a structure capable of efficiently mounting a power receiving device in a limited space of the vehicle. It is in.
  • a vehicle includes a floor panel, a power receiving device that receives power from a power transmitting device provided outside, and a battery connected to the power receiving device, and the battery includes the floor panel.
  • the power reception device is disposed below the floor panel, and the power reception device and the battery are disposed so as to at least partially overlap each other in plan view.
  • a charger is further provided, and the charger is disposed between the power receiving device and the battery.
  • the battery pack further includes a charging unit connected to a power supply connector provided outside, and the charger converts the power supplied from the charging unit into the charging power of the battery and the power receiving unit. The power received from the device is converted into the charging power of the battery.
  • a charge control unit is further provided, and the charge control unit is disposed between the power receiving device and the battery.
  • the rear end portion of the power receiving device is disposed so as to protrude to the rear side of the vehicle from the rear end portion of the battery.
  • the power transmission device includes a power transmission unit that transmits power to the power reception device in a contactless manner
  • the power reception device includes a power reception unit that receives power in a contactless manner from the power transmission unit.
  • the difference between the natural frequency of the power receiving unit and the natural frequency of the power receiving unit is 10% or less of the natural frequency of the power receiving unit.
  • the power transmission device includes a power transmission unit that transmits power to the power reception device in a contactless manner
  • the power reception device includes a power reception unit that receives power in a contactless manner from the power transmission unit, and receives the power
  • the coupling coefficient between the power transmission unit and the power transmission unit is 0.1 or less.
  • the power transmission device includes a power transmission unit that transmits power to the power reception device in a contactless manner
  • the power reception device includes a power reception unit that receives power in a contactless manner from the power transmission unit, and receives the power And at least a magnetic field that is formed between the power reception unit and the power transmission unit and vibrates at a specific frequency, and an electric field that is formed between the power reception unit and the power transmission unit and vibrates at a specific frequency. Power is received from the power transmission unit through one side.
  • a power transmission system includes a power transmission device that transmits power in a contactless manner, a floor panel, a power reception device that receives power from the power transmission device, and a vehicle that includes a battery connected to the power reception device, and the battery Is disposed above the floor panel, the power receiving device is disposed below the floor panel, and the power receiving device and the battery are disposed so as to at least partially overlap in a plan view.
  • the vehicle further includes a charger, and the charger is disposed between the power receiving device and the battery.
  • the vehicle further includes a charging unit connected to a power supply connector provided outside, and the charger converts power supplied from the charging unit into charging power of the battery. At the same time, the power received from the power receiving device is converted into the charging power of the battery.
  • the vehicle further includes a charge control unit, and the charge control unit is disposed between the power receiving device and the battery.
  • the rear end portion of the power receiving device is disposed so as to protrude to the rear side of the vehicle from the rear end portion of the battery.
  • the present invention it is possible to provide a vehicle and a power transmission system having a structure capable of efficiently mounting a power receiving device in a limited space of the vehicle.
  • FIG. 3 is a bottom view of the vehicle showing the arrangement of the power receiving device mounted on the vehicle in the first embodiment.
  • FIG. 3 is a partial lateral (left-right direction) cross-sectional view showing an arrangement of a power receiving device mounted on a vehicle in Embodiment 1.
  • FIG. 3 is a partial vertical (front-rear direction) cross-sectional view illustrating an arrangement of a power receiving device mounted on a vehicle in the first embodiment.
  • FIG. 6 is a perspective view of a vehicle showing an arrangement of a power receiving device mounted on the vehicle in a second embodiment. It is a figure which shows the circuit of the power receiving apparatus, charger, and battery which are mounted in the vehicle in Embodiment 2. It is a perspective view which shows the mounting state of the power receiving apparatus mounted in the vehicle in Embodiment 2, a charger, and a battery.
  • FIG. 10 is a partial horizontal (left-right direction) cross-sectional view showing a mounted state of a power receiving device, a charger, and a battery mounted on a vehicle in a second embodiment. It is a partial vertical (front-back direction) sectional view which shows the mounting state of the power receiving apparatus mounted in the vehicle in Embodiment 2, a charger, and a battery. It is a figure which shows the other circuit of the power receiving apparatus mounted in the vehicle in Embodiment 2, a charger, a charge control unit, and a battery.
  • a vehicle equipped with a power transmission device, a power reception device, and a power transmission system in an embodiment based on the present invention will be described below with reference to the drawings.
  • the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified.
  • the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
  • FIG. 1 is a diagram schematically illustrating a vehicle equipped with a power transmission device, a power reception device, and a power transmission system according to an embodiment.
  • the power transmission system includes the electric vehicle 10 including the power reception device 40 and the external power supply device 20 including the power transmission device 41.
  • the power receiving device 40 of the electric vehicle 10 stops at a predetermined position of the parking space 42 where the power transmitting device 41 is provided, and mainly receives power from the power transmitting device 41.
  • the parking space 42 is provided with a stop and a line indicating a parking position and a parking range so that the electric vehicle 10 stops at a predetermined position.
  • the external power supply device 20 includes a high frequency power driver 22 connected to the AC power source 21, a control unit 26 that controls driving of the high frequency power driver 22, and a power transmission device 41 connected to the high frequency power driver 22.
  • the power transmission device 41 includes a power transmission unit 28 and an electromagnetic induction coil 23.
  • the power transmission unit 28 includes a resonance coil 24 and a capacitor 25 connected to the resonance coil 24.
  • the electromagnetic induction coil 23 is electrically connected to the high frequency power driver 22.
  • the capacitor 25 is provided, but the capacitor 25 is not necessarily an essential configuration.
  • the power transmission unit 28 includes an electric circuit formed by the inductance of the resonance coil 24, the stray capacitance of the resonance coil 24, and the capacitance of the capacitor 25.
  • the electric vehicle 10 includes a power receiving device 40, a rectifier 13 connected to the power receiving device 40, a DC / DC converter 14 connected to the rectifier 13, a battery 15 connected to the DC / DC converter 14, a power A control unit (PCU (Power Control Unit)) 16, a motor unit 17 connected to the power control unit 16, a vehicle ECU (Electronic Control Unit) that controls driving of the DC / DC converter 14, the power control unit 16, and the like 18.
  • Electric vehicle 10 according to the present embodiment is a hybrid vehicle including an engine (not shown), but includes an electric vehicle and a fuel cell vehicle as long as the vehicle is driven by a motor.
  • the rectifier 13 is connected to the electromagnetic induction coil 12, converts an alternating current supplied from the electromagnetic induction coil 12 into a direct current, and supplies the direct current to the DC / DC converter 14.
  • the DC / DC converter 14 adjusts the voltage of the direct current supplied from the rectifier 13 and supplies it to the battery 15.
  • the DC / DC converter 14 is not an essential component and may be omitted. In this case, the DC / DC converter 14 can be substituted by providing a matching unit for matching impedance with the external power supply device 20 between the power transmission device 41 and the high-frequency power driver 22.
  • the power control unit 16 includes a converter connected to the battery 15 and an inverter connected to the converter, and the converter adjusts (boosts) the direct current supplied from the battery 15 and supplies the DC current to the inverter.
  • the inverter converts the direct current supplied from the converter into an alternating current and supplies it to the motor unit 17.
  • the motor unit 17 employs, for example, a three-phase AC motor and is driven by an AC current supplied from an inverter of the power control unit 16.
  • the electric vehicle 10 when the electric vehicle 10 is a hybrid vehicle, the electric vehicle 10 further includes an engine.
  • the motor unit 17 includes a motor generator that mainly functions as a generator and a motor generator that mainly functions as an electric motor.
  • the power receiving device 40 includes a power receiving unit 27 and an electromagnetic induction coil 12.
  • the power receiving unit 27 includes the resonance coil 11 and the capacitor 19.
  • the resonance coil 11 has a stray capacitance. For this reason, the power reception unit 27 has an electric circuit formed by the inductance of the resonance coil 11 and the capacitances of the resonance coil 11 and the capacitor 19.
  • the capacitor 19 is not an essential configuration and can be omitted.
  • the difference between the natural frequency of power transmission unit 28 and the natural frequency of power reception unit 27 is 10% or less of the natural frequency of power reception unit 27 or power transmission unit 28.
  • the natural frequency of each power transmission unit 28 and power reception unit 27 in such a range, power transmission efficiency can be increased.
  • the difference between the natural frequencies becomes larger than 10% of the natural frequency of the power receiving unit 27 or the power transmitting unit 28, the power transmission efficiency becomes smaller than 10%, which causes problems such as a longer charging time of the battery 15. .
  • the natural frequency of the power transmission unit 28 is the vibration frequency when the electric circuit formed by the inductance of the resonance coil 24 and the capacitance of the resonance coil 24 freely vibrates when the capacitor 25 is not provided.
  • the natural frequency of the power transmission unit 28 is a vibration frequency when the electric circuit formed by the capacitance of the resonance coil 24 and the capacitor 25 and the inductance of the resonance coil 24 freely vibrates.
  • the natural frequency when the braking force and the electric resistance are zero or substantially zero is also referred to as a resonance frequency of the power transmission unit 28.
  • the natural frequency of the power receiving unit 27 is the vibration frequency when the electric circuit formed by the inductance of the resonance coil 11 and the capacitance of the resonance coil 11 freely vibrates when the capacitor 19 is not provided.
  • the natural frequency of the power receiving unit 27 is the vibration frequency when the electric circuit formed by the capacitance of the resonance coil 11 and the capacitor 19 and the inductance of the resonance coil 11 freely vibrates.
  • the natural frequency when the braking force and the electric resistance are zero or substantially zero is also referred to as a resonance frequency of the power receiving unit 27.
  • FIG. 2 shows a simulation model of the power transmission system.
  • the power transmission system 89 includes a power transmission device 90 and a power reception device 91, and the power transmission device 90 includes an electromagnetic induction coil 92 and a power transmission unit 93.
  • the power transmission unit 93 includes a resonance coil 94 and a capacitor 95 provided in the resonance coil 94.
  • the power receiving device 91 includes a power receiving unit 96 and an electromagnetic induction coil 97.
  • the power receiving unit 96 includes a resonance coil 99 and a capacitor 98 connected to the resonance coil 99.
  • the inductance of the resonance coil 94 is defined as an inductance Lt
  • the capacitance of the capacitor 95 is defined as a capacitance C1.
  • An inductance of the resonance coil 99 is an inductance Lr
  • a capacitance of the capacitor 98 is a capacitance C2.
  • the horizontal axis indicates the deviation (%) of the natural frequency
  • the vertical axis indicates the transmission efficiency (%) at a constant frequency.
  • the deviation (%) in the natural frequency is expressed by the following equation (3).
  • the power transmission efficiency can be increased. Furthermore, the power transmission efficiency can be further improved by setting the natural frequency of each power transmission unit and the power receiving unit so that the absolute value of the deviation (%) of the natural frequency is 5% or less of the natural frequency of the power receiving unit 96. I understand that I can do it.
  • simulation software electromagnetic field analysis software (JMAG (registered trademark): manufactured by JSOL Corporation) is employed.
  • AC power is supplied to the electromagnetic induction coil 23 from the high frequency power driver 22.
  • an alternating current also flows through the resonance coil 24 by electromagnetic induction.
  • electric power is supplied to the electromagnetic induction coil 23 so that the frequency of the alternating current flowing through the resonance coil 24 becomes a specific frequency.
  • the resonance coil 11 is disposed within a predetermined range from the resonance coil 24, and the resonance coil 11 receives electric power from an electromagnetic field formed around the resonance coil 24.
  • so-called helical coils are employed for the resonance coil 11 and the resonance coil 24.
  • a magnetic field that vibrates at a specific frequency is mainly formed around the resonance coil 24, and the resonance coil 11 receives electric power from the magnetic field.
  • the “specific frequency magnetic field” typically has a relationship with the power transmission efficiency and the frequency of the current supplied to the resonance coil 24.
  • the power transmission efficiency when power is transmitted from the resonance coil 24 to the resonance coil 11 varies depending on various factors such as the distance between the resonance coil 24 and the resonance coil 11.
  • the natural frequency (resonance frequency) of the power transmission unit 28 and the power reception unit 27 is the natural frequency f0
  • the frequency of the current supplied to the resonance coil 24 is the frequency f3
  • the air gap between the resonance coil 11 and the resonance coil 24 is Air gap AG.
  • FIG. 4 is a graph showing the relationship between the power transmission efficiency when the air gap AG is changed and the frequency f3 of the current supplied to the resonance coil 24 with the natural frequency f0 fixed.
  • the efficiency curve L1 schematically shows the relationship between the power transmission efficiency when the air gap AG is small and the frequency f3 of the current supplied to the resonance coil 24.
  • the efficiency curve L1 when the air gap AG is small, the peak of power transmission efficiency occurs at frequencies f4 and f5 (f4 ⁇ f5).
  • the two peaks when the power transmission efficiency is increased change so as to approach each other.
  • the peak of the power transmission efficiency is one, and the power transmission efficiency is increased when the frequency of the current supplied to the resonance coil 24 is the frequency f6. It becomes a peak.
  • the peak of power transmission efficiency is reduced as shown by the efficiency curve L3.
  • the following first method can be considered as a method for improving the power transmission efficiency.
  • the power transmission unit 28 and the power reception unit are changed by changing the capacitances of the capacitors 25 and 19 while keeping the frequency of the current supplied to the resonance coil 24 shown in FIG. 27, a method of changing the characteristic of the power transmission efficiency with the terminal 27 can be considered.
  • the capacitances of the capacitor 25 and the capacitor 19 are adjusted so that the power transmission efficiency reaches a peak in a state where the frequency of the current supplied to the resonance coil 24 is constant.
  • the frequency of the current flowing through the resonance coil 24 and the resonance coil 11 is constant regardless of the size of the air gap AG.
  • a method using a matching unit provided between the power transmission device 41 and the high-frequency power driver 22, a method using the converter 14, or the like can be employed. .
  • the second method is a method of adjusting the frequency of the current supplied to the resonance coil 24 based on the size of the air gap AG.
  • the resonance coil 24 is supplied with a current having a frequency f4 or a frequency f5.
  • the frequency characteristic becomes the efficiency curves L2 and L3
  • a current having a frequency f6 is supplied to the resonance coil 24.
  • the frequency of the current flowing through the resonance coil 24 and the resonance coil 11 is changed in accordance with the size of the air gap AG.
  • the frequency of the current flowing through the resonance coil 24 is a fixed constant frequency
  • the frequency flowing through the resonance coil 24 is a frequency that changes as appropriate depending on the air gap AG.
  • a current having a specific frequency set so as to increase the power transmission efficiency is supplied to the resonance coil 24 by the first method, the second method, or the like.
  • a magnetic field electromagnettic field
  • the power reception unit 27 receives power from the power transmission unit 28 through a magnetic field that is formed between the power reception unit 27 and the power transmission unit 28 and vibrates at a specific frequency.
  • the “magnetic field oscillating at a specific frequency” is not necessarily a magnetic field having a fixed frequency.
  • the frequency of the current supplied to the resonance coil 24 is set by paying attention to the air gap AG.
  • the power transmission efficiency is the horizontal shift between the resonance coil 24 and the resonance coil 11.
  • the frequency of the current supplied to the resonance coil 24 may be adjusted based on the other factors.
  • FIG. 5 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the strength of the electromagnetic field.
  • the electromagnetic field is composed of three components.
  • a curve k1 is a component inversely proportional to the distance from the wave source, and is referred to as a “radiating electric field”.
  • a curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induced electric field”.
  • the curve k3 is a component that is inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic field”.
  • the wavelength of the electromagnetic field is “ ⁇ ”
  • the distance at which the “radiation electric field”, the “induction electric field”, and the “electrostatic field” are approximately equal to each other can be expressed as ⁇ / 2 ⁇ .
  • the “electrostatic field” is a region where the intensity of the electromagnetic wave suddenly decreases with the distance from the wave source.
  • the near field evanescent field
  • Energy (electric power) is transmitted using this. That is, in the near field where the “electrostatic field” is dominant, by resonating the power transmitting unit 28 and the power receiving unit 27 (for example, a pair of LC resonance coils) having adjacent natural frequencies, the power transmitting unit 28 and the other power receiving unit 27 are resonated. Transmit energy (electric power) to Since this “electrostatic field” does not propagate energy far away, the resonance method can transmit power with less energy loss than electromagnetic waves that transmit energy (electric power) by “radiant electric field” that propagates energy far away. it can.
  • the coupling coefficient ( ⁇ ) between the power transmission unit 28 and the power reception unit 27 is preferably 0.1 or less. Note that the coupling coefficient ( ⁇ ) is not limited to this value, and may take various values that improve power transmission. Generally, in power transmission using electromagnetic induction, the coupling coefficient ( ⁇ ) between the power transmission unit and the power reception unit is close to 1.0.
  • magnetic resonance coupling For example, “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, “electromagnetic field (electromagnetic field) resonance coupling”, or “electric field (electromagnetic field) resonance coupling” in the power transmission of the present embodiment. Electric field) Resonant coupling.
  • Electromagnetic field (electromagnetic field) resonance coupling means a coupling including any of “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, and “electric field (electric field) resonance coupling”.
  • the resonance coil 24 of the power transmission unit 28 and the resonance coil 11 of the power reception unit 27 described in this specification employ a coil-shaped antenna
  • the power transmission unit 28 and the power reception unit 27 are mainly generated by a magnetic field.
  • the power transmitting unit 28 and the power receiving unit 27 are “magnetic resonance coupled” or “magnetic field (magnetic field) resonant coupled”.
  • an antenna such as a meander line can be used as the resonance coils 24 and 11.
  • the power transmission unit 28 and the power reception unit 27 are mainly coupled by an electric field.
  • the power transmission unit 28 and the power reception unit 27 are “electric field (electric field) resonance coupled”.
  • FIG. 6 is a bottom view of the vehicle showing the arrangement of the power receiving device mounted on the electric vehicle 10 in the present embodiment
  • FIG. 7 is a portion showing the arrangement of the power receiving device mounted on the electric vehicle 10 in the present embodiment
  • FIG. 8 is a partial vertical (front-rear direction) cross section showing the arrangement of the power receiving device mounted on the electric vehicle 10 in the present embodiment.
  • the area from the front end of the electric vehicle 10 to the rear end of the front wheel tire 160F is the front part
  • the area from the front wheel tire 160F to the front end of the rear wheel tire 160R is the center part
  • the rear end of the rear wheel tire 160R To the rear end of the electric vehicle 10 is referred to as a rear portion.
  • FIG. 7 in the state where the electric vehicle 10 is placed on the horizontal plane, the vertical direction upward is upward, the vertical downward direction is downward, the left hand side when facing the front side of the vehicle is the left side, and the front side of the vehicle is The right hand side when facing is called the right side.
  • the right side when facing is called the right side.
  • electrically powered vehicle 10 in the present embodiment has a rear floor panel 31, a muffler 130, and left and right rear wheel tires 160R, and a center floor panel 32, a fuel tank 120, and side members 32A in the center. 32B and an exhaust pipe 131, and an engine floor panel 33 and left and right front wheel tires 160F at the front.
  • battery 15 is arranged above rear floor panel 31 which is a floor panel (see FIG. 7).
  • the power receiving device 40 is disposed below the battery 15 with the rear floor panel 31 interposed therebetween.
  • the region of the front half of the power receiving device 40 is located between the left and right rear wheel tires 160R, and the rear half of the power receiving device 40 is located rearward from the left and right rear wheel tires 160R. Protrusively toward.
  • the arrangement position with respect to the rear wheel tire 160R of the power receiving device 40 is not limited to the present embodiment.
  • the power receiving device 40 includes a power receiving unit 27 and a circular electromagnetic induction coil 12.
  • the power reception unit 27 includes a circular resonance coil 11 and a capacitor 19.
  • a shield member 27 ⁇ / b> S is provided so as to surround the power receiving device 40.
  • the shield member 27S has a cylindrical shape surrounding the outside in the radial direction of the power receiving device 40.
  • the bottom 27b is provided on the rear floor panel 31 side, and the power transmission unit 28 side is open. Note that the shape of the shield member 27S is not limited to the shape of the present embodiment.
  • the resonance coil 11 is fixed to the bottom 27b of the shield member 27S using a resin support member 11a.
  • the electromagnetic induction coil 12 is fixed to the bottom 27b of the shield member 27S using a resin support member 12a.
  • the electromagnetic induction coil 12 is arranged outside the resonance coil 11, but the arrangement relationship between the resonance coil 11 and the electromagnetic induction coil 12 is not limited to this arrangement relationship.
  • the shape of the resonance coil 11 and the electromagnetic induction coil 12 is not limited to a circle, and a polygon, a regular octagon, or the like can be adopted, but the shape is not particularly limited.
  • battery 15 is disposed above rear floor panel 31, and power receiving device 40 is disposed below rear floor panel 31. Furthermore, the power receiving device 40 and the battery 15 are disposed so as to overlap at least partially in plan view. Specifically, it means that the projection surface of the power receiving device 40 overlaps the projection surface of the battery 15 in a plan view (when viewing from the top to the bottom in the vertical direction). When the projection surfaces overlap, the size (outer shape) of the battery 15 and the power receiving device 40 in plan view varies, and when the projection surface of the power receiving device 40 is included in the projection surface of the battery 15, the power receiving device 40. In the case where the projection plane of the battery 15 is included in the projection plane, a case where a part of the projection planes overlap each other is applicable.
  • the rear end portion 40a of the power receiving device 40 protrudes rearward from the rear end portion 15a of the battery 15 (distance CZ1). Are arranged to be.
  • a crashable zone is defined when the vehicle is collided from the rear side on the rear side of the vehicle, and the battery 15 is arranged in front of the crushable zone. Therefore, by arranging a part of the power receiving device 40 so as to protrude to the crushable zone side, the power receiving device 40 can be used as a shock absorber when collided from the rear side. It becomes possible to protect high-pressure parts.
  • the projection surface of the battery 15 is arranged so that at least a part of the projection surface of the battery 15 overlaps the projection surface of the power receiving device 40 in plan view.
  • the power receiving device 40 can be efficiently mounted in a limited space of the electric vehicle 10 in a plan view.
  • the rear floor panel 31 is positioned between the battery 15 and the power receiving device 40, heat transfer from the power receiving device 40 to the battery 15 can be suppressed by the rear floor panel 31.
  • the cable routed between the power receiving device 40 and the battery 15 can be shortened. This also makes it possible to expect an improvement in charging efficiency. Further, by disposing the battery 15 on the front side of the vehicle with respect to the crushable zone, it is possible to improve safety with respect to the high-voltage device and avoid occurrence of cable loss (leakage, short circuit).
  • FIG. 9 is a perspective view of the vehicle showing the arrangement of the power receiving device 40 mounted on the electric vehicle 10 according to the present embodiment.
  • FIG. 10 shows the power receiving device 40 mounted on the electric vehicle 10 according to the present embodiment and charging.
  • FIG. 11 is a perspective view showing a mounted state of the power receiving device 40, the charger 200, and the battery 15 mounted on the electric vehicle 10 in the present embodiment
  • FIG. 13 is a partial horizontal (horizontal direction) cross-sectional view
  • FIG. 14 is a partial vertical (front-rear direction) cross-sectional view
  • FIG. 15 is a diagram showing another circuit.
  • electric vehicle 10 in the present embodiment is provided with a fuel tank 120 at a portion located under the rear seat in the passenger compartment.
  • a battery 15 is arranged behind the electric vehicle 10 from the rear seat.
  • the power receiving device 40 is disposed below the battery 15 with the rear floor panel 31 interposed therebetween.
  • the left rear fender of the electric vehicle 100 is provided with a charging unit 1, and the right rear fender is provided with a fueling unit 2.
  • the charging unit 1 and the fueling unit 2 are provided on different side surfaces of the vehicle, but the charging unit 1 may be provided on the left side and the fueling unit 2 may be provided on the right side. . Moreover, you may provide in the same side surface (left side, right side). Further, the positions of the charging unit 1 and the oil supply unit 2 are not limited to the rear fender, and may be provided on the front fender.
  • fuel is supplied by inserting the fuel supply connector 2A into the fuel supply unit 2 (fuel supply unit).
  • Fuel such as gasoline supplied from the fuel supply unit 2 is stored in the fuel tank 120.
  • the power feeding connector 1A is a connector for charging electric power supplied from a commercial power source (for example, single-phase AC 100V in Japan).
  • a commercial power source for example, single-phase AC 100V in Japan.
  • a plug connected to a general household power source is used as the power feeding connector 1A.
  • charging unit 1 and power receiving device 40 are connected to charger 200.
  • a battery 15 is connected to the charger 200, and a charging control unit 300 is connected to the battery 15.
  • charging unit 1 that is contact charging and power receiving device 40 that is non-contact power reception are connected to dual-purpose charger 200.
  • the charger 200 converts the power supplied from the charging unit 1 into the charging power of the battery 15 and converts the power received from the power receiving device 40 into the charging power of the battery 15. Thereby, the number of parts can be reduced.
  • the rear floor panel 31 is provided with a recessed area 31P directed downward.
  • a bracket 210 extending in the left-right direction is provided along the bottom surface and the slope of the recessed area 31P, and the charger 200 is placed on the bracket 210.
  • battery 15 is disposed above rear floor panel 31, and power receiving device 40 is disposed below rear floor panel 31. Similar to the case of the first embodiment, the power receiving device 40 and the battery 15 are arranged so that at least a part thereof overlaps.
  • charger 200 is located between battery 15 and rear floor panel 31 (above rear floor panel 31), but charger 200 is placed between rear floor panel 31 and power receiving device 40 (rear floor). It is also possible to position it below the panel 31.
  • the lower part of power reception device 40 is the same as that in the first embodiment.
  • the charger 200 is mounted on the bracket 210, but the bracket is not necessarily required.
  • the position of the charger 200 is also arranged so as to be entirely included between the battery 15 and the power receiving device 40 in a plan view, but may be arranged so as to partially overlap.
  • the rear end portion 40a (the rear end portion 40a of the shield member 27S) of the power receiving device 40 protrudes (distance CZ1) to the rear side of the vehicle from the rear end portion 15a of the battery 15. Is arranged. Further, since the rear end portion 200a of the charger 200 is located on the front side of the vehicle with respect to the rear end portion 15a of the battery 15, the rear end portion 40a of the power receiving device 40 is the rear end portion of the charger 200. It is arrange
  • the charging control unit 300 is the same as the charger 200.
  • a crashable zone (a region indicated by an arrow CZ in FIG. 12) is defined when the vehicle is collided from the rear side on the rear side of the vehicle. Is also arranged on the front side. Therefore, by arranging a part of the power receiving device 40 so as to protrude toward the crushable zone, the power receiving device 40 can be used as a shock absorber when colliding from the rear side. High voltage components such as the battery 15 and the charger 200 can be protected.
  • the power receiving device 40 is positioned below the battery 15 with the rear floor panel 31 interposed therebetween so that at least a part of the projection surface of the battery 15 overlaps the projection surface of the power receiving device 40 in plan view. Is arranged.
  • the power receiving device 40 can be efficiently mounted in a limited space of the electric vehicle 10 in a plan view.
  • the rear floor panel 31 is positioned between the battery 15 and the power receiving device 40, heat transfer from the power receiving device 40 to the battery 15 can be suppressed by the rear floor panel 31.
  • the cables WH1 and WH2 arranged between the power receiving device 40 and the battery 15 can be shortened. This also makes it possible to expect an improvement in charging efficiency.
  • the charger 200, and the charge control unit 300 are disposed on the front side of the vehicle with respect to the crushable zone, safety for high-voltage devices is improved and occurrence of cable loss (leakage, short circuit) is avoided. Can do.
  • the charging control unit 300 in the power receiving device 40.
  • the charge control unit 300 is fixed to the bracket 210 as shown in FIG.
  • One wire WH1 extending from the charging control unit 300 is connected to the battery 15.
  • the other wire WH ⁇ b> 2 extending from the charging control unit 300 passes through the communication hole 31 ⁇ / b> H provided in the rear floor panel 31 and is connected to the battery 15.
  • the charging control unit 300 is fixed to the bracket 210, the charging control unit 300 is also disposed between the power receiving device 40 and the battery 15. It is also possible to position the charging control unit 300 between the rear floor panel 31 and the power receiving device 40 (below the rear floor panel 31).
  • the arrangement position is not limited to the rear portion of the electric vehicle 10.
  • the battery 15 and the power receiving device 40 can be arranged on the center floor panel 32 in the central portion of the electric vehicle 10 in the configuration shown in each of the above embodiments. As shown in FIG. 18, the battery 15 and the power receiving device 40 can be arranged on the engine floor panel 33 in the front part of the electric vehicle 10 in the configuration shown in each of the above embodiments.
  • the power transmitting device and the power receiving device including the electromagnetic induction coils 12 and 23 are exemplified, but the present invention can also be applied to a resonance type non-contact power transmitting and receiving device not including the electromagnetic induction coil. .
  • 1 Charging part 1A power supply connector, 2 oil supply part, 2A oil supply connector, 10 electric vehicle, 11, 24, 94, 99 resonance coil, 12, 23, 92, 97 electromagnetic induction coil, 11a, 12a support member, 13 rectifier, 14 DC / DC converter, 15 battery, 16 power control unit, 17 motor unit, 18 vehicle ECU, 19, 25, 98, 95 capacitor, 20 external power supply device, 21 AC power supply, 22 high frequency power driver, 26 control unit, 27 , 96 Power receiving part, 27S shield member, 27b bottom part, 28,93 power transmission part, 29 impedance adjuster, 31 rear floor panel, 31H communication hole, 32 center floor panel, 32A, 32B side member, 33 engine floor panel, 40, 9 Power receiving device, 40a, 200a rear end, 41, 90 power transmission device, 42 parking space, 110 rear suspension, 120 fuel tank, 121 fuel hose, 130 muffler, 131 exhaust pipe, 160F front wheel tire, 160R rear wheel tire, 200 charge Unit, 210 bracket, 300 charge control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 この車両(10)は、リアフロアパネル(31)と、外部に設けられた送電装置(41)から非接触で電力を受電する受電装置(40)と、受電装置(40)に接続されるバッテリ(15)とを備え、バッテリ(15)は、リアフロアパネル(31)の上方に配置され、受電装置(40)は、リアフロアパネル(31)の下方に配置され、平面視において、受電装置(40)とバッテリ(15)とは少なくとも一部が重なるように配置されている。

Description

車両および電力伝送システム
 本発明は、車両および電力伝送システムに関する。
 近年、環境への配慮からバッテリなどの電力を用いて駆動輪を駆動させるハイブリッド車両や電気自動車などが着目されている。
 特に近年は、上記のようなバッテリを搭載した電動車両において、プラグなどを用いずに非接触でバッテリを充電可能なワイヤレス充電が着目されている。そして、最近では非接触の充電方式においても各種の充電方式が提案されている。
 非接触の充電方式を用いた電力伝送システムとしては、たとえば、特開2008-253131号公報(特許文献1)が挙げられる。
 これらの電力伝送システムにおいては、車両側に受電部を含む受電装置が搭載される。実際に車両に受電装置を載置するには、車両の限られたスペースに受電装置を搭載する必要があるため、受電装置と車両側に配置される車両搭載物との配置関係を検討する必要がある。
特開2008-253131号公報
 したがって、本発明は上記の課題を解決するためになされたものであり、車両の限られたスペースに受電装置を効率良く搭載することが可能な構造を備える、車両および電力伝送システムを提供することにある。
 本発明に基づいた車両は、フロアパネルと、外部に設けられた送電装置から非接触で電力を受電する受電装置と、上記受電装置に接続されるバッテリとを備え、上記バッテリは、上記フロアパネルの上方に配置され、上記受電装置は、上記フロアパネルの下方に配置され、平面視において、上記受電装置と上記バッテリとは少なくとも一部が重なるように配置されている。
 他の形態においては、充電器をさらに備え、上記充電器は、上記受電装置と上記バッテリとの間に配置されている。
 他の形態においては、外部に設けられた給電コネクタに接続される充電部をさらに備え、上記充電器は、上記充電部から給電される電力を、上記バッテリの充電電力に変換するとともに、上記受電装置から受電した電力を上記バッテリの充電電力に変換する。
 他の形態においては、充電制御ユニットをさらに備え、上記充電制御ユニットは、上記受電装置と上記バッテリとの間に配置される。
 他の形態においては、上記受電装置の後端部は、上記バッテリの後端部よりも、当該車両の後側に突出するように配置されている。
 他の形態においては、上記送電装置は、非接触で電力を上記受電装置に送電する送電部を含み、上記受電装置は、上記送電部から非接触で電力を受電する受電部を含み、上記送電部の固有周波数と上記受電部の固有周波数との差は、上記受電部の固有周波数の10%以下である。
 他の形態においては、上記送電装置は、非接触で電力を上記受電装置に送電する送電部を含み、上記受電装置は、上記送電部から非接触で電力を受電する受電部を含み、上記受電部と上記送電部との結合係数は、0.1以下である。
 他の形態においては、上記送電装置は、非接触で電力を上記受電装置に送電する送電部を含み、上記受電装置は、上記送電部から非接触で電力を受電する受電部を含み、上記受電部は、上記受電部と上記送電部の間に形成され、かつ特定の周波数で振動する磁界と、上記受電部と上記送電部の間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて上記送電部から電力を受電する。
 本発明に係る電力伝送システムは、非接触で電力を送電する送電装置と、フロアパネル、上記送電装置から受電する受電装置、および上記受電装置に接続されるバッテリを含む車両とを備え、上記バッテリは、上記フロアパネルの上方に配置され、上記受電装置は、上記フロアパネルの下方に配置され、平面視において、上記受電装置と上記バッテリとは少なくとも一部が重なるように配置されている。
 他の形態においては、上記車両は、充電器をさらに備え、上記充電器は、上記受電装置と上記バッテリとの間に配置される。
 他の形態においては、上記車両は、外部に設けられた給電コネクタに接続される充電部をさらに備え、上記充電器は、上記充電部から給電される電力を、上記バッテリの充電電力に変換するとともに、上記受電装置から受電した電力を上記バッテリの充電電力に変換する。
 他の形態においては、上記車両は、充電制御ユニットをさらに備え、上記充電制御ユニットは、上記受電装置と上記バッテリとの間に配置される。
 他の形態においては、上記受電装置の後端部は、上記バッテリの後端部よりも、当該車両の後側に突出するように配置されている。
 この発明によれば、車両の限られたスペースに受電装置を効率良く搭載することが可能な構造を備える、車両および電力伝送システムを提供することが可能となる。
実施の形態1における送電装置、受電装置、および電力伝送システムを搭載した車両を模式的に説明する図である。 電力伝送システムのシミュレーションモデルを示す図である。 シミュレーション結果を示す図である。 固有周波数を固定した状態で、エアギャップを変化させたときの電力伝送効率と、共鳴コイルに供給される電流の周波数fとの関係を示す図である。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 実施の形態1における車両に搭載される受電装置の配置を示す車両の底面図である。 実施の形態1における車両に搭載される受電装置の配置を示す部分横(左右方向)断面図である。 実施の形態1における車両に搭載される受電装置の配置を示す部分縦(前後方向)断面図である。 実施の形態2おける車両に搭載される受電装置の配置を示す車両の斜視図である。 実施の形態2おける車両に搭載される受電装置、充電器、およびバッテリの回路を示す図である。 実施の形態2おける車両に搭載される受電装置、充電器、およびバッテリの搭載状態を示す斜視図である。 実施の形態2おける車両に搭載される受電装置、充電器、およびバッテリの搭載状態を示す平面図である。 実施の形態2おける車両に搭載される受電装置、充電器、およびバッテリの搭載状態を示す部分横(左右方向)断面図である。 実施の形態2おける車両に搭載される受電装置、充電器、およびバッテリの搭載状態を示す部分縦(前後方向)断面図である。 実施の形態2おける車両に搭載される受電装置、充電器、充電制御ユニット、およびバッテリの他の回路を示す図である。 実施の形態2おける車両に搭載される受電装置、充電器、充電制御ユニット、およびバッテリの搭載状態を示す斜視図である。 他の実施の形態における車両に搭載される受電装置の配置を示す車両の底面図である。 他の実施の形態における車両に搭載される受電装置の配置を示す車両の底面図である。
 本発明に基づいた実施の形態における送電装置、受電装置、および電力伝送システムを搭載した車両について、以下、図を参照しながら説明する。なお、以下に説明する各実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。また、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。また、各実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。
 (実施の形態1)
 図1を参照して、本実施の形態に係る電力伝送システムを搭載した車両について説明する。図1は、実施の形態における送電装置、受電装置、および電力伝送システムを搭載した車両を模式的に説明する図である。
 本実施の形態1に係る電力伝送システムは、受電装置40を含む電動車両10と、送電装置41を含む外部給電装置20とを有する。電動車両10の受電装置40は、送電装置41が設けられた駐車スペース42の所定位置に停車して、主に、送電装置41から電力を受電する。
 駐車スペース42には、電動車両10を所定の位置に停車させるように、輪止や、駐車位置および駐車範囲を示すラインが設けられている。
 外部給電装置20は、交流電源21に接続された高周波電力ドライバ22と、高周波電力ドライバ22などの駆動を制御する制御部26と、この高周波電力ドライバ22に接続された送電装置41とを含む。送電装置41は、送電部28と、電磁誘導コイル23とを含む。送電部28は、共鳴コイル24と、共鳴コイル24に接続されたキャパシタ25とを含む。電磁誘導コイル23は、高周波電力ドライバ22に電気的に接続されている。なお、この図1に示す例においては、キャパシタ25が設けられているが、キャパシタ25は必ずしも必須の構成ではない。
 送電部28は、共鳴コイル24のインダクタンスと、共鳴コイル24の浮遊容量およびキャパシタ25のキャパシタンスとから形成された電気回路を含む。
 電動車両10は、受電装置40と、受電装置40に接続された整流器13と、この整流器13に接続されたDC/DCコンバータ14と、このDC/DCコンバータ14に接続されたバッテリ15と、パワーコントロールユニット(PCU(Power Control Unit))16と、このパワーコントロールユニット16に接続されたモータユニット17と、DC/DCコンバータ14やパワーコントロールユニット16などの駆動を制御する車両ECU(Electronic Control Unit)18とを備える。なお、本実施の形態に係る電動車両10は、図示しないエンジンを備えたハイブリッド車両であるが、モータにより駆動される車両であれば、電気自動車や燃料電池車両も含む。
 整流器13は、電磁誘導コイル12に接続されており、電磁誘導コイル12から供給される交流電流を直流電流に変換して、DC/DCコンバータ14に供給する。
 DC/DCコンバータ14は、整流器13から供給された直流電流の電圧を調整して、バッテリ15に供給する。なお、DC/DCコンバータ14は必須の構成ではなく省略してもよい。この場合には、外部給電装置20にインピーダンスを整合するための整合器を送電装置41と高周波電力ドライバ22との間に設けることで、DC/DCコンバータ14の代用をすることができる。
 パワーコントロールユニット16は、バッテリ15に接続されたコンバータと、このコンバータに接続されたインバータとを含み、コンバータは、バッテリ15から供給される直流電流を調整(昇圧)して、インバータに供給する。インバータは、コンバータから供給される直流電流を交流電流に変換して、モータユニット17に供給する。
 モータユニット17は、たとえば、三相交流モータなどが採用されており、パワーコントロールユニット16のインバータから供給される交流電流によって駆動する。
 なお、電動車両10がハイブリッド車両の場合には、電動車両10は、エンジンをさらに備える。モータユニット17は、発電機として主に機能するモータジェネレータと、電動機として主に機能するモータジェネレータとを含む。
 受電装置40は、受電部27と、電磁誘導コイル12とを含む。受電部27は、共鳴コイル11とキャパシタ19とを含む。共鳴コイル11は浮遊容量を有する。このため、受電部27は、共鳴コイル11のインダクタンスと、共鳴コイル11およびキャパシタ19のキャパシタンスとによって形成された電気回路を有する。なお、キャパシタ19は、必須の構成ではなく、省略することができる。
 本実施の形態に係る電力伝送システムにおいては、送電部28の固有周波数と、受電部27の固有周波数との差は、受電部27または送電部28の固有周波数の10%以下である。このような範囲に各送電部28および受電部27の固有周波数を設定することで、電力伝送効率を高めることができる。その一方で、固有周波数の差が受電部27または送電部28の固有周波数の10%よりも大きくなると、電力伝送効率が10%より小さくなり、バッテリ15の充電時間が長くなるなどの弊害が生じる。
 ここで、送電部28の固有周波数とは、キャパシタ25が設けられていない場合には、共鳴コイル24のインダクタンスと、共鳴コイル24のキャパシタンスとから形成された電気回路が自由振動する場合の振動周波数を意味する。キャパシタ25が設けられた場合には、送電部28の固有周波数とは、共鳴コイル24およびキャパシタ25のキャパシタンスと、共鳴コイル24のインダクタンスとによって形成された電気回路が自由振動する場合の振動周波数を意味する。上記電気回路において、制動力および電気抵抗をゼロもしくは実質的にゼロとしたときの固有周波数は、送電部28の共振周波数とも呼ばれる。
 同様に、受電部27の固有周波数とは、キャパシタ19が設けられていない場合には、共鳴コイル11のインダクタンスと、共鳴コイル11のキャパシタンスとから形成された電気回路が自由振動する場合の振動周波数を意味する。キャパシタ19が設けられた場合には、受電部27の固有周波数とは、共鳴コイル11およびキャパシタ19のキャパシタンスと、共鳴コイル11のインダクタンスとによって形成された電気回路が自由振動する場合の振動周波数を意味する。上記電気回路において、制動力および電気抵抗をゼロもしくは実質的にゼロとしたときの固有周波数は、受電部27の共振周波数とも呼ばれる。
 図2および図3を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。図2は、電力伝送システムのシミュレーションモデルを示す。電力伝送システム89は、送電装置90と、受電装置91とを備え、送電装置90は、電磁誘導コイル92と、送電部93とを含む。送電部93は、共鳴コイル94と、共鳴コイル94に設けられたキャパシタ95とを含む。
 受電装置91は、受電部96と、電磁誘導コイル97とを備える。受電部96は、共鳴コイル99とこの共鳴コイル99に接続されたキャパシタ98とを含む。
 共鳴コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。共鳴コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、送電部93の固有周波数f1は、下記の式(1)によって示され、受電部96の固有周波数f2は、下記の式(2)によって示される。
 f1=1/{2π(Lt×C1)1/2}・・・(1)
 f2=1/{2π(Lr×C2)1/2}・・・(2)
 ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、送電部93および受電部96の固有周波数のズレと、電力伝送効率との関係を図3に示す。なお、このシミュレーションにおいては、共鳴コイル94および共鳴コイル99の相対的な位置関係は固定した状態であって、さらに、送電部93に供給される電流の周波数は一定である。
 図3に示すグラフのうち、横軸は、固有周波数のズレ(%)を示し、縦軸は、一定周波数での伝送効率(%)を示す。固有周波数のズレ(%)は、下記式(3)によって示される。
 (固有周波数のズレ)={(f1-f2)/f2}×100(%)・・・(3)
 図3からも明らかなように、固有周波数のズレ(%)が±0%の場合には、電力伝送効率は、100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は、40%となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は、10%となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は、5%となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、受電部96の固有周波数の10%以下の範囲となるように各送電部および受電部の固有周波数を設定することで電力伝送効率を高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が受電部96の固有周波数の5%以下となるように、各送電部および受電部の固有周波数を設定することで電力伝送効率をより高めることができることがわかる。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
 次に、本実施の形態に係る電力伝送システムの動作について説明する。
 図1において、電磁誘導コイル23には、高周波電力ドライバ22から交流電力が供給される。電磁誘導コイル23に所定の交流電流が流れると、電磁誘導によって共鳴コイル24にも交流電流が流れる。この際、共鳴コイル24を流れる交流電流の周波数が特定の周波数となるように、電磁誘導コイル23に電力が供給されている。
 共鳴コイル24に特定の周波数の電流が流れると、共鳴コイル24の周囲には特定の周波数で振動する電磁界が形成される。
 共鳴コイル11は、共鳴コイル24から所定範囲内に配置されており、共鳴コイル11は共鳴コイル24の周囲に形成された電磁界から電力を受け取る。
 本実施の形態においては、共鳴コイル11および共鳴コイル24は、所謂、ヘリカルコイルが採用されている。このため、共鳴コイル24の周囲には、特定の周波数で振動する磁界が主に形成され、共鳴コイル11は当該磁界から電力を受け取る。
 ここで、共鳴コイル24の周囲に形成される特定の周波数の磁界について説明する。「特定の周波数の磁界」は、典型的には、電力伝送効率と共鳴コイル24に供給される電流の周波数と関連性を有する。そこで、まず、電力伝送効率と、共鳴コイル24に供給される電流の周波数との関係について説明する。共鳴コイル24から共鳴コイル11に電力を伝送するときの電力伝送効率は、共鳴コイル24および共鳴コイル11の間の距離などの様々な要因よって変化する。たとえば、送電部28および受電部27の固有周波数(共振周波数)を固有周波数f0とし、共鳴コイル24に供給される電流の周波数を周波数f3とし、共鳴コイル11および共鳴コイル24の間のエアギャップをエアギャップAGとする。
 図4は、固有周波数f0を固定した状態で、エアギャップAGを変化させたときの電力伝送効率と、共鳴コイル24に供給される電流の周波数f3との関係を示すグラフである。
 図4に示すグラフにおいて、横軸は、共鳴コイル24に供給する電流の周波数f3を示し、縦軸は、電力伝送効率(%)を示す。効率曲線L1は、エアギャップAGが小さいときの電力伝送効率と、共鳴コイル24に供給する電流の周波数f3との関係を模式的に示す。この効率曲線L1に示すように、エアギャップAGが小さい場合には、電力伝送効率のピークは周波数f4,f5(f4<f5)において生じる。エアギャップAGを大きくすると、電力伝送効率が高くなるときの2つのピークは、互いに近づくように変化する。そして、効率曲線L2に示すように、エアギャップAGを所定距離よりも大きくすると、電力伝送効率のピークは1つとなり、共鳴コイル24に供給する電流の周波数が周波数f6のときに電力伝送効率がピークとなる。エアギャップAGを効率曲線L2の状態よりもさらに大きくすると、効率曲線L3に示すように電力伝送効率のピークが小さくなる。
 たとえば、電力伝送効率の向上を図るため手法として次のような第1の手法が考えられる。第1の手法としては、エアギャップAGにあわせて、図1に示す共鳴コイル24に供給する電流の周波数を一定として、キャパシタ25やキャパシタ19のキャパシタンスを変化させることで、送電部28と受電部27との間での電力伝送効率の特性を変化させる手法が考えられる。具体的には、共鳴コイル24に供給される電流の周波数を一定とした状態で、電力伝送効率がピークとなるように、キャパシタ25およびキャパシタ19のキャパシタンスを調整する。この手法では、エアギャップAGの大きさに関係なく、共鳴コイル24および共鳴コイル11に流れる電流の周波数は一定である。なお、電力伝送効率の特性を変化させる手法としては、送電装置41と高周波電力ドライバ22との間に設けられた整合器を利用する手法や、コンバータ14を利用する手法などを採用することもできる。
 また、第2の手法としては、エアギャップAGの大きさに基づいて、共鳴コイル24に供給する電流の周波数を調整する手法である。たとえば、図4において、電力伝送特性が効率曲線L1となる場合には、共鳴コイル24には周波数が周波数f4または周波数f5の電流を共鳴コイル24を供給する。そして、周波数特性が効率曲線L2,L3となる場合には、周波数が周波数f6の電流を共鳴コイル24に供給する。この場合では、エアギャップAGの大きさに合わせて共鳴コイル24および共鳴コイル11に流れる電流の周波数を変化させることになる。
 第1の手法では、共鳴コイル24を流れる電流の周波数は、固定された一定の周波数となり、第2の手法では、共鳴コイル24を流れる周波数は、エアギャップAGによって適宜変化する周波数となる。第1の手法や第2の手法などによって、電力伝送効率が高くなるように設定された特定の周波数の電流が共鳴コイル24に供給される。共鳴コイル24に特定の周波数の電流が流れることで、共鳴コイル24の周囲には、特定の周波数で振動する磁界(電磁界)が形成される。受電部27は、受電部27と送電部28の間に形成され、かつ特定の周波数で振動する磁界を通じて送電部28から電力を受電している。したがって、「特定の周波数で振動する磁界」とは、必ずしも固定された周波数の磁界とは限らない。なお、上記の例では、エアギャップAGに着目して、共鳴コイル24に供給する電流の周波数を設定するようにしているが、電力伝送効率は、共鳴コイル24および共鳴コイル11の水平方向のずれ等のように他の要因によっても変化するものであり、当該他の要因に基づいて、共鳴コイル24に供給する電流の周波数を調整する場合がある。
 なお、本実施の形態では、共鳴コイルとしてヘリカルコイルを採用した例について説明したが、共鳴コイルとして、メアンダラインなどのアンテナなどを採用した場合には、共鳴コイル24に特定の周波数の電流が流れることで、特定の周波数の電界が共鳴コイル24の周囲に形成される。そして、この電界をとおして、送電部28と受電部27との間で電力伝送が行われる。
 本実施の形態に係る電力伝送システムにおいては、電磁界の「静電界」が支配的な近接場(エバネッセント場)を利用することで、送電および受電効率の向上が図られている。図5は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図5を参照して、電磁界は3つの成分から成る。曲線k1は、波源からの距離に反比例した成分であり、「輻射電界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電界」と称される。なお、電磁界の波長を「λ」とすると、「輻射電界」と「誘導電界」と「静電界」との強さが略等しくなる距離は、λ/2πとあらわすことができる。
 「静電界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、本実施の形態に係る電力伝送システムでは、この「静電界」が支配的な近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、「静電界」が支配的な近接場において、近接する固有周波数を有する送電部28および受電部27(たとえば一対のLC共振コイル)を共鳴させることにより、送電部28から他方の受電部27へエネルギー(電力)を伝送する。この「静電界」は遠方にエネルギーを伝播しないので、遠方までエネルギーを伝播する「輻射電界」によってエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。
 このように、本実施の形態に係る電力伝送システムにおいては、送電部28と受電部27とを電磁界によって共振させることで送電装置41から受電装置に電力を送電している。そして、送電部28と受電部27との間の結合係数(κ)は、好ましくは0.1以下である。なお、結合係数(κ)は、この値に限定されるものではなく電力伝送が良好となる種々の値をとりうる。一般的に、電磁誘導を利用した電力伝送では、送電部と受電部と間の結合係数(κ)は1.0に近いものとなっている。
 本実施の形態の電力伝送における送電部28と受電部27との結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電磁界(電磁場)共振結合」または「電界(電場)共振結合」という。
 「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。
 本明細書中で説明した送電部28の共鳴コイル24と受電部27の共鳴コイル11とは、コイル形状のアンテナが採用されているため、送電部28と受電部27とは主に、磁界によって結合しており、送電部28と受電部27とは、「磁気共鳴結合」または「磁界(磁場)共鳴結合」している。
 なお、共鳴コイル24,11として、たとえば、メアンダラインなどのアンテナを採用することも可能であり、この場合には、送電部28と受電部27とは主に、電界によって結合している。このときには、送電部28と受電部27とは、「電界(電場)共振結合」している。
 (受電装置40)
 図6から図8を参照して、実施の形態1における受電装置40の具体的構成について説明する。図6は、本実施の形態における電動車両10に搭載される受電装置の配置を示す車両の底面図、図7は、本実施の形態における電動車両10に搭載される受電装置の配置を示す部分横(左右方向)断面、図8は、本実施の形態における電動車両10に搭載される受電装置の配置を示す部分縦(前後方向)断面である。
 図6に示すように、電動車両10の前端から前輪タイヤ160Fの後端までの領域を前部、前輪タイヤ160Fから後輪タイヤ160Rの前端までの領域を中央部、後輪タイヤ160Rの後端から電動車両10の後端までの領域を後部と称する。以下の説明においても同様である。図7に示すように、電動車両10を水平面に載置した状態において、鉛直方向上向きを上方、鉛直方向下向きを下方、車両の前方側を向いた場合の左手側を左側、車両の前方側を向いた場合の右手側を右側と称する。以下の説明においても同様である。
 図6を参照して、本実施の形態における電動車両10は、リアフロアパネル31、マフラー130、および左右の後輪タイヤ160Rを有し、中央部にセンタフロアパネル32、燃料タンク120、サイドメンバ32A,32B、およびエキゾーストパイプ131を有し、前部にエンジンフロアパネル33、左右の前輪タイヤ160Fを有している。
 図6を参照して、電動車両10の後部において、バッテリ15は、フロアパネルであるリアフロアパネル31の上方に配置されている(図7参照)。受電装置40は、リアフロアパネル31を挟んで、バッテリ15の下方に配置されている。本実施の形態においては、受電装置40の前側半分程度の領域が、左右の後輪タイヤ160Rの間に位置し、受電装置40の後側半分程度が、左右の後輪タイヤ160Rから後側に向けて突出している。なお、受電装置40の後輪タイヤ160Rに対する配置位置は、本実施の形態に限定されない。
 受電装置40は、受電部27と円形の電磁誘導コイル12を含む。受電部27は、円形の共鳴コイル11およびキャパシタ19を有している。本実施の形態では、受電装置40を取り囲むようにシールド部材27Sが設けられている。シールド部材27Sは、受電装置40の半径方向の外側を取り囲む円筒形状を有し、リアフロアパネル31側には底部27bが設けられ、送電部28側は開放している。なお、シールド部材27Sの形状は、本実施の形態の形状に限定されない。
 共鳴コイル11は、樹脂製の支持部材11aを用いて、シールド部材27Sの底部27bに固定されている。電磁誘導コイル12は、樹脂製の支持部材12aを用いて、シールド部材27Sの底部27bに固定されている。
 本実施の形態では、共鳴コイル11の外側に電磁誘導コイル12を配置しているが、共鳴コイル11と電磁誘導コイル12とに配置関係は、この配置関係には限定されない。また、共鳴コイル11および電磁誘導コイル12の形状は、円形に限定されず、多角形、正八角形等の採用が可能であるが、形状は特に限定されるものではない。
 図7および図8を参照して、電動車両10の後部において、バッテリ15は、リアフロアパネル31の上方に配置され、受電装置40は、リアフロアパネル31の下方に配置されている。さらに、平面視において、受電装置40とバッテリ15とは少なくとも一部が重なるように配置されている。具体的には、平面視(上方から下方を鉛直方向に見た場合)において、バッテリ15の投影面に受電装置40の投影面が重なることを意味する。投影面が重なるとは、バッテリ15と受電装置40との平面視における大きさ(外形)は様々であり、バッテリ15の投影面の中に受電装置40の投影面が含まれる場合、受電装置40の投影面の中にバッテリ15の投影面が含まれる場合、相互の投影面の一部が重なる場合が該当する。
 また、図7に示すように、受電装置40の後端部40aは、(シールド部材27Sの後端部40a)バッテリ15の後端部15aよりも、当該車両の後側に突出(距離CZ1)するように配置されている。
 通常、車両の後側において、後側から衝突された場合に、クラッシャブルゾーンが規定され、バッテリ15は、クラッシャブルゾーンよりも前側に配置される。そこで、受電装置40の一部が、クラッシャブルゾーン側に突出するように配置することで、後側から衝突された場合に、受電装置40を衝撃吸収材として用いることができ、バッテリ15等の高圧部品を保護することが可能となる。
 以上、本実施の形態においては、平面視において、受電装置40の投影面にバッテリ15の投影面の一部が少なくとも重なるように配置している。これにより、電動車両10の限られたスペースに、平面視において、受電装置40を効率良く搭載することを可能としている。
 また、バッテリ15と受電装置40との間にリアフロアパネル31が位置することで、受電装置40から発熱される熱のバッテリ15への伝熱を、リアフロアパネル31により抑制することができる。
 受電装置40とバッテリ15との距離が短くなるため、受電装置40とバッテリ15との間に配設されるケーブルの配索を短くすることができる。これにより、充電効率の向上を期待することも可能となる。また、バッテリ15をクラッシャブルゾーンよりも車両の前側に配置することにより、高圧機器に対する安全性を高め、ケーブル損失(漏電、ショート)の発生を回避することができる。
 (実施の形態2)
 次に、図9から図15を参照して、本実施の形態に係る電力伝送システムを搭載した車両について説明する。なお、上述の実施の形態1との相違は、外部に設けられた送電部28を含む送電装置41から非接触で電力を受電する受電部27を含む受電装置40を有することに、外部に設けられた給電コネクタに接続される充電部をさらに有する点にある。実施の形態1と同一または相当部分については、同一の参照番号を付し、重複する説明は繰り返さない場合がある。
 図9は、本実施の形態おける電動車両10に搭載される受電装置40の配置を示す車両の斜視図、図10は、本実施の形態にける電動車両10に搭載される受電装置40、充電器200、およびバッテリ15の回路を示す図、図11は、本実施の形態おける電動車両10に搭載される受電装置40、充電器200、およびバッテリ15の搭載状態を示す斜視図、図12は平面図、図13は部分横(左右方向)断面図、図14は部分縦(前後方向)断面図、図15は他の回路を示す図である。
 図9を参照して、本実施の形態における電動車両10は、乗員収容室内の後部座席下に位置する部分には、燃料タンク120が設けられている。後部座席より電動車両10の後側には、バッテリ15が配置されている。実施の形態1と同様に、受電装置40は、リアフロアパネル31を挟んで、バッテリ15の下方に配置されている。
 電動車両100の左側のリアフェンダには充電部1が設けられ、右側のリアフェンダには給油部2が設けられている。なお、この図1に示す例においては、充電部1と給油部2とが車両の互いに異なる側面に設けられているが、充電部1が左側、給油部2が右側に設けられてもかまわない。また、同一の側面(左側、右側)に設けられてもよい。さらに、充電部1と給油部2と位置は、リヤフェンダに限らず、フロントフェンダに設けてもよい。
 給油作業を行なう際には、給油部2(燃料供給部)に給油コネクタ2Aを挿入することで燃料が供給される。給油部2から給油されたガソリンなどの燃料は、燃料タンク120に貯留される。
 充電作業を行なう際には、充電部1(電力供給部)に給電コネクタ1Aを挿入することで電力が供給される。給電コネクタ1Aは、商用電源(たとえば、日本では単相交流100V)から供給される電力を充電するためのコネクタである。給電コネクタ1Aとしては、たとえば、一般の家庭用電源に接続されたプラグなどが用いられる。
 図10を参照して、本実施の形態では、充電器200に充電部1および受電装置40が接続されている。また、充電器200にバッテリ15が接続され、バッテリ15には、充電制御ユニット300が接続されている。このように、本実施の形態では、接触充電である充電部1と非接触受電である受電装置40とが、兼用の充電器200に接続されている。
 したがって、充電器200は、充電部1から給電される電力を、バッテリ15の充電電力に変換するとともに、受電装置40から受電した電力をバッテリ15の充電電力に変換する。これにより、部品点数の削減を図ることができる。
 図11および図12を参照して、リアフロアパネル31には、下方に向かう凹部領域31Pが設けられている。この凹部領域31Pの底面および斜面に沿うように、左右方向に延びるブラケット210を有し、このブラケット210に充電器200が載置される。
 図13および図14を参照して、電動車両10の後部において、バッテリ15は、リアフロアパネル31の上方に配置され、受電装置40は、リアフロアパネル31の下方に配置され、平面視において、実施の形態1の場合と同様に、受電装置40とバッテリ15とは少なくとも一部が重なるように配置されている。
 本実施の形態では、充電器200は、バッテリ15とリアフロアパネル31の間(リアフロアパネル31の上方)に位置しているが、充電器200を、リアフロアパネル31と受電装置40との間(リアフロアパネル31の下方)に位置させることも可能である。なお、受電装置40の下方については、上記実施の形態1と同様である。
 また、本実施の形態では、充電器200は、ブラケット210に載置されているが、ブラケットは必ずしも必須ではない。充電器200の位置も、平面視において、バッテリ15と受電装置40との間において、全てが含まれるように配置しているが、一部が重なるように配置してよい。また、充電器200とバッテリ15との間、充電器200とブラケット210との間、または充電器200とリアフロアパネル31との間に、電力配線、電力配線結合部を配置してもよい。
 図14に示すように、受電装置40の後端部40a(シールド部材27Sの後端部40a)は、バッテリ15の後端部15aよりも、当該車両の後側に突出(距離CZ1)するように配置されている。また、充電器200の後端部200aは、バッテリ15の後端部15aよりも、車両の前側に位置していることから、受電装置40の後端部40aは、充電器200の後端部200aよりも、当該車両の後側に突出(距離CZ2)するように配置されていることなる。充電制御ユニット300も充電器200と同様である。
 このように、本実施の形態においても、車両の後側において、後側から衝突された場合に、クラッシャブルゾーン(図12の矢印CZの領域)が規定され、バッテリ15は、クラッシャブルゾーンよりも前側に配置される。そこで、受電装置40の一部が、クラッシャブルゾーン側に突出するように配置することで、後側から衝突された場合に、受電装置40を衝撃吸収材として用いることができる。バッテリ15および充電器200等の高圧部品を保護することが可能となる。
 以上、本実施の形態においても、平面視において、受電装置40の投影面にバッテリ15の投影面の一部が少なくとも重なるように、受電装置40は、リアフロアパネル31を挟んで、バッテリ15の下方に配置している。これにより、電動車両10の限られたスペースに、平面視において、受電装置40を効率良く搭載することを可能としている。
 また、バッテリ15と受電装置40との間にリアフロアパネル31が位置することで、受電装置40から発熱される熱のバッテリ15への伝熱を、リアフロアパネル31により抑制することができる。
 また、受電装置40とバッテリ15との距離が短くなるため、受電装置40とバッテリ15との間に配設されるケーブルWH1,WH2の配索を短くすることができる。これにより、充電効率の向上を期待することも可能となる。また、バッテリ15、充電器200、および充電制御ユニット300をクラッシャブルゾーンよりも車両の前側に配置することにより、高圧機器に対する安全性を高め、ケーブル損失(漏電、ショート)の発生を回避することができる。
 なお、図15に示すように、受電装置40に充電制御ユニット300を設けることも可能である。この場合、充電制御ユニット300は、図16に示すように、ブラケット210に充電制御ユニット300が固定される。充電制御ユニット300から延びる一方のワイヤWH1は、バッテリ15に接続される。充電制御ユニット300から延びる他方のワイヤWH2は、リアフロアパネル31に設けられた連通孔31Hを通過して、バッテリ15に接続される。
 また、充電制御ユニット300がブラケット210に固定されていることから、充電制御ユニット300も受電装置40とバッテリ15との間に配置されている。充電制御ユニット300を、リアフロアパネル31と受電装置40との間(リアフロアパネル31の下方)に位置させることも可能である。
 なお、上記各実施の形態では、バッテリ15および受電装置40を、リアフロアパネル31に配置した場合について説明しているが、配置位置は、電動車両10の後部には限定されない。
 図17に示すように、上記各実施の形態に示した構成を、電動車両10の中央部において、バッテリ15および受電装置40を、センタフロアパネル32に配置することも可能である。また、図18に示すように、上記各実施の形態に示した構成を、電動車両10の前部において、バッテリ15および受電装置40を、エンジンフロアパネル33に配置することも可能である。
 なお、上記各実施の形態では、電磁誘導コイル12,23を含んだ送電装置および受電装置を例示したが、電磁誘導コイルを含まない共鳴型非接触送受電装置にも本発明は適用可能である。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 充電部、1A 給電コネクタ、2 給油部、2A 給油コネクタ、10 電動車両、11,24,94,99 共鳴コイル、12,23,92,97 電磁誘導コイル、11a,12a 支持部材、13 整流器、14 DC/DCコンバータ、15 バッテリ、16 パワーコントロールユニット、17 モータユニット、18 車両ECU、19,25,98,95 キャパシタ、20 外部給電装置、21 交流電源、22 高周波電力ドライバ、26 制御部、27,96 受電部、27S シールド部材、27b 底部、28,93 送電部、29 インピーダンス調整器、31 リアフロアパネル、31H 連通孔、32 センタフロアパネル、32A,32B サイドメンバ、33 エンジンフロアーパネル、40,91 受電装置、40a,200a 後端部、41,90 送電装置、42 駐車スペース、110 リアサスペンション、120 燃料タンク、121 燃料ホース、130 マフラー、131 エキゾーストパイプ、160F 前輪タイヤ、160R 後輪タイヤ、200 充電器、210 ブラケット、300 充電制御ユニット。

Claims (13)

  1.  フロアパネル(31,32,33)と、
     外部に設けられた送電装置(41)から非接触で電力を受電する受電装置(40)と、
     前記受電装置(40)に接続されるバッテリ(15)と、を備え、
     前記バッテリ(15)は、前記フロアパネル(31,32,33)の上方に配置され、
     前記受電装置(40)は、前記フロアパネル(31,32,33)の下方に配置され、
     平面視において、前記受電装置(40)と前記バッテリ(15)とは少なくとも一部が重なるように配置されている、車両。
  2.  充電器(200)をさらに備え、
     前記充電器(200)は、前記受電装置(40)と前記バッテリ(15)との間に配置されている、請求項1に記載の車両。
  3.  外部に設けられた給電コネクタ(1A)に接続される充電部(1)をさらに備え、
     前記充電器(200)は、前記充電部(1)から給電される電力を、前記バッテリ(15)の充電電力に変換するとともに、前記受電装置(40)から受電した電力を前記バッテリ(15)の充電電力に変換する、請求項2に記載の車両。
  4.  充電制御ユニット(300)をさらに備え、
     前記充電制御ユニット(300)は、前記受電装置(40)と前記バッテリ(15)との間に配置される、請求項2または3に記載の車両。
  5.  前記受電装置(40)の後端部(40a)は、前記バッテリ(15)の後端部(15a)よりも、当該車両の後側に突出するように配置されている、請求項1から4のいずれかに記載の車両。
  6.  前記送電装置(41)は、非接触で電力を前記受電装置(40)に送電する送電部(28)を含み、
     前記受電装置(40)は、前記送電部(28)から非接触で電力を受電する受電部(27)を含み、
     前記送電部(28)の固有周波数と前記受電部(27)の固有周波数との差は、前記受電部(27)の固有周波数の10%以下である、請求項1に記載の車両。
  7.  前記送電装置(41)は、非接触で電力を前記受電装置(40)に送電する送電部(28)を含み、
     前記受電装置(40)は、前記送電部(28)から非接触で電力を受電する受電部(27)を含み、
     前記受電部(27)と前記送電部(28)との結合係数は、0.1以下である、請求項1に記載の車両。
  8.  前記送電装置(41)は、非接触で電力を前記受電装置(40)に送電する送電部(28)を含み、
     前記受電装置(40)は、前記送電部(28)から非接触で電力を受電する受電部(27)を含み、
     前記受電部(27)は、前記受電部(27)と前記送電部(28)の間に形成され、かつ特定の周波数で振動する磁界と、前記受電部(27)と前記送電部(28)の間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて前記送電部(28)から電力を受電する、請求項1に記載の車両。
  9.  非接触で電力を送電する送電装置(41)と、
     フロアパネル(31,32,33)、前記送電装置(41)から受電する受電装置(40)、および前記受電装置(40)に接続されるバッテリ(15)を含む車両(10)と、を備え、
     前記バッテリ(15)は、前記フロアパネル(31,32,33)の上方に配置され、
     前記受電装置(40)は、前記フロアパネル(31,32,33)の下方に配置され、
     平面視において、前記受電装置(40)と前記バッテリ(15)とは少なくとも一部が重なるように配置されている、電力伝送システム。
  10.  前記車両(10)は、充電器(200)をさらに備え、
     前記充電器(200)は、前記受電装置(40)と前記バッテリ(15)との間に配置される、請求項9に記載の電力伝送システム。
  11.  前記車両(10)は、外部に設けられた給電コネクタ(1A)に接続される充電部(1)をさらに備え、
     前記充電器(200)は、前記充電部(1)から給電される電力を、前記バッテリ(15)の充電電力に変換するとともに、前記受電装置(40)から受電した電力を前記バッテリ(15)の充電電力に変換する、請求項10に記載の電力伝送システム。
  12.  前記車両(10)は、充電制御ユニット(300)をさらに備え、
     前記充電制御ユニット(300)は、前記受電装置(40)と前記バッテリ(15)との間に配置される、請求項10または11に記載の電力伝送システム。
  13.  前記受電装置(40)の後端部(40a)は、前記バッテリ(15)の後端部(15a)よりも、当該車両の後側に突出するように配置されている、請求項9から12のいずれかに記載の電力伝送システム。
PCT/JP2011/076860 2011-11-22 2011-11-22 車両および電力伝送システム WO2013076804A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013545681A JP5825356B2 (ja) 2011-11-22 2011-11-22 車両および電力伝送システム
PCT/JP2011/076860 WO2013076804A1 (ja) 2011-11-22 2011-11-22 車両および電力伝送システム
CN201180074976.8A CN103946045B (zh) 2011-11-22 2011-11-22 车辆及电力传输系统
US14/357,695 US9969281B2 (en) 2011-11-22 2011-11-22 Vehicle and power transfer system
EP11876115.4A EP2783890B1 (en) 2011-11-22 2011-11-22 Vehicle and power transfer system
KR1020147016692A KR20140099276A (ko) 2011-11-22 2011-11-22 차량 및 전력 전송 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076860 WO2013076804A1 (ja) 2011-11-22 2011-11-22 車両および電力伝送システム

Publications (1)

Publication Number Publication Date
WO2013076804A1 true WO2013076804A1 (ja) 2013-05-30

Family

ID=48469285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076860 WO2013076804A1 (ja) 2011-11-22 2011-11-22 車両および電力伝送システム

Country Status (6)

Country Link
US (1) US9969281B2 (ja)
EP (1) EP2783890B1 (ja)
JP (1) JP5825356B2 (ja)
KR (1) KR20140099276A (ja)
CN (1) CN103946045B (ja)
WO (1) WO2013076804A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2512855A (en) * 2013-04-09 2014-10-15 Bombardier Transp Gmbh Receiving device for receiving a magnetic field and for producing electric energy by magnetic induction
WO2015014827A2 (en) * 2013-08-01 2015-02-05 Bombardier Transportation Gmbh Carrying device and a receiving device
CN104417378A (zh) * 2013-09-11 2015-03-18 丰田自动车株式会社 车辆
JP2017077781A (ja) * 2015-10-20 2017-04-27 トヨタ自動車株式会社 車両床下構造
JP2017184360A (ja) * 2016-03-29 2017-10-05 株式会社クボタ 電動作業車両のための非接触充電システム及び電動草刈機
JP2017229180A (ja) * 2016-06-23 2017-12-28 本田技研工業株式会社 電源装置及び輸送機器
US9899845B2 (en) 2013-04-09 2018-02-20 Bombardier Transportation Gmbh Receiving device with coil of electric line for receiving a magnetic field and for producing electric energy by magnetic induction and with magnetizable material
KR20180027342A (ko) * 2016-09-05 2018-03-14 도요타지도샤가부시키가이샤 차량
US10493835B2 (en) 2015-11-16 2019-12-03 Kubota Corporation Electric work vehicle, battery pack for electric work vehicle and contactless charging system
US10538166B2 (en) 2016-03-29 2020-01-21 Kubota Corporation Portable charger device, contactless charger system for electric work vehicle and electric grass mower machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101697418B1 (ko) 2012-05-09 2017-01-17 도요타지도샤가부시키가이샤 차량
US11014459B2 (en) * 2015-09-30 2021-05-25 Volvo Truck Corporation Charging device for a vehicle
CN105845859B (zh) * 2016-03-31 2018-09-28 北京长城华冠汽车科技股份有限公司 一种电池箱框架和包括该电池箱框架的汽车
WO2017208539A1 (ja) * 2016-05-31 2017-12-07 日本電産株式会社 移動体及び移動体システム
JP6496288B2 (ja) * 2016-09-13 2019-04-03 本田技研工業株式会社 車両用充電部配置構造
JP6421807B2 (ja) * 2016-10-03 2018-11-14 トヨタ自動車株式会社 車両
JP6400061B2 (ja) 2016-10-21 2018-10-03 株式会社Subaru 電動車両
MY183265A (en) * 2017-01-30 2021-02-18 Nissan Motor Vehicle-mounting structure for contactless power reception device
JP6819476B2 (ja) * 2017-06-16 2021-01-27 トヨタ自動車株式会社 車両前部構造
JP6794949B2 (ja) * 2017-07-13 2020-12-02 トヨタ自動車株式会社 車両前部構造
DE102018203263A1 (de) * 2018-03-06 2019-09-12 Audi Ag Ladeeinrichtung für ein Kraftfahrzeug
DE102019212277A1 (de) * 2018-11-05 2020-05-07 Mahle International Gmbh Induktionsladevorrichtung
JP7462896B2 (ja) * 2019-10-09 2024-04-08 国立大学法人 東京大学 無線受電システム、移動体、及び車輪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686470A (ja) * 1992-09-03 1994-03-25 Nippon Yusoki Co Ltd フォークリフトのバッテリ充電装置
JP2003274569A (ja) * 2002-03-15 2003-09-26 Konica Corp 電子機器
JP2008253131A (ja) 1999-12-10 2008-10-16 Toyota Motor Corp エネルギー供給装置
JP2010130800A (ja) * 2008-11-28 2010-06-10 Nagano Japan Radio Co 非接触型電力伝送システム
JP2011193671A (ja) * 2010-03-16 2011-09-29 Toyota Motor Corp 車両
JP2011229360A (ja) * 2010-03-31 2011-11-10 Nissan Motor Co Ltd 非接触給電装置及び非接触給電方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082125B2 (ja) 1991-12-26 1996-01-10 株式会社明工社 電気自動車用給電装置
US5617003A (en) * 1995-03-24 1997-04-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for charging a battery of an electric vehicle
US5703461A (en) * 1995-06-28 1997-12-30 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Inductive coupler for electric vehicle charger
JP3851124B2 (ja) * 2001-07-31 2006-11-29 三洋電機株式会社 自動車用の電源装置とこの電源装置を搭載する自動車
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
JP4921466B2 (ja) 2005-07-12 2012-04-25 マサチューセッツ インスティテュート オブ テクノロジー 無線非放射型エネルギー転送
JP4222355B2 (ja) * 2005-09-29 2009-02-12 トヨタ自動車株式会社 駐車支援装置および車両と地上機器との間の電力授受方法
JP4748010B2 (ja) * 2006-09-19 2011-08-17 トヨタ自動車株式会社 電源装置
CN101682216B (zh) 2007-03-27 2013-06-26 麻省理工学院 无线能量传输
CN102177042B (zh) * 2008-10-09 2013-10-23 丰田自动车株式会社 非接触电力传递装置及具有非接触电力传递装置的车辆
JP4909446B2 (ja) * 2009-05-14 2012-04-04 トヨタ自動車株式会社 車両用充電装置
JP5146488B2 (ja) * 2010-05-26 2013-02-20 トヨタ自動車株式会社 給電システムおよび車両
JP5348183B2 (ja) * 2010-08-18 2013-11-20 三洋電機株式会社 電池内蔵機器と充電装置
JP5577986B2 (ja) * 2010-09-22 2014-08-27 株式会社豊田自動織機 電源装置および車載用電源装置
JP5376057B2 (ja) * 2011-08-25 2013-12-25 トヨタ自動車株式会社 車両および充電システム、ならびに車両の制御方法
EP2747245A1 (en) * 2011-09-21 2014-06-25 Toyota Jidosha Kabushiki Kaisha Contactless power transmission device, contactless power receiving device and contactless power transceiver system
EP2760101A1 (en) * 2011-09-22 2014-07-30 Toyota Jidosha Kabushiki Kaisha Vehicle power supply system
EP2773019B1 (en) * 2011-10-27 2019-01-23 Toyota Jidosha Kabushiki Kaisha Non-contact power receiving apparatus
WO2013073034A1 (ja) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 車両および電力供給システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686470A (ja) * 1992-09-03 1994-03-25 Nippon Yusoki Co Ltd フォークリフトのバッテリ充電装置
JP2008253131A (ja) 1999-12-10 2008-10-16 Toyota Motor Corp エネルギー供給装置
JP2003274569A (ja) * 2002-03-15 2003-09-26 Konica Corp 電子機器
JP2010130800A (ja) * 2008-11-28 2010-06-10 Nagano Japan Radio Co 非接触型電力伝送システム
JP2011193671A (ja) * 2010-03-16 2011-09-29 Toyota Motor Corp 車両
JP2011229360A (ja) * 2010-03-31 2011-11-10 Nissan Motor Co Ltd 非接触給電装置及び非接触給電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2783890A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2512855A (en) * 2013-04-09 2014-10-15 Bombardier Transp Gmbh Receiving device for receiving a magnetic field and for producing electric energy by magnetic induction
US9899845B2 (en) 2013-04-09 2018-02-20 Bombardier Transportation Gmbh Receiving device with coil of electric line for receiving a magnetic field and for producing electric energy by magnetic induction and with magnetizable material
US9806540B2 (en) 2013-04-09 2017-10-31 Bombardier Transportation Gmbh Receiving device for receiving a magnetic field and for producing electric energy by magnetic induction
CN105073478A (zh) * 2013-08-01 2015-11-18 庞巴迪运输有限公司 承载装置和接收装置
WO2015014827A2 (en) * 2013-08-01 2015-02-05 Bombardier Transportation Gmbh Carrying device and a receiving device
JP2016534691A (ja) * 2013-08-01 2016-11-04 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツングBombardier Primove GmbH 担持装置および受電装置
WO2015014827A3 (en) * 2013-08-01 2015-04-09 Bombardier Transportation Gmbh Carrying device and a receiving device
US10173531B2 (en) 2013-08-01 2019-01-08 Bombardier Primove Gmbh Carrying device and a receiving device
JP2015054586A (ja) * 2013-09-11 2015-03-23 トヨタ自動車株式会社 車両
US9533592B2 (en) 2013-09-11 2017-01-03 Toyota Jidosha Kabushiki Kaisha Vehicle
CN104417378A (zh) * 2013-09-11 2015-03-18 丰田自动车株式会社 车辆
JP2017077781A (ja) * 2015-10-20 2017-04-27 トヨタ自動車株式会社 車両床下構造
US10493835B2 (en) 2015-11-16 2019-12-03 Kubota Corporation Electric work vehicle, battery pack for electric work vehicle and contactless charging system
US11396225B2 (en) 2015-11-16 2022-07-26 Kubota Corporation Electric work vehicle, battery pack for electric work vehicle and contactless charging system
JP2017184360A (ja) * 2016-03-29 2017-10-05 株式会社クボタ 電動作業車両のための非接触充電システム及び電動草刈機
US10538166B2 (en) 2016-03-29 2020-01-21 Kubota Corporation Portable charger device, contactless charger system for electric work vehicle and electric grass mower machine
JP2017229180A (ja) * 2016-06-23 2017-12-28 本田技研工業株式会社 電源装置及び輸送機器
KR20180027342A (ko) * 2016-09-05 2018-03-14 도요타지도샤가부시키가이샤 차량
JP2018042314A (ja) * 2016-09-05 2018-03-15 トヨタ自動車株式会社 車両
US10293697B2 (en) 2016-09-05 2019-05-21 Toyota Jidosha Kabushiki Kaisha Vehicle
KR102032297B1 (ko) * 2016-09-05 2019-10-15 도요타지도샤가부시키가이샤 차량

Also Published As

Publication number Publication date
KR20140099276A (ko) 2014-08-11
EP2783890A1 (en) 2014-10-01
CN103946045B (zh) 2016-08-24
CN103946045A (zh) 2014-07-23
JP5825356B2 (ja) 2015-12-02
EP2783890B1 (en) 2020-02-12
EP2783890A4 (en) 2015-11-18
JPWO2013076804A1 (ja) 2015-04-27
US9969281B2 (en) 2018-05-15
US20140320078A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5825356B2 (ja) 車両および電力伝送システム
US10960770B2 (en) Vehicle
JP5718830B2 (ja) 車両
JP5083413B2 (ja) 電動車両
JP5810944B2 (ja) 車両および電力伝送システム
EP2783891B1 (en) Vehicle
JP5776703B2 (ja) 車両および外部給電装置
JP5848182B2 (ja) 車両
WO2013168241A1 (ja) 車両
US10286794B2 (en) Vehicle
WO2013168239A1 (ja) 非接触で電力を受電可能な車両
WO2013073051A1 (ja) 送電装置、受電装置、および電力伝送システム
JP6508272B2 (ja) 車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14357695

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013545681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011876115

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147016692

Country of ref document: KR

Kind code of ref document: A