WO2014041655A1 - 非接触給電システム、ならびにそれに用いられる送電装置および車両 - Google Patents

非接触給電システム、ならびにそれに用いられる送電装置および車両 Download PDF

Info

Publication number
WO2014041655A1
WO2014041655A1 PCT/JP2012/073445 JP2012073445W WO2014041655A1 WO 2014041655 A1 WO2014041655 A1 WO 2014041655A1 JP 2012073445 W JP2012073445 W JP 2012073445W WO 2014041655 A1 WO2014041655 A1 WO 2014041655A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
unit
vehicle
transmission unit
Prior art date
Application number
PCT/JP2012/073445
Other languages
English (en)
French (fr)
Inventor
直樹 牛来
真士 市川
近藤 直
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014535300A priority Critical patent/JP6119756B2/ja
Priority to DE112012006896.3T priority patent/DE112012006896T5/de
Priority to PCT/JP2012/073445 priority patent/WO2014041655A1/ja
Priority to US14/426,771 priority patent/US9963040B2/en
Priority to CN201280075749.1A priority patent/CN104620470B/zh
Publication of WO2014041655A1 publication Critical patent/WO2014041655A1/ja

Links

Images

Classifications

    • H02J5/005
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/37Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/025
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a non-contact power feeding system, and a power transmission device and a vehicle used therefor, and more specifically to a technique for improving power transmission efficiency in the non-contact power feeding system.
  • Patent Document 1 discloses a system for supplying electric power from a power transmission device to a vehicle in a contactless manner when positioning the power receiving coil of the vehicle and the power transmission coil of the power transmission device.
  • vehicle guidance control based on information from the mounted camera
  • vehicle guidance control based on the state of power transmission from the power transmission device to the vehicle
  • parking accuracy to the power transmission device is ensured with a simple configuration.
  • the configuration is disclosed.
  • power transmission efficiency can vary depending on the positional relationship between a power transmission unit in the power transmission device and a power reception unit in the vehicle.
  • the change in the positional relationship includes a vehicle height indicating a vertical distance between the power transmission unit and the power reception unit, and a positional shift that is a horizontal distance between the power transmission unit and the power reception unit.
  • This vehicle height varies depending on the number of passengers in the vehicle and the weight of the luggage loaded in the trunk room. Then, since the input impedance of the power transmission unit will fluctuate, even if the positional relationship between the power transmission unit and the power receiving unit is the optimal positional relationship assumed at the time of design, compared to the optimal state in design Transmission efficiency may be reduced. Therefore, in order to improve the transmission efficiency, it is necessary to adjust the position and impedance of the vehicle and the power transmission device in consideration of the actual vehicle height.
  • the present invention has been made to solve such problems, and an object of the present invention is to transmit power accompanying a change in vehicle height in a non-contact power feeding system that transmits power from a power transmission device to a vehicle in a non-contact manner. It is to suppress the decrease in efficiency.
  • the contactless power supply system supplies electric power from a power transmission device to a vehicle in a contactless manner.
  • the vehicle includes a power reception unit that receives power from the power transmission device in a contactless manner.
  • the power transmission device includes a power supply unit, a power transmission unit that supplies power from the power supply unit to the power reception unit in a contactless manner, and is electrically connected between the power supply unit and the power transmission unit.
  • an impedance adjustment unit for adjusting the impedance.
  • the non-contact power supply system includes a detection unit that detects a vertical distance between the power transmission unit and the power reception unit, and a control device that controls the impedance adjustment unit.
  • the control device supports alignment between the power transmission unit and the power reception unit in the parking operation of the vehicle on the power transmission device based on the power transmission efficiency between the power transmission unit and the power reception unit.
  • the control device controls the impedance adjustment unit based on the vertical distance detected by the detection unit during alignment in the parking operation.
  • the control device has a power reception characteristic such that the power transmission efficiency decreases as the horizontal positional deviation from a predetermined position between the power transmission unit and the power reception unit increases at a vertical distance.
  • the impedance adjustment unit is controlled.
  • the control device determines the size of the positional deviation based on the power transmission efficiency at the stop position, and further adjusts the impedance adjustment unit based on the determined size of the positional deviation.
  • the detection unit is mounted on a vehicle.
  • the detection unit is included in the power transmission device.
  • the impedance adjustment unit includes a plurality of matching units set to different impedances.
  • the control device selects one of the plurality of matching devices in accordance with the vertical distance.
  • the impedance adjustment unit includes a matching unit having a reactor and a capacitor, at least one of which is a variable element.
  • the control device adjusts the impedance by changing the variable element of the matching device according to the distance in the vertical direction.
  • the vehicle further includes a power storage device (190) for storing the power received by the power receiving unit.
  • the control device transmits power lower than the transmitted power when charging the power storage device to the vehicle during alignment in the parking operation, and the power transmission efficiency when the lower power is used is determined in advance. In response to exceeding the predetermined value, the user is notified to stop the vehicle.
  • the difference between the natural frequency of the power transmission unit and the natural frequency of the power reception unit is ⁇ 10% or less of the natural frequency of the power transmission unit or the natural frequency of the power reception unit.
  • the coupling coefficient between the power transmission unit and the power reception unit is 0.1 or less.
  • the power receiving unit includes at least a magnetic field that vibrates at a specific frequency formed between the power receiving unit and the power transmitting unit, and an electric field that vibrates at a specific frequency formed between the power receiving unit and the power transmitting unit. The power is received from the power transmission unit through one side.
  • the vehicle according to the present invention receives power from a power transmission device whose impedance can be adjusted by the impedance adjustment unit in a non-contact manner.
  • the vehicle includes a power receiving unit that receives power from a power transmission unit of the power transmission device in a contactless manner, and a power transmission efficiency between the power transmission unit and the power receiving unit.
  • a control device for controlling the alignment of the two. The control device controls the impedance adjustment unit of the power transmission device based on the distance in the vertical direction between the power transmission unit and the power reception unit during alignment in the parking operation.
  • the power transmission device transmits electric power to a vehicle in a contactless manner.
  • the power transmission device is electrically connected between the power supply unit, the power transmission unit that supplies power from the power supply unit to the power receiving unit of the vehicle in a contactless manner, and the power supply unit and the power transmission unit.
  • the vehicle Based on the power transmission efficiency between the power transmission unit and the power reception unit, the vehicle aligns the power transmission unit and the power reception unit in the parking operation to the power transmission device.
  • the control device controls the impedance adjustment unit based on the vertical distance between the power transmission unit and the power reception unit during alignment in the parking operation.
  • the present invention by performing impedance adjustment in consideration of the vehicle height, it is possible to suppress a decrease in power transmission efficiency that may occur due to a change in vehicle height in the non-contact power feeding system.
  • FIG. 1 is an overall configuration diagram of a non-contact power feeding system for a vehicle according to an embodiment of the present invention. It is a figure which shows an example of a structure of the matching device in FIG. It is a figure which shows the other example of a structure of the matching device in FIG. It is a whole block diagram of the other example of the non-contact electric power feeding system of the vehicle according to embodiment of this invention. It is an equivalent circuit diagram at the time of power transmission from the power transmission device to the vehicle. It is a figure which shows the simulation model of an electric power transmission system. It is a figure which shows the relationship between the shift
  • FIG. 1 is an overall configuration diagram of a non-contact power feeding system 10 according to the present embodiment.
  • contactless power supply system 10 includes a vehicle 100 and a power transmission device 200.
  • the power transmission device 200 includes a power supply device 210 and a power transmission unit 220.
  • the power supply device 210 generates AC power having a predetermined frequency.
  • the power supply device 210 receives electric power from the commercial power supply 400 to generate high-frequency AC power, and supplies the generated AC power to the power transmission unit 220.
  • the power transmission unit 220 outputs electric power in a non-contact manner to the power reception unit 110 of the vehicle 100 via an electromagnetic field generated around the power transmission unit 220.
  • the power supply device 210 further includes a communication unit 230, a power transmission ECU 240 that is a control device, a power supply unit 250, and an impedance adjustment unit 260.
  • the power transmission unit 220 includes a resonance coil 221, a capacitor 222, and an electromagnetic induction coil 223.
  • the power supply unit 250 is controlled by a control signal MOD from the power transmission ECU 240, and converts power received from an AC power supply such as the commercial power supply 400 into high-frequency power. Then, the power supply unit 250 supplies the converted high frequency power to the electromagnetic induction coil 223 via the impedance adjustment unit 260.
  • the power supply unit 250 outputs a transmission voltage Vtr and a transmission current Itr detected by a voltage sensor and a current sensor (not shown) to the power transmission ECU 240, respectively.
  • the impedance adjustment unit 260 is for adjusting the input impedance of the power transmission unit 220, and typically includes a reactor and a capacitor. An example of a specific configuration of the impedance adjustment unit 260 is shown in FIGS.
  • the impedance adjustment unit 260 shown in FIG. 2 includes a plurality of matching units 261, 262, and 263 set to different input / output impedances.
  • Matching device 261 includes capacitor C10 and reactor L10, and is coupled to power supply unit 250 via relay RY11 and coupled to power transmission unit 220 via relay RY12.
  • Matching device 262 includes capacitor C20 and reactor L20, and is coupled to power supply unit 250 via relay RY21 and coupled to power transmission unit 220 via relay RY22.
  • Matching unit 263 includes capacitor C30 and reactor L30, and is coupled to power supply unit 250 via relay RY31 and coupled to power transmission unit 220 via relay RY32.
  • One of the plurality of matching units 261, 262, and 263 is selected by the control signal SE10 from the power transmission ECU 240, and the relay corresponding to the selected matching unit is closed.
  • Matching device 260A includes a capacitor C40 and a reactor L40, and at least one of capacitor C40 and reactor L40 is variably configured.
  • Matching device 260A adjusts to a desired impedance by changing the capacitance of capacitor C40 and / or the reactance of reactor L40 based on control signal SE10.
  • control signal SE10 control signal
  • the configuration of the impedance adjustment unit is appropriately set in consideration of the necessary variable range and cost.
  • the above variable element is not limited to one whose capacitance and reactance continuously change, but the capacitance and the reactor connected in series and / or in parallel are switched by a changeover switch such as a relay in stages. Etc. may be changed.
  • condenser and reactor in a matching device is not restricted to FIG. 2 and FIG. For example, they may be connected like a so-called T-type circuit or ⁇ -type circuit.
  • the electromagnetic induction coil 223 can be magnetically coupled to the resonance coil 221 by electromagnetic induction.
  • the electromagnetic induction coil 223 transmits the high frequency power supplied from the power supply unit 250 to the resonance coil 221 by electromagnetic induction.
  • the resonance coil 221 transfers the electric power transmitted from the electromagnetic induction coil 223 to the resonance coil 111 included in the power receiving unit 110 of the vehicle 100 in a non-contact manner.
  • the resonance coil 221 and the capacitor 222 constitute an LC resonance circuit. Note that power transmission between the power reception unit 110 and the power transmission unit 220 will be described later with reference to FIG.
  • the communication unit 230 is a communication interface for performing wireless communication between the power transmission device 200 and the vehicle 100, and exchanges information INFO with the communication unit 160 on the vehicle 100 side.
  • the communication unit 230 receives vehicle information transmitted from the communication unit 160 on the vehicle 100 side, a signal instructing start and stop of power transmission, and the like, and outputs the received information to the power transmission ECU 240.
  • Communication unit 230 transmits information such as power transmission voltage Vtr and power transmission current Itr from power transmission ECU 240 to vehicle 100.
  • the power transmission ECU 240 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer.
  • the power transmission ECU 240 inputs a signal from each sensor and outputs a control signal to each device.
  • Each device in the power supply device 210 is controlled. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • the vehicle 100 includes a power receiving unit 110, a matching unit 170, a rectifier 180, a voltage detection unit 181, a charging relay CHR185, a power storage device 190, a system main relay SMR115, and a power control unit PCU (Power Control Unit) 120.
  • Power reception unit 110 includes a resonance coil 111, a capacitor 112, and an electromagnetic induction coil 113.
  • an electric vehicle is described as an example of vehicle 100, but the configuration of vehicle 100 is not limited to this as long as the vehicle can travel using electric power stored in the power storage device.
  • Other examples of the vehicle 100 include a hybrid vehicle equipped with an engine and a fuel cell vehicle equipped with a fuel cell.
  • the resonance coil 111 receives electric power from the resonance coil 221 included in the power transmission device 200 in a non-contact manner.
  • the resonance coil 111 and the capacitor 112 constitute an LC resonance circuit.
  • the electromagnetic induction coil 113 can be magnetically coupled to the resonance coil 111 by electromagnetic induction. This electromagnetic induction coil 113 takes out the electric power received by the resonance coil 111 by electromagnetic induction and outputs it to the rectifier 180 via the matching unit 170.
  • the matching unit 170 is for adjusting the input impedance of the load that supplies the power received by the resonance coil 111.
  • Matching device 170 has, for example, the same configuration as matching devices 261, 262, and 263 shown in FIG.
  • the rectifier 180 rectifies the AC power received from the electromagnetic induction coil 113 via the matching unit 170, and outputs the rectified DC power to the power storage device 190.
  • the rectifier 180 may include a diode bridge and a smoothing capacitor (both not shown).
  • a so-called switching regulator that performs rectification using switching control may be used.
  • a static rectifier such as a diode bridge in order to prevent a malfunction of the switching element due to the generated electromagnetic field.
  • the voltage detection unit 181 includes, for example, a switch and a resistor connected in series, and a voltage sensor connected in parallel to the resistor. Voltage detector 181 detects voltage VC between power lines connecting rectifier 180 and power storage device 190 when the switch is closed. As will be described later, the voltage detection unit 181 is used to align the power transmission unit 220 and the power reception unit 110 when the vehicle 100 is parked in the parking space of the power transmission device 200.
  • the CHR 185 is electrically connected between the rectifier 180 and the power storage device 190.
  • CHR185 is controlled by a control signal SE2 from vehicle ECU 300, and switches between supply and interruption of power from rectifier 180 to power storage device 190.
  • the power storage device 190 is a power storage element configured to be chargeable / dischargeable.
  • the power storage device 190 includes, for example, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery, and a power storage element such as an electric double layer capacitor.
  • the power storage device 190 is connected to the rectifier 180. Power storage device 190 stores the power received by power reception unit 110 and rectified by rectifier 180. The power storage device 190 is also connected to the PCU 120 via the SMR 115. Power storage device 190 supplies power for generating vehicle driving force to PCU 120. Further, power storage device 190 stores the electric power generated by motor generator 130. The output of power storage device 190 is, for example, about 200V.
  • power storage device 190 is provided with a voltage sensor and a current sensor for detecting voltage VB of power storage device 190 and input / output current IB. These detection values are output to vehicle ECU 300. Vehicle ECU 300 calculates the state of charge of power storage device 190 (also referred to as “SOC (State Of Charge)”) based on voltage VB and current IB.
  • SOC State Of Charge
  • SMR 115 is electrically connected between power storage device 190 and PCU 120.
  • SMR 115 is controlled by control signal SE ⁇ b> 1 from vehicle ECU 300, and switches between supply and interruption of power between power storage device 190 and PCU 120.
  • the PCU 120 includes a converter and an inverter (not shown).
  • the converter is controlled by a control signal PWC from vehicle ECU 300 to convert the voltage from power storage device 190.
  • the inverter is controlled by a control signal PWI from vehicle ECU 300 and drives motor generator 130 using electric power converted by the converter.
  • the motor generator 130 is an AC rotating electric machine, for example, a permanent magnet type synchronous motor including a rotor in which a permanent magnet is embedded.
  • the output torque of the motor generator 130 is transmitted to the drive wheel 150 via the power transmission gear 140.
  • the vehicle 100 travels using this torque.
  • the motor generator 130 can generate electric power by the rotational force of the drive wheels 150 during the regenerative braking operation of the vehicle 100. Then, the generated power is converted by PCU 120 into charging power for power storage device 190.
  • the power storage device 190 can be charged using the power generated by the rotation of the engine.
  • the communication unit 160 is a communication interface for performing wireless communication between the vehicle 100 and the power transmission device 200, and exchanges information INFO with the communication unit 230 of the power transmission device 200.
  • Information INFO output from communication unit 160 to power transmission device 200 includes vehicle information from vehicle ECU 300, a signal for instructing start and stop of power transmission, a switching command for impedance adjustment unit 260 of power transmission device 200, and the like. .
  • vehicle ECU 300 includes a CPU, a storage device, and an input / output buffer, and inputs a signal from each sensor and outputs a control signal to each device. Control. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • the vehicle height sensor 155 is provided on the lower surface of the floor panel of the vehicle 100, for example, and detects the distance between the floor panel and the ground, that is, the distance in the vertical direction between the power receiving unit 110 and the power transmitting unit 220, and the detected value HGT. Is output to the vehicle ECU 300.
  • the distance in the vertical direction represents the vertical length component of the line connecting the power reception unit 110 and the power transmission unit 220, that is, the power reception unit 110 and the power transmission unit 220 are ideally positioned. Corresponds to the distance when combined.
  • the voltage sensor 195 is connected between the power lines connecting the voltage detection unit 181 and the CHR 185, and detects the received voltage Vre received by the power reception unit 110.
  • the current sensor 196 is provided on a power line connecting the voltage detection unit 181 and the CHR 185, and detects the received current Ire.
  • the detected values of the power reception voltage Vre and the power reception current Ire are transmitted to the vehicle ECU 300 and used for calculation of power transmission efficiency and the like.
  • the vehicle ECU 300 detects the amount of horizontal misalignment between the power reception unit 110 and the power transmission unit 220 based on the voltage VC when the power from the power transmission device 200 is received during the parking operation of the vehicle. To do. More specifically, during the parking operation, vehicle ECU 300 closes the relay of voltage detection unit 181 and opens CHR185. Then, during the parking operation, the electric power received from the power transmission device 200 by power transmission using power lower than the power transmitted when charging the power storage device 190 (hereinafter also referred to as “test power transmission”) is used after rectification. The DC voltage VC is detected by the voltage detector 181. Since a predetermined relationship as described later in FIG.
  • the power transmission unit is determined by the power reception voltage VC during the parking operation.
  • the positional deviation between 220 and the power receiving unit 110 can be determined.
  • FIG. 1 shows a configuration in which the electromagnetic induction coils 113 and 223 are respectively provided in the power reception unit 110 and the power transmission unit 220.
  • resonance coil 221A is connected to power supply unit 250 in power transmission unit 220A
  • resonance coil 111A is connected to rectifier 180 in power reception unit 110A.
  • a DC / DC converter 170 ⁇ / b> A that performs voltage conversion of the DC voltage rectified by the rectifier 180 is provided as impedance adjustment means in the vehicle, as shown in FIG. 4, instead of the matching unit 170 in FIG. 1. There may be. Alternatively, the matching unit 170 and the DC / DC converter 170A may be used in combination.
  • FIG. 5 is an equivalent circuit diagram when power is transmitted from power transmission device 200 to vehicle 100.
  • power transmission unit 220 of power transmission device 200 includes a resonance coil 221, a capacitor 222, and an electromagnetic induction coil 223.
  • the electromagnetic induction coil 223 is provided, for example, substantially coaxially with the resonance coil 221 at a predetermined interval from the resonance coil 221.
  • the electromagnetic induction coil 223 is magnetically coupled to the resonance coil 221 by electromagnetic induction, and supplies high frequency power supplied from the power supply device 210 to the resonance coil 221 by electromagnetic induction.
  • the resonance coil 221 forms an LC resonance circuit together with the capacitor 222. As will be described later, an LC resonance circuit is also formed in the power receiving unit 110 of the vehicle 100.
  • the difference between the natural frequency of the LC resonant circuit formed by the resonant coil 221 and the capacitor 222 and the natural frequency of the LC resonant circuit of the power receiving unit 110 is ⁇ 10% or less of the natural frequency of the former or the latter.
  • the resonance coil 221 receives electric power from the electromagnetic induction coil 223 by electromagnetic induction, and transmits the electric power to the power receiving unit 110 of the vehicle 100 in a non-contact manner.
  • the electromagnetic induction coil 223 is provided to facilitate power feeding from the power supply device 210 to the resonance coil 221.
  • the power supply device 210 is directly connected to the resonance coil 221 without providing the electromagnetic induction coil 223. Also good.
  • the capacitor 222 is provided to adjust the natural frequency of the resonance circuit. When a desired natural frequency is obtained using the stray capacitance of the resonance coil 221, the capacitor 222 is not provided. Also good.
  • the power receiving unit 110 of the vehicle 100 includes a resonance coil 111, a capacitor 112, and an electromagnetic induction coil 113.
  • the resonance coil 111 and the capacitor 112 form an LC resonance circuit.
  • the natural frequency of the LC resonance circuit formed by the resonance coil 111 and the capacitor 112 and the natural frequency of the LC resonance circuit formed by the resonance coil 221 and the capacitor 222 in the power transmission unit 220 of the power transmission device 200 The difference is ⁇ 10% of the former natural frequency or the latter natural frequency.
  • the resonance coil 111 receives power from the power transmission unit 220 of the power transmission device 200 in a non-contact manner.
  • the electromagnetic induction coil 113 is provided, for example, substantially coaxially with the resonance coil 111 at a predetermined interval from the resonance coil 111.
  • the electromagnetic induction coil 113 is magnetically coupled to the resonance coil 111 by electromagnetic induction, takes out the electric power received by the resonance coil 111 by electromagnetic induction, and outputs it to the electric load device 118.
  • the electrical load device 118 is an electrical device that uses the power received by the power receiving unit 110, and specifically represents the electrical devices after the rectifier 180 (FIG. 1).
  • the electromagnetic induction coil 113 is provided for facilitating extraction of electric power from the resonance coil 111, and the rectifier 180 may be directly connected to the resonance coil 111 without providing the electromagnetic induction coil 113.
  • the capacitor 112 is provided to adjust the natural frequency of the resonance circuit. When a desired natural frequency is obtained using the stray capacitance of the resonance coil 111, the capacitor 112 is not provided. Also good.
  • high-frequency AC power is supplied from the power supply device 210 to the electromagnetic induction coil 223, and power is supplied to the resonance coil 221 using the electromagnetic induction coil 223. Then, energy (electric power) moves from the resonance coil 221 to the resonance coil 111 through a magnetic field formed between the resonance coil 221 and the resonance coil 111 of the vehicle 100. The energy (electric power) moved to the resonance coil 111 is taken out using the electromagnetic induction coil 113 and transmitted to the electric load device 118 of the vehicle 100.
  • the difference between the natural frequency of power transmission unit 220 of power transmission device 200 and the natural frequency of power reception unit 110 of vehicle 100 is the natural frequency of power transmission unit 220 or the specific frequency of power reception unit 110. It is ⁇ 10% or less of the frequency.
  • the power transmission efficiency can be increased.
  • the difference between the natural frequencies is larger than ⁇ 10%, there is a possibility that the power transmission efficiency becomes smaller than 10% and the power transmission time becomes longer.
  • the natural frequency of the power transmission unit 220 (power reception unit 110) means a vibration frequency when the electric circuit (resonance circuit) constituting the power transmission unit 220 (power reception unit 110) freely vibrates.
  • the natural frequency when the braking force or the electrical resistance is substantially zero is the resonance frequency of the power transmission unit 220 (power reception unit 110). Also called.
  • FIG. 6 is a diagram illustrating a simulation model of the power transmission system.
  • FIG. 7 is a diagram illustrating the relationship between the deviation of the natural frequencies of the power transmission unit and the power reception unit and the power transmission efficiency.
  • the power transmission system 89 includes a power transmission unit 90 and a power reception unit 91.
  • the power transmission unit 90 includes a first coil 92 and a second coil 93.
  • the second coil 93 includes a resonance coil 94 and a capacitor 95 provided in the resonance coil 94.
  • the power receiving unit 91 includes a third coil 96 and a fourth coil 97.
  • the third coil 96 includes a resonance coil 99 and a capacitor 98 connected to the resonance coil 99.
  • the inductance of the resonance coil 94 is an inductance Lt
  • the capacitance of the capacitor 95 is a capacitance C1.
  • the inductance of the resonance coil 99 is an inductance Lr
  • the capacitance of the capacitor 98 is a capacitance C2.
  • the horizontal axis indicates the deviation (%) of the natural frequency
  • the vertical axis indicates the power transmission efficiency (%) at a constant frequency current.
  • the deviation (%) in natural frequency is expressed by the following equation (3).
  • the power transmission efficiency can be increased to a practical level by setting. Furthermore, when the natural frequency of the second coil 93 and the third coil 96 is set so that the absolute value of the deviation (%) of the natural frequency is 5% or less of the natural frequency of the third coil 96, the power transmission efficiency is further increased. This is more preferable.
  • the simulation software employs electromagnetic field analysis software (JMAG (registered trademark): manufactured by JSOL Corporation).
  • power transmission unit 220 of power transmission device 200 and power reception unit 110 of vehicle 100 are formed between power transmission unit 220 and power reception unit 110, and a magnetic field that vibrates at a specific frequency and power transmission Power is exchanged in a non-contact manner through at least one of an electric field that is formed between the unit 220 and the power receiving unit 110 and vibrates at a specific frequency.
  • the coupling coefficient ⁇ between the power transmission unit 220 and the power reception unit 110 is preferably 0.1 or less, and power is transmitted from the power transmission unit 220 to the power reception unit 110 by causing the power transmission unit 220 and the power reception unit 110 to resonate with each other by an electromagnetic field. Is transmitted.
  • the “magnetic field of a specific frequency” typically has a relationship with the power transmission efficiency and the frequency of the current supplied to the power transmission unit 220.
  • the power transmission efficiency when power is transmitted from the power transmission unit 220 to the power reception unit 110 varies depending on various factors such as the distance between the power transmission unit 220 and the power reception unit 110.
  • the natural frequency (resonance frequency) of the power transmission unit 220 and the power reception unit 110 is f0
  • the frequency of the current supplied to the power transmission unit 220 is f3
  • the air gap between the power transmission unit 220 and the power reception unit 110 is the air gap AG.
  • FIG. 8 is a graph showing the relationship between the power transmission efficiency when the air gap AG is changed and the frequency f3 of the current supplied to the power transmission unit 220 with the natural frequency f0 fixed.
  • the horizontal axis indicates the frequency f3 of the current supplied to the power transmission unit 220
  • the vertical axis indicates the power transmission efficiency (%).
  • the efficiency curve L1 schematically shows the relationship between the power transmission efficiency when the air gap AG is small and the frequency f3 of the current supplied to the power transmission unit 220. As shown in the efficiency curve L1, when the air gap AG is small, the peak of power transmission efficiency occurs at frequencies f4 and f5 (f4 ⁇ f5).
  • the two peaks when the power transmission efficiency is increased change so as to approach each other.
  • the efficiency curve L2 when the air gap AG is larger than the predetermined distance, the power transmission efficiency has one peak, and the power transmission efficiency is obtained when the frequency of the current supplied to the power transmission unit 220 is the frequency f6. Becomes a peak.
  • the efficiency curve L3 When the air gap AG is further increased from the state of the efficiency curve L2, the peak of power transmission efficiency is reduced as shown by the efficiency curve L3.
  • the following methods can be considered as methods for improving the power transmission efficiency.
  • the frequency of the current supplied to the power transmission unit 220 is made constant in accordance with the air gap AG, and the capacitance of the capacitor 222 or the capacitor 112 is changed, so that the power transmission unit 220 and the power reception unit 110 can be changed. It is conceivable to change the power transmission efficiency characteristics between the two. Specifically, the capacitances of the capacitor 222 and the capacitor 112 are adjusted so that the power transmission efficiency reaches a peak in a state where the frequency of the current supplied to the power transmission unit 220 is constant. In this method, the frequency of the current flowing through the power transmission unit 220 and the power reception unit 110 is constant regardless of the size of the air gap AG.
  • the second method is a method of adjusting the frequency of the current supplied to the power transmission unit 220 based on the size of the air gap AG.
  • the power transmission characteristic is the efficiency curve L1
  • a current having a frequency f4 or f5 is supplied to the power transmission unit 220.
  • the frequency characteristic is the efficiency curves L2 and L3
  • the current having the frequency f6 is supplied to the power transmission unit 220.
  • the frequency of the current flowing through power transmission unit 220 and power reception unit 110 is changed in accordance with the size of air gap AG.
  • the frequency of the current flowing through the power transmission unit 220 is a fixed constant frequency
  • the frequency flowing through the power transmission unit 220 is a frequency that changes as appropriate depending on the air gap AG.
  • a current having a specific frequency set so as to increase the power transmission efficiency is supplied to the power transmission unit 220 by the first method, the second method, or the like.
  • a magnetic field electromagnettic field
  • the power receiving unit 110 receives power from the power transmitting unit 220 through a magnetic field that is formed between the power receiving unit 110 and the power transmitting unit 220 and vibrates at a specific frequency.
  • the “magnetic field oscillating at a specific frequency” is not necessarily a magnetic field having a fixed frequency.
  • the frequency of the current supplied to the power transmission unit 220 is set, but the power transmission efficiency is the horizontal direction of the power transmission unit 220 and the power reception unit 110.
  • the frequency changes due to other factors such as a deviation, and the frequency of the current supplied to the power transmission unit 220 may be adjusted based on the other factors.
  • FIG. 9 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the strength of the electromagnetic field.
  • the electromagnetic field is composed of three components.
  • the curve k1 is a component that is inversely proportional to the distance from the wave source, and is referred to as a “radiated electromagnetic field”.
  • a curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induction electromagnetic field”.
  • the curve k3 is a component inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic magnetic field”.
  • the wavelength of the electromagnetic field is “ ⁇ ”
  • the distance at which the strengths of “radiation electromagnetic field”, “induction electromagnetic field”, and “electrostatic magnetic field” are substantially equal can be expressed as ⁇ / 2 ⁇ .
  • the “electrostatic magnetic field” is a region where the intensity of the electromagnetic wave suddenly decreases with the distance from the wave source.
  • the near field evanescent field in which the “electrostatic magnetic field” is dominant.
  • the coupling coefficient ( ⁇ ) between the power transmission unit 220 and the power reception unit 110 is, for example, preferably 0.3 or less, and more preferably 0.1 or less.
  • a coupling coefficient ( ⁇ ) in the range of about 0.1 to 0.3 can also be employed.
  • the coupling coefficient ( ⁇ ) is not limited to such a value, and may take various values that improve power transmission.
  • the coupling between the power transmitting unit 220 and the power receiving unit 110 in the power transmission is, for example, “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, “electromagnetic field (electromagnetic field) resonant coupling”, “ Electric field (electric field) resonance coupling ".
  • the “electromagnetic field (electromagnetic field) resonance coupling” means a coupling including any of “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, and “electric field (electric field) resonance coupling”.
  • the power transmission unit 220 and the power reception unit 110 are formed by coils as described above, the power transmission unit 220 and the power reception unit 110 are mainly coupled by a magnetic field (magnetic field), and are referred to as “magnetic resonance coupling” or “magnetic field”. (Magnetic field) resonance coupling "is formed.
  • a magnetic field magnetic field
  • an antenna such as a meander line may be employed for the power transmission unit 220 and the power reception unit 110.
  • the power transmission unit 220 and the power reception unit 110 are mainly based on an electric field (electric field).
  • the “electric field (electric field) resonance coupling” is formed.
  • the impedance adjustment control In the non-contact power supply system as described above, in order to improve the power transmission efficiency, it is ideal that the impedance between the power transmission unit and the power reception unit is ideally matched. Normally, at the time of design, the power transmission unit and the power reception unit are designed so that the power transmission efficiency is maximized in a state where the positional relationship (vertical and horizontal distances) between the power transmission unit and the power reception unit is an ideal positional relationship. The impedance of the part is set.
  • the horizontal displacement between the power transmission unit and the power reception unit occurs, or the height of the power reception unit on the vehicle side (that is, the vehicle height) changes depending on the number of passengers and the weight of the loaded luggage.
  • the power transmission efficiency may be reduced.
  • the guidance of the parking position is provided to the user so that the parking operation can be performed at the ideal position as much as possible, and the power transmission efficiency is improved as much as possible for the final stop position after the parking operation is completed. Impedance control is performed.
  • FIG. 10 is a diagram for explaining the influence of the positional relationship between the power transmission unit and the power reception unit (vehicle height and horizontal position shift) on the power transmission efficiency.
  • the horizontal axis indicates the amount of horizontal misalignment between the power transmission unit and the power reception unit
  • the vertical axis indicates the power transmission efficiency.
  • the positional deviation amount for example, when the position of the power receiving unit with respect to the position of the power transmission unit is positive in the traveling direction of the vehicle, the positional deviation in the backward direction of the vehicle is indicated by a negative value. .
  • the position deviation in the left direction in the traveling direction is indicated by a negative value. It is.
  • a curve W10 in FIG. 10 shows a change in power transmission efficiency when the power transmitting unit and the power receiving unit have an ideal positional relationship in design.
  • the power transmission efficiency is maximized when the positional deviation amount is zero, and has a single peak characteristic with one peak such that the power transmission efficiency gradually decreases as the positional deviation amount increases. .
  • the vehicle height in the guidance of the parking position to the user in the parking operation, is set so that the characteristic of the power transmission efficiency becomes a single peak characteristic before the start of the parking operation or during the execution of the parking operation.
  • the impedance on the power transmission device side is adjusted accordingly. Thereby, in the parking operation, the user can easily align the power transmission unit and the power reception unit.
  • the power transmission efficiency is indicated by the ratio of the received power at the power receiving unit to the transmitted power from the power transmitting unit. Therefore, when the impedance of the load is constant, the power transmission efficiency can be expressed as a power receiving voltage on the power receiving side. Therefore, in the voltage detection part 181 of FIG. 1, electric power transmission efficiency can be evaluated by detecting the received voltage VC after the rectification during the parking operation.
  • the final horizontal displacement between the power transmission unit and the power reception unit is determined from the power transmission efficiency, and the power transmission efficiency is determined based on the positional displacement.
  • the impedance on the power transmission device side is further adjusted so that the power transmission efficiency has a bimodal characteristic such that becomes larger. Thereby, the power transmission efficiency can be further improved.
  • FIG. 11 is a flowchart for explaining the impedance adjustment control process executed during the parking operation in the present embodiment.
  • processing executed by vehicle ECU 300 on vehicle 100 side and processing executed by power transmission ECU 240 on power transmission device 200 side are shown.
  • Each step in the flowchart shown in FIG. 11 is executed in response to a predetermined cycle or a predetermined condition being established when a program stored in advance in vehicle ECU 300 and power transmission ECU 240 is called from the main routine. It is realized by doing. Alternatively, for some steps, it is also possible to construct dedicated hardware (electronic circuit) and realize processing.
  • step S 100 determines in step (hereinafter, step is abbreviated as S) 100 whether parking operation to power transmission device 200 has been started in order to perform non-contact charging. Determine whether. The determination of the start of the parking operation is performed not only when the vehicle actually moves to the parking space of the power transmission device 200 but also with an operation switch or the like so that the user performs the parking operation with the vehicle stopped. Cases are also included.
  • the vehicle ECU 300 ends the process because the impedance control is not necessary.
  • vehicle ECU 300 detects information HGT indicating the vehicle height from vehicle height sensor 155, and transmits the detected vehicle height information to the power transmission device. It transmits to 200 by radio
  • the power transmission ECU 240 receives vehicle height information from the vehicle 100 (S300), and executes impedance adjustment so that the power transmission efficiency has a single peak characteristic according to the vehicle height (S310).
  • vehicle ECU 300 closes the relay of voltage detection unit 181 and connects a resistance for distance detection in order to detect the distance between power transmission unit 220 and power reception unit 110 based on the power transmission efficiency. Open CHR185.
  • vehicle ECU 300 outputs a command for starting test power transmission for distance detection to power transmission device 200.
  • the power transmission ECU 240 starts test power transmission using power lower than the power transmitted when the power storage device 190 is charged (S320).
  • vehicle ECU 300 receives power from test power transmission from power transmission device 200 and detects voltage VC applied to distance detection resistor of voltage detection unit 181 in S140.
  • vehicle ECU 300 determines whether or not voltage VC exceeds a threshold value ⁇ that defines an allowable positional deviation amount when the vehicle is stopped, using a map as shown in FIG.
  • vehicle ECU 300 determines that vehicle 100 has not reached the position where power transmission for charging the charging device is performed, and the process is performed in S140. The parking operation is continued while detecting the voltage VC.
  • vehicle ECU 300 determines in S170 whether or not the parking operation has been completed.
  • the determination of the completion of the parking operation is performed based on, for example, when the shift position is set to the P range that is the parking position, when the side brake is operated, or when the ignition switch is set to OFF. .
  • vehicle ECU 300 transmits a test power transmission stop command to power transmission device 200 in S190.
  • the power transmission ECU 240 stops the test power transmission (S330).
  • vehicle ECU 300 transmits, to power transmission device 200, information on the positional deviation in the horizontal direction between power transmission unit 220 and power reception unit 110 obtained by calculation.
  • the power transmission ECU 240 adjusts the impedance adjustment unit 260 based on the positional deviation information from the vehicle 100 so that the power transmission efficiency becomes larger with the positional deviation amount (S340).
  • the impedance adjustment in S340 may be performed using a predetermined map as shown in FIG. 10, or the impedance of the impedance adjustment unit 260 is actually adjusted so that the obtained power transmission efficiency is maximized. You may do it.
  • the vehicle ECU 300 opens the relay of the voltage detection unit 181 and closes the CHR 185 in S210. Then, vehicle ECU 300 outputs a power transmission start command for charging power storage device 190 to power transmission device 200 in S220.
  • the power transmission ECU 240 starts power transmission using larger power than the test power transmission in accordance with a power transmission start command from the vehicle 100 (S350).
  • vehicle ECU300 performs the charge process by the received electric power in S230.
  • the non-contact power feeding system that transmits power from the power transmission device to the vehicle in a non-contact manner by performing the control according to the above-described process, even when the vehicle height changes, the power receiving unit is aligned with the power transmission unit. As a result, it becomes possible to suppress a decrease in power transmission efficiency. In addition, since the power transmission efficiency can be grasped, the charging completion time can be predicted more accurately.
  • the vehicle height sensor that detects the vertical distance (vehicle height) between the power transmission unit and the power reception unit has been described.
  • the arrangement of the vehicle height sensor is described below.
  • the configuration is not limited to this, and the power transmission device 200 may be provided.
  • a vehicle height sensor 270 may be arranged on the ground to detect the distance from the upper vehicle floor panel. In this case, the detected vehicle height is output to power transmission ECU 240 of power transmission device 200.
  • an RFID tag may be provided for pairing between a vehicle and a power transmission device.
  • the RFID sensor for pairing is used as a vehicle height sensor, so that the vehicle height sensor There is an advantage that it is not necessary to provide as a separate sensor.
  • an RFID reader may be provided on the vehicle side, and an RFID tag may be provided on the power transmission device side.

Abstract

 非接触給電システム(10)は、送電装置(200)から車両(100)へ非接触で電力を供給する。送電装置は、電源部(250)と送電部(220)との間のインピーダンスを調整するためのインピーダンス調整部(260)を含む。車両ECU(300)は、送電部と車両の受電部(110)との間の電力伝送効率に基づいて、駐車動作において送電部と受電部との位置合わせを支援する。送電ECU(240)は、駐車動作における位置合わせの際に、検出部(155)によって検出された送電部と受電部との間の鉛直方向の距離(車高)に基づいてインピーダンス調整部(260)を制御する。これによって、車高の変化に伴って生じるインピーダンス変化に起因する電力伝送効率の低下を抑制する。

Description

非接触給電システム、ならびにそれに用いられる送電装置および車両
 本発明は、非接触給電システム、ならびにそれに用いられる送電装置および車両に関し、より特定的には、非接触給電システムにおいて電力伝送効率を改善するための技術に関する。
 電源コードや送電ケーブルを用いない非接触のワイヤレス電力伝送が近年注目されており、車両外部の電源(以下「外部電源」とも称する。)からの電力によって車載の蓄電装置を充電可能な電気自動車やハイブリッド車両等への適用が提案されている。
 このような非接触給電システムにおいては、電力伝送効率を向上させるために、送電側と受電側との位置合わせを適切にすることが重要となる。
 特開2011-193671号公報(特許文献1)は、送電装置から車両へ非接触で電力を供給するシステムにおいて、車両の受電コイルと送電装置の送電コイルとの位置合わせを行なう際に、車両に搭載されたカメラからの情報に基づいた車両の誘導制御と、送電装置から車両への電力伝送状態に基づいた車両の誘導制御を用いることにより、簡易な構成で送電装置への駐車精度を確保する構成を開示する。
特開2011-193671号公報
 送電装置から非接触で車両に電力を送電する非接触給電システムにおいては、電力伝送効率は、送電装置における送電部と車両における受電部との位置関係によって変化し得る。この位置関係の変化としては、送電部と受電部との垂直方向の距離を示す車高と、送電部と受電部との水平方向の距離である位置ズレとがある。
 この車高については、車両に乗っている乗員の数や、トランクルームに積載された荷物の重量によって変化する。そうすると、送電部の入力インピーダンスが変動してしまうために、送電部と受電部との位置関係が設計時に想定された最適な位置関係となっていたとしても、設計上の最適な状態に比べて伝送効率が低下してしまう可能性がある。そのため、伝送効率を向上させるためには、実際の車高を考慮して、車両と送電装置との位置合わせおよびインピーダンスの調整を行なうことが必要となる。
 本発明は、このような課題を解決するためになされたものであって、その目的は、送電装置から車両へ非接触で電力を伝達する非接触給電システムにおいて、車高の変化に伴う電力伝送効率の低下を抑制することである。
 本発明による非接触給電システムは、送電装置から車両へ非接触で電力を供給する。車両は、送電装置からの電力を非接触で受電する受電部を含む。送電装置は、電源部と、電源部からの電力を受電部に非接触で供給する送電部と、電源部と送電部との間に電気的に接続されて電源部と送電部との間のインピーダンスを調整するためのインピーダンス調整部とを含む。非接触給電システムは、送電部と受電部との間の鉛直方向の距離を検出する検出部と、インピーダンス調整部を制御するための制御装置とを備える。制御装置は、送電部と受電部との間の電力伝送効率に基づいて、車両の送電装置への駐車動作において送電部と受電部との位置合わせを支援する。制御装置は、駐車動作における位置合わせの際に、検出部により検出された鉛直方向の距離に基づいてインピーダンス調整部を制御する。
 好ましくは、制御装置は、鉛直方向の距離において、送電部と受電部との間における予め定められた位置からの水平方向の位置ズレが大きくなるにつれて電力伝送効率が低下するような受電特性となるように、インピーダンス調整部を制御する。
 好ましくは、制御装置は、位置合わせの完了後、当該停車位置における電力伝送効率に基づいて位置ズレの大きさを判定し、判定された位置ズレの大きさに基づいてインピーダンス調整部をさらに調整する。
 好ましくは、検出部は、車両に搭載される。
 好ましくは、検出部は、送電装置に含まれる。
 好ましくは、インピーダンス調整部は、互いに異なるインピーダンスに設定された複数の整合器を含む。制御装置は、鉛直方向の距離に応じて、複数の整合器のうちの1つを選択する。
 好ましくは、インピーダンス調整部は、少なくとも一方が可変要素であるリアクトルおよびキャパシタを有する整合器を含む。制御装置は、鉛直方向の距離に応じて、整合器の可変要素を変化することによってインピーダンスを調整する。
 好ましくは、車両は、受電部で受電した電力を蓄える蓄電装置(190)をさらに含む。制御装置は、駐車動作における位置合わせの際に、蓄電装置を充電するときの送電電力よりも低い電力を送電装置から車両へ送電させ、低い電力を用いた場合の電力伝送効率が予め定められた所定値を上回ったことに応答して、ユーザに車両の停止を促す通知を行なう。
 好ましくは、送電部の固有周波数と受電部の固有周波数との差は、送電部の固有周波数または受電部の固有周波数の±10%以下である。
 好ましくは、送電部と受電部との結合係数は0.1以下である。
 好ましくは、受電部は、受電部と送電部との間に形成される特定の周波数で振動する磁界、および、受電部と送電部との間に形成される特定の周波数で振動する電界の少なくとも一方を通じて、送電部から受電する。
 本発明による車両は、インピーダンス調整部によりインピーダンスの調整が可能な送電装置からの電力を非接触で受電する。車両は、送電装置の送電部からの電力を非接触で受電する受電部と、送電部と受電部との間の電力伝送効率に基づいて、送電装置への駐車動作において送電部と受電部との位置合わせを制御する制御装置とを備える。制御装置は、駐車動作における位置合わせの際に、送電部と受電部との間の鉛直方向の距離に基づいて、送電装置のインピーダンス調整部を制御する。
 本発明による送電装置は、車両に電力を非接触で送電する。送電装置は、電源部と、電源部からの電力を車両の受電部に非接触で供給する送電部と、電源部と送電部との間に電気的に接続され、電源部と送電部との間のインピーダンスを調整するためのインピーダンス調整部と、インピーダンス調整部を制御するための制御装置とを備える。車両は、送電部と受電部との間の電力伝送効率に基づいて、送電装置への駐車動作において送電部と受電部との位置合わせを行なう。制御装置は、駐車動作における位置合わせの際に、送電部と受電部との間の鉛直方向の距離に基づいて、インピーダンス調整部を制御する。
 本発明によれば、車高を考慮したインピーダンス調整を行なうことによって、非接触給電システムにおいて車高の変化により発生し得る電力伝送効率の低下を抑制することができる。
本発明の実施の形態に従う車両の非接触給電システムの全体構成図である。 図1における整合器の構成の一例を示す図である。 図1における整合器の構成の他の例を示す図である。 本発明の実施の形態に従う車両の非接触給電システムの他の例の全体構成図である。 送電装置から車両への電力伝送時の等価回路図である。 電力伝送システムのシミュレーションモデルを示す図である。 送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。 固有周波数を固定した状態で、エアギャップを変化させたときの電力伝送効率と、送電部に供給される電流の周波数との関係を示すグラフである。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 電力伝送効率に対する送電部と受電部との位置関係の影響を説明するための図である。 本実施の形態において、駐車動作中に実行されるインピーダンス調整制御処理を説明するためのフローチャートである。 送電装置側に車高センサが設けられる構成の一例を示す図である。 RFIDを用いた車高の検出手法の一例を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 (非接触給電システムの構成)
 図1は、本実施の形態に従う非接触給電システム10の全体構成図である。図1を参照して、非接触給電システム10は、車両100と、送電装置200とを備える。
 送電装置200は、電源装置210と、送電部220とを含む。電源装置210は、所定の周波数を有する交流電力を発生する。一例として、電源装置210は、商用電源400から電力を受けて高周波の交流電力を発生し、その発生した交流電力を送電部220へ供給する。そして、送電部220は、送電部220の周囲に発生する電磁界を介して、車両100の受電部110へ非接触で電力を出力する。
 電源装置210は、通信部230と、制御装置である送電ECU240と、電源部250と、インピーダンス調整部260とをさらに含む。また、送電部220は、共振コイル221と、キャパシタ222と、電磁誘導コイル223とを含む。
 電源部250は、送電ECU240からの制御信号MODによって制御され、商用電源400などの交流電源から受ける電力を高周波の電力に変換する。そして、電源部250は、その変換した高周波電力を、インピーダンス調整部260を介して電磁誘導コイル223へ供給する。
 また、電源部250は、図示されない電圧センサ,電流センサによってそれぞれ検出される送電電圧Vtrおよび送電電流Itrを送電ECU240へ出力する。
 インピーダンス調整部260は、送電部220の入力インピーダンスを調整するためのものであり、典型的には、リアクトルとキャパシタとを含んで構成される。インピーダンス調整部260の具体的な構成の例を図2および図3に示す。
 たとえば、図2に示されるインピーダンス調整部260は、互いに異なる入出力インピーダンスに設定された複数の整合器261,262,263を含む。整合器261は、キャパシタC10およびリアクトルL10を含んで構成され、リレーRY11を介して電源部250へ結合されるとともにリレーRY12を介して送電部220へ結合される。整合器262は、キャパシタC20およびリアクトルL20を含んで構成され、リレーRY21を介して電源部250へ結合されるとともにリレーRY22を介して送電部220へ結合される。整合器263は、キャパシタC30およびリアクトルL30を含んで構成され、リレーRY31を介して電源部250へ結合されるとともにリレーRY32を介して送電部220へ結合される。送電ECU240からの制御信号SE10によって、複数の整合器261,262,263のうちの1つが選択され、選択された整合器に対応するリレーが閉成される。
 図3におけるインピーダンス調整部は、インピーダンスの調節が可能な整合器260Aにより構成される。整合器260Aは、キャパシタC40およびリアクトルL40を含み、キャパシタC40およびリアクトルL40の少なくとも一方が可変に構成される。整合器260Aは、制御信号SE10に基づいて、キャパシタC40のキャパシタンスおよび/またはリアクトルL40のリアクタンスを変化させることによって、所望のインピーダンスに調整する。なお、このような可変素子を用いることで、図2の構成に比べて回路数が少ないシンプルな構成とすることができるが、広い可変範囲が必要な場合には素子のサイズが大きくなったり、高価になったりする可能性がある。そのため、インピーダンス調整部の構成は、必要となる可変範囲およびコスト等を勘案して適宜設定される。なお、上記の可変素子は、連続的にキャパシタンスおよびリアクタンスなどが変化するものに限られず、直列および/または並列に接続されたキャパシタ,リアクトルを、リレーなどの切換スイッチで切換えることによって段階的にキャパシタンス等を変化させるものであってもよい。
 なお、図には示していないが、図2および図3を組合せ、異なる調整範囲を有する複数の可変整合器を切換える構成とすることも可能である。このような組合せの構成を用いることで、より広範な調整範囲とできるとともに微調整をすることが可能となる。また、整合器におけるキャパシタおよびリアクトルの接続方法は、図2および図3には限られない。たとえば、いわゆるT型回路やπ型回路のように接続するようにしてもよい。
 再び図1を参照して、電磁誘導コイル223は、電磁誘導により共振コイル221と磁気的に結合可能である。電磁誘導コイル223は、電源部250から供給された高周波電力を、電磁誘導によって共振コイル221に伝達する。
 共振コイル221は、電磁誘導コイル223から伝達された電力を、車両100の受電部110に含まれる共振コイル111へ非接触で電力を転送する。共振コイル221はキャパシタ222とともにLC共振回路を構成する。なお、受電部110と送電部220との間の電力伝送については、図5を用いて後述する。
 通信部230は、送電装置200と車両100との間で無線通信を行なうための通信インターフェースであり、車両100側の通信部160と情報INFOの授受を行なう。通信部230は、車両100側の通信部160から送信される車両情報、ならびに、送電の開始および停止を指示する信号等を受信し、受信したこれらの情報を送電ECU240へ出力する。また、通信部230は、送電ECU240からの送電電圧Vtrおよび送電電流Itr等の情報を車両100へ送信する。
 送電ECU240は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、電源装置210における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 車両100は、受電部110と、整合器170と、整流器180と、電圧検出部181と、充電リレーCHR185と、蓄電装置190と、システムメインリレーSMR115と、パワーコントロールユニットPCU(Power Control Unit)120と、モータジェネレータ130と、動力伝達ギヤ140と、駆動輪150と、制御装置である車両ECU(Electronic Control Unit)300と、通信部160と、電圧センサ195と、電流センサ196とを含む。受電部110は、共振コイル111と、キャパシタ112と、電磁誘導コイル113とを含む。
 なお、本実施の形態においては、車両100として電気自動車を例として説明するが、蓄電装置に蓄えられた電力を用いて走行が可能な車両であれば車両100の構成はこれに限られない。車両100の他の例としては、エンジンを搭載したハイブリッド車両や、燃料電池を搭載した燃料電池車などが含まれる。
 共振コイル111は、送電装置200に含まれる共振コイル221から非接触で電力を受電する。共振コイル111は、キャパシタ112とともにLC共振回路を構成する。
 電磁誘導コイル113は、電磁誘導により共振コイル111と磁気的に結合可能である。この電磁誘導コイル113は、共振コイル111により受電された電力を電磁誘導により取出し、整合器170を介して整流器180へ出力する。
 整合器170は、共振コイル111により受電された電力を供給する負荷の入力インピーダンスを調整するためのものである。整合器170は、たとえば、図2に示した整合器261,262,263と同様の構成を有する。
 整流器180は、整合器170を介して電磁誘導コイル113から受けた交流電力を整流し、その整流された直流電力を蓄電装置190に出力する。整流器180としては、たとえば、ダイオードブリッジおよび平滑用のキャパシタ(いずれも図示せず)を含む構成とすることができる。整流器180として、スイッチング制御を用いて整流を行なう、いわゆるスイッチングレギュレータを用いることも可能である。整流器180が受電部110に含まれる場合には、発生する電磁場に伴うスイッチング素子の誤動作等を防止するために、ダイオードブリッジのような静止型の整流器とすることがより好ましい。
 電圧検出部181は、たとえば、直列に接続されたスイッチおよび抵抗と、当該抵抗に並列に接続された電圧センサとを含んで構成される。電圧検出部181は、スイッチが閉成された場合に、整流器180と蓄電装置190とを結ぶ電力線間の電圧VCを検出する。この電圧検出部181は、後述するように、車両100が送電装置200の駐車スペースに駐車する際に、送電部220と受電部110との位置合わせを行なうために用いられる。
 CHR185は、整流器180と蓄電装置190との間に電気的に接続される。CHR185は、車両ECU300からの制御信号SE2により制御され、整流器180から蓄電装置190への電力の供給と遮断とを切換える。
 蓄電装置190は、充放電可能に構成された電力貯蔵要素である。蓄電装置190は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池や、電気二重層キャパシタなどの蓄電素子を含んで構成される。
 蓄電装置190は、整流器180に接続される。そして、蓄電装置190は、受電部110で受電され、かつ整流器180で整流された電力を蓄電する。また、蓄電装置190は、SMR115を介してPCU120とも接続される。蓄電装置190は、車両駆動力を発生させるための電力をPCU120へ供給する。さらに、蓄電装置190は、モータジェネレータ130で発電された電力を蓄電する。蓄電装置190の出力は、たとえば200V程度である。
 蓄電装置190には、いずれも図示しないが、蓄電装置190の電圧VBおよび入出力される電流IBを検出するための電圧センサおよび電流センサが設けられる。これらの検出値は、車両ECU300へ出力される。車両ECU300は、この電圧VBおよび電流IBに基づいて、蓄電装置190の充電状態(「SOC(State Of Charge)」とも称する。)を演算する。
 SMR115は、蓄電装置190とPCU120との間に電気的に接続される。そして、SMR115は、車両ECU300からの制御信号SE1によって制御され、蓄電装置190とPCU120との間での電力の供給と遮断とを切換える。
 PCU120は、いずれも図示しないが、コンバータやインバータを含む。コンバータは、車両ECU300からの制御信号PWCにより制御されて蓄電装置190からの電圧を変換する。インバータは、車両ECU300からの制御信号PWIにより制御されて、コンバータで変換された電力を用いてモータジェネレータ130を駆動する。
 モータジェネレータ130は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。
 モータジェネレータ130の出力トルクは、動力伝達ギヤ140を介して駆動輪150に伝達される。車両100は、このトルクを用いて走行する。モータジェネレータ130は、車両100の回生制動動作時には、駆動輪150の回転力によって発電することができる。そして、その発電電力は、PCU120によって蓄電装置190の充電電力に変換される。
 また、モータジェネレータ130の他にエンジン(図示せず)が搭載されたハイブリッド自動車では、エンジンおよびモータジェネレータ130を協調的に動作させることによって、必要な車両駆動力が発生される。この場合、エンジンの回転による発電電力を用いて、蓄電装置190を充電することも可能である。
 通信部160は、車両100と送電装置200との間で無線通信を行なうための通信インターフェースであり、送電装置200の通信部230と情報INFOの授受を行なう。通信部160から送電装置200へ出力される情報INFOには、車両ECU300からの車両情報や、送電の開始および停止を指示する信号、ならびに送電装置200のインピーダンス調整部260の切換指令などが含まれる。
 車両ECU300は、いずれも図1には図示しないがCPU、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、車両100における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 車高センサ155は、たとえば、車両100のフロアパネル下面に設けられ、フロアパネルと地面との距離、すなわち受電部110と送電部220との間の鉛直方向の距離を検出し、その検出値HGTを車両ECU300に出力する。なお、ここで鉛直方向の距離とは、受電部110と送電部220とを結ぶ線分の鉛直方向の長さ成分を表わしており、すなわち、受電部110と送電部220とが理想的に位置合わせされたときの距離に対応する。
 電圧センサ195は、電圧検出部181とCHR185とを結ぶ電力線間に接続され、受電部110で受電された受電電圧Vreを検出する。電流センサ196は、電圧検出部181とCHR185とを結ぶ電力線に設けられ、受電電流Ireを検出する。受電電圧Vreおよび受電電流Ireの検出値は、車両ECU300に送信され、電力伝送効率の演算等に用いられる。
 また、車両ECU300は、車両の駐車動作の際に、送電装置200からの電力を受電しているときの電圧VCに基づいて、受電部110と送電部220との水平方向の位置ズレ量を検出する。より具体的には、駐車動作の際に、車両ECU300は、電圧検出部181のリレーを閉成するとともにCHR185を開放する。そして、駐車動作中に、送電装置200から、蓄電装置190を充電する場合の送電電力よりも低い電力を用いた送電(以下、「テスト送電」とも称する。)により受電した電力について、整流後の直流電圧VCを電圧検出部181によって検出する。送電部220と受電部110との間の位置ズレと、受電電圧VCとの間には、図10において後述するような所定の関係が成立するので、駐車動作中の受電電圧VCによって、送電部220と受電部110との間の位置ズレを判定することができる。
 なお、図1においては、受電部110および送電部220に、電磁誘導コイル113,223がそれぞれ設けられる構成を示したが、図4の非接触給電システム10Aにおける受電部110Aおよび送電部220Aのように電磁誘導コイルが設けられない構成とすることも可能である。この場合には、送電部220Aにおいては共振コイル221Aが電源部250に接続され、受電部110Aにおいては共振コイル111Aが整流器180に接続される。
 また、車両におけるインピーダンス調整手段として、図4に示されるように、図1における整合器170に代えて、整流器180により整流された直流電圧の電圧変換を行なうDC/DCコンバータ170Aが設けられる構成であってもよい。あるいは、整合器170とDC/DCコンバータ170Aを併用する構成であってもよい。
 (電力伝送の原理)
 図5は、送電装置200から車両100への電力伝送時の等価回路図である。図5を参照して、送電装置200の送電部220は、共振コイル221と、キャパシタ222と、電磁誘導コイル223とを含む。
 電磁誘導コイル223は、共振コイル221と所定の間隔をおいて、たとえば共振コイル221と略同軸上に設けられる。電磁誘導コイル223は、電磁誘導により共振コイル221と磁気的に結合し、電源装置210から供給される高周波電力を電磁誘導により共振コイル221へ供給する。
 共振コイル221は、キャパシタ222とともにLC共振回路を形成する。なお、後述するように、車両100の受電部110においてもLC共振回路が形成される。共振コイル221およびキャパシタ222によって形成されるLC共振回路の固有周波数と、受電部110のLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%以下である。そして、共振コイル221は、電磁誘導コイル223から電磁誘導により電力を受け、車両100の受電部110へ非接触で送電する。
 なお、電磁誘導コイル223は、電源装置210から共振コイル221への給電を容易にするために設けられるものであり、電磁誘導コイル223を設けずに共振コイル221に電源装置210を直接接続してもよい。また、キャパシタ222は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル221の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ222を設けない構成としてもよい。
 車両100の受電部110は、共振コイル111と、キャパシタ112と、電磁誘導コイル113とを含む。共振コイル111は、キャパシタ112とともにLC共振回路を形成する。上述のように、共振コイル111およびキャパシタ112によって形成されるLC共振回路の固有周波数と、送電装置200の送電部220における、共振コイル221およびキャパシタ222によって形成されるLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%である。そして、共振コイル111は、送電装置200の送電部220から非接触で受電する。
 電磁誘導コイル113は、共振コイル111と所定の間隔をおいて、たとえば共振コイル111と略同軸上に設けられる。電磁誘導コイル113は、電磁誘導により共振コイル111と磁気的に結合し、共振コイル111によって受電された電力を電磁誘導により取出して電気負荷装置118へ出力する。なお、電気負荷装置118は、受電部110によって受電された電力を利用する電気機器であり、具体的には、整流器180(図1)以降の電気機器を包括的に表わしたものである。
 なお、電磁誘導コイル113は、共振コイル111からの電力の取出しを容易にするために設けられるものであり、電磁誘導コイル113を設けずに共振コイル111に整流器180を直接接続してもよい。また、キャパシタ112は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル111の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ112を設けない構成としてもよい。
 送電装置200において、電源装置210から電磁誘導コイル223へ高周波の交流電力が供給され、電磁誘導コイル223を用いて共振コイル221へ電力が供給される。そうすると、共振コイル221と車両100の共振コイル111との間に形成される磁界を通じて共振コイル221から共振コイル111へエネルギ(電力)が移動する。共振コイル111へ移動したエネルギ(電力)は、電磁誘導コイル113を用いて取出され、車両100の電気負荷装置118へ伝送される。
 上述のように、この電力伝送システムにおいては、送電装置200の送電部220の固有周波数と、車両100の受電部110の固有周波数との差は、送電部220の固有周波数または受電部110の固有周波数の±10%以下である。このような範囲に送電部220および受電部110の固有周波数を設定することで電力伝送効率を高めることができる。一方、上記の固有周波数の差が±10%よりも大きくなると、電力伝送効率が10%よりも小さくなり、電力伝送時間が長くなるなどの弊害が生じる可能性がある。
 なお、送電部220(受電部110)の固有周波数とは、送電部220(受電部110)を構成する電気回路(共振回路)が自由振動する場合の振動周波数を意味する。なお、送電部220(受電部110)を構成する電気回路(共振回路)において、制動力または電気抵抗を実質的に零としたときの固有周波数は、送電部220(受電部110)の共振周波数とも呼ばれる。
 図6および図7を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。図6は、電力伝送システムのシミュレーションモデルを示す図である。また、図7は、送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。
 図6を参照して、電力伝送システム89は、送電部90と、受電部91とを備える。送電部90は、第1コイル92と、第2コイル93とを含む。第2コイル93は、共振コイル94と、共振コイル94に設けられたキャパシタ95とを含む。受電部91は、第3コイル96と、第4コイル97とを備える。第3コイル96は、共振コイル99とこの共振コイル99に接続されたキャパシタ98とを含む。
 共振コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。また、共振コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、第2コイル93の固有周波数f1は、下記の式(1)によって示され、第3コイル96の固有周波数f2は下記の式(2)によって示される。
  f1=1/{2π(Lt×C1)1/2} … (1)
  f2=1/{2π(Lr×C2)1/2} … (2)
 ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、第2コイル93および第3コイル96の固有周波数のズレと電力伝送効率との関係を図7に示す。なお、このシミュレーションにおいては、共振コイル94および共振コイル99の相対的な位置関係は固定とし、さらに、第2コイル93に供給される電流の周波数は一定である。
 図7に示すグラフのうち、横軸は固有周波数のズレ(%)を示し、縦軸は一定周波数の電流における電力伝送効率(%)を示す。固有周波数のズレ(%)は、下記の式(3)によって示される。
  (固有周波数のズレ)={(f1-f2)/f2}×100(%) … (3)
 図7から明らかなように、固有周波数のズレ(%)が0%の場合には、電力伝送効率は100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は40%程度となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は10%程度となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は5%程度となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、第3コイル96の固有周波数の10%以下の範囲となるように第2コイル93および第3コイル96の固有周波数を設定することで、電力伝送効率を実用的なレベルに高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が第3コイル96の固有周波数の5%以下となるように第2コイル93および第3コイル96の固有周波数を設定すると、電力伝送効率をさらに高めることができるのでより好ましい。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
 再び図5を参照して、送電装置200の送電部220および車両100の受電部110は、送電部220と受電部110との間に形成され、かつ、特定の周波数で振動する磁界と、送電部220と受電部110との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、非接触で電力を授受する。送電部220と受電部110との結合係数κは0.1以下が好ましく、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220から受電部110へ電力が伝送される。
 ここで、送電部220の周囲に形成される特定の周波数の磁界について説明する。「特定の周波数の磁界」は、典型的には、電力伝送効率と送電部220に供給される電流の周波数と関連性を有する。そこで、まず、電力伝送効率と、送電部220に供給される電流の周波数との関係について説明する。送電部220から受電部110に電力を伝送するときの電力伝送効率は、送電部220および受電部110間の距離などの様々な要因よって変化する。たとえば、送電部220および受電部110の固有周波数(共振周波数)をf0とし、送電部220に供給される電流の周波数をf3とし、送電部220および受電部110の間のエアギャップをエアギャップAGとする。
 図8は、固有周波数f0を固定した状態で、エアギャップAGを変化させたときの電力伝送効率と、送電部220に供給される電流の周波数f3との関係を示すグラフである。図8を参照して、横軸は、送電部220に供給される電流の周波数f3を示し、縦軸は、電力伝送効率(%)を示す。効率曲線L1は、エアギャップAGが小さいときの電力伝送効率と、送電部220に供給される電流の周波数f3との関係を模式的に示す。この効率曲線L1に示すように、エアギャップAGが小さい場合には、電力伝送効率のピークは周波数f4,f5(f4<f5)において生じる。エアギャップAGを大きくすると、電力伝送効率が高くなるときの2つのピークは、互いに近づくように変化する。そして、効率曲線L2に示すように、エアギャップAGを所定距離よりも大きくすると、電力伝送効率のピークは1つとなり、送電部220に供給される電流の周波数が周波数f6のときに電力伝送効率がピークとなる。エアギャップAGを効率曲線L2の状態よりもさらに大きくすると、効率曲線L3に示すように電力伝送効率のピークが小さくなる。
 たとえば、電力伝送効率の向上を図るため手法として次のような手法が考えられる。第1の手法としては、エアギャップAGにあわせて、送電部220に供給される電流の周波数を一定として、キャパシタ222やキャパシタ112のキャパシタンスを変化させることで、送電部220と受電部110との間での電力伝送効率の特性を変化させる手法が考えられる。具体的には、送電部220に供給される電流の周波数を一定とした状態で、電力伝送効率がピークとなるように、キャパシタ222およびキャパシタ112のキャパシタンスを調整する。この手法では、エアギャップAGの大きさに関係なく、送電部220および受電部110に流れる電流の周波数は一定である。
 また、第2の手法としては、エアギャップAGの大きさに基づいて、送電部220に供給される電流の周波数を調整する手法である。たとえば、電力伝送特性が効率曲線L1となる場合には、周波数f4またはf5の電流を送電部220に供給する。周波数特性が効率曲線L2,L3となる場合には、周波数f6の電流を送電部220に供給する。この場合においては、エアギャップAGの大きさに合わせて送電部220および受電部110に流れる電流の周波数を変化させることになる。
 第1の手法では、送電部220を流れる電流の周波数は、固定された一定の周波数となり、第2の手法では、送電部220を流れる周波数は、エアギャップAGによって適宜変化する周波数となる。第1の手法や第2の手法などによって、電力伝送効率が高くなるように設定された特定の周波数の電流が送電部220に供給される。送電部220に特定の周波数の電流が流れることで、送電部220の周囲には、特定の周波数で振動する磁界(電磁界)が形成される。受電部110は、受電部110と送電部220との間に形成され、かつ特定の周波数で振動する磁界を通じて送電部220から電力を受電している。したがって、「特定の周波数で振動する磁界」とは、必ずしも固定された周波数の磁界とは限らない。なお、上記の例では、エアギャップAGに着目して、送電部220に供給される電流の周波数を設定するようにしているが、電力伝送効率は、送電部220および受電部110の水平方向のズレ等のように他の要因によっても変化するものであり、当該他の要因に基づいて、送電部220に供給される電流の周波数を調整する場合がある。
 なお、上記の説明では、共振コイルとしてヘリカルコイルを採用した例について説明したが、共振コイルとして、メアンダラインなどのアンテナなどを採用した場合には、送電部220に特定の周波数の電流が流れることで、特定の周波数の電界が送電部220の周囲に形成される。そして、この電界を通して、送電部220と受電部110との間で電力伝送が行なわれる。
 この電力伝送システムにおいては、電磁界の「静電磁界」が支配的な近接場(エバネッセント場)を利用することで、送電および受電効率の向上が図られている。
 図9は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図9を参照して、電磁界は3つの成分から成る。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。なお、電磁界の波長を「λ」とすると、「輻射電磁界」と「誘導電磁界」と「静電磁界」との強さが略等しくなる距離は、λ/2πと表わすことができる。
 「静電磁界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、この実施の形態に係る電力伝送システムでは、この「静電磁界」が支配的な近接場(エバネッセント場)を利用してエネルギ(電力)の伝送が行なわれる。すなわち、「静電磁界」が支配的な近接場において、近接する固有周波数を有する送電部220および受電部110(たとえば一対のLC共振コイル)を共鳴させることにより、送電部220から他方の受電部110へエネルギ(電力)を伝送する。この「静電磁界」は遠方にエネルギを伝播しないので、遠方までエネルギを伝播する「輻射電磁界」によってエネルギ(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギ損失で送電することができる。
 このように、この電力伝送システムにおいては、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220と受電部110との間で非接触によって電力が伝送される。そして、送電部220と受電部110との間の結合係数(κ)は、たとえば、0.3以下が好ましく、より好ましくは0.1以下である。当然のことながら、結合係数(κ)を0.1~0.3程度の範囲も採用することができる。結合係数(κ)は、このような値に限定されるものでなく、電力伝送が良好となる種々の値をとり得る。
 なお、電力伝送における、上記のような送電部220と受電部110との結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電磁界(電磁場)共振結合」、「電界(電場)共振結合」等という。「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。
 送電部220と受電部110とが上記のようにコイルによって形成される場合には、送電部220と受電部110とは、主に磁界(磁場)によって結合し、「磁気共鳴結合」または「磁界(磁場)共鳴結合」が形成される。なお、送電部220と受電部110とに、たとえば、メアンダライン等のアンテナを採用することも可能であり、この場合には、送電部220と受電部110とは、主に電界(電場)によって結合し、「電界(電場)共鳴結合」が形成される。
 (インピーダンス調整制御)
 上述のような非接触給電システムにおいて、電力伝送効率を向上させるには、理想的には送電部と受電部との間のインピーダンスを一致させることが好ましい。通常、設計時においては、送電部と受電部との位置関係(鉛直方向および水平方向の距離)が理想的な位置関係となった状態で電力伝送効率が最大となるように、送電部および受電部のインピーダンスが設定される。
 そして、駐車動作において送電部と受電部との水平方向の位置ズレが生じたり、あるいは、乗員の数や積載されている荷物の重量によって車両側の受電部の高さ(すなわち車高)が変化したりしたような場合には、送電部と受電部との間の距離が設計時の理想的な状態からずれてしまうために、電力伝送効率の低下が生じ得る。
 しかしながら、駐車動作においてユーザが設計上の理想的な位置に車両を停止することは非常に困難であり、また乗員数や積載量も変化し得るため、最終的な停車位置は、最適な位置から少なからず位置ズレが生じた状態となり得る。
 そこで、本実施の形態においては、駐車動作においてできるだけ理想的な位置への駐車ができるようにユーザへの駐車位置のガイダンスを行なうとともに、駐車動作完了後の最終停車位置についてできるだけ電力伝送効率が向上させるようなインピーダンス制御を実行する。
 図10は、電力伝送効率に対する、送電部と受電部との位置関係(車高および水平方向の位置ズレ)の影響を説明するための図である。図10においては、横軸に送電部と受電部との水平方向の位置ズレ量が示され、縦軸には電力伝送効率が示される。なお、位置ズレ量については、たとえば送電部の位置に対する受電部の位置が車両の進行方向にずれている場合を正とした場合には、車両の後退方向の位置ズレが負の値で示される。また、送電部の位置に対する受電部の位置が車両の進行方向に向かって右方向にずれている場合を正とした場合には、進行方向に向かって左方向の位置ズレが負の値で示される。
 図10を参照して、図10中の曲線W10は、送電部と受電部とが設計上の理想的な位置関係である場合の電力伝送効率の変化を示す。この場合には、位置ズレ量がゼロの場合に電力伝送効率が最大となり、位置ズレ量が大きくなるにしたがって電力伝送効率が徐々に低下するような、ピークが1つである単峰特性を有する。
 送電部と受電部との鉛直方向の距離(車高)が理想状態よりも大きくなると、送電部と受電部との間に生じる電磁場の強度が弱まるため、図10中の曲線W11のように、単峰特性を有した状態で全体の電力伝送効率が低下する。
 一方、車高が理想状態よりも低くなると、送電部と受電部との間のインピーダンスの変化のために、送電電力のうち受電部によって反射されて伝送できなくなる電力(反射電力)が徐々に大きくなる。そのため、図10中の曲線W12,W13のように、車高が低く送電部と受電部との間の鉛直方向の距離が小さくなるにしたがって、位置ズレ量がゼロである場合の電力伝送効率が低下し、理想状態の位置からずれた位置において電力伝送効率のピークが生じる双峰特性を有するようになる。
 このような双峰特性となった場合には、駐車動作において、送電部と受電部との間の位置ズレ量を、電力伝送効率で判定することが必ずしも容易ではなくなる。さらに、双峰特性の電力伝送効率に従って駐車動作を行なった場合に、駐車完了後に乗員が降車したり荷物を降ろしたりして車高が高くなると、電力伝送効率の特性がより単峰特性に近づくために、位置ズレの影響によって電力伝送効率がかえって悪化してしまう状態となり得る。そのため、電力伝送効率に基づいた駐車位置のガイダンスを行なう場合には、電力伝送効率の特性を単峰特性とすることが必要となる。
 本実施の形態では、駐車動作におけるユーザへの駐車位置のガイダンスにおいて、駐車動作の開始に先立ってあるいは駐車動作の実行中に、電力伝送効率の特性が単峰特性となるように、車高に応じて送電装置側のインピーダンスを調整する。これにより、駐車動作において、ユーザによる送電部と受電部との位置合わせが容易になる。
 なお、電力伝送効率は、送電部からの送電電力に対する受電部での受電電力の割合で示される。そのため、負荷のインピーダンスが一定である場合には、電力伝送効率は受電側の受電電圧として表わすこともできる。したがって、図1の電圧検出部181において、駐車動作中の整流後の受電電圧VCを検出することで、電力伝送効率を評価することができる。
 また、本実施の形態においては、駐車動作が完了した後に、送電部と受電部との間の最終的な水平方向の位置ズレ量を電力伝送効率から判定し、当該位置ズレ量において電力伝送効率がより大きくなるような双峰特性の電力伝送効率となるように、送電装置側のインピーダンスをさらに調整する。これによって、さらに電力伝送効率を向上させることができる。
 図11は、本実施の形態において、駐車動作中に実行されるインピーダンス調整制御処理を説明するためのフローチャートである。図11においては、車両100側の車両ECU300で実行される処理と、送電装置200側の送電ECU240で実行される処理が示されている。なお、図11に示されるフローチャート中の各ステップについては、車両ECU300および送電ECU240に予め格納されたプログラムがメインルーチンから呼び出されて、所定周期もしくは所定の条件が成立したことに応答して実行されることによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
 図1および図11を参照して、車両ECU300は、ステップ(以下、ステップをSと略す。)100にて、非接触による充電を行なうために、送電装置200への駐車動作が開始されたか否かを判定する。この駐車動作開始の判定については、実際に車両が送電装置200の駐車スペースへ動き出した場合だけでなく、車両が停止した状態でユーザが駐車動作を実行するように操作スイッチ等により設定を行なった場合も含まれる。
 駐車動作が開始されていない場合(S100にてNO)は、当該インピーダンス制御は不要であるため、車両ECU300は処理を終了する。
 駐車動作が開始された場合(S100にてNO)は、処理がS110に進められ、車両ECU300は、車高センサ155からの車高を示す情報HGTを検出し、検出した車高情報を送電装置200へ無線通信により送信する。
 送電ECU240は、車両100からの車高情報を受信し(S300)、車高に応じて、電力伝送効率が単峰特性を有するようにインピーダンス調整を実行する(S310)。
 車両ECU300は、S120にて、電力伝送効率に基づいた送電部220と受電部110との距離検出のために、電圧検出部181のリレーを閉成して距離検出用の抵抗を接続するとともに、CHR185を開放する。
 そして、車両ECU300はS130にて、送電装置200に対して、距離検出のためのテスト送電を開始するための指令を出力する。
 これに応答して、送電ECU240は、蓄電装置190を充電する場合の送電電力よりも低い電力を用いたテスト送電を開始する(S320)。
 車両ECU300は、S140にて、駐車動作を実行中に、送電装置200からのテスト送電による電力を受電し、電圧検出部181の距離検出抵抗にかかる電圧VCを検出する。
 そして、車両ECU300は、S150にて、図10に示したようなマップを用いて、電圧VCが、停車時の許容位置ズレ量を定めるしきい値αを上回ったか否かを判定する。
 電圧VCがしきい値α以下である場合(S150にてNO)は、車両ECU300は、充電装置の充電を行なうための送電を行なう位置に車両100が到達していないと判断し、処理をS140に戻して、電圧VCを検出しながら駐車動作を継続する。
 電圧VCがしきい値αを上回っている場合(S150にてYES)は、処理がS150に進められ、車両ECU300は、S160にて、ユーザに対して車両の停止を促すガイダンスを通知する。なお、自動駐車機能を用いて駐車動作が自動で行われる場合には、このS150において、駐車動作が停止される。
 そして、車両ECU300は、S170にて、駐車動作が完了したか否かを判定する。この駐車動作完了の判定は、たとえば、シフトポジションが駐車ポジションであるPレンジに設定された場合、サイドブレーキが操作された場合、あるいは、イグニッションスイッチがオフに設定された場合などに基づいて行なわれる。
 駐車動作が完了していない場合は(S170にてNO)は、処理がS160に戻され、ユーザにより駐車動作が完了するのを待つ。
 駐車動作が完了した場合は(S170にてYES)は、処理がS180に進められて、車両ECU300は、停車状態における電力伝送効率から、送電部220と受電部110との間の水平方向の位置ズレを演算する。
 そして、車両ECU300は、S190にて、送電装置200に対してテスト送電の停止指令を送信する。これに応答して、送電ECU240はテスト送電を停止する(S330)。
 その後、車両ECU300は、S200にて、演算により得られた、送電部220と受電部110との間の水平方向の位置ズレの情報を送電装置200へ送信する。
 送電ECU240は、この車両100からの位置ズレ情報に基づいて、当該位置ズレ量において電力伝送効率がより大きくなるようにインピーダンス調整部260を調整する(S340)。S340におけるインピーダンス調整は、予め定められた図10のようなマップを用いて行なってもよいし、実際にインピーダンス調整部260のインピーダンスを調整し、得られる電力伝送効率が最も大きくなるように調整するようにしてもよい。
 車両ECU300は、駐車動作における位置ズレ量の検出が終了すると、S210において電圧検出部181のリレーを開放するとともにCHR185を閉成する。そして、車両ECU300は、S220にて蓄電装置190の充電を実行するための送電の開始指令を送電装置200へ出力する。
 送電ECU240は、車両100からの送電開始指令に従って、テスト送電よりも大きな電力を用いた送電を開始する(S350)。
 そして、車両ECU300は、S230にて、受電した電力による充電処理を実行する。
 以上のような処理に従って制御を行なうことによって、送電装置から車両へ非接触で電力を伝送する非接触給電システムにおいて、車高の変化が生じた場合においても、送電部への受電部の位置合わせが容易になるとともに、電力伝送効率の低下を抑制することが可能となる。また、電力伝送効率を把握できるので、充電完了時間の予測をより正確に行なうことができる。
 (車高検出の変形例)
 なお、図1および図4においては、送電部と受電部との鉛直方向の距離(車高)を検出する車高センサが車両側に搭載される構成について説明したが、車高センサの配置はこれに限られず、送電装置200側に設けられる構成とすることもできる。
 たとえば、図12に示すように、地面に車高センサ270が配置され、上方の車両のフロアパネルとの距離を検出するようにしてもよい。この場合、検出された車高は、送電装置200の送電ECU240に出力される。
 また、図13に示されるように、車両100に設けられるRFIDからの信号に基づいて車高を検出することも可能である。この構成においては、車両100に設けられる少なくとも3つのRFIDタグ(ID1~ID3)からの信号を、送電装置側のRFIDリーダ280により読取り、その読取った信号の強度に基づいて三角測量の原理により車高を検出する。このようなRFIDタグは、車両と送電装置との間のペアリングを行なうために設けられる場合があり、その場合には、ペアリングのためのRFIDを車高センサとして用いることで、車高センサを個別のセンサとして設ける必要がなくなるという利点がある。なお、車両側にRFIDリーダが備えられ、送電装置側にRFIDタグが設けられる構成であってもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10,10A 非接触給電システム,89 電力伝送システム,90,220,220A 送電部、91,110,110A 受電部、92,93,96,97 コイル、94,99,111,111A,221,221A 共振コイル、95,98,112,222,C10,C20、C30,C40 キャパシタ、100,100A 車両、113,223 電磁誘導コイル、115 SMR、118 電気負荷装置、120 PCU、130 モータジェネレータ、140 動力伝達ギヤ、150 駆動輪、155,270 車高センサ、160,230 通信部、170,260A,261~263 整合器、170A DC/DCコンバータ、180 整流器、181 電圧検出部、185 CHR、190 蓄電装置、195 電圧センサ、196 電流センサ、200,200A 送電装置、210 電源装置、240 送電ECU、250 電源部、260 インピーダンス調整部、280 RFIDリーダ、300 車両ECU、400 商用電源、ID1~ID3 RFID、RY11,RY12,RY21,RY22,RY31,RY32 リレー。

Claims (13)

  1.  送電装置(200)から車両(100)へ非接触で電力を供給する非接触給電システム(10,10A)であって、
     前記車両は、前記送電装置からの電力を非接触で受電する受電部(110)を含み、
     前記送電装置は、電源部(210)と、前記電源部からの電力を前記受電部に非接触で供給する送電部(220)と、前記電源部と前記送電部との間に電気的に接続されて前記電源部と前記送電部との間のインピーダンスを調整するためのインピーダンス調整部(260)とを含み、
     前記非接触給電システムは、
     前記送電部と前記受電部との間の鉛直方向の距離を検出する検出部(155,270,280)と、
     前記インピーダンス調整部を制御するための制御装置(240)とを備え、
     前記制御装置は、前記送電部と前記受電部との間の電力伝送効率に基づいて、前記車両の前記送電装置への駐車動作において前記送電部と前記受電部との位置合わせを支援し、
     前記制御装置は、前記駐車動作における前記位置合わせの際に、前記検出部により検出された前記鉛直方向の距離に基づいて前記インピーダンス調整部を制御する、非接触給電システム。
  2.  前記制御装置は、前記鉛直方向の距離において、前記送電部と前記受電部との間における予め定められた位置からの水平方向の位置ズレが大きくなるにつれて電力伝送効率が低下するような受電特性となるように、前記インピーダンス調整部を制御する、請求項1に記載の非接触給電システム。
  3.  前記制御装置は、前記位置合わせの完了後、当該停車位置における電力伝送効率に基づいて前記位置ズレの大きさを判定し、判定された前記位置ズレの大きさに基づいて前記インピーダンス調整部をさらに調整する、請求項2に記載の非接触給電システム。
  4.  前記検出部(155)は、前記車両に搭載される、請求項1に記載の非接触給電システム。
  5.  前記検出部(270,280)は、前記送電装置に含まれる、請求項1に記載の非接触給電システム。
  6.  前記インピーダンス調整部は、互いに異なるインピーダンスに設定された複数の整合器(261,262,263)を含み、
     前記制御装置は、前記鉛直方向の距離に応じて、前記複数の整合器のうちの1つを選択する、請求項1に記載の非接触給電システム。
  7.  前記インピーダンス調整部は、少なくとも一方が可変要素であるリアクトルおよびキャパシタを有する整合器(260A)を含み、
     前記制御装置は、前記鉛直方向の距離に応じて、前記整合器の前記可変要素を変化することによってインピーダンスを調整する、請求項1に記載の非接触給電システム。
  8.  前記車両は、前記受電部で受電した電力を蓄える蓄電装置(190)をさらに含み、
     前記制御装置は、前記駐車動作における前記位置合わせの際に、前記蓄電装置を充電するときの送電電力よりも低い電力を前記送電装置から前記車両へ送電させ、前記低い電力を用いた場合の電力伝送効率が予め定められた所定値を上回ったことに応答して、ユーザに前記車両の停止を促す通知を行なう、請求項1に記載の非接触給電システム。
  9.  前記送電部の固有周波数と前記受電部の固有周波数との差は、前記送電部の固有周波数または前記受電部の固有周波数の±10%以下である、請求項1に記載の非接触給電システム。
  10.  前記送電部と前記受電部との結合係数は0.1以下である、請求項1に記載の非接触給電システム。
  11.  前記受電部は、前記受電部と前記送電部との間に形成される特定の周波数で振動する磁界、および、前記受電部と前記送電部との間に形成される特定の周波数で振動する電界の少なくとも一方を通じて、前記送電部から受電する、請求項1に記載の非接触給電システム。
  12.  インピーダンス調整部(260)によりインピーダンスの調整が可能な送電装置(200)からの電力を非接触で受電する車両であって、
     前記送電装置の送電部(220)からの電力を非接触で受電する受電部(110)と、
     前記送電部と前記受電部との間の電力伝送効率に基づいて、前記送電装置への駐車動作において前記送電部と前記受電部との位置合わせを制御する制御装置(300)とを備え、
     前記制御装置は、前記駐車動作における前記位置合わせの際に、前記送電部と前記受電部との間の鉛直方向の距離に基づいて、前記送電装置の前記インピーダンス調整部を制御する、車両。
  13.  車両(100)に電力を非接触で送電する送電装置であって、
     電源部(250)と、
     前記電源部からの電力を前記車両の受電部に非接触で供給する送電部(220)と、
     前記電源部と前記送電部との間に電気的に接続され、前記電源部と前記送電部との間のインピーダンスを調整するためのインピーダンス調整部(260)と、
     前記インピーダンス調整部を制御するための制御装置(240)とを備え、
     前記車両は、前記送電部と前記受電部との間の電力伝送効率に基づいて、前記送電装置への駐車動作において前記送電部と前記受電部との位置合わせを行ない、
     前記制御装置は、前記駐車動作における前記位置合わせの際に、前記送電部と前記受電部との間の鉛直方向の距離に基づいて、前記インピーダンス調整部を制御する、送電装置。
PCT/JP2012/073445 2012-09-13 2012-09-13 非接触給電システム、ならびにそれに用いられる送電装置および車両 WO2014041655A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014535300A JP6119756B2 (ja) 2012-09-13 2012-09-13 非接触給電システムおよび送電装置
DE112012006896.3T DE112012006896T5 (de) 2012-09-13 2012-09-13 Kontaktloses Energieversorgungssystem, Energieübertragungsvorrichtung und dabei verwendetes Fahrzeug
PCT/JP2012/073445 WO2014041655A1 (ja) 2012-09-13 2012-09-13 非接触給電システム、ならびにそれに用いられる送電装置および車両
US14/426,771 US9963040B2 (en) 2012-09-13 2012-09-13 Non-contact power supply system, and power transmission device and vehicle used therein
CN201280075749.1A CN104620470B (zh) 2012-09-13 2012-09-13 非接触供电系统以及在该系统中使用的送电装置和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/073445 WO2014041655A1 (ja) 2012-09-13 2012-09-13 非接触給電システム、ならびにそれに用いられる送電装置および車両

Publications (1)

Publication Number Publication Date
WO2014041655A1 true WO2014041655A1 (ja) 2014-03-20

Family

ID=50277808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073445 WO2014041655A1 (ja) 2012-09-13 2012-09-13 非接触給電システム、ならびにそれに用いられる送電装置および車両

Country Status (5)

Country Link
US (1) US9963040B2 (ja)
JP (1) JP6119756B2 (ja)
CN (1) CN104620470B (ja)
DE (1) DE112012006896T5 (ja)
WO (1) WO2014041655A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155837A1 (ja) * 2014-04-08 2015-10-15 日産自動車株式会社 非接触給電システム及び非接触受電装置
JP2015201914A (ja) * 2014-04-04 2015-11-12 トヨタ自動車株式会社 受電装置およびそれを備える車両
JP2015233359A (ja) * 2014-06-09 2015-12-24 株式会社デンソー 非接触電力伝送システム
JP2016167914A (ja) * 2015-03-09 2016-09-15 株式会社日立ハイテクファインシステムズ 充電装置
JP2016167915A (ja) * 2015-03-09 2016-09-15 株式会社日立ハイテクファインシステムズ 充電装置
WO2016160350A1 (en) * 2014-03-31 2016-10-06 Evatran Group, Inc. Ac inductive power transfer system
JP2016182002A (ja) * 2015-03-24 2016-10-13 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
KR101774727B1 (ko) 2014-04-08 2017-09-04 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 비접촉 수전 장치
EP3282554A4 (en) * 2015-04-07 2018-03-21 Nissan Motor Co., Ltd. Temperature estimation device and temperature estimation method for contactless power-reception device
KR101857407B1 (ko) * 2018-01-30 2018-06-20 (주)에프티글로벌 차량 위치파악이 가능한 자동경로차량용 무선전력전송 시스템 및 자동경로차량 위치파악방법
US10305334B2 (en) 2014-05-30 2019-05-28 Ihi Corporation Wireless power-supplying system, power-receiving device, and power-transmitting device
JP2020178459A (ja) * 2019-04-19 2020-10-29 株式会社デンソー 非接触給電装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9963040B2 (en) 2012-09-13 2018-05-08 Toyota Jidosha Kabushiki Kaisha Non-contact power supply system, and power transmission device and vehicle used therein
CN105142958A (zh) * 2013-03-22 2015-12-09 丰田自动车株式会社 车辆和非接触供电系统
US20160001668A1 (en) * 2013-03-22 2016-01-07 Toyota Jidosha Kabushiki Kaisha Power transmission device, power reception device, vehicle, and contactless power feeding system
US10139238B2 (en) * 2013-09-11 2018-11-27 Qualcomm Incorporated Systems, methods, and apparatus related to guidance and alignment for an electric vehicle and charging station
JP6291208B2 (ja) * 2013-10-10 2018-03-14 株式会社東芝 移動体、無線電力伝送システムおよび無線電力伝送方法
JP6361132B2 (ja) * 2013-12-24 2018-07-25 トヨタ自動車株式会社 非接触電力伝送システム、充電ステーション、および車両
US10411762B2 (en) * 2014-09-22 2019-09-10 Canon Kabushiki Kaisha Electronic apparatus
JP2016067074A (ja) 2014-09-22 2016-04-28 キヤノン株式会社 電子機器
US10418863B1 (en) 2015-09-28 2019-09-17 Apple Inc. Charging system
JP6510455B2 (ja) * 2016-03-30 2019-05-08 矢崎総業株式会社 非接触電力伝送装置
WO2018061200A1 (ja) * 2016-09-30 2018-04-05 富士機械製造株式会社 非接触給電装置
US10464442B2 (en) * 2016-10-11 2019-11-05 Honda Motor Co., Ltd. Non-contact power supply system and power transmission apparatus, and designing method and installing method of power transmission apparatus
DE102017130173A1 (de) * 2017-02-24 2018-08-30 Denso Ten Limited Ladeunterstützungsvorrichtung
US9917480B1 (en) 2017-05-26 2018-03-13 Qualcomm Incorporated Methods and apparatus for efficient wireless power transfer
DE102018203959A1 (de) * 2018-03-15 2019-09-19 Continental Automotive Gmbh System zur induktiven Energieübertragung zwischen einer Primär- und einer Sekundärseite
US11619947B2 (en) * 2019-04-01 2023-04-04 Valeo Schalter Und Sensoren Gmbh Wireless communication for aligning a vehicle to a wireless charger
US11095146B2 (en) * 2019-05-15 2021-08-17 Stmicroelectronics Asia Pacific Pte Ltd. HW and methods for improving safety protocol in wireless chargers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239769A (ja) * 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
WO2011093292A1 (ja) * 2010-01-26 2011-08-04 株式会社エクォス・リサーチ 非接触送電システム、および非接触送電装置
WO2011132272A1 (ja) * 2010-04-21 2011-10-27 トヨタ自動車株式会社 車両の駐車支援装置およびそれを備える電動車両
JP2012034468A (ja) * 2010-07-29 2012-02-16 Toyota Industries Corp 車両用共鳴型非接触給電システム
JP2012135109A (ja) * 2010-12-21 2012-07-12 Yazaki Corp 給電システム

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
KR101136889B1 (ko) 2005-07-12 2012-04-20 메사추세츠 인스티튜트 오브 테크놀로지 무선 비-방사성 에너지 전달
KR101288433B1 (ko) 2007-03-27 2013-07-26 메사추세츠 인스티튜트 오브 테크놀로지 무선 에너지 전달
KR100976161B1 (ko) 2008-02-20 2010-08-16 정춘길 무접점충전시스템 및 그의 충전제어방법
US9744858B2 (en) * 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8912687B2 (en) * 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8410636B2 (en) * 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US20100277121A1 (en) * 2008-09-27 2010-11-04 Hall Katherine L Wireless energy transfer between a source and a vehicle
KR20110042403A (ko) * 2009-10-19 2011-04-27 김현민 전기자동차용 무선충전 시스템 및 그충전방법
JP2011142748A (ja) 2010-01-07 2011-07-21 Sony Corp ワイヤレス給電システム
JP5051257B2 (ja) 2010-03-16 2012-10-17 トヨタ自動車株式会社 車両
JP5427105B2 (ja) 2010-05-14 2014-02-26 株式会社豊田自動織機 共鳴型非接触給電システム
JP5282068B2 (ja) 2010-05-14 2013-09-04 株式会社豊田自動織機 共鳴型非接触給電システムの受電側設備
JP5146488B2 (ja) 2010-05-26 2013-02-20 トヨタ自動車株式会社 給電システムおよび車両
JP5524724B2 (ja) 2010-06-08 2014-06-18 株式会社東海理化電機製作所 車両用給電装置
JP5499186B2 (ja) 2010-07-29 2014-05-21 株式会社豊田自動織機 共鳴型非接触給電システム
JP5640530B2 (ja) 2010-07-30 2014-12-17 ソニー株式会社 ワイヤレス給電システム
JP5632089B2 (ja) * 2010-10-29 2014-11-26 クアルコム,インコーポレイテッド 結合寄生共振器を介する無線エネルギー伝達
JP5564412B2 (ja) 2010-12-10 2014-07-30 株式会社日立製作所 無線電力伝送システム、送電装置、及び受電装置
US20130270925A1 (en) * 2010-12-21 2013-10-17 Yazaki Corporation Power feed system
CN103270669B (zh) 2010-12-24 2016-03-09 丰田自动车株式会社 非接触供电系统、车辆、供电设备及非接触供电系统的控制方法
KR20120084659A (ko) 2011-01-20 2012-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 급전 장치 및 비접촉 급전 시스템
CN103370849B (zh) 2011-02-15 2017-03-22 丰田自动车株式会社 非接触受电装置及搭载有该装置的车辆、非接触供电设备、非接触受电装置的控制方法以及非接触供电设备的控制方法
US9391461B2 (en) 2011-05-31 2016-07-12 Samsung Electronics Co., Ltd. Wireless power transmission and charging system, and power control method of wireless power transmission and charging system
US9331663B2 (en) * 2011-06-07 2016-05-03 Pioneer Corporation Impedance matching device and control method
US20150130294A1 (en) * 2011-09-21 2015-05-14 Pioneer Corporation Wireless power transmitting apparatus, wireless power receiving apparatus, and wireless power feeding system
US20150326028A1 (en) * 2011-09-21 2015-11-12 Pioneer Corporation Wireless power transmitting apparatus, wireless power receiving apparatus, and wireless power feeding system
JP5700133B2 (ja) 2011-10-27 2015-04-15 トヨタ自動車株式会社 非接触受電装置、非接触送電装置および非接触送受電システム
KR101321436B1 (ko) * 2011-11-08 2013-11-04 삼성전자주식회사 최적의 전력 분배를 위한 공진기 설계 방법, 무선 전력 전송 시스템 및 무선 전력 전송시스템의 공진기
KR101618485B1 (ko) * 2011-11-28 2016-05-04 후지쯔 가부시끼가이샤 비접촉형 충전 장치 및 비접촉형 충전 방법
MX338023B (es) * 2012-01-23 2016-03-31 Univ Utah State Sistema inalambrico de transferencia de energia.
US9859755B2 (en) * 2012-07-16 2018-01-02 Qualcomm Incorporated Device alignment and identification in inductive power transfer systems
JP5643270B2 (ja) * 2012-09-13 2014-12-17 トヨタ自動車株式会社 車両および非接触給電システム
US9963040B2 (en) 2012-09-13 2018-05-08 Toyota Jidosha Kabushiki Kaisha Non-contact power supply system, and power transmission device and vehicle used therein
JP2014212662A (ja) * 2013-04-19 2014-11-13 キヤノン株式会社 送電装置およびその制御方法、電力伝送システム
CN105308829B (zh) * 2013-06-19 2018-08-24 瑞萨电子株式会社 输电装置、非接触供电系统以及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239769A (ja) * 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
WO2011093292A1 (ja) * 2010-01-26 2011-08-04 株式会社エクォス・リサーチ 非接触送電システム、および非接触送電装置
WO2011132272A1 (ja) * 2010-04-21 2011-10-27 トヨタ自動車株式会社 車両の駐車支援装置およびそれを備える電動車両
JP2012034468A (ja) * 2010-07-29 2012-02-16 Toyota Industries Corp 車両用共鳴型非接触給電システム
JP2012135109A (ja) * 2010-12-21 2012-07-12 Yazaki Corp 給電システム

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016160350A1 (en) * 2014-03-31 2016-10-06 Evatran Group, Inc. Ac inductive power transfer system
JP2015201914A (ja) * 2014-04-04 2015-11-12 トヨタ自動車株式会社 受電装置およびそれを備える車両
US10017065B2 (en) 2014-04-04 2018-07-10 Toyota Jidosha Kabushiki Kaisha Power reception device and vehicle including the same
US9929600B2 (en) 2014-04-08 2018-03-27 Nissan Motor Co., Ltd. Wireless power supply system and wireless power reception device
CN106165245B (zh) * 2014-04-08 2017-10-03 日产自动车株式会社 非接触供电系统以及非接触受电装置
US10622837B2 (en) 2014-04-08 2020-04-14 Nissan Motor Co., Ltd. Wireless power supply system and wireless power reception device
WO2015155837A1 (ja) * 2014-04-08 2015-10-15 日産自動車株式会社 非接触給電システム及び非接触受電装置
CN106165245A (zh) * 2014-04-08 2016-11-23 日产自动车株式会社 非接触供电系统以及非接触受电装置
JPWO2015155837A1 (ja) * 2014-04-08 2017-04-13 日産自動車株式会社 非接触給電システム及び非接触受電装置
KR101774727B1 (ko) 2014-04-08 2017-09-04 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 비접촉 수전 장치
US10305334B2 (en) 2014-05-30 2019-05-28 Ihi Corporation Wireless power-supplying system, power-receiving device, and power-transmitting device
JP2015233359A (ja) * 2014-06-09 2015-12-24 株式会社デンソー 非接触電力伝送システム
JP2016167915A (ja) * 2015-03-09 2016-09-15 株式会社日立ハイテクファインシステムズ 充電装置
JP2016167914A (ja) * 2015-03-09 2016-09-15 株式会社日立ハイテクファインシステムズ 充電装置
JP2016182002A (ja) * 2015-03-24 2016-10-13 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
EP3282554A4 (en) * 2015-04-07 2018-03-21 Nissan Motor Co., Ltd. Temperature estimation device and temperature estimation method for contactless power-reception device
KR101857407B1 (ko) * 2018-01-30 2018-06-20 (주)에프티글로벌 차량 위치파악이 가능한 자동경로차량용 무선전력전송 시스템 및 자동경로차량 위치파악방법
JP2020178459A (ja) * 2019-04-19 2020-10-29 株式会社デンソー 非接触給電装置
JP7251284B2 (ja) 2019-04-19 2023-04-04 株式会社デンソー 非接触給電装置

Also Published As

Publication number Publication date
US20150239354A1 (en) 2015-08-27
US9963040B2 (en) 2018-05-08
CN104620470A (zh) 2015-05-13
JPWO2014041655A1 (ja) 2016-08-12
DE112012006896T5 (de) 2015-06-03
CN104620470B (zh) 2017-08-11
JP6119756B2 (ja) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6119756B2 (ja) 非接触給電システムおよび送電装置
JP5643270B2 (ja) 車両および非接触給電システム
JP5747863B2 (ja) 車両、受電装置、送電装置および非接触給電システム
JP5794203B2 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP5700133B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
US8816537B2 (en) Contactless electric power receiving apparatus, contactless electric power transmitting apparatus, contactless electric power feeding system, and vehicle
JP5692163B2 (ja) 車両、および送電装置
JP5664544B2 (ja) 非接触受電装置および非接触充電システム
JP5720780B2 (ja) 受電装置、車両、および非接触給電システム
US9409491B2 (en) Parking assist system for vehicle, contactless power transmitting device, and contactless power receiving device
JP5641027B2 (ja) 送電装置、車両および非接触給電システム
US20130154384A1 (en) Contactless power receiving device, vehicle, contactless power transmitting device, and contactless power supply system
JP5884830B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
JPWO2012073349A1 (ja) 非接触給電設備、車両および非接触給電システムの制御方法
US20160001669A1 (en) Vehicle And Contactless Power Feeding System
JP6222107B2 (ja) 車両
JPWO2014147818A1 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP5920185B2 (ja) 非接触受電装置
JP5962613B2 (ja) 非接触受電装置
JP2014103823A (ja) 送電装置、受電装置およびそれを備える車両、ならびに電力伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535300

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14426771

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012006896

Country of ref document: DE

Ref document number: 1120120068963

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884649

Country of ref document: EP

Kind code of ref document: A1