JP7251284B2 - 非接触給電装置 - Google Patents

非接触給電装置 Download PDF

Info

Publication number
JP7251284B2
JP7251284B2 JP2019079712A JP2019079712A JP7251284B2 JP 7251284 B2 JP7251284 B2 JP 7251284B2 JP 2019079712 A JP2019079712 A JP 2019079712A JP 2019079712 A JP2019079712 A JP 2019079712A JP 7251284 B2 JP7251284 B2 JP 7251284B2
Authority
JP
Japan
Prior art keywords
power
circuit
transmission
contactless
characteristic impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019079712A
Other languages
English (en)
Other versions
JP2020178459A (ja
Inventor
侑生 中屋敷
宜久 山口
英介 高橋
将也 ▲高▼橋
正樹 金▲崎▼
和弘 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019079712A priority Critical patent/JP7251284B2/ja
Publication of JP2020178459A publication Critical patent/JP2020178459A/ja
Application granted granted Critical
Publication of JP7251284B2 publication Critical patent/JP7251284B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本開示は、非接触で車両に電力を供給する技術に関する。
特許文献1には、非接触送電システムの送電装置のインバータ回路と送電共振回路との間にイミタンス変換回路が設けられた構成が開示されている。この構成では、イミタンス変換回路の出力電圧に基づいて送電電流を推定し、送電電流が閾値以下となるように、インバータ回路の出力電圧を調整する制御が行なわれている。
特許第634289号公報
一般に、非接触送電システム(「非接触給電システム」とも呼ぶ)では、送電装置の送電コイルと受電装置の受電コイルとの間の水平方向および高さ方向の位置関係に依存して、受電装置に伝送される電力の変動が非常に大きい。このため、上記のように、送電電流の推定によりインバータ回路の出力電圧を調整する制御では、車種の違いによる送電装置と受電装置の高さ方向の位置関係や、送電装置と受電装置との水平方向の位置関係の伝送条件の変化に大きく依存し、インバータ回路の出力電圧を調整する幅が非常に大きくなって、これを調整するための制御回路への負担が大きくなる、という問題がある。
本開示の一形態によれば、車両に搭載された非接触受電装置に非接触で電力を供給する非接触給電装置(100)が提供される。この非接触給電装置は、前記非接触受電装置の受電共振回路に交流電力を送電する送電共振回路(110)と、電源回路から供給される直流電力を交流電力に変換して前記送電共振回路に供給する送電回路(120)と、を備える。前記送電回路は、前記直流電力を交流電力に変換するインバータ回路(122)と、前記インバータ回路の交流電力を調整して前記送電共振回路に供給するイミタンス変換回路であって、前記イミタンス変換回路の特性インピーダンス(Z01)は、前記送電共振回路から前記受電共振回路への伝送を予め定めた伝送条件で行なった場合に、予め定めた目標電力(Pout_tgt)が伝送可能となるように設定されているイミタンス変換回路(124)と、を備え、前記イミタンス変換回路の特性インピーダンスは、前記インバータ回路の出力電圧(V1i)を前記目標電力で除した値に比例する値に設定されている。
この非接触給電装置によれば、非接触給電装置から非接触受電装置に送電される電力量を、イミタンス変換回路によって高効率に調整することが可能であり、電力量の変動の幅を低減することが可能である。これにより、非接触給電装置のインバータ回路における電力損失の増加を低減することが可能である。また、非接触受電装置における制御回路、例えば、DC/DCコンバータにおける電力損失の増加を低減することが可能である。
非接触給電システムの全体構成を示すブロック図。 給電状態にある非接触給電装置と非接触受電装置とを示すブロック図。 図2の送信共振回路と受電共振回路の等価回路を示す説明図。
A.実施形態:
図1に示すように、非接触給電システムは、道路RSに設置された非接触給電装置100と、道路RSを走行する車両200に搭載された非接触受電装置205とを含み、車両200の走行中に電力を供給することが可能なシステムである。車両200は、例えば、電気自動車やハイブリッド車として構成される。図1において、x軸方向は車両200の進行方向を示し、y軸方向は車両200の幅方向を示し、z軸方向は鉛直上方向を示す。
非接触給電装置100は、複数の送電共振回路110と、複数の送電共振回路110に交流電力を供給する複数の送電回路120と、複数の送電回路120に直流電力を供給する電源回路130と、受電コイル位置検出部140とを備えている。
複数の送電共振回路110は、車両200の進行方向(「道路RSの延在方向」とも呼ぶ)に沿って道路RSの路面上あるいは路面中に設置されている。個々の送電共振回路110は、後述する送電コイルおよび共振コンデンサを含む。送電共振回路110は、送電コイルおよび共振コンデンサの両方が道路RSの延在方向に沿って設置されている必要はなく、複数の送電コイルが道路RSの延在方向に沿って設置されていればよい。
複数の送電回路120は、それぞれ、電源回路130から供給される直流電力を高周波の交流電力に変換して送電共振回路110の送電コイルに印加する回路である。送電回路120の具体的な構成例については後述する。電源回路130は、直流電力を送電回路120に供給する回路である。例えば、電源回路130は、外部電源の交流電圧を整流して直流電圧を出力するAC/DCコンバータ回路として構成される。
なお、送電共振回路110と、この送電共振回路110に交流電力を供給する送電回路120とは、1つのセグメント(「非接触給電セグメント」とも呼ぶ)として扱われる。図1には、i-2番目のセグメントSegi-2~i+2番目のセグメントSegi+2の5つのセグメントが示されている。
受電コイル位置検出部140は、後述する受電共振回路210の車両200の底部に設置された受電コイルの位置を検出する。受電コイル位置検出部140は、例えば、複数の送電回路120における送電電力や送電電流の大きさから受電共振回路210の受電コイルの位置を検出しても良く、或いは、車両200との無線通信や車両200の位置を検出する位置センサを利用して受電共振回路210の受電コイルの位置を検出しても良い。複数の送電回路120は、受電コイル位置検出部140で検出された受電共振回路210の受電コイルの位置に応じて、受電共振回路210に近い1つ以上のセグメントの送電共振回路110を用いて送電を実行する。
車両200は、非接触受電装置205と、メインバッテリ230と、モータジェネレータ240と、インバータ回路250と、DC/DCコンバータ回路260と、補機バッテリ270と、補機280と、制御装置290とを備えている。非接触受電装置205は、受電共振回路210と受電回路220とを有している。
受電共振回路210は、後述する受電コイルおよび共振コンデンサを含んでおり、送電共振回路110との間の電磁誘導現象によって受電コイルに誘導された交流電力を得る装置である。受電回路220は、受電共振回路210から出力される交流電力を直流電力に変換する回路である。受電回路220の具体的な構成例については後述する。受電回路220から出力される直流電力は、負荷としてのメインバッテリ230の充電に利用することができ、また、補機バッテリ270の充電や、モータジェネレータ240の駆動、及び、補機280の駆動にも利用可能である。
メインバッテリ230は、モータジェネレータ240を駆動するための直流電力を出力する2次電池である。モータジェネレータ240は、3相交流モータとして動作し、車両200の走行のための駆動力を発生する。モータジェネレータ240は、車両200の減速時にはジェネレータとして動作し、3相交流電力を発生する。インバータ回路250は、モータジェネレータ240がモータとして動作するとき、メインバッテリ230の直流電力を3相交流電力に変換してモータジェネレータ240を駆動する。インバータ回路250は、モータジェネレータ240がジェネレータとして動作するとき、モータジェネレータ240が出力する3相交流電力を直流電力に変換してメインバッテリ230に供給する。
DC/DCコンバータ回路260は、メインバッテリ230の直流電圧を、より低い直流電圧に変換して補機バッテリ270及び補機280に供給する。補機バッテリ270は、補機280を駆動するための直流電力を出力する2次電池である。補機280は、空調装置や電動パワーステアリング装置等の周辺装置である。
制御装置290は、車両200内の各部を制御する。制御装置290は、走行中非接触給電を受ける際には、受電回路220を制御して受電を実行する。
非接触給電装置100の1つのセグメントの送電回路120および送電共振回路110と、車両200の非接触受電装置205の受電共振回路210および受電回路220は、例えば、図2に示す回路で構成されている。図2は、i番目のセグメントSegiと非接触受電装置205との間で送電が行なわれている状態を例に示している。図2において、i番目のセグメントSegiの構成要素を示す各符号の末尾には、i番目のセグメントSegiの構成要素であることを示すために、「i」が付記されている。なお、他のセグメントの送電回路120および送電共振回路110も同様であるので図示および説明を省略する。なお、以下の説明において、特にセグメントを区別する必要がない場合には、末尾に付記する「i」のような、何番目のセグメントであるかを示す符号を省略して示す場合もある。
送電共振回路110iは直列に接続された送電コイル112iと共振コンデンサ116iとを有している。受電共振回路210は直列に接続された受電コイル212と共振コンデンサ216とを有している。送電共振回路110iおよび受電共振回路210には、一次直列二次直列コンデンサ方式(「SS方式」とも呼ばれる)の共振方式が適用されている。また、送電側が単相の送電コイル112iで構成され、受電側が単相の受電コイル212で構成された送電側単相-受電側単相の非接触給電方式が適用されている。なお、送電コイル112iのインダクタンスはLr1iで表され、共振コンデンサ116iのキャパシタンスはCr1iで表されている。受電コイル212のインダクタンスはLr2で表され、共振コンデンサ216のキャパシタンスはCr2で表されている。
送電回路120iは、電源回路130からの直流電力を交流電力に変換するインバータ回路122iと、2つのインダクタ124Liと1つのコンデンサ124Ciを有するT-LCL型のイミタンス変換回路124iとを有している。なお、インダクタ124LiのインダクタンスはL1iで表され、コンデンサ124CiのキャパシタンスはC1iで表されている。イミタンス変換回路124iは、伝送する交流電力の基本角周波数ω0と等しくなるように設定される共振角周波数においては、入力側から見たインピーダンスを出力側のアドミタンスに変換するイミタンス特性に従って、入力される交流電力を調整する機能を有するとともに、共振周波数以外においてはローパスフィルタとしの機能を有する。
受電回路220は、2つのインダクタ224Lと1つのコンデンサ224Cを有するT-LCL型のイミタンス変換回路224と、交流電力を直流電力に変換する整流回路226と、メインバッテリ230の充電に適した電圧の直流電力に変換する電力変換回路としてのDC/DCコンバータ回路228と、を有している。なお、インダクタ224LのインダクタンスはL2で表され、コンデンサ224CのキャパシタンスはC2で表されている。受電回路220のイミタンス変換回路224は、送電回路120iのイミタンス変換回路124iと同様に機能する。
以下の説明では、イミタンス変換回路124i,224に含まれるインダクタ(「コイル」とも呼ぶ)およびコンデンサや、送電共振回路110iおよび受電共振回路210に含まれるコイルおよびコンデンサを、説明の都合上、それぞれの値を示す記号を符号として用いて示す場合もある。例えば、イミタンス変換回路124のインダクタ124LiをそのインダクタンスL1iを用いて「インダクタL1i」と示し、コンデンサ124CiをそのキャパシタンスC1iを用いて「コンデンサC1i」と示す場合もある。
図2に示した送電共振回路110iおよび受電共振回路210で構成される送受電回路TECは、図3に示したT型等価回路で表される。なお、図3のLmiは、送電コイルLr1iと受電コイルLr2との間の相互インダクタンスである。R1i,R2は巻線抵抗である。なお、この等価回路で表された送受電回路TECの共振角周波数は、伝送する交流電力の基本角周波数ω0に等しくなるように設定されている。このため、送受電回路TECは、基本角周波数ω0の交流電力の伝送に関して、インダクタLr1i,Lr2i、コンデンサCr1i,Cr2iを無視したイミタンス変換回路として扱うことができる。
以下の説明において、送電側のイミタンス変換回路124iの入力側の端子対P1-P1*からイミタンス変換回路124iの入力側を見たインピーダンスをZ1iとする。インピーダンスZ1iはV1i/I1iである。V1iは端子対P1-P1*間の電圧であり、I1iはイミタンス変換回路124iに流れる電流である。イミタンス変換回路124iの特性インピーダンスをZ01iとする。イミタンス変換回路124iの出力側の端子対P2-P2*から後段側を見たインピーダンスをZ2iとする。インピーダンスZ2iはV2i/I2iである。V2iは端子対P2-P2*間の電圧であり、I2iは後段側に流れる電流である。送受電回路TEC(図3参照)の特性インピーダンスをZ02iとする。受電側のイミタンス変換回路224の入力側の端子対P3-P3*からイミタンス変換回路224の入力側を見たインピーダンスをZ3とする。インピーダンスZ3はV3/I3である。V3は端子対P3-P3*間の電圧であり、I3はイミタンス変換回路224に流れる電流である。イミタンス変換回路224の特性インピーダンスをZ03とする。イミタンス変換回路224の出力側の端子対P4-P4*から後段側を見たインピーダンスをZ4とする。インピーダンスZ4はV4/I4である。V4は端子対P4-P4*間の電圧であり、I4は後段側に流れる電流である。このインピーダンスZ4は、メインバッテリ230の状態に応じて変化するインピーダンスである。メインバッテリ230の電圧をVbatとし、充電電流、すなわち、DC/DCコンバータ回路228からの出力電流をIoutとする。なお、インピーダンスZ4が最も大きくなるのは、メインバッテリ230が満充電の状態であり、インピーダンスZ4が最も小さくなるのは、メインバッテリ230の電圧Vbatが使用範囲として許容されている最も低い電圧Vbat_minにおいて、許容されている最も大きい電流に対応する出力電流Ioutで充電が実行される場合である。
各端子対P1-P1*,P2-P2*,P3-P3*における電圧V1i,V2i,V3及び電流I1i,I2i,I3は、それぞれ、特性インピーダンスZ01i,Z02i,Z03、電圧V2i,V3,V4および電流I2i,I3,I4を用いて、以下に示す式(1a)~(3a),(1b)~(3b)で表される。また、端子対P4-P4*における電圧V4及び電流I4は、メインバッテリ230のバッテリ電圧Vbat及びDC/DCコンバータ回路228の出力電流Ioutを用いて、以下に示す式(4a),(4b)で表される。なお、電圧V1i,V2i,V3,V4は、交流の基本角周波数ω0の成分の実効電圧値であり、電流I1i,I2i,I3,I4は実効電流値である。また、バッテリ電圧Vbatは直流電圧値であり、出力電流Ioutは直流電流値である。
V1i=Z01i・I2i ・・・(1a)
I1i=V2i/Z01i ・・・(1b)
V2i=Z02i・I3 ・・・(2a)
I2i=V3/Z02i ・・・(2b)
V3=Z03・I4 ・・・(3a)
I3=V4/Z03 ・・・(3b)
V4=Vbat ・・・(4a)
I4=Iout ・・・(4b)
そして、出力電流Ioutは、上式(1a),(2b),(3a),(4b)から、下式(5)で表される。
Iout=V1i・Z02i/(Z01i・Z03) ・・・(5)
ここで、メインバッテリ230を充電するために、DC/DCコンバータ回路228の出力電力として要求される目標電力Pout_tgtは、バッテリ電圧Vbatと出力電流Ioutの積で表され、上式(5)で表される出力電流Ioutを用いて、下式(6)で表される。
Pout_tgt=Vbat・Iout
=Vbat・V1i・Z02i/(Z01i・Z03) ・・・(6)
上式(6)を変形すれば、特性インピーダンスZ01iは、下式(7)で表される。
Z01i=(Z02i/Z03)・Vbat・V1i/Pout_tgt ・・・(7)
ここで、送受電回路TECの特性インピーダンスZ02iは、下式(8)で表される。
Z02i=ω0・Lmi ・・・(8)
相互インダクタンスLmiは、送電コイルLr1iと受電コイルLr2との位置関係に依存して変化する結合係数kiとを用いて、下式(9)で表される。
Lmi=ki・(Lr1i・Lr2)1/2 ・・・(9)
結合係数kiは、送電コイルLr1iの中心位置と受電コイルLr2の中心位置の水平方向および垂直方向(鉛直方向あるいは高さ方向とも呼ぶ)の位置関係に応じて変化する値である。具体的には、結合係数kiは、送電コイルLr1iの中心位置と受電コイルLr2の中心位置の水平方向の位置が近くなるほど大きくなり、遠くなるほど小さくなる。また、結合係数kiは、送電コイルLr1iの中心位置と受電コイルLr2の中心位置の垂直方向の位置が近くなるほど大きくなり、遠くなるほど小さくなる。なお、垂直方向の位置関係は、主に、車種に依存して変化する。これは、車種によって受電コイルの搭載位置が異なった高さを有しているためである。従って、最も結合係数kiが小さくなる垂直方向の位置関係は、想定される車種のうち最も受電コイルの搭載位置が高い場合の位置関係である。また、水平方向の位置関係は、主に、車両の移動によって変化する。従って、最も結合係数kiが小さくなる水平方向の位置関係は、送電コイルから受電コイルに伝送が行なわれる水平方向の位置関係として、送電コイルに対する受電コイルの位置があらかじめ定めた最も離れた状態となる場合の位置関係である。以上のことから、最も結合係数kiが小さくなる位置関係は、垂直方向において受電コイルの搭載位置が最も高い場合で、水平方向においてあらかじめ定めた最も離れた状態となる場合の位置関係である。
上式(9)および結合係数kiの説明から分かるように、相互インダクタンスLmiは、結合係数kiの大きさに比例して変化し、送電コイルLr1iと受電コイルLr2との位置関係に応じて変化する。そして、上式(8)から、特性インピーダンスZ02iは、結合係数kiの大きさに比例して変化し、送電コイルLr1iと受電コイルLr2との位置関係に応じて変化する。すなわち、特性インピーダンスZ02iは、送電共振回路110iと受電共振回路210との間の伝送条件を示している。なお、上式(5)からわかるように、特性インピーダンスZ02iが最も小さい最小特性インピーダンスZ02i_minである場合が、送電共振回路110iと受電共振回路210との間の伝送に関して、最も低い伝送能力となる伝送条件の場合を示す。最小特性インピーダンスZ02i_minは、送電コイルLr1iと受電コイルLr2との位置関係が水平方向および垂直方向で最も遠くなっている場合の特性インピーダンスに相当する。
また、特性インピーダンスZ03は、車両200のイミタンス変換回路224の伝送特性を示し、イミタンス変換回路224の伝送条件を示している。従って、イミタンス変換回路224の伝送条件を示す特性インピーダンスZ03は、車種に依存して変化する。なお、上式(1)からわかるように、特性インピーダンスZ03が最も大きい最大特性インピーダンスZ03_maxである場合が、イミタンス変換回路224の伝送に関して、最も低い伝送能力となる伝送条件の場合を示す。最大特性インピーダンスZ03_maxは、想定される車種のうち、下式(10)で表される特性インピーダンスZ03の値が最も大きくなる場合の特性インピーダンスに相当する。
Z03=ω0・L2=1/(ω0・C2) ・・・(10)
また、車両200のメインバッテリ230のバッテリ電圧Vbatは、車両に依存して変化する。上式(6)から分かるように、バッテリ電圧Vbatとしては、想定される電圧範囲のうち、最も低い最小バッテリ電圧Vbat_minの場合においても、目標電力Pout_tgtが得られることが条件となる。従って、最も低い伝送能力となる伝送条件の場合におけるバッテリ電圧Vbatとしては、最小バッテリ電圧Vbat_minが用いられる。
以上のことから、上式(7)に、最も低い伝送能力となる伝送条件に対応する各パラメータの値Z02i_min,Z03_max,Vbat_min,V1i,Pout_tgtを代入する。これにより、下式(11)に示すように、最も低い伝送能力となる伝送条件において目標電力Pout_tgtが得られるようにするための特性インピーダンスZ01iの値を求めることができる。
Z01i=(Z02i_min/Z03_max)・Vbat_min・V1i/Pout_tgt ・・・(11)
ここで、特性インピーダンスZ01iは、下式(12)で表される。また、イミタンス変換回路124iの共振角周波数ωr1iは、通常、交流の基本角周波数ω0に等しくなるように設定され、下式(13)で表される。
Z01i=(L1i/C1i)1/2 ・・・(12)
ωr1i=1/(L1i・C1i)1/2=ω0 ・・・(13)
そこで、上式(12)および上式(13)を満たすように、インダクタL1iのインダクタンスの値およびコンデンサC1iのキャパシタンスの値を求める。これにより、特性インピーダンスZ01iが、目標電力Pout_tgtを伝送することができる特性インピーダンスとなるように、イミタンス変換回路124iのインダクタL1iおよびコンデンサC1iを設定することができる。
なお、上記説明では、i番目のセグメントSegiのイミタンス変換回路124iについて説明したが、他のセグメントSeg0・・・Segi-2,Segi-1,Segi+1,Segi+2,・・・においても、それぞれ同様に設定されればよい。
以上説明したように、本実施形態の非接触給電装置100では、各セグメントにおいて、送電回路120に備えるイミタンス変換回路124の特性インピーダンスZ01を、それぞれ、電力の伝送能力が最も低くなる伝送条件において、目標電力Pout_tgtが得られるように設定することが可能である。これにより、非接触給電装置100から非接触受電装置205に伝送される電力量を、非接触給電装置100の各セグメントのイミタンス変換回路124によって高効率に調整することが可能であり、伝送される電力量の変動の幅を低減することが可能である。この結果、非接触給電装置100の各セグメントのインバータ回路122における電力損失の増加を低減することが可能である。また、非接触受電装置205のDC/DCコンバータ回路228において、出力側の電圧に対する入力側の電圧の変動の幅を低減することができるため、DC/DCコンバータ回路228における電力損失の増加を低減することが可能である。
なお、上記の実施形態では、伝送能力が最も低い伝送条件の場合に、予め定めた目標電力Pout_tgtが得られるように、非接触給電装置100の各セグメントのイミタンス変換回路124の特性インピーダンスZ01が設定される場合について説明した。しかしながら、これに限定されるものではない。例えば、予め定めた伝送能力に対応する伝送条件での伝送において、予め定めた目標電力Pout_tgtが得られるように、非接触給電装置100の各セグメントのイミタンス変換回路124の特性インピーダンスZ01が設定されるようにしてもよい。この場合、その伝送条件に対応する各パラメータZ02,Z03,Vbat,V1,Pout_tgtを、上式(7)に代入すれば、対応する特性インピーダンスZ01が求められる。
また、設定される特性インピーダンスZ01は、非接触給電装置100が設置される場所に応じて異なった値に設定されることが好ましい。例えば、設置場所が一般道と高速道路とを比較した場合、目標電力として要求される電力は、一般道は比較的小さく、高速道路は比較的大きくなる。このため、特性インピーダンスZ01は、一般道は比較的大きく、高速道路は比較的小さく設定されることが好ましい。このように、設置場所に応じて特性インピーダンスZ01を、それぞれの場所に適した目標電力が伝送可能となるように設定すれば、設置場所に応じて特性インピーダンスが設定されたイミタンス変換回路によって、非接触給電装置から非接触受電装置に送電される電力量を高効率に調整することが可能である。これにより、設置場所に応じて、伝送される電力量の変動の幅を適切に低減することが可能であり、無駄な電力伝送を低減することができる。これにより、設置場所に応じて、非接触給電装置100の各セグメントのインバータ回路122における電力損失の増加を適切に低減することが可能である。また、設置場所に応じて、非接触受電装置205のDC/DCコンバータ回路228において、出力側の電圧に対する入力側の電圧の変動の幅を適切に低減することができるため、DC/DCコンバータ回路228における電力損失の増加を適切に低減することが可能である。
B.他の実施形態:
(1)上記実施形態では、1つの送電共振回路110および送電回路120を有する複数のセグメントを備える非接触給電装置100を例に説明したが、これに限定されるものではなない。1つのセグメント、すなわち、1つの送電共振回路110と、1つのインバータ回路122およびイミタンス変換回路124を有する1つの送電回路120と、を、備える非接触給電装置であってもよい。
(2)また、上記実施形態では、非接触給電装置側を単相の送電コイル112を有する構成とし、非接触受電装置側を単相の受電コイル212を有する構成とした場合を例に説明したが、これに限定されるものではない。非接触給電装置側を複数相の送電コイルを有する構成とし、非接触受電装置側を単相あるいは複数相の受電コイルを有する構成としてもよい。また、非接触受電装置側を複数相の受電コイルを有する構成とし、非接触給電装置側を単相あるいは複数相の送電コイルとしてもよい。また、複数の相数については、非接触給電装置側も非接触受電装置も限定はなく、2相であっても3相であってもよく、それ以上の数であってもよい。非接触給電装置側が複数相の場合、各相に設けられたイミタンス変換回路について、それぞれ、特性インピーダンスの設定を行なうようにすればよい。非接触受電装置側が複数相の場合、受電装置側の各相のいずれへの電力伝送に対しても、目標電力の伝送が可能となるように、非接触給電装置のイミタンス変換回路の特性インピーダンスの設定を行なうようにすればよい。
(3)上記実施形態の説明では、T-LCL型のイミタンス変換回路を例として説明しているが、T-CLC型のイミタンス変換回路であってもよい。この場合には、T-CLC型のイミタンス変換回路に対応する特性インピーダンスが上記実施形態で説明したように調整されることが好ましい。
上記実施形態の説明では、送電共振回路及び受電共振回路における共振方式として、SS方式を例に説明した。しかしながら、これに限定されるものではなく、一次側並列二次側並列コンデンサ方式(「PP方式」とも呼ばれる)や、一次側直列二次側並列コンデンサ方式(「SP方式」とも呼ばれる)、一次側並列二次側直列コンデンサ方式(「PS方式」とも呼ぶばれる)としてもよい。
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
100…非接触給電装置、110…送電共振回路、120…送電回路、122…インバータ回路、124…イミタンス変換回路、205…非接触受電装置、210…受電共振回路、Z01…特性インピーダンス、Pout_tgt…目標電力

Claims (4)

  1. 車両に搭載された非接触受電装置に非接触で電力を供給する非接触給電装置(100)であって、
    前記非接触受電装置の受電共振回路に交流電力を送電する送電共振回路(110)と、
    電源回路から供給される直流電力を交流電力に変換して前記送電共振回路に供給する送電回路(120)と、
    を備え、
    前記送電回路は、
    前記直流電力を交流電力に変換するインバータ回路(122)と、
    前記インバータ回路の交流電力を調整して前記送電共振回路に供給するイミタンス変換回路であって、前記イミタンス変換回路の特性インピーダンス(Z01)は、前記送電共振回路から前記受電共振回路への伝送を予め定めた伝送条件で行なった場合に、予め定めた目標電力(Pout_tgt)が伝送可能となるように設定されているイミタンス変換回路(124)と、
    を備え、
    前記イミタンス変換回路の特性インピーダンスは、前記インバータ回路の出力電圧(V1i)を前記目標電力で除した値に比例する値に設定されている、非接触給電装置。
  2. 請求項1に記載の非接触給電装置であって、
    前記非接触受電装置は、さらに、前記受電共振回路から供給される電力を充電するメインバッテリ(230)を含む後段回路(226、228、230)と、前記受電共振回路と前記メインバッテリとの間に配置された受電側イミタンス変換回路(224)と、を備え、
    前記イミタンス変換回路の特性インピーダンスをZ1i、磁気結合した前記送電共振回路および前記受電共振回路の特性インピーダンスをZ02i、前記受電側イミタンス変換回路の特性インピーダンスをZ03、前記出力電圧をV1i、前記メインバッテリの電圧をVbat、前記目標電力をPout_tgtとした場合、前記イミタンス変換回路の特性インピーダンスをZ01iは、以下の式(1)を満たす、非接触給電装置。
    Z01i=(Z02i/Z03)・Vbat・V1i/Pout_tgt ・・・(1)
  3. 車両に搭載された非接触受電装置に非接触で電力を供給する非接触給電装置(100)であって、
    前記非接触受電装置の受電共振回路に交流電力を送電する送電共振回路(110)と、
    電源回路から供給される直流電力を交流電力に変換して前記送電共振回路に供給する送電回路(120)と、
    を備え、
    前記送電回路は、
    前記直流電力を交流電力に変換するインバータ回路(122)と、
    前記インバータ回路の交流電力を調整して前記送電共振回路に供給するイミタンス変換回路であって、前記イミタンス変換回路の特性インピーダンス(Z01)は、前記送電共振回路から前記受電共振回路への伝送を予め定めた伝送条件で行なった場合に、予め定めた目標電力(Pout_tgt)が伝送可能となるように設定されているイミタンス変換回路(124)と、
    を備え、
    前記イミタンス変換回路の特性インピーダンスは、前記非接触給電装置が設置される場所ごとに、それぞれ、前記目標電力が伝送可能となるように設定されており、
    前記非接触給電装置は、前記送電回路を複数備え、
    前記複数の送電回路は、一般道に沿って配置された前記送電回路と、高速道路に沿って配置された前記送電回路と、を含み、前記高速道路に沿って配置された前記送電回路の前記特性インピーダンスは、前記一般道に沿って配置された前記送電回路の前記特性インピーダンスよりも小さい、非接触給電装置。
  4. 請求項1から3の何れか一項に記載の非接触給電装置であって、
    前記予め定めた伝送条件は、道路上の前記車両の前記非接触受電装置に非接触で電力を供給可能な位置に前記非接触受電装置が位置する範囲内において、前記送電共振回路と前記受電共振回路との間の電力の伝送能力が最も低くなる条件を含む、非接触給電装置。
JP2019079712A 2019-04-19 2019-04-19 非接触給電装置 Active JP7251284B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079712A JP7251284B2 (ja) 2019-04-19 2019-04-19 非接触給電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079712A JP7251284B2 (ja) 2019-04-19 2019-04-19 非接触給電装置

Publications (2)

Publication Number Publication Date
JP2020178459A JP2020178459A (ja) 2020-10-29
JP7251284B2 true JP7251284B2 (ja) 2023-04-04

Family

ID=72936345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079712A Active JP7251284B2 (ja) 2019-04-19 2019-04-19 非接触給電装置

Country Status (1)

Country Link
JP (1) JP7251284B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988310A (zh) 2006-11-09 2007-06-27 上海大学 电流源型光伏并网系统及其控制装置和方法
JP2011182538A (ja) 2010-03-01 2011-09-15 Murata Mfg Co Ltd 充電装置および充電システム
WO2014041655A1 (ja) 2012-09-13 2014-03-20 トヨタ自動車株式会社 非接触給電システム、ならびにそれに用いられる送電装置および車両
JP2016195512A (ja) 2015-04-01 2016-11-17 株式会社デンソー 非接触送電システムの送電装置
JP2017005796A (ja) 2015-06-05 2017-01-05 株式会社デンソー 非接触給電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988310A (zh) 2006-11-09 2007-06-27 上海大学 电流源型光伏并网系统及其控制装置和方法
JP2011182538A (ja) 2010-03-01 2011-09-15 Murata Mfg Co Ltd 充電装置および充電システム
WO2014041655A1 (ja) 2012-09-13 2014-03-20 トヨタ自動車株式会社 非接触給電システム、ならびにそれに用いられる送電装置および車両
JP2016195512A (ja) 2015-04-01 2016-11-17 株式会社デンソー 非接触送電システムの送電装置
JP2017005796A (ja) 2015-06-05 2017-01-05 株式会社デンソー 非接触給電装置

Also Published As

Publication number Publication date
JP2020178459A (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
CN107222039B (zh) 无线电力传输系统
JP5592124B2 (ja) 非接触給電装置
JP5826547B2 (ja) 給電側設備及び共鳴型非接触給電システム
EP3787170A1 (en) Dcdc converter, vehicle-mounted charger and electric vehicle
JP5224295B2 (ja) 非接触給電装置及び非接触給電方法
JP5662954B2 (ja) 制御装置および無線電力伝送装置
US9466987B2 (en) Power transmission device and wireless power transmission system using the power transmission device
JP6417992B2 (ja) 非接触給電システム
US10256675B2 (en) Power-supplying device and wireless power supply system
EP2899847A1 (en) Power receiving device and contactless power transmission device
WO2014199691A1 (ja) 給電装置、および非接触給電システム
JP6701645B2 (ja) 非接触給電システム
WO2013136431A1 (ja) 電力受電装置及び電力受電方法
EP4080529A1 (en) Contactless power feeding device
JP2014110733A (ja) ワイヤレス電力伝送装置
JP7251284B2 (ja) 非接触給電装置
JP7163869B2 (ja) 非接触給電システムおよびその制御方法
WO2020213514A1 (ja) 非接触給電装置、非接触受電装置、及び非接触給電システム
JP6814642B2 (ja) 非接触給電システム及び非接触給電方法
JP2012105503A (ja) 非接触給電装置
JP2020174453A (ja) 非接触給電システム
CN107074121A (zh) 用于调协振荡系统的具有可调节的电容值的装置、振荡系统和能量传输系统
WO2020145167A1 (ja) 非接触給電システム
WO2015098747A1 (ja) 送電機器及び非接触電力伝送装置
JP7021009B2 (ja) 非接触電力伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R151 Written notification of patent or utility model registration

Ref document number: 7251284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151