KR20150134394A - 차량 및 비접촉 급전 시스템 - Google Patents

차량 및 비접촉 급전 시스템 Download PDF

Info

Publication number
KR20150134394A
KR20150134394A KR1020157030436A KR20157030436A KR20150134394A KR 20150134394 A KR20150134394 A KR 20150134394A KR 1020157030436 A KR1020157030436 A KR 1020157030436A KR 20157030436 A KR20157030436 A KR 20157030436A KR 20150134394 A KR20150134394 A KR 20150134394A
Authority
KR
South Korea
Prior art keywords
power
transmission
unit
vehicle
power transmission
Prior art date
Application number
KR1020157030436A
Other languages
English (en)
Inventor
신지 이치카와
Original Assignee
도요타 지도샤(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타 지도샤(주) filed Critical 도요타 지도샤(주)
Publication of KR20150134394A publication Critical patent/KR20150134394A/ko

Links

Images

Classifications

    • B60L11/182
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • B60L11/1829
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • H02J17/00
    • H02J5/005
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T10/7005
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

비접촉 급전 시스템(10)은, 송전부(220)로부터 차량(100)의 수전부(110)에 비접촉으로 전력을 공급하는 것이 가능하다. 비접촉 급전 시스템은, 대기 위치로부터 송전부에 접근하는 방향으로 수전부를 이동시키는 승강 기구(105)와, 승강 기구를 제어하기 위한 차량 ECU(300)를 구비한다. 차량 ECU는, 수전부가 대기 위치에 위치하고 있는 상태에 있어서 송전부의 위치를 검출하는 제 1 검출 동작, 및, 수전부가 대기 위치보다 송전부에 근접한 수전 위치에 위치하고 있는 상태에 있어서 송전부의 위치를 검출하는 제 2 검출 동작을 행하는 것이 가능하게 구성된다. 그리고, 차량 ECU는, 제 1 및 제 2 검출 동작의 쌍방에 있어서 송전부가 소정 범위 내에 위치하고 있는 것이 검출된 경우에, 송전부로부터의 송전을 개시시킨다.

Description

차량 및 비접촉 급전 시스템{VEHICLE, AND CONTACTLESS POWER SUPPLY SYSTEM}
본 발명은, 차량 및 비접촉 급전 시스템에 관한 것으로서, 보다 특정적으로는, 비접촉 급전 시스템에 있어서의 송전부와 수전부 사이의 위치 맞춤 기술에 관한 것이다.
전원 코드나 송전 케이블을 이용하지 않는 비접촉의 와이어리스 전력 전송이 최근 주목받고 있어, 차량 외부의 전원(이하 「외부 전원」이라고도 한다.)으로부터의 전력에 의해 차량 탑재의 축전 장치를 충전 가능한 전기 자동차나 하이브리드 차량 등으로의 적용이 제안되어 있다.
이와 같은 비접촉 급전 시스템에 있어서는, 전력 전송 효율을 향상시키기 위해, 송전측과 수전측의 위치 맞춤을 적절하게 하는 것이 중요해진다. 그리고, 몇 개의 시스템에 있어서는, 송전부와 수전부를 접근시키기 위해, 송전부 또는 수전부를 이동할 수 있는 기구를 설치하는 구성이 제안되어 있다.
일본국 공개특허 특개2011-036107호 공보(특허문헌 1)는, 차량에 구비되는 수전측 코일과 지면에 설치된 송전측 코일의 사이에서 비접촉으로 전력을 전달하는 충전 시스템에 있어서, 송전측 코일과 수전측 코일이 서로 전자적(電磁的)으로 결합하는 위치 관계가 되도록 송전측 코일의 위치를 조정하는 위치 조정부가 설치되는 구성이 개시되어 있다.
또한, 일본국 공개특허 특개2011-120387호 공보(특허문헌 2) 및 일본국 공개특허 특개2011-193617호 공보(특허문헌 3)에 있어서는, 차량의 비접촉 급전 시스템에 있어서, 차량에 구비되는 수전 코일을 승강시킴으로써, 수전 코일을 송전 코일에 접근시키는 승강 장치가 차량측에 설치되는 구성이 개시되어 있다.
일본국 공개특허 특개2011-036107호 공보 일본국 공개특허 특개2011-120387호 공보 일본국 공개특허 특개2011-193617호 공보
비접촉 급전 시스템에 있어서 차량에 탑재된 축전 장치를 충전하는 경우, 송전 장치가 설치된 주차 스페이스에 있어서, 전력 전송시에 있어서의 송전부와 수전부의 위치 관계가 전력 전송에 적합한 위치가 되도록 주차하는 것이 중요하다. 또, 상술한 특허문헌에 개시되는, 주차 후에 송전부 또는 수전부가 이동 가능한 구성인 경우에는, 원하는 전력 전송 효율을 얻기 위해서는, 전력 전송을 행할 때의 송전부 및 수전부의 최종적인 위치 관계가 소정 범위 내가 되는 것이 필요하다.
이 송전부와 수전부 사이의 위치 관계가 부적절하면, 전력 전송 효율이 저하된 상태에서 전력 전송이 행하여져버리므로, 송전 장치로부터의 불필요한 전력의 방출 및 충전 시간의 연장을 초래해버린다.
본 발명은 이러한 과제를 해결하기 위해 이루어진 것으로서, 그 목적은, 송전부 또는 수전부를 이동시키는 이동 장치가 설치된 비접촉 급전 시스템에 있어서, 원하는 전력 전송 효율을 확보하는 것이다.
본 발명에 의한 차량은, 송전 장치로부터 비접촉으로 전력을 수전하는 것이 가능하다. 차량은, 송전 장치에 포함되는 송전부로부터 비접촉으로 전력을 수전하는 수전부와, 대기 위치로부터 송전부에 접근하는 방향으로, 수전부를 이동하는 것이 가능하게 구성된 이동 장치와, 제어 장치를 구비한다. 제어 장치는, 수전부가 대기 위치에 위치하고 있는 상태에 있어서 송전부의 위치를 검출하는 제 1 검출 동작, 및, 수전부가 대기 위치보다 송전부에 근접한 위치에 위치하고 있는 상태에 있어서 송전부의 위치를 검출하는 제 2 검출 동작을 행하는 것이 가능하다. 제어 장치는, 제 1 검출 동작에 있어서 송전부가 제 1 소정 범위 내에 위치하고 있는 것이 검출되고, 또한 제 2 검출 동작에 있어서 송전부가 제 2 소정 범위 내에 위치하고 있는 것이 검출된 경우에, 송전 장치로부터의 송전을 개시시킨다.
바람직하게는, 차량은 송전부를 검출하기 위한 검출부를 더 구비한다. 제어 장치는, 검출부를 이용하여 제 1 검출 동작을 행하고, 수전부를 이용하여 제 2 검출 동작을 행한다.
바람직하게는, 송전 장치로부터의 송전이 가능한 위치에 차량이 위치 부여된 상태에 있어서, 검출부와 송전부 사이의 거리는 대기 위치와 송전부 사이의 거리보다 짧다.
바람직하게는, 제어 장치는, 수전을 개시할 예정 위치까지 수전부를 이동한 후에 제 2 검출 동작을 행한다.
바람직하게는, 검출부는, 송전부로부터의 송전에 의해 생성되는 전자장의 자기를 검출 가능한 복수의 자기 센서를 포함한다. 제어 장치는, 복수의 자기 센서에 의해 검출된 자기의 분포에 의거하여 송전부의 위치를 인식한다.
바람직하게는, 제어 장치는, 이용자에 의해 설정된 송전 개시 시간에 관련되는 정보에 의거하여 정해지는 타이머 값에 따라 송전부로부터의 송전을 개시한다. 제어 장치는, 타이머 값에 대응하는 시간이 경과한 것에 응답하여 제 2 검출 동작을 실행한다.
바람직하게는, 송전부의 고유 주파수와 수전부의 고유 주파수의 차는, 송전부의 고유 주파수 또는 수전부의 고유 주파수의 ±10% 이하이다.
바람직하게는, 송전부와 수전부의 결합 계수는 0.6 이상 0.8 이하이다.
바람직하게는, 수전부는, 수전부와 송전부의 사이에 형성되는 특정한 주파수에서 진동하는 자계, 및, 수전부와 송전부의 사이에 형성되는 특정한 주파수에서 진동하는 전계의 적어도 일방을 통해 송전부로부터 수전한다.
본 발명에 의한 비접촉 급전 시스템은 송전부로부터 수전부에 비접촉으로 전력을 공급한다. 비접촉 급전 시스템은, 대기 위치로부터 송전부와 수전부가 접근하는 방향으로, 송전부 및 수전부의 적어도 일방을 이동하는 것이 가능하게 구성된 이동 장치와, 제어 장치를 구비한다. 제어 장치는, 송전부 및 수전부가 대기 위치에 위치하고 있는 상태에 있어서 송전부와 수전부 사이의 위치 관계를 검출하는 제 1 검출 동작, 및, 송전부와 수전부 사이의 거리가 송전부 및 수전부가 대기 위치에 있는 경우보다 근접하여 있는 상태에 있어서 위치 관계를 검출하는 제 2 검출 동작을 행하는 것이 가능하다. 제어 장치는, 제 1 검출 동작에 있어서 위치 관계가 제 1 소정 조건을 충족시키고 있는 것이 검출되고, 또한 제 2 검출 동작에 있어서 위치 관계가 제 2 소정 조건을 만족시키고 있는 것이 검출된 경우에, 송전부로부터의 송전을 개시시킨다.
본 발명에 의하면, 송전부 또는 수전부를 이동시키는 이동 장치가 설치된 비접촉 급전 시스템에 있어서, 주차 동작시 및 이동 장치에 의한 송전부와 수전부의 접근시에 송전부와 수전부의 위치 관계가 확인되고, 쌍방에 있어서 송전부와 수전부 사이의 위치 관계가 소정 조건을 충족시키는 것이 확인된 후에 전력 전송이 행하여진다. 이로 인해, 원하는 전력 전송 효율을 확보하면서 전력 전송을 행하는 것이 가능해진다.
도 1은, 본 발명의 실시형태에 따르는 차량의 비접촉 급전 시스템의 전체 구성도이다.
도 2는, 도 1에 있어서의 승강 기구의 동작을 설명하기 위한 도면이다.
도 3은, 위치 검출 센서와 송전부의 위치 관계를 설명하기 위한 제 1 도면이다.
도 4는, 위치 검출 센서와 송전부의 위치 관계를 설명하기 위한 제 2 도면이다.
도 5는, 송전 장치로부터 차량으로의 전력 전송시의 등가 회로도이다.
도 6은, 전력 전송 시스템의 시뮬레이션 모델을 나타내는 도면이다.
도 7은, 송전부 및 수전부의 고유 주파수의 어긋남과 전력 전송 효율의 관계를 나타내는 도면이다.
도 8은, 고유 주파수를 고정한 상태에서, 에어 갭을 변화시켰을 때의 전력 전송 효율과, 송전부에 공급되는 전류의 주파수의 관계를 나타내는 그래프이다.
도 9는, 전류원(자류원(磁流源))으로부터의 거리와 전자계의 강도의 관계를 나타낸 도면이다.
도 10은, 본 실시형태에 있어서의 위치 확인 제어의 개요를 설명하기 위한 도면이다.
도 11은, 본 실시형태에 있어서, 타이머 기능을 이용한 경우의 위치 확인 제어의 개요를 설명하기 위한 도면이다.
도 12는, 본 실시형태에 있어서의 위치 확인 제어 처리를 설명하기 위한 플로우 차트이다.
이하, 본 발명의 실시형태에 대하여 도면을 참조하면서 상세하게 설명한다. 또한, 도면 중 동일 또는 상당 부분에는 동일한 부호를 붙여 그 설명은 반복하지 않는다.
(비접촉 급전 시스템의 구성)
도 1은, 본 실시형태에 따르는 비접촉 급전 시스템(10)의 전체 구성도이다. 도 1을 참조하여, 비접촉 급전 시스템(10)은 차량(100)과 송전 장치(200)를 구비한다.
송전 장치(200)는 전원 장치(210)와 송전부(220)를 포함한다. 전원 장치(210)는 소정의 주파수를 가지는 교류 전력을 발생시킨다. 일례로서, 전원 장치(210)는, 상용 전원(400)으로부터 전력을 받아 고주파의 교류 전력을 발생시키고, 그 발생한 교류 전력을 송전부(220)로 공급한다. 그리고, 송전부(220)는, 송전부(220)의 주위에 발생하는 전자계를 통해, 차량(100)의 수전부(110)로 비접촉으로 전력을 출력한다.
전원 장치(210)는 통신부(230)와, 제어 장치인 송전 ECU(240)와, 전원부(250)와, 임피던스 조정부(260)를 포함한다. 또, 송전부(220)는 공진 코일(221)과 커패시터(222)를 포함한다.
전원부(250)는, 송전 ECU(240)로부터의 제어 신호(MOD)에 의해 제어되고, 상용 전원(400) 등의 교류 전원으로부터 받는 전력을 고주파의 전력으로 변환한다. 그리고, 전원부(250)는, 그 변환한 고주파 전력을, 임피던스 조정부(260)를 통해 공진 코일(221)로 공급한다.
또한, 전원부(250)는, 도시되지 않은 전압 센서, 전류 센서에 의해 각각 검출되는 송전 전압(Vtr) 및 송전 전류(Itr)를 송전 ECU(240)로 출력한다.
임피던스 조정부(260)는, 송전부(220)의 입력 임피던스를 조정하기 위한 것이고, 전형적으로는 리액터와 커패시터를 포함하여 구성된다. 임피던스 조정부(260)는 송전 ECU(240)로부터의 제어 신호(SE10)에 의해 제어된다.
공진 코일(221)은, 전원부(250)로부터 전달된 전력을, 차량(100)의 수전부(110)에 포함되는 공진 코일(111)로 비접촉으로 전력을 전송한다. 공진 코일(221)은 커패시터(222)과 함께 LC 공진 회로를 구성한다. 또한, 수전부(110)와 송전부(220) 사이의 전력 전송에 대해서는 도 4를 이용하여 후술한다.
통신부(230)는, 송전 장치(200)와 차량(100)의 사이에서 무선 통신을 행하기 위한 통신 인터페이스이고, 차량(100)측의 통신부(160)와 정보(INFO)의 수수(授受)를 행한다. 통신부(230)는, 차량(100)측의 통신부(160)로부터 송신되는 차량 정보, 및, 송전의 개시 및 정지를 지시하는 신호 등을 수신하고, 수신한 이러한 정보를 송전 ECU(240)로 출력한다. 또, 통신부(230)는, 송전 ECU(240)로부터의 송전 전압(Vtr) 및 송전 전류(Itr) 등의 정보를 차량(100)으로 송신한다.
송전 ECU(240)는, 모두 도 1에는 도시하지 않으나, CPU(Central Processing Unit), 기억장치 및 입출력 버퍼를 포함하고, 각 센서 등으로부터의 신호의 입력이나 각 기기로의 제어 신호의 출력을 행함과 함께, 전원 장치(210)에 있어서의 각 기기의 제어를 행한다. 또한, 이러한 제어에 대해서는, 소프트웨어에 의한 처리에 한정되지 않고, 전용의 하드웨어(전자 회로)로 처리하는 것도 가능하다.
차량(100)은 승강 기구(105)와, 수전부(110)와, 정합기(170)와, 정류기(180)와, 충전 릴레이 CHR(185)과, 축전 장치(190)와, 시스템 메인 릴레이 SMR(115)과, 파워 컨트롤 유닛 PCU(Power Control Unit)(120)와, 모터 제너레이터(130)와, 동력 전달 기어(140)와, 구동륜(150)과, 제어 장치인 차량 ECU(Electronic Control Unit)(300)와, 통신부(160)와, 전압 센서(195)와, 전류 센서(196)와, 위치 검출 센서(165)를 포함한다.
또한, 본 실시형태에 있어서는, 차량(100)으로서 전기 자동차를 예로서 설명하나, 축전 장치에 축적된 전력을 이용하여 주행이 가능한 차량이면 차량(100)의 구성은 이에 한정되지 않는다. 차량(100)의 다른 예로서는, 엔진을 탑재한 하이브리드 차량이나, 연료 전지를 탑재한 연료 전지차 등이 포함된다.
수전부(110)는, 차량(100)의 플로어 패널 부근에 설치되고, 공진 코일(111)과 커패시터(112)를 포함한다.
공진 코일(111)은, 송전 장치(200)에 포함되는 공진 코일(221)로부터 비접촉으로 전력을 수전한다. 공진 코일(111)은, 커패시터(112)과 함께 LC 공진 회로를 구성한다.
수전부(110)는 승강 기구(105) 상에 탑재된다. 승강 기구(105)는, 도 2에 나타내어지는 바와 같아, 예를 들면 링크 기구 등을 이용하여, 수전부(110)를 대기 위치(파선)로부터, 송전부(220)에 대향하는 수전 예정 위치(이하, 「수전 위치」라고도 한다.)(실선)까지 이동시키기 위한 이동 장치이다. 승강 기구(105)는, 차량(100)이 주차 스페이스의 소정 위치에 정지한 후에, 예를 들면 도시되지 않은 모터 등에 의해 구동됨으로써, 수전부(110)를 대기 위치로부터 수전 위치에 이동한다.
또한, 수전 위치는, 송전부(220)로부터 미리 정해진 높이로 정해져도 되고, 수전부(110)가 송전부(220)에 접하는 위치로 되어도 된다.
또한, 도 2에 나타내어지는 바와 같이, 차량(100)이 주차 스페이스의 소정 위치에 정지한 상태에 있어서는, 위치 검출 센서(165)와 송전부(220)(또는, 수전 위치) 사이의 거리는, 대기 위치와 송전부(220)(또는, 수전 위치) 사이의 거리보다 짧아진다.
또한, 승강 기구(105)는 래칫 기구를 포함하고, 수전 위치로부터 하방으로의 수전부(110)의 이동은 제한되나, 수전 위치보다 상방으로의 수전부(110)의 이동이 가능해지도록 구성된다. 이로 인해, 차 높이가 낮아진 경우에, 플로어 패널과 수전부(110)의 간격의 변동을 흡수할 수 있다.
공진 코일(111)에 의해 수전한 전력은, 정합기(170)를 통해 정류기(180)로 출력된다. 정합기(170)는, 전형적으로는 리액터와 커패시터를 포함하여 구성되고, 공진 코일(111)에 의해 수전된 전력이 공급되는 부하의 입력 임피던스를 조정한다.
정류기(180)는, 정합기(170)를 통해 공진 코일(111)로부터 받은 교류 전력을 정류하고, 그 정류된 직류 전력을 축전 장치(190)에 출력한다. 정류기(180)로서는, 예를 들면, 다이오드 브리지 및 평활용 커패시터(모두 도시 생략)를 포함하는 구성으로 할 수 있다. 정류기(180)로서, 스위칭 제어를 이용하여 정류를 행하는, 이른바 스위칭 레귤레이터를 이용하는 것도 가능하다. 정류기(180)가 수전부(110)에 포함되는 경우에는, 발생하는 전자장에 따르는 스위칭 소자의 오동작 등을 방지하기 위해, 다이오드 브리지와 같은 정지형(靜止型)의 정류기로 하는 것이 보다 바람직하다.
CHR(185)은, 정류기(180)와 축전 장치(190)의 사이에 전기적으로 접속된다. CHR(185)은, 차량 ECU(300)로부터의 제어 신호(SE2)에 의해 제어되고, 정류기(180)로부터 축전 장치(190)로의 전력의 공급과 차단을 전환한다.
축전 장치(190)는 충방전 가능하게 구성된 전력 저장 요소이다. 축전 장치(190)는, 예를 들면, 리튬 이온 전지, 니켈 수소 전지 또는 연축 전지 등의 이차 전지나, 전기 이중층 커패시터 등의 축전 소자를 포함하여 구성된다.
축전 장치(190)는 정류기(180)에 접속된다. 그리고, 축전 장치(190)는 수전부(110)에서 수전되고, 또한 정류기(180)에서 정류된 전력을 축전한다. 또, 축전 장치(190)는 SMR(115)을 통해 PCU(120)와도 접속된다. 축전 장치(190)는, 차량 구동력을 발생시키기 위한 전력을 PCU(120)로 공급한다. 또한, 축전 장치(190)는, 모터 제너레이터(130)에서 발전된 전력을 축전한다. 축전 장치(190)의 출력은 예를 들면 200V 정도이다.
축전 장치(190)에는, 모두 도시하지 않으나, 축전 장치(190)의 전압(VB) 및 입출력되는 전류(IB)를 각각 검출하기 위한 전압 센서 및 전류 센서가 설치된다. 이러한 검출값은 차량 ECU(300)로 출력된다. 차량 ECU(300)는, 이 전압(VB) 및 전류(IB)에 의거하여, 축전 장치(190)의 충전 상태(「SOC(State Of Charge)」라고도 한다.)를 연산한다.
SMR(115)은, 축전 장치(190)와 PCU(120)의 사이에 전기적으로 접속된다. 그리고, SMR(115)은, 차량 ECU(300)로부터의 제어 신호(SE1)에 의해 제어되고, 축전 장치(190)와 PCU(120) 사이에서의 전력의 공급과 차단을 전환한다.
PCU(120)는, 모두 도시하지 않으나, 컨버터나 인버터를 포함하여 구성된다. 컨버터는, 차량 ECU(300)로부터의 제어 신호(PWC)에 의해 제어되어 축전 장치(190)로부터의 전압을 변환한다. 인버터는, 차량 ECU(300)로부터의 제어 신호(PWI)에 의해 제어되어, 컨버터에서 변환된 전력을 이용하여 모터 제너레이터(130)를 구동한다.
모터 제너레이터(130)는 교류 회전 전기 기기이고, 예를 들면, 영구 자석이 매설된 로터를 구비하는 영구 자석형 동기 전동기이다.
모터 제너레이터(130)의 출력 토크는, 동력 전달 기어(140)를 통해 구동륜(150)에 전달된다. 차량(100)은 이 토크를 이용하여 주행한다. 모터 제너레이터(130)는, 차량(100)의 회생 제동시에는, 구동륜(150)의 회전력에 의해 발전할 수 있다. 그리고, 그 발전 전력은, PCU(120)에 의해 축전 장치(190)의 충전 전력으로 변환된다.
또한, 모터 제너레이터(130) 외에 엔진(도시 생략)이 탑재된 하이브리드 자동차에서는, 엔진 및 모터 제너레이터(130)를 협조적으로 동작시킴으로써, 필요한 차량 구동력이 발생된다. 이 경우, 엔진의 회전에 의한 발전 전력을 이용하여 축전 장치(190)를 충전하는 것도 가능하다.
통신부(160)는, 차량(100)과 송전 장치(200)의 사이에서 무선 통신을 행하기 위한 통신 인터페이스이고, 송전 장치(200)의 통신부(230)와 정보(INFO)의 수수를 행한다. 통신부(160)로부터 송전 장치(200)로 출력되는 정보(INFO)에는, 차량 ECU(300)로부터의 차량 정보나, 송전의 개시 및 정지를 지시하는 신호, 및 송전 장치(200)의 임피던스 조정부(260)의 전환 지령 등이 포함된다.
차량 ECU(300)는, 모두 도 1에는 도시하지 않으나 CPU, 기억장치 및 입출력 버퍼를 포함하고, 각 센서 등으로부터의 신호의 입력이나 각 기기로의 제어 신호의 출력을 행함과 함께, 차량(100)에 있어서의 각 기기의 제어를 행한다. 또한, 이러한 제어에 대해서는 소프트웨어에 의한 처리에 한정되지 않고, 전용의 하드웨어(전자 회로)로 처리하는 것도 가능하다.
위치 검출 센서(165)는, 예를 들면 차량(100)의 플로어 패널 하면에 설치된다. 위치 검출 센서(165)는, 송전부(220)가 설치된 주차 스페이스에 있어서의 주차 위치의 위치 확인을 위해, 송전부(220)를 검출하기 위한 센서이다. 위치 검출 센서(165)는, 예를 들면 자기 검출 센서이고, 주차 동작 실행 중에 위치 검출을 위해 송전부(220)로부터 송전되는 전력(이하, 「테스트 송전」이라고도 한다.)에 의하여 생기는 자계의 크기를 검출하여, 그 검출 신호(SIG)를 ECU(300)로 출력한다. ECU(300)는, 위치 검출 센서(165)에서 검출된 검출 신호(SIG)에 의거하여 주차 위치의 적부를 판정하고, 이용자에 대하여 차량의 정지를 재촉한다. 또는, 차량(100)에 자동 주차 기능이 설치되는 경우에는, ECU(300)는 검출 신호(SIG)에 의거하여 차량을 자동 정지시킨다.
도 3은, 차량(100)이 송전부(220)에 대하여 적절하게 주차된 경우의, 송전부(220)와 위치 검출 센서(165)의 위치 관계의 일례를 나타내는 도면이다. 도 3의 예에 있어서는, 송전부(220)의 송전용 공진 코일(221)은 그 권회축이 수평방향(도 3 중의 X축방향)이 되도록 페라이트 코어(225)에 권회되고 있고, 위치 검출 센서(165)로서 4개의 센서가 이용되고 있다.
도 3과 같은 송전부(220)에 있어서 송전을 행한 경우에 생기는 자계의 분포를 시뮬레이션한 예를 도 4에 나타낸다. 도 4에 있어서는, 자계의 분포가 등고선에 의해 표현되어 있고, 주위의 영역 AR2로부터 영역 AR1을 향해 자계의 세기가 커지고 있다.
위치 검출 센서(165)는, 송전용 공진 코일(221)의 권회 중심을 원점으로 하는 직교 좌표(X-Y축)에 있어서, 원점으로부터의 각각의 X축방향의 거리가 동일하고, 또한 원점으로부터의 Y축방향의 거리가 동일해지도록, 즉 원점에 대하여 서로 대칭이 되도록 배치된다. 이로 인해, 차량(100)이 송전부(220)에 대하여 적절한 위치에 주차된 경우에는, 각 위치 검출 센서(165)에서 검출되는 자계의 크기가 대략 동일해진다. 따라서, 주차 동작을 행할 때에, 각 위치 검출 센서(165)에서 검출된 자계의 크기의 차에 의해, 송전부(220)가 제 1 소정 범위 내에 위치하고 있는지의 여부를 판정할 수 있다.
또한, 위치 검출 센서(165)는, 상기와 같은 자기 검출 센서에 한정되지 않고, 예를 들면, 송전부(220)에 첩부된 RFID를 검출하기 위한 RFID 리더여도 되고, 송전부(220)의 단차나 기준점의 높이를 검출하기 위한 거리 센서여도 된다. 이와 같은 다른 타입의 센서를 이용하는 경우에는, 예를 들면 각 RFID로부터의 수신 강도의 분포에 의해 위치를 인식하거나, 각 거리 센서에서 검출된 높이의 분포에 의해 위치를 인식하거나 한다.
본 실시형태와 같은 승강 기구(105)가 설치되는 구성에 있어서는, 수전부(110)가 대기 위치로부터 수전 위치로 이동되기 때문에, 주차 동작 실행 중과 같이 대기 위치에 수전부(110)가 격납된 상태에서는, 수전부(110)를 이용한 위치 검출은 곤란하다. 그 때문에, 주차 동작 중의 송전부(220)의 위치 검출을 위해 위치 검출 센서(165)가 필요하게 된다.
다시 도 1을 참조하여, 전압 센서(195)는, 공진 코일(111)에 병렬로 접속되고, 수전부(110)에서 수전된 수전 전압(Vre)을 검출한다. 전류 센서(196)는, 공진 코일(111)과 정합기(170)를 연결하는 전력선에 설치되고, 수전 전류(Ire)를 검출한다. 수전 전압(Vre) 및 수전 전류(Ire)의 검출값은 차량 ECU(300)에 송신되어, 전력 전송 효율의 연산 등에 이용된다.
또한, 도 1에 있어서는, 수전부(110) 및 송전부(220)에 공진 코일(111, 221)이 설치되는 구성을 나타내었으나, 이에 더하여, 공진 코일과 전자 유도에 의해 전력을 수수 가능한 전자 유도 코일(113, 223)이 각각 설치되는 구성으로 하는 것도 가능하다. 이 경우에는, 도 1에는 나타내지 않으나, 송전부(220)에 있어서는 전자 유도 코일이 전원부(250)에 접속되어, 전원부(250)로부터의 전력을 전자 유도에 의해 공진 코일(221)에 전달한다. 또, 수전부(110)에 있어서는 전자 유도 코일(113)이 정류기(180)에 접속되어, 공진 코일(111)에서 수전한 전력을 전자 유도에 의해 취출하여 정류기(180)에 전달한다.
(전력 전송의 원리)
다음에, 도 5∼도 9를 이용하여 비접촉에 의한 전력 전송의 원리에 대하여 설명한다. 또한, 도 5∼도 9에 있어서는, 수전부 및 송전부에 전자 유도 코일이 설치되는 경우를 예로서 설명한다. 도 5는, 송전 장치(200)로부터 차량(100)으로의 전력 전송시의 등가 회로도이다. 도 5를 참조하여, 송전 장치(200)의 송전부(220)는 공진 코일(221)과, 커패시터(222)와, 전자 유도 코일(223)을 포함한다.
전자 유도 코일(223)은, 공진 코일(221)과 소정의 간격을 두고, 예를 들면 공진 코일(221)과 대략 동축 상에 설치된다. 전자 유도 코일(223)은, 전자 유도에 의해 공진 코일(221)과 자기적으로 결합하고, 전원 장치(210)로부터 공급되는 고주파 전력을 전자 유도에 의해 공진 코일(221)로 공급한다.
공진 코일(221)은 커패시터(222)와 함께 LC 공진 회로를 형성한다. 또한, 후술하는 바와 같이, 차량(100)의 수전부(110)에 있어서도 LC 공진 회로가 형성된다. 공진 코일(221) 및 커패시터(222)에 의해 형성되는 LC 공진 회로의 고유 주파수와, 수전부(110)의 LC 공진 회로의 고유 주파수의 차는, 전자(前者)의 고유 주파수 또는 후자의 고유 주파수의 ±10% 이하이다. 그리고, 공진 코일(221)은, 전자 유도 코일(223)로부터 전자 유도에 의해 전력을 받아, 차량(100)의 수전부(110)로 비접촉으로 송전한다.
또한, 전자 유도 코일(223)은, 전원 장치(210)로부터 공진 코일(221)로의 급전을 용이하게 하기 위해 설치되는 것이며, 전자 유도 코일(223)을 설치하지 않고 공진 코일(221)에 전원 장치(210)를 직접 접속하여도 된다. 또, 커패시터(222)는, 공진 회로의 고유 주파수를 조정하기 위해 설치되는 것이며, 공진 코일(221)의 부유 용량을 이용하여 원하는 고유 주파수가 얻어지는 경우에는, 커패시터(222)를 설치하지 않는 구성으로 하여도 된다.
차량(100)의 수전부(110)는 공진 코일(111)과, 커패시터(112)와, 전자 유도 코일(113)을 포함한다. 공진 코일(111)은 커패시터(112)와 함께 LC 공진 회로를 형성한다. 상술과 같이, 공진 코일(111) 및 커패시터(112)에 의해 형성되는 LC 공진 회로의 고유 주파수와, 송전 장치(200)의 송전부(220)에 있어서의, 공진 코일(221) 및 커패시터(222)에 의해 형성되는 LC 공진 회로의 고유 주파수의 차는, 전자의 고유 주파수 또는 후자의 고유 주파수의 ±10%이다. 그리고, 공진 코일(111)은 송전 장치(200)의 송전부(220)로부터 비접촉으로 수전한다.
전자 유도 코일(113)은, 공진 코일(111)과 소정의 간격을 두고, 예를 들면 공진 코일(111)과 대략 동축 상에 설치된다. 전자 유도 코일(113)은, 전자 유도에 의해 공진 코일(111)과 자기적으로 결합하고, 공진 코일(111)에 의해 수전된 전력을 전자 유도에 의해 취출하여 전기 부하 장치(118)로 출력한다. 또한, 전기 부하 장치(118)는, 수전부(110)에 의해 수전된 전력을 이용하는 전기 기기이고, 구체적으로는 정류기(180)(도 1) 이후의 전기 기기를 포괄적으로 나타낸 것이다.
또한, 전자 유도 코일(113)은, 공진 코일(111)로부터의 전력의 취출을 용이하게 하기 위해 설치되는 것이며, 전자 유도 코일(113)을 설치하지 않고 공진 코일(111)에 정류기(180)를 직접 접속하여도 된다. 또, 커패시터(112)는, 공진 회로의 고유 주파수를 조정하기 위해 설치되는 것이며, 공진 코일(111)의 부유 용량을 이용하여 원하는 고유 주파수가 얻어지는 경우에는, 커패시터(112)를 설치하지 않는 구성으로 하여도 된다.
송전 장치(200)에 있어서, 전원 장치(210)로부터 전자 유도 코일(223)로 고주파의 교류 전력이 공급되고, 전자 유도 코일(223)을 이용하여 공진 코일(221)로 전력이 공급된다. 그렇게 하면, 공진 코일(221)과 차량(100)의 공진 코일(111)의 사이에 형성되는 자계를 통해 공진 코일(221)로부터 공진 코일(111)로 에너지(전력)가 이동한다. 공진 코일(111)로 이동한 에너지(전력)는, 전자 유도 코일(113)을 이용하여 취출되어, 차량(100)의 전기 부하 장치(118)로 전송된다.
상술과 같이, 이 전력 전송 시스템에 있어서는, 송전 장치(200)의 송전부(220)의 고유 주파수와, 차량(100)의 수전부(110)의 고유 주파수의 차는, 송전부(220)의 고유 주파수 또는 수전부(110)의 고유 주파수의 ±10% 이하이다. 이와 같은 범위에 송전부(220) 및 수전부(110)의 고유 주파수를 설정함으로써 전력 전송 효율을 높일 수 있다. 한편, 상기의 고유 주파수의 차가 ±10%보다 커지면, 전력 전송 효율이 10%보다 작아져, 전력 전송 시간이 길어지는 등의 폐해가 생길 가능성이 있다.
또한, 송전부(220)(수전부(110))의 고유 주파수란, 송전부(220)(수전부(110))를 구성하는 전기 회로(공진 회로)가 자유 진동하는 경우의 진동 주파수를 의미한다. 또한, 송전부(220)(수전부(110))를 구성하는 전기 회로(공진 회로)에 있어서, 제동력 또는 전기 저항을 실질적으로 0으로 하였을 때의 고유 주파수는, 송전부(220)(수전부(110))의 공진 주파수로도 불린다.
도 6 및 도 7을 이용하여, 고유 주파수의 차와 전력 전송 효율의 관계를 해석한 시뮬레이션 결과에 대하여 설명한다. 도 6은, 전력 전송 시스템의 시뮬레이션 모델을 나타내는 도면이다. 또, 도 7은, 송전부 및 수전부의 고유 주파수의 어긋남과 전력 전송 효율의 관계를 나타내는 도면이다.
도 6을 참조하여, 전력 전송 시스템(89)은 송전부(90)와 수전부(91)를 구비한다. 송전부(90)는 제 1 코일(92)과 제 2 코일(93)을 포함한다. 제 2 코일(93)은 공진 코일(94)과 공진 코일(94)에 설치된 커패시터(95)를 포함한다. 수전부(91)는 제 3 코일(96)과 제 4 코일(97)을 구비한다. 제 3 코일(96)은, 공진 코일(99)과 이 공진 코일(99)에 접속된 커패시터(98)를 포함한다.
공진 코일(94)의 인덕턴스를 인덕턴스 Lt라 하고, 커패시터(95)의 커패시턴스를 커패시턴스 C1이라 한다. 또, 공진 코일(99)의 인덕턴스를 인덕턴스 Lr이라 하고, 커패시터(98)의 커패시턴스를 커패시턴스 C2라 한다. 이와 같이 각 파라미터를 설정하면, 제 2 코일(93)의 고유 주파수 f1은, 하기의 식(1)에 의해 나타내어지고, 제 3 코일(96)의 고유 주파수 f2는 하기의 식(2)에 의해 나타내어진다.
f1=1/{2π(Lt×C1)1/2}…(1)
f2=1/{2π(Lr×C2)1/2}…(2)
여기에서, 인덕턴스 Lr 및 커패시턴스 C1, C2를 고정하여, 인덕턴스 Lt만을 변화시킨 경우에 있어서, 제 2 코일(93) 및 제 3 코일(96)의 고유 주파수의 어긋남과 전력 전송 효율의 관계를 도 7에 나타낸다. 또한, 이 시뮬레이션에 있어서는, 공진 코일(94) 및 공진 코일(99)의 상대적인 위치 관계는 고정으로 하고, 또한, 제 2 코일(93)에 공급되는 전류의 주파수는 일정하다.
도 7에 나타내는 그래프 중, 가로축은 고유 주파수의 어긋남(%)을 나타내고, 세로축은 일정 주파수의 전류에 있어서의 전력 전송 효율(%)을 나타낸다. 고유 주파수의 어긋남(%)은 하기의 식(3)에 의해 나타내어진다.
(고유 주파수의 어긋남)={(f1-f2)/f2}×100(%)…(3)
도 7로부터 분명한 바와 같이, 고유 주파수의 어긋남(%)이 0%인 경우에는 전력 전송 효율은 100% 가까이 된다. 고유 주파수의 어긋남(%)이 ±5%인 경우에는 전력 전송 효율은 40% 정도가 된다. 고유 주파수의 어긋남(%)이 ±10%인 경우에는 전력 전송 효율은 10% 정도가 된다. 고유 주파수의 어긋남(%)이 ±15%인 경우에는 전력 전송 효율은 5% 정도가 된다. 즉, 고유 주파수의 어긋남(%)의 절대값(고유 주파수의 차)이, 제 3 코일(96)의 고유 주파수의 10% 이하의 범위가 되도록 제 2 코일(93) 및 제 3 코일(96)의 고유 주파수를 설정함으로써, 전력 전송 효율을 실용적인 레벨로 높일 수 있다 것을 알 수 있다. 또한, 고유 주파수의 어긋남(%)의 절대값이 제 3 코일(96)의 고유 주파수의 5% 이하가 되도록 제 2 코일(93) 및 제 3 코일(96)의 고유 주파수를 설정하면, 전력 전송 효율을 더 높일 수 있으므로 보다 바람직하다. 또한, 시뮬레이션 소프트웨어로서는, 전자계 해석 소프트웨어(JMAG(등록상표):주식회사 JSOL제)를 채용하고 있다.
다시 도 5을 참조하여, 송전 장치(200)의 송전부(220) 및 차량(100)의 수전부(110)는, 송전부(220)와 수전부(110)의 사이에 형성되고, 또한, 특정한 주파수에서 진동하는 자계와, 송전부(220)와 수전부(110)의 사이에 형성되고, 또한, 특정한 주파수에서 진동하는 전계의 적어도 일방을 통해, 비접촉으로 전력을 수수한다. 송전부(220)와 수전부(110)의 결합 계수(κ)는 0.1 이하가 바람직하고, 송전부(220)와 수전부(110)를 전자계에 의해 공진(공명)시킴으로써, 송전부(220)로부터 수전부(110)로 전력이 전송된다.
여기서, 송전부(220)의 주위에 형성되는 특정한 주파수의 자계에 대하여 설명한다. 「특정한 주파수의 자계」는, 전형적으로는 전력 전송 효율과 송전부(220)에 공급되는 전류의 주파수와 관련성을 가진다. 그래서, 먼저, 전력 전송 효율과, 송전부(220)에 공급되는 전류의 주파수의 관계에 대하여 설명한다. 송전부(220)로부터 수전부(110)에 전력을 전송할 때의 전력 전송 효율은, 송전부(220) 및 수전부(110) 사이의 거리 등의 다양한 요인에 의해 변화한다. 예를 들면, 송전부(220) 및 수전부(110)의 고유 주파수(공진 주파수)를 f0이라 하고, 송전부(220)에 공급되는 전류의 주파수를 f3이라 하며, 송전부(220) 및 수전부(110) 사이의 에어 갭을 에어 갭(AG)이라 한다.
도 8은, 고유 주파수 f0을 고정한 상태에서, 에어 갭(AG)을 변화시켰을 때의 전력 전송 효율과, 송전부(220)에 공급되는 전류의 주파수 f3의 관계를 나타내는 그래프이다. 도 8을 참조하여, 가로축은 송전부(220)에 공급되는 전류의 주파수 f3을 나타내고, 세로축은 전력 전송 효율(%)을 나타낸다. 효율 곡선 L1은, 에어 갭(AG)이 작을 때의 전력 전송 효율과, 송전부(220)에 공급되는 전류의 주파수 f3의 관계를 모식적으로 나타낸다. 이 효율 곡선 L1에 나타내는 바와 같이, 에어 갭(AG)이 작은 경우에는, 전력 전송 효율의 피크는 주파수 f4, f5(f4<f5)에 있어서 발생한다. 에어 갭(AG)을 크게 하면, 전력 전송 효율이 높아질 때의 2개의 피크는 서로 접근하도록 변화한다. 그리고, 효율 곡선 L2에 나타내는 바와 같이, 에어 갭(AG)을 소정 거리보다 크게 하면, 전력 전송 효율의 피크는 1개가 되고, 송전부(220)에 공급되는 전류의 주파수가 주파수 f6일 때에 전력 전송 효율이 피크가 된다. 에어 갭(AG)을 효율 곡선 L2의 상태보다 한층 더 크게 하면, 효율곡선 L3에 나타내는 바와 같이 전력 전송 효율의 피크가 작아진다.
예를 들면, 전력 전송 효율의 향상을 도모하기 위한 방법으로서 다음과 같은 방법을 생각할 수 있다. 제 1 방법으로서는, 에어 갭(AG)에 맞춰, 송전부(220)에 공급되는 전류의 주파수를 일정하게 하여, 커패시터(222)나 커패시터(112)의 커패시턴스를 변화시킴으로써, 송전부(220)와 수전부(110)의 사이에서의 전력 전송 효율의 특성을 변화시키는 방법을 생각할 수 있다. 구체적으로는, 송전부(220)에 공급되는 전류의 주파수를 일정하게 한 상태에서, 전력 전송 효율이 피크가 되도록, 커패시터(222) 및 커패시터(112)의 커패시턴스를 조정한다. 이 방법에서는, 에어 갭(AG)의 크기에 관계없이, 송전부(220) 및 수전부(110)에 흐르는 전류의 주파수는 일정하다.
또한, 제 2 방법으로서는, 에어 갭(AG)의 크기에 의거하여, 송전부(220)에 공급되는 전류의 주파수를 조정하는 방법이다. 예를 들면, 전력 전송 특성이 효율 곡선 L1이 되는 경우에는, 주파수 f4 또는 f5의 전류를 송전부(220)에 공급한다. 주파수 특성이 효율 곡선 L2, L3이 되는 경우에는, 주파수 f6의 전류를 송전부(220)에 공급한다. 이 경우에 있어서는, 에어 갭(AG)의 크기에 맞춰 송전부(220) 및 수전부(110)에 흐르는 전류의 주파수를 변화시키게 된다.
제 1 방법에서는, 송전부(220)를 흐르는 전류의 주파수는, 고정된 일정한 주파수가 되고, 제 2 방법에서는, 송전부(220)를 흐르는 주파수는, 에어 갭(AG)에 의해 적절히 변화되는 주파수가 된다. 제 1 방법이나 제 2 방법 등에 의해, 전력 전송 효율이 높아지도록 설정된 특정한 주파수의 전류가 송전부(220)에 공급된다. 송전부(220)에 특정한 주파수의 전류가 흐름으로써, 송전부(220)의 주위에는, 특정한 주파수에서 진동하는 자계(전자계)가 형성된다. 수전부(110)는, 수전부(110)와 송전부(220)의 사이에 형성되고, 또한 특정한 주파수에서 진동하는 자계를 통해 송전부(220)로부터 전력을 수전하고 있다. 따라서, 「특정한 주파수에서 진동하는 자계」란, 반드시 고정된 주파수의 자계라고는 할 수 없다. 또한, 상기의 예에서는, 에어 갭(AG)에 착목하여, 송전부(220)에 공급되는 전류의 주파수를 설정하도록 하고 있으나, 전력 전송 효율은, 송전부(220) 및 수전부(110)의 수평방향의 어긋남 등과 같이 다른 요인에 의해서도 변화하는 것이며, 당해 다른 요인에 의거하여, 송전부(220)에 공급되는 전류의 주파수를 조정하는 경우가 있다.
또한, 상기의 설명에서는, 공진 코일로서 헬리컬 코일을 채용한 예에 대하여 설명하였으나, 공진 코일로서, 미앤더 라인 등의 안테나 등을 채용한 경우에는, 송전부(220)에 특정한 주파수의 전류가 흐름으로써, 특정한 주파수의 전계가 송전부(220)의 주위에 형성된다. 그리고, 이 전계를 통하여, 송전부(220)와 수전부(110)의 사이에서 전력 전송이 행하여진다.
이 전력 전송 시스템에 있어서는, 전자계의 「정전자계」가 지배적인 근접장(에바네센트장)을 이용함으로써, 송전 및 수전 효율의 향상이 도모되고 있다.
도 9는, 전류원(자류원)으로부터의 거리와 전자계의 강도의 관계를 나타낸 도면이다. 도 9를 참조하여, 전자계는 3개의 성분으로 이루어진다. 곡선 k1은, 파원(波源)으로부터의 거리에 반비례한 성분이며, 「복사 전자계」라 불린다. 곡선 k2는, 파원으로부터의 거리의 2승에 반비례한 성분이며, 「유도 전자계」라 불린다. 또, 곡선 k3은, 파원으로부터의 거리의 3승에 반비례한 성분이며, 「정전자계」라 불린다. 또한, 전자계의 파장을 「λ」로 하면, 「복사 전자계」와 「유도 전자계」와 「정전자계」의 세기가 대략 동일해지는 거리는, λ/2π로 나타낼 수 있다.
「정전자계」는, 파원으로부터의 거리와 함께 급격하게 전자파의 강도가 감소하는 영역이고, 이 실시형태에 관련되는 전력 전송 시스템에서는, 이 「정전자계」가 지배적인 근접장(에바네센트장)을 이용하여 에너지(전력)의 전송이 행하여진다. 즉, 「정전자계」가 지배적인 근접장에 있어서, 근접하는 고유 주파수를 가지는 송전부(220) 및 수전부(110)(예를 들면 한 쌍의 LC 공진 코일)를 공명시킴으로써, 송전부(220)로부터 타방의 수전부(110)로 에너지(전력)를 전송한다. 이 「정전자계」는 원방으로 에너지를 전파하지 않으므로, 원방까지 에너지를 전파하는 「복사 전자계」에 의해 에너지(전력)를 전송하는 전자파에 비해, 공명법은 보다 적은 에너지 손실로 송전할 수 있다.
이와 같이, 이 전력 전송 시스템에 있어서는, 송전부(220)와 수전부(110)를 전자계에 의해 공진(공명)시킴으로써, 송전부(220)와 수전부(110)의 사이에서 비접촉에 의해 전력이 전송된다. 그리고, 송전부(220)와 수전부(110) 사이의 결합 계수(κ)는, 예를 들면, 0.3 이하 정도이고, 바람직하게는 0.1 이하이다. 당연한 것이지만, 결합 계수(κ)를 0.1∼0.3 정도의 범위도 채용할 수 있다. 결합 계수(κ)는, 이와 같은 값에 한정되는 것이 아니고, 전력 전송이 양호해지는 다양한 값을 취할 수 있다.
또한, 결합 계수(κ)는, 송전부와 수전부 사이의 거리에 의해 변동한다. 전력 전송시에 있어서의 송전부와 수전부 사이의 에어 갭이 작을 때에는, 결합 계수(κ)는, 예를 들면, 0.6∼0.8 정도이다. 또한, 당연한 것이지만, 송전부와 수전부 사이의 거리에 따라서는 결합 계수(κ)는 0.6 이하가 된다. 그리고, 송전부와 수전부가 멀어진 상태에서 전력 전송이 실시되면, 결합 계수(κ)는 0.3 이하가 된다.
또한, 전력 전송에 있어서의, 상기와 같은 송전부(220)와 수전부(110)의 결합을, 예를 들면, 「자기 공명 결합」, 「자계(자장) 공명 결합」, 「전자계(전자장) 공진 결합」, 「전계(전장) 공진 결합」 등이라 한다. 「전자계(전자장) 공진 결합」은 「자기 공명 결합」, 「자계(자장) 공명 결합」, 「전계(전장) 공진 결합」 모두 포함하는 결합을 의미한다.
송전부(220)와 수전부(110)가 상기와 같이 코일에 의해 형성되는 경우에는, 송전부(220)와 수전부(110)는 주로 자계(자장)에 의해 결합하여, 「자기 공명 결합」 또는 「자계(자장) 공명 결합」이 형성된다. 또한, 송전부(220)와 수전부(110)에, 예를 들면, 미앤더 라인 등의 안테나를 채용하는 것도 가능하고, 이 경우에는, 송전부(220)와 수전부(110)는 주로 전계(전장)에 의해 결합하여, 「전계(전장) 공명 결합」이 형성된다.
(위치 확인 제어의 설명)
상술과 같은, 이동 장치를 이용하여, 통상 주행시에는 수전부를 대기 위치에 배치하고, 전력 전송시에는 수전부 하강하여 송전부에 근접시키는 구성을 가지는 경우, 송전부와 수전부가 근접한 상태에서 송전부와 수전부 사이의 결합이 양호해지도록, 코일의 인덕턴스나 커패시터의 커패시턴스 등의 각종 파라미터가 설계된다. 그 때문에, 수전부가 대기 위치에 있는 상태에서는, 송전부와 수전부의 거리가 설계값보다 커서, 송전부로부터 출력되는 전력을 충분하게 수전할 수 없는 경향에 있다. 그 때문에, 차량을 주차 스페이스의 소정 위치에 주차할 때에, 수전부의 수전 전력에 의거한 전력 전송 효율을 이용하여, 송전부의 위치를 검출하는 것이 곤란해지는 경우가 생긴다.
특히, 도 2에서 나타낸 바와 같이, 이동 장치에 링크 기구가 이용되는 경우에는, 이동 장치는, 수직방향의 승강에 따라 수평방향의 위치도 변화된다. 그 때문에, 이와 같은 경우에는, 수전부가 대기 위치에 있는 상태에서 수전부를 이용하여 송전부의 위치를 확인하였다고 해도, 송전부와 수전부가 근접한 실제의 수전 위치에 있어서의 서로의 위치 관계를 보장할 수는 없다.
한편, 주차 동작시에, 이동 장치에 의해 수전 위치에 대응한 높이까지 미리 수전부를 하강시킨 상태로 하여, 수전부를 이용하여 송전부의 위치를 확인하는 것도 가능하기는 하나, 송전부의 상면 높이가 상정보다 높거나, 연석(緣石)과 같은 지면으로부터 돌출한 다른 물체가 있었을 경우에는, 주차 동작 중에 수전부가 이러한 물체에 충돌하여 손상되어버릴 우려가 있다. 그 때문에, 상술과 같은 구성을 가지는 차량에 있어서는, 수전부를 이용하여 주차 동작시에 송전부의 위치를 정확하게 검출하는 것은 곤란하다.
그 때문에, 본 실시형태에 있어서는, 차량측에, 송전부를 검출하기 위한 검출기가 수전부와는 별도로 설치되고, 주차 동작시에는 이 추가된 검출기를 이용하여 송전부의 위치가 검출된다(이하, 「제 1 검출 동작」이라고도 한다.). 또한, 주차 완료 후, 이동 장치에 의해 수전부가 수전 위치에 이동된 후에, 수전부의 수전 전력에 의거한 전력 전송 효율을 이용하여 송전부의 위치 검출이 행하여진다(이하, 「제 2 검출 동작」이라고도 한다.). 그리고, 이 제 1 검출 동작 및 제 2 검출 동작의 쌍방에 있어서, 송전 장치의 위치가 소정 범위 내인 것이 검출된 것에 응답하여, 축전 장치를 충전하기 위한 송전이 개시된다. 이와 같은, 2단계의 위치 검출 동작을 이용한 위치 확인 제어를 행함으로써, 전력 전송 효율이 저하된 상태 그대로 송전이 행하여지는 상태를 회피할 수 있다.
이하, 도 10∼도 12를 이용하여, 본 실시형태에 있어서의, 송전 장치의 위치 확인 제어에 대하여 설명한다.
도 10 및 도 11은, 본 실시형태에 있어서의 충전 동작의 개요를 나타내는 타임 차트이다. 도 10은, 차량 주차 후에 계속하여 충전 동작이 행하여지는 경우의 타임 차트이다. 한편, 도 11은, 이용자의 설정에 의거하여 차량 주차 후, 소정의 시간이 경과한 후에 충전 동작을 개시하는 타이머 기능이 이용되는 경우의 타임 차트이다. 도 10 및 도 11에 있어서는, 세로축에 시간이 나타내어져 있고, 이용자, 차량(100), 송전 장치(200)의 시간적인 동작이 개략적으로 나타내어져 있다.
도 1 및 도 10을 참조하여, 축전 장치(190)의 충전을 행하기 위해, 차량(100)이 송전 장치(200)가 설치된 주차 스페이스 부근에 도래하면, 통신 대기의 상태의 차량(100)으로부터 통신을 확립하기 위한 요구 신호가 송신된다(P200). 이에 응답하여, 송전 장치(200)로부터 통신 개시를 위한 응답 신호가 차량(100)에 대하여 송신되고(P300), 이로 인해, 차량(100)과 송전 장치(200) 사이의 통신이 확립된다.
그 후, 이용자에 의한 주차 동작이 개시되면(P100), 송전 장치(200)는 주차 위치 맞춤을 위한 테스트 송전을 개시한다(P310). 차량(100)은, 테스트 송전에 의해 생기는 자계를 위치 검출 센서(165)에 의해 검출하고, 위치 검출 센서(165)의 출력에 의거하여, 수전부(110)로부터 소정 범위(제 1 소정 범위) 내에 송전부(220)가 위치하고 있는지의 여부를 판정한다(P210). 그리고, 차량(100)은, 송전부(220)가 수전부(110)로부터 소정의 범위 내에 위치하고 있다고 판단하면, 이용자에 대하여 차량을 정차하도록 안내한다. 또, 자동 주차 기능을 가지고 있는 경우에는, 차량(100)은 이 인식에 의거하여 주차 동작을 실행한다. 또한, 테스트 송전에 있어서 출력되는 전력은, 축전 장치(190)를 충전하는 경우의 전력보다 작게 설정된다.
소정의 위치로의 주차 동작이 완료하면, 차량(100)은, 위치 검출 센서(165)로부터의 출력에 의거하여, 송전부(220)가 수전부(110)로부터 소정 범위 내에 위치하고 있는지의 여부를 판정하고, 송전부(220)가 소정 범위 내에 위치하고 있는 경우에는, 주차 완료를 나타내는 신호를 이용자에게 통지한다(P220). 이에 응답하여, 이용자에 의해 차량(100)이 정지되고, 이그니션 스위치 또는 이그니션 키의 조작에 의해, 차량(100)의 정지 조작이 행하여져, 차량(100)이 Ready-OFF 상태로 되면(P110), 차량(100)은 승강 기구(105)를 동작시켜 수전부(110)를 송전부(220)에 대향하는 위치(수전 위치)로 하강시킨다(P230).
수전 위치로의 수전부(110)의 배치가 완료되면, 차량(100)은 송전부(220)로부터의 테스트 송전의 전력을 수전부(110)에 의해 받고, 전력 전송 효율(수전 효율)에 의거하여, 송전부(220)와 수전부(110)의 위치 관계가 소정 범위 내(제 2 소정 범위)인지를 다시 확인한다(P240). 그리고, 송전부(220)와 수전부(110)의 위치 관계가 양호한 경우에는, 차량(100)은 그 취지를 나타내는 신호를 송전 장치(200)에 송신하고, 이에 응답하여, 송전 장치(200)는 테스트 송전을 정지한다(P320).
그 후, 송전 장치(200)는 축전 장치(190)를 충전하기 위한 전력의 송전을 개시한다(P330). 차량(100)은, 송전 장치(200)로부터 송전되는 전력을 수전부(110)에서 받아, 축전 장치(190)의 충전 처리를 실행한다(P250).
축전 장치(190)가 만충전 상태가 되어 충전이 완료된 경우, 또는, 이용자로부터의 조작에 의해 충전 동작의 종료가 지시된 경우에는, 차량(100)은, 충전 동작을 정지함과 함께, 이용자 및 송전 장치(200)에 대하여 충전의 종료를 통지한다(P260). 그리고, 차량(100)은 승강 기구(105)를 동작시켜, 수전부(110)를 대기 위치로 되돌린다(P270). 한편, 송전 장치(200)는, 차량(100)으로부터의 충전 종료 통지에 의거하여 송전 동작을 정지한다(P340).
또한, 상기의 설명에 있어서, P210에 있어서의 위치 검출 센서(165)를 이용한 송전부(220)의 위치 검출이 상술한 「제 1 검출 동작」에 대응한다. 또, P240에 있어서의 수전부(110)에서 수전한 전력에 의거하는 전력 전송 효율을 이용한 송전부(220)의 위치 검출이 상술한 「제 2 검출 동작」에 대응한다.
다음에, 도 11을 이용하여, 타이머 기능을 이용한 경우에 대하여 설명한다. 도 11에 있어서는, 도 10의 타임 차트에 P225의 동작이 추가된 것으로 되어 있다. 도 11에 있어서, 도 10과 중복되는 동작의 설명에 대해서는 반복하지 않는다.
도 1 및 도 11을 참조하여, 제 1 검출 동작(P210)에 있어서, 주차 스페이스 내의 소정 위치로의 주차 동작이 완료되면, 차량(100)은, 주차 완료를 나타내는 신호를 이용자에게 통지한다(P220). 이에 응답하여, 이용자에 의해 차량(100)이 정지되고, 이그니션 스위치 또는 이그니션 키의 조작에 의해, 차량(100)의 정지 조작이 행하여져, 차량(100)이 Ready-OFF 상태로 되면(P110), 차량(100)은 이용자에 의해 설정된 충전 개시 시각 또는 충전 완료 시각에 의거하여 충전 개시까지의 시간을 연산한다. 이때, 송전 장치(200)는 Ready-OFF로 된 것에 응답하여 테스트 송전을 정지한다(P320). 그리고, 차량(100)은 연산된 충전 개시까지의 시간이 경과할 때까지, 대기 상태로서 실제의 충전 동작의 개시를 지연한다(P225).
상기의 타이머가 경과하여 충전 개시 시각이 도래하면, 차량(100)은, 송전 장치(200)에 통지하여 테스트 송전을 재개시킴(P321)과 함께, 승강 기구(105)를 수전 위치까지 하강시켜 수전부(110)를 송전부(220)로 근접시킨다(P230).
송전 장치(200)로부터의 테스트 송전이 개시되면, 차량(100)은, 수전부(110)에 의해 수전한 수전 전력과, 송전 장치(200)로부터 송신되는 송전 전력에 관한 정보에 의거하여 전력 전송 효율을 연산하고, 수전 위치에 있어서 송전부(220)가 수전부(100)로부터 소정의 범위(제 2 소정 범위) 내인지를 확인한다(P240).
송전부(220)와 수전부(100)의 위치 관계가 양호한 경우에는, 차량(100)은, 송전 장치(200)로부터의 테스트 송전을 정지시킨다(P322). 송전 장치(200)는 테스트 송전을 정지하면, 다음에 축전 장치(190)를 충전하기 위해 테스트 송전보다 큰 전력을 이용한 송전을 개시한다(P330). 그리고, 차량(100)은 송전 장치(200)로부터 수전한 전력을 이용하여 축전 장치(190)의 충전 처리를 실행한다(P250).
이후에는, 도 10에서의 설명과 동일하게, 충전이 종료된 것(P260)에 따라, 수전부(110)가 대기 위치에 되돌려져(P270), 송전 장치(200)로부터의 송전이 정지된다(P340).
도 12는, 본 실시형태에 있어서, 전력 전송 중에 실행되는 수전부 위치의 재조정 제어를 설명하기 위한 플로우 차트이다. 도 12에 나타내어지는 플로우 차트 중의 각 단계에 대해서는, 차량 ECU(300) 또는 송전 ECU(240)에 미리 저장된 프로그램을 소정 주기로 실행함으로써 실현된다. 또는, 일부의 단계에 대해서는, 전용의 하드웨어(전자 회로)를 구축하여 처리를 실현하는 것도 가능하다.
도 12를 참조하여, 차량(100)은, 단계(이하, 단계를 S로 간단히 한다.)100에서, 송전 장치(200)와의 통신을 개시하기 위해 요구 신호를 송신한다. 송전 ECU(240)는, 이 요구 신호를 수신하여 차량(100)을 확인하면, 차량(100)과의 통신을 개시하기 위해 응답 신호를 차량(100)에 대하여 송신한다(S300).
차량 ECU(300)는, S110에서, 상기의 요구 신호에 대한 송전 장치(200)로부터의 응답 신호를 수신하였는지의 여부, 즉 송전 장치(200)와의 통신이 확립되었는지의 여부를 판정한다. 송전 장치(200)와의 통신이 확립되어 있지 않은 경우(S110에서 NO)에는 처리가 S110으로 되돌려져, 차량 ECU(300)는 송전 장치(200)로부터의 응답 신호의 감시를 계속한다.
송전 장치(200)와의 통신이 확립된 경우(S110에서 YES)에는, 처리가 S120으로 진행되어, 이용자 조작 또는 자동 주차 기능에 의해, 송전 장치(200)가 설치되어 있는 주차 스페이스로의 주차 동작이 개시된다. 주차 동작의 개시에 따라, 송전 ECU(240)는 송전부(220)로부터의 테스트 송전을 개시한다(S310).
그리고, S130에서, 차량 ECU(300)는, 위치 검출 센서(165)를 이용하여 송전부(220)로부터 송출되는 자력을 검출함으로써, 소정의 주차 위치로의 이동이 완료하였는지, 즉 송전부(220)가 수전부(110)로부터 소정의 범위(제 1 소정 범위) 내가 되었는지의 여부를 판정한다. 소정의 주차 위치로의 이동이 완료되어 있지 않은 경우(S130에서 NO)에는 처리가 S130으로 되돌려져, 차량 ECU(300)는 위치 검출 센서(165)로의 위치 확인을 행하면서 주차 동작을 계속한다.
소정의 주차 위치로의 이동이 완료된 경우(S130에서 YES)에는, S140에서, 자동 주차 기능 또는 이용자 조작에 의해 주차 동작이 정지된다. 그리고, 이용자의 조작에 의해 Ready-OFF로 된 것에 응답하여, 송전 ECU(240)는 테스트 송전을 정지한다(S320).
그리고, 차량 ECU(300)는, S150에서, 이용자에 의한 타이머 설정이 있는지의 여부를 판정한다. 이용자에 의한 타이머 설정이 없는 경우(S150에서 NO)에는 처리가 S170으로 진행된다.
이용자에 의한 타이머 설정이 있는 경우(S150에서 YES)에는, 차량 ECU(300)는 설정된 타이머가 경과할 때까지 충전 동작의 개시를 지연한다. 그리고, 차량 ECU(300)는, S160에 있어서, 설정된 타이머 카운트 업이 완료되어, 충전 개시 시각이 도래하였는지의 여부를 판정한다.
타이머 카운트 업이 완료되어 있지 않아 충전 개시 시각이 도래하고 있지 않은 경우(S160에서 NO)에는 처리가 S160으로 되돌려져, 차량 ECU(300)는 충전 개시 시각이 도래할 때까지 충전 동작의 대기 상태를 계속한다. 한편, 충전 개시 시각이 도래한 경우(S160에서 YES)에는 처리가 S170으로 진행된다.
S170에 있어서는, 차량 ECU(300)는, 송전 장치(200)에 대하여 재차 테스트 송전을 개시시킴과 함께(S321), 수전부(110)를 송전부(220)에 대향하는 수전 위치까지 이동시키기 위해 승강 기구(105)의 하강을 개시한다.
차량 ECU(300)는, S180에서, 송전 장치(200)로부터 테스트 송전에 의해 공급된 전력을 수전하고, 수전 위치에 있어서의 송전부(220)와 수전부(110)의 위치가 적절한지의 여부를 확인하기 위해, 전력 전송 효율(수전 효율)을 연산한다. 그리고, S190에서, 차량 ECU(300)는, 연산된 전력 전송 효율이 소정값 이상인지의 여부에 따라, 수전 위치에 있어서 송전부(220)가 수전부(110)로부터 소정 범위(제 2 소정 범위) 내에 있는지의 여부를 판정한다.
전력 전송 효율이 소정값 이상인 경우(S190에서 YES)에는, 처리가 S200으로 진행되어, 차량 ECU(300)는, 승강 기구(105)의 하강 동작을 정지함과 함께, 송전 장치(200)로부터의 테스트 송전을 정지시킨다(S322). 송전 ECU(240)는, 테스트 송전 정지 후, 테스트 송전보다 큰 전력을 이용한 송전을 개시한다(S330). 차량 ECU(300)는 이에 응답하여 충전 처리를 개시한다(S210). 그리고, 축전 장치(190)가 만충전 상태가 된 것, 또는 이용자에 의한 충전 정지의 지시에 의거하여 충전 동작이 종료하면, 차량 ECU(300)는 충전 동작을 종료하는 취지의 통지를 송전 장치(200)로 송신한다. 그 후, 차량 ECU(300)는, 승강 기구(105)를 상승하여 수전부(110)를 대기 위치에 되돌져, 송전 장치(220)와의 통신을 종료한다(S220). 한편, 송전 장치(220)는 충전 종료의 통지에 응답하여, 차량(100)으로의 송전을 정지한다(S340).
S190에서, 전력 전송 효율이 소정값 미만인 경우(S190에서 NO)에는, 처리가 S195로 진행되어, 차량 ECU(300)는 승강 기구(105)의 위치가 하한에 도달하였는지의 여부를 판정한다. 여기에서 「하한」이란, 승강 기구(105)의 동작 가능 범위의 하한인 경우, 및 수전부(110)가 송전부(220) 등에 접함으로써 승강 기구(105)가 그 이상 하강할 수 없는 경우를 포함한다.
승강 기구(105)의 위치가 하한에 도달하고 있지 않은 경우(S195에서 NO)에는, 처리가 S190으로 되돌려져, 차량 ECU(300)는 승강 기구(105)의 하강 동작을 행하면서, 전력 전송 효율이 소정값 이상이 되었는지의 여부를 계속하여 감시한다.
한편, 승강 기구(105)의 위치가 하한에 도달한 경우(S195에서 YES)에는, 차량 ECU(300)는, 승강 기구(105)의 가동 범위 내에 있어서는, 충분한 전력 전송 효율을 얻을 수 없다고 판단하고, S205에서 승강 기구(105)를 상승시켜 수전부(110)를 대기 위치로 되돌려져, 축전 장치(190)의 충전의 실행을 중지한다(S215). 이에 응답하여, 송전 장치(200)는 차량(100)으로의 테스트 송전을 정지한다(S322).
또한, 상기의 플로우 차트에 있어서는, 승강 기구(105)를 하강시키면서 전력 전송 효율을 연산하고, 전력 전송 효율이 소정값 이상이 된 것에 응답하여 승강 기구(105)를 정지시키는 경우에 대하여 설명하였다. 그러나, 예를 들면, 수전부(110)가 송전부(220)와 접하는 위치, 또는 수전부(110)와 송전부(220)의 갭이 소정값이 되는 위치와 같은, 미리 정해진 고정 위치를 수전 위치로 하는 경우에는, 수전 위치로 수전부(110)를 이동시킨 후의 전력 전송 효율에 의거하여 충전 동작을 개시할 것인지의 여부를 판단하도록 하여도 된다.
또한, 상기의 플로우 차트에 있어서는, 도 11에서 설명한 바와 같이, 주차 동작의 정지에 응답하여 송전 장치(200)로부터의 테스트 송전을 정지하는 경우를 예로서 설명하였다. 그러나, 타이머 기능을 이용하지 않는 경우에는, 도 10에서 설명한 바와 같이, 테스트 송전을 계속한 상태에서 수전부(110)를 이용한 제 2 검출 동작을 행하도록 하여도 된다. 또한, 타이머 기능을 이용하는 경우에 있어서, 제 2 검출 동작을 축전 장치(190)를 충전하기 위한 전력을 이용하여 실행하도록 해도 된다. 다만, 도 11, 도 12와 같이 테스트 송전의 전력을 이용하는 쪽이, 위치 확인시의 불필요한 전력의 방출을 저감하므로 보다 바람직하다.
또한, 타이머 기능을 이용하는 경우에, 주차 완료시에 승강 기구에 의해 수전부를 하강시켜 제 2 검출 동작을 행하고, 그 후 승강 기구를 상승시켜 수전부를 대기 위치에 되돌리고 나서, 타이머 대기를 개시하도록 하여도 된다.
이상과 같은 처리에 따라 제어를 행함으로써, 주차 실행시에 있어서는 수전부가 대기 위치에 있는 상태에서 위치 검출 센서를 이용하여 정지 위치(송전부의 위치)를 결정하고, 수전부가 수전 위치로 이동 후에는 연산된 전력 전송 효율을 이용하여 충전 동작의 개시를 결정할 수 있다. 이로 인해, 주차 동작에 있어서 차량의 정지 정밀도를 향상할 수 있음과 함께, 전력 전송 효율이 저하된 그대로의 상태에서 충전 동작이 실행되어버리는 것을 억제할 수 있다. 이로 인해, 비접촉 급전 시스템에 있어서, 원하는 전력 전송 효율을 확보하면서 전력 전송을 행하는 것이 가능해진다.
이번에 개시된 실시 형태는 모든 점에서 예시이고 제한적인 것이 아니라고 생각되어야 한다. 본 발명의 범위는 상기한 설명이 아니라, 청구범위에 의해 나타내어지며, 청구범위와 균등한 의미 및 범위 내에서의 모든 변경이 포함되는 것이 의도된다.
10 : 비접촉 급전 시스템
89 : 전력 전송 시스템
90, 220, 220A : 송전부
91, 110 : 수전부
92, 93, 96, 97 : 코일
94, 99, 111, 221 : 공진 코일
95, 98, 112, 222 : 커패시터
100 : 차량
105 : 승강 기구
113, 223 : 전자 유도 코일
115 : SMR
118 : 전기 부하 장치
120 : PCU
130 : 모터 제너레이터
140 : 동력 전달 기어
150 : 구동륜
160, 230 : 통신부
165 : 위치 검출 센서
170 : 정합기
180 : 정류기
190 : 축전 장치
195 : 전압 센서
196 : 전류 센서
200 : 송전 장치
210 : 전원 장치
225 : 페라이트 코어
240 : 송전 ECU
250 : 전원부
260 : 임피던스 조정부
300 : 차량 ECU
400 : 상용 전원

Claims (10)

  1. 송전 장치로부터 비접촉으로 전력을 수전 가능한 차량으로서,
    상기 송전 장치에 포함되는 송전부로부터 비접촉으로 전력을 수전하는 수전부와,
    대기 위치로부터 상기 송전부에 접근하는 방향으로, 상기 수전부를 이동하는 것이 가능하게 구성된 이동 장치와,
    상기 수전부가 상기 대기 위치에 위치하고 있는 상태에 있어서 상기 송전부의 위치를 검출하는 제 1 검출 동작, 및, 상기 수전부가 상기 대기 위치보다 상기 송전부에 근접한 위치에 위치하고 있는 상태에 있어서 상기 송전부의 위치를 검출하는 제 2 검출 동작을 행하는 것이 가능한 제어 장치를 구비하고,
    상기 제어 장치는, 상기 제 1 검출 동작에 있어서 상기 송전부가 제 1 소정 범위 내에 위치하고 있는 것이 검출되고, 또한 상기 제 2 검출 동작에 있어서 상기 송전부가 제 2 소정 범위 내에 위치하고 있는 것이 검출된 경우에, 상기 송전 장치로부터의 송전을 개시시키는, 차량.
  2. 제 1 항에 있어서,
    상기 송전부를 검출하기 위한 검출부를 더 구비하고,
    상기 제어 장치는, 상기 검출부를 이용하여 상기 제 1 검출 동작을 행하고, 상기 수전부를 이용하여 상기 제 2 검출 동작을 행하는, 차량.
  3. 제 2 항에 있어서,
    상기 송전 장치로부터의 송전이 가능한 위치에 상기 차량이 위치 부여된 상태에 있어서, 상기 검출부와 상기 송전부 사이의 거리는, 상기 대기 위치와 상기 송전부 사이의 거리보다 짧은, 차량.
  4. 제 2 항에 있어서,
    상기 제어 장치는, 수전을 개시할 예정 위치까지 상기 수전부를 이동한 후에 상기 제 2 검출 동작을 행하는, 차량.
  5. 제 2 항에 있어서,
    상기 검출부는, 상기 송전부로부터의 송전에 의해 생성되는 전자장의 자기를 검출 가능한 복수의 자기 센서를 포함하고,
    상기 제어 장치는, 상기 복수의 자기 센서에 의해 검출된 자기의 분포에 의거하여, 상기 송전부의 위치를 인식하는, 차량.
  6. 제 1 항에 있어서,
    상기 제어 장치는, 이용자에 의해 설정된 송전 개시 시간에 관련되는 정보에 의거하여 정해지는 타이머 값에 따라, 상기 송전부로부터의 송전을 개시하도록 구성되고,
    상기 제어 장치는, 상기 타이머 값에 대응하는 시간이 경과한 것에 응답하여, 상기 제 2 검출 동작을 실행하는, 차량.
  7. 제 1 항에 있어서,
    상기 송전부의 고유 주파수와 상기 수전부의 고유 주파수의 차는, 상기 송전부의 고유 주파수 또는 상기 수전부의 고유 주파수의 ±10% 이하인, 차량.
  8. 제 1 항에 있어서,
    상기 송전부와 상기 수전부의 결합 계수는 0.6 이상 0.8 이하인, 차량.
  9. 제 1 항에 있어서,
    상기 수전부는, 상기 수전부와 상기 송전부의 사이에 형성되는 특정한 주파수에서 진동하는 자계, 및, 상기 수전부와 상기 송전부의 사이에 형성되는 특정한 주파수에서 진동하는 전계의 적어도 일방을 통해, 상기 송전부로부터 수전하는, 차량.
  10. 송전부로부터 수전부에 비접촉으로 전력을 공급하는 비접촉 급전 시스템으로서,
    대기 위치로부터 상기 송전부와 상기 수전부가 접근하는 방향으로, 상기 송전부 및 상기 수전부의 적어도 일방을 이동하는 것이 가능하게 구성된 이동 장치와,
    상기 송전부 및 상기 수전부가 상기 대기 위치에 위치하고 있는 상태에 있어서 상기 송전부와 상기 수전부 사이의 위치 관계를 검출하는 제 1 검출 동작, 및, 상기 송전부와 상기 수전부 사이의 거리가 상기 송전부 및 상기 수전부가 상기 대기 위치에 있는 경우보다 근접하여 있는 상태에 있어서 상기 위치 관계를 검출하는 제 2 검출 동작을 행하는 것이 가능한 제어 장치를 구비하고,
    상기 제어 장치는, 상기 제 1 검출 동작에 있어서 상기 위치 관계가 제 1 소정 조건을 충족시키고 있는 것이 검출되고, 또한 상기 제 2 검출 동작에 있어서 상기 위치 관계가 제 2 소정 조건을 충족시키고 있는 것이 검출된 경우에, 상기 송전부로부터의 송전을 개시시키는, 비접촉 급전 시스템.
KR1020157030436A 2013-03-22 2013-03-22 차량 및 비접촉 급전 시스템 KR20150134394A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058296 WO2014147819A1 (ja) 2013-03-22 2013-03-22 車両および非接触給電システム

Publications (1)

Publication Number Publication Date
KR20150134394A true KR20150134394A (ko) 2015-12-01

Family

ID=51579548

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157030436A KR20150134394A (ko) 2013-03-22 2013-03-22 차량 및 비접촉 급전 시스템

Country Status (7)

Country Link
US (1) US20160001669A1 (ko)
JP (1) JPWO2014147819A1 (ko)
KR (1) KR20150134394A (ko)
CN (1) CN105142958A (ko)
BR (1) BR112015018487A2 (ko)
DE (1) DE112013006857T5 (ko)
WO (1) WO2014147819A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174663A1 (ja) 2013-04-26 2014-10-30 トヨタ自動車株式会社 受電装置、送電装置、電力伝送システム、および駐車支援装置
JP6144176B2 (ja) * 2013-10-15 2017-06-07 日東電工株式会社 磁界空間を形成可能な無線電力伝送装置及びその形成方法
JP6213353B2 (ja) * 2014-04-04 2017-10-18 トヨタ自動車株式会社 受電装置およびそれを備える車両
JP6229708B2 (ja) * 2015-12-15 2017-11-15 トヨタ自動車株式会社 車両及び非接触電力伝送システム
CN105691227A (zh) * 2016-01-21 2016-06-22 天长市瑞通电气有限公司 一种电动汽车新型无线充电装置
US10688874B2 (en) * 2016-06-14 2020-06-23 Intel Corporation Vehicular inductive power transfer systems and methods
JP6761962B2 (ja) * 2016-10-21 2020-09-30 パナソニックIpマネジメント株式会社 移動体および無線電力伝送システム
JP7000483B2 (ja) * 2020-03-18 2022-01-19 本田技研工業株式会社 駐車支援システム
JP2022182112A (ja) * 2021-05-27 2022-12-08 本田技研工業株式会社 照射装置
JP2023000392A (ja) * 2021-06-17 2023-01-04 トヨタ自動車株式会社 地上給電装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4442517B2 (ja) * 2005-06-07 2010-03-31 パナソニック電工株式会社 非接触給電装置及び自律移動装置用給電システム
US7825543B2 (en) * 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
JP2007204014A (ja) * 2006-02-06 2007-08-16 Denso Corp 保安システム
JP2010093180A (ja) * 2008-10-10 2010-04-22 Showa Aircraft Ind Co Ltd 非接触給電装置
JP2010183804A (ja) * 2009-02-09 2010-08-19 Maspro Denkoh Corp 移動体の電力供給システム,及び,移動体
JP2010226945A (ja) * 2009-02-25 2010-10-07 Maspro Denkoh Corp 移動体の電力供給システム
JP2011036107A (ja) * 2009-08-05 2011-02-17 Hino Motors Ltd 充電システムおよび車両
JP2011120387A (ja) * 2009-12-03 2011-06-16 Mitsubishi Motors Corp 電動車両の充電制御装置
JP5077340B2 (ja) * 2009-12-25 2012-11-21 トヨタ自動車株式会社 非接触受電装置およびその製造方法
JP5509883B2 (ja) * 2010-01-29 2014-06-04 株式会社オートネットワーク技術研究所 車両用無線充電装置
JP2011193617A (ja) * 2010-03-15 2011-09-29 Hino Motors Ltd 車両の非接触給電装置及び方法
US10343535B2 (en) * 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
JP4868093B2 (ja) * 2010-04-21 2012-02-01 トヨタ自動車株式会社 車両の駐車支援装置およびそれを備える電動車両
EP2580844A4 (en) * 2010-06-11 2016-05-25 Mojo Mobility Inc WIRELESS POWER TRANSFER SYSTEM SUPPORTING INTEROPERABILITY AND MULTIPOLAR MAGNETS FOR USE WITH THIS SYSTEM
JP5574107B2 (ja) * 2010-10-13 2014-08-20 三菱自動車工業株式会社 車両用充電装置
KR101232036B1 (ko) * 2010-10-13 2013-02-12 한국과학기술원 비접촉 전력전달 장치 및 자기유도 방식의 급전장치
US20120217817A1 (en) * 2011-02-28 2012-08-30 Bingnan Wang Tuning Electromagnetic Fields Characteristics for Wireless Energy Transfer Using Arrays of Resonant Objects
JP5879748B2 (ja) * 2011-05-27 2016-03-08 日産自動車株式会社 非接触給電装置、車両及び非接触給電システム
CN103619641B (zh) * 2011-06-20 2016-06-15 丰田自动车株式会社 非接触受电装置、非接触送电装置以及非接触送受电系统
US9637014B2 (en) * 2011-06-28 2017-05-02 Wireless Ev Charge, Llc Alignment, verification, and optimization of high power wireless charging systems
JP2013031289A (ja) * 2011-07-28 2013-02-07 Nippon Soken Inc 電源装置、非接触送電装置、車両、および非接触電力伝送システム
JP2013042564A (ja) * 2011-08-11 2013-02-28 Nippon Soken Inc 電力伝送システムおよび電力伝送装置
JP5780894B2 (ja) * 2011-09-16 2015-09-16 株式会社半導体エネルギー研究所 非接触給電システム
US9971353B2 (en) * 2012-07-03 2018-05-15 Qualcomm Incorporated Systems, methods, and apparatus related to electric vehicle parking and wireless charging
DE112012006896T5 (de) * 2012-09-13 2015-06-03 Toyota Jidosha Kabushiki Kaisha Kontaktloses Energieversorgungssystem, Energieübertragungsvorrichtung und dabei verwendetes Fahrzeug

Also Published As

Publication number Publication date
DE112013006857T5 (de) 2015-12-03
JPWO2014147819A1 (ja) 2017-02-16
WO2014147819A1 (ja) 2014-09-25
CN105142958A (zh) 2015-12-09
BR112015018487A2 (pt) 2017-07-18
US20160001669A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
KR20150134394A (ko) 차량 및 비접촉 급전 시스템
JP5991372B2 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP5747863B2 (ja) 車両、受電装置、送電装置および非接触給電システム
JP6119756B2 (ja) 非接触給電システムおよび送電装置
JP5643270B2 (ja) 車両および非接触給電システム
EP2773019B1 (en) Non-contact power receiving apparatus
CN106828118B (zh) 车辆的受电装置、送电装置和非接触送受电系统
JP5720780B2 (ja) 受電装置、車両、および非接触給電システム
CN107089142B (zh) 车辆用受电装置、供电设备以及电力传输系统
JP5678921B2 (ja) 送電ユニット、送電装置、受電装置、車両、および非接触給電システム
WO2014147818A1 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP2016028544A (ja) 電気自動車又はハイブリッド電気自動車用エネルギー貯蔵システムの充電システム及び方法
WO2013076834A1 (ja) 送電装置、車両および非接触送受電システム
US20160325632A1 (en) Contactless power transfer system and method of controlling the same
US20130154384A1 (en) Contactless power receiving device, vehicle, contactless power transmitting device, and contactless power supply system
JP5867329B2 (ja) 受電装置および車両
JP6003696B2 (ja) 変換ユニット
JP6222107B2 (ja) 車両
JP2013038893A (ja) 電力伝送システム
JP2015100230A (ja) 非接触送受電システム
JP5962613B2 (ja) 非接触受電装置
JP2015029373A (ja) 非接触電力送電設備

Legal Events

Date Code Title Description
A201 Request for examination
WITB Written withdrawal of application