WO2013076834A1 - 送電装置、車両および非接触送受電システム - Google Patents

送電装置、車両および非接触送受電システム Download PDF

Info

Publication number
WO2013076834A1
WO2013076834A1 PCT/JP2011/077020 JP2011077020W WO2013076834A1 WO 2013076834 A1 WO2013076834 A1 WO 2013076834A1 JP 2011077020 W JP2011077020 W JP 2011077020W WO 2013076834 A1 WO2013076834 A1 WO 2013076834A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
unit
vehicle
control device
Prior art date
Application number
PCT/JP2011/077020
Other languages
English (en)
French (fr)
Inventor
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180075056.8A priority Critical patent/CN103947077B/zh
Priority to JP2013545709A priority patent/JP6135510B2/ja
Priority to PCT/JP2011/077020 priority patent/WO2013076834A1/ja
Priority to US14/358,485 priority patent/US9802497B2/en
Priority to EP11876174.1A priority patent/EP2784907A4/en
Publication of WO2013076834A1 publication Critical patent/WO2013076834A1/ja
Priority to US15/730,449 priority patent/US10513191B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/30Parking brake position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a power transmission device, a vehicle, and a non-contact power transmission / reception system.
  • Patent Document 1 discloses that in a non-contact charging system, power is transmitted while changing the frequency with a small amount of power, a change in efficiency is detected, and a coil position is adjusted according to the detection result. The point to do is disclosed.
  • Patent Document 2 discloses a power reception guide device that can notify the user of the optimum position for charging the vehicle by notifying the user of the power reception efficiency at the current vehicle position. ing.
  • ⁇ A contactless power transmission device is required to receive power supply without contact.
  • a dedicated power transmission device for the vehicle it may be possible to install a dedicated power transmission device for the vehicle, but the power transmission device shared by many electric vehicles or the like in public places or apartment buildings Is installed. Thus, it is necessary to cope with many combinations of the power transmission device and the vehicle.
  • the power transmission efficiency varies depending on the relative positional relationship between the power transmission unit and the power reception unit. Influence.
  • the accuracy of alignment between the power transmission unit of the power transmission device and the power reception unit of the vehicle varies from user to user.
  • the allowable charging efficiency and the positional relationship of the power transmission / reception units are also different depending on the sensitivity of each user. Therefore, since it is assumed that conditions for starting power transmission / reception differ for each user, it is desirable to construct a charging system that reflects the user's intention.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-119246
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-172185
  • Patent Document 2 do not specifically disclose charging start conditions, and supply power according to the user's intention. There is room for improvement in terms of realization.
  • An object of the present invention is to provide a power transmission device, a vehicle, and a non-contact power transmission / reception system that can avoid power transmission / reception that does not conform to the user's intention.
  • the present invention is a power transmission device that performs power transmission from the outside to a vehicle, a power transmission unit for transmitting power to the vehicle in a non-contact manner, a communication unit for performing communication with the vehicle, and a power transmission unit And a control device for controlling the communication unit.
  • the control device determines whether or not to cause the power transmission unit to perform power transmission based on an instruction from the user given after notifying the user of the power reception status of the vehicle or the estimated power reception status of the vehicle.
  • control device executes authentication using the communication unit in order to identify the vehicle, and causes the power transmission unit to transmit predetermined power to grasp the power reception status of the vehicle before the authentication is completed. Then, the control device causes the power transmission unit to transmit power larger than the predetermined power after the authentication is completed.
  • control device stops the transmission of the predetermined power from the power transmission unit when an instruction is not given from the user even if the predetermined time has elapsed while the predetermined power is being transmitted to the power transmission unit.
  • control device treats the power transmitted to the vehicle after the authentication is completed as a billing target.
  • control device confirms the power reception status by transmitting predetermined power to the power transmission unit immediately before the parking position for power transmission of the vehicle is determined and charging of the power storage device mounted on the vehicle is started. .
  • the difference between the natural frequency of the power transmission unit and the natural frequency of the power reception unit of the vehicle is within ⁇ 10%.
  • the coupling coefficient between the power reception unit and the power transmission unit of the vehicle is 0.1 or less.
  • the power transmission unit is formed between the power reception unit and the power transmission unit of the vehicle and vibrates at a specific frequency, and an electric field formed between the power reception unit and the power transmission unit and vibrates at a specific frequency. The power is transmitted to the power receiving unit through at least one of the above.
  • the present invention is a vehicle configured to be able to receive power from a power transmission device outside the vehicle in a contactless manner, and a power receiving unit for receiving power from the power transmission device in a contactless manner; a power transmission device; And a control device for controlling the power receiving unit and the communication unit.
  • the control device determines whether or not to receive power transmission from the power transmission device based on an instruction from the user given after notifying the user of the power reception status of the power reception unit or the estimated power reception status of the power reception unit.
  • control device communicates information for authentication using the communication unit in order to identify the vehicle to the power transmission device, and predetermined information is transmitted to the power transmission device in order to grasp the power reception status in the power reception unit before the authentication is completed. Send power. Then, the control device causes the power transmission device to transmit power larger than the predetermined power after the authentication is completed.
  • control device stops the transmission of the predetermined power from the power transmission device when an instruction is not given from the user even if the predetermined time elapses while the predetermined power is transmitted from the power transmission device.
  • the power transmission device treats the power transmitted to the vehicle after the authentication is completed as a billing target.
  • the vehicle further includes a power storage device.
  • the control device transmits predetermined power to the power transmission device and confirms the power reception status immediately before the parking position for power transmission of the vehicle is determined and charging of the power storage device is started.
  • the difference between the natural frequency of the power transmission unit of the power transmission device and the natural frequency of the power reception unit of the vehicle is within ⁇ 10%.
  • the coupling coefficient between the power reception unit and the power transmission unit of the power transmission device is 0.1 or less.
  • the power transmission unit of the power transmission device includes a magnetic field that is formed between the power reception unit and the power transmission unit and vibrates at a specific frequency, and an electric field that is formed between the power reception unit and the power transmission unit and vibrates at a specific frequency. The power is transmitted to the power receiving unit through at least one of the above.
  • the present invention is a contactless power transmission / reception system including a vehicle configured to be able to receive power from the outside of the vehicle in a contactless manner, and a power transmission device that transmits power to the vehicle from the outside.
  • the power transmission device includes a power transmission unit for transmitting power to the vehicle in a non-contact manner, a first communication unit for performing communication with the vehicle, and a first control device for controlling the power transmission unit and the first communication unit.
  • the vehicle includes a power reception unit for receiving power from the power transmission unit in a non-contact manner, a second communication unit for performing communication with the first communication unit, and a second control for controlling the power reception unit and the second communication unit. Including the device. Whether the first control device and the second control device cause the power transmission unit to perform power transmission based on an instruction from the user given after notifying the user of the power reception status of the power reception unit or the estimated power reception status of the power reception unit To decide.
  • the first control device and the second control device communicate information for authentication identifying the vehicle using the first communication unit and the second communication unit, and the power reception status at the power reception unit before the completion of the authentication.
  • the power transmission unit is caused to transmit predetermined power.
  • at least one of the first control device and the second control device causes the power transmission unit to transmit power larger than the predetermined power after the authentication is completed.
  • At least one of the first control device and the second control device transmits power when an instruction is not given from the user even if a predetermined time elapses while power is transmitted to the power transmission unit. The transmission of the predetermined power from the unit is stopped.
  • At least one of the first control device and the second control device treats the power transmitted to the vehicle after the authentication is completed as a billing target.
  • At least one of the first control device and the second control device determines the predetermined power immediately before the parking position for power transmission of the vehicle is determined and charging of the power storage device mounted on the vehicle is started. Transmit power to the power transmission unit and check the power reception status.
  • the difference between the natural frequency of the power transmission unit and the natural frequency of the power reception unit of the vehicle is within ⁇ 10%.
  • the coupling coefficient between the power reception unit and the power transmission unit is 0.1 or less.
  • the power transmission unit includes at least a magnetic field formed between the power reception unit and the power transmission unit and oscillating at a specific frequency, and an electric field formed between the power reception unit and the power transmission unit and oscillating at a specific frequency. Power is transmitted to the power receiving unit through one side.
  • the user in the non-contact charging in which the power transmission / reception efficiency may fluctuate, the user can recognize or predict the power reception status in advance. It becomes easy to perform power transmission / reception in accordance with the user's intention, such as whether to start charging immediately without re-adjustment.
  • FIG. 1 is an overall configuration diagram of a power transmission / reception system according to an embodiment of the present invention. It is a figure for demonstrating the principle of the power transmission by the resonance method. It is the figure which showed the relationship between the distance from an electric current source (magnetic current source), and the intensity
  • FIG. 1 is an overall configuration diagram of a power transmission / reception system according to an embodiment of the present invention.
  • power transmission / reception system 10 includes a vehicle 100 and a power transmission device 200.
  • Vehicle 100 includes a power reception unit 110 and a communication unit 160.
  • the power transmission device 200 refers to the vehicle data registered in the authentication server 270 and authenticates the vehicle.
  • authentication is performed by performing communication between the vehicle and the power transmission device.
  • the authentication does not necessarily have to be charged as long as such identification is performed.
  • the power receiving unit 110 is installed on the bottom surface of the vehicle body and configured to receive the power transmitted from the power transmitting unit 220 of the power transmitting apparatus 200 in a contactless manner.
  • power reception unit 110 includes a self-resonant coil (also referred to as a resonance coil) described later, and receives power from power transmission unit 220 in a non-contact manner by resonating with a self-resonance coil included in power transmission unit 220 via an electromagnetic field.
  • Communication unit 160 is a communication interface for performing communication between vehicle 100 and power transmission device 200.
  • the power transmission device 200 includes a charging stand 210 and a power transmission unit 220.
  • Charging stand 210 includes a display unit 242, a charge receiving unit 246, and a communication unit 230.
  • Charging stand 210 converts, for example, commercial AC power into high-frequency power and outputs the power to power transmission unit 220.
  • the charging stand 210 may receive power from a power supply device such as a solar power generation device or a wind power generation device.
  • the power transmission unit 220 is installed on the floor surface of a parking lot, for example, and is configured to send the high-frequency power supplied from the charging stand 210 to the power reception unit 110 of the vehicle 100 in a non-contact manner.
  • the power transmission unit 220 includes a self-resonant coil, and the self-resonant coil resonates with the self-resonant coil included in the power receiving unit 110 via an electromagnetic field, thereby transmitting power to the power receiving unit 110 in a non-contact manner.
  • Communication unit 230 is a communication interface for performing communication between power transmission device 200 and vehicle 100.
  • the transmission distance is short and it is said that the tolerance is small with respect to positional deviation.
  • an electromagnetic induction system is used to supply power to a vehicle, the driver's high-precision driving technology is required at the time of parking, a high-accuracy vehicle guidance device must be installed in the vehicle, or rough parking There is a possibility that a movable part that moves the coil position may be necessary so that the position can be dealt with.
  • the resonance method using an electromagnetic field is capable of transmitting a relatively large amount of power even when the transmission distance is several meters, and is generally said to have a greater tolerance for positional deviation than the electromagnetic induction method. Therefore, in power transmission / reception system 10 according to this embodiment, power is supplied from power transmission device 200 to vehicle 100 using the resonance method.
  • the natural frequency of power transmission unit 220 and the natural frequency of power reception unit 110 are the same natural frequency.
  • the natural frequency of the power transmission unit means the vibration frequency when the electric circuit including the coil and the capacitor of the power transmission unit vibrates freely.
  • the natural frequency when the braking force or the electric resistance is zero or substantially zero is referred to as “the resonance frequency of the power transmission unit”.
  • the “natural frequency of the power receiving unit” means the vibration frequency when the electric circuit including the coil and capacitor of the power receiving unit freely vibrates.
  • the natural frequency when the braking force or the electric resistance is zero or substantially zero is referred to as “the resonance frequency of the power receiving unit”.
  • the same natural frequency includes not only the case where the frequency is completely the same, but also the case where the natural frequency is substantially the same.
  • the natural frequency is substantially the same means that the difference between the natural frequency of the power transmission unit and the natural frequency of the power reception unit is within ⁇ 10% of the natural frequency of the power transmission unit or the natural frequency of the power reception unit.
  • FIG. 2 is a diagram for explaining the principle of power transmission by the resonance method.
  • this resonance method in the same way as two tuning forks resonate, two LC resonance coils having the same natural frequency resonate in an electromagnetic field (near field), and thereby, from one coil. Electric power is transmitted to the other coil via an electromagnetic field.
  • the primary coil 320 is connected to the high-frequency power source 310, and high-frequency power is supplied to the primary self-resonant coil 330 that is magnetically coupled to the primary coil 320 by electromagnetic induction.
  • the primary self-resonant coil 330 is an LC resonator having an inductance and stray capacitance of the coil itself, and resonates with a secondary self-resonant coil 340 having the same resonance frequency as the primary self-resonant coil 330 via an electromagnetic field (near field). .
  • energy electrical power moves from the primary self-resonant coil 330 to the secondary self-resonant coil 340 via the electromagnetic field.
  • the energy (electric power) transferred to the secondary self-resonant coil 340 is taken out by the secondary coil 350 magnetically coupled to the secondary self-resonant coil 340 by electromagnetic induction and supplied to the load 360.
  • power transmission by the resonance method is realized when the Q value indicating the resonance intensity between the primary self-resonant coil 330 and the secondary self-resonant coil 340 is greater than 100, for example.
  • the power transmission / reception system power is transmitted from the power transmission unit to the power reception unit by causing the power transmission unit and the power reception unit to resonate (resonate) with an electromagnetic field, and the power transmission unit and the power reception unit
  • the coupling coefficient (kappa) between is preferably 0.1 or less.
  • the coupling coefficient ( ⁇ ) is not limited to this value, and may take various values that improve power transmission. In general, in power transmission using electromagnetic induction, the coupling coefficient ( ⁇ ) between the power transmission unit and the power reception unit is close to 1.0.
  • the secondary self-resonant coil 340 and the secondary coil 350 correspond to the power receiving unit 110 in FIG. 1
  • the primary coil 320 and the primary self-resonant coil 330 correspond to the power transmitting unit 220 in FIG. 1.
  • FIG. 3 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the intensity of the electromagnetic field.
  • the electromagnetic field includes three components.
  • the curve k1 is a component that is inversely proportional to the distance from the wave source, and is referred to as a “radiated electromagnetic field”.
  • a curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induction electromagnetic field”.
  • the curve k3 is a component inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic magnetic field”.
  • the resonance method energy (electric power) is transmitted using this near field (evanescent field). That is, by using a near field to resonate a pair of resonators (for example, a pair of LC resonance coils) having the same natural frequency, one resonator (primary self-resonant coil) and the other resonator (two Energy (electric power) is transmitted to the next self-resonant coil. Since this near field does not propagate energy (electric power) far away, the resonance method transmits power with less energy loss than electromagnetic waves that transmit energy (electric power) by "radiation electromagnetic field” that propagates energy far away. be able to.
  • FIG. 4 is a diagram illustrating a simulation model of the power transmission system.
  • FIG. 5 is a diagram illustrating the relationship between the deviation of the natural frequency between the power transmission device and the power reception device and the efficiency.
  • the power transmission system 89 includes a power transmission device 90 and a power reception device 91.
  • the power transmission device 90 includes an electromagnetic induction coil 92 and a power transmission unit 93.
  • the power transmission unit 93 includes a resonance coil 94 and a capacitor 95 provided in the resonance coil 94.
  • the power receiving device 91 includes a power receiving unit 96 and an electromagnetic induction coil 97.
  • the power receiving unit 96 includes a resonance coil 99 and a capacitor 98 connected to the resonance coil 99.
  • the inductance of the resonance coil 94 is defined as an inductance Lt
  • the capacitance of the capacitor 95 is defined as a capacitance C1.
  • An inductance of the resonance coil 99 is an inductance Lr
  • a capacitance of the capacitor 98 is a capacitance C2.
  • the horizontal axis indicates the deviation (%) of the natural frequency
  • the vertical axis indicates the transmission efficiency (%) at a constant frequency.
  • the deviation (%) in the natural frequency is expressed by the following equation (3).
  • the power transmission efficiency can be increased to a practical level. Furthermore, if the natural frequency of each power transmission unit and the power receiving unit is set so that the absolute value of the deviation (%) of the natural frequency is 5% or less of the natural frequency of the power receiving unit 96, the power transmission efficiency can be further increased. It is more preferable.
  • the simulation software employs electromagnetic field analysis software (JMAG (registered trademark): manufactured by JSOL Corporation).
  • FIG. 6 is a detailed configuration diagram of the power transmission / reception system 10 shown in FIG.
  • vehicle 100 includes rectifier 180, charging relay (CHR) 170, power storage device 190, system main relay (SMR) 115, power control, in addition to power receiving unit 110 and communication unit 160.
  • a unit PCU (Power Control Unit) 120, a motor generator 130, a power transmission gear 140, a drive wheel 150, a vehicle ECU (Electronic Control Unit) 300 as a control device, a current sensor 171 and a voltage sensor 172 are provided.
  • Power receiving unit 110 includes a secondary self-resonant coil 111, a capacitor 112, and a secondary coil 113.
  • an electric vehicle is described as an example of vehicle 100, but the configuration of vehicle 100 is not limited to this as long as the vehicle can travel using electric power stored in the power storage device.
  • Other examples of the vehicle 100 include a hybrid vehicle equipped with an engine and a fuel cell vehicle equipped with a fuel cell.
  • the secondary self-resonant coil 111 receives power from the primary self-resonant coil 221 included in the power transmission device 200 by electromagnetic resonance using an electromagnetic field.
  • the primary self-resonant coil 221 and the primary self-resonant coil 221 are based on the distance from the primary self-resonant coil 221 of the power transmission device 200, the resonant frequencies of the primary self-resonant coil 221 and the secondary self-resonant coil 111, and the like.
  • the Q value indicating the resonance intensity with the secondary self-resonant coil 111 is increased (for example, Q> 100), and the coupling coefficient ( ⁇ ) indicating the degree of coupling is decreased (for example, 0.1 or less).
  • the number of turns and the distance between the coils are appropriately set.
  • the capacitor 112 is connected to both ends of the secondary self-resonant coil 111 and forms an LC resonant circuit together with the secondary self-resonant coil 111.
  • the capacity of the capacitor 112 is appropriately set so as to have a predetermined resonance frequency according to the inductance of the secondary self-resonant coil 111. Note that the capacitor 112 may be omitted when a desired resonance frequency can be obtained with the stray capacitance of the secondary self-resonant coil 111 itself.
  • the secondary coil 113 is provided coaxially with the secondary self-resonant coil 111 and can be magnetically coupled to the secondary self-resonant coil 111 by electromagnetic induction.
  • the secondary coil 113 takes out the electric power received by the secondary self-resonant coil 111 by electromagnetic induction and outputs it to the rectifier 180.
  • the rectifier 180 rectifies the AC power received from the secondary coil 113 and outputs the rectified DC power to the power storage device 190 via the CHR 170.
  • the rectifier 180 may include a diode bridge and a smoothing capacitor (both not shown).
  • the rectifier 180 it is possible to use a so-called switching regulator that performs rectification using switching control.
  • the rectifier 180 may be included in the power receiving unit 110 to prevent malfunction of the switching element due to the generated electromagnetic field. Therefore, it is more preferable to use a static rectifier such as a diode bridge.
  • the DC power rectified by the rectifier 180 is directly output to the power storage device 190.
  • the DC voltage after rectification is different from the charge voltage allowable by the power storage device 190, May be provided with a DC / DC converter (not shown) for voltage conversion between rectifier 180 and power storage device 190.
  • a load resistor 173 for position detection and a relay 174 connected in series are connected to the output portion of the rectifier 180.
  • weak power is transmitted as a test signal from the power transmission device 200 to the vehicle.
  • relay 174 is controlled by control signal SE3 from vehicle ECU 300 to be in a conductive state.
  • the voltage sensor 172 is provided between a pair of power lines connecting the rectifier 180 and the power storage device 190. Voltage sensor 172 detects the DC voltage on the secondary side of rectifier 180, that is, the received voltage received from power transmission device 200, and outputs the detected value VC to vehicle ECU 300. The vehicle ECU 300 determines the power reception efficiency based on the voltage VC, and transmits information related to the power reception efficiency to the power transmission device via the communication unit 160.
  • Current sensor 171 is provided on a power line connecting rectifier 180 and power storage device 190.
  • Current sensor 171 detects a charging current for power storage device 190 and outputs the detected value IC to vehicle ECU 300.
  • CHR 170 is electrically connected to rectifier 180 and power storage device 190.
  • CHR 170 is controlled by a control signal SE2 from vehicle ECU 300, and switches between supply and interruption of power from rectifier 180 to power storage device 190.
  • the power storage device 190 is a power storage element configured to be chargeable / dischargeable.
  • the power storage device 190 includes, for example, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery, and a power storage element such as an electric double layer capacitor.
  • the power storage device 190 is connected to the rectifier 180 via the CHR 170.
  • the power storage device 190 stores the power received by the power receiving unit 110 and rectified by the rectifier 180.
  • the power storage device 190 is also connected to the PCU 120 via the SMR 115.
  • Power storage device 190 supplies power for generating vehicle driving force to PCU 120. Further, power storage device 190 stores the electric power generated by motor generator 130.
  • the output of power storage device 190 is, for example, about 200V.
  • power storage device 190 is provided with a voltage sensor and a current sensor for detecting voltage VB of power storage device 190 and input / output current IB. These detection values are output to vehicle ECU 300. Vehicle ECU 300 calculates the state of charge of power storage device 190 (also referred to as “SOC (State Of Charge)”) based on voltage VB and current IB.
  • SOC State Of Charge
  • SMR 115 is inserted in a power line connecting power storage device 190 and PCU 120.
  • SMR 115 is controlled by control signal SE ⁇ b> 1 from vehicle ECU 300, and switches between supply and interruption of power between power storage device 190 and PCU 120.
  • the PCU 120 includes a converter and an inverter (not shown).
  • the converter is controlled by a control signal PWC from vehicle ECU 300 to convert the voltage from power storage device 190.
  • the inverter is controlled by a control signal PWI from vehicle ECU 300 and drives motor generator 130 using electric power converted by the converter.
  • the motor generator 130 is an AC rotating electric machine, for example, a permanent magnet type synchronous motor including a rotor in which a permanent magnet is embedded.
  • the output torque of the motor generator 130 is transmitted to the drive wheels 150 via the power transmission gear 140 to cause the vehicle 100 to travel.
  • the motor generator 130 can generate electric power by the rotational force of the drive wheels 150 during the regenerative braking operation of the vehicle 100. Then, the generated power is converted by PCU 120 into charging power for power storage device 190.
  • a necessary vehicle driving force is generated by operating the engine and the motor generator 130 in a coordinated manner.
  • the power storage device 190 can be charged using the power generated by the rotation of the engine.
  • Communication unit 160 is a communication interface for performing wireless communication between vehicle 100 and power transmission device 200 as described above.
  • Communication unit 160 outputs battery information INFO including SOC of power storage device 190 from vehicle ECU 300 to power transmission device 200.
  • Communication unit 160 outputs signals STRT and STP instructing start and stop of power transmission from power transmission device 200 to power transmission device 200.
  • the vehicle ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer (not shown in FIG. 1), inputs signals from each sensor and outputs control signals to each device, The vehicle 100 and each device are controlled. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • vehicle ECU 300 When vehicle ECU 300 receives charge start signal TRG by a user operation or the like, vehicle ECU 300 outputs a signal STRT instructing the start of power transmission to power transmission device 200 via communication unit 160 based on the fact that a predetermined condition is satisfied. . In addition, vehicle ECU 300 outputs a signal STP instructing to stop power transmission to power transmission device 200 through communication unit 160 based on the fact that power storage device 190 is fully charged or an operation by the user.
  • the power transmission device 200 includes a charging stand 210 and a power transmission unit 220.
  • charging stand 210 further includes a power transmission ECU 240 that is a control device, a power supply unit 250, a display unit 242, and a fee receiving unit 246.
  • Power transmission unit 220 includes a primary self-resonant coil 221, a capacitor 222, and a primary coil 223.
  • the power supply unit 250 is controlled by a control signal MOD from the power transmission ECU 240, and converts power received from an AC power supply such as a commercial power supply into high-frequency power. Then, the power supply unit 250 supplies the converted high frequency power to the primary coil 223.
  • FIG. 6 does not show a matching device that performs impedance conversion, but a matching device may be provided between the power supply unit 250 and the power transmission unit 220 or between the power reception unit 110 and the rectifier 180.
  • the primary self-resonant coil 221 transfers electric power to the secondary self-resonant coil 111 included in the power receiving unit 110 of the vehicle 100 by electromagnetic resonance.
  • the primary self-resonant coil 221 and the secondary self-resonant coil 221 are arranged based on the distance from the secondary self-resonant coil 111 of the vehicle 100, the resonance frequency of the primary self-resonant coil 221 and the secondary self-resonant coil 111, and the like.
  • the number of turns and the inter-coil distance are set so that the Q value indicating the resonance strength with the self-resonant coil 111 increases (for example, Q> 100), and ⁇ indicating the coupling degree decreases (for example, 0.1 or less). Set as appropriate.
  • the capacitor 222 is connected to both ends of the primary self-resonant coil 221 and forms an LC resonance circuit together with the primary self-resonant coil 221.
  • the capacitance of the capacitor 222 is appropriately set so as to have a predetermined resonance frequency according to the inductance of the primary self-resonant coil 221. Note that the capacitor 222 may be omitted when a desired resonance frequency is obtained with the stray capacitance of the primary self-resonant coil 221 itself.
  • the primary coil 223 is provided coaxially with the primary self-resonant coil 221 and can be magnetically coupled to the primary self-resonant coil 221 by electromagnetic induction.
  • the primary coil 223 transmits the high frequency power supplied through the matching unit 260 to the primary self-resonant coil 221 by electromagnetic induction.
  • the communication unit 230 is a communication interface for performing wireless communication between the power transmission device 200 and the vehicle 100 as described above.
  • the communication unit 230 receives battery information INFO transmitted from the communication unit 160 on the vehicle 100 side, signals STRT and STP instructing start and stop of power transmission, and information related to vehicle authentication, and sends these information to the power transmission ECU 240. Output.
  • the power transmission ECU 240 includes a CPU, a storage device, and an input / output buffer.
  • the power transmission ECU 240 inputs a signal from each sensor and outputs a control signal to each device. Control the equipment. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • the power transmission ECU 240 and the vehicle ECU 300 cooperate through the communication units 160 and 230 to perform the following processing.
  • communication is established, it is determined whether the vehicle is compatible with non-contact charging.
  • the power transmission / reception system of this Embodiment aligns a power transmission part and a power receiving part using the electric power which the power transmitted from the power transmission part received by a power receiving part.
  • the order of alignment and authentication is important in order to perform alignment and authentication without impairing user convenience.
  • the power transmission unit 240 causes the power supply unit 250 to transmit a test signal with a predetermined power for alignment.
  • the predetermined power may be power that can confirm the efficiency of power transmission / reception, but is preferably weak power.
  • the weak power includes power smaller than power during full-scale power transmission (charging power for charging a battery, driving power for driving a load such as an in-vehicle air conditioner). Further, the weak power is power transmitted for alignment, and may include power transmitted intermittently.
  • Vehicle ECU 300 transmits control signals SE2 and SE3 so that relay 174 is turned on and CHR 170 is turned off in order to receive the test signal. Then, the electric power received by the power receiving unit 110 is detected by the voltage sensor 172 on the vehicle side, and the power receiving efficiency and the charging efficiency are calculated based on the voltage VC. Vehicle ECU 300 transmits the calculated charging efficiency or power receiving efficiency to power transmission device 200 through communication unit 160. Based on voltage VC, the vehicle position is adjusted such that the received power, the charging efficiency, or the power receiving efficiency exceeds a threshold value.
  • the vehicle position may be adjusted by the driver operating and moving the vehicle, or the vehicle position may be adjusted so that the vehicle automatically moves using the parking assistance system. .
  • authentication is performed to identify the vehicle or the billing person. Authentication is performed by referring to the authentication server 270 for authentication information transmitted from the vehicle 100 to the power transmission device 200 via the communication units 160 and 230. When the authentication is completed, the subsequent charging power is charged to the user or the owner of the vehicle. More preferably, information such as power reception efficiency and power unit price is transmitted to the user before authentication.
  • the display unit 242 of the power transmission device 200 displays the received power, the charging efficiency, the power receiving efficiency, and the corresponding charging power unit price to the user.
  • the display unit 242 also has a function as an input unit like a touch panel, for example, and accepts an input as to whether or not the user approves the received power, the charging efficiency, the power receiving efficiency, and the corresponding charging power unit price. it can.
  • these are displayed on a screen provided in the driver's seat of the vehicle 100 so that user approval data is transmitted directly from the vehicle to the power transmission ECU 240. This is more preferable.
  • the power transmission ECU 240 causes the power supply unit 250 to start full-scale charging after executing authentication. Then, when charging is completed, the charge receiving unit 246 settles the charge.
  • Charging is performed based on the authenticated vehicle information. However, if cash, a prepaid card, a credit card, or the like is inserted into the fee receiving unit 246 prior to charging, it is settled by these. Good.
  • FIG. 7 is a flowchart for explaining control executed by the power transmission device and the vehicle.
  • step S ⁇ b> 1 in power transmission device 200, power transmission ECU 240 uses communication unit 230 to perform communication with the vehicle.
  • step S ⁇ b> 101 in vehicle 100, vehicle ECU 300 executes communication with the power transmission device using communication unit 160.
  • power transmission ECU 240 determines whether or not communication is established in step S2. If communication is not established, the process returns to step S1 again.
  • step S102 determines whether or not communication is established in step S102. If communication is not established, the process returns to step S101 again. It should be noted that the determination that this communication has been established may be made by at least one of vehicle ECU 300 and power transmission ECU 240, and the determination result may be transmitted to the other by communication.
  • step S102 If it is determined in step S102 that communication has been established, the process proceeds to step S103.
  • step S ⁇ b> 103 the vehicle ECU 300 requests the power transmission ECU 240 to transmit predetermined power via the communication units 160 and 230.
  • the predetermined power may be any power that can confirm the efficiency of power transmission / reception.
  • transmission of weak power Pn is requested as predetermined power.
  • the power transmission ECU 240 instructs the power supply unit 250 to transmit weak power. When the power transmission unit 220 is energized, non-contact weak power is transmitted toward the power reception unit 110 of the vehicle.
  • the predetermined power transmitted in step S3 is smaller than the maximum power Pm permitted to be transmitted later in step S12, and preferably has an intensity of 1/10 or less.
  • the vehicle ECU 300 When transmitting the weak current, the vehicle ECU 300 turns on the relay 174 prior to that.
  • the weak power is received by the power receiving unit 110, the received voltage is detected by the voltage sensor 172, and the distance between the power transmitting unit and the power receiving unit is within a predetermined distance by comparing the detected voltage with a predetermined threshold voltage. It is determined whether or not. This determination process may be performed by vehicle ECU 300 or power transmission ECU 240.
  • the detected value of voltage sensor 127 is compared with the threshold value at step S104, and the determination result is transmitted to power transmission ECU 240 via communication units 160 and 230.
  • power transmission ECU 240 makes a determination, the detected value of voltage sensor 127 is transmitted to power transmission ECU 240 via communication units 160 and 230 in step S104, and power transmission ECU 240 compares the detected value with a threshold value. It is.
  • step S4 When it is determined in step S4 that the distance between the power transmission unit and the power reception unit is not within the predetermined distance, the process proceeds to step S5, and it is determined whether or not the transmission of the weak power Pn has continued for a predetermined time.
  • step S104 determines whether or not the transmission of the weak power Pn has continued for a predetermined time.
  • Determination of the duration of transmission or reception in step S5 and step S105 is performed by at least one of the power transmission ECU 240 and the vehicle ECU 300, and the result may be transmitted to the other ECU by communication.
  • the upper limit of the duration of transmission or reception is set to a very short time (for example, within one hour).
  • step S5 If the transmission time of the weak power Pn has not reached the predetermined time in step S5, the process returns to step S3, and the transmission of the weak power Pn is continued. If the reception time of the weak power Pn has not reached the predetermined time in step S105, the process returns to step S103, and the reception of the weak power Pn is continued.
  • this alignment may be performed by automatic traveling including automatic steering.
  • the process proceeds to step S6, and the transmission of the weak power Pn is prohibited. If the reception time of the weak power Pn reaches the predetermined time in step S105, the process proceeds to step S103, and reception of the weak power Pn is prohibited.
  • the predetermined time is a time serving as a threshold value for determining whether the time has expired. In these cases, the alignment has not been completed in time and time is up.
  • the power consumption of the power transmission device can be reduced by stopping power transmission after a predetermined time has elapsed.
  • the transmission prohibition instruction or the reception stop instruction in step S6 and step S106 is performed by at least one of the power transmission ECU 240 and the vehicle ECU 300, and the result may be transmitted to the other ECU by communication.
  • steps S6 and S106 After the transmission prohibition and reception stop processes are performed in steps S6 and S106, the power transmission / reception process is stopped in steps S7 and S107, respectively.
  • step S4 when it is determined in step S4 that the distance between the power transmission unit and the power reception unit is within a predetermined distance, the process proceeds to step S8.
  • step S8 the determination that the vehicle position is good as the power feeding position is confirmed.
  • step S104 when it is determined in step S104 that the distance between the power transmission unit and the power reception unit is within a predetermined distance, the process proceeds to step S108.
  • step S8 it is determined that the vehicle position is good as the power receiving position.
  • the main body that determines whether or not the vehicle position is good as the power receiving position or the power feeding position may be an ECU, or the user itself may determine.
  • an operation unit such as a push button displayed on the liquid crystal display
  • a display unit such as a touch panel type liquid crystal display
  • the user himself / herself may issue an instruction to start charging by operating the operation unit.
  • the charging efficiency is acceptable to the user
  • the user operates the parking brake to complete the parking.
  • the vehicle may be configured such that a charge start instruction is given in conjunction with the parking brake operation.
  • step S9 and / or step S109 processing for transmitting information to the user is performed.
  • This information includes a power reception status (power reception efficiency or a value related to power reception efficiency), a power reception unit price, and the like.
  • the information may be displayed on a liquid crystal screen provided in the vehicle, or sound may be used. Moreover, you may display on the screen provided in the power transmission apparatus, and you may alert
  • step S10 and S110 billing authentication is executed in steps S10 and S110, and the vehicle is a charge-permitted vehicle.
  • step S11 and step S111 authentication is completed.
  • step S ⁇ b> 112 vehicle ECU 300 requests charging power Pr from power transmission device 200. If the requested charging power Pr is equal to or less than the maximum power Pm, the requested power is transmitted from the power transmission device 200 to the vehicle 100.
  • step S13 the power transmission apparatus 200 starts power transmission, and in step S113, the vehicle 100 starts receiving power.
  • the power transmission / reception system 10 includes a vehicle 100 configured to be able to receive power from the outside of the vehicle in a non-contact manner, and a power transmission device 200 that transmits power to the vehicle 100 from the outside.
  • Power transmission device 200 includes a power transmission unit 220 for transmitting power to vehicle 100 in a non-contact manner, a communication unit 230 for performing communication with vehicle 100, and a power transmission ECU 240 for controlling power transmission unit 220 and communication unit 230. Including.
  • Vehicle 100 includes a power receiving unit 110 for receiving power from power transmitting unit 220 in a non-contact manner, a communication unit 160 for performing communication with communication unit 230, and a vehicle ECU 300 for controlling power receiving unit 110 and communication unit 160. Including. Whether power transmission ECU 240 and vehicle ECU 300 cause power transmission unit 220 to perform power transmission based on an instruction from the user given after notifying the user of the power reception status of power reception unit 110 or the estimated power reception status of power reception unit 110. To decide.
  • the weak power is transmitted and the power reception voltage is monitored.
  • the power reception status can be predicted, it is not necessary to transmit the weak power.
  • power transmission ECU 240 and vehicle ECU 300 communicate information for authentication identifying the vehicle using communication unit 230 and communication unit 160, and grasp the power reception status at power reception unit 110 before the completion of authentication.
  • the power transmission unit 220 transmits predetermined power.
  • the control device causes the power transmission unit 220 to transmit power that is larger than the predetermined power after the authentication is completed.
  • At least one of the power transmission ECU 240 and the vehicle ECU 300 receives a command from the power transmission unit 220 when no instruction is given from the user even after a predetermined time has passed while the predetermined power is being transmitted to the power transmission unit 220. The transmission of the predetermined power is stopped.
  • the control device (the power transmission ECU 240 and / or the vehicle ECU 300) notifies the occupant of the vehicle 100 of the power reception status of the vehicle ascertained by supplying predetermined power to the power transmission unit 220 before completing the authentication.
  • control device treats the power transmitted to the vehicle 100 after the authentication is completed as a chargeable object.
  • the control device determines the parking position for power transmission of the vehicle 100, and immediately before the charging of the power storage device 190 mounted on the vehicle 100 is started. The power is transmitted to the power transmission unit 220 and the power reception status is confirmed.
  • power transmission is actually performed before charging authentication is performed, so that the power reception status can be grasped. Therefore, the power reception status such as accurate power reception efficiency can be grasped, and coil positioning is adjusted before billing authentication. Is possible. In addition, by using the billing authentication as a reference, it is possible to clearly distinguish which of the user and the provider such as the charging station should bear the burden of the power charge transmitted before the authentication.
  • the load of the power transmission device can be reduced by transmitting power smaller than normal transmission power.
  • the user can decide whether to accept the billing authentication after recognizing the power reception status.
  • Electromagnetic field (electromagnetic field) resonance coupling means a coupling including any of “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, and “electric field (electric field) resonance coupling”.
  • the power transmission unit and the power reception unit described in this specification employ a coil-shaped antenna, the power transmission unit and the power reception unit are mainly coupled by a magnetic field (magnetic field).
  • the part is “magnetic resonance coupling” or “magnetic field (magnetic field) resonance coupling”.
  • an antenna such as a meander line can be adopted as the power transmission unit and the power reception unit.
  • the power transmission unit and the power reception unit are mainly coupled by an electric field (electric field).
  • the power transmission unit and the power reception unit are “electric field (electric field) resonance coupled”.
  • the present invention can be applied even when the received power is used for purposes other than charging.
  • the same effect can be obtained even when a load such as a vehicle auxiliary machine is driven by the received power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 送電装置(200)は、非接触で車両に送電を行なうための送電部(220)と、車両(100)との通信を行なうための第1通信部(230)と、送電部および第1通信部の制御を行なう第1制御装置(240)とを含む。車両(100)は、非接触で送電部から電力を受電するための受電部(110)と、第1通信部との通信を行なうための第2通信部(160)と、受電部および第2通信部の制御を行なう第2制御装置(300)とを含む。第1制御装置および第2制御装置は、受電部の受電状況または推定される受電部の受電状況をユーザに報知した後に与えられるユーザからの指示に基づいて、送電部に送電を行なわせるか否かを決定する。

Description

送電装置、車両および非接触送受電システム
 この発明は、送電装置、車両および非接触送受電システムに関する。
 近年、地球温暖化を防止するために自動車から排出される二酸化炭素を低減させるため、燃料に代えて、または燃料に加えて、電気エネルギーを用いて走行する電気自動車やハイブリッド自動車が注目されている。そして、ハイブリッド自動車でも搭載するバッテリに車両外部から電気エネルギーを充電可能に構成されるプラグインハイブリッド自動車も登場している。
 しかし、外部から自動車に電力を供給する際に充電ケーブルを接続するのはユーザに余分な手間をかける。このため、自動車が所定位置に駐車したらケーブル接続の手間をかけずに充電が開始可能な非接触電力供給システムも検討されている。
 特開2010-119246号公報(特許文献1)には、非接触充電システムにおいて、微小電力で周波数を変化させながら送電して、効率の変化を検出し、その検出結果に応じてコイルの位置調整をする点が開示されている。
 また、特開2010-172185号公報(特許文献2)には、現車両位置での受電効率をユーザに知らせることによって、車両の充電のための最適位置をユーザに報知できる受電案内装置が開示されている。
特開2010-119246号公報 特開2010-172185号公報 特開2010-035333号公報 国際公開第2010/052785号パンフレット 特開2009-148151号公報
 非接触で電力供給を受けるためには非接触送電装置が必要である。家庭などで電気自動車等のバッテリに充電を行なう場合にはその自動車に専用の送電装置を設置することも考えられるが、公共の場や集合住宅などでは多数の電気自動車等に共用される送電装置が設置される。このように、送電装置と車両の多数の組み合わせに対応する必要がある。
 また、送電装置と車両の組み合わせが同じである場合でも、車両の状態(乗員の乗車の有無、荷物の積載の有無、駐車位置のズレなど)が変化することに対しても対応する必要がある。
 非接触での電力送受電では、送電部と受電部との相対的な位置関係によって送電効率が異なるため、車両がどの地点にあるときに送電を開始するかは、充電効率および充電時間に大きな影響を与える。
 送電装置の送電部と車両の受電部との位置合わせの精度は、ユーザごとに異なる。そしてユーザ各々の感性によっても許容できる充電効率や送受電部の位置関係も異なる。したがって、送受電を開始したい条件は、ユーザ毎に異なることが想定されるため、ユーザの意思を反映させた充電システムを構築することが望ましい。
 特開2010-119246号公報(特許文献1)、特開2010-172185号公報(特許文献2)等には、充電開始条件について具体的に開示されておらず、ユーザの意思に沿った給電を実現する点で改良の余地がある。
 この発明の目的は、ユーザの意思に沿わない送受電を避けることができる送電装置、車両および非接触送受電システムを提供することである。
 この発明は、要約すると、車両に対して外部から送電を行なう送電装置であって、非接触で車両に送電を行なうための送電部と、車両との通信を行なうための通信部と、送電部および通信部の制御を行なう制御装置とを備える。制御装置は、車両の受電状況または推定される車両の受電状況をユーザに報知した後に与えられるユーザからの指示に基づいて、送電部に送電を行なわせるか否かを決定する。
 好ましくは、制御装置は、車両を特定するために通信部を用いて認証を実行し、認証の完了前に車両の受電状況を把握するために送電部に所定電力を送電させる。そして、制御装置は、認証の完了後に送電部に所定電力よりも大きい電力を送電させる。
 より好ましくは、制御装置は、所定電力を送電部に送電させている間に所定時間が経過しても指示がユーザから与えられない場合には、送電部からの所定電力の送電を停止する。
 より好ましくは、制御装置は、認証が完了した後に車両に送電した電力を課金対象として扱う。
 より好ましくは、制御装置は、車両の送電のための駐車位置が確定し、車両に搭載された蓄電装置への充電が開始される直前に、所定電力を送電部に送電させ受電状況を確認する。
 好ましくは、送電部の固有周波数と車両の受電部の固有周波数との差は±10%以内である。
 好ましくは、車両の受電部と送電部との結合係数は、0.1以下である。
 好ましくは、送電部は、車両の受電部と送電部の間に形成され、かつ特定の周波数で振動する磁界と、受電部と送電部の間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、受電部に電力を送電する。
 この発明は、他の局面では、車両外部の送電装置から電力を非接触で受電可能に構成された車両であって、非接触で送電装置から電力を受電するための受電部と、送電装置との通信を行なうための通信部と、受電部および通信部の制御を行なう制御装置とを備える。制御装置は、受電部の受電状況または推定される受電部の受電状況をユーザに報知した後に与えられるユーザからの指示に基づいて、送電装置からの送電を受けるか否かを決定する。
 好ましくは、制御装置は、車両を送電装置に特定させるために通信部を用いて認証のための情報を通信し、認証の完了前に受電部での受電状況を把握するために送電装置に所定電力を送電させる。そして、制御装置は、認証の完了後に送電装置に所定電力よりも大きい電力を送電させる。
 より好ましくは、制御装置は、所定電力が送電装置から送電されている間に所定時間が経過しても指示がユーザから与えられない場合には、送電装置からの所定電力の送電を停止させる。
 より好ましくは、送電装置は、認証が完了した後に車両に送電した電力を課金対象として扱う。
 より好ましくは、車両は、蓄電装置をさらに備える。制御装置は、車両の送電のための駐車位置が確定し、蓄電装置への充電が開始される直前に、所定電力を送電装置に送電させ受電状況を確認する。
 好ましくは、送電装置の送電部の固有周波数と車両の受電部の固有周波数との差は±10%以内である。
 好ましくは、受電部と送電装置の送電部との結合係数は、0.1以下である。
 好ましくは、送電装置の送電部は、受電部と送電部の間に形成され、かつ特定の周波数で振動する磁界と、受電部と送電部の間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、受電部に電力を送電する。
 この発明は、さらに他の局面では、非接触送受電システムであって、車両外部から電力を非接触で受電可能に構成された車両と、車両に対して外部から送電を行なう送電装置とを備える。送電装置は、非接触で車両に送電を行なうための送電部と、車両との通信を行なうための第1通信部と、送電部および第1通信部の制御を行なう第1制御装置とを含む。車両は、非接触で送電部から電力を受電するための受電部と、第1通信部との通信を行なうための第2通信部と、受電部および第2通信部の制御を行なう第2制御装置とを含む。第1制御装置および第2制御装置は、受電部の受電状況または推定される受電部の受電状況をユーザに報知した後に与えられるユーザからの指示に基づいて、送電部に送電を行なわせるか否かを決定する。
 好ましくは、第1制御装置および第2制御装置は、第1通信部および第2通信部を用いて車両を特定する認証のための情報を通信し、認証の完了前に受電部での受電状況を把握するために送電部に所定電力を送電させる。そして、第1制御装置および第2制御装置の少なくともいずれかは、認証の完了後に送電部に所定電力よりも大きい電力を送電させる。
 より好ましくは、第1制御装置および第2制御装置の少なくともいずれかは、所定電力を送電部に送電させている間に所定時間が経過しても指示がユーザから与えられない場合には、送電部からの所定電力の送電を停止させる。
 より好ましくは、第1制御装置および第2制御装置の少なくともいずれかは、認証が完了した後に車両に送電した電力を課金対象として扱う。
 より好ましくは、第1制御装置および第2制御装置の少なくともいずれかは、車両の送電のための駐車位置が確定し、車両に搭載された蓄電装置への充電が開始される直前に、所定電力を送電部に送電させ受電状況を確認する。
 好ましくは、送電部の固有周波数と車両の受電部の固有周波数との差は±10%以内である。
 好ましくは、受電部と送電部との結合係数は、0.1以下である。
 好ましくは、送電部は、受電部と送電部の間に形成され、かつ特定の周波数で振動する磁界と、受電部と送電部の間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、受電部に電力を送電する。
 本発明によれば、送受電効率が変動しうる非接触充電において、予めユーザが受電状況を認識または予測することができるので、例えば、受電状況を判断した上で再度位置合わせを行なうか、位置合わせをやり直さずにすぐに充電を開始するか等について、ユーザの意思に沿った送受電を行なうことが容易となる。
この発明の実施の形態に係る電力送受電システムの全体構成図である。 共鳴法による送電の原理を説明するための図である。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 電力伝送システムのシミュレーションモデルを示す図である。 送電装置と受電装置との間の固有周波数のズレと効率の関係を示す図である。 図1に示した電力送受電システム10の詳細構成図である。 送電装置および車両で実行される制御を説明するためのフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、この発明の実施の形態に係る電力送受電システムの全体構成図である。
 図1を参照して、電力送受電システム10は、車両100と、送電装置200とを含む。車両100は、受電部110と、通信部160とを含む。送電装置200は、認証サーバ270に登録された車両データを参照して車両の認証を行なう。
 共用の送電装置の場合には、充電した車両の所有者(または使用者)に課金をすることが考えられる。また、課金しない場合でも充電対象の車両を限定したい場合も考えられる(たとえば送電装置が会社所有のもので社用車に限定して充電したい場合や、送電装置に適合していない車両を排除したい場合など)。
 このような場合、車両の所有者または使用者を特定するために、または車両を特定するために、車両と送電装置との間で通信を行なって認証を実行する。認証とはこのような特定を行なうものであれば、必ずしも課金を伴わなくても良い。
 受電部110は、車体底面に設置され、送電装置200の送電部220から送出される電力を非接触で受電するように構成される。詳しくは、受電部110は、後に説明する自己共振コイル(共鳴コイルともいう)を含み、送電部220に含まれる自己共振コイルと電磁場を介して共鳴することにより送電部220から非接触で受電する。通信部160は、車両100と送電装置200との間で通信を行なうための通信インターフェースである。
 送電装置200は、充電スタンド210と、送電部220とを含む。充電スタンド210は、表示部242と、料金受領部246と、通信部230とを含む。充電スタンド210は、たとえば商用交流電力を高周波の電力に変換して送電部220へ出力する。なお、充電スタンド210は、太陽光発電装置、風力発電装置などの電源装置から電力の供給を受けるものであっても良い。
 送電部220は、たとえば駐車場の床面に設置され、充電スタンド210から供給される高周波電力を車両100の受電部110へ非接触で送出するように構成される。詳しくは、送電部220は、自己共振コイルを含み、この自己共振コイルが受電部110に含まれる自己共振コイルと電磁場を介して共鳴することにより受電部110へ非接触で送電する。通信部230は、送電装置200と車両100との間で通信を行なうための通信インターフェースである。
 ここで、送電装置200から車両100への給電に際し、車両100を送電装置200へ誘導して車両100の受電部110と送電装置200の送電部220との位置合わせを行なう必要がある。すなわち、車両100は、位置合わせが簡単ではない。携帯型機器では、ユーザが手で持ち上げて充電器等の給電ユニットの適切な位置に置くことが簡単に行える。しかし、車両は、ユーザが車両を操作し適切な位置に車両を停車させる必要があり、手で持ち上げて位置を調整するというわけにはいかない。
 このため、送電装置200から車両100への給電は、位置ずれに対して許容度が大きい方式を採用することが望ましい。電磁誘導方式は、送信距離は短距離であり位置ずれに対しても許容度が小さいと言われている。電磁誘導方式を車両への給電に採用しようとすると、駐車時に運転者の精度の高い運転技術が要求されたり、高精度な車両誘導装置を車両に搭載することが必要となったり、ラフな駐車位置でも対応可能なようにコイル位置を移動させる可動部が必要となったりする可能性がある。
 電磁界による共鳴方式は、送信距離が数mであっても比較的大電力を送信することが可能であり、位置ずれに対する許容度も電磁誘導方式よりも一般的に大きいと言われている。このため、この実施の形態による電力送受電システム10では、共鳴法を用いて送電装置200から車両100への給電が行なわれる。
 なお、本実施の形態に係る電力送受電システムにおいては、送電部220の固有周波数と、受電部110の固有周波数は、同じ固有周波数とされている。
 「送電部の固有周波数」とは、送電部のコイルおよびキャパシタを含む電気回路が自由振動する場合の振動周波数を意味する。なお、送電部のコイルおよびキャパシタを含む電気回路で、制動力または電気抵抗をゼロもしくは実質的にゼロとしたときの固有周波数は、「送電部の共振周波数」と呼ばれる。
 同様に、「受電部の固有周波数」とは、受電部のコイルおよびキャパシタを含む電気回路が自由振動する場合の振動周波数を意味する。また、受電部のコイルおよびキャパシタを含む電気回路で、制動力または電気抵抗をゼロもしくは実質的にゼロとしたときの固有周波数は、「受電部の共振周波数」と呼ばれる。
 本明細書において、「同じ固有周波数」とは、完全に同じ場合だけでなく、固有周波数が実質的に同じ場合も含む。「固有周波数が実質的に同じ」とは、送電部の固有周波数と受電部の固有周波数との差が送電部の固有周波数または受電部の固有周波数の±10%以内の場合を意味する。
 図2は、共鳴法による送電の原理を説明するための図である。
 図2を参照して、この共鳴法では、2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが電磁場(近接場)において共鳴することによって、一方のコイルから他方のコイルへ電磁場を介して電力が伝送される。
 具体的には、高周波電源310に一次コイル320を接続し、電磁誘導により一次コイル320と磁気的に結合される一次自己共振コイル330へ高周波電力を給電する。一次自己共振コイル330は、コイル自身のインダクタンスと浮遊容量とによるLC共振器であり、一次自己共振コイル330と同じ共振周波数を有する二次自己共振コイル340と電磁場(近接場)を介して共鳴する。そうすると、一次自己共振コイル330から二次自己共振コイル340へ電磁場を介してエネルギー(電力)が移動する。二次自己共振コイル340へ移動したエネルギー(電力)は、電磁誘導により二次自己共振コイル340と磁気的に結合される二次コイル350によって取出され、負荷360へ供給される。なお、共鳴法による送電は、一次自己共振コイル330と二次自己共振コイル340との共鳴強度を示すQ値がたとえば100よりも大きいときに実現される。
 また、本実施の形態に係る電力送受電システムにおいては、送電部と受電部とを電磁界によって共鳴(共振)させることで送電部から受電部に電力を送電しており、送電部と受電部との間の結合係数(κ)は、好ましくは0.1以下である。なお、結合係数(κ)は、この値に限定されるものではなく電力伝送が良好となる種々の値をとりうる。なお、一般的に電磁誘導を利用した電力伝送では、送電部と受電部と間の結合係数(κ)は1.0に近いものとなっている。
 なお、図1との対応関係については、二次自己共振コイル340および二次コイル350が図1の受電部110に対応し、一次コイル320および一次自己共振コイル330が図1の送電部220に対応する。
 図3は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。
 図3を参照して、電磁界は3つの成分を含む。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。
 この中でも波源からの距離とともに急激に電磁波の強度が減少する領域があるが、共鳴法では、この近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、近接場を利用して、同じ固有振動数を有する一対の共鳴器(たとえば一対のLC共振コイル)を共鳴させることにより、一方の共鳴器(一次自己共振コイル)から他方の共鳴器(二次自己共振コイル)へエネルギー(電力)を伝送する。この近接場は遠方にエネルギー(電力)を伝播しないので、遠方までエネルギーを伝播する「輻射電磁界」によりエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。
 図4は、電力伝送システムのシミュレーションモデルを示す図である。
 図5は、送電装置と受電装置との間の固有周波数のズレと効率の関係を示す図である。
 図4および図5を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。電力伝送システム89は、送電装置90と、受電装置91とを備える。送電装置90は、電磁誘導コイル92と、送電部93とを含む。送電部93は、共鳴コイル94と、共鳴コイル94に設けられたキャパシタ95とを含む。
 受電装置91は、受電部96と、電磁誘導コイル97とを備える。受電部96は、共鳴コイル99とこの共鳴コイル99に接続されたキャパシタ98とを含む。
 共鳴コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。共鳴コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、送電部93の固有周波数f1は、下記の式(1)によって示され、受電部96の固有周波数f2は、下記の式(2)によって示される。
 f1=1/{2π(Lt×C1)1/2}・・・(1)
 f2=1/{2π(Lr×C2)1/2}・・・(2)
 ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、送電部93および受電部96の固有周波数のズレと、電力伝送効率との関係を図3に示す。なお、このシミュレーションにおいては、共鳴コイル94および共鳴コイル99の相対的な位置関係は固定した状態であって、さらに、送電部93に供給される電流の周波数は一定である。
 図5に示すグラフのうち、横軸は、固有周波数のズレ(%)を示し、縦軸は、一定周波数での伝送効率(%)を示す。固有周波数のズレ(%)は、下記式(3)によって示される。
 (固有周波数のズレ)={(f1-f2)/f2}×100(%)・・・(3)
 図5からも明らかなように、固有周波数のズレ(%)が±0%の場合には、電力伝送効率は、100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は、40%となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は、10%となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は、5%となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、受電部96の固有周波数の10%以下の範囲となるように各送電部および受電部の固有周波数を設定することで電力伝送効率を実用的なレベルに高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が受電部96の固有周波数の5%以下となるように、各送電部および受電部の固有周波数を設定すると、電力伝送効率をさらに高めることができるのでより好ましい。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
 図6は、図1に示した電力送受電システム10の詳細構成図である。図6を参照して、車両100は、受電部110および通信部160に加えて、整流器180と、充電リレー(CHR)170と、蓄電装置190と、システムメインリレー(SMR)115と、パワーコントロールユニットPCU(Power Control Unit)120と、モータジェネレータ130と、動力伝達ギヤ140と、駆動輪150と、制御装置である車両ECU(Electronic Control Unit)300と、電流センサ171と、電圧センサ172とを含む。受電部110は、二次自己共振コイル111と、コンデンサ112と、二次コイル113とを含む。
 なお、本実施の形態においては、車両100として電気自動車を例として説明するが、蓄電装置に蓄えられた電力を用いて走行が可能な車両であれば車両100の構成はこれに限られない。車両100の他の例としては、エンジンを搭載したハイブリッド車両や、燃料電池を搭載した燃料電池車などが含まれる。
 二次自己共振コイル111は、送電装置200に含まれる一次自己共振コイル221から、電磁場を用いて電磁共鳴により受電する。
 この二次自己共振コイル111については、送電装置200の一次自己共振コイル221との距離や、一次自己共振コイル221および二次自己共振コイル111の共鳴周波数等に基づいて、一次自己共振コイル221と二次自己共振コイル111との共鳴強度を示すQ値が大きくなり(たとえば、Q>100)、その結合度を示す結合係数(κ)等が小さく(たとえば0.1以下)となるようにその巻数やコイル間距離が適宜設定される。
 コンデンサ112は、二次自己共振コイル111の両端に接続され、二次自己共振コイル111とともにLC共振回路を形成する。コンデンサ112の容量は、二次自己共振コイル111の有するインダクタンスに応じて、所定の共鳴周波数となるように適宜設定される。なお、二次自己共振コイル111自身の有する浮遊容量で所望の共振周波数が得られる場合には、コンデンサ112が省略される場合がある。
 二次コイル113は、二次自己共振コイル111と同軸上に設けられ、電磁誘導により二次自己共振コイル111と磁気的に結合可能である。この二次コイル113は、二次自己共振コイル111により受電された電力を電磁誘導により取出して整流器180へ出力する。
 整流器180は、二次コイル113から受ける交流電力を整流し、その整流された直流電力を、CHR170を介して蓄電装置190に出力する。整流器180としては、たとえば、ダイオードブリッジおよび平滑用のコンデンサ(いずれも図示せず)を含む構成とすることができる。整流器180として、スイッチング制御を用いて整流を行なう、いわゆるスイッチングレギュレータを用いることも可能であるが、整流器180が受電部110に含まれる場合もあり、発生する電磁場に伴うスイッチング素子の誤動作等を防止するために、ダイオードブリッジのような静止型の整流器とすることがより好ましい。
 なお、本実施の形態においては、整流器180により整流された直流電力が蓄電装置190へ直接出力される構成としているが、整流後の直流電圧が、蓄電装置190が許容できる充電電圧と異なる場合には、整流器180と蓄電装置190との間に、電圧変換するためのDC/DCコンバータ(図示せず)が設けられてもよい。
 整流器180の出力部分には、直列に接続された位置検出用の負荷抵抗173とリレー174とが接続されている。車両の認証が完了して本格的な充電が開始される前に、送電装置200から車両へはテスト用信号として微弱な電力が送電される。このとき、リレー174は車両ECU300からの制御信号SE3によって制御され、導通状態とされる。
 電圧センサ172は、整流器180と蓄電装置190とを結ぶ電力線対間に設けられる。電圧センサ172は、整流器180の二次側の直流電圧、すなわち送電装置200から受電した受電電圧を検出し、その検出値VCを車両ECU300に出力する。車両ECU300は、電圧VCによって受電効率を判断し、通信部160を経由して送電装置に受電効率に関する情報を送信する。
 電流センサ171は、整流器180と蓄電装置190とを結ぶ電力線に設けられる。電流センサ171は、蓄電装置190への充電電流を検出し、その検出値ICを車両ECU300へ出力する。
 CHR170は、整流器180と蓄電装置190とに電気的に接続される。CHR170は、車両ECU300からの制御信号SE2により制御され、整流器180から蓄電装置190への電力の供給と遮断とを切換える。
 蓄電装置190は、充放電可能に構成された電力貯蔵要素である。蓄電装置190は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池や、電気二重層キャパシタなどの蓄電素子を含んで構成される。
 蓄電装置190は、CHR170を介して整流器180と接続される。蓄電装置190は、受電部110で受電され整流器180で整流された電力を蓄電する。また、蓄電装置190は、SMR115を介してPCU120とも接続される。蓄電装置190は、車両駆動力を発生させるための電力をPCU120へ供給する。さらに、蓄電装置190は、モータジェネレータ130で発電された電力を蓄電する。蓄電装置190の出力はたとえば200V程度である。
 蓄電装置190には、いずれも図示しないが、蓄電装置190の電圧VBおよび入出力される電流IBを検出するための電圧センサおよび電流センサが設けられる。これらの検出値は、車両ECU300へ出力される。車両ECU300は、この電圧VBおよび電流IBに基づいて、蓄電装置190の充電状態(「SOC(State Of Charge)」とも称される。)を演算する。
 SMR115は、蓄電装置190とPCU120とを結ぶ電力線に介挿される。そして、SMR115は、車両ECU300からの制御信号SE1によって制御され、蓄電装置190とPCU120との間での電力の供給と遮断とを切換える。
 PCU120は、いずれも図示しないが、コンバータやインバータを含む。コンバータは、車両ECU300からの制御信号PWCにより制御されて蓄電装置190からの電圧を変換する。インバータは、車両ECU300からの制御信号PWIにより制御されて、コンバータで変換された電力を用いてモータジェネレータ130を駆動する。
 モータジェネレータ130は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。
 モータジェネレータ130の出力トルクは、動力伝達ギヤ140を介して駆動輪150に伝達されて、車両100を走行させる。モータジェネレータ130は、車両100の回生制動動作時には、駆動輪150の回転力によって発電することができる。そして、その発電電力は、PCU120によって蓄電装置190の充電電力に変換される。
 また、モータジェネレータ130の他にエンジン(図示せず)が搭載されたハイブリッド自動車では、このエンジンおよびモータジェネレータ130を協調的に動作させることによって、必要な車両駆動力が発生される。この場合、エンジンの回転による発電電力を用いて、蓄電装置190を充電することも可能である。
 通信部160は、上述のように、車両100と送電装置200との間で無線通信を行なうための通信インターフェースである。通信部160は、車両ECU300からの、蓄電装置190についてのSOCを含むバッテリ情報INFOを送電装置200へ出力する。また、通信部160は、送電装置200からの送電の開始および停止を指示する信号STRT,STPを送電装置200へ出力する。
 車両ECU300は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、車両100および各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 車両ECU300は、ユーザの操作などによる充電開始信号TRGを受けると、所定の条件が成立したことに基づいて、送電の開始を指示する信号STRTを、通信部160を介して送電装置200へ出力する。また、車両ECU300は、蓄電装置190が満充電になったこと、またはユーザによる操作などに基づいて、送電の停止を指示する信号STPを、通信部160を介して送電装置200へ出力する。
 送電装置200は、充電スタンド210と、送電部220とを含む。充電スタンド210は、通信部230に加えて、制御装置である送電ECU240と、電源部250と、表示部242と、料金受領部246とをさらに含む。また、送電部220は、一次自己共振コイル221と、コンデンサ222と、一次コイル223とを含む。
 電源部250は、送電ECU240からの制御信号MODによって制御され、商用電源などの交流電源から受ける電力を高周波の電力に変換する。そして、電源部250は、その変換した高周波電力を一次コイル223へ供給する。
 なお、図6には、インピーダンス変換を行なう整合器が記載されていないが、電源部250と送電部220の間または受電部110と整流器180の間に整合器を設ける構成としても良い。
 一次自己共振コイル221は、車両100の受電部110に含まれる二次自己共振コイル111へ、電磁共鳴により電力を転送する。
 一次自己共振コイル221については、車両100の二次自己共振コイル111との距離や、一次自己共振コイル221および二次自己共振コイル111の共鳴周波数等に基づいて、一次自己共振コイル221と二次自己共振コイル111との共鳴強度を示すQ値が大きくなり(たとえば、Q>100)、その結合度を示すκ等が小さく(たとえば0.1以下)となるようにその巻数やコイル間距離が適宜設定される。
 コンデンサ222は、一次自己共振コイル221の両端に接続され、一次自己共振コイル221とともにLC共振回路を形成する。コンデンサ222の容量は、一次自己共振コイル221の有するインダクタンスに応じて、所定の共鳴周波数となるように適宜設定される。なお、一次自己共振コイル221自身の有する浮遊容量で所望の共振周波数が得られる場合には、コンデンサ222が省略される場合がある。
 一次コイル223は、一次自己共振コイル221と同軸上に設けられ、電磁誘導により一次自己共振コイル221と磁気的に結合可能である。一次コイル223は、整合器260を介して供給された高周波電力を、電磁誘導によって一次自己共振コイル221に伝達する。
 通信部230は、上述のように、送電装置200と車両100との間で無線通信を行なうための通信インターフェースである。通信部230は、車両100側の通信部160から送信されるバッテリ情報INFO、送電の開始および停止を指示する信号STRT,STP、および車両の認証に関する情報を受信し、これらの情報を送電ECU240へ出力する。
 送電ECU240は、いずれも図1には図示しないがCPU、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、充電スタンド210における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 送電ECU240と車両ECU300とは通信部160,230を経由して連携し、以下の処理を行なう。通信が成立すると、非接触充電に対応する車両であるか否かが判明する。
 非接触送受電を実行する場合には、車両側の受電部と送電装置側の送電部との位置合わせが重要である。そして、本実施の形態の送受電システムは、送電部から送電された電力が受電部で受電される電力を使用して、送電部と受電部との位置合わせを行なう。
 このような送受電システムの場合、認証完了前に位置合わせに問題ないことが確認できていないと、一旦停車して認証後に再度車両を動かして位置合わせをしなければならない等、ユーザの利便性を大きく損なう可能性がある。また、位置がずれている状態で認証しそのままの位置で送受電を行なうと、伝送効率が悪い状態のまま充電が行なわれる可能性もある。
 したがって、ユーザの利便性を損なうことなく位置合わせと認証とを実行するために、位置合わせと認証の順序が重要である。
 通信した車両が非接触充電に対応する車両であれば、位置合わせのために送電部240は電源部250に所定電力によるテスト信号を送信させる。所定電力は、送受電の効率を確認することができる電力であればよいが、微弱電力とすることが好ましい。なお、微弱電力とは、本格的な送電時の電力(バッテリに充電を行なう充電電力や、車載のエアコンなどの負荷を駆動する駆動電力など)より小さい電力を含む。また微弱電力は、位置合わせのために送電する電力であって、間欠的に送電する電力を含んでも良い。
 車両ECU300はテスト信号を受信するために、リレー174をオン状態とし、CHR170をオフ状態とするように制御信号SE2,SE3を送信する。そして受電部110で受電した電力が車両側の電圧センサ172で検出され、電圧VCに基づいて受電効率および充電効率が算出される。車両ECU300は、算出した充電効率または受電効率を通信部160によって送電装置200に送信する。電圧VCに基づいて、受電電力、充電効率または受電効率がしきい値を超えるように車両位置の調整が行なわれる。
 運転者が車両を操作して移動させることによって車両位置の調整が行なわれてもよく、また駐車支援システムを使用して車両が自動で移動するようにして車両位置の調整が行なわれてもよい。
 車両の位置が決定し、受電効率に問題ないことが確認されると、車両を特定するため、または課金者を特定するために認証が行なわれる。認証は、車両100から通信部160,230を経由して送電装置200に送信される認証情報を認証サーバ270に照会することによって行なわれる。認証が完了すると以後の充電電力はユーザまたは車両の所有者に課金されることになる。認証前に、受電効率や電力単価などの情報がユーザに伝達されるとより好ましい。
 送電装置200の表示部242は、受電電力、充電効率または受電効率やそれに対応する充電電力単価をユーザに対して表示する。表示部242は、たとえばタッチパネルのように入力部としての機能も有しており、受電電力、充電効率または受電効率やそれに対応する充電電力単価をユーザが承認するか否かの入力を受け付けることができる。
 送電装置200の表示部242での表示に代えてまたは加えて、車両100の運転席等に設けられた画面にこれらを表示させ、車両から直接ユーザの承認データが送電ECU240に送信されてくるようにすればより好ましい。
 送電ECU240は、充電電力単価が承認された場合には認証を実行した後に電源部250に本格的な充電を開始させる。そして、充電が完了すると料金受領部246において料金が精算される。
 課金は、認証された車両情報にもとづいて行なわれるが、充電に先立って、現金、プリペイドカード、クレジットカードなどが料金受領部246に挿入された場合には、これらによって清算されるようにしてもよい。
 図7は、送電装置および車両で実行される制御を説明するためのフローチャートである。
 図6、図7を参照して、処理が開始されると、まずステップS1において、送電装置200では、送電ECU240が通信部230を用いて車両に対して通信を実行する。またステップS101において車両100では車両ECU300が通信部160を用いて送電装置に対して通信を実行する。
 送電装置200では送電ECU240がステップS2において通信が成立するか否かを判断する。通信が成立していなければ再びステップS1に処理が戻る。
 一方、車両100では送電ECU240がステップS102において通信が成立するか否かを判断する。通信が成立していなければ再びステップS101に処理が戻る。なお、この通信が成立した判断は車両ECU300、送電ECU240の少なくともいずれか一方で行なわれておればよく、判断結果を他方に通信で伝達してもよい。
 ステップS102において通信が成立したと判断された場合には、ステップS103に処理が進む。ステップS103では車両ECU300は通信部160,230を経由して送電ECU240に所定電力の送電を要求する。所定電力は、送受電の効率を確認することができる電力であればよい。本実施の形態では、好ましい例として所定電力として微弱電力Pnの送電を要求している。この要求に応じて送電ECU240は、電源部250に微弱電力の送電を指令する。そして送電部220に通電されることによって、車両の受電部110に向けて非接触の微弱電力の送電が行なわれる。
 なお、ステップS3において送信される所定電力は、後にステップS12で送電が許可される最大電力Pmより小さな電力であり、好ましくは、10分の1以下の強度である。
 微弱電流の送信時には、それに先立って車両ECU300がリレー174をオンさせている。そしてこの微弱電力を受電部110で受電し受電電圧を電圧センサ172で検出し、検出電圧を所定のしきい値電圧と比較することにより送電部と受電部との距離が所定距離以内になったか否かが判断される。この判断処理は、車両ECU300で行なわれてもよいし、送電ECU240で行なわれてもよい。
 車両ECU300で判断が行なわれる場合には、ステップS104で電圧センサ127の検出値としきい値との比較が行なわれ、その判断結果が通信部160,230を経由して送電ECU240に送信される。
 また、送電ECU240で判断が行なわれる場合には、ステップS104で電圧センサ127の検出値が通信部160,230を経由して送電ECU240に送信され、送電ECU240において検出値としきい値の比較が行なわれる。
 ステップS4において送電部と受電部との距離が所定距離以内ではないと判断された場合にはステップS5に処理が進み、微弱電力Pnの送信が所定時間継続したか否かが判断される。
 一方、ステップS104において送電部と受電部との距離が所定距離以内ではないと判断された場合にはステップS105に処理が進み、微弱電力Pnの送信が所定時間継続したか否かが判断される。
 ステップS5、ステップS105の送信または受信の継続時間の判断は、送電ECU240、車両ECU300の少なくともいずれか一方で行なわれており、他方のECUに通信で結果が伝達されていればよい。送信または受信の継続時間の上限はごく短時間(たとえば1時間以内)に設定されている。
 ステップS5で微弱電力Pnの送信時間が所定時間に達していなかった場合にはステップS3に処理が戻り、微弱電力Pnの送信が継続される。またステップS105において微弱電力Pnの受信時間が所定時間に達していなかった場合にはステップS103に処理が戻り、微弱電力Pnの受信が継続される。
 このように微弱電力Pnの送受信が継続されている間に、車両のユーザは車両位置を動かして位置合わせを行なう。なお、この位置合わせは自動操舵を含む自動走行によって行なわれてもよい。
 一方、ステップS5で微弱電力Pnの送信時間が所定時間に達した場合にはステップS6に処理が進み、微弱電力Pnの送信が禁止される。またステップS105において微弱電力Pnの受信時間が所定時間に達した場合にはステップS103に処理が進み、微弱電力Pnの受信が禁止される。所定時間は、時間切れを判断するためのしきい値となる時間である。これらの場合には、位置合わせが時間内に完了しなかったということであり、時間切れとなる。
 たとえば、微弱電力を送電中に位置合わせが行なわれないまま長時間経過することも考えられる。このような場合に、所定時間経過後に送電を停止することにより、送電装置の消費電力を低減できる。また、意図的に位置合わせしない車両に対しても、課金前の電力の送電が継続されるのを防止することができる。
 ステップS6、ステップS106の送信禁止指令または受信停止指令は、送電ECU240、車両ECU300の少なくともいずれか一方で行なわれており、他方のECUに通信で結果が伝達されていればよい。
 ステップS6、ステップS106においてそれぞれ送信禁止、受信停止の処理が行なわれたのちには、それぞれステップS7、ステップS107において送受電処理は停止される。
 一方で、送電装置200では、ステップS4において送電部と受電部との距離が所定距離以内と判断された場合には、ステップS8に処理が進む。ステップS8では車両位置が給電位置として良好である旨の判定が確定する。
 同様に、車両100でも、ステップS104において送電部と受電部との距離が所定距離以内と判断された場合には、ステップS108に処理が進む。ステップS8では車両位置が受電位置として良好である旨の判定が確定する。
 なお、車両位置が受電位置や給電位置として良好であるか否かの判断する主体はECUであっても良いし、ユーザ自体が判断しても良い。たとえば、車両内の表示部(タッチパネル仕様の液晶ディスプレイなど)に受電効率を数値(%)やインジケータで示すとともに、充電開始を指示できる操作部(液晶ディスプレイに表示された押しボタンなど)を設ける。そして、車両位置が調整されユーザが許容できる充電効率となった場合にユーザ自身が操作部を操作して充電開始の指示を出しても良い。または、ユーザが許容できる充電効率となった場合に、ユーザが駐車完了するためにパーキングブレーキを操作する。このパーキングブレーキ操作と連動させて充電開始指示が与えられるように車両を構成しても良い。
 そして、ステップS9および/またはステップS109において、ユーザに情報を伝達する処理が行なわれる。この情報は、受電状況(受電効率や受電効率に関連する値)や受電単価などを含む。ユーザに情報を伝達する方法としては、車両内に設けられた液晶画面に表示してもよいし、音声を使用してもよい。また送電装置に設けられた画面に表示してもよいし、送電装置から音声で報知してもよい。
 以上の処理で微弱電力を使用した位置合わせが完了したことになる。
 続いて、ユーザに伝達された情報をもとに、ユーザが充電を行なうか否かを決定する。たとえば、受電効率が予定よりも低い場合には、その充電スタンドと車両との相性が悪いとユーザが判断し、充電を行なわないことも考えられる。そのような場合には、ステップS11およびステップS111における認証完了とはならないため、ステップS7、ステップS107において充電処理は停止する。このようにユーザの意思に沿わない送受電を避けることができる。
 一方、ユーザが充電することを選択した場合には、必要な車両情報を認証サーバ270のデータと照合して、ステップS10およびステップS110において課金認証が実行され、車両が充電許可車であった場合にはステップS11およびステップS111において認証完了となる。
 認証が完了すると、送電装置200ではステップS12において最大電力Pmの送信を許可する。そしてステップS112において車両ECU300は充電電力Prを送電装置200に要求する。要求された充電電力Prが最大電力Pm以下であれば要求通りの電力が送電装置200から車両100に送電されることになる。
 そしてステップS13において送電装置200は送電を開始し、ステップS113において車両100は受電を開始する。
 上記のように、本格的な充電開始を充電料金発生の基準とすることで、本格的な充電開始前(位置合わせ中など)に送電した電力について、ユーザと充電スタンド事業者のどちらが負担すべきかを明確に区別することができる。
 最後に再び図を参照して本実施の形態について総括する。電力送受電システム10は、車両外部から電力を非接触で受電可能に構成された車両100と、車両100に対して外部から送電を行なう送電装置200とを備える。送電装置200は、非接触で車両100に送電を行なうための送電部220と、車両100との通信を行なうための通信部230と、送電部220および通信部230の制御を行なう送電ECU240とを含む。車両100は、非接触で送電部220から電力を受電するための受電部110と、通信部230との通信を行なうための通信部160と、受電部110および通信部160の制御を行なう車両ECU300とを含む。送電ECU240および車両ECU300は、受電部110の受電状況または推定される受電部110の受電状況をユーザに報知した後に与えられるユーザからの指示に基づいて、送電部220に送電を行なわせるか否かを決定する。
 なお、実施の形態では、受電状況を把握する一例として、微弱電力を送電して受電電圧を監視することを示したが、受電状況が予測できるのであれば、特に微弱電力を送電する必要はない。例えば、受電状況を把握する他の方法としては、カメラ画像から送電部と受電部との距離や位置関係を推定して受電状況を予測することが考えられる。例えば、赤外線センサなどのセンサ類を用いて、送電部と受電部との距離や位置関係を推定し受電状況を予測することも考えられる。
 好ましくは、送電ECU240および車両ECU300は、通信部230および通信部160を用いて車両を特定する認証のための情報を通信し、認証の完了前に受電部110での受電状況を把握するために送電部220に所定電力を送電させる。そして、制御装置(送電ECU240および/または車両ECU300)は、認証の完了後に送電部220に所定電力よりも大きい電力を送電させる。
 より好ましくは、送電ECU240および車両ECU300の少なくともいずれかは、所定電力を送電部220に送電させている間に所定時間が経過しても指示がユーザから与えられない場合には、送電部220からの所定電力の送電を停止させる。
 好ましくは、制御装置(送電ECU240および/または車両ECU300)は、所定電力を送電部220に供給することによって把握した車両の受電状況を、認証を完了させる前に車両100の乗員に報知する。
 より好ましくは、制御装置(送電ECU240および/または車両ECU300)は、認証が完了した後に車両100に送電した電力を課金対象として扱う。
 より好ましくは、制御装置(送電ECU240および/または車両ECU300)は、車両100の送電のための駐車位置が確定し、車両100に搭載された蓄電装置190への充電が開始される直前に、所定電力を送電部220に送電させ受電状況を確認する。
 本実施の形態では、課金認証を行なう前に実際に電力伝送を行ない受電状況を把握できるので、正確な受電効率などの受電状態を把握でき、課金認証前にコイル位置合わせなどの調整をすることが可能である。また、課金認証を基準にすることで、認証前に送電した電力料金の負担をユーザと充電スタンドなどの事業者のどちらが負担すべきかを明確に区分けすることができる。
 そして、課金認証完了前の位置合わせ時には通常の送電電力よりも小さい電力を送電することで送電装置の負担を軽減できる。
 また課金認証前に把握した充電効率などの受電状況をあらかじめユーザに知らせることによって、ユーザは受電状況を認識した上で課金認証の採否を決定することができる。
 さらに認証完了直前の充電効率などの受電状況を把握することで、認証後に実際に充電される充電効率などとの差を極力なくすことができる。
 なお、上記のように本実施の形態に係る電力送受電システムにおいては、送電部と受電部とを電磁界によって共鳴させることで送電部から受電部に電力を送電させている。このような電力伝送における送電部と受電部との結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電磁界(電磁場)共振結合」または「電界(電場)共振結合」という。
 「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。
 本明細書中で説明した送電部と受電部とは、コイル形状のアンテナが採用されているため、送電部と受電部とは主に、磁界(磁場)によって結合しており、送電部と受電部とは、「磁気共鳴結合」または「磁界(磁場)共鳴結合」している。
 なお、送電部と受電部として、たとえば、メアンダラインなどのアンテナを採用することも可能であり、この場合には、送電部と受電部とは主に、電界(電場)によって結合している。このときには、送電部と受電部とは、「電界(電場)共振結合」している。
 また、本実施の形態では、送電ユニット、受電ユニットに電磁誘導コイルが含まれている場合を例示したが、本発明は送電ユニット、受電ユニットのいずれか一方または両方に電磁誘導コイルが含まれない場合(自己共振コイルのみ使用する場合)であっても適用することが可能である。
 なお、以上の本実施の形態では充電時を例に挙げて説明したが受電した電力が充電以外の用途に使用される場合であっても本発明は適用可能である。たとえば、受電した電力で車両の補機類等の負荷を駆動する場合でも同様な効果が得られる。
 また、認証前と認証後に電力伝送については、本実施の形態では、共鳴方式で非接触給電を行なう例について詳細に説明したが、共鳴方式の他の方式であっても本実施の形態を変形して適用することができる。位置合わせなどに送電装置からの微弱電力の送信を用いるものであれば、共鳴方式の他の方式(例えば電磁誘導、マイクロ波などを使用する非接触送受電方式など)にも適用可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 電力送受電システム、89 電力伝送システム、90,200 送電装置、91 受電装置、92,97 電磁誘導コイル、93,220,240 送電部、94,99 共鳴コイル、95,98 キャパシタ、96,110,220 受電部、100 車両、111,340 二次自己共振コイル、112,222 コンデンサ、113,350 二次コイル、127,172 電圧センサ、130 モータジェネレータ、140 動力伝達ギヤ、150 駆動輪、160,230,160,230 通信部、171 電流センサ、173 負荷抵抗、174 リレー、180 整流器、190 蓄電装置、210 充電スタンド、221,330 一次自己共振コイル、223,320 一次コイル、240 送電ECU、242 表示部、246 料金受領部、250 電源部、260 整合器、270 認証サーバ、300 車両ECU、310 高周波電源、360 負荷、PCU パワーコントロールユニット。

Claims (24)

  1.  車両に対して外部から送電を行なう送電装置であって、
     非接触で前記車両に送電を行なうための送電部(220)と、
     前記車両との通信を行なうための通信部(230)と、
     前記送電部および前記通信部の制御を行なう制御装置(240)とを備え、
     前記制御装置は、車両の受電状況または推定される車両の受電状況をユーザに報知した後に与えられる前記ユーザからの指示に基づいて、前記送電部に送電を行なわせるか否かを決定する、送電装置。
  2.  前記制御装置は、前記車両を特定するために前記通信部を用いて認証を実行し、前記認証の完了前に前記車両の受電状況を把握するために前記送電部に所定電力を送電させ、
     前記制御装置は、前記認証の完了後に前記送電部に前記所定電力よりも大きい電力を送電させる、請求項1に記載の送電装置。
  3.  前記制御装置は、前記所定電力を前記送電部に送電させている間に所定時間が経過しても前記指示が前記ユーザから与えられない場合には、前記送電部からの前記所定電力の送電を停止する、請求項2に記載の送電装置。
  4.  前記制御装置は、前記認証が完了した後に前記車両に送電した電力を課金対象として扱う、請求項2に記載の送電装置。
  5.  前記制御装置は、前記車両の送電のための駐車位置が確定し、前記車両に搭載された蓄電装置への充電が開始される直前に、前記所定電力を前記送電部に送電させ前記受電状況を確認する、請求項2に記載の送電装置。
  6.  前記送電部の固有周波数と前記車両の受電部(110)の固有周波数との差は±10%以内である、請求項1に記載の送電装置。
  7.  前記車両の受電部と前記送電部との結合係数は、0.1以下である、請求項1に記載の送電装置。
  8.  前記送電部は、前記車両の受電部と前記送電部の間に形成され、かつ特定の周波数で振動する磁界と、前記受電部と前記送電部の間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、前記受電部に電力を送電する、請求項1に記載の送電装置。
  9.  車両外部の送電装置から電力を非接触で受電可能に構成された車両であって、
     非接触で前記送電装置から電力を受電するための受電部(110)と、
     前記送電装置との通信を行なうための通信部(160)と、
     前記受電部および前記通信部の制御を行なう制御装置(300)とを備え、
     前記制御装置は、前記受電部の受電状況または推定される前記受電部の受電状況をユーザに報知した後に与えられる前記ユーザからの指示に基づいて、前記送電装置からの送電を受けるか否かを決定する、車両。
  10.  前記制御装置は、前記車両を前記送電装置に特定させるために前記通信部を用いて認証のための情報を通信し、前記認証の完了前に前記受電部での受電状況を把握するために前記送電装置に所定電力を送電させ、
     前記制御装置は、前記認証の完了後に前記送電装置に前記所定電力よりも大きい電力を送電させる、請求項9に記載の車両。
  11.  前記制御装置は、前記所定電力が前記送電装置から送電されている間に所定時間が経過しても前記指示が前記ユーザから与えられない場合には、前記送電装置からの前記所定電力の送電を停止させる、請求項10に記載の車両。
  12.  前記送電装置は、前記認証が完了した後に前記車両に送電した電力を課金対象として扱う、請求項10に記載の車両。
  13.  蓄電装置をさらに備え、
     前記制御装置は、前記車両の送電のための駐車位置が確定し、前記蓄電装置への充電が開始される直前に、前記所定電力を前記送電装置に送電させ前記受電状況を確認する、請求項10に記載の車両。
  14.  前記送電装置の送電部(220)の固有周波数と前記車両の前記受電部(110)の固有周波数との差は±10%以内である、請求項9に記載の車両。
  15.  前記受電部と前記送電装置の送電部との結合係数は、0.1以下である、請求項9に記載の車両。
  16.  前記送電装置の送電部は、前記受電部と前記送電部の間に形成され、かつ特定の周波数で振動する磁界と、前記受電部と前記送電部の間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、前記受電部に電力を送電する、請求項9に記載の車両。
  17.  非接触送受電システムであって、
     車両外部から電力を非接触で受電可能に構成された車両(100)と、
     前記車両に対して外部から送電を行なう送電装置(200)とを備え、
     前記送電装置は、
     非接触で前記車両に送電を行なうための送電部(220)と、
     前記車両との通信を行なうための第1通信部(230)と、
     前記送電部および前記第1通信部の制御を行なう第1制御装置(240)とを含み、
     前記車両は、
     非接触で前記送電部から電力を受電するための受電部(110)と、
     前記第1通信部との通信を行なうための第2通信部(160)と、
     前記受電部および前記第2通信部の制御を行なう第2制御装置(300)とを含み、
     前記第1制御装置および前記第2制御装置は、前記受電部の受電状況または推定される前記受電部の受電状況をユーザに報知した後に与えられる前記ユーザからの指示に基づいて、前記送電部に送電を行なわせるか否かを決定する、非接触送受電システム。
  18.  前記第1制御装置および前記第2制御装置は、前記第1通信部および前記第2通信部を用いて前記車両を特定する認証のための情報を通信し、前記認証の完了前に前記受電部での受電状況を把握するために前記送電部に所定電力を送電させ、
     前記第1制御装置および前記第2制御装置の少なくともいずれかは、前記認証の完了後に前記送電部に前記所定電力よりも大きい電力を送電させる、請求項17に記載の非接触送受電システム。
  19.  前記第1制御装置および前記第2制御装置の少なくともいずれかは、前記所定電力を前記送電部に送電させている間に所定時間が経過しても前記指示が前記ユーザから与えられない場合には、前記送電部からの前記所定電力の送電を停止させる、請求項18に記載の非接触送受電システム。
  20.  前記第1制御装置および前記第2制御装置の少なくともいずれかは、前記認証が完了した後に前記車両に送電した電力を課金対象として扱う、請求項18に記載の非接触送受電システム。
  21.  前記第1制御装置および前記第2制御装置の少なくともいずれかは、前記車両の送電のための駐車位置が確定し、前記車両に搭載された蓄電装置への充電が開始される直前に、前記所定電力を前記送電部に送電させ前記受電状況を確認する、請求項18に記載の非接触送受電システム。
  22.  前記送電部の固有周波数と前記車両の前記受電部の固有周波数との差は±10%以内である、請求項17に記載の非接触送受電システム。
  23.  前記受電部と前記送電部との結合係数は、0.1以下である、請求項17に記載の非接触送受電システム。
  24.  前記送電部は、前記受電部と前記送電部の間に形成され、かつ特定の周波数で振動する磁界と、前記受電部と前記送電部の間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、前記受電部に電力を送電する、請求項17に記載の非接触送受電システム。
PCT/JP2011/077020 2011-11-24 2011-11-24 送電装置、車両および非接触送受電システム WO2013076834A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180075056.8A CN103947077B (zh) 2011-11-24 2011-11-24 输电装置、车辆以及非接触输电受电系统
JP2013545709A JP6135510B2 (ja) 2011-11-24 2011-11-24 送電装置
PCT/JP2011/077020 WO2013076834A1 (ja) 2011-11-24 2011-11-24 送電装置、車両および非接触送受電システム
US14/358,485 US9802497B2 (en) 2011-11-24 2011-11-24 Electric power transmission device, vehicle, and non-contact electric power transmission and reception system
EP11876174.1A EP2784907A4 (en) 2011-11-24 2011-11-24 POWER TRANSMISSION DEVICE, VEHICLE, AND NON-CONTACT ENERGY TRANSMISSION / RECEPTION SYSTEM
US15/730,449 US10513191B2 (en) 2011-11-24 2017-10-11 Electric power transmission device, vehicle, and non-contact electric power transmission and reception system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077020 WO2013076834A1 (ja) 2011-11-24 2011-11-24 送電装置、車両および非接触送受電システム

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/358,485 A-371-Of-International US9802497B2 (en) 2011-11-24 2011-11-24 Electric power transmission device, vehicle, and non-contact electric power transmission and reception system
US15/730,449 Continuation US10513191B2 (en) 2011-11-24 2017-10-11 Electric power transmission device, vehicle, and non-contact electric power transmission and reception system

Publications (1)

Publication Number Publication Date
WO2013076834A1 true WO2013076834A1 (ja) 2013-05-30

Family

ID=48469313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077020 WO2013076834A1 (ja) 2011-11-24 2011-11-24 送電装置、車両および非接触送受電システム

Country Status (5)

Country Link
US (2) US9802497B2 (ja)
EP (1) EP2784907A4 (ja)
JP (1) JP6135510B2 (ja)
CN (1) CN103947077B (ja)
WO (1) WO2013076834A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015043247A1 (zh) * 2013-09-27 2015-04-02 中兴通讯股份有限公司 一种车载充电设备的认证方法及相应设备
JP2015177632A (ja) * 2014-03-14 2015-10-05 株式会社デンソー 充電用ケーブル
JP2016046981A (ja) * 2014-08-26 2016-04-04 株式会社豊田自動織機 充電装置、及び充電システム
JP2018166362A (ja) * 2017-03-28 2018-10-25 Tdk株式会社 ワイヤレス受電装置及びワイヤレス電力伝送システム
JP2019126253A (ja) * 2013-11-18 2019-07-25 トヨタ自動車株式会社 非接触充電システム及び非接触充電システムのペアリング方法
US10949843B2 (en) 2017-05-22 2021-03-16 Hussein Talaat Mouftah Methods and systems for conjugated authentication and authorization

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923724B2 (ja) * 2011-12-06 2016-05-25 パナソニックIpマネジメント株式会社 車輌案内装置
WO2013118385A1 (ja) * 2012-02-10 2013-08-15 ソニー株式会社 受電装置、およびプログラム
JP5979227B2 (ja) 2012-05-09 2016-08-24 トヨタ自動車株式会社 車両
JP6124119B2 (ja) * 2013-03-29 2017-05-10 パナソニックIpマネジメント株式会社 給電装置及び受電装置
US20160226312A1 (en) * 2013-08-30 2016-08-04 Pioneer Corporation Wireless power reception system, wireless power transmission system, control method, computer program, and recording medium
JP6361132B2 (ja) * 2013-12-24 2018-07-25 トヨタ自動車株式会社 非接触電力伝送システム、充電ステーション、および車両
US10454307B2 (en) * 2014-08-04 2019-10-22 Jabil Inc. Wireless power apparatus, system and method
US20160075249A1 (en) * 2014-09-17 2016-03-17 Qualcomm Incorporated Methods and apparatus for user authentication in electric vehicle wireless charging
US10243389B2 (en) * 2015-03-27 2019-03-26 Goodrich Corporation Systems and methods for near resonant wireless power and data transfer
JP6057394B1 (ja) * 2015-06-25 2017-01-11 ニチコン株式会社 充電システムおよび充電開始制御方法
US10418855B2 (en) * 2015-08-10 2019-09-17 Qualcomm Incorporated Method and apparatus for varying a wireless charging category of a wireless power receiver in wireless charging applications
JP6696221B2 (ja) * 2016-02-26 2020-05-20 セイコーエプソン株式会社 制御装置、受電装置、電子機器及び電力伝送システム
US10549651B2 (en) * 2016-05-31 2020-02-04 Nidec Corporation Mobile body and mobile body system
JP2018074711A (ja) * 2016-10-27 2018-05-10 株式会社東芝 充電システム
US10377260B2 (en) * 2017-01-13 2019-08-13 Uber Technologies, Inc. Charge control system for mobile energy storage fleet
JP6618519B2 (ja) * 2017-11-22 2019-12-11 株式会社Subaru 車両
CN109245226B (zh) * 2018-10-25 2023-08-25 重庆工业职业技术学院 基于云端的动力电池的充电装置及充电方法
CN109733216B (zh) * 2018-11-29 2020-11-17 中海阳能源集团股份有限公司 一种基于自动泊车技术的无线充电线圈对位系统
JP7312966B2 (ja) * 2019-11-28 2023-07-24 パナソニックIpマネジメント株式会社 駐車支援装置、車両、駐車支援方法、プログラム、および非一時的記録媒体
US20240083267A1 (en) * 2020-12-07 2024-03-14 Hyundai Motor Company Wireless power transfer pairing method and apparatus
EP4183618A1 (de) * 2021-11-18 2023-05-24 Feig Electronic GmbH Stromladesäule für elektrofahrzeuge

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148151A (ja) 2007-12-12 2009-07-02 Lg Electronics Inc 無線充電用メニュー提供機能を有する移動端末機及びその無線充電方法
JP2010035333A (ja) 2008-07-29 2010-02-12 Fujitsu Ltd 移動充電装置及び移動充電方法
JP2010074992A (ja) * 2008-09-19 2010-04-02 Canon Inc 充電システム及び充電機器
JP2010103200A (ja) * 2008-10-22 2010-05-06 Toyota Central R&D Labs Inc 給電システム
WO2010052785A1 (ja) 2008-11-07 2010-05-14 トヨタ自動車株式会社 車両用給電システム、電動車両および車両用給電設備
JP2010119246A (ja) 2008-11-14 2010-05-27 Toyota Motor Corp 給電システム
JP2010172185A (ja) 2008-12-22 2010-08-05 Aisin Aw Co Ltd 受電案内装置
JP2010226945A (ja) * 2009-02-25 2010-10-07 Maspro Denkoh Corp 移動体の電力供給システム
JP2011193671A (ja) * 2010-03-16 2011-09-29 Toyota Motor Corp 車両
JP2011223657A (ja) * 2010-04-05 2011-11-04 Toyota Industries Corp 制御装置、供給装置の制御方法及び供給システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097768A (en) * 1996-11-21 2000-08-01 Dps Group, Inc. Phase detector for carrier recovery in a DQPSK receiver
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
CN102255398B (zh) 2005-07-12 2013-07-24 麻省理工学院 无线传递电磁能量的方法和设备
US7952322B2 (en) * 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
CN103633745B (zh) 2007-03-27 2015-09-09 麻省理工学院 用于无线能量传输的方法
KR20100130215A (ko) * 2008-03-17 2010-12-10 파우워매트 엘티디. 유도송전장치
US8466654B2 (en) * 2008-07-08 2013-06-18 Qualcomm Incorporated Wireless high power transfer under regulatory constraints
EP3185432B1 (en) * 2008-09-27 2018-07-11 WiTricity Corporation Wireless energy transfer systems
EP2199141B1 (en) 2008-12-22 2016-06-15 Aisin Aw Co., Ltd. Guidance device for charging vehicle battery
JP5481091B2 (ja) * 2009-04-14 2014-04-23 富士通テン株式会社 無線電力伝送装置および無線電力伝送方法
JP5446452B2 (ja) * 2009-05-21 2014-03-19 ソニー株式会社 電力供給装置、被電力供給装置、電力供給装置システム、位置決め制御方法
WO2011106506A2 (en) * 2010-02-25 2011-09-01 Evatran Llc Method and apparatus for inductively transferring ac power between a charging unit and a vehicle
JP4905571B2 (ja) 2010-03-10 2012-03-28 トヨタ自動車株式会社 車両の駐車支援装置およびそれを備える車両
WO2011116394A1 (en) 2010-03-19 2011-09-22 Fisker Automotive, Inc. Wireless charging device for electric and plug-in hybrid vehicles
US8725330B2 (en) * 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US8800738B2 (en) * 2010-12-28 2014-08-12 Tdk Corporation Wireless power feeder and wireless power receiver
US8483899B2 (en) * 2011-10-06 2013-07-09 Ford Global Technologies, Llc Vehicle guidance system
KR101659673B1 (ko) 2011-11-08 2016-09-26 도요타지도샤가부시키가이샤 차량의 수전 장치, 송전 장치 및 비접촉 송수전 시스템

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148151A (ja) 2007-12-12 2009-07-02 Lg Electronics Inc 無線充電用メニュー提供機能を有する移動端末機及びその無線充電方法
JP2010035333A (ja) 2008-07-29 2010-02-12 Fujitsu Ltd 移動充電装置及び移動充電方法
JP2010074992A (ja) * 2008-09-19 2010-04-02 Canon Inc 充電システム及び充電機器
JP2010103200A (ja) * 2008-10-22 2010-05-06 Toyota Central R&D Labs Inc 給電システム
WO2010052785A1 (ja) 2008-11-07 2010-05-14 トヨタ自動車株式会社 車両用給電システム、電動車両および車両用給電設備
JP2010119246A (ja) 2008-11-14 2010-05-27 Toyota Motor Corp 給電システム
JP2010172185A (ja) 2008-12-22 2010-08-05 Aisin Aw Co Ltd 受電案内装置
JP2010226945A (ja) * 2009-02-25 2010-10-07 Maspro Denkoh Corp 移動体の電力供給システム
JP2011193671A (ja) * 2010-03-16 2011-09-29 Toyota Motor Corp 車両
JP2011223657A (ja) * 2010-04-05 2011-11-04 Toyota Industries Corp 制御装置、供給装置の制御方法及び供給システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784907A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015043247A1 (zh) * 2013-09-27 2015-04-02 中兴通讯股份有限公司 一种车载充电设备的认证方法及相应设备
JP2019126253A (ja) * 2013-11-18 2019-07-25 トヨタ自動車株式会社 非接触充電システム及び非接触充電システムのペアリング方法
US10688875B2 (en) 2013-11-18 2020-06-23 Toyota Jidosha Kabushiki Kaisha Non-contact charging system and pairing method for non-contact charging system
JP2015177632A (ja) * 2014-03-14 2015-10-05 株式会社デンソー 充電用ケーブル
JP2016046981A (ja) * 2014-08-26 2016-04-04 株式会社豊田自動織機 充電装置、及び充電システム
JP2018166362A (ja) * 2017-03-28 2018-10-25 Tdk株式会社 ワイヤレス受電装置及びワイヤレス電力伝送システム
US10949843B2 (en) 2017-05-22 2021-03-16 Hussein Talaat Mouftah Methods and systems for conjugated authentication and authorization

Also Published As

Publication number Publication date
US20140333128A1 (en) 2014-11-13
US10513191B2 (en) 2019-12-24
EP2784907A1 (en) 2014-10-01
JPWO2013076834A1 (ja) 2015-04-27
US9802497B2 (en) 2017-10-31
US20180029482A1 (en) 2018-02-01
JP6135510B2 (ja) 2017-05-31
CN103947077A (zh) 2014-07-23
EP2784907A4 (en) 2015-09-16
CN103947077B (zh) 2017-10-10

Similar Documents

Publication Publication Date Title
JP6135510B2 (ja) 送電装置
WO2013088488A1 (ja) 非接触送受電システム、車両および送電装置
CN106828118B (zh) 车辆的受电装置、送电装置和非接触送受电系统
JP5664544B2 (ja) 非接触受電装置および非接触充電システム
JP5700133B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
US9409491B2 (en) Parking assist system for vehicle, contactless power transmitting device, and contactless power receiving device
JP6119756B2 (ja) 非接触給電システムおよび送電装置
JP5737417B2 (ja) 給電装置および給電方法
US10411522B2 (en) Contactless power transmitting device, contactless power receiving device, and contactless electric power transfer system
JP2014054095A (ja) 送電装置、車両および非接触給電システム
US20160001669A1 (en) Vehicle And Contactless Power Feeding System
JP5724658B2 (ja) 非接触給電システム
JP5920185B2 (ja) 非接触受電装置
JPWO2013088488A1 (ja) 非接触送受電システム、車両および送電装置
JP5962613B2 (ja) 非接触受電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545709

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14358485

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011876174

Country of ref document: EP