WO2014142346A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014142346A1
WO2014142346A1 PCT/JP2014/057631 JP2014057631W WO2014142346A1 WO 2014142346 A1 WO2014142346 A1 WO 2014142346A1 JP 2014057631 W JP2014057631 W JP 2014057631W WO 2014142346 A1 WO2014142346 A1 WO 2014142346A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
air inflow
wall surface
tread
tire
Prior art date
Application number
PCT/JP2014/057631
Other languages
English (en)
French (fr)
Inventor
俊 大金
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US14/773,858 priority Critical patent/US10647160B2/en
Priority to CN201480014498.5A priority patent/CN105008149B/zh
Priority to EP14762684.0A priority patent/EP2974886B1/en
Priority to ES14762684.0T priority patent/ES2634198T3/es
Publication of WO2014142346A1 publication Critical patent/WO2014142346A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1392Three dimensional block surfaces departing from the enveloping tread contour with chamfered block edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C2011/133Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls comprising recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C2011/1338Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls comprising protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/14Tyres specially adapted for particular applications for off-road use

Definitions

  • This invention relates to the pneumatic tire which improved the heat dissipation effect of the tread part.
  • the tread portion generates heat and becomes high temperature due to load rolling of the tire, which causes various failures such as heat separation of the tread portion.
  • it is necessary to reduce heat generation or improve heat radiation.
  • a method has been adopted in which a groove is formed in the tread portion to remove the tread rubber as a heat source, and the surface area of the tread portion is increased to increase heat dissipation. (For example, refer to Patent Document 1).
  • an object of the present invention is to provide a pneumatic tire capable of improving the heat dissipation effect of the tread portion while ensuring the rigidity of the land portion and further suppressing the decrease in the heat dissipation effect.
  • the pneumatic tire of the present invention has a narrow groove formed in a tread surface, and one end opened to a groove wall surface facing the tire circumferential direction of the narrow groove. And a tread that has an air inflow portion that is open at the tread tread at the other end and that is connected to the groove wall surface of the narrow groove facing the air inflow portion or the groove wall surface facing the groove wall surface where the air inflow portion is formed.
  • the tread has a wear preventing portion formed of a protrusion or a recess.
  • the present invention it is possible to provide a pneumatic tire capable of improving the heat dissipation effect of the tread portion while ensuring the rigidity of the land portion and further suppressing the decrease in the heat dissipation effect.
  • (A) is an expanded view of the tread pattern of the pneumatic tire which concerns on one Embodiment of this invention
  • (b) is AA sectional drawing of Fig.1 (a).
  • (A)-(j) is a figure which shows the modification of an abrasion prevention part
  • (k) is a figure which shows a comparative example.
  • 1 is a cross-sectional view in the tire width direction showing the tire internal structure of one embodiment of the present invention. It is a figure for demonstrating the effect
  • Fig.1 (a) is the expanded view which showed an example of the tread pattern of the pneumatic tire of this invention.
  • the tread tread 1 includes a central circumferential groove 2 extending along the tire circumferential direction on the tire equatorial plane CL, and a pair of intermediate circumferential grooves 3 extending along the tire circumferential direction with the central circumferential groove 2 interposed therebetween.
  • a pair of lateral circumferential grooves 4 extending along the tire circumferential direction on the outer side in the tire width direction of the intermediate circumferential grooves 3, and extending along the tire width direction as well as the intermediate circumferential groove 3 and the lateral circumference
  • An intermediate width direction groove 5 that communicates with the direction groove 4 and a side width direction groove 6 that extends along the tire width direction and that communicates with the side circumferential groove 4 and extends to the tread tread surface end TE are formed.
  • a pair of rib-shaped central land portions 7 sandwiching the tire equatorial plane CL are formed by the central circumferential groove 2 and the intermediate circumferential groove 3.
  • a block-shaped intermediate land portion 8 is formed by the intermediate circumferential groove 3, the lateral circumferential groove 4, and the intermediate width direction groove 5.
  • a block-shaped side land portion 9 is formed by the side circumferential groove 4 and the side width direction groove 6.
  • the tread pattern shown is an example, and the present invention can be applied to a rib basic pattern, a block basic pattern, and any other tread pattern.
  • the intermediate width direction grooves 5 and the lateral width direction grooves 6 may be inclined with respect to the tire width direction, and the groove widths may be not constant and may vary. Further, the lateral width direction groove 6 may not communicate with the tread tread surface end TE.
  • a narrow groove 10 extending in a direction inclined with respect to the tire circumferential direction is formed.
  • the narrow groove 10 has one end 10 a terminating in the rib-shaped central land portion 7 and the other end 10 b opening in the central circumferential groove 2.
  • the groove width W1 of the narrow groove 10 is smaller (narrower) than the groove depth D1 in the AA cross section (cross section along the tire circumferential direction) of FIG. 1 (a).
  • the groove width W1 is the width in the tire circumferential direction.
  • an air inflow portion 11 that opens to the tread surface 1 is formed on one of the groove wall surfaces 10c of the narrow groove 10 facing the tire circumferential direction. That is, the air inflow portion 11 connects the groove wall surface 10 c and the tread surface 1, and is formed so that one end opens to the groove wall surface 10 c and the other end opens to the tread surface 1. Further, the tread tread surface 1 (in this example, the tread surface of the rib-shaped central land portion 7) connected to the groove wall surface 10c of the narrow groove 10 facing the air inflow portion 11 has a wear preventing portion 12 made of a protrusion.
  • the wear preventing portion 12 is a projection having a substantially semicircular cross section that protrudes outward in the tire radial direction from the tread tread surface 1 and is connected to the groove wall surface 10c facing the air inflow portion 11. 1, the wear preventing portion 12 has a length corresponding to the length L1 in the extending direction of the narrow groove 10.
  • the length along the extending direction of the narrow groove 10 of the wear preventing portion 12 is not particularly limited, and can be set to an arbitrary length.
  • the narrow groove 10 of this invention can also be provided in the block-shaped intermediate land part 8 and the block-shaped side land part 9 besides the rib-shaped center land part 7.
  • the narrow groove 10 can be inclined at an arbitrary angle ⁇ (0 ° ⁇ ⁇ 90 °) with respect to the tire circumferential direction.
  • the plurality of narrow grooves 10 may not be formed in parallel to each other.
  • the narrow groove 10 may not only extend linearly but may be bent or curved in the middle.
  • the narrow groove 10 has one end in the extending direction terminating in the land portion, but is not limited thereto, and both ends in the extending direction may terminate in the land portion.
  • the both ends of the narrow groove 10 terminate in the land part.
  • the position and shape of the air inflow part 11 to show in figure are examples, and the air inflow part 11 of this invention should just be formed in at least one of the groove wall surfaces 10c facing the tire circumferential direction of the fine groove 10, As long as that is the case, it can be arranged in an arbitrary shape at an arbitrary position with respect to the groove wall surface 10 c of the narrow groove 10.
  • the air inflow portion 11 may have a trapezoidal shape, a semicircular shape, a triangular shape, or the like in a plan view of the tread tread.
  • the groove wall surface 10c of the narrow groove 10 facing the air inflow part 11 or the tread surface 1 connected to the groove wall surface 10c has a shape of a protrusion or a recess.
  • the shape is not particularly limited and can be any shape.
  • the friction preventing portion 12 in the case of a protrusion projecting outward in the tire radial direction has a center of curvature in the tire radial direction inward in the tire circumferential cross-sectional view.
  • An arc shape is preferable, and according to this, it is possible to suppress wear of the projections themselves and to more effectively suppress a decrease in the heat dissipation effect.
  • the wear preventing portion 12 may be provided not only on one surface of the groove wall surface 10c of the narrow groove 10 facing the air inflow portion 11 and the tread surface 1 connected to the groove wall surface 10c, but also on both surfaces. Is possible.
  • the air inflow portion 11 in the groove wall surface 10c on the windward side of the narrow groove 10, that is, using the tire mounted on the vehicle so that the groove wall surface 10c side where the air inflow portion 11 is formed becomes the windward side.
  • the wind can be discharged from the air inflow portion 11.
  • the narrow groove 10 has one end 10a that terminates in the rib-shaped central land portion 7, for example, the high rigidity of the land portion is maintained as compared with a case where both ends are open to the central circumferential groove 2. Can do.
  • the air inflow part 11 is not formed in the groove wall 10c on the leeward side, the wind can flow out from both ends of the narrow groove 10.
  • the heat radiation effect of the tread portion by the air inflow portion 11 will be described in more detail.
  • the wind that flows in from the air inflow portion 11 collides with the groove wall surface 10c facing the groove wall surface 10c in which the air inflow portion 11 opens, and the narrow groove 10
  • the heat spreads from the bottom surface and both ends of the extending direction, and heat generated from the inner surface of the narrow groove 10 is released to the outside of the narrow groove 10.
  • the land portion constituting the groove wall surface 10c of the narrow groove is worn, and accordingly, the surface area of the groove wall surface 10c is reduced.
  • the wear prevention portion 12 made of a protrusion on the tread surface 1 connected to the groove wall surface 10c of the narrow groove 10 facing the air inflow portion 11, the wear of this portion is suppressed, and the heat dissipation effect is deteriorated. Can be suppressed.
  • the wear of the tread tread 1 is caused by shear deformation that occurs between the time when the tread tread 1 comes into contact with the ground contact surface and the time when the tread tread surface 1 leaves the ground contact surface and returns to the original shape.
  • the wear preventing portion 12 made of such a protrusion By providing the wear preventing portion 12 made of such a protrusion, the shear deformation generated in the protrusion can be made smaller than that of the surrounding tread surface 1, and as a result, the wear can be reduced. This is because the bottom surface area of the protrusion protruding relative to the tread surface area is small, and the protrusion volume and rigidity are small, so that the protrusion deforms independently from the tread surface around the protrusion when grounded. This is because the shear deformation is reduced. Further, when the wear preventing portion 12 formed of a protrusion protruding from the groove wall surface toward the air inflow portion 11 is formed on the groove wall surface 10c facing the air inflow portion 11 instead of on the tread surface 1, the wear is also caused.
  • the wear preventing portion 12 is a protrusion that protrudes outward in the tire radial direction from the tread surface, and according to this, the heat dissipation effect can be more effectively reduced. Since it can suppress and can manufacture easily, high productivity can be obtained.
  • the wear preventing portion 12 is a protrusion protruding toward the air inflow portion 11 from the groove wall surface facing the groove wall surface where the air inflow portion 11 is formed. According to this, it is possible to more effectively suppress a decrease in the heat dissipation effect.
  • said abrasion prevention part 12 is extended continuously only along the extending direction of the fine groove 10, and the length along the extending direction of the fine groove 10 is 0.05 of the length of the air inflow part 11. It is preferable that the length is not less than twice and not more than the length of the narrow groove 10, and according to this, the wear prevention effect is enhanced, the heat dissipation effect is further maintained, and only the extending direction of the narrow groove 10 is extended. For this reason, the tire appearance can be improved by providing only necessary projections in necessary regions.
  • the wear preventing portion 12 has a tire radial height H1 from the tread surface of 0.001 of the groove depth D1 of the narrow groove 10.
  • the width W5 is preferably in the range of 0.01 to 0.4 times the groove width W1 of the narrow groove 10 for the same reason.
  • the depth of the air inflow portion 11 is preferably maximized at the groove wall opening end 11 a that opens to the groove wall surface 10 c of the narrow groove 10. According to this, the opening becomes large and air enters the narrow groove 10. It becomes easy to flow in.
  • the depth of the air inflow portion 11 is a groove wall opening in which the air inflow portion 11 opens into the groove wall surface 10 c of the narrow groove 10. It is preferable to gradually increase from the end far from the end 11a toward the groove wall opening end 11a that opens to the groove wall surface 10c of the narrow groove 10. According to this, the wind inflow effect is enhanced and the land volume is increased.
  • the bottom surface of the air inflow portion 11 can be a flat surface or a curved surface.
  • the depth of the air inflow part 11 may increase stepwise toward the groove wall opening end 11a, and the depth of the air inflow part 11 may be constant.
  • the air inflow portion 11 is formed only in one of the groove wall surfaces 10c of the narrow groove 10, and the directional pattern is such that all the air inflow portions 11 are arranged on the same direction side in the tire circumferential direction.
  • the narrow groove 10 having the air inflow portion 11 on the leeward side wall surface 10c and the narrow groove 10 having the air inflow portion 11 on the leeward side wall surface 10c are formed, respectively. It is preferable to form a non-directional pattern.
  • the air inflow portions 11 are formed on the groove wall surfaces 10 c on both sides of the narrow groove 10, air flows into the narrow grooves 10 from the air inflow portion 11 formed on the windward groove wall surface 10 c and passes through the narrow grooves 10. A wind flow is formed so as to escape from the air inflow portion 11 formed in the groove wall 10c on the leeward side.
  • one groove wall surface of the narrow groove 10 is arranged so that the air inflow portions 11 do not coincide with each other in the extending direction of the narrow grooves 10.
  • the air inflow portion 11 is formed at the center along the extending direction of the narrow groove 10 at the groove wall opening end 11 a that opens to the groove wall surface 10 c and the other groove wall surface 10 c of the narrow groove 10.
  • the center of the air inflow portion 11 along the extending direction of the narrow groove 10 at the groove wall opening end 11 a is preferably spaced in the extending direction of the narrow groove 10.
  • the air flowing from the air inflow portion 11 on the leeward side can easily pass through the narrow groove 10 until it flows out from the air inflow portion 11 on the leeward side, and the heat dissipation effect can be improved more reliably. it can.
  • the second air inflow portion 11 is further formed in the groove wall surface 10c facing the groove wall surface 10c in which the air inflow portion 11 is formed, spaced apart from the air inflow portion 11 in the extending direction of the narrow groove 10. That is, when the air inflow portions 11 are respectively formed on the groove wall surfaces 10c on both sides of the narrow groove 10, the wear preventing portions 12 are provided on the groove wall surfaces 10c on both sides corresponding to the air inflow portions 11, respectively. It is preferable to have. With this configuration, the heat dissipation effect can be improved and the wear of the groove wall surfaces 10c on both sides can be prevented regardless of the rotation direction of the tire, and a decrease in the heat dissipation effect can be suppressed.
  • the narrow groove 10 can be formed at an arbitrary position of the rib-shaped central land portion 7, but from the viewpoint of the land portion rigidity and the heat dissipation effect, the tire width from the intermediate circumferential groove 3 to the narrow groove 10.
  • the direction distance W4 is preferably in the range of 5 to 40% with respect to the width W3 of the rib-shaped central land portion 7 in the tire width direction.
  • the narrow groove 10 is preferably inclined at an angle ⁇ of 60 to 90 ° with respect to the tire circumferential direction. This is because the closer the perpendicular to the wind flow direction (tire circumferential direction), the stronger the wind hits the groove wall surface 10c of the fine groove 10 and the cooling effect becomes higher.
  • the air inflow portion 11 is provided in the narrow groove 10 in which the groove width W1 is narrower than the groove depth D1, because the narrower the groove 10 is, the smaller the width is. This is because the effect of the above is remarkably exhibited. Further, as the groove width W1 increases, it becomes easier to take wind into the groove, but it becomes difficult to ensure the rigidity of the land portion.
  • the air inflow portion 11 is preferably provided in a part of the extending direction of the narrow groove 10.
  • the length L2 of the air inflow portion 11 (the length along the extending direction of the narrow groove 10) L2 is 5 mm or more and 1/2 or less of the length L1 of the extending direction of the narrow groove 10. It is preferable.
  • an air inflow portion 11 that opens to the tread surface 1 is formed on at least one of the groove wall surfaces 10c facing the tire circumferential direction of the narrow groove 10, and the narrow groove 10 It is preferable that the maximum depth D1 and the maximum depth D2 of the air inflow portion 11 satisfy 1 ⁇ D1 / D2 ⁇ 15 from the viewpoint of securing the rigidity of the land portion and the cooling effect.
  • the present invention is particularly effective when the narrow groove 10 is not in communication with the tread tread edge TE, since the flow of wind hardly occurs inside the narrow groove 10. Further, the present invention exhibits a remarkable effect in large tires for trucks, buses, construction vehicles, etc., in which heat generation at the tread portion is likely to be a problem as the size increases. This is particularly effective in a pneumatic tire having an aspect ratio of 80% or less, a rim diameter of 57 inches or more, an overload capacity of 60 mton or more, and a load coefficient (k-factor) of 1.7 or more.
  • a tire width direction region of 50% of the tread width centering on the tire equatorial plane is a center region, and the center region.
  • the tire width direction regions on both sides of the tire region are shoulder regions, and the negative rate of the center region is smaller than the negative rate of the shoulder region, the heat generation in the center region tends to reduce the durability of the tire.
  • the pneumatic tire of the present invention preferably has a circumferential groove located on the center region, particularly on the tire equatorial plane, as in the example of FIG. 1 from the viewpoint of promoting heat dissipation in the center region.
  • the groove width of the directional groove is 10 mm or less, it is difficult for the wind to flow in the circumferential groove. Therefore, the heat radiation effect can be enhanced by applying the present invention.
  • the shape of the wear preventing portion 12 in the AA cross section of FIG. 1 (a) is the groove wall surface on the tread tread surface 1 connected to the groove wall surface 10c facing the air inflow portion 11.
  • the groove wall surface 10c is connected to the tread tread surface 1 connected to the groove wall surface 10c facing the air inflow portion 11. It can also be set as the cross-sectional square shape which protrudes toward a tire radial direction outer side. Further, as shown in FIGS.
  • the wear preventing portion 12 has a substantially semicircular cross section that protrudes toward the air inflow portion 11 at the upper end of the groove wall surface 10 c facing the air inflow portion 11.
  • a shape, a triangular cross section, or a square cross section can be used, and as shown in FIGS. 2 (f) to 2 (h), a predetermined distance from the tread tread 1 on the upper end of the groove wall surface 10 c facing the air inflow portion 11
  • a recess having a substantially semicircular cross section, a triangular cross section, or a square cross section formed at a distance of. Further, as shown in FIGS.
  • a groove is formed at the upper end of the groove wall surface 10 c facing the air inflow portion 11, the groove wall surface 10 c facing the air inflow portion 11, and the groove wall surface. It is good also as a shape where the corner
  • the wear preventing portion 12 is a protrusion protruding toward the air inflow portion 11 from the groove wall surface 10c facing the groove wall surface 10c in which the air inflow portion 11 is formed.
  • the anti-wear effect can be enhanced and the heat dissipation effect can be further sustained.
  • 2 (k) shows a cross section of the groove wall surface 10c of the narrow groove 10 when the wear preventing portion 12 is not provided as a comparative example.
  • FIG. 3 is a sectional view in the tire width direction showing a tire internal structure of a pneumatic tire according to an embodiment of the present invention, particularly a heavy duty tire such as a construction vehicle.
  • the tire 100 has a thicker rubber gauge (rubber thickness) in the tread portion 500 than a pneumatic tire mounted on a passenger car or the like. Note that the tire internal structure described below is applicable to each tire having the tread pattern described with reference to FIG.
  • the tire 100 satisfies DC / OD ⁇ 0.015 when the tire outer diameter is OD and the rubber gauge of the tread portion 500 at the position of the tire equatorial plane C is DC.
  • the tire outer diameter OD (unit: mm) is the diameter of the tire 100 at a portion (generally, the tread portion 500 in the vicinity of the tire equatorial plane C) where the outer diameter of the tire 100 is maximum.
  • the rubber gauge DC (unit: mm) is the rubber thickness of the tread portion 500 at the position of the tire equatorial plane C.
  • the rubber gauge DC does not include the thickness of the belt 300.
  • channel is formed in the position containing the tire equator surface C, it is set as the rubber thickness of the tread part 500 in the position adjacent to the circumferential groove
  • the tire 100 includes a pair of bead cores 110, a carcass 200, and a belt 300 including a plurality of belt layers.
  • the half width of the tire 100 is shown, but the half width of the tire 100 not shown has the same structure.
  • the bead core 110 is provided in the bead unit 120.
  • the bead core 110 is configured by a bead wire (not shown).
  • the carcass 200 forms the skeleton of the tire 100.
  • the position of the carcass 200 passes from the tread portion 500 through the buttress portion 900 and the sidewall portion 700 to the bead portion 120.
  • the carcass 200 straddles between a pair of bead cores 110 and has a toroidal shape.
  • the carcass 200 wraps the bead core 110 in this embodiment.
  • the carcass 200 is in contact with the bead core 110. Both ends of the carcass 200 in the tire width direction twd are supported by a pair of bead portions 120.
  • the carcass 200 has a carcass cord extending in a predetermined direction when viewed in plan from the tread tread surface 1 side.
  • the carcass cord extends along the tire width direction twd.
  • a steel wire is used as the carcass cord.
  • the belt 300 is disposed on the tread portion 500.
  • the belt 300 is located outside the carcass 200 in the tire radial direction trd.
  • the belt 300 extends in the tire circumferential direction.
  • the belt 300 has a belt cord that is inclined with respect to a predetermined direction that is a direction in which the carcass cord extends. For example, a steel cord is used as the belt cord.
  • the belt 300 composed of a plurality of belt layers includes a first belt layer 301, a second belt layer 302, a third belt layer 303, a fourth belt layer 304, a fifth belt layer 305, and a sixth belt layer 306.
  • the first belt layer 301 is located outside the carcass 200 in the tire radial direction trd.
  • the first belt layer 301 is located on the innermost side in the belt 300 composed of a plurality of belt layers in the tire radial direction trd.
  • the second belt layer 302 is located outside the first belt layer 301 in the tire radial direction trd.
  • the third belt layer 303 is located outside the second belt layer 302 in the tire radial direction trd.
  • the fourth belt layer 304 is located outside the third belt layer 303 in the tire radial direction trd.
  • the fifth belt layer 305 is located outside the fourth belt layer 304 in the tire radial direction trd.
  • the sixth belt layer 306 is located outside the fifth belt layer 305 in the tire radial direction trd.
  • the sixth belt layer 306 is located on the outermost side in the belt 300 composed of a plurality of belt layers in the tire radial direction trd.
  • the first belt layer 301, the second belt layer 302, the third belt layer 303, the fourth belt layer 304, the fifth belt layer 305, and the sixth belt layer 306 are arranged in this order. Be placed.
  • the width of the first belt layer 301 and the second belt layer 302 (the width measured along the tire width direction twd. The same applies hereinafter) is 25% or more of the tread width TW. And it is 70% or less.
  • the widths of the third belt layer 303 and the fourth belt layer 304 are 55% or more and 90% or less of the tread width TW.
  • the widths of the fifth belt layer 305 and the sixth belt layer 306 are 60% or more and 110% or less of the tread width TW.
  • the width of the fifth belt layer 305 is larger than the width of the third belt layer 303, and the width of the third belt layer 303 is equal to or larger than the width of the sixth belt layer 306.
  • the width of the sixth belt layer 306 is larger than the width of the fourth belt layer 304, the width of the fourth belt layer 304 is larger than the width of the first belt layer 301, and the width of the first belt layer 301 is It is larger than the width of the second belt layer 302.
  • the fifth belt layer 305 has the largest width and the second belt layer 302 has the smallest width.
  • the belt 300 including a plurality of belt layers includes the shortest belt layer (that is, the second belt layer 302) having the shortest length in the tire width direction twd.
  • the second belt layer 302 which is the shortest belt layer has a belt end 300e which is an edge in the tire width direction twd.
  • the inclination angles of the belt cords of the first belt layer 301 and the second belt layer 302 with respect to the carcass cord are 70 ° or more and 85 ° or less.
  • the inclination angle of the belt cords of the third belt layer 303 and the fourth belt layer 304 with respect to the carcass cord is not less than 50 ° and not more than 75 °.
  • the inclination angle of the belt cords of the fifth belt layer 305 and the sixth belt layer 306 with respect to the carcass cord is not less than 50 ° and not more than 70 °.
  • the belt 300 composed of a plurality of belt layers includes an inner cross belt group 300A, an intermediate cross belt group 300B, and an outer cross belt group 300C.
  • the belt cords constituting the respective belt layers in the group are between belt layers adjacent to each other in the group (preferably, the tire equator) in a plan view from the tread tread surface 1 side.
  • the inner cross belt group 300A is composed of a pair of belt layers and is located outside the carcass 200 in the tire radial direction trd.
  • the inner cross belt group 300 ⁇ / b> A includes a first belt layer 301 and a second belt layer 302.
  • the intermediate cross belt group 300B includes a pair of belt layers and is located outside the inner cross belt group 300A in the tire radial direction trd.
  • the intermediate crossing belt group 300 ⁇ / b> B includes a third belt layer 303 and a fourth belt layer 304.
  • the outer cross belt group 300C includes a pair of belt layers and is located outside the intermediate cross belt group 300B in the tire radial direction trd.
  • the outer cross belt group 300 ⁇ / b> C includes a fifth belt layer 305 and a sixth belt layer 306.
  • the inner cross belt group 300A has a width of 25% or more and 70% or less of the tread width TW.
  • the width of the intermediate cross belt group 300B is 55% or more and 90% or less of the tread width TW.
  • the width of the outer cross belt group 300C is 60% or more and 110% or less of the tread width TW.
  • the inclination angle of the belt cord of the inner cross belt group 300A with respect to the carcass cord is 70 ° or more and 85 ° or less.
  • the inclination angle of the belt cord of the intermediate cross belt group 300B with respect to the carcass cord is not less than 50 ° and not more than 75 °.
  • the inclination angle of the belt cord of the outer cross belt group 300C with respect to the carcass cord is not less than 50 ° and not more than 70 °.
  • the inclination angle of the belt cord with respect to the carcass cord is the largest in the inner cross belt group 300A.
  • the inclination angle of the belt cord with respect to the carcass cord of the intermediate intersection belt group 300B is equal to or greater than the inclination angle of the belt cord with respect to the carcass cord of the outer intersection belt group 300C.
  • the circumferential groove (intermediate circumferential groove) 3 is the tire width direction maximum of the groove width center line WL passing through the center in the width direction of the circumferential groove 3 when viewed from the tread tread surface 1 side of the tire 100 from the belt end 300e.
  • the length DL along the tire width direction twd up to the inner position is formed to be 200 mm or less.
  • FIG. 4A when the tire rolls, wind flows around the tire in a direction opposite to the traveling direction. By taking this wind into the groove formed in the tread surface 1, the tread portion is dissipated and the temperature of the tread portion decreases. When a wide groove is formed on the tread surface 1, wind can be taken into the groove, but the rigidity of the land portion is lowered, and the wear performance and the steering stability performance are deteriorated. On the other hand, if a narrow groove is formed to such an extent that the land portion rigidity is not lowered, wind cannot be taken into the groove. That is, when the portion indicated by X in FIG. 4A is shown in FIG.
  • the air inflow portion 11 When the wind that has been taken in reaches the bottom of the groove and the air inflow portion 11 is formed on the groove wall surface on the leeward side, the air can flow out from the air inflow portion 11. Even when the air inflow portion 11 is not formed on the leeward side groove wall surface, the wind that has lost its destination at the end of the narrow groove 10 flows out from the end portion of the leeward side groove wall surface. Thereby, the effect of lowering the temperature of the tread portion can be enhanced. Particularly, in the pneumatic tire for construction vehicles, the vehicle side (the side opposite to the tread tread side) of the tire indicated by X in the drawing is exposed without being covered by the vehicle, and thus the effect of the present invention is remarkably exhibited.
  • FIG. 5A shows a case where the air inflow portion 11 is not provided for the narrow groove 10 inclined at 30 ° with respect to the tire width direction
  • FIG. 5B shows the air inflow on the windward side and the leeward side.
  • FIG. 5C shows the flow velocity.
  • the narrow groove 10 has a length of 200 mm in the longitudinal direction, a width of 10 mm, and a depth of 100 mm, and is inclined at 30 ° with respect to the tire width direction.
  • the size of the air inflow portion 11 is 50 mm in length (length along the longitudinal direction of the narrow groove 10), 50 mm in width, and 20 mm in the deepest portion.
  • FIG. 5A it can be seen that almost no wind is taken into the narrow groove 10 when the air inflow portion 11 is not provided.
  • FIG. 5B when the air inflow portion 11 is provided, the wind speed vector becomes maximum near the air inflow portion 11 on the windward groove wall surface, and the wind is taken into the narrow groove 10. It can be seen that the wind speed vector also increases in the vicinity of the air inflow portion 11 on the groove wall on the leeward side.
  • the pneumatic tire is mounted so that the air inflow portion 11 is formed on the windward groove wall surface of the narrow groove 10. What is necessary is just to mount to a vehicle. However, if the air inflow portion 11 is formed on one of the groove walls of the narrow groove 10, the pattern has directionality and the convenience is lowered. Therefore, as shown in the above-described example, the grooves on both sides of the narrow groove 10. It is preferable to form the air inflow portion 11 on the wall surface to form a non-directional pattern.
  • the air inflow part 11 formed on the leeward groove wall surface functions to inflow (takes in) air, whereas the air inflow part 11 formed on the leeward side groove wall surface functions to allow air to flow in. do not do. Therefore, there is a wind flow that flows into the narrow groove 10 from the air inflow portion 11 formed on the windward groove wall surface and passes through the narrow groove 10 to the air inflow portion 11 formed on the leeward groove wall surface. It is formed.
  • the groove width of the narrow groove 10 is set narrower than the groove depth is that when the narrow groove 10 is shallow and wide, air can be easily taken into the narrow groove 10 without forming the air inflow portion 11. This is because the effect of the present invention is low. Moreover, when the narrow groove 10 is shallow, even if the heat transfer coefficient of the narrow groove 10 wall surface is increased, the temperature reduction effect is difficult to reach the inside of the tread portion.
  • the air inflow portion 11 Even if the air inflow portion 11 is sufficiently small with respect to the size of the land portion, the air volume in the narrow groove 10 can be increased. Therefore, even if the air inflow portion 11 is formed, the volume of the land portion is greatly reduced. There is nothing. Therefore, the impact on wear performance and steering stability is negligible. Further, when the air inflow portion 11 having a length over the entire longitudinal direction of the narrow groove 10 is provided, a wind having a uniform air volume is captured over the entire longitudinal direction of the narrow groove 10. Cannot flow, and is prevented from flowing out of the narrow groove 10. In particular, when the narrow groove 10 is independent (when both ends of the narrow groove 10 are terminated in the land portion without opening in the groove), this problem becomes remarkable.
  • the air inflow portion 11 is preferably provided in a part of the narrow groove 10 in the longitudinal direction.
  • the length of the air inflow portion 11 (the length along the longitudinal direction of the narrow groove 10) is preferably 5 mm or more and 1 ⁇ 2 or less of the length of the narrow groove 10 in the longitudinal direction.
  • the “longitudinal direction of the narrow groove” means the direction of a straight line connecting the midpoints of the opposing groove walls at the groove bottom at both ends of the narrow groove (the opening end in the case of opening).
  • the air inflow part 11 becomes small as the tread part wears, and the effect of taking in wind, that is, the heat radiation performance is reduced.
  • the amount of heat generated in the tread portion also decreases as the tread portion wears, it is not necessary to design the air inflow portion 11 when it is new in preparation for wear.
  • the narrow groove 10 is preferably closed when grounded. Specifically, the width of the narrow groove 10 is preferably about 10 mm to 20 mm. When the narrow groove 10 is closed at the time of ground contact, the rib-shaped central land portion 6 becomes one continuous land portion, so that the rigidity of the land portion increases and the wear performance can be improved.
  • the air inflow portion 11 is one of the two ends of the narrow groove 10 that first hits the wind. It may be formed on the groove wall surface on the end portion side, or may be formed on the groove wall surface on the end portion side that comes into contact with the wind last, as shown in FIG. Further, as shown in FIG. 6C, the air inflow portion 11 may be formed in the central portion of the narrow groove 10.
  • the inflow portions 11 are formed on both the windward and leeward groove wall surfaces of the narrow groove 10, the inflow portions are thin so as not to overlap with the tire circumferential direction (the direction in which the wind flows).
  • the center B along the longitudinal direction of the narrow groove 10 is preferably spaced apart in the longitudinal direction of the narrow groove 10.
  • the air inflow portion 11 is formed at both ends of the narrow groove 10 as shown in FIGS. 7A and 7B, and as shown in FIGS. 7C and 7D.
  • the fine groove 10 is formed so as to be shifted in the center.
  • the points A and B may be formed side by side in the longitudinal direction of the narrow groove 10 without being spaced apart from each other, that is, in the center of the narrow groove 10.
  • the planar shape when viewed from the tread surface of the air inflow portion 11 is, as shown in FIG. 8A, one set of opposite sides is parallel to the wall surface of the narrow groove 10 and another set of opposite sides is the tire circumferential direction. 8B and 8C, one set of opposite sides is parallel to the wall surface of the narrow groove 10, and another set of opposite sides is inclined with respect to the tire circumferential direction. It can also be a parallelogram. Further, as shown in FIG. 8 (d), the air inflow portion 11 is a trapezoid whose lower bottom is opened on the wall surface of the narrow groove 10 and whose upper bottom is on the side far from the wall surface of the narrow groove 10, that is, in the tire width direction.
  • the length may be gradually reduced from the wall surface side of the narrow groove 10, and as shown in FIG. 8E, the upper bottom opens to the wall surface of the narrow groove 10, and the lower bottom is the narrow groove 10.
  • the trapezoid on the side far from the wall surface, that is, the length in the tire width direction may be gradually increased from the wall surface side of the narrow groove 10.
  • the air inflow part 11 can also make 2 sides other than the trapezoid upper base and lower base shown in FIG.8 (e) into a curve.
  • the air inflow part 11 can also be made into a semicircle as shown in FIG.8 (g), and can also be made into a triangle as shown in FIG.8 (h).
  • the depth of the air inflow portion 11 is the side far from the wall surface of the narrow groove 10. It gradually increases from (point A in the figure) toward the side opening in the wall surface of the narrow groove 10 (point B in the figure), and the depth of the air inflow portion 11 is deepest on the side opening in the wall surface of the narrow groove 10. It is preferable.
  • the bottom surface of the air inflow portion 11 may be a flat surface as shown in FIG. 9A, or may be a curved surface as shown in FIGS. 9B to 9D.
  • the depth of the air inflow part 11 may increase stepwise from A point to B point. Further, as shown in FIGS. 9 (f) and 9 (g), the depth of the air inflow portion 11 is constant from point A to point C, and may gradually increase from point C to point B. As shown to (h), the depth of the air inflow part 11 may increase gradually from A point to C point, and may be constant from C point to B point. Moreover, as shown in FIG.9 (i), the depth of the air inflow part 11 may be constant from A point to B point.
  • the results are expressed as an index based on Comparative Example 1, and the larger the value, the higher the heat dissipation effect.
  • Each dimension is measured in a no-load state (hereinafter referred to as “predetermined state”) in which a pneumatic tire is assembled to a regular rim, filled with a regular internal pressure, and no load is applied. Measure along.
  • predetermined state a no-load state
  • the “regular rim” means “standard rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO.
  • “regular internal pressure” means “maximum air pressure” prescribed by JATMA, “TIRE LOAD LIMITS AT VARIOUS COLD INFRATION PRESURES” prescribed by TRA, or “INFLATION PRESURES” prescribed by ETRTO. .
  • 1 tread surface
  • 2 central circumferential groove
  • 3 intermediate circumferential groove
  • 4 lateral circumferential groove
  • 5 intermediate width direction groove
  • 6 lateral width direction groove
  • 7 Rib-shaped central land
  • 8 Block-shaped intermediate land
  • 9 Block-shaped side land portion
  • 10 narrow groove
  • 10c groove wall surface of the narrow groove
  • 11 Air inflow part
  • 11a Groove wall opening end of air inflow part
  • 12 Wear prevention part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

陸部剛性を確保しつつトレッド部の放熱効果を向上させ、さらに、放熱効果の低下を抑制することが可能な空気入りタイヤを提供する。 トレッド踏面1に、タイヤ周方向に対して傾斜した方向に延在するとともに、溝幅(W1)が溝深さ(D1)よりも小さい細溝(10)が形成され、細溝(10)のタイヤ周方向に対向する溝壁面(10c)の少なくとも一方に、トレッド踏面(1)に開口する空気流入部(11)が形成されており、空気流入部(11)が形成された溝壁面(10c)に対向する溝壁面(10c)、または空気流入部(11)が形成された溝壁面(10c)に対向する溝壁面(10c)に接続するトレッド踏面(1)に、突起または凹部からなる摩耗防止部(12)を有することを特徴とする。

Description

空気入りタイヤ
 本発明は、トレッド部の放熱効果を向上させた空気入りタイヤに関する。
 タイヤの負荷転動によってトレッド部が発熱し高温となることで、トレッド部のヒートセパレーション等の様々な故障の原因となる。ここで、トレッド部の温度を低下させるためには、発熱の低減または放熱の向上が必要である。
 従来、トレッド部の温度を低下させるため、トレッド部に溝を形成することで、発熱源となるトレッドゴムを除去するとともに、トレッド部の表面積を増加して放熱を高めるという方法が採用されてきた(例えば、特許文献1参照)。
特開2003−205706号公報
 しかしながら、溝幅が狭く、タイヤ幅方向に延びる溝には、溝内部に空気の流れが生じ難い。また、温度低下効果をより向上させるためにはさらに溝を増加する必要があるが、溝を増加すると陸部剛性の低下を招き、摩耗性能や操縦安定性能が悪化する原因となる。 それゆえ、本発明の目的は、陸部剛性を確保しつつトレッド部の放熱効果を向上させ、さらに、放熱効果の低下を抑制することが可能な空気入りタイヤを提供することにある。
 本発明は、上記課題を解決するためになされたものであり、本発明の空気入りタイヤは、トレッド踏面に、細溝が形成され、一端が細溝のタイヤ周方向に対向する溝壁面に開口し、他端がトレッド踏面に開口する空気流入部が形成されており、空気流入部に対向する細溝の溝壁面、または空気流入部が形成された溝壁面に対向する溝壁面に接続するトレッド踏面に、突起または凹部からなる摩耗防止部を有することを特徴とする。
 本発明によれば、陸部剛性を確保しつつトレッド部の放熱効果を向上させ、さらに、放熱効果の低下を抑制することが可能な空気入りタイヤを提供することができる。
(a)は本発明の一実施形態に係る空気入りタイヤのトレッドパターンの展開図であり、(b)は図1(a)のA−A断面図である。 (a)~(j)は、摩耗防止部の変形例を示す図であり、(k)は、比較例を示す図である。 この発明の一実施形態のタイヤ内部構造を示す、タイヤ幅方向断面図である。 本発明の作用を説明するための図である。 細溝内部の風速ベクトルを示す図である。 流入部の変形例を示す図である。 流入部の変形例を示す図である。 流入部の変形例を示す図である。 流入部の変形例を示す図である。
 以下に、図面を参照しつつ、本発明の実施の形態について例示説明する。
 図1(a)は、本発明の空気入りタイヤのトレッドパターンの一例を示した展開図である。トレッド踏面1には、タイヤ赤道面CL上に、タイヤ周方向に沿って延びる中央周方向溝2と、中央周方向溝2を挟んでタイヤ周方向に沿って延びる1対の中間周方向溝3と、これらの中間周方向溝3のタイヤ幅方向外側にタイヤ周方向に沿って延びる1対の側方周方向溝4と、タイヤ幅方向に沿って延びるとともに中間周方向溝3および側方周方向溝4に連通する中間幅方向溝5と、タイヤ幅方向に沿って延びるとともに側方周方向溝4に連通しトレッド踏面端TEに延びる側方幅方向溝6と、が形成されている。
 中央周方向溝2と中間周方向溝3によって、タイヤ赤道面CLを挟む一対のリブ状中央陸部7が形成されている。中間周方向溝3と側方周方向溝4と中間幅方向溝5とによって、ブロック状中間陸部8が形成されている。側方周方向溝4と側方幅方向溝6とによって、ブロック状側方陸部9が形成されている。なお、図示するトレッドパターンは一例であり、本発明は、リブ基調パターンおよびブロック基調パターン、その他任意のトレッドパターンにも適用可能である。中間幅方向溝5および側方幅方向溝6は、タイヤ幅方向に対して傾斜していてもよいし、その溝幅が一定ではなく変化してもよい。また、側方幅方向溝6は、トレッド踏面端TEに連通していなくてもよい。
 リブ状中央陸部7には、タイヤ周方向に対して傾斜した方向に延在する細溝10が形成されている。細溝10は、一端10aがリブ状中央陸部7内で終端し、他端10bが中央周方向溝2に開口している。図1(b)に示すように、図1(a)のA−A断面(タイヤ周方向に沿った断面)において細溝10の溝幅W1は、溝深さD1より小さい(狭い)。図示例では、溝幅W1は、タイヤ周方向幅としている。
 また、図示例の本実施例の空気入りタイヤでは、細溝10のタイヤ周方向に対向する溝壁面10cの一方に、トレッド踏面1に開口する空気流入部11が形成されている。すなわち、空気流入部11は、溝壁面10cとトレッド踏面1を繋いでいて、一端が溝壁面10cに開口し、他端がトレッド踏面1に開口されるように形成されている。また、空気流入部11に対向する細溝10の溝壁面10cに接続するトレッド踏面1(この例ではリブ状中央陸部7の踏面)に、突起からなる摩耗防止部12を有する。この例において、摩耗防止部12は、トレッド踏面1からタイヤ径方向外側に突出する、断面が略半円形状の突起となっており、空気流入部11に対向する溝壁面10cと接続するトレッド踏面1に、細溝10の延在方向に沿って連続して延び、摩耗防止部12は、細溝10の延在方向長さL1に一致した長さを有する。なお、摩耗防止部12の細溝10の延在方向に沿った長さは特に限定されず、任意の長さに設定することができる。
 なお、図示する細溝10の配置は一例であり、本発明の細溝10は、リブ状中央陸部7の他、ブロック状中間陸部8およびブロック状側方陸部9に設けることもできる。また、細溝10は、タイヤ周方向に対して任意の角度α(0°<α≦90°)で傾斜しているものとすることができる。さらに、複数の細溝10は、互いに平行に形成されていなくてもよい。また、細溝10は直線状に延びるのみでなく、途中で屈曲または湾曲していても良い。また、細溝10は図1の例ではその延在方向の一端が陸部内で終端しているが、これに限られず、その延在方向の両端が陸部内で終端していてもよく、両端が他の溝に開口していても良い。なお、細溝10は、その両端が陸部内で終端していることが、陸部の剛性を確保する観点で好ましい。
 また、図示する空気流入部11の位置および形状は一例であり、本発明の空気流入部11は、細溝10のタイヤ周方向に対向する溝壁面10cの少なくとも一方に形成されていればよく、その限りにおいて、細溝10の溝壁面10cに対して、任意の位置に任意の形状で配置することができる。空気流入部11のトレッド踏面の展開図における平面形状としては、一組の対辺が細溝10の溝壁面10cと平行で、もう一組の対辺がタイヤ周方向に平行な平行四辺形の他、一組の対辺が細溝10の溝壁面10cと平行で、もう一組の対辺がタイヤ周方向に対して傾斜した平行四辺形とすることもできる。また、空気流入部11は、トレッド踏面の展開図における平面形状が、台形、半円形、三角形等であってもよい。
 また、図1の摩擦防止部12は一例であり、空気流入部11に対向する細溝10の溝壁面10c、または該溝壁面10cに接続するトレッド踏面1に、突起または凹部の形状を有していればよく、その形状は特に限定されるものではなく、任意の形状とすることができる。タイヤ径方向外側に突出する突起である場合の摩擦防止部12は、図1(b)に示すように、タイヤ周方向断面視における形状が、該突起のタイヤ径方向内方に曲率中心を有する円弧形状であることが好ましく、これによれば、突起自体の摩耗を抑制して、放熱効果の低下をより効果的に抑制することができる。また摩耗防止部12は、空気流入部11に対向する細溝10の溝壁面10c、および該溝壁面10cに接続するトレッド踏面1のいずれか一方の面だけでなく、両方の面に設けることも可能である。
 以下、本実施形態の作用を説明する。
 タイヤが転動すると、タイヤの周囲にはタイヤの回転方向とは反対方向に風(空気)が流れる。この風を、トレッド踏面1に形成した溝に取り込むことにより、トレッド部が放熱され、トレッド部の温度が低下する。トレッド踏面1に幅広の溝を形成すると、溝内に風を取り込むことはできるが、陸部剛性が低下して、摩耗性能や操縦安定性能が悪化する。一方、陸部剛性が低下しない程度の幅狭の溝を形成しただけであると、溝内に風を取り込むことができない。すなわち、風の大部分は、トレッド踏面1に形成された細溝10内には取り込まれず、風の一部のみが細溝10内に取り込まれる。しかし、細溝10内に取り込まれた風も、細溝10の溝底まで到達することはなく、細溝10の浅い部分を通過して細溝10から流出されてしまう。それゆえ、トレッド部の温度を低下させる効果は低い。
 そこで、細溝10の風上側の溝壁面10cに空気流入部11を形成することにより、すなわち、空気流入部11を形成した溝壁面10c側が風上側となるようにタイヤを車両に装着して使用することにより、風の大部分を細溝10内に取り込むとともに、細溝10内に取り込んだ風を溝底付近まで到達させることができる。さらに、これに加えて又はこれとは別に、風下側の溝壁面10cに空気流入部11を形成している場合は、この空気流入部11から風を流出させることができる。また、細溝10は、一端10aがリブ状中央陸部7内で終端しているため、例えば両端が中央周方向溝2に開口している場合と比較して陸部剛性を高く維持することができる。なお、風下側の溝壁面10cに空気流入部11を形成していない場合には、細溝10の両端から、風を流出させることができる。
 空気流入部11によるトレッド部の放熱効果をより詳細に説明すると、空気流入部11から流入した風は、空気流入部11が開口する溝壁面10cに対向する溝壁面10cにぶつかり、細溝10の底面や延在方向両端側に拡がって流れ、細溝10の内面から生じた熱を細溝10の外部に放出する。ここで、タイヤの使用によりトレッド踏面1の摩耗が進行すると、細溝の溝壁面10cを構成する陸部が摩耗し、それに伴い溝壁面10cの表面積が縮小する。その結果、空気流入部11から流入した風を、溝壁面10cが十分に受け止めることができず、細溝10の内部に風を取り込む効果が低減してしまう。そこで、空気流入部11に対向する細溝10の溝壁面10cに接続するトレッド踏面1に、突起からなる摩耗防止部12を形成することで、この部分の摩耗を抑制し、放熱効果の悪化を抑制することができる。
 詳細には、トレッド踏面1の摩耗は、トレッド踏面1が接地面に接触してから、接地面から離れて元の形状に戻るまでの間に生じる剪断変形によって発生するものであるが、上記のような突起からなる摩耗防止部12を設けることで、突起に生じる剪断変形を周囲のトレッド踏面1よりも小さくすることができ、その結果、摩耗を低減することができる。これは、トレッド踏面の面積に対して突出する突起の底面面積が小さく、また、突起の体積および剛性が小さいことで、接地した際に、突起が、突起周囲のトレッド踏面から独立して変形することにより剪断変形が小さくなることによるものである。また、トレッド踏面1上ではなく、空気流入部11に対向する溝壁面10c上に、当該溝壁面から空気流入部11側に突出する突起からなる摩耗防止部12を形成した場合にも、摩耗を抑制して、放熱効果を持続させる効果を得ることができる。また、突起ではなく同様の位置に凹部を形成した場合にも、摩耗を抑制することができ、放熱効果を長期にわたって持続させることができる。なお、本発明の空気入りタイヤにあっては、摩耗防止部12が、トレッド踏面からタイヤ径方向外側に突出する突起であることが好ましく、これによれば、放熱効果の低下をより効果的に抑制することができるとともに、容易に製造可能であるので、高い生産性を得ることができる。また、本発明の空気入りタイヤにあっては、摩耗防止部12が、空気流入部11が形成された溝壁面に対向する溝壁面から、空気流入部11側に突出する突起であることが好ましく、これによれば、放熱効果の低下をより効果的に抑制することができる。
 なお、上記の摩耗防止部12は、細溝10の延在方向のみに沿って連続して延び、細溝10の延在方向に沿う長さが、空気流入部11の長さの0.05倍以上、細溝10の長さ以下であることが好ましく、これによれば、摩耗防止効果を高めて、放熱効果をより持続させるとともに、細溝10の延在方向のみに沿って延びているため、必要な領域に必要な突起だけを付与する事でタイヤの外観も優れたものとすることができる。
 また、より確実に摩耗を抑制して、放熱効果をより持続させる観点から、摩耗防止部12は、トレッド踏面からのタイヤ径方向高さH1が、細溝10の溝深さD1の0.005~0.08倍の範囲内であり、同様の理由により、幅W5が細溝10の溝幅W1の0.01~0.4倍の範囲内であることが好ましい。
 なお、空気流入部11は、陸部の大きさに対して十分小さくても、細溝10内の風量を大きく増加させることができるので、それに足る空気流入部11を形成しても陸部の体積を大きく低下させることがない。それゆえ、摩耗性能および操縦安定性への影響は無視できるほど小さい。
 また、空気流入部11の深さは、細溝10の溝壁面10cに開口する溝壁開口端11aで最大となることが好ましく、これによれば、開口が大きくなり細溝10内に空気が流入し易くなる。また、空気流入部11の細溝の延在方向と垂直な断面における側面形状としては、空気流入部11の深さが、空気流入部11が細溝10の溝壁面10cに開口する溝壁開口端11aから遠い側の端から、細溝10の溝壁面10cに開口する溝壁開口端11aに向かって漸増することが好ましく、これによれば、風の流入効果を高めるとともに、陸部体積の無駄な減少を抑制して陸部剛性の低下を抑制することができる。ただし、空気流入部11の底面は、平面とすることもできるし、曲面とすることもできる。また、空気流入部11の深さが、溝壁開口端11aに向かって階段状に増加していてもよいし、空気流入部11の深さが一定であってもよい。
 また、細溝10のいずれか一方の溝壁面10cのみに空気流入部11が形成され、且つ、全ての空気流入部11がタイヤ周方向の同一方向側に配置されているような方向性パターンである場合には、空気入りタイヤを車両に装着する際に風上側に空気流入部11が配置されるように、車両に装着することが好ましい。ただし、利便性の観点から、細溝10の対向する溝壁面10cの両方、すなわち、両側の溝壁面10cに空気流入部11を形成することが好ましく、また、いずれか一方の溝壁面10cのみに空気流入部11が形成されている場合にも、風下側の側壁面10cに空気流入部11を有する細溝10と、風上側の側壁面10cに空気流入部11を有する細溝10とをそれぞれ形成して非方向性パターンとすることが好ましい。細溝10の両側の溝壁面10cに空気流入部11を形成した場合、風上側の溝壁面10cに形成された空気流入部11から細溝10に空気が流入し、細溝10内を通って風下側の溝壁面10cに形成された空気流入部11から抜けるように風の流れが形成される。
 細溝10の両溝壁面10cに、空気流入部11が形成されている場合、空気流入部11同士が細溝10の延在方向の位置が一致しないように、細溝10の一方の溝壁面に形成されている空気流入部11の、溝壁面10cに開口する溝壁開口端11aにおける細溝10の延在方向に沿った中心と、細溝10の他方の溝壁面10cに形成されている空気流入部11の、溝壁開口端11aにおける細溝10の延在方向に沿った中心は、細溝10の延在方向に間隔があいていることが好ましい。この構成により、風上側の空気流入部11から流入した空気が、風下側の空気流入部11から流出するまでの間に、細溝10を通り易くなり、放熱効果をより確実に向上させることができる。
 上記のように、空気流入部11が形成された溝壁面10cに対向する溝壁面10cに、空気流入部11から細溝10の延在方向に離間させて、さらに第2空気流入部11が形成されている、すなわち、細溝10の両側の溝壁面10cに、それぞれ空気流入部11が形成されている場合、これら空気流入部11に対応して、両側の溝壁面10cに摩耗防止部12を有することが好ましい。この構成により、タイヤの回転方向によらずに、放熱効果を向上させるとともに両側の溝壁面10cの摩耗を防止することができ、放熱効果の低下を抑制することができる。
 また、細溝10は、リブ状中央陸部7の任意の位置に形成することが可能であるが、陸部剛性と放熱効果の観点から、中間周方向溝3から細溝10までのタイヤ幅方向の距離W4が、リブ状中央陸部7のタイヤ幅方向の幅W3に対して5~40%の範囲内であることが好ましい。また、空気流入部11による放熱効果向上の観点から、細溝10は、好適には、タイヤ周方向に対して60~90°の角度αで傾斜していることが望ましい。これは、細溝10が風の流れる方向(タイヤ周方向)に対して垂直に近いほど、より強い風が細溝10の溝壁面10cにぶつかり、冷却効果が高くなるためである。
 なお、溝幅W1を溝深さD1より狭くした細溝10に空気流入部11を設けるのは、細溝10が深く、幅が狭いほど、風を細溝10内に取り込み難いので、本発明の効果が顕著に発揮されるためである。また、溝幅W1が大きくなるに従って、溝内に風を取り込むことは容易となるが、陸部剛性の確保が困難となる。
 また、細溝10の延在方向全体にわたる長さの空気流入部11を設けると、陸部体積が無駄に減少して陸部剛性が過度に低下する虞があり、また、細溝10の延在方向全体にわたって均一な風量の風が取り込まれてしまい、この取り込まれた風が細溝10内を流れ難くなり、また細溝10から流出することが妨げられる虞がある。細溝10の両端が溝に開口せずに陸部内で終端している場合、この問題が顕著になる。それゆえ、空気流入部11は、細溝10の延在方向の一部に設けることが好ましい。具体的には、空気流入部11の長さ(細溝10の延在方向に沿った長さ)L2は、5mm以上、細溝10の延在方向の長さL1の1/2以下であることが好ましい。
 また、本発明の空気入りタイヤは、細溝10のタイヤ周方向に対向する溝壁面10cの少なくとも一方に、トレッド踏面1に開口する空気流入部11が形成されており、かつ、細溝10の最大深さD1と、空気流入部11の最大深さD2が1≦D1/D2≦15を満たすことが、陸部剛性の確保および冷却効果の観点から好ましい。
 なお、細溝10がトレッド踏面端TEと連通していない場合には、細溝10の内部に風の流れが起こりにくいため、本発明は、特に有効である。
 また、本発明は、大型化に伴ってトレッド部の発熱が問題となり易い、トラック、バス、建設車両用等の大型タイヤにおいて、顕著な効果を発揮する。特に、偏平率が80%以下、リム径が57インチ以上、過重負荷能力が60mton以上、荷重係数(k−factor)が1.7以上となる空気入りタイヤにおいて、特に有効である。また建設車両用の空気入りタイヤでは、タイヤの車両側(路面と接している接地面と反対側)が車両に覆われず露出しているため、本発明の効果がさらに顕著に現れる。
 また、トレッド展開図上で、両側のトレッド踏面端TEのタイヤ幅方向距離をトレッド幅としたとき、タイヤ赤道面を中心としたトレッド幅の50%のタイヤ幅方向領域をセンター領域、当該センター領域の両側のタイヤ幅方向領域をショルダー領域として、センター領域のネガティブ率が、ショルダー領域のネガティブ率よりも小さい場合、センター領域の発熱がタイヤの耐久性を低下させ易い。このようなタイヤにおいては、センター領域に本発明の細溝および空気流入部を適用することで、高い放熱効果を発揮し、タイヤの耐久性を高めることができる。
 また、本発明の空気入りタイヤは、センター領域の放熱を促す観点から、図1の例のように、センター領域、特にタイヤ赤道面上に位置する周方向溝を有することが好ましいが、この周方向溝の溝幅が、10mm以下であると周方向溝内に風が流れ難いため、本発明を適用することで、放熱効果を高めることができる。
 図1(a)のA−A断面における摩耗防止部12の形状としては、図2(a)に示すように、空気流入部11に対向する溝壁面10cに接続するトレッド踏面1に、溝壁面10cに沿ってタイヤ径方向外側に向かって突出する断面三角形状の他、図2(b)に示すように、空気流入部11に対向する溝壁面10cに接続するトレッド踏面1に、溝壁面10cに沿ってタイヤ径方向外側に向かって突出する断面方形状とすることもできる。また、摩耗防止部12は図2(c)~(e)に示すように、空気流入部11に対向する溝壁面10cの上端に、空気流入部11側に向かって突出する、断面略半円形状、断面三角形状、または断面方形状とすることもできるし、図2(f)~(h)に示すように、空気流入部11に対向する溝壁面10cの上端に、トレッド踏面1から所定の距離に形成された、断面略半円形状、断面三角形状、または断面方形状の凹部とすることもできる。さらに、図2(i)、(j)に示すように、空気流入部11に対向する溝壁面10cの上端に凹部を形成して、空気流入部11に対向する溝壁面10cと、当該溝壁面10cに接続するトレッド踏面1に挟まれた角部を湾曲させたような形状、または当該角部を面取りしたような形状としてもよい。また、図2(a)~(j)に示す摩耗防止部12を複数組合せた形状を、摩耗防止部12として形成することも可能である。以上のような摩耗防止部12においても上記図1(b)の摩耗防止部12同様に、摩耗を抑制し、放熱効果を長期にわたって持続させる効果を得ることができる。図2(c)~(e)に示すように摩耗防止部12が、空気流入部11が形成された溝壁面10cに対向する溝壁面10cから、空気流入部11側に突出する突起であると、摩耗防止効果を高めて、放熱効果をより持続させることができる。
 なお、図2の(k)は、摩耗防止部12を有していない場合の細溝10の溝壁面10cの断面を、比較例として示したものである。
 図3は、本発明の一実施形態にかかる空気入りタイヤ、特に、建設車両等の重荷重用タイヤのタイヤ内部構造を示すタイヤ幅方向断面図である。図3に示されるように、このタイヤ100は、乗用車などに装着される空気入りタイヤと比較して、トレッド部500のゴムゲージ(ゴム厚さ)が厚い。なお、以下に説明するタイヤ内部構造は、図1を参照して説明したトレッドパターンを有する各タイヤにそれぞれ適用可能である。
 具体的には、タイヤ100は、タイヤ外径をOD、タイヤ赤道面Cの位置におけるトレッド部500のゴムゲージをDCとした場合に、DC/OD≧0.015を満たす。
 タイヤ外径OD(単位:mm)とは、タイヤ100の外径が最大となる部分(一般的には、タイヤ赤道面C付近におけるトレッド部500)のタイヤ100の直径である。ゴムゲージDC(単位:mm)は、タイヤ赤道面Cの位置におけるトレッド部500のゴム厚さである。ゴムゲージDCには、ベルト300の厚さは含まれない。なお、タイヤ赤道面Cを含む位置に周方向溝が形成されている場合には、その周方向溝に隣接する位置におけるトレッド部500のゴム厚さとする。
 図3に示されるように、タイヤ100は、1対のビードコア110、カーカス200及び複数のベルト層からなるベルト300を備える。なお、図3では、タイヤ100の半幅のみを示しているが、図示していない方のタイヤ100の半幅も同じ構造を有する。
 ビードコア110は、ビード部120に設けられる。ビードコア110は、ビードワイヤー(図示せず)によって構成される。
 カーカス200は、タイヤ100の骨格をなすものである。カーカス200の位置は、トレッド部500からバットレス部900及びサイドウォール部700を通ってビード部120に渡る。
 カーカス200は、1対のビードコア110間に跨り、トロイダル形状を有する。カーカス200は、本実施形態において、ビードコア110を包む。カーカス200は、ビードコア110に接する。タイヤ幅方向twdにおけるカーカス200の両端は、一対のビード部120によって支持されている。
 カーカス200は、トレッド踏面1側から平面視したときに、所定方向に延在するカーカスコードを有する。本実施形態において、カーカスコードは、タイヤ幅方向twdに沿って延在する。カーカスコードとして、例えば、スチールワイヤが用いられる。
 ベルト300は、トレッド部500に配置される。ベルト300は、タイヤ径方向trdにおいてカーカス200の外側に位置する。ベルト300は、タイヤ周方向に延びる。ベルト300は、カーカスコードが延在する方向である所定方向に対して傾斜して延在するベルトコードを有する。ベルトコードとして、例えば、スチールコードが用いられる。
 複数のベルト層からなるベルト300は、第1ベルト層301、第2ベルト層302、第3ベルト層303、第4ベルト層304、第5ベルト層305及び第6ベルト層306を含む。
 第1ベルト層301は、タイヤ径方向trdにおいてカーカス200の外側に位置する。第1ベルト層301は、タイヤ径方向trdにおいて、複数のベルト層からなるベルト300の中で最も内側に位置する。第2ベルト層302は、タイヤ径方向trdにおいて第1ベルト層301の外側に位置する。第3ベルト層303は、タイヤ径方向trdにおいて第2ベルト層302の外側に位置する。第4ベルト層304は、タイヤ径方向trdにおいて第3ベルト層303の外側に位置する。第5ベルト層305は、タイヤ径方向trdにおいて第4ベルト層304の外側に位置する。第6ベルト層306は、タイヤ径方向trdにおいて第5ベルト層305の外側に位置する。第6ベルト層306は、タイヤ径方向trdにおいて、複数のベルト層からなるベルト300の中で最も外側に位置する。タイヤ径方向trdにおいて、内側から外側に向かって、第1ベルト層301、第2ベルト層302、第3ベルト層303、第4ベルト層304、第5ベルト層305、第6ベルト層306の順に配置される。
 本実施形態において、タイヤ幅方向twdにおいて、第1ベルト層301及び第2ベルト層302の幅(タイヤ幅方向twdに沿って測った幅。以下同じ。)は、トレッド幅TWの25%以上、かつ、70%以下である。タイヤ幅方向twdにおいて、第3ベルト層303及び第4ベルト層304の幅は、トレッド幅TWの55%以上、かつ、90%以下である。タイヤ幅方向twdにおいて、第5ベルト層305及び第6ベルト層306の幅は、トレッド幅TWの60%以上、かつ、110%以下である。
 本実施形態において、タイヤ幅方向twdにおいて、第5ベルト層305の幅は、第3ベルト層303の幅よりも大きく、第3ベルト層303の幅は、第6ベルト層306の幅以上であり、第6ベルト層306の幅は、第4ベルト層304の幅よりも大きく、第4ベルト層304の幅は、第1ベルト層301の幅よりも大きく、第1ベルト層301の幅は、第2ベルト層302の幅よりも大きい。タイヤ幅方向twdにおいて、複数のベルト層からなるベルト300のうち、第5ベルト層305の幅が最も大きく、第2ベルト層302の幅が最も小さい。従って、複数のベルト層からなるベルト300は、タイヤ幅方向twdにおける長さが最も短い最短ベルト層(すなわち、第2ベルト層302)を含む。
 最短ベルト層である第2ベルト層302は、タイヤ幅方向twdにおける端縁であるベルト端300eを有する。
 本実施形態において、トレッド踏面1側から平面視したときに、カーカスコードに対する第1ベルト層301及び第2ベルト層302のベルトコードの傾斜角度は、70°以上、かつ、85°以下である。カーカスコードに対する第3ベルト層303及び第4ベルト層304のベルトコードの傾斜角度は、50°以上、かつ、75°以下である。カーカスコードに対する第5ベルト層305及び第6ベルト層306のベルトコードの傾斜角度は、50°以上、かつ、70°以下である。
 複数のベルト層からなるベルト300は、内側交錯ベルト群300Aと、中間交錯ベルト群300Bと、外側交錯ベルト群300Cと、を含む。各交錯ベルト群300A~300Cは、該群内のそれぞれのベルト層を構成するベルトコードが、トレッド踏面1側からの平面視で、該群内において互いに隣接するベルト層間で(好ましくは、タイヤ赤道面をはさんで)互いに交錯する、複数のベルト層の群をいう。
 内側交錯ベルト群300Aは、1組のベルト層からなりタイヤ径方向trdにおいてカーカス200の外側に位置する。内側交錯ベルト群300Aは、第1ベルト層301と第2ベルト層302とによって、構成される。中間交錯ベルト群300Bは、1組のベルト層からなりタイヤ径方向trdにおいて内側交錯ベルト群300Aの外側に位置する。中間交錯ベルト群300Bは、第3ベルト層303と第4ベルト層304とによって、構成される。外側交錯ベルト群300Cは、1組のベルト層からなりタイヤ径方向trdにおいて中間交錯ベルト群300Bの外側に位置する。外側交錯ベルト群300Cは、第5ベルト層305と第6ベルト層306とによって、構成される。
 タイヤ幅方向twdにおいて、内側交錯ベルト群300Aの幅は、トレッド幅TWの25%以上、かつ、70%以下である。タイヤ幅方向twdにおいて、中間交錯ベルト群300Bの幅は、トレッド幅TWの55%以上、かつ、90%以下である。タイヤ幅方向twdにおいて、外側交錯ベルト群300Cの幅は、トレッド幅TWの60%以上、かつ、110%以下である。
 トレッド踏面1側から平面視したときに、カーカスコードに対する内側交錯ベルト群300Aのベルトコードの傾斜角度は、70°以上、かつ、85°以下である。トレッド踏面1側から平面視したときに、カーカスコードに対する中間交錯ベルト群300Bのベルトコードの傾斜角度は、50°以上、かつ、75°以下である。トレッド踏面1側から平面視したときに、カーカスコードに対する外側交錯ベルト群300Cのベルトコードの傾斜角度は、50°以上、かつ、70°以下である。
 トレッド踏面1側から平面視したときに、カーカスコードに対するベルトコードの傾斜角度は、内側交錯ベルト群300Aの傾斜角度が最も大きい。中間交錯ベルト群300Bのカーカスコードに対するベルトコードの傾斜角度は、外側交錯ベルト群300Cのカーカスコードに対するベルトコードの傾斜角度以上である。
 周溝(中間周方向溝)3は、ベルト端300eから、タイヤ100のトレッド踏面1側から平面視したときの、周溝3の幅方向における中心を通る溝幅中心線WLのタイヤ幅方向最内位置(すなわちタイヤ幅方向内側への折れ曲がり箇所)までの、タイヤ幅方向twdに沿った長さDLが、200mm以下であるように、形成されている。
 以下、空気流入部11の作用について詳細に説明する。
 図4(a)に示すように、タイヤが転動すると、タイヤの周囲には進行方向とは反対方向に風が流れる。この風を、トレッド踏面1に形成した溝に取り込むことにより、トレッド部が放熱され、トレッド部の温度が低下する。トレッド踏面1に幅広の溝を形成すると、溝内に風を取り込むことはできるが、陸部剛性が低下して、摩耗性能や操縦安定性能が悪化する。一方、陸部剛性が低下しない程度の幅狭の溝を形成すると、溝内に風を取り込むことができない。すなわち、図4(a)のXで示す部分を図4(b)に示すと、風の大部分は、矢印Aで示すようにトレッド踏面1に形成された細溝10内には取り込まれず、風の一部のみが矢印Bで示すように細溝10内に取り込まれる。しかし、矢印Bの風も、細溝10の溝底まで到達することはなく、細溝10の浅い部分を通過して細溝10から流出されてしまう。それゆえ、トレッド部の温度を低下させる効果は低い。
 そこで、図4(c)に示すように、細溝10の風上側の溝壁面に空気流入部11を形成することにより、風の大部分を細溝10内に取り込むとともに、細溝10内に取り込んだ風を溝底まで到達させ、風下側の溝壁面に空気流入部11を形成している場合は、この空気流入部11から風を流出させることができる。なお、風下側の溝壁面に空気流入部11を形成していない場合も、細溝10の端部で行き場を失った風は、風下側の溝壁面の端部から流出する。これにより、トレッド部の温度を低下させる効果を高めることができる。
 特に、建設車両用の空気入りタイヤでは、図中Xで示すタイヤの車両側(トレッド踏面側と反対側)が車両に覆われず露出しているため、本発明の効果が顕著に現れる。
 また、図5を参照して、細溝10の内部の風速ベクトルの数値解析を説明する。
 図5(a)は、タイヤ幅方向に対して30°で傾斜させた細溝10について、空気流入部11を設けない場合を示し、図5(b)は、風上側および風下側に空気流入部11を設けた場合を示す。また、図5(c)は流速を示す。なお、細溝10の大きさは、長手方向の長さ200mm、幅10mm、深さ100mmであり、タイヤ幅方向に対して30°で傾斜している。また、空気流入部11の大きさは、長さ(細溝10の長手方向に沿った長さ)50mm、幅50mm、最深部の深さ20mmである。
 図5(a)に示すように、空気流入部11を設けない場合は、細溝10の内部にほとんど風が取り込まれていないことがわかる。
 一方、図5(b)に示すように、空気流入部11を設けた場合は、風上側の溝壁面の空気流入部11付近で風速ベクトルが最大となり、細溝10の内部に風が取り込まれ、風下側の溝壁面の空気流入部11付近でまた、風速ベクトルが大きくなることが分かる。
 細溝10のいずれか一方の溝壁面に空気流入部11が形成されている場合は、細溝10の風上側の溝壁面に、空気流入部11が形成されているように、空気入りタイヤを車両に装着すればよい。
 ただし、細溝10のいずれか一方の溝壁面に空気流入部11を形成すると、パターンが方向性をもち、利便性が低下するため、上述した図示例のように、細溝10の両側の溝壁面に空気流入部11を形成して非方向性パターンとすることが好ましい。
 なお、風上側の溝壁面に形成された空気流入部11は空気を流入させる(取り込む)働きをするのに対し、風下側の溝壁面に形成された空気流入部11は空気を流入させる働きをしない。よって、風上側の溝壁面に形成された空気流入部11から細溝10に流入し細溝10内を通って風下側の溝壁面に形成された空気流入部11に抜けるような風の流れが形成される。
 なお、細溝10の溝幅を、溝深さより狭く設定したのは、細溝10が浅くかつ幅広の場合、空気流入部11を形成しなくても、風を細溝10内に取り込み易いので本発明の効果が低いためである。また、細溝10が浅い場合、細溝10壁面の熱伝達率を上げても温度低減効果がトレッド部の内部まで届き難いためである。
 空気流入部11は、陸部の大きさに対して十分小さくても、細溝10内の風量を増加させることができるので、空気流入部11を形成しても陸部の体積を大きく低下させることがない。それゆえ、摩耗性能および操縦安定性への影響は無視できるほど小さい。
 また、細溝10の長手方向全体にわたる長さの空気流入部11を設けると、細溝10の長手方向全体にわたって均一な風量の風が取り込まれてしまい、この取り込まれた風が細溝10内を流れることができず、また細溝10から流出されるのが妨げられる。特に、細溝10が独立している場合(細溝10の両端が溝に開口せずに陸部内で終端している場合)、この問題が顕著になる。それゆえ、空気流入部11は、細溝10の長手方向の一部に設けることが好ましい。
 具体的には、空気流入部11の長さ(細溝10の長手方向に沿った長さ)は、5mm以上細溝10の長手方向の長さの1/2以下であることが好ましい。
 なお、「細溝の長手方向」とは、細溝の両端(開口している場合は、開口端)において、溝底における対向する溝壁の中間点同士を結んだ直線の方向を意味するものとする。
 なお、空気流入部11はトレッド部が摩耗するに従って小さくなり、風を取り込む効果、すなわち、放熱性能は低減する。しかし、トレッド部の発熱量もトレッド部の摩耗に従って減少していくため、摩耗後に備えて新品時の空気流入部11を大きく設計する必要性は低い。
 細溝10は、接地時に閉じることが好ましい。具体的には、細溝10の幅は10mm~20mm程度であることが好ましい。細溝10が接地時に閉じると、リブ状中央陸部6が1つの連続した陸部になるため、陸部の剛性が高まり、摩耗性能が向上することができる。
 以下、図6~図9を用いて、空気流入部11の各種変形例を説明する。図中矢印で、風の向きを表すものとする。
 細溝10がタイヤ幅方向に対して傾斜した方向に延在する場合、空気流入部11は、図6(a)に示すように、細溝10の両端部のうち、風に最初に当たる方の端部側の溝壁面に形成されていてもよいし、図6(b)に示すように、風に最後に当たる方の端部側の溝壁面に形成されていてもよい。また、図6(c)に示すように、空気流入部11は、細溝10の中央部に形成されていてもよい。
 細溝10の風上側および風下側の両溝壁面に、空気流入部11が形成されている場合、流入部同士がタイヤ周方向(風が流れてくる方向)に対して重ならないように、細溝10の一方の溝壁面に形成されている空気流入部11の、細溝10の長手方向に沿った中心Aと、細溝10の他方の溝壁面に形成されている空気流入部11の、細溝10の長手方向に沿った中心Bと、は、細溝10の長手方向に間隔があいていることが好ましい。
 具体的には、空気流入部11は、図7(a)(b)に示すように、細溝10の両端部に形成されていること、および、図7(c)(d)に示すように、細溝10の中央部にずらして形成されていることが好ましい。ただし、図7(e)に示すように、細溝10の中央部に並べて、すなわち、点Aと点Bとが、細溝10の長手方向に間隔をあけずに形成されていてもよい。
 空気流入部11のトレッド踏面から見た場合の平面形状としては、図8(a)に示すように、一組の対辺が細溝10の壁面と平行で、もう一組の対辺がタイヤ周方向に平行な平行四辺形の他、図8(b)(c)に示すように、一組の対辺が細溝10の壁面と平行で、もう一組の対辺がタイヤ周方向に対して傾斜した平行四辺形とすることもできる。また、空気流入部11は、図8(d)に示すように、下底が細溝10の壁面に開口し、上底が細溝10の壁面から遠い側にある台形、すなわち、タイヤ幅方向長さが、細溝10の壁面側から漸減するものとすることもできるし、図8(e)に示すように、上底が細溝10の壁面に開口し、下底が細溝10の壁面から遠い側にある台形、すなわち、タイヤ幅方向長さが、細溝10の壁面側から漸増するものとすることもできる。また、空気流入部11は、図8(f)に示すように、図8(e)に示す台形の上底および下底以外の2辺を曲線とすることもできる。また、空気流入部11は、図8(g)に示すように、半円とすることもできるし、図8(h)に示すように、三角形とすることもできる。
 空気流入部11の細溝の長手方向と垂直な断面における側面形状としては、図9(a)~(d)に示すように、空気流入部11の深さが細溝10の壁面から遠い側(図中A地点)から、細溝10の壁面に開口する側(図中B地点)に向かって漸増し、細溝10の壁面に開口する側において空気流入部11の深さが最も深くなることが好ましい。ただし、空気流入部11の底面は、図9(a)に示すように平面とすることもできるし、図9(b)~(d)に示すように、曲面とすることもできる。また、図9(e)に示すように、空気流入部11の深さが、A地点からB地点に向かって階段状に増加してもよい。また、図9(f)(g)に示すように、空気流入部11の深さが、A地点からC地点まで一定で、C地点からB地点に向かって漸増してもよいし、図9(h)に示すように、空気流入部11の深さが、A地点からC地点まで漸増し、C地点からB地点まで一定でもよい。また、図9(i)に示すように、空気流入部11の深さが、A地点からB地点まで一定でもよい。
 以下、本発明の実施例について説明する。実施例、比較例ともに、タイヤサイズ59/80R63の建設車両用タイヤを用いた。実施例、比較例の各タイヤの対応図面、各種の寸法は表1に示す。なお、L3(mm)は、細溝10の延在方向に沿った摩耗防止部12の長さであり、θは、細溝10の延在方向2に対する空気流入部の延在方向の角度を示す。上記の各タイヤを用いて、室内ドラム試験にてベルト上温度をモニタリングし放熱効果継続時間を評価した。荷重条件は正規荷重、速度条件は8km/hとした。測定結果を表1に示す。結果は比較例1を基準とした指標で表し、この値が大きいほど放熱効果が高いことを示す。なお、各寸法の測定は、空気入りタイヤを、正規リムに組み付け、正規内圧を充填し、荷重を加えない無負荷状態(以下、「所定状態」という。)で行うものとし、タイヤの表面に沿って測定するものとする。そして、「正規リム」とは、JATMAに規定される「標準リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、「正規内圧」とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、摩耗防止部を有する実施例タイヤは、摩耗防止部を有していない比較例タイヤよりも、放熱効果が長期にわたって継続したことがわかる。
 かくしてこの発明により、陸部剛性を確保しつつトレッド部の放熱効果を向上させ、さらに、放熱効果の低下を抑制することが可能な空気入りタイヤを提供することが可能となった。
1:トレッド踏面、 2:中央周方向溝、 3:中間周方向溝、
4:側方周方向溝、 5:中間幅方向溝、 6:側方幅方向溝、
7:リブ状中央陸部、 8:ブロック状中間陸部、
9:ブロック状側方陸部、 10:細溝、 10c:細溝の溝壁面、
11:空気流入部、 11a:空気流入部の溝壁開口端、
12:摩耗防止部

Claims (6)

  1.  トレッド踏面に、タイヤ周方向に対して傾斜した方向に延在するとともに、溝幅が溝深さよりも小さい細溝が形成され、
     一端が、前記細溝のタイヤ周方向に対向する溝壁面の少なくとも一方に開口し、他端がトレッド踏面に開口する空気流入部が形成されており、
     前記空気流入部が形成された溝壁面に対向する溝壁面、または前記空気流入部が形成された溝壁面に対向する溝壁面に接続するトレッド踏面に、突起または凹部からなる摩耗防止部を有することを特徴とする空気入りタイヤ。
  2.  前記摩耗防止部が、前記トレッド踏面からタイヤ径方向外側に突出する突起である、請求項1に記載の空気入りタイヤ。
  3.  前記タイヤ径方向外側に突出する突起のタイヤ周方向断面視における形状は、該突起のタイヤ径方向内方に曲率中心を有する円弧形状である、請求項2に記載の空気入りタイヤ。
  4.  前記摩耗防止部が、前記空気流入部が形成された溝壁面に対向する溝壁面から、前記空気流入部側に突出する突起である、請求項1に記載の空気入りタイヤ。
  5.  前記摩耗防止部は前記細溝の延在方向に沿って連続して延び、前記細溝の延在方向に沿う長さが、前記空気流入部の長さの0.05倍以上、前記細溝の長さ以下である、請求項1~4のいずれか一項に記載の空気入りタイヤ。
  6.  前記空気流入部が形成された溝壁面に対向する溝壁面に、前記空気流入部から前記細溝の延在方向に離間させて、さらに第2空気流入部が形成されており、
     前記第2空気流入部が形成された溝壁面に対向する溝壁面、または前記第2空気流入部が形成された溝壁面に対向する溝壁面に接続するトレッド踏面に、突起または凹部からなる第2摩耗防止部を有する、請求項1~5のいずれか一項に記載の空気入りタイヤ。
PCT/JP2014/057631 2013-03-13 2014-03-13 空気入りタイヤ WO2014142346A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/773,858 US10647160B2 (en) 2013-03-13 2014-03-13 Pneumatic tire
CN201480014498.5A CN105008149B (zh) 2013-03-13 2014-03-13 充气轮胎
EP14762684.0A EP2974886B1 (en) 2013-03-13 2014-03-13 Pneumatic tire
ES14762684.0T ES2634198T3 (es) 2013-03-13 2014-03-13 Neumático

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013050487A JP5568657B1 (ja) 2013-03-13 2013-03-13 空気入りタイヤ
JP2013-050487 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014142346A1 true WO2014142346A1 (ja) 2014-09-18

Family

ID=51427221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057631 WO2014142346A1 (ja) 2013-03-13 2014-03-13 空気入りタイヤ

Country Status (6)

Country Link
US (1) US10647160B2 (ja)
EP (1) EP2974886B1 (ja)
JP (1) JP5568657B1 (ja)
CN (1) CN105008149B (ja)
ES (1) ES2634198T3 (ja)
WO (1) WO2014142346A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148178A1 (ja) * 2015-03-19 2016-09-22 株式会社ブリヂストン タイヤ
JP2016175459A (ja) * 2015-03-19 2016-10-06 株式会社ブリヂストン タイヤ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107415599B (zh) * 2017-09-06 2023-07-28 安徽佳通乘用子午线轮胎有限公司 一种简化工艺舒适安全的缺气保用轮胎
JP7000788B2 (ja) * 2017-10-13 2022-01-19 住友ゴム工業株式会社 空気入りタイヤ
JP7215900B2 (ja) 2018-12-27 2023-01-31 Toyo Tire株式会社 空気入りタイヤ
CN112606630A (zh) * 2021-01-07 2021-04-06 厦门正新橡胶工业有限公司 越野竞技用充气轮胎胎面花纹结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596913A (ja) * 1991-10-08 1993-04-20 Bridgestone Corp 重荷重用空気入りタイヤ
JPH11105512A (ja) * 1997-10-02 1999-04-20 Bridgestone Corp 空気入りタイヤ
JP2003205706A (ja) 2002-01-15 2003-07-22 Bridgestone Corp 空気入りタイヤ
JP2009227264A (ja) * 2008-02-27 2009-10-08 Bridgestone Corp 空気入りタイヤ
WO2013035889A1 (ja) * 2011-09-09 2013-03-14 株式会社ブリヂストン 空気入りタイヤ
JP2013086563A (ja) * 2011-10-13 2013-05-13 Bridgestone Corp 空気入りタイヤ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1225238A (ja) * 1967-04-21 1971-03-17
JPH08332810A (ja) 1995-06-07 1996-12-17 Ohtsu Tire & Rubber Co Ltd :The 空気入りタイヤ
JP2004098982A (ja) * 2002-09-12 2004-04-02 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP4938316B2 (ja) * 2006-01-20 2012-05-23 株式会社ブリヂストン 建設車両用タイヤ
JP4943717B2 (ja) * 2006-03-01 2012-05-30 株式会社ブリヂストン 空気入りタイヤ
JP5121251B2 (ja) * 2007-02-26 2013-01-16 株式会社ブリヂストン 空気入りタイヤ
JP5155810B2 (ja) * 2008-10-14 2013-03-06 東洋ゴム工業株式会社 空気入りタイヤ
JP2010247711A (ja) * 2009-04-16 2010-11-04 Bridgestone Corp 空気入りタイヤ
JP5346673B2 (ja) * 2009-04-30 2013-11-20 株式会社ブリヂストン タイヤ
DE102009044246A1 (de) * 2009-10-14 2011-05-12 Continental Reifen Deutschland Gmbh Laufstreifenprofil eines Fahrzeugluftreifens
JP5907648B2 (ja) * 2010-01-06 2016-04-26 株式会社ブリヂストン 空気入りタイヤ
JP5603670B2 (ja) * 2010-06-18 2014-10-08 株式会社ブリヂストン タイヤ
DE102010060616A1 (de) * 2010-11-17 2012-05-24 Continental Reifen Deutschland Gmbh Laufstreifenprofil eines Fahrzeugluftreifens
DE102010060617A1 (de) * 2010-11-17 2012-05-24 Continental Reifen Deutschland Gmbh Laufstreifenprofil eines Fahrzeugluftreifens
JP5753014B2 (ja) * 2011-07-13 2015-07-22 株式会社ブリヂストン タイヤ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596913A (ja) * 1991-10-08 1993-04-20 Bridgestone Corp 重荷重用空気入りタイヤ
JPH11105512A (ja) * 1997-10-02 1999-04-20 Bridgestone Corp 空気入りタイヤ
JP2003205706A (ja) 2002-01-15 2003-07-22 Bridgestone Corp 空気入りタイヤ
JP2009227264A (ja) * 2008-02-27 2009-10-08 Bridgestone Corp 空気入りタイヤ
WO2013035889A1 (ja) * 2011-09-09 2013-03-14 株式会社ブリヂストン 空気入りタイヤ
JP2013086563A (ja) * 2011-10-13 2013-05-13 Bridgestone Corp 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2974886A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148178A1 (ja) * 2015-03-19 2016-09-22 株式会社ブリヂストン タイヤ
JP2016175459A (ja) * 2015-03-19 2016-10-06 株式会社ブリヂストン タイヤ
CN107428203A (zh) * 2015-03-19 2017-12-01 株式会社普利司通 轮胎
CN107428203B (zh) * 2015-03-19 2019-08-27 株式会社普利司通 轮胎

Also Published As

Publication number Publication date
CN105008149B (zh) 2017-05-31
ES2634198T3 (es) 2017-09-27
US20160023519A1 (en) 2016-01-28
US10647160B2 (en) 2020-05-12
EP2974886A4 (en) 2016-01-20
JP2014177139A (ja) 2014-09-25
CN105008149A (zh) 2015-10-28
EP2974886B1 (en) 2017-05-03
JP5568657B1 (ja) 2014-08-06
EP2974886A1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2014142349A1 (ja) 空気入りタイヤ
WO2014142350A1 (ja) 空気入りタイヤ
JP6772615B2 (ja) 空気入りタイヤ
WO2014142346A1 (ja) 空気入りタイヤ
JP5238050B2 (ja) 空気入りタイヤ
WO2014119325A1 (ja) 空気入りタイヤ
JP5981108B2 (ja) 乗用車用空気入りラジアルタイヤ及びその使用方法
JP6558297B2 (ja) 空気入りタイヤ
WO2014142348A1 (ja) 空気入りタイヤ
WO2015097945A1 (ja) 重荷重用空気入りタイヤ
WO2015001810A1 (ja) 重荷重用空気入りタイヤ
JP2013189137A (ja) 空気入りタイヤ
WO2014178182A1 (ja) 重荷重用空気入りタイヤ
JP2020066277A (ja) 空気入りタイヤ
JP2020066278A (ja) 空気入りタイヤ
JP2020066279A (ja) 空気入りタイヤ
JP2018020689A (ja) 空気入りタイヤ
WO2019142508A1 (ja) 空気入りタイヤ
WO2014167859A1 (ja) 空気入りタイヤ
JP7111261B2 (ja) タイヤ
JP6060138B2 (ja) 空気入りタイヤ
JP2011201522A (ja) 空気入りタイヤ
JP2021030891A (ja) タイヤ
JP2019104375A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14773858

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014762684

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014762684

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE