WO2015097945A1 - 重荷重用空気入りタイヤ - Google Patents

重荷重用空気入りタイヤ Download PDF

Info

Publication number
WO2015097945A1
WO2015097945A1 PCT/JP2014/004607 JP2014004607W WO2015097945A1 WO 2015097945 A1 WO2015097945 A1 WO 2015097945A1 JP 2014004607 W JP2014004607 W JP 2014004607W WO 2015097945 A1 WO2015097945 A1 WO 2015097945A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
block
width direction
shallow groove
Prior art date
Application number
PCT/JP2014/004607
Other languages
English (en)
French (fr)
Inventor
明子 鵜澤
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP14875868.3A priority Critical patent/EP3088214B1/en
Priority to US15/104,254 priority patent/US10421321B2/en
Priority to ES14875868.3T priority patent/ES2674097T3/es
Publication of WO2015097945A1 publication Critical patent/WO2015097945A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0351Shallow grooves, i.e. having a depth of less than 50% of other grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0362Shallow grooves, i.e. having a depth of less than 50% of other grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0367Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
    • B60C2011/0369Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth with varying depth of the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0372Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • B60C2011/1361Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom with protrusions extending from the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention has, on the tread surface, a block defined by two or more circumferential grooves extending continuously in the tire circumferential direction and transverse grooves opening to the circumferential grooves adjacent to each other in the tire width direction.
  • the present invention relates to a heavy duty pneumatic tire.
  • Such heavy-duty pneumatic tires can be used in dump trucks and other vehicles that can be used at construction sites, mines, etc., and such vehicles are soft clay of several centimeters on hard ground after rain. It may be used for running on road surfaces such as muddy areas where layers are formed.
  • a block straddling the tire equatorial plane is provided with one or more shallow grooves having an average groove depth shallower than the groove depth of the circumferential groove adjacent to the block, and at least the shallow grooves are provided.
  • One in which one is opened in at least one of a circumferential groove and a transverse groove adjacent to the block is described.
  • the block portion (sub-block) adjacent to the shallow groove is reduced in rigidity due to a decrease in the rigidity of the block.
  • stone biting may occur in the shallow groove, or mud that has entered the shallow groove may stay there and the mud repellency may not be improved sufficiently.
  • An object of the present invention is to solve such a problem.
  • An object of the present invention is to provide a heavy duty pneumatic tire capable of improving block rigidity while obtaining good mud repellency. It is to provide.
  • the heavy-duty pneumatic tire according to the present invention is divided into two or more circumferential grooves continuously extending in the tire circumferential direction on the tread surface and transverse grooves opening to the circumferential grooves adjacent to each other in the tire width direction.
  • a pneumatic tire having a block straddling the tire equatorial plane, wherein the block has at least one shallow groove having an average groove depth shallower than a maximum groove depth of the circumferential groove adjacent to the block.
  • the shallow grooves communicates with at least one of the circumferential groove and the transverse groove adjacent to the block directly or through the other shallow groove, and at least the tire of the block It extends in the direction crossing the tire circumferential direction at the center in the width direction, and the groove depth at the center in the tire width direction of the block is shallower than the groove depth at the end in the tire width direction of the shallow groove. Characterized in that has been raised, it is raised shallow groove on. According to the heavy duty pneumatic tire of the present invention, the block rigidity can be improved while obtaining good mud repellency.
  • the “center portion of the block in the tire width direction” refers to a block portion having a width in the tire width direction of 8% of the tread width around the center position in the tire width direction of the block.
  • the “center position in the tire width direction of the block” refers to a position in the center between the outermost positions in the tire width direction of the block.
  • the “end of the shallow groove in the tire width direction” means that the shallow groove extends inwardly from the tire width direction end of the shallow groove in the tire width direction when viewed at the deepest position in the groove width direction of the shallow groove. This refers to a portion having a width in the tire width direction of 5% of the total length.
  • the groove depth at the center of the block in the tire width direction becomes shallower than the groove depth at the end of the shallow groove in the tire width direction means that the groove depth of the shallow groove extends in the extending direction. , It means that all the groove depths at the center portion in the tire width direction of the block are shallower than all the groove depths at the end portions in the tire width direction of the shallow grooves.
  • the “tread surface” here refers to a tire that comes into contact with the road surface when rolling a tire that is assembled to the applicable rim and filled with the specified internal pressure while applying a load corresponding to the maximum load capacity. Means the outer peripheral surface of the entire circumference.
  • the “applicable rim” is a standard rim defined in the following standard according to the tire size (defined as “Design Rim” in YEAR BOOK of TRA below. “Measuring Rim” in STANDARDDS MANUAL of ETRTO below.
  • the “specified internal pressure” means the air pressure specified in accordance with the maximum load capacity in the following standards, and the “maximum load capacity” means that the tire is loaded according to the following standards. Means the maximum mass allowed.
  • the standard is determined by an industrial standard that is effective in the region where the tire is produced or used. For example, in the United States, “YEAR BOOK” of “The Tire and Rim Association, Inc. (TRA)” is used. “In Europe,“ The European Tire and Rim Technical Organization (ETRTO) ”is“ STANDARDS MANUAL ”, and in Japan,“ Japan Auto Tire Association (JATMA) ”“ JATMA YEAR BOOK ”. “Tread width” means the length along the tread width direction between the outermost positions in the tire width direction of the tread tread when the tire is assembled to the applicable rim and filled with the specified internal pressure. To do.
  • groove depth refers to the position from the groove opening position to the tread tread surface to the groove bottom position in a cross section along the groove width direction in a no-load state in which the tire is assembled to the applicable rim and filled with the specified internal pressure. Shall be measured.
  • the “average groove depth” of the shallow groove is the average of the groove depth over the entire length of the shallow groove when the groove depth is different during the extension of one or more shallow grooves provided in the block. Mean value.
  • the “shallow groove” has a groove width such that the groove walls facing each other are not in contact with each other and are open to the tread surface in the tread ground contact surface.
  • the “tread contact surface” means a part of the tread tread surface in the circumferential direction that comes into contact with the road surface when the maximum load capacity is applied with the tire mounted on the adaptive rim and filled with the specified internal pressure.
  • the shallow groove when the shallow groove is branched in the middle of the extension in the block, the branched shallow groove is regarded as a shallow groove different from the other shallow groove, so that a plurality of communicated with each other. It shall be interpreted that there is a shallow groove.
  • the maximum groove depth of the circumferential groove adjacent to the block is OTD (Original Tread Depth), and the minimum groove depth at the center of the block in the tire width direction of the bottom raised shallow groove.
  • OTD Oil Tread Depth
  • the minimum groove depth at the center of the block in the tire width direction of the bottom raised shallow groove is OTD / 3 ⁇ a ⁇ OTD / 2 a ⁇ b ⁇ OTD / 2 It is preferable to satisfy the following two formulas. Thereby, mud repellency and block rigidity can further be improved.
  • the bottom raised shallow groove extends from the minimum groove depth position at the center in the tire width direction of the block in the bottom raised shallow groove toward the end of the bottom raised shallow groove in the tire width direction. It is preferable to include an inclined bottom shallow groove portion in which the groove depth increases linearly. Thereby, mud repellency and block rigidity can further be improved.
  • the bottom raised shallow groove preferably has an inclination angle of an acute angle side of the groove bottom with respect to the tread surface at the inclined bottom shallow groove portion of 5 ° to 15 °.
  • the groove wall surface at the center in the tire width direction of the block in the bottom raised shallow groove is on the acute angle side with respect to the normal of the tread tread surface.
  • the inclination angle is preferably larger than 4 °.
  • the groove width in the tire width direction central portion of the block in the bottom raised shallow groove is equal to or greater than the minimum groove depth in the tire width direction central portion of the block in the bottom raised shallow groove. It is preferable to have a size. As a result, it is possible to make it difficult for stone biting in the shallow groove to occur at the center in the tire width direction of the block.
  • FIG. 3A to 3C are sectional views taken along lines AA, BB, and CC in FIG. 1, respectively.
  • 1 is a cross-sectional view in the tire width direction showing the tire internal structure of one embodiment of the present invention.
  • FIG. 1 to 3 show a heavy duty pneumatic tire (hereinafter also referred to as “tire”) according to an embodiment of the present invention.
  • reference numeral 1 denotes a tread surface that the tire has.
  • the circumferential groove 2 is provided.
  • the tread surface 1 is provided with a transverse groove 5 that opens in each of the circumferential grooves 2 adjacent to each other in the tire width direction, for example, at a bent portion that protrudes inward in the tire width direction of the circumferential groove 2 as shown in the example of the figure. ing.
  • the circumferential grooves 2 and the transverse grooves 5 define a plurality of blocks 6 that straddle the tire equatorial plane C.
  • the center position between the outermost positions in the tire width direction of the block 6 (hereinafter also referred to as “the center position in the tire width direction of the block 6”) is on the tire equatorial plane C. .
  • Each block 6 has one or more (5 in the illustrated example) shallow grooves 7 to 9, 31, 32 having an average groove depth shallower than the maximum groove depth of the circumferential groove 2 adjacent to the block 6.
  • four block portions (sub-blocks) partitioned by the shallow grooves 7 to 9 constitute one block 6.
  • At least one of the shallow grooves 7 to 9, 31 and 32 (four in the example shown in the figure, the shallow grooves 7, 8, 31, 32) is formed in the circumferential groove 2 and the transverse groove 5 adjacent to the block 6. At least one is communicated directly or via another shallow groove.
  • the mud of the clay layer existing on the block 6 is moved into the shallow grooves 7 to 9, 31, 32 provided in the block 6. Since the shallow grooves 7, 8, 31, and 32 are caused to flow into the circumferential grooves 2 and the transverse grooves 5, which are opened, good mud repellency can be obtained.
  • the kick-out side portion of the block surface (in the example shown in the figure, the rotation direction of the tire may be any direction in the vertical direction in the figure, so any side in the tire circumferential direction of each block can be the kick-out side portion.) Since mud does not easily remain on the surface, the edge effect at the kick-out side portion can be sufficiently exerted to effectively transmit the traction force and the braking force to the road surface.
  • the shallow grooves 7 and 8 have one end opening in the circumferential groove 2 adjacent to the block 6 and the other end opening in the transverse groove 5 adjacent to the block 6. One end of each of the shallow grooves 31 and 32 opens into the circumferential groove 2 adjacent to the block 6, and the other end terminates in the land portion of the block 6.
  • the shallow groove 9 has one end opened to the shallow groove 7 and the other end opened to the shallow groove 8, that is, the circumferential groove 2 adjacent to the block 6 and the transverse groove 5 via the shallow grooves 7, 8. It is communicated. Note that “directly communicated” refers to being communicated without passing through another groove. Further, “communication” means that one groove opens into the other groove or that the grooves intersect each other.
  • the tread surface 1 further includes a lug groove 3 that extends from the tread end and opens to the circumferential groove 2.
  • a lug 4 is defined between the lug grooves 3 adjacent to each other in the tire circumferential direction.
  • the lug 4 is provided with an opening groove 30 that has a groove depth shallower than that of the circumferential groove 2 and extends in a curved manner from the tread end toward the tire width direction and opens into the circumferential groove 2.
  • At least one of the shallow grooves 7 to 9, 31, 32 includes the peripheral groove 2 and the transverse groove 5 adjacent to the block 6.
  • the shallow groove 9 in the example shown in the figure includes the peripheral groove 2 and the transverse groove 5 adjacent to the block 6.
  • the bottom of the raised shallow groove 9 gradually increases toward the outer side in the tire radial direction (that is, on the tread tread surface 1 side) from the both ends of the shallow groove 9 in the tire width direction toward the center position in the tire width direction.
  • the groove depth of the block 6 is deepest at both ends in the tire width direction of the shallow groove 9 (groove depth b in FIG. 3B), and the center position of the shallow groove 9 in the tire width direction (in this example). It is the shallowest at the position of the tire equatorial plane C (groove depth a in FIG. 3A).
  • the “center position in the tire width direction of the shallow groove 9” refers to a position in the center between both ends of the shallow groove 9 in the tire width direction.
  • the rigidity in the tire circumferential direction of the tire width direction center part of the block 6 is sufficiently ensured by making the groove depth of the bottom raised shallow groove 9 relatively shallow. Can do. Generally, when traveling straight ahead, the highest ground pressure and therefore traction is applied in the vicinity of the tire equatorial plane C. For this reason, if sufficient rigidity in the tire circumferential direction is not ensured at the center of the block 6 in the tire width direction, a block portion (sub-block) adjacent to the shallow groove 9 in the tire circumferential direction is deformed in the tire circumferential direction.
  • the shallow groove 9 is deformed in the opening direction once, and the stone enters the shallow groove 9, and then the shallow groove 9 is deformed in the closing direction.
  • This can cause rock biting, such as biting a stone, or block baldness, where the block portion near the groove wall of the shallow groove 9 can be broken. Therefore, by sufficiently securing the tire circumferential direction rigidity at the center of the block 6 in the tire width direction, it is possible to reduce the occurrence of stone biting in the shallow groove 9 and block flaking near the shallow groove 9.
  • the groove depth at the end in the tire width direction of the bottom raised shallow groove 9 is made deeper than the groove depth at the center in the tire width direction of the block 6, for example, the groove depth of the bottom raised shallow groove 9 is increased.
  • the mud that has entered the shallow groove 9 tends to flow out toward the outer side in the tire width direction of the shallow groove 9, thus improving the mud repellency and thus the slip resistance, The edge effect of the groove can be sufficiently exhibited.
  • the groove depth of the bottom raised shallow groove 9 gradually increases from the center of the block 6 in the tire width direction to the end of the shallow groove 9 in the tire width direction as in this example. It is preferable.
  • “gradually deeper” is not limited to the case where the depth becomes continuous (smoothly) as in this example, but also includes the case where the depth becomes intermittently (stepwise). It means not to become shallow. In addition, it is more preferable that it becomes deeper continuously from the tire width direction center part of the block 6 to the tire width direction edge part of the shallow groove 9 from a viewpoint of a mud peelability improvement.
  • the maximum groove depth of the circumferential groove 2 adjacent to the block 6 is OTD
  • the bottom groove shallow groove 9 has a minimum groove depth at the center in the tire width direction of the block 6 (in this example, the tire width direction of the block 6).
  • the maximum groove depth at the end in the tire width direction of the bottom raised shallow groove 9 is defined as a.
  • b is the maximum value of the groove depth in the entire bottom raised shallow groove 9 obtained at the end in the width direction
  • OTD / 3 ⁇ a ⁇ OTD / 2 (1) a ⁇ b ⁇ OTD / 2 (2) It is preferable to satisfy the following two formulas.
  • Equation (1) by setting OTD / 3 ⁇ a, a sufficient amount of mud flows from the tread tread surface 1 into the raised shallow groove 9 at the center in the tire width direction of the block 6, Sufficient mud repellency can be obtained.
  • a ⁇ OTD / 2 the tire circumferential rigidity at the center of the block 6 in the tire width direction can be sufficiently improved.
  • b ⁇ OTD / 2 it is possible to prevent the tire circumferential rigidity of the block portion adjacent to the bottom raised shallow groove 9 from being excessively reduced, and thus, stone chewing and block flaking are generated. Can be effectively prevented.
  • the tire width direction position (in this example, the position of the tire equatorial plane C) that takes the minimum groove depth in the entire bottom raised shallow groove 9 is the tire groove direction of the shallow groove 9 centered on the tire equatorial plane C. It is preferable to arrange in a tire width direction region having a tire width direction width of 25% of the total length. Thereby, the tire circumferential direction rigidity of the block part adjacent to the shallow groove 9 can be sufficiently secured in the vicinity of the tire equatorial plane C where the highest ground pressure is applied during straight traveling.
  • the innermost position in the tire width direction (in this example, the position in the tire width direction end of the bottom raised shallow groove 9) of the portion having the maximum groove depth in the entire bottom raised shallow groove 9 is the tire width direction of the bottom raised shallow groove 9. It is preferable to arrange in the tire width direction region extending over the length of 5% of the total length of the shallow groove 9 in the tire width direction from the end to the inner side in the tire width direction. Thereby, it can prevent that the tire circumferential direction rigidity of the block part adjacent to the bottom raising shallow groove 9 falls excessively.
  • the groove depth over the entire length of the shallow grooves 7 and 8 communicating with the bottom raised shallow groove 9 is made the same as the groove depth b at the end of the bottom raised shallow groove 9 in the tire width direction.
  • the mud flowing out of the shallow groove 9 smoothly flows into the shallow grooves 7 and 8, and then flows into the peripheral groove 2 or the transverse groove 5 having a deeper groove depth communicating with the shallow grooves 7 and 8. So good mud repellency can be obtained.
  • the bottom raised shallow groove 9 is a groove as it goes from the minimum groove depth position at the center in the tire width direction of the block 6 in the bottom raised shallow groove 9 toward the end of the bottom raised shallow groove 9 in the tire width direction. It is preferable to include an inclined bottom shallow groove portion whose depth increases linearly (in this example, the inclined bottom shallow groove portion is included over the entire length of the bottom raised shallow groove 9). Thereby, block rigidity and the mud removal property in a shallow groove can further be improved.
  • the block rigidity can be further improved, while the mud repellency in the shallow groove 9 is greatly increased. Cannot improve.
  • the bottom raised shallow groove 9 moves from the minimum groove depth position in the bottom raised shallow groove 9 toward the end in the tire width direction, in the cross section along the groove width center,
  • the mud repellency in the shallow groove 9 can be further improved, while the block rigidity is greatly increased. Cannot improve.
  • the groove bottom of the inclined bottom shallow groove portion 9 is the groove wall of the inclined bottom shallow groove portion 9.
  • the inclination angle ⁇ on the acute angle side with respect to a plane parallel to the tread surface 1 is preferably 5 ° to 15 °.
  • the inclination angle (groove) of the groove wall surface of the bottom raised shallow groove 9 on the acute side with respect to the normal of the tread surface 1 is shown.
  • the swing angle c is preferably larger than 4 ° (4 ° ⁇ c).
  • the groove width d at the center portion in the tire width direction of the block 6 in the bottom raised shallow groove 9 has a size equal to or larger than the minimum groove depth a at the center portion in the tire width direction of the block 6 in the bottom raised shallow groove 9 (a ⁇ d). Is preferred.
  • the groove width of the bottom raised shallow groove 9 is sufficiently secured at the center portion in the tire width direction of the block. It is possible to further reduce the occurrence of stone chewing.
  • the groove depth a is constant and the groove width d is excessively large, the block volume is excessively decreased and the block rigidity is decreased. Therefore, it is preferable that d ⁇ 2a.
  • the groove swing angle and groove width of the bottom raised shallow groove 9 may vary in the course of its extension, but the flow of mud in the bottom raised shallow groove 9 is constant over the entire length as in this example. Is preferable because it can be smoothly performed.
  • the shallow groove 9 extending substantially over the entire length in the vicinity of the tire equatorial plane C is used as a raised shallow groove, so that stone chewing that is likely to occur in the vicinity of the tire equatorial plane C where the highest ground pressure is applied when traveling straight ahead.
  • the generation of block flaking is suppressed, and the depth of the other shallow grooves 7, 8, 31, 32 is made substantially constant over the entire length so as not to greatly impair the mud repellency.
  • the other shallow grooves 7 and 8 may be bottom raised shallow grooves.
  • the block 6 is provided with a single shallow groove 15 extending along the tread width direction and opening in the circumferential groove 2 at a bent portion protruding outward in the tread width direction.
  • the lug 4 is provided with an opening groove 17 that extends from the tread end along the tread width direction and opens into the circumferential groove 2.
  • the block 6 is provided with two recessed portions 18 and 19 that are recessed inward from the outer peripheral edge of the block 6 at bent portions protruding inward in the tread width direction of the circumferential groove 2.
  • the block 6 is provided with one shallow groove 14 that extends in a direction inclined with respect to the tread circumferential direction and the tread width direction and opens to the circumferential groove 2.
  • the lug 4 is provided with an opening groove 16 that extends from the tread end in a direction inclined with respect to the tread width direction and opens into the circumferential groove 2.
  • the block 6 is provided with two recessed portions 18 and 19 that are recessed inward from the outer peripheral edge of the block 6 at bent portions protruding inward in the tread width direction of the circumferential groove 2.
  • the block 6 has two shallow grooves 7 and 8 that extend along the tread width direction and open to the circumferential groove 2, and a direction inclined with respect to the tread circumferential direction and the tread width direction.
  • a shallow groove 9 is provided in each of the shallow grooves 7, 8.
  • one end of each of the shallow grooves 7 and 8 is opened in the circumferential groove 2 at each position of the recessed portions 18 and 19 where the outer peripheral edge of the block 6 is recessed inward.
  • the shallow groove 15 in the example of FIG. 6, the shallow groove 14 in the example of FIG. 7, and the shallow groove 9 in the example of FIG. 8 are each configured as a bottom-up shallow groove.
  • FIG. 9 is a cross-sectional view in the tire width direction showing a tire internal structure of a pneumatic tire according to an embodiment of the present invention, particularly a heavy duty tire such as a construction vehicle.
  • the tire 100 has a rubber gauge (rubber thickness) of the tread portion 500 larger than that of a pneumatic tire mounted on a passenger car or the like.
  • the tire internal structure described below can be applied to each tire having the tread pattern described with reference to FIGS.
  • the tire 100 satisfies DC / OD ⁇ 0.015 when the tire outer diameter is OD and the rubber gauge of the tread portion 500 at the position of the tire equatorial plane C is DC.
  • the tire outer diameter OD (unit: mm) is the diameter of the tire 100 at a portion (generally, the tread portion 500 in the vicinity of the tire equatorial plane C) where the outer diameter of the tire 100 is maximum.
  • the rubber gauge DC (unit: mm) is the rubber thickness of the tread portion 500 at the position of the tire equatorial plane C.
  • the rubber gauge DC does not include the thickness of the belt 300.
  • channel is formed in the position containing the tire equator surface C, it is set as the rubber thickness of the tread part 500 in the position adjacent to the circumferential groove
  • the tire 100 includes a pair of bead cores 110, a carcass 200, and a belt 300 including a plurality of belt layers.
  • the half width of the tire 100 is shown, but the half width of the tire 100 not shown has the same structure.
  • the bead core 110 is provided in the bead unit 120.
  • the bead core 110 is configured by a bead wire (not shown).
  • the carcass 200 forms the skeleton of the tire 100.
  • the position of the carcass 200 passes from the tread portion 500 through the buttress portion 900 and the sidewall portion 700 to the bead portion 120.
  • the carcass 200 straddles between a pair of bead cores 110 and has a toroidal shape.
  • the carcass 200 wraps the bead core 110 in this embodiment.
  • the carcass 200 is in contact with the bead core 110. Both ends of the carcass 200 in the tire width direction twd are supported by a pair of bead portions 120.
  • the carcass 200 has a carcass cord extending in a predetermined direction when viewed in plan from the tread tread surface 1 side.
  • the carcass cord extends along the tire width direction twd.
  • a steel wire is used as the carcass cord.
  • the belt 300 is disposed on the tread portion 500.
  • the belt 300 is located outside the carcass 200 in the tire radial direction trd.
  • the belt 300 extends in the tire circumferential direction.
  • the belt 300 has a belt cord that is inclined with respect to a predetermined direction that is a direction in which the carcass cord extends. For example, a steel cord is used as the belt cord.
  • the belt 300 composed of a plurality of belt layers includes a first belt layer 301, a second belt layer 302, a third belt layer 303, a fourth belt layer 304, a fifth belt layer 305, and a sixth belt layer 306.
  • the first belt layer 301 is located outside the carcass 200 in the tire radial direction trd.
  • the first belt layer 301 is located on the innermost side in the belt 300 composed of a plurality of belt layers in the tire radial direction trd.
  • the second belt layer 302 is located outside the first belt layer 301 in the tire radial direction trd.
  • the third belt layer 303 is located outside the second belt layer 302 in the tire radial direction trd.
  • the fourth belt layer 304 is located outside the third belt layer 303 in the tire radial direction trd.
  • the fifth belt layer 305 is located outside the fourth belt layer 304 in the tire radial direction trd.
  • the sixth belt layer 306 is located outside the fifth belt layer 305 in the tire radial direction trd.
  • the sixth belt layer 306 is located on the outermost side in the belt 300 composed of a plurality of belt layers in the tire radial direction trd.
  • the first belt layer 301, the second belt layer 302, the third belt layer 303, the fourth belt layer 304, the fifth belt layer 305, and the sixth belt layer 306 are arranged in this order. Be placed.
  • the width of the first belt layer 301 and the second belt layer 302 (the width measured along the tire width direction twd. The same applies hereinafter) is 25% or more of the tread width TW. And it is 70% or less.
  • the widths of the third belt layer 303 and the fourth belt layer 304 are 55% or more and 90% or less of the tread width TW.
  • the widths of the fifth belt layer 305 and the sixth belt layer 306 are 60% or more and 110% or less of the tread width TW.
  • the width of the fifth belt layer 305 is larger than the width of the third belt layer 303, and the width of the third belt layer 303 is equal to or larger than the width of the sixth belt layer 306.
  • the width of the sixth belt layer 306 is larger than the width of the fourth belt layer 304, the width of the fourth belt layer 304 is larger than the width of the first belt layer 301, and the width of the first belt layer 301 is It is larger than the width of the second belt layer 302.
  • the fifth belt layer 305 has the largest width and the second belt layer 302 has the smallest width.
  • the belt 300 including a plurality of belt layers includes the shortest belt layer (that is, the second belt layer 302) having the shortest length in the tire width direction twd.
  • the second belt layer 302 which is the shortest belt layer has a belt end 300e which is an edge in the tire width direction twd.
  • the inclination angles of the belt cords of the first belt layer 301 and the second belt layer 302 with respect to the carcass cord are 70 ° or more and 85 ° or less.
  • the inclination angle of the belt cords of the third belt layer 303 and the fourth belt layer 304 with respect to the carcass cord is not less than 50 ° and not more than 75 °.
  • the inclination angle of the belt cords of the fifth belt layer 305 and the sixth belt layer 306 with respect to the carcass cord is not less than 50 ° and not more than 70 °.
  • the belt 300 composed of a plurality of belt layers includes an inner cross belt group 300A, an intermediate cross belt group 300B, and an outer cross belt group 300C.
  • the belt cords constituting the respective belt layers in the group are between the belt layers adjacent to each other in the group (preferably, the tire equator) in a plan view from the tread tread surface 1 side.
  • the inner cross belt group 300A is composed of a pair of belt layers and is located outside the carcass 200 in the tire radial direction trd.
  • the inner cross belt group 300 ⁇ / b> A includes a first belt layer 301 and a second belt layer 302.
  • the intermediate cross belt group 300B includes a pair of belt layers and is located outside the inner cross belt group 300A in the tire radial direction trd.
  • the intermediate crossing belt group 300 ⁇ / b> B includes a third belt layer 303 and a fourth belt layer 304.
  • the outer cross belt group 300C includes a pair of belt layers and is located outside the intermediate cross belt group 300B in the tire radial direction trd.
  • the outer cross belt group 300 ⁇ / b> C includes a fifth belt layer 305 and a sixth belt layer 306.
  • the inner cross belt group 300A has a width of 25% or more and 70% or less of the tread width TW.
  • the width of the intermediate cross belt group 300B is 55% or more and 90% or less of the tread width TW.
  • the width of the outer cross belt group 300C is 60% or more and 110% or less of the tread width TW.
  • the inclination angle of the belt cord of the inner cross belt group 300A with respect to the carcass cord is 70 ° or more and 85 ° or less.
  • the inclination angle of the belt cord of the intermediate cross belt group 300B with respect to the carcass cord is not less than 50 ° and not more than 75 °.
  • the inclination angle of the belt cord of the outer cross belt group 300C with respect to the carcass cord is not less than 50 ° and not more than 70 °.
  • the inclination angle of the belt cord with respect to the carcass cord is the largest in the inner cross belt group 300A.
  • the inclination angle of the belt cord with respect to the carcass cord of the intermediate intersection belt group 300B is equal to or greater than the inclination angle of the belt cord with respect to the carcass cord of the outer intersection belt group 300C.
  • the innermost position in the tire width direction of the groove width center line WL of the circumferential groove 2 when viewed from the tread surface 1 side of the tire 100 from the belt end 300e (see FIGS. 1 to 8 described above).
  • the length DL along twd is set to 200 mm or less.
  • the comparative tires 1 and 2 both have the shallow groove 9 with a constant groove depth over its entire length, and the comparative tire 2 has a shallow groove 9 shallower than the comparative tire 1.
  • the shallow groove 9 is a bottom-up shallow groove having a groove depth gradually increased from the center position in the tire width direction of the block in the shallow groove 9 toward the tire width direction end.
  • the embodiment of the groove bottom that increases the groove depth is linear (straight) as in the example of FIG. 2 in the example tire 1, and outward in the tire radial direction as shown in FIG. 4 in the example tire 2.
  • Block resistance For each test tire, attach it to the dump truck and run the route under the same conditions for a certain period of time under the above conditions conforming to TRA. Calculated. The occurrence rate of this block peeling was calculated
  • Block baldness incidence number of blocks straddling the tire equator, number of blocks with block baldness / total number of blocks straddling the tire equator
  • Table 1 The results of each test are shown in Table 1 together with the specifications of each test tire.
  • the stone biting resistance, block bald resistance, and slip resistance shown in Table 1 are the values calculated as described above, expressed as index values based on the comparative tire 1, and the numerical values are The smaller the value, the better the performance.
  • the comparative example tire 2 is improved in the stone biting resistance and the block peeling resistance as compared with the comparative example tire 1, but the slip resistance is greatly deteriorated. Yes.
  • the tires of Examples 1 to 3 all had a better flow of mud in the grooves, although the groove volume of the shallow grooves decreased compared to the tires of Comparative Example 1, so that slip resistance was improved.
  • the stone biting resistance and the block peeling resistance are improved. From this, it was found that the pneumatic tire according to the present invention can greatly improve the block rigidity, as well as the stone biting resistance and block flaking resistance, while ensuring good mud repellency and thus slip resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

良好な泥はけ性を得つつ、ブロック剛性を向上する。 この発明の重荷重用空気入りタイヤは、トレッド踏面1にブロック6を有し、ブロックに浅溝が設けられ、浅溝の少なくとも1本7、9、31、32は、ブロックに隣接する周溝及び横断溝の少なくとも一方に連通され、かつ、少なくともブロックのタイヤ幅方向中央部でタイヤ周方向と交わる方向に延びるとともに、該ブロックのタイヤ幅方向中央部での溝深さが、該浅溝のタイヤ幅方向端部での溝深さよりも浅くなるように底上げされた、底上げ浅溝である。

Description

重荷重用空気入りタイヤ
 この発明は、トレッド踏面に、タイヤ周方向に連続して延びる2本以上の周溝と、タイヤ幅方向に互いに隣接する該周溝のそれぞれに開口する横断溝とで区画されるブロックを有する、重荷重用空気入りタイヤに関するものである。
 このような重荷重用空気入りタイヤは、建設現場、鉱山その他で使用され得るダンプトラック等の車両に用いることができ、このような車両は、降雨後に、固い地盤の上に数センチ程度の柔らかい粘土層が形成された泥濘地等の路面の走行に供されることがある。
 特許文献1には、このようなタイヤとして、タイヤ赤道面を跨ぐブロックに、ブロックに隣接する周溝の溝深さより浅い平均溝深さを有する1本以上の浅溝を設け、浅溝の少なくとも1本を、ブロックに隣接する周溝及び横断溝の少なくとも一方に開口させたものが記載されている。浅溝を設けることにより、ブロック剛性の大幅な低下を招かずに、接地面内の泥はけ性ひいては耐スリップ性の向上や、エッジ成分の増加によるトラクション性能の向上等ができる、としている。
特願2012-147944号
 しかしながら、車両の直進走行時に接地圧が最も高くなるタイヤ赤道面近傍で、浅溝に隣接するブロック部分(サブブロック)の剛性の低下に起因して、ブロックにもげが発生したり、浅溝の細さや深さによっては、浅溝内で石噛みが発生したり、浅溝内に入った泥がそこで滞留して泥はけ性を十分に向上できない場合があった。
 この発明は、このような問題を解決することを課題とするものであり、それの目的とするところは、良好な泥はけ性を得つつ、ブロック剛性を向上できる、重荷重用空気入りタイヤを提供することにある。
 この発明の重荷重用空気入りタイヤは、トレッド踏面に、タイヤ周方向に連続して延びる2本以上の周溝と、タイヤ幅方向に互いに隣接する該周溝のそれぞれに開口する横断溝とで区画されるとともに、タイヤ赤道面を跨ぐブロックを有する、空気入りタイヤであって、前記ブロックに、該ブロックに隣接する前記周溝の最大溝深さより浅い平均溝深さを有する1本以上の浅溝が設けられ、前記浅溝の少なくとも1本は、前記ブロックに隣接する前記周溝及び前記横断溝の少なくとも一方に、直接又は他の前記浅溝を介して連通され、かつ、少なくとも前記ブロックのタイヤ幅方向中央部でタイヤ周方向と交わる方向に延びるとともに、該ブロックのタイヤ幅方向中央部での溝深さが、該浅溝のタイヤ幅方向端部での溝深さよりも浅くなるように底上げされた、底上げ浅溝であることを特徴とする。
 この発明の重荷重用空気入りタイヤによれば、良好な泥はけ性を得つつ、ブロック剛性を向上できる。
 ここで、「ブロックのタイヤ幅方向中央部」は、ブロックのタイヤ幅方向中央位置を中心とする、トレッド幅の8%の長さのタイヤ幅方向幅をもつブロック部分を指す。「ブロックのタイヤ幅方向中央位置」とは、ブロックのタイヤ幅方向最外位置どうしの間のちょうど中央の位置を指す。また、「浅溝のタイヤ幅方向端部」は、浅溝の溝幅方向における最も深い位置で観たときに、浅溝のタイヤ幅方向端からタイヤ幅方向内側へ浅溝のタイヤ幅方向での全長の5%のタイヤ幅方向幅をもつ部分を指す。
 また、「該ブロックのタイヤ幅方向中央部での溝深さが、該浅溝のタイヤ幅方向端部での溝深さよりも浅くなる」とは、浅溝の溝深さがその延在方向に沿って変化する場合、ブロックのタイヤ幅方向中央部での全ての溝深さが、浅溝のタイヤ幅方向端部での全ての溝深さよりも浅くなることを意味している。
 ここでいう「トレッド踏面」は、適用リムに組み付けるとともに規定内圧を充填したタイヤを、最大負荷能力に対応する負荷を加えた状態で転動させた際に、路面に接触することになる、タイヤの全周にわたる外周面を意味する。なおここで、「適用リム」とは、タイヤサイズに応じて下記の規格に規定された標準リム(下記TRAのYEAR BOOKでは"Design Rim"と規定。下記ETRTOのSTANDARDS MANUALでは"Measuring Rim"と規定。)をいい、「規定内圧」とは、下記の規格において、最大負荷能力に対応して規定される空気圧をいい、「最大負荷能力」とは、下記の規格でタイヤに負荷されることが許容される最大の質量をいう。そして、その規格とは、タイヤが生産または使用される地域に有効な産業規格によって決められたものであり、例えば、アメリカ合衆国では、"The Tire and Rim Association, Inc.(TRA)"の"YEAR BOOK"であり、欧州では、"The European Tyre and Rim Technical Organization(ETRTO)"の"STANDARDS MANUAL"であり、日本では、"日本自動車タイヤ協会(JATMA)"の"JATMA YEAR BOOK"である。
 また、「トレッド幅」は、タイヤを適用リムに組み付けるとともに規定内圧を充填した無負荷の状態での、トレッド踏面のタイヤ幅方向最外位置どうしの間の、トレッド幅方向に沿う長さを意味する。
 また、上記の「溝深さ」は、タイヤを適用リムに組み付けるとともに規定内圧を充填した無負荷の状態で、溝幅方向に沿う断面において、トレッド踏面への溝開口位置から溝底位置までを、測定するものとする。そして、浅溝の「平均溝深さ」とは、ブロックに設けた1本以上の浅溝の延在途中でそれの溝深さが異なる場合は、その浅溝の全長にわたる溝深さの平均値を意味する。
 なお、この発明でいう「浅溝」は、トレッド接地面内で、対向する溝壁が互いに接触することなく、トレッド踏面に開口した状態となる程度の溝幅を有するものとする。ここで、「トレッド接地面」とは、タイヤを適応リムに組み付けて規定内圧を充填した状態の下で、最大負荷能力を負荷したときに路面に接触する、トレッド踏面の周方向の一部をいう。
 また、この発明では、ブロック内で浅溝がその延在途中で分岐している場合、分岐した方の浅溝を他方の浅溝とは別の浅溝としてみなすことで、互いに連通した複数の浅溝があるものと解釈するものとする。
 この発明の重荷重用空気入りタイヤでは、前記ブロックに隣接する前記周溝の最大溝深さをOTD(Original Tread Depth)とし、前記底上げ浅溝の前記ブロックのタイヤ幅方向中央部での最小溝深さをaとし、該底上げ浅溝のタイヤ幅方向端部での最大溝深さをbとするとき、
  OTD/3≦a<OTD/2
  a<b≦OTD/2
の2式を満たすことが好ましい。これにより、泥はけ性とブロック剛性とをさらに向上できる。
 この発明の重荷重用空気入りタイヤでは、前記底上げ浅溝は、該底上げ浅溝における前記ブロックのタイヤ幅方向中央部での最小溝深さ位置から該底上げ浅溝のタイヤ幅方向端部に向かうにつれて、溝深さが線形的に増大する、傾斜底浅溝部分を含むことが好ましい。これにより、泥はけ性とブロック剛性とをさらに向上できる。
 この発明の重荷重用空気入りタイヤでは、前記底上げ浅溝は、前記傾斜底浅溝部分での溝底の前記トレッド踏面に対する鋭角側の傾斜角度が、5°~15°であることが好ましい。これにより、これにより、泥はけ性とブロック剛性とをさらに向上できる。
 この発明の重荷重用空気入りタイヤでは、前記底上げ浅溝の溝幅方向の断面において、該底上げ浅溝における前記ブロックのタイヤ幅方向中央部での溝壁面の、前記トレッド踏面の垂線に対する鋭角側の傾斜角度は、4°よりも大きいことが好ましい。これにより、ブロックのタイヤ幅方向中央部でのタイヤ周方向剛性をさらに向上できる。
 この発明の重荷重用空気入りタイヤでは、前記底上げ浅溝における前記ブロックのタイヤ幅方向中央部での溝幅は、該底上げ浅溝の前記ブロックのタイヤ幅方向中央部での最小溝深さ以上の大きさを有することが好ましい。これにより、ブロックのタイヤ幅方向中央部で、浅溝内での石噛みを発生しにくくすることができる。
 この発明によれば、良好な泥はけ性を得つつ、ブロック剛性を向上できる、重荷重用空気入りタイヤを提供することができる。
この発明の一実施形態を示す、トレッドパターンの部分展開図である。 図1に破線で囲った部分を示す拡大斜視図である。 図3(a)~(c)は、それぞれ図1のA-A、B-B、C-C断面図である。 図2に示す部分の変形例を示す拡大斜視図である。 図2に示す部分の他の変形例を示す拡大斜視図である。 この発明の一実施形態の変形例を示す、トレッドパターンの部分展開図である。 この発明の一実施形態の他の変形例を示す、トレッドパターンの部分展開図である。 この発明の一実施形態のさらに他の変形例を示す、トレッドパターンの部分展開図である。 この発明の一実施形態のタイヤ内部構造を示す、タイヤ幅方向断面図である。
 以下に図面を参照しつつ、この発明の実施形態について例示説明する。
 図1~図3は、この発明の一実施形態の重荷重用空気入りタイヤ(以下、「タイヤ」ともいう。)を示している。図1に示すところにおいて、1は、このタイヤが具えるトレッド踏面を示す。本実施形態では、トレッド踏面1に、タイヤ赤道面Cの両側で、例えば図の例のようにジグザグ状の形態で、タイヤ周方向に連続して延びる2本以上(図の例では2本)の周溝2を設けている。さらにトレッド踏面1には、例えば図の例のように周溝2のタイヤ幅方向内側に突出する折れ曲がり箇所等で、タイヤ幅方向に互いに隣接する周溝2のそれぞれに開口する横断溝5を設けている。そして、これら周溝2及び横断溝5により、タイヤ赤道面Cを跨ぐ、複数個のブロック6を区画している。
 なお、図の例では、ブロック6のタイヤ幅方向最外位置どうしの間のちょうど中央の位置(以下、「ブロック6のタイヤ幅方向中央位置」ともいう。)が、タイヤ赤道面C上にある。
 各ブロック6には、該ブロック6に隣接する周溝2の最大溝深さよりも浅い平均溝深さを有する1本以上(図の例では5本)の浅溝7~9、31、32を設けている。なお、図の例では、浅溝7~9で区画された4つのブロック部分(サブブロック)が、1つのブロック6を構成している。そして、それらの浅溝7~9、31、32の少なくとも1本(図の例では浅溝7、8、31、32の4本)が、ブロック6に隣接する周溝2及び横断溝5の少なくとも一方に、直接又は他の浅溝を介して連通されている。このことによれば、固い地盤の上に柔らかい粘土層が形成された路面の走行に際して、ブロック6上に存在する粘土層の泥が、ブロック6に設けた浅溝7~9、31、32内に取り込まれるとともに、浅溝7、8、31、32がそれぞれ開口する周溝2及び横断溝5に流されるので、良好な泥はけ性を得ることができる。さらに、ブロック表面の蹴出し側部分(図の例では、タイヤの回転方向は図の上下方向のいずれの方向でもよいので、各ブロックのタイヤ周方向いずれの側も蹴出し側部分となり得る。)に泥が残留しにくくなるので、その蹴出し側部分でのエッジ効果を十分に発揮させて、路面にトラクションフォース及びブレーキングフォースを有効に伝達させることができる。
 図の例では、浅溝7及び8は、一端がブロック6に隣接する周溝2に開口しており、他端がブロック6に隣接する横断溝5に開口している。浅溝31、32は、一端がブロック6に隣接する周溝2にそれぞれ開口しており、他端がブロック6の陸部内で終端している。浅溝9は、一端が浅溝7に開口し、他端が浅溝8に開口しており、すなわち、ブロック6に隣接する周溝2及び横断溝5に、浅溝7、8を介して連通されている。
 なお、「直接連通され」とは、他の溝を介さずに連通されていることを指す。また、「連通」とは、一方の溝が他方の溝に開口することや、溝どうしが交差することを指す。
 本例では、トレッド踏面1に、トレッド端から延びて周溝2に開口するラグ溝3をさらに有している。そして、タイヤ周方向に互いに隣接するラグ溝3間に、ラグ4を区画している。また、ラグ4には、周溝2よりも浅い溝深さで、トレッド端からタイヤ幅方向に向けて湾曲して延びて周溝2に開口する開口溝30を設けている。
 そして、図2の拡大斜視図に示すように、浅溝7~9、31、32の少なくとも1本(図の例では、浅溝9)は、ブロック6に隣接する周溝2及び横断溝5の少なくとも一方に、直接又は他の浅溝を介して連通され、かつ、少なくともブロック6のタイヤ幅方向中央部でタイヤ周方向と交わる方向(図の例では、略タイヤ幅方向)に延びるとともに、ブロック6のタイヤ幅方向中央部での溝深さが、浅溝9のタイヤ幅方向端部での溝深さよりも浅くなるように底上げされた、底上げ浅溝である。
 図の例では、この底上げ浅溝9の溝底が、この浅溝9のタイヤ幅方向両端からタイヤ幅方向中央位置に向かうにつれて徐々にタイヤ径方向外側(すなわちトレッド踏面1側)へと高くなっている。これに伴い、ブロック6の溝深さが、浅溝9のタイヤ幅方向両端で最も深くなり(図3(b)の溝深さb)、浅溝9のタイヤ幅方向中央位置(本例ではタイヤ赤道面Cの位置)で最も浅くなっている(図3(a)の溝深さa)。なお、「浅溝9のタイヤ幅方向中央位置」とは、浅溝9のタイヤ幅方向両端どうしの間のちょうど中央の位置を指す。
 このように、ブロック6のタイヤ幅方向中央部では、底上げ浅溝9の溝深さを比較的浅くすることで、ブロック6のタイヤ幅方向中央部のタイヤ周方向の剛性を十分に確保することができる。一般的に、直進走行時では、タイヤ赤道面C近傍に、最も高い接地圧ひいてはトラクションがかかることになる。このため、仮にブロック6のタイヤ幅方向中央部でのタイヤ周方向の剛性が十分に確保されない場合は、浅溝9にタイヤ周方向に隣接するブロック部分(サブブロック)がタイヤ周方向に変形しやすくなるので、直進走行中での踏み込み時にそこに接地圧がかかる際、浅溝9が一旦開く方向に変形して石が浅溝9内に入り込み、その後、浅溝9が閉じる方向に変形して石を噛む、という石噛みや、浅溝9の溝壁近傍のブロック部分がもげる、というブロックもげが起こりうる。したがって、ブロック6のタイヤ幅方向中央部でのタイヤ周方向剛性を十分に確保することで、浅溝9内での石噛みや浅溝9近傍でのブロックもげの発生を低減できる。
 これと同時に、底上げ浅溝9のタイヤ幅方向端部での溝深さを、ブロック6のタイヤ幅方向中央部での溝深さよりも深くすることで、例えば底上げ浅溝9の溝深さをその全長にわたって一定とした場合に比べて、浅溝9内に入り込んだ泥が底上げ浅溝9のタイヤ幅方向外側に向けて流れ出やすくなり、ゆえに泥はけ性ひいては耐スリップ性を向上させて、溝のエッジ効果を十分に発揮させることができる。
 なお、泥はけ性向上の観点から、底上げ浅溝9の溝深さは、本例のように、ブロック6のタイヤ幅方向中央部から浅溝9のタイヤ幅方向端部にかけて徐々に深くなることが好ましい。ここで、「徐々に深くなる」とは、本例のように連続的に(滑らかに)深くなる場合に限られず、断続的に(階段状に)深くなる場合も含んでおり、すなわち途中で浅くならないことを指している。なお、泥はけ性向上の観点から、ブロック6のタイヤ幅方向中央部から浅溝9のタイヤ幅方向端部にかけて連続的に深くなることがより好ましい。
 ここで、ブロック6に隣接する周溝2の最大溝深さをOTDとし、底上げ浅溝9のブロック6のタイヤ幅方向中央部での最小溝深さ(本例では、ブロック6のタイヤ幅方向中央位置で得られる、底上げ浅溝9全体における溝深さの最小値)をaとし、底上げ浅溝9のタイヤ幅方向端部での最大溝深さ(本例では、底上げ浅溝9のタイヤ幅方向端で得られる、底上げ浅溝9全体における溝深さの最大値)をbとするとき、
  OTD/3≦a<OTD/2  (1)
  a<b≦OTD/2      (2)
の2式を満たすことが好ましい。
 ここで、式(1)において、OTD/3≦aとすることにより、ブロック6のタイヤ幅方向中央部で、十分量の泥をトレッド踏面1から底上げ浅溝9内へと流れ込むようにして、十分な泥はけ性を得ることができる。また、a<OTD/2とすることにより、ブロック6のタイヤ幅方向中央部でのタイヤ周方向剛性を十分に向上できる。さらに、式(2)において、b≦OTD/2とすることにより、底上げ浅溝9に隣接するブロック部分のタイヤ周方向剛性が過度に低下するのを防止し、ひいては石噛みやブロックもげの発生を効果的に防止できる。
 なお、底上げ浅溝9全体における最小溝深さをとるタイヤ幅方向位置(本例では、タイヤ赤道面Cの位置)は、タイヤ赤道面Cを中心とする、浅溝9のタイヤ幅方向での全長の25%の長さのタイヤ幅方向幅をもつタイヤ幅方向領域内に配置されることが好ましい。これにより、直進走行時に最も高い接地圧がかかかるタイヤ赤道面C近傍で、浅溝9に隣接するブロック部分のタイヤ周方向剛性を、十分に確保することができる。
 また、底上げ浅溝9全体における最大溝深さをとる部分の、タイヤ幅方向最内位置(本例では、底上げ浅溝9のタイヤ幅方向端の位置)は、底上げ浅溝9のタイヤ幅方向端からタイヤ幅方向内側に、浅溝9のタイヤ幅方向での全長の5%の長さにわたって延びるタイヤ幅方向領域内に配置されることが好ましい。これにより、底上げ浅溝9に隣接するブロック部分のタイヤ周方向剛性が過度に低下するのを防止できる。
 本例では、底上げ浅溝9と連通する浅溝7、8の全長にわたる溝深さが、底上げ浅溝9のタイヤ幅方向端での溝深さbと同じにされており、これにより、底上げ浅溝9から流れ出た泥が、スムーズに浅溝7、8へと流れ、そこから浅溝7、8と連通する、より溝深さの深い周溝2又は横断溝5へと流れるようになるので、良好な泥はけ性を得ることができる。
 底上げ浅溝9は、図2の例のように、底上げ浅溝9におけるブロック6のタイヤ幅方向中央部での最小溝深さ位置から底上げ浅溝9のタイヤ幅方向端部に向かうにつれて、溝深さが線形的に増大する、傾斜底浅溝部分を含む(本例では、底上げ浅溝9の全長にわたって傾斜底浅溝部分を含んでいる)ことが好ましい。これにより、ブロック剛性と浅溝内での泥はけ性とをさらに向上できる。
 これに対し、例えば図4に示す変形例のように、底上げ浅溝9が、底上げ浅溝9における最小溝深さ位置からタイヤ幅方向端部に向かうにつれて、その溝幅中心に沿う断面において、溝底がタイヤ径方向外側に凸の態様で溝深さが増大する、凸底浅溝部分を含む場合は、ブロック剛性をさらに向上できる一方、浅溝9内での泥はけ性を大きくは向上できない。また、例えば図5に示す他の変形例のように、底上げ浅溝9が、底上げ浅溝9における最小溝深さ位置からタイヤ幅方向端部に向かうにつれて、その溝幅中心に沿う断面において、溝底がタイヤ径方向外側に凹の態様で溝深さが増大する、凹底浅溝部分を含む場合は、浅溝9内での泥はけ性をさらに向上できる一方、ブロック剛性を大きくは向上できない。
 図2の例に戻り、図3(c)に示す底上げ浅溝9の溝幅中心に沿う断面において、傾斜底浅溝部分9での溝底の、傾斜底浅溝部分9の溝壁でのトレッド踏面1と平行な平面に対する、鋭角側の傾斜角度θは、5°~15°であることが好ましい。これにより、ブロック剛性と浅溝内での泥はけ性とをさらに向上できる。
 図3(a)に示す底上げ浅溝9におけるブロック6のタイヤ幅方向中央部での溝幅方向断面において、底上げ浅溝9の溝壁面の、トレッド踏面1の垂線に対する鋭角側の傾斜角度(溝振り角度)cは、4°よりも大きい(4°<c)ことが好ましい。これにより、ブロック6のタイヤ幅方向中央部で、底上げ浅溝9の溝壁面とトレッド踏面1とにより区画されるブロック角部の角度が大きくなるので、底上げ浅溝9の溝壁近傍のブロック部分のタイヤ周方向剛性をさらに向上させて、ブロックもげをさらに発生しにくくすることができる。
 ただし、溝振り角度cが大き過ぎると、ブロック体積が低下し過ぎてブロック剛性の低下を招くので、c<45°であることが好ましい。
 底上げ浅溝9におけるブロック6のタイヤ幅方向中央部での溝幅dは、底上げ浅溝9のブロック6のタイヤ幅方向中央部での最小溝深さa以上の大きさを有する(a≦d)ことが好ましい。これにより、仮に溝深さaを一定としてa>dとした場合に比べて、ブロックのタイヤ幅方向中央部で、底上げ浅溝9の溝幅を十分に確保して、底上げ浅溝9内での石噛みをさらに発生しにくくすることができる。
 ただし、仮に溝深さaを一定として溝幅dを大きくし過ぎると、ブロック体積が低下し過ぎてブロック剛性の低下を招くので、d<2aであることが好ましい。
 底上げ浅溝9の溝振り角度及び溝幅は、その延在途中で変動してもよいが、本例のようにその全長にわたってそれぞれ一定であるのが、底上げ浅溝9内での泥の流れをスムーズに出来るので、好ましい。
 図1の例では、タイヤ赤道面C近傍をほぼ全長にわたって延びる浅溝9のみを底上げ浅溝とすることで、直進走行時に最も高い接地圧がかかるタイヤ赤道面C近傍で発生しやすい石噛みやブロックもげの発生を抑制し、その他の浅溝7、8、31、32の溝深さをその全長にわたってほぼ一定にすることで、泥はけ性を大きく損なわないようにしている。ただし、必要に応じて他の浅溝7、8を底上げ浅溝としてもよい。
 以上、本発明を、その一実施形態に基づいて説明してきたが、本発明はこの実施形態に限られず、様々な変形例をも包含する。例えば、図6に示す変形例では、ブロック6に、トレッド幅方向に沿って延びて、周溝2に、そのトレッド幅方向外側に突出する折れ曲がり箇所で開口する一本の浅溝15を設けている。また、ラグ4に、トレッド端からトレッド幅方向に沿って延びるとともに周溝2に開口する開口溝17を設けている。ブロック6には、周溝2の、トレッド幅方向内側に突出する折れ曲がり箇所で、ブロック6の外周縁から内側に窪ませた二箇所の窪み部18、19を設けている。図7に示す変形例では、ブロック6に、トレッド周方向及びトレッド幅方向に対して傾斜する向きに延びて、周溝2に開口する一本の浅溝14を設けている。また、ラグ4に、トレッド端からトレッド幅方向に対して傾斜する方向に延びるとともに周溝2に開口する開口溝16を設けている。ブロック6には、周溝2の、トレッド幅方向内側に突出する折れ曲がり箇所で、ブロック6の外周縁から内側に窪ませた二箇所の窪み部18、19を設けている。図8に示す変形例では、ブロック6に、トレッド幅方向に沿って延びて周方向溝2に開口する二本の浅溝7、8と、トレッド周方向及びトレッド幅方向に対して傾斜する方向に延びて、前記浅溝7、8のそれぞれに開口する浅溝9とを設けている。ここで、浅溝7、8の一方の端部を、ブロック6の外周縁が内側に窪んだ窪み部18、19のそれぞれの位置で、周溝2に開口させている。
 そして、図6の例の浅溝15、図7の例の浅溝14、及び図8の例の浅溝9は、それぞれ底上げ浅溝として構成されている。
 図9は、本発明の一実施形態にかかる空気入りタイヤ、特に、建設車両等の重荷重用タイヤのタイヤ内部構造を示すタイヤ幅方向断面図である。図9に示されるように、このタイヤ100は、乗用車などに装着される空気入りタイヤと比較して、トレッド部500のゴムゲージ(ゴム厚さ)が厚い。なお、以下に説明するタイヤ内部構造は、図1~図8を参照して説明したトレッドパターンを有する各タイヤにそれぞれ適用可能である。
 具体的には、タイヤ100は、タイヤ外径をOD、タイヤ赤道面Cの位置におけるトレッド部500のゴムゲージをDCとした場合に、DC/OD≧0.015を満たす。
 タイヤ外径OD(単位:mm)とは、タイヤ100の外径が最大となる部分(一般的には、タイヤ赤道面C付近におけるトレッド部500)のタイヤ100の直径である。ゴムゲージDC(単位:mm)は、タイヤ赤道面Cの位置におけるトレッド部500のゴム厚さである。ゴムゲージDCには、ベルト300の厚さは含まれない。なお、タイヤ赤道面Cを含む位置に周方向溝が形成されている場合には、その周方向溝に隣接する位置におけるトレッド部500のゴム厚さとする。
 図9に示されるように、タイヤ100は、1対のビードコア110、カーカス200及び複数のベルト層からなるベルト300を備える。なお、図9では、タイヤ100の半幅のみを示しているが、図示していない方のタイヤ100の半幅も同じ構造を有する。
 ビードコア110は、ビード部120に設けられる。ビードコア110は、ビードワイヤー(図示せず)によって構成される。
 カーカス200は、タイヤ100の骨格をなすものである。カーカス200の位置は、トレッド部500からバットレス部900及びサイドウォール部700を通ってビード部120に渡る。
 カーカス200は、1対のビードコア110間に跨り、トロイダル形状を有する。カーカス200は、本実施形態において、ビードコア110を包む。カーカス200は、ビードコア110に接する。タイヤ幅方向twdにおけるカーカス200の両端は、一対のビード部120によって支持されている。
 カーカス200は、トレッド踏面1側から平面視したときに、所定方向に延在するカーカスコードを有する。本実施形態において、カーカスコードは、タイヤ幅方向twdに沿って延在する。カーカスコードとして、例えば、スチールワイヤが用いられる。
 ベルト300は、トレッド部500に配置される。ベルト300は、タイヤ径方向trdにおいてカーカス200の外側に位置する。ベルト300は、タイヤ周方向に延びる。ベルト300は、カーカスコードが延在する方向である所定方向に対して傾斜して延在するベルトコードを有する。ベルトコードとして、例えば、スチールコードが用いられる。
 複数のベルト層からなるベルト300は、第1ベルト層301、第2ベルト層302、第3ベルト層303、第4ベルト層304、第5ベルト層305及び第6ベルト層306を含む。
 第1ベルト層301は、タイヤ径方向trdにおいてカーカス200の外側に位置する。第1ベルト層301は、タイヤ径方向trdにおいて、複数のベルト層からなるベルト300の中で最も内側に位置する。第2ベルト層302は、タイヤ径方向trdにおいて第1ベルト層301の外側に位置する。第3ベルト層303は、タイヤ径方向trdにおいて第2ベルト層302の外側に位置する。第4ベルト層304は、タイヤ径方向trdにおいて第3ベルト層303の外側に位置する。第5ベルト層305は、タイヤ径方向trdにおいて第4ベルト層304の外側に位置する。第6ベルト層306は、タイヤ径方向trdにおいて第5ベルト層305の外側に位置する。第6ベルト層306は、タイヤ径方向trdにおいて、複数のベルト層からなるベルト300の中で最も外側に位置する。タイヤ径方向trdにおいて、内側から外側に向かって、第1ベルト層301、第2ベルト層302、第3ベルト層303、第4ベルト層304、第5ベルト層305、第6ベルト層306の順に配置される。
 本実施形態において、タイヤ幅方向twdにおいて、第1ベルト層301及び第2ベルト層302の幅(タイヤ幅方向twdに沿って測った幅。以下同じ。)は、トレッド幅TWの25%以上、かつ、70%以下である。タイヤ幅方向twdにおいて、第3ベルト層303及び第4ベルト層304の幅は、トレッド幅TWの55%以上、かつ、90%以下である。タイヤ幅方向twdにおいて、第5ベルト層305及び第6ベルト層306の幅は、トレッド幅TWの60%以上、かつ、110%以下である。
 本実施形態において、タイヤ幅方向twdにおいて、第5ベルト層305の幅は、第3ベルト層303の幅よりも大きく、第3ベルト層303の幅は、第6ベルト層306の幅以上であり、第6ベルト層306の幅は、第4ベルト層304の幅よりも大きく、第4ベルト層304の幅は、第1ベルト層301の幅よりも大きく、第1ベルト層301の幅は、第2ベルト層302の幅よりも大きい。タイヤ幅方向twdにおいて、複数のベルト層からなるベルト300のうち、第5ベルト層305の幅が最も大きく、第2ベルト層302の幅が最も小さい。従って、複数のベルト層からなるベルト300は、タイヤ幅方向twdにおける長さが最も短い最短ベルト層(すなわち、第2ベルト層302)を含む。
 最短ベルト層である第2ベルト層302は、タイヤ幅方向twdにおける端縁であるベルト端300eを有する。
 本実施形態において、トレッド踏面1側から平面視したときに、カーカスコードに対する第1ベルト層301及び第2ベルト層302のベルトコードの傾斜角度は、70°以上、かつ、85°以下である。カーカスコードに対する第3ベルト層303及び第4ベルト層304のベルトコードの傾斜角度は、50°以上、かつ、75°以下である。カーカスコードに対する第5ベルト層305及び第6ベルト層306のベルトコードの傾斜角度は、50°以上、かつ、70°以下である。
 複数のベルト層からなるベルト300は、内側交錯ベルト群300Aと、中間交錯ベルト群300Bと、外側交錯ベルト群300Cと、を含む。各交錯ベルト群300A~300Cは、該群内のそれぞれのベルト層を構成するベルトコードが、トレッド踏面1側からの平面視で、該群内において互いに隣接するベルト層間で(好ましくは、タイヤ赤道面をはさんで)互いに交錯する、複数のベルト層の群をいう。
 内側交錯ベルト群300Aは、1組のベルト層からなりタイヤ径方向trdにおいてカーカス200の外側に位置する。内側交錯ベルト群300Aは、第1ベルト層301と第2ベルト層302とによって、構成される。中間交錯ベルト群300Bは、1組のベルト層からなりタイヤ径方向trdにおいて内側交錯ベルト群300Aの外側に位置する。中間交錯ベルト群300Bは、第3ベルト層303と第4ベルト層304とによって、構成される。外側交錯ベルト群300Cは、1組のベルト層からなりタイヤ径方向trdにおいて中間交錯ベルト群300Bの外側に位置する。外側交錯ベルト群300Cは、第5ベルト層305と第6ベルト層306とによって、構成される。
 タイヤ幅方向twdにおいて、内側交錯ベルト群300Aの幅は、トレッド幅TWの25%以上、かつ、70%以下である。タイヤ幅方向twdにおいて、中間交錯ベルト群300Bの幅は、トレッド幅TWの55%以上、かつ、90%以下である。タイヤ幅方向twdにおいて、外側交錯ベルト群300Cの幅は、トレッド幅TWの60%以上、かつ、110%以下である。
 トレッド踏面1側から平面視したときに、カーカスコードに対する内側交錯ベルト群300Aのベルトコードの傾斜角度は、70°以上、かつ、85°以下である。トレッド踏面1側から平面視したときに、カーカスコードに対する中間交錯ベルト群300Bのベルトコードの傾斜角度は、50°以上、かつ、75°以下である。トレッド踏面1側から平面視したときに、カーカスコードに対する外側交錯ベルト群300Cのベルトコードの傾斜角度は、50°以上、かつ、70°以下である。
 トレッド踏面1側から平面視したときに、カーカスコードに対するベルトコードの傾斜角度は、内側交錯ベルト群300Aの傾斜角度が最も大きい。中間交錯ベルト群300Bのカーカスコードに対するベルトコードの傾斜角度は、外側交錯ベルト群300Cのカーカスコードに対するベルトコードの傾斜角度以上である。
 図9に示すように、ベルト端300eから、タイヤ100のトレッド踏面1側から平面視したときの、周溝2の溝幅中心線WLのタイヤ幅方向最内位置(上述した図1~図8の各例においては、トレッド踏面1側からの平面視において、ジグザグ状に延在する周溝2の溝幅中心線WLの、タイヤ幅方向内側への折れ曲がり箇所の位置)までの、タイヤ幅方向twdに沿った長さDLは、200mm以下に設定されている。
 この発明の空気入りタイヤを試作し、その性能を評価したので以下に説明する。タイヤサイズはいずれの供試タイヤも、27.00R49とした。図1に示すトレッドパターンを有する比較例タイヤ1、2及び実施例タイヤ1~3について、トレッドパターンにおける同一箇所にある浅溝9の態様を、それぞれ異ならせて、各供試タイヤを6本ずつ試作して、以下の各種の試験を行った。比較例タイヤ1、2は、共に、浅溝9の溝深さをその全長にわたって一定としたものであり、比較例タイヤ2は浅溝9の溝深さを比較例タイヤ1よりも浅くした。実施例タイヤ1~3は、いずれも、浅溝9を、浅溝9におけるブロックのタイヤ幅方向中央位置からタイヤ幅方向端に向かうにつれて溝深さを徐々に増大させた底上げ浅溝としたものであり、その溝深さを増大させる溝底の態様を、実施例タイヤ1では図2の例のように線形的(直線)とし、実施例タイヤ2では図4のようにタイヤ径方向外側に凸とし、実施例タイヤ3では図5のようにタイヤ径方向外側に凹とした。
 〔耐石噛み性〕
 各供試タイヤにつき、ダンプトラックに装着するとともに、TRAに準拠する条件(内圧700kPa、荷重9.5トン、リム幅19.5インチ、フランジ幅4.0インチ)の下、一定時間、同一条件のルートを走行させて、タイヤ赤道面Cを跨ぐブロック6における石噛みの発生率を算出した。この石噛みの発生率は、下記の式により求めた。
  石噛みの発生率=タイヤ赤道面を跨ぐブロックのうち石噛みが生じたブロックの数/タイヤ赤道面を跨ぐブロックの総数
 〔耐ブロックもげ性〕
 各供試タイヤにつき、ダンプトラックに装着するとともに、TRAに準拠する上記の条件の下、一定時間、同一条件のルートを走行させて、タイヤ赤道面Cを跨ぐブロック6におけるブロックもげの発生率を算出した。このブロックもげの発生率は、下記の式により求めた。
  ブロックもげの発生率=タイヤ赤道面を跨ぐブロックのうちブロックもげが生じたブロックの数/タイヤ赤道面を跨ぐブロックの総数
 〔耐スリップ性〕
 各供試タイヤにつき、ダンプトラックに装着するとともに、TRAに準拠する上記の条件の下、同一条件のルートを走行させて、一定時間の経過後に車両の進んだ距離(移動距離)をGPSを用いて実測し、タイヤの回転数から算出される距離(回転距離)との比較により、スリップ率を算出した。このスリップ率は、下記の式により求めることができる。
  スリップ率=(回転距離-移動距離)/移動距離
 各試験の結果を、各供試タイヤの諸元とともに表1に示す。なお、表1に示す耐石噛み性、耐ブロックもげ性、耐スリップ性は、それぞれ上述のように算出した値を、比較例タイヤ1を基準とする指数値で表したものであり、数値が小さいほどその性能が良いことを表す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなように、比較例タイヤ2は、比較例タイヤ1に比して、耐石噛み性及び耐ブロックもげ性が向上されているものの、耐スリップ性が大きく悪化している。一方、実施例タイヤ1~3は、いずれも、比較例タイヤ1に比して、浅溝の溝容積が減少したにも関わらず、溝内の泥の流れが良くなったために、耐スリップ性が大幅に悪化せず、また、耐石噛み性及び耐ブロックもげ性が向上されている。このことから、この発明の空気入りタイヤによれば、良好な泥はけ性ひいては耐スリップ性を確保しつつ、ブロック剛性ひいては耐石噛み性及び耐ブロックもげ性を大きく向上できることが解かった。
 1:トレッド踏面、 2:周溝、 3:ラグ溝、 4:ラグ、 5:横断溝、 6:ブロック、 7~9、14、15、31、32:浅溝、 16、17、30:開口溝、 18、19:窪み部、 100:タイヤ、 120:ビード部、 200:カーカス、 300:ベルト、 301:第1ベルト層、 302:第2ベルト層、 303:第3ベルト層、 304:第4ベルト層、 305:第5ベルト層、 306:第6ベルト層、 300A:内側交錯ベルト群、 300B:中間交錯ベルト群、 300C:外側交錯ベルト群、 300e:ベルト端、 500:トレッド部、 700:サイドウォール部、 900:バットレス部、 C:タイヤ赤道面、 TW:トレッド幅

Claims (6)

  1.  トレッド踏面に、タイヤ周方向に連続して延びる2本以上の周溝と、タイヤ幅方向に互いに隣接する該周溝のそれぞれに開口する横断溝とで区画されるとともに、タイヤ赤道面を跨ぐブロックを有する、空気入りタイヤであって、
     前記ブロックに、該ブロックに隣接する前記周溝の最大溝深さより浅い平均溝深さを有する1本以上の浅溝が設けられ、
     前記浅溝の少なくとも1本は、前記ブロックに隣接する前記周溝及び前記横断溝の少なくとも一方に、直接又は他の前記浅溝を介して連通され、かつ、少なくとも前記ブロックのタイヤ幅方向中央部でタイヤ周方向と交わる方向に延びるとともに、該ブロックのタイヤ幅方向中央部での溝深さが、該浅溝のタイヤ幅方向端部での溝深さよりも浅くなるように底上げされた、底上げ浅溝であることを特徴とする、重荷重用空気入りタイヤ。
  2.  前記ブロックに隣接する前記周溝の最大溝深さをOTDとし、前記底上げ浅溝の前記ブロックのタイヤ幅方向中央部での最小溝深さをaとし、該底上げ浅溝のタイヤ幅方向端部での最大溝深さをbとするとき、
      OTD/3≦a<OTD/2
      a<b≦OTD/2
    の2式を満たす、請求項1に記載の重荷重用空気入りタイヤ。
  3.  前記底上げ浅溝は、該底上げ浅溝における前記ブロックのタイヤ幅方向中央部での最小溝深さ位置から該底上げ浅溝のタイヤ幅方向端部に向かうにつれて、溝深さが線形的に増大する、傾斜底浅溝部分を含む、請求項1又は2に記載の重荷重用空気入りタイヤ。
  4.  前記底上げ浅溝は、前記傾斜底浅溝部分での溝底の前記トレッド踏面に対する鋭角側の傾斜角度が、5°~15°である、請求項3に記載の重荷重用空気入りタイヤ。
  5.  前記底上げ浅溝の溝幅方向の断面において、該底上げ浅溝における前記ブロックのタイヤ幅方向中央部での溝壁面の、前記トレッド踏面の垂線に対する鋭角側の傾斜角度は、4°よりも大きい、請求項1~4のいずれか一項に記載の重荷重用空気入りタイヤ。
  6.  前記底上げ浅溝における前記ブロックのタイヤ幅方向中央部での溝幅は、該底上げ浅溝の前記ブロックのタイヤ幅方向中央部での最小溝深さ以上の大きさを有する、請求項1~5のいずれか一項に記載の重荷重用空気入りタイヤ。
PCT/JP2014/004607 2013-12-27 2014-09-08 重荷重用空気入りタイヤ WO2015097945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14875868.3A EP3088214B1 (en) 2013-12-27 2014-09-08 Heavy duty pneumatic tire
US15/104,254 US10421321B2 (en) 2013-12-27 2014-09-08 Heavy duty pneumatic tire
ES14875868.3T ES2674097T3 (es) 2013-12-27 2014-09-08 Neumáticos para trabajos duros

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013272914A JP5722986B1 (ja) 2013-12-27 2013-12-27 重荷重用空気入りタイヤ
JP2013-272914 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015097945A1 true WO2015097945A1 (ja) 2015-07-02

Family

ID=53223857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004607 WO2015097945A1 (ja) 2013-12-27 2014-09-08 重荷重用空気入りタイヤ

Country Status (6)

Country Link
US (1) US10421321B2 (ja)
EP (1) EP3088214B1 (ja)
JP (1) JP5722986B1 (ja)
CN (2) CN104742662B (ja)
ES (1) ES2674097T3 (ja)
WO (1) WO2015097945A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722986B1 (ja) 2013-12-27 2015-05-27 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP6243233B2 (ja) * 2014-01-17 2017-12-06 株式会社ブリヂストン タイヤ
JP6762266B2 (ja) * 2017-06-01 2020-09-30 株式会社ブリヂストン 空気入りタイヤ
WO2019088987A1 (en) * 2017-10-31 2019-05-09 Compagnie Generale Des Etablissements Michelin Tread for a heavy truck tire
CN108248297A (zh) * 2018-02-09 2018-07-06 建大橡胶(中国)有限公司 一种越野沙滩车轮胎
JP6624231B2 (ja) * 2018-04-17 2019-12-25 横浜ゴム株式会社 空気入りタイヤ
DE102019208671A1 (de) * 2019-06-14 2020-12-17 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203268A (ja) * 2002-12-26 2004-07-22 Bridgestone Corp ラジアルタイヤ
JP2004224131A (ja) * 2003-01-21 2004-08-12 Sumitomo Rubber Ind Ltd 重荷重用ラジアルタイヤ
JP2010125999A (ja) * 2008-11-27 2010-06-10 Bridgestone Corp タイヤ
JP2012147944A (ja) 2011-01-19 2012-08-09 Panasonic Corp 下肢動作支援装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286804A (ja) 1986-06-04 1987-12-12 Bridgestone Corp 偏平空気入りタイヤ
DE3701716C3 (de) * 1987-01-22 1996-06-20 Basf Magnetics Gmbh Verfahren zum Schneiden von Magnetbändern
JP2687696B2 (ja) * 1990-08-02 1997-12-08 日産自動車株式会社 無段変速機の変速制御装置
JP3098585B2 (ja) * 1991-09-26 2000-10-16 東洋ゴム工業株式会社 空気入りタイヤ
JP3105616B2 (ja) * 1992-02-07 2000-11-06 株式会社ブリヂストン 建設車両用空気入りタイヤ
JP3347276B2 (ja) 1997-08-06 2002-11-20 オーツタイヤ株式会社 タイヤのトレッドパターン
KR100612401B1 (ko) * 1998-10-29 2006-08-16 피렐리 뉴아티씨 소시에떼 퍼 아찌오니 타이어와 그 타이어의 트레드
JP3933495B2 (ja) 2001-08-23 2007-06-20 株式会社ブリヂストン 空気入りラジアルタイヤ
JP4569277B2 (ja) 2004-11-29 2010-10-27 横浜ゴム株式会社 空気入りタイヤ
JP4330561B2 (ja) * 2005-07-12 2009-09-16 住友ゴム工業株式会社 重荷重用タイヤ
JP4970815B2 (ja) * 2006-03-22 2012-07-11 東洋ゴム工業株式会社 空気入りタイヤ
JP4838070B2 (ja) * 2006-08-04 2011-12-14 東洋ゴム工業株式会社 空気入りタイヤ
JP2008155817A (ja) 2006-12-25 2008-07-10 Bridgestone Corp 重荷重用空気入りタイヤ
JP5144116B2 (ja) * 2007-04-26 2013-02-13 株式会社ブリヂストン 空気入りタイヤ
US7477514B2 (en) * 2007-05-04 2009-01-13 International Business Machines Corporation Method of facilitating cooling of electronics racks of a data center employing multiple cooling stations
JP5304127B2 (ja) * 2008-09-16 2013-10-02 横浜ゴム株式会社 空気入りタイヤ
JP5177545B2 (ja) * 2008-11-21 2013-04-03 株式会社デンソー 回転電機のコイル組立体製造方法
JP5404012B2 (ja) * 2008-11-27 2014-01-29 株式会社ブリヂストン タイヤ
JP5417045B2 (ja) * 2009-05-29 2014-02-12 株式会社ブリヂストン タイヤ
JP5844982B2 (ja) 2011-02-24 2016-01-20 株式会社ブリヂストン タイヤ
JP5965224B2 (ja) 2012-06-29 2016-08-03 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP5722986B1 (ja) 2013-12-27 2015-05-27 株式会社ブリヂストン 重荷重用空気入りタイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203268A (ja) * 2002-12-26 2004-07-22 Bridgestone Corp ラジアルタイヤ
JP2004224131A (ja) * 2003-01-21 2004-08-12 Sumitomo Rubber Ind Ltd 重荷重用ラジアルタイヤ
JP2010125999A (ja) * 2008-11-27 2010-06-10 Bridgestone Corp タイヤ
JP2012147944A (ja) 2011-01-19 2012-08-09 Panasonic Corp 下肢動作支援装置

Also Published As

Publication number Publication date
EP3088214B1 (en) 2018-04-11
CN104742662A (zh) 2015-07-01
EP3088214A4 (en) 2017-01-11
JP5722986B1 (ja) 2015-05-27
EP3088214A1 (en) 2016-11-02
US20160311264A1 (en) 2016-10-27
CN104742662B (zh) 2017-04-12
ES2674097T3 (es) 2018-06-27
JP2015127172A (ja) 2015-07-09
CN204340560U (zh) 2015-05-20
US10421321B2 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
JP5722986B1 (ja) 重荷重用空気入りタイヤ
KR101509318B1 (ko) 공기 타이어
JP5727965B2 (ja) 空気入りタイヤ
US9802444B2 (en) Pneumatic tire
JP5590267B1 (ja) 空気入りタイヤ
US20160159158A1 (en) Heavy-duty tire
KR101799115B1 (ko) 공기 타이어
WO2009084666A1 (ja) タイヤ
JP5965224B2 (ja) 重荷重用空気入りタイヤ
JP2006151083A (ja) 重荷重車両用タイヤ
JP6139843B2 (ja) 空気入りタイヤ
WO2014142350A1 (ja) 空気入りタイヤ
JP6571093B2 (ja) 空気入りタイヤ
WO2015001810A1 (ja) 重荷重用空気入りタイヤ
JP6551506B2 (ja) 空気入りタイヤ
CN107867126B (zh) 轮胎
WO2016017543A1 (ja) 空気入りタイヤ
WO2014178182A1 (ja) 重荷重用空気入りタイヤ
WO2018116512A1 (ja) 空気入りタイヤ
WO2019159564A1 (ja) 空気入りタイヤ
WO2016143477A1 (ja) 空気入りタイヤ
JP5437851B2 (ja) 空気入りタイヤ
JP5665911B2 (ja) 重荷重用空気入りタイヤ
JP2019137340A (ja) 空気入りタイヤ
JP2019137339A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875868

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014875868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15104254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE