WO2014167859A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014167859A1
WO2014167859A1 PCT/JP2014/002056 JP2014002056W WO2014167859A1 WO 2014167859 A1 WO2014167859 A1 WO 2014167859A1 JP 2014002056 W JP2014002056 W JP 2014002056W WO 2014167859 A1 WO2014167859 A1 WO 2014167859A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
width direction
recess
wall surface
Prior art date
Application number
PCT/JP2014/002056
Other languages
English (en)
French (fr)
Inventor
裕喜 川上
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201480020087.7A priority Critical patent/CN105102244B/zh
Priority to BR112015025759A priority patent/BR112015025759A2/pt
Priority to EP14782769.5A priority patent/EP2985156B1/en
Priority to ES14782769.5T priority patent/ES2638199T3/es
Priority to US14/772,817 priority patent/US20160009144A1/en
Publication of WO2014167859A1 publication Critical patent/WO2014167859A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • B60C2011/0383Blind or isolated grooves at the centre of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C2011/133Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls comprising recesses

Definitions

  • the present invention relates to a pneumatic tire capable of promoting heat dissipation of the tread portion and lowering the temperature of the tread portion.
  • an object of the present invention is to provide a pneumatic tire that minimizes an increase in groove area, promotes heat dissipation in the tread portion, and lowers the temperature of the tread portion.
  • the pneumatic tire of the present invention is a tire having a circumferential groove formed on a tread surface and a plurality of widthwise grooves having a groove width wider than the circumferential groove.
  • a concave recess is formed toward the circumferential groove, and the opening surface in which the widthwise groove opens into the circumferential groove opens the recess into the circumferential groove.
  • the width direction groove is opposed to at least a part of the opening surface of the recess, and extends at an angle of 30 ° or more with respect to the tire width direction. According to this, heat is dissipated in the vicinity of the intermediate point M of the circumferential groove adjacent to the width direction groove in the tire circumferential direction, and the temperature of the tread portion can be lowered.
  • the “recess opening surface” refers to a virtual surface that extends the circumferential groove wall surface along the surface and covers the recess from the tire width direction.
  • the state that “the opening surface of the widthwise groove faces at least a part of the opening surface of the recessed portion of the recess” means that the opening surface of the widthwise groove is parallel to the extending direction of the widthwise groove. It is a state in which at least a part of the concave opening surface is present in a region formed by projecting on the circumferential groove wall surface provided with the concave in any direction.
  • the length of the concave portion in the tire width direction changes along the tire circumferential direction. According to this, the temperature of the tread portion can be further lowered.
  • the length of the recess in the tire circumferential direction decreases from the recess opening surface side of the recess toward the back. According to this, the temperature of the tread portion can be further lowered.
  • the concave portion has an asymmetric planar shape with respect to a virtual line parallel to the tire width direction when viewed from the tread surface. According to this, the temperature of the tread portion can be sufficiently lowered.
  • the concave portion includes a concavely inclined wall surface and a concavely inclined wall surface having a larger inclination angle with respect to the concave opening surface than the concavely inclined wall surface, and the widthwise groove is It is preferable that the recess extends from the opening surface of the widthwise groove toward the outer side in the tire width direction from the concavely inclined wall surface side toward the concavely inclined wall surface side. According to this, the temperature of the tread portion can be lowered more sufficiently.
  • the width direction groove is inclined with respect to the tire width direction as described above, of the pair of groove wall surfaces of the width direction groove, an extended surface of the groove wall surface on the concavely steeply inclined wall surface side, It is preferable to coincide with the concavely inclined wall surface. According to this, the temperature of the tread portion can be further sufficiently lowered.
  • FIG. 2A is an enlarged development view showing the vicinity of a concave portion of the tire in FIG. 1.
  • B is the expansion development view which showed the tire of Drawing 1 with the flow of the air in each slot at the time of tire rolling.
  • FIG. 3 is an enlarged perspective view showing an air flow in each groove when the tire of FIG. 1 is rolled in a direction opposite to that of FIG.
  • A) is a comparative example tire in which the widthwise grooves of the tire of FIG. 1 are extended in the tire width direction
  • (b) is a comparative example tire, the tire of (a).
  • FIG. 2 is a tire width direction cross-sectional view illustrating the tire internal structure of the embodiment of the tire of FIG. 1.
  • FIG. 1 is a developed plan view showing a tread pattern of a pneumatic tire 1 (also simply referred to as “tire”) for a construction vehicle according to an embodiment of the present invention.
  • the tread tread surface 2 of the tire 1 is provided with at least one continuous groove 3 extending in the tire circumferential direction, in the figure, a pair of circumferential grooves 3 across the tire equatorial plane CL. ing.
  • channel 3 has shown the extended form extended continuously linearly along a tire circumferential direction, it can be made into arbitrary extended forms, such as a zigzag form and a wave form. .
  • the tread tread 2 has a plurality of widthwise grooves 4 that are open in the circumferential grooves 3 and wider than the circumferential grooves 3, and in the drawing, linearly open at the tread ends TE. Is formed. Accordingly, in FIG. 1, a rib-shaped central land portion 21 including the tire equatorial plane CL is formed by the pair of circumferential grooves 3, and a block-shaped land portion 22 is formed by the circumferential grooves 3 and the width-direction grooves 4.
  • the illustrated tread pattern is an example, and the present invention can be applied to both the rib base pattern and the block base pattern.
  • width direction groove 4 is not constant and changes in groove width, has an arbitrarily extending shape such as a zigzag shape or a wave shape, or communicates with other grooves without opening at the tread end TE, for example. It can be set as arbitrary forms.
  • FIG. 3 In the tire 11 in which the narrow circumferential groove 13 and the wide width groove 14 extending in the direction parallel to the tire width direction and opening in the circumferential groove 13 are formed, FIG. As shown in FIG. 3, the tire 11 rolls to generate an air flow from the width direction groove 14 to the circumferential direction groove 13, but the width direction groove 14 extends in a direction parallel to the tire width direction as shown in the figure.
  • the air flow in the width direction groove 14 collides with the circumferential groove wall surface of the circumferential groove 13 facing the width direction groove 14, and the air flow is forward FD (downward in FIG. 4) with respect to the tire rotation direction. And distributed in an amount approximately equal to the reverse direction OD (upward in FIG. 4). And the airflow from each of the width direction grooves 14 adjacent to each other in the tire circumferential direction collides at the intermediate point M. Therefore, since the air flow is stagnant at the intermediate point M, the vicinity of the intermediate point M cannot be sufficiently dissipated, and as a result, the temperature of the tread portion cannot be sufficiently reduced.
  • a circumferential groove is formed on the circumferential groove wall surface W1 of the circumferential groove 3 (in the drawing, the circumferential groove wall surface on the tire equatorial plane CL side).
  • a concave recess 5 is formed, and the opening 4 a that the widthwise groove 4 opens to the circumferential groove wall surface W ⁇ b> 2 of the circumferential groove 3 (in the drawing, the circumferential groove wall surface on the outer side in the tire width direction) 5 is opposed to at least a part of the concave opening surface 51 that opens to the circumferential groove 3.
  • the illustrated recess 5 is also opened in the tread surface 2. According to this configuration, as shown in FIG.
  • the air flow flowing into the circumferential groove 3 from the width direction groove 4 can be unevenly dispersed in the circumferential groove 3 by the recess 5. it can. Therefore, the point M ′ where the air flow in the forward direction FD and the reverse direction OD collide with each other in the circumferential groove 3 moves to the width direction groove 4 side as compared with the case where the concave portion 5 is not provided, and the intermediate point Since the air flow reaches M, the vicinity of the point M dissipates more heat, and as a result, the temperature of the tread portion can be sufficiently reduced.
  • the moved point M ′ is less likely to dissipate heat due to the air flow, but is located in the vicinity of the width direction groove, so that the temperature of the tread portion can be lowered as compared with the case where the point M ′ is located at the intermediate point M. .
  • the recess 5 is adjacent to the recess opening surface 51 along the circumferential groove wall surface W1 in which the recess 5 is formed and the circumferential groove wall surface W1 of the recess 5. It has a concave wall surface W3 and a concave wall surface W4, and two virtual corners having respective angles ⁇ 3 and ⁇ 4 by the concave opening surface 51 and the concave wall surface W3, and the concave opening surface 51 and the concave wall surface W4. A3 and A4 are formed.
  • the recessed part 5 can be made into arbitrary shapes, As shown to Fig.2 (a), it is preferable that the length W of a tire width direction changes along a tire circumferential direction, and the example shown in figure Then, the length W of the recess 5 gradually increases from the corner A3 on one side in the tire circumferential direction to the apex T of the recess 5, and the length W gradually decreases from the apex T to the corner A4 on the other side in the tire circumferential direction. .
  • the recess 5 preferably has a tire circumferential length L that decreases from the recess opening surface 51 side opening in the circumferential groove 3 toward the back, and toward the apex T in the drawing.
  • the length L is the maximum at the recess opening surface 51 and decreases toward the vertex T.
  • the recess 5 preferably has a maximum length in the tire circumferential direction of 150 mm or less and a maximum length in the tire width direction of 50 mm or less. If the recess 5 is too large, the wear performance may be deteriorated, and if it is too small, the air flow in the circumferential groove 3 may be insufficiently dispersed.
  • the recess 5 shown in FIG. 2 described above has a triangular shape in which the angles ⁇ 3 and ⁇ 4 of the corners A3 and A4 respectively satisfy ⁇ 3> ⁇ 4, but the recess 5 is not shown.
  • the recessed part 5 sees from a tread surface, it is preferable to have an asymmetric planar shape with respect to the virtual line parallel to a tire width direction.
  • the recess wall surface W3 adjacent to the recess opening surface 51 as shown in FIG. , W4 is a virtual surface existing on a line segment that connects the position (vertex T) farthest away from the recessed opening surface 51 and one end of the recessed opening surface 51.
  • the recessed part 5 should just be provided in at least one part among the groove wall surfaces of the circumferential groove
  • the recess 5 on the groove wall surface from the groove bottom to the tread surface 2.
  • the recessed part 5 is arrange
  • the widthwise grooves 4 extend outward in the tire width direction at an angle of 30 ° or more with respect to the tire width direction.
  • the width direction groove 4 is inclined and the tire circumferential direction in which the width direction groove 4 is inclined when viewed from the opening surface 4a of the width direction groove 4 to the outside in the tire width direction (hereinafter also referred to as “inclination direction of the width direction groove 4”). 2), when the tire 1 rolls, as shown in FIG. 2 (b), air flows from the width direction groove 4 into the circumferential direction groove 3, and the air flow is inclined.
  • FIG. 2 Compared with the tire (FIG.
  • the downward air flow from the opening side to the tread surface 2 of the circumferential groove 3 toward the groove bottom side causes a point P around the circumferential groove 3 as shown in FIG. 3. Therefore, the point P can be radiated effectively.
  • the angle ⁇ 5 of the width direction groove 4 is set to 30 ° or more, as shown in the figure, a small air vortex is generated in the circumferential groove 3 and the downdraft flows over the vortex. Compared to the case of less than 30 °, the descending airflow can be made stronger. Therefore, the air flows into the width direction groove 4 while effectively cooling the point P, and even if the tire 1 rolls in a direction opposite to the inclination direction of the width direction groove 4, the temperature of the tread portion is increased. Can be reduced.
  • the angle ⁇ 5 can be any angle as long as it is 30 ° or more, but if ⁇ 5 is excessively increased, the rigidity of the land portion provided with the widthwise grooves 4 may be reduced. It is preferable to satisfy the angle ⁇ ⁇ ⁇ 5 ⁇ 60 °.
  • the concave portion 5 has a concavely inclined wall surface (concave wall surface) W4 having a relatively small inclination angle with respect to the extending direction of the circumferential groove 3, and a circumferential groove than the concavely inclined wall surface W4.
  • 3 is provided with a recess steeply inclined wall surface (recessed wall surface) W3 having a relatively large inclination angle with respect to the extending direction of 3
  • the width direction groove 4 extends from the concavely inclined wall surface W4 side toward the recessed steeply inclined wall surface W3 side. It is preferable to extend outward from the opening surface 4a of the width direction groove 4 in the tire width direction. According to this, since the airflow flowing from the width direction groove 4 to the circumferential direction groove 3 or from the circumferential direction groove 3 to the width direction groove 4 can be made smoother, the temperature of the tread portion is efficiently reduced. be able to.
  • channel 4 inclines from the opening surface 4a of the width direction groove
  • the extension surface of the groove wall surface W5 on the concave steeply inclined wall surface W3 side of the pair of groove wall surfaces of the width direction groove 4 coincides with the concavely steeply inclined wall surface W3. According to this, the air flow becomes sufficiently smooth, and the temperature of the tread portion can be further efficiently reduced.
  • the position (vertex T) which becomes deepest from the recessed part opening surface 51 of the recessed part 5 is an angle rather than corner
  • the corner A3 may be located between the ends R3 and R4, and the corner A4 may be located on the opposite side OD from the end R4.
  • the corner A3 is located at the end R3.
  • it is preferable that the corner A4 is located farther from the corner A3 than the end R4. This is because the air flow can be further sufficiently smoothed.
  • the negative ratio of the tread tread 2 is 1/4 of the length of the entire tread measured from the tire equatorial plane CL along the tire width direction. It is preferable that the negative rate in the range (center portion) up to the separated position is lower than the negative rate in the range (shoulder portion) from the separated position to the tread end TE. This is because the rigidity of the center portion can be maintained.
  • the groove width of the circumferential groove 3 is preferably 3 to 20 mm because air flow is obstructed if it is too narrow, and rigidity may be lowered if it is too wide.
  • the circumferential groove 3 is 1/12 to 1/4 of the length in the tread width direction (with a tread width of about 1200 mm, a range of about 100 mm to 300 mm), and is spaced from the tire equatorial plane CL to the outside in the tire width direction. Are preferably located.
  • the rigidity of the center portion can be maintained while lowering the temperature of the tread portion, particularly the center portion where the temperature rise is large due to tire rolling.
  • the groove width of the width direction groove 4 is preferably 5 to 120 mm because air flow in the groove disappears if it is too narrow.
  • Adjacent widthwise grooves 4 are preferably disposed at intervals of 2 to 5 times the width of the widthwise grooves 4. The rigidity of the tread portion can be maintained while lowering the temperature of the tread portion.
  • the pneumatic tire of the present invention is not limited to the above example, and changes can be appropriately made to the pneumatic tire of the present invention.
  • the pneumatic tire of the present invention described above can have an internal structure that will be described below with reference to FIG.
  • FIG. 6 is a diagram illustrating a half part of a tire width direction cross section of one embodiment of the pneumatic tire of the present invention.
  • the illustrated pneumatic tire 1 is a heavy load for a construction vehicle, for example. Heavy duty tire.
  • FIG. 6 is a cross-sectional view in the tire width direction showing a tire internal structure of a pneumatic tire according to an embodiment of the present invention, particularly a heavy duty tire such as a construction vehicle.
  • the tire 100 has a rubber gauge (rubber thickness) of the tread portion 500 larger than that of a pneumatic tire mounted on a passenger car or the like.
  • the tire internal structure described below is applicable to each tire having the tread pattern described with reference to FIGS.
  • the tire 100 satisfies DC / OD ⁇ 0.015 when the tire outer diameter is OD and the rubber gauge of the tread portion 500 at the position of the tire equatorial plane CL is DC.
  • the tire outer diameter OD (unit: mm) is a diameter of the tire 100 at a portion where the outer diameter of the tire 100 is maximum (generally, the tread portion 500 in the vicinity of the tire equatorial plane CL).
  • the rubber gauge DC (unit: mm) is the rubber thickness of the tread portion 500 at the position of the tire equatorial plane CL.
  • the rubber gauge DC does not include the thickness of the belt 300.
  • channel is formed in the position containing tire equator surface CL, it is set as the rubber thickness of the tread part 500 in the position adjacent to the circumferential groove
  • the tire 100 includes a pair of bead cores 110, a carcass 200, and a belt 300 including a plurality of belt layers. 6 shows only the half width of the tire 100, the half width of the tire 100 not shown has the same structure.
  • the bead core 110 is provided in the bead unit 120.
  • the bead core 110 is configured by a bead wire (not shown).
  • the carcass 200 forms the skeleton of the tire 100.
  • the position of the carcass 200 passes from the tread portion 500 through the buttress portion 900 and the sidewall portion 700 to the bead portion 120.
  • the carcass 200 straddles between a pair of bead cores 110 and has a toroidal shape.
  • the carcass 200 wraps the bead core 110 in this embodiment.
  • the carcass 200 is in contact with the bead core 110. Both ends of the carcass 200 in the tire width direction twd are supported by a pair of bead portions 120.
  • the carcass 200 has a carcass cord extending in a predetermined direction when viewed in plan from the tread tread surface 2 side.
  • the carcass cord extends along the tire width direction twd.
  • a steel wire is used as the carcass cord.
  • the belt 300 is disposed on the tread portion 500.
  • the belt 300 is located outside the carcass 200 in the tire radial direction trd.
  • the belt 300 extends in the tire circumferential direction.
  • the belt 300 has a belt cord that is inclined with respect to a predetermined direction that is a direction in which the carcass cord extends. For example, a steel cord is used as the belt cord.
  • the belt 300 composed of a plurality of belt layers includes a first belt layer 301, a second belt layer 302, a third belt layer 303, a fourth belt layer 304, a fifth belt layer 305, and a sixth belt layer 306.
  • the first belt layer 301 is located outside the carcass 200 in the tire radial direction trd.
  • the first belt layer 301 is located on the innermost side in the belt 300 composed of a plurality of belt layers in the tire radial direction trd.
  • the second belt layer 302 is located outside the first belt layer 301 in the tire radial direction trd.
  • the third belt layer 303 is located outside the second belt layer 302 in the tire radial direction trd.
  • the fourth belt layer 304 is located outside the third belt layer 303 in the tire radial direction trd.
  • the fifth belt layer 305 is located outside the fourth belt layer 304 in the tire radial direction trd.
  • the sixth belt layer 306 is located outside the fifth belt layer 305 in the tire radial direction trd.
  • the sixth belt layer 306 is located on the outermost side in the belt 300 composed of a plurality of belt layers in the tire radial direction trd.
  • the first belt layer 301, the second belt layer 302, the third belt layer 303, the fourth belt layer 304, the fifth belt layer 305, and the sixth belt layer 306 are arranged in this order. Be placed.
  • the width of the first belt layer 301 and the second belt layer 302 (the width measured along the tire width direction twd. The same applies hereinafter) is 25% or more of the tread width TW. And it is 70% or less.
  • the widths of the third belt layer 303 and the fourth belt layer 304 are 55% or more and 90% or less of the tread width TW.
  • the widths of the fifth belt layer 305 and the sixth belt layer 306 are 60% or more and 110% or less of the tread width TW.
  • the width of the fifth belt layer 305 is larger than the width of the third belt layer 303, and the width of the third belt layer 303 is equal to or larger than the width of the sixth belt layer 306.
  • the width of the sixth belt layer 306 is larger than the width of the fourth belt layer 304, the width of the fourth belt layer 304 is larger than the width of the first belt layer 301, and the width of the first belt layer 301 is It is larger than the width of the second belt layer 302.
  • the fifth belt layer 305 has the largest width and the second belt layer 302 has the smallest width.
  • the belt 300 including a plurality of belt layers includes the shortest belt layer (that is, the second belt layer 302) having the shortest length in the tire width direction twd.
  • the second belt layer 302 which is the shortest belt layer has a belt end 300e which is an edge in the tire width direction twd.
  • the inclination angles of the belt cords of the first belt layer 301 and the second belt layer 302 with respect to the carcass cord are 70 ° or more and 85 ° or less.
  • the inclination angle of the belt cords of the third belt layer 303 and the fourth belt layer 304 with respect to the carcass cord is not less than 50 ° and not more than 75 °.
  • the inclination angle of the belt cords of the fifth belt layer 305 and the sixth belt layer 306 with respect to the carcass cord is not less than 50 ° and not more than 70 °.
  • the belt 300 composed of a plurality of belt layers includes an inner cross belt group 300A, an intermediate cross belt group 300B, and an outer cross belt group 300C.
  • the belt cords constituting the respective belt layers in the group are between belt layers adjacent to each other in the group (preferably, the tire equator) in a plan view from the tread tread surface 2 side.
  • the inner cross belt group 300A is composed of a pair of belt layers and is located outside the carcass 200 in the tire radial direction trd.
  • the inner cross belt group 300 ⁇ / b> A includes a first belt layer 301 and a second belt layer 302.
  • the intermediate cross belt group 300B includes a pair of belt layers and is located outside the inner cross belt group 300A in the tire radial direction trd.
  • the intermediate crossing belt group 300 ⁇ / b> B includes a third belt layer 303 and a fourth belt layer 304.
  • the outer cross belt group 300C includes a pair of belt layers and is located outside the intermediate cross belt group 300B in the tire radial direction trd.
  • the outer cross belt group 300 ⁇ / b> C includes a fifth belt layer 305 and a sixth belt layer 306.
  • the inner cross belt group 300A has a width of 25% or more and 70% or less of the tread width TW.
  • the width of the intermediate cross belt group 300B is 55% or more and 90% or less of the tread width TW.
  • the width of the outer cross belt group 300C is 60% or more and 110% or less of the tread width TW.
  • the inclination angle of the belt cord of the inner cross belt group 300A with respect to the carcass cord is 70 ° or more and 85 ° or less.
  • the inclination angle of the belt cord of the intermediate cross belt group 300B with respect to the carcass cord is not less than 50 ° and not more than 75 °.
  • the inclination angle of the belt cord of the outer cross belt group 300C with respect to the carcass cord is 50 ° or more and 70 ° or less.
  • the inclination angle of the belt cord with respect to the carcass cord is the largest inclination angle of the inner cross belt group 300A.
  • the inclination angle of the belt cord with respect to the carcass cord of the intermediate intersection belt group 300B is equal to or greater than the inclination angle of the belt cord with respect to the carcass cord of the outer intersection belt group 300C.
  • the circumferential groove 3 is the innermost position in the tire width direction of the groove width center line WL passing through the center in the width direction of the circumferential groove 3 when viewed from the belt end 300e from the tread tread surface 2 side of the tire 100 (that is, The length DL along the tire width direction twd up to (the bent portion inward in the tire width direction) is 200 mm or less.
  • the present invention is not limited to the following examples.
  • the tire 1 of the example has a tire size of 59 / 80R63, and has a concave portion provided in the circumferential groove, and the width direction groove is inclined with respect to the tire width direction according to the numerical values in Table 1 and FIG. 2 is a tire having a tread pattern shown in FIG.
  • the recess has a shape as shown in FIG. 2, and the width direction groove extends from the opening surface of the width direction groove toward the tire width direction from the recess gradually inclined wall surface W4 side to the recess steeply inclined wall surface W3 side.
  • the extended surface W5 of the groove wall surface on the concave steeply inclined wall surface W3 side of the pair of groove wall surfaces of the width direction groove coincides with the concavely steeply inclined wall surface W3.
  • the tire 1 of the comparative example is the same tire as the tire of the example 1 except that no recess is provided and the width direction groove is extended in a direction parallel to the tire width direction.
  • the tire of Comparative Example 2 is a tire having the tread pattern shown in FIG. 4A similar to the tire of Example 1 except that the widthwise grooves extend in a direction parallel to the tire width direction.
  • Each test tire was assembled to a rim (rim width: 36 inches) and an internal pressure (600 kPa) was applied, and then an indoor drum test (load: 82.5 tons, drum diameter: 5 m, drum surface speed: 8 km / h) Then, the tire was rolled in the inclination direction of the width direction groove or in the direction opposite to the inclination direction, and the temperature of the rib-shaped central land portion adjacent to the circumferential groove after running for 24 hours was measured. And the temperature difference before and behind driving
  • a larger index means that heat is radiated from the tread portion.
  • the temperature measurement point is a width passing through a virtual straight line in the tire circumferential direction 50 mm away from the circumferential groove wall surface inward in the tire width direction and a position in the circumferential middle of the widthwise groove adjacent to the tire circumferential direction. This is a point where a virtual straight line extending in parallel with the direction groove intersects.
  • the temperature of the tread portion is lower than that of the tire of Comparative Example 1 that is not provided with the recesses.
  • the temperature of the land portion is higher than that of the tire of Comparative Example 2 in which the widthwise grooves are not inclined. It turns out that falls.
  • a pneumatic tire capable of minimizing an increase in the area of the groove, promoting heat dissipation of the tread portion, and reducing the temperature of the tread portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 溝の面積の増加を最小限に抑えて、トレッド部の放熱を促進し、トレッド部の温度を低下させた空気入りタイヤを提供することを目的とする。 本発明の空気入りタイヤは、トレッド踏面に、タイヤ周方向に沿って延びる少なくとも1本の周方向溝と、該周方向溝に開口し、前記周方向溝よりも広い溝幅の複数の幅方向溝とが形成された空気入りタイヤであって、前記周方向溝の周方向溝壁面に、該周方向溝に向かって凹状の凹部が形成され、前記幅方向溝が前記周方向溝へ開口する開口面は、前記凹部が前記周方向溝へ開口する凹部開口面の少なくとも一部に対向し、前記幅方向溝は、タイヤ幅方向に対して30°以上の角度をなして延びることを特徴とする。

Description

空気入りタイヤ
 本発明は、トレッド部の放熱を促進し、トレッド部の温度を低下させることが可能な空気入りタイヤに関するものである。
 タイヤの負荷転動時にトレッド部が発熱すると、トレッド部が高温となり、トレッド部のヒートセパレーション等の様々な故障の原因となる。ここで、トレッド部の温度を低下させるためには、発熱の低減または放熱の向上が必要である。
 従来、トレッド部の温度を低下させるには、トレッド部に溝を形成することで、発熱源となるトレッドゴムを除去するとともに、トレッド部の表面積を増加して放熱を高めるという方法が採用されてきた(例えば、特許文献1)。
特開2003-205706号公報
 しかし、上述した方法では、温度低下効果をより向上させるためには溝を増加する必要があるが、溝を増加すると陸部剛性の低下を招き、摩耗性能や操縦安定性能が悪化する原因となる。それゆえ、本発明の目的は、溝の面積の増加を最小限に抑えて、トレッド部の放熱を促進し、トレッド部の温度を低下させた空気入りタイヤを提供することにある。
 本発明の空気入りタイヤは、トレッド踏面に周方向溝と、該周方向溝に開口し、前記周方向溝よりも広い溝幅の複数の幅方向溝とが形成されたものであって、前記周方向溝の周方向溝壁面に、該周方向溝に向かって凹状の凹部が形成され、前記幅方向溝が前記周方向溝へ開口する開口面は、前記凹部が前記周方向溝へ開口する凹部開口面の少なくとも一部に対向し、前記幅方向溝は、タイヤ幅方向に対して30°以上の角度をなして延びることを特徴とする。これによれば、周方向溝の、タイヤ周方向に隣り合う幅方向溝の中間地点M付近が放熱され、トレッド部の温度を低下させることができる。
 なお、本発明において、「凹部開口面」とは、周方向溝壁面を、該面に沿って延長した、凹部をタイヤ幅方向から覆う仮想面を指す。また、本発明において、「幅方向溝の開口面は、前記凹部の凹部開口面の少なくとも一部に対向する」状態とは、幅方向溝の開口面を、幅方向溝の延在方向に平行な方向に、凹部が設けられた周方向溝壁面に対し投影して形成される領域内に、凹部開口面の少なくとも一部が存在する状態を指す。
 ここで、本発明の空気入りタイヤでは、前記凹部は、タイヤ幅方向の長さが、タイヤ周方向に沿って変化することが好ましい。これによれば、トレッド部の温度をより低下させることができる。
 また、本発明の空気入りタイヤでは、前記凹部は、タイヤ周方向の長さが、該凹部の前記凹部開口面側から奥に向かって減少することが好ましい。これによれば、トレッド部の温度をさらに低下させることができる。
 さらに、本発明の空気入りタイヤでは、前記凹部は、トレッド踏面から見た場合、タイヤ幅方向に平行な仮想線に対して非対称の平面形状を有することが好ましい。これによれば、トレッド部の温度を十分に低下させることができる。
 またさらに、本発明の空気入りタイヤでは、前記凹部は、凹部緩傾斜壁面と、該凹部緩傾斜壁面よりも前記凹部開口面に対する傾斜角度の大きな凹部急傾斜壁面とを備え、前記幅方向溝は、前記凹部緩傾斜壁面側から前記凹部急傾斜壁面側に向かって、前記幅方向溝の前記開口面からタイヤ幅方向外側へ延びることが好ましい。これによれば、トレッド部の温度をより十分に低下させることができる。
 前記幅方向溝が上記のようにタイヤ幅方向に対して傾斜している場合には、前記幅方向溝の一対の溝壁面のうち、前記凹部急傾斜壁面側の該溝壁面の延長面が、前記凹部急傾斜壁面と一致することが好ましい。これによれば、トレッド部の温度をさらに十分に低下させることができる。
 本発明では、溝の面積の増加を最小限に抑えて、トレッド部の放熱を促進し、トレッド部の温度を低下させることが可能な空気入りタイヤを提供することができる。
本発明に従う一実施形態の空気入りタイヤを示す一部展開図である。 (a)は、図1のタイヤの凹部付近を示す拡大展開図である。(b)は、図1のタイヤを、タイヤ転動時の各溝内の空気の流れとともに示した拡大展開図である。 図1のタイヤを、図2(b)とは反対の方向へ転動させた時の各溝内の空気流とともに示す拡大斜視図である。 (a)は、比較例タイヤであって、図1のタイヤの幅方向溝をタイヤ幅方向に延在させたものを、また(b)は、比較例タイヤであって、(a)のタイヤの凹部を配設しないものを、タイヤ転動時の各溝内の空気流とともに示す、拡大展開図である。 図1のタイヤの凹部の変形例を示す拡大展開図である。 図1のタイヤの一実施形態のタイヤ内部構造を例示する、タイヤ幅方向断面図である。
 以下に、図面を参照しながら本発明の実施形態に係る空気入りタイヤを例示説明する。図1は、本発明の一実施形態に係る建設車両用の空気入りタイヤ1(単に「タイヤ」ともいう。)のトレッドパターンを示す展開平面図である。
 タイヤ1のトレッド踏面2には、図1に示すように、タイヤ周方向に沿って連続して延びる少なくとも1本、図示ではタイヤ赤道面CLを挟んで1対の周方向溝3が配設されている。なお、図1では、周方向溝3は、タイヤ周方向に沿って直線状に連続的に延びる延在形態を示しているが、ジグザグ状、波状等の任意の延在形態とすることができる。
 トレッド踏面2には、図1に示すように、周方向溝3に開口し、周方向溝3よりも溝幅が広い複数の幅方向溝4が、図示では直線状にトレッド端TEに開口して形成されている。これにより、図1では、一対の周方向溝3により、タイヤ赤道面CLを含むリブ状中央陸部21が形成され、また周方向溝3および幅方向溝4により、ブロック状陸部22が形成されている。
 なお、図示するトレッドパターンは一例であり、本発明は、リブ基調パターンおよびブロック基調パターンのいずれにも適用可能である。また、幅方向溝4は、一定ではなく変化する溝幅とすること、ジグザグ状、波状等の任意の延在形態にすること、または例えばトレッド端TEに開口させずに他の溝に連通させるなどの任意の形態とすることができる。
 ところで、このような空気入りタイヤは、タイヤ転動による過剰な温度上昇でタイヤの耐久性が悪化し得る。したがって、トレッド部の温度を低下させるため、例えばタイヤ転動時に生じるタイヤ表面の空気流を、トレッド踏面の溝に効率的に取り込む必要がある。
 そして、幅狭の周方向溝13と、タイヤ幅方向に平行な方向に延在し、周方向溝13に開口する幅広の幅方向溝14とが形成されたタイヤ11では、図4(b)に示すように、タイヤ11転動によって幅方向溝14内から周方向溝13内への空気流が生じるが、図示のように幅方向溝14がタイヤ幅方向に平行な方向に延在するので、幅方向溝14内の空気流が、幅方向溝14に対向する周方向溝13の周方向溝壁面に衝突し、その空気流がタイヤ回転方向に対して順方向FD(図4では下向き)および逆方向OD(図4では上向き)に略等しい量に分散する。そして、タイヤ周方向に隣り合う幅方向溝14のそれぞれからの空気流が、中間地点Mにおいて衝突することとなる。したがって中間地点Mでは空気の流れが停滞するので、中間地点M付近を十分に放熱させることができず、その結果としてトレッド部の温度を十分に低下させることができなかった。
 そこで、本発明の空気入りタイヤ1では、図1、2に示すように、周方向溝3の周方向溝壁面W1(図示では、タイヤ赤道面CL側の周方向溝壁面)に、周方向溝3に向かって凹状の凹部5が形成され、幅方向溝4が周方向溝3の周方向溝壁面W2(図示では、タイヤ幅方向外側の周方向溝壁面)へ開口する開口面4aは、凹部5の、周方向溝3へ開口する凹部開口面51の少なくとも一部に対向している。なお、図示する凹部5は、トレッド踏面2にも開口している。
 この構成によれば、図2(b)に示すように、凹部5によって、幅方向溝4内から周方向溝3内に流れ込む空気流を、周方向溝3内において不均等に分散させることができる。それゆえに、周方向溝3内の順方向FDおよび逆方向ODの空気流のそれぞれが衝突する地点M’が、凹部5を設けない場合に比して幅方向溝4側に移動し、中間地点Mに空気流が行きわたるので、地点M付近がより放熱し、その結果としてトレッド部の温度をより十分に低下させることができる。なお移動した地点M’は、空気流により放熱されにくくなるが、幅方向溝付近に位置するので、地点M’が中間地点Mに位置する場合よりも、トレッド部の温度を低下させることができる。
 ここで、凹部5は、図2(a)に示すように、凹部5が形成された周方向溝壁面W1に沿う凹部開口面51と、該凹部5の、該周方向溝壁面W1に隣接する凹部壁面W3と、凹部壁面W4とを有しており、凹部開口面51と凹部壁面W3、および凹部開口面51と凹部壁面W4によって、それぞれの角度θ3およびθ4を有する仮想的な2つの角部A3およびA4が形成されている。
 そして、凹部5は、任意の形状にすることができるところ、図2(a)に示すように、タイヤ幅方向の長さWが、タイヤ周方向に沿って変化することが好ましく、図示の例では、凹部5の、タイヤ周方向一方側の角部A3から凹部5の頂点Tまで長さWは漸増し、頂点Tからタイヤ周方向他方側の角部A4まで長さWは漸減している。
 または、凹部5は、タイヤ周方向の長さLが、周方向溝3に開口する凹部開口面51側から奥に、図示では頂点Tに向かって減少することが好ましい。具体的には、長さLは、凹部開口面51で最大であり、頂点Tに向かうにつれて減少する。
 上記の構成とすることで、幅方向溝4内から周方向溝3内への空気流が、図示のように、凹部5の角部A3側から流入して角部A4側から周方向溝3へ流出することで、空気が逆方向ODへ流れやすくなる。それゆえに幅方向溝4内から周方向溝3内への空気流が、より効果的に不均等に分散され、中間地点M付近をより放熱させることができる。
 なお、凹部5は、タイヤ周方向の最大の長さが150mm以下、タイヤ幅方向の最大の長さが50mm以下であることが好ましい。凹部5が大きすぎると摩耗性能を悪化させる虞があり、小さすぎると周方向溝3内の空気流の分散が不十分になる虞がある。
 ところで、上述した図2に示す凹部5は、角部A3およびA4のそれぞれの角度θ3およびθ4が、θ3>θ4となる三角形状を有しているが、この他、凹部5は、図示しないがθ3=90°となる三角形状、θ3=θ4の二等辺三角形状、図5(a)に示すような四角形状、または図5(b)に示すような丸みを有する形状とすることもできる。そして、上述の凹部5の中でも、図2等に示すように凹部5が、トレッド踏面から見た場合、タイヤ幅方向に平行な仮想線に対して非対称の平面形状を有することが好ましい。これによれば、幅方向溝4内から周方向溝3内への空気流を、図2(b)に示すように逆方向ODへ効果的に導きやすくなり、さらに効果的に不均等に分散させることができる。
 なお、幅方向溝4内から周方向溝3内への空気流を、効果的に不均等に分散させる観点からは、凹部5の頂点Tは、特に凹部5がθ3=θ4の二等辺三角形状のときは、幅方向溝4の中心軸線(例えば図2(a)の一点鎖線で示す)の上とは異なる位置に存在するように、凹部5を形成することが好ましい。
 なお、凹部5が丸みを有して凹部開口面51に隣接する凹部壁面W3、W4が平坦でない形状とした場合、図5(b)に示すように、凹部開口面51に隣接する凹部壁面W3、W4は、凹部開口面51から最も離れて奥となる位置(頂点T)と凹部開口面51の一端とを結ぶ線分上に存在する仮想面とする。
 また、凹部5は、周方向溝3の、トレッド踏面2から溝底までの溝壁面のうち、少なくとも一部に設けられていればよく、なかでも、凹部5は、少なくとも周方向溝3の溝底に隣接して設けられていることが好ましい。トレッド部の温度は、トレッド部のタイヤ径方向内側に配設されたカーカスに近い側が高いので、少なくとも溝底に隣接して凹部5を設けることにより、周方向溝3内の溝底側を放熱させることができる。また、十分に周方向溝3内およびトレッド部を放熱させる観点からは、溝底からトレッド踏面2までの溝壁面に凹部5を設けることがより好ましい。
 また、凹部5は、タイヤ周方向で、角部A3およびA4に挟まれる範囲内に配設されることが好ましい。凹部5内を通過する空気流が滑らかになるためである。
 ところで、本発明の空気入りタイヤ1では、図1~3に示すように、幅方向溝4は、タイヤ幅方向に対して30°以上の角度をなしてタイヤ幅方向外側に向かって延びている。
 幅方向溝4が傾斜するとともに、幅方向溝4の開口面4aからタイヤ幅方向外側へ見て幅方向溝4が傾斜するタイヤ周方向(以下、「幅方向溝4の傾斜方向」ともいう。)にタイヤ1が転動する場合、図2(b)に示すように、幅方向溝4内から周方向溝3内に空気が流れ込むこととなるところ、空気流が、幅方向溝14が傾斜していないタイヤ(図4(a))に比して、より順方向FDおよび逆方向ODに不均等に分散され、空気流のそれぞれが衝突する地点M’がさらに幅方向溝4側に移動する。そして、幅方向溝4の角度θ5を30°以上にすると、幅方向溝4の傾斜方向にタイヤ1が転動する場合には、地点M’がさらに幅方向溝4側に移動するので、より効果的にトレッド部の温度を低下させることができる。
 一方、幅方向溝4が傾斜するとともに、幅方向溝4の傾斜方向とは反対の方向にタイヤ1が転動する場合、図3に示すように、周方向溝3内から幅方向溝4内へ空気が流れ込むこととなるが、その際、図3に示すように、周方向溝3のトレッド踏面2への開口側から溝底側への下降気流が、周方向溝3の周辺の地点Pで発生するので、地点Pを効果的に放熱させることができる。そして、幅方向溝4の角度θ5を30°以上にすると、図示のように、周方向溝3内に小さい空気の渦が発生して、下降気流がその渦を乗り越えて流れるので、角度θ5を30°未満した場合と比してその下降気流をより強くすることができる。それゆえに、地点Pを効果的に冷却しつつ、空気が幅方向溝4へと流れることとなり、幅方向溝4の傾斜方向とは反対の方向にタイヤ1が転動してもトレッド部の温度を低下させることができる。
 なお、角度θ5は30°以上であれば、任意の角度にすることができるが、θ5を大きくしすぎると、幅方向溝4を設けた陸部の剛性が低下するおそれがあることから、30°≦θ5≦60°とすることが好ましい。
 そして、図2に示すように、凹部5が、周方向溝3の延在方向に対する傾斜角度が相対的に小さい凹部緩傾斜壁面(凹部壁面)W4と、凹部緩傾斜壁面W4よりも周方向溝3の延在方向に対する傾斜角度が相対的に大きい凹部急傾斜壁面(凹部壁面)W3とを備える場合、幅方向溝4は、凹部緩傾斜壁面W4側から凹部急傾斜壁面W3側に向かって、幅方向溝4の開口面4aからタイヤ幅方向外側へ延びることが好ましい。これによれば、幅方向溝4から周方向溝3へ、または周方向溝3から幅方向溝4へ流れ込む空気流をより滑らかにすることができるので、トレッド部の温度を効率的に低下させることができる。
 そしてまた、幅方向溝4が、幅方向溝4の開口面4aからタイヤ幅方向外側へ見て、凹部緩傾斜壁面W4側から凹部急傾斜壁面W3側に向かって傾斜する場合、図2に示すように、幅方向溝4の一対の溝壁面のうち、凹部急傾斜壁面W3側の溝壁面W5の延長面が、凹部急傾斜壁面W3と一致することが好ましい。これによれば、空気流が十分に滑らかになり、トレッド部の温度をさらに効率的に低下させることができる。
 さらに、幅方向溝4が、タイヤ幅方向に対して傾斜する場合、図2に示すように、凹部5の凹部開口面51から最も奥となる位置(頂点T)は、角部A4よりも角部A3寄りに位置することが好ましい。空気流をより十分に滑らかにすることができるためである。
 また、幅方向溝4の開口面4aを、幅方向溝4の延在方向に平行な方向に、周方向溝壁面W1に対し投影して形成される領域について、該領域の角部A3側および角部A4側の端をそれぞれ端R3、R4とすると、凹部5は、角部A3が端R3よりも順方向FDに位置し、角部A4が端R4よりも逆側ODに位置すること、または、角部A3が端R3とR4の間に位置し、角部A4が端R4よりも逆側ODに位置することもできるが、図2に示すように、角部A3が端R3に位置し、角部A4が端R4よりも角部A3から離間して位置することが好ましい。空気流をさらに十分に滑らかにすることができるためである。
 ところで、トレッド踏面2のネガティブ率(トレッド踏面面積に対する溝面積比率)は、タイヤ赤道面CLから、トレッド踏面2をタイヤ幅方向に沿って測定したトレッド全幅の長さの1/4の長さで離間した位置までの範囲(センター部)のネガティブ率の方が、1/4の長さで離間した位置からトレッド端TEまでの範囲(ショルダー部)のネガティブ率よりも低いことが好ましい。センター部の剛性を維持することができるためである。
 周方向溝3の溝幅は、狭すぎると空気の流れが阻害され、広すぎると剛性の低下の虞があることから、3~20mmであることが好ましい。周方向溝3は、トレッド幅方向長さの1/12~1/4(トレッド幅を約1200mmとして、約100mm~300mmの範囲)の長さで、タイヤ赤道面CLからタイヤ幅方向外側に離間して位置することが好ましい。トレッド部、特にタイヤ転動により温度上昇が大きいセンター部の温度を低下させつつ、センター部の剛性を維持することができる。
 幅方向溝4の溝幅は、狭すぎると溝内の空気流れがなくなる為、5~120mmであることが好ましい。隣り合う幅方向溝4は、幅方向溝4の溝幅の2~5倍の間隔で配設されることが好ましい。トレッド部の温度を低下させつつ、トレッド部の剛性を維持することができる。
 本発明の空気入りタイヤは、上記の例に限定されることは無く、本発明の空気入りタイヤには、適宜変更を加えることができる。例えば、上述した本発明の空気入りタイヤは、その内部構造を、図6を参照して以下に説明する構造にすることが可能である。
 具体的には、図6は、この発明の空気入りタイヤの一実施形態のタイヤ幅方向断面の半部を例示する図であって、図示の空気入りタイヤ1は、例えば、建設車両用の重荷重用タイヤである。
 図6は、本発明の一実施形態にかかる空気入りタイヤ、特に、建設車両等の重荷重用タイヤのタイヤ内部構造を示すタイヤ幅方向断面図である。図6に示されるように、このタイヤ100は、乗用車などに装着される空気入りタイヤと比較して、トレッド部500のゴムゲージ(ゴム厚さ)が厚い。なお、以下に説明するタイヤ内部構造は、図1~図5を参照して説明したトレッドパターンを有する各タイヤにそれぞれ適用可能である。
 具体的には、タイヤ100は、タイヤ外径をOD、タイヤ赤道面CLの位置におけるトレッド部500のゴムゲージをDCとした場合に、DC/OD≧0.015を満たす。
 タイヤ外径OD(単位:mm)とは、タイヤ100の外径が最大となる部分(一般的には、タイヤ赤道面CL付近におけるトレッド部500)のタイヤ100の直径である。ゴムゲージDC(単位:mm)は、タイヤ赤道面CLの位置におけるトレッド部500のゴム厚さである。ゴムゲージDCには、ベルト300の厚さは含まれない。なお、タイヤ赤道面CLを含む位置に周方向溝が形成されている場合には、その周方向溝に隣接する位置におけるトレッド部500のゴム厚さとする。
 図6に示されるように、タイヤ100は、1対のビードコア110、カーカス200及び複数のベルト層からなるベルト300を備える。なお、図6では、タイヤ100の半幅のみを示しているが、図示していない方のタイヤ100の半幅も同じ構造を有する。
 ビードコア110は、ビード部120に設けられる。ビードコア110は、ビードワイヤー(図示せず)によって構成される。
 カーカス200は、タイヤ100の骨格をなすものである。カーカス200の位置は、トレッド部500からバットレス部900及びサイドウォール部700を通ってビード部120に渡る。
 カーカス200は、1対のビードコア110間に跨り、トロイダル形状を有する。カーカス200は、本実施形態において、ビードコア110を包む。カーカス200は、ビードコア110に接する。タイヤ幅方向twdにおけるカーカス200の両端は、一対のビード部120によって支持されている。
 カーカス200は、トレッド踏面2側から平面視したときに、所定方向に延在するカーカスコードを有する。本実施形態において、カーカスコードは、タイヤ幅方向twdに沿って延在する。カーカスコードとして、例えば、スチールワイヤが用いられる。
 ベルト300は、トレッド部500に配置される。ベルト300は、タイヤ径方向trdにおいてカーカス200の外側に位置する。ベルト300は、タイヤ周方向に延びる。ベルト300は、カーカスコードが延在する方向である所定方向に対して傾斜して延在するベルトコードを有する。ベルトコードとして、例えば、スチールコードが用いられる。
 複数のベルト層からなるベルト300は、第1ベルト層301、第2ベルト層302、第3ベルト層303、第4ベルト層304、第5ベルト層305及び第6ベルト層306を含む。
 第1ベルト層301は、タイヤ径方向trdにおいてカーカス200の外側に位置する。第1ベルト層301は、タイヤ径方向trdにおいて、複数のベルト層からなるベルト300の中で最も内側に位置する。第2ベルト層302は、タイヤ径方向trdにおいて第1ベルト層301の外側に位置する。第3ベルト層303は、タイヤ径方向trdにおいて第2ベルト層302の外側に位置する。第4ベルト層304は、タイヤ径方向trdにおいて第3ベルト層303の外側に位置する。第5ベルト層305は、タイヤ径方向trdにおいて第4ベルト層304の外側に位置する。第6ベルト層306は、タイヤ径方向trdにおいて第5ベルト層305の外側に位置する。第6ベルト層306は、タイヤ径方向trdにおいて、複数のベルト層からなるベルト300の中で最も外側に位置する。タイヤ径方向trdにおいて、内側から外側に向かって、第1ベルト層301、第2ベルト層302、第3ベルト層303、第4ベルト層304、第5ベルト層305、第6ベルト層306の順に配置される。
 本実施形態において、タイヤ幅方向twdにおいて、第1ベルト層301及び第2ベルト層302の幅(タイヤ幅方向twdに沿って測った幅。以下同じ。)は、トレッド幅TWの25%以上、かつ、70%以下である。タイヤ幅方向twdにおいて、第3ベルト層303及び第4ベルト層304の幅は、トレッド幅TWの55%以上、かつ、90%以下である。タイヤ幅方向twdにおいて、第5ベルト層305及び第6ベルト層306の幅は、トレッド幅TWの60%以上、かつ、110%以下である。
 本実施形態において、タイヤ幅方向twdにおいて、第5ベルト層305の幅は、第3ベルト層303の幅よりも大きく、第3ベルト層303の幅は、第6ベルト層306の幅以上であり、第6ベルト層306の幅は、第4ベルト層304の幅よりも大きく、第4ベルト層304の幅は、第1ベルト層301の幅よりも大きく、第1ベルト層301の幅は、第2ベルト層302の幅よりも大きい。タイヤ幅方向twdにおいて、複数のベルト層からなるベルト300のうち、第5ベルト層305の幅が最も大きく、第2ベルト層302の幅が最も小さい。従って、複数のベルト層からなるベルト300は、タイヤ幅方向twdにおける長さが最も短い最短ベルト層(すなわち、第2ベルト層302)を含む。
 最短ベルト層である第2ベルト層302は、タイヤ幅方向twdにおける端縁であるベルト端300eを有する。
 本実施形態において、トレッド踏面2側から平面視したときに、カーカスコードに対する第1ベルト層301及び第2ベルト層302のベルトコードの傾斜角度は、70°以上、かつ、85°以下である。カーカスコードに対する第3ベルト層303及び第4ベルト層304のベルトコードの傾斜角度は、50°以上、かつ、75°以下である。カーカスコードに対する第5ベルト層305及び第6ベルト層306のベルトコードの傾斜角度は、50°以上、かつ、70°以下である。
 複数のベルト層からなるベルト300は、内側交錯ベルト群300Aと、中間交錯ベルト群300Bと、外側交錯ベルト群300Cと、を含む。各交錯ベルト群300A~300Cは、該群内のそれぞれのベルト層を構成するベルトコードが、トレッド踏面2側からの平面視で、該群内において互いに隣接するベルト層間で(好ましくは、タイヤ赤道面をはさんで)互いに交錯する、複数のベルト層の群をいう。
 内側交錯ベルト群300Aは、1組のベルト層からなりタイヤ径方向trdにおいてカーカス200の外側に位置する。内側交錯ベルト群300Aは、第1ベルト層301と第2ベルト層302とによって、構成される。中間交錯ベルト群300Bは、1組のベルト層からなりタイヤ径方向trdにおいて内側交錯ベルト群300Aの外側に位置する。中間交錯ベルト群300Bは、第3ベルト層303と第4ベルト層304とによって、構成される。外側交錯ベルト群300Cは、1組のベルト層からなりタイヤ径方向trdにおいて中間交錯ベルト群300Bの外側に位置する。外側交錯ベルト群300Cは、第5ベルト層305と第6ベルト層306とによって、構成される。
 タイヤ幅方向twdにおいて、内側交錯ベルト群300Aの幅は、トレッド幅TWの25%以上、かつ、70%以下である。タイヤ幅方向twdにおいて、中間交錯ベルト群300Bの幅は、トレッド幅TWの55%以上、かつ、90%以下である。タイヤ幅方向twdにおいて、外側交錯ベルト群300Cの幅は、トレッド幅TWの60%以上、かつ、110%以下である。
 トレッド踏面2側から平面視したときに、カーカスコードに対する内側交錯ベルト群300Aのベルトコードの傾斜角度は、70°以上、かつ、85°以下である。トレッド踏面2側から平面視したときに、カーカスコードに対する中間交錯ベルト群300Bのベルトコードの傾斜角度は、50°以上、かつ、75°以下である。トレッド踏面2側から平面視したときに、カーカスコードに対する外側交錯ベルト群300Cのベルトコードの傾斜角度は、50°以上、かつ、70°以下である。
 トレッド踏面2側から平面視したときに、カーカスコードに対するベルトコードの傾斜角度は、内側交錯ベルト群300Aの傾斜角度が最も大きい。中間交錯ベルト群300Bのカーカスコードに対するベルトコードの傾斜角度は、外側交錯ベルト群300Cのカーカスコードに対するベルトコードの傾斜角度以上である。
 周方向溝3は、ベルト端300eから、タイヤ100のトレッド踏面2側から平面視したときの、周方向溝3の幅方向における中心を通る溝幅中心線WLのタイヤ幅方向最内位置(すなわちタイヤ幅方向内側への折れ曲がり箇所)までの、タイヤ幅方向twdに沿った長さDLが、200mm以下であるように、形成されている。
 本発明は下記の実施例になんら限定されるものではない。
 実施例のタイヤ1は、タイヤサイズ:59/80R63であって、凹部を周方向溝に設けるとともに、幅方向溝をタイヤ幅方向に対して表1の諸元の数値で傾斜させた図1および2に示すトレッドパターンを有するタイヤである。なお、凹部は、図2に示すような形状を有しており、幅方向溝が、凹部緩傾斜壁面W4側から凹部急傾斜壁面W3側に向かって、幅方向溝の開口面からタイヤ幅方向外側へ延び、幅方向溝の一対の溝壁面のうち、凹部急傾斜壁面W3側の溝壁面の延長面W5が、凹部急傾斜壁面W3と一致している。
 比較例のタイヤ1は、凹部を設けず、幅方向溝をタイヤ幅方向に平行な方向に延在させた以外、実施例1のタイヤと同様のタイヤである。比較例2のタイヤは、幅方向溝をタイヤ幅方向に平行な方向に延在させた以外、実施例1のタイヤと同様の図4(a)に示すトレッドパターンを有するタイヤである。
 各供試タイヤをリム(リム幅:36インチ)に組み付け、内圧(600kPa)を付与した後、室内ドラム試験(荷重:82.5トン、ドラム径:5m、ドラム表面速度:8km/h)にて、タイヤを幅方向溝の傾斜方向または傾斜方向とは逆方向に転動させて、24時間走行後の周方向溝に隣接するリブ状中央陸部の温度を測定した。そして、走行前後の温度差を算出して、それぞれの供試タイヤの当該温度差を逆数にし、比較例1のタイヤを100とする指数で表す。この指数が大きいほどトレッド部から放熱されていること意味する。具体的な、温度の測定箇所は、周方向溝壁面からタイヤ幅方向内側に50mm離れたタイヤ周方向の仮想直線と、タイヤ周方向に隣接する幅方向溝の周方向中間となる位置を通り幅方向溝に平行に延びる仮想直線とが交差する点である。
 なお、タイヤを幅方向溝の傾斜方向に転動させると、主に幅方向溝内から周方向溝内への空気流が生じ、またタイヤを傾斜方向とは逆方向に転動させると、主に周方向溝内から幅方向溝内への空気流が生じる。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1および比較例2のタイヤは、凹部を周方向溝に設けているので、凹部を設けていない比較例1のタイヤと比して、トレッド部の温度が低下することがわかる。また実施例1のタイヤは、幅方向溝をタイヤ幅方向に対して30°の角度で傾斜させているので、幅方向溝を傾斜させていない比較例2のタイヤと比して陸部の温度が低下することがわかる。
 本発明によれば、溝の面積の増加を最小限に抑えて、トレッド部の放熱を促進し、トレッド部の温度を低下させることが可能な空気入りタイヤを提供することができる。
1、11、100 空気入りタイヤ、タイヤ; 2 トレッド踏面; 3、13 周方向溝; 4、14 幅方向溝; 4a 開口面; 5、15 凹部; 51、151 凹部開口面; 120 ビード部; 200 カーカス; 300 ベルト; 301 第1ベルト層; 302 第2ベルト層; 303 第3ベルト層; 304 第4ベルト層; 305 第5ベルト層; 306 第6ベルト層; 300A 内側交錯ベルト群; 300B 中間交錯ベルト群; 300C 外側交錯ベルト群; 300e ベルト端; 500 トレッド部; 700 サイドウォール部; 900 バットレス部; CL タイヤ赤道面; L 長さ; M 中間地点; M’ 地点; T 頂点; TW トレッド幅; W 長さ;W1、W2 周方向溝壁面;W3、W4 凹部壁面;W5 溝壁面 ; θ5 角度

Claims (6)

  1.  トレッド踏面に、タイヤ周方向に沿って延びる少なくとも1本の周方向溝と、該周方向溝に開口し、前記周方向溝よりも広い溝幅の複数の幅方向溝とが形成された空気入りタイヤであって、
     前記周方向溝の周方向溝壁面に、該周方向溝に向かって凹状の凹部が形成され、
     前記幅方向溝が前記周方向溝へ開口する開口面は、前記凹部が前記周方向溝へ開口する凹部開口面の少なくとも一部に対向し、
     前記幅方向溝は、タイヤ幅方向に対して30°以上の角度をなして延びることを特徴とする空気入りタイヤ。
  2.  前記凹部は、タイヤ幅方向の長さが、タイヤ周方向に沿って変化することを特徴とする請求項1に記載の空気入りタイヤ。
  3.  前記凹部は、タイヤ周方向の長さが、該凹部の前記凹部開口面側から奥に向かって減少することを特徴とする請求項1または2に記載の空気入りタイヤ。
  4.  前記凹部は、トレッド踏面から見た場合、タイヤ幅方向に平行な仮想線に対して非対称の平面形状を有することを特徴とする請求項1~3のいずれかに記載の空気入りタイヤ。
  5.  前記凹部は、凹部緩傾斜壁面と、該凹部緩傾斜壁面よりも前記凹部開口面に対する傾斜角度の大きな凹部急傾斜壁面とを備え、
     前記幅方向溝は、前記凹部緩傾斜壁面側から前記凹部急傾斜壁面側に向かって、前記幅方向溝の前記開口面からタイヤ幅方向外側へ延びることを特徴とする請求項1~4のいずれかに記載の空気入りタイヤ。
  6.  前記幅方向溝の一対の溝壁面のうち、前記凹部急傾斜壁面側の該溝壁面の延長面が、前記凹部急傾斜壁面と一致することを特徴とする請求項5に記載の空気入りタイヤ。
PCT/JP2014/002056 2013-04-09 2014-04-09 空気入りタイヤ WO2014167859A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480020087.7A CN105102244B (zh) 2013-04-09 2014-04-09 充气轮胎
BR112015025759A BR112015025759A2 (pt) 2013-04-09 2014-04-09 pneu pneumático
EP14782769.5A EP2985156B1 (en) 2013-04-09 2014-04-09 Pneumatic tire
ES14782769.5T ES2638199T3 (es) 2013-04-09 2014-04-09 Neumático
US14/772,817 US20160009144A1 (en) 2013-04-09 2014-04-09 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-081152 2013-04-09
JP2013081152A JP5557943B1 (ja) 2013-04-09 2013-04-09 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2014167859A1 true WO2014167859A1 (ja) 2014-10-16

Family

ID=51416927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002056 WO2014167859A1 (ja) 2013-04-09 2014-04-09 空気入りタイヤ

Country Status (8)

Country Link
US (1) US20160009144A1 (ja)
EP (1) EP2985156B1 (ja)
JP (1) JP5557943B1 (ja)
CN (1) CN105102244B (ja)
BR (1) BR112015025759A2 (ja)
CL (1) CL2015002994A1 (ja)
ES (1) ES2638199T3 (ja)
WO (1) WO2014167859A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5820442B2 (ja) * 2013-08-23 2015-11-24 株式会社ブリヂストン 空気入りタイヤ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134615A (ja) * 1997-07-15 1999-02-09 Bridgestone Corp 空気入りタイヤ
JP2003205706A (ja) 2002-01-15 2003-07-22 Bridgestone Corp 空気入りタイヤ
JP2008500923A (ja) * 2004-05-28 2008-01-17 シュタインケ、リチャード・エイ アーチ状をなすショルダを有するエラストマタイヤ
WO2013008926A1 (ja) * 2011-07-13 2013-01-17 株式会社ブリヂストン タイヤ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026204A (ja) * 1988-06-27 1990-01-10 Yokohama Rubber Co Ltd:The 乗用車用空気入りタイヤ
US5960845A (en) * 1993-07-23 1999-10-05 Sumitomo Rubber Industries, Ltd. Pneumatic tire
AT403455B (de) * 1994-12-21 1998-02-25 Semperit Ag Fahrzeugreifen mit einem drehrichtungsgebunden ausgebildeten laufstreifenprofil
JP3335118B2 (ja) * 1998-01-19 2002-10-15 住友ゴム工業株式会社 重荷重用タイヤ
JP4637319B2 (ja) * 2000-04-20 2011-02-23 株式会社ブリヂストン 重荷重用空気入りタイヤ
US6415835B1 (en) * 2000-06-08 2002-07-09 The Goodyear Tire & Rubber Company Pneumatic tire tread having groove with peaks and valleys
JP2002240513A (ja) * 2001-02-20 2002-08-28 Bridgestone Corp 空気入りタイヤ
US6859923B2 (en) * 2001-05-09 2005-02-22 Sun Microsystems, Inc. Method, system, program, and data structures for using a database to apply patches to a computer system
JP4212969B2 (ja) * 2003-06-23 2009-01-21 横浜ゴム株式会社 空気入りタイヤ
JP2005186703A (ja) * 2003-12-24 2005-07-14 Bridgestone Corp 空気入りタイヤ
JP2006151083A (ja) * 2004-11-26 2006-06-15 Bridgestone Corp 重荷重車両用タイヤ
JP4223064B2 (ja) * 2007-06-12 2009-02-12 横浜ゴム株式会社 空気入りタイヤ
JP5052317B2 (ja) * 2007-12-10 2012-10-17 株式会社ブリヂストン 空気入りタイヤ
JP5778516B2 (ja) * 2011-08-04 2015-09-16 株式会社ブリヂストン タイヤ
JP5557875B2 (ja) * 2012-05-18 2014-07-23 株式会社ブリヂストン 空気入りタイヤ
JP5690310B2 (ja) * 2012-07-04 2015-03-25 株式会社ブリヂストン タイヤ
JP5580369B2 (ja) * 2012-07-04 2014-08-27 株式会社ブリヂストン タイヤ
JP5636399B2 (ja) * 2012-07-04 2014-12-03 株式会社ブリヂストン タイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134615A (ja) * 1997-07-15 1999-02-09 Bridgestone Corp 空気入りタイヤ
JP2003205706A (ja) 2002-01-15 2003-07-22 Bridgestone Corp 空気入りタイヤ
JP2008500923A (ja) * 2004-05-28 2008-01-17 シュタインケ、リチャード・エイ アーチ状をなすショルダを有するエラストマタイヤ
WO2013008926A1 (ja) * 2011-07-13 2013-01-17 株式会社ブリヂストン タイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985156A4

Also Published As

Publication number Publication date
EP2985156A1 (en) 2016-02-17
CL2015002994A1 (es) 2016-07-01
JP2014201273A (ja) 2014-10-27
CN105102244B (zh) 2017-12-12
CN105102244A (zh) 2015-11-25
EP2985156B1 (en) 2017-06-07
ES2638199T3 (es) 2017-10-19
EP2985156A4 (en) 2016-03-09
BR112015025759A2 (pt) 2020-05-12
US20160009144A1 (en) 2016-01-14
JP5557943B1 (ja) 2014-07-23

Similar Documents

Publication Publication Date Title
US10391820B2 (en) Pneumatic tire
WO2018016302A1 (ja) 空気入りタイヤ
WO2013172041A1 (ja) 空気入りタイヤ
WO2014142350A1 (ja) 空気入りタイヤ
WO2014142346A1 (ja) 空気入りタイヤ
WO2014142348A1 (ja) 空気入りタイヤ
WO2015025790A1 (ja) 空気入りタイヤ
WO2013054950A1 (ja) 空気入りタイヤ
WO2016009912A1 (ja) タイヤ
JP2966759B2 (ja) 空気入りタイヤ
WO2016152387A1 (ja) タイヤ
WO2014167859A1 (ja) 空気入りタイヤ
WO2017090135A1 (ja) 空気入りタイヤ
JP2014227145A (ja) 車両用空気抵抗低減構造および車両
JP2791338B2 (ja) 空気入りタイヤ
JP7013252B2 (ja) 空気入りタイヤ
JP2020131919A (ja) 空気入りタイヤ
WO2018034060A1 (ja) 空気入りタイヤ
JP6717802B2 (ja) タイヤ
JP2019123447A (ja) 空気入りタイヤ
US11440353B2 (en) Heavy duty tire
US11331954B2 (en) Heavy duty tire
WO2014141715A1 (ja) 空気入りタイヤ
CN107405963B (zh) 轮胎
JP2004352173A (ja) 重荷重用タイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020087.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14772817

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014782769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014782769

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015025759

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015025759

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151008

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: BR

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2428 DE 18/07/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015025759

Country of ref document: BR

Kind code of ref document: A2

Free format text: 1) ESCLARECER, EM ATE 60 (SESSENTA) DIAS, APRESENTANDO DOCUMENTACAO COMPROBATORIA, A INCLUSAO DO INVENTOR KENJI SUGIMURA CONSTANTE NA PETICAO INICIAL NO 860150232832 DE 08/10/2015 E NAO INCLUSA NA PUBLICACAO INTERNACIONAL WO/2014/167859 DE 16/10/2014.2) APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2013-081152 DE 09/04/2013 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NE

ENP Entry into the national phase

Ref document number: 112015025759

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151008