WO2014141715A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014141715A1
WO2014141715A1 PCT/JP2014/001451 JP2014001451W WO2014141715A1 WO 2014141715 A1 WO2014141715 A1 WO 2014141715A1 JP 2014001451 W JP2014001451 W JP 2014001451W WO 2014141715 A1 WO2014141715 A1 WO 2014141715A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
narrow groove
groove
inflow portion
tread
Prior art date
Application number
PCT/JP2014/001451
Other languages
English (en)
French (fr)
Inventor
和貴 松澤
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to RU2015143613/11A priority Critical patent/RU2602619C1/ru
Priority to BR112015022869A priority patent/BR112015022869A8/pt
Priority to CA2903360A priority patent/CA2903360C/en
Publication of WO2014141715A1 publication Critical patent/WO2014141715A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane

Definitions

  • the present invention particularly relates to a pneumatic tire with improved tread heat dissipation.
  • Tires mounted on the vehicle generate heat due to repeated expansion and contraction accompanying load rolling.
  • this heat generation becomes conspicuous in the tread in contact with the road surface, and causes various failures of the tread (for example, heat separation). Therefore, the device which discharge
  • an object of this invention is to provide the pneumatic tire which improved the heat dissipation of the tread, suppressing the increase in the total capacity
  • the gist of the present invention is as follows.
  • narrow grooves extending in the tire circumferential direction and having a groove width smaller than the groove depth are provided on the tread tread surface at intervals in the tire circumferential direction.
  • the groove wall surfaces of the narrow groove facing in the tire circumferential direction at one end of the tire the end point side of the tire circumferential component of the first vector from one end of the narrow groove toward the other end of the narrow groove.
  • the groove wall surface is provided with an inflow portion that extends in the tire circumferential direction, communicates with the narrow groove at one end, and terminates at the other end.
  • the position of the seam of the mold for tread molding corresponds to the position of the narrow groove or the inflow portion. This is easy to avoid, and burrs are less likely to occur on the narrow groove and / or the inflow portion. Therefore, according to the pneumatic tire of the present invention, the heat dissipation of the tread can be enhanced while suppressing an increase in the total capacity of the grooves.
  • the “tread surface” is a tire that comes into contact with the road surface when the tire that is assembled to the applicable rim and filled with the specified internal pressure is rolled with a load corresponding to the maximum load capacity applied. Means the outer peripheral surface of the entire circumference.
  • the “applicable rim” is a standard rim defined in the following standard according to the tire size (specified as “Design Rim” in the YEAR BOOK of the following TRA. )),
  • “specified internal pressure” means the air pressure specified in accordance with the maximum load capacity in the following standards, and “maximum load capacity” means that the tire is loaded in accordance with the following standards. Refers to the maximum mass allowed.
  • the standard is determined by an industrial standard effective in the region where the tire is produced or used. For example, in the United States, “THE TIRE AND RIM ASSOCIATION INC.
  • TRA YEAR BOOK
  • STANDARDS MANUAL of “The European Tire and Rim Technical Organization (ETRTO)”
  • Japan Automobile Tire Association Japan Automobile Tire Association
  • the “groove depth (of the narrow groove)” refers to the largest depth in the tire radial direction of the narrow groove
  • the “(groove width) of the groove” refers to the tire of the narrow groove. Refers to the width in the circumferential direction.
  • the dimensions of the pneumatic tire of the present invention refer to the dimensions when the tire is mounted on an applicable rim, set to a specified internal pressure, and in a no-load state.
  • the tire of the first vector has a tire circumferential direction projection length Lx of the portion including the narrow groove and the inflow portion that is the same as the position of the inflow portion in the tire width direction position.
  • Lx ′ Smaller than the tire circumferential projection length Lx ′ of the combined portion of the narrow groove and the virtual inflow portion when the virtual inflow portion is provided in the groove wall surface on the starting point side of the circumferential direction component It is preferable. If it is the said range, the said effect of improving the heat dissipation of a tread will be easier to be acquired.
  • the distance along the extending direction of the narrow groove from one end of the narrow groove to the position of the inflow portion is 0 to 0 of the extending length of the narrow groove. 35% is preferable. If it is the said structure, the said effect of improving the heat dissipation of a tread will be acquired more easily.
  • the inflow portion is provided at one end of the narrow groove. If it is the said structure, the said effect of improving the heat dissipation of a tread will be further easy to be acquired.
  • an angle ⁇ 2 formed by the first vector and a second vector directed from one end of the inflow portion to the other end of the inflow portion is less than 90 °. . If it is the said structure, the said effect of improving the heat dissipation of a tread will be further easy to be acquired.
  • the angle ⁇ 2 is preferably 50 to 70 °. If it is the said structure, the said effect of improving the heat dissipation of a tread will be further easy to be acquired.
  • the inflow portion is provided on both the groove wall surfaces of the narrow groove facing in the tire circumferential direction. If it is set as the said structure, the effect which improves the heat dissipation of a tread can be heightened further.
  • the heat dissipation of the tread can be enhanced while suppressing an increase in the total groove capacity.
  • (A) is a partial development view showing a tread surface of a pneumatic tire of an example of the present invention, and (b) is a cut of the tire shown in (a) along the AA line extending in the tire circumferential direction. It is sectional drawing when doing. It is a figure for demonstrating the effect
  • (A) is an enlargement of narrow grooves and inflow portions ((i) to (iv)) that can be used in the tire shown in FIG. 1, and narrow grooves and virtual inflow portions ((i)) used in the tire of the comparative example.
  • FIG. 6 is a diagram showing a second vector having a start point at one end of the inflow portion and an end point at the other end together with the first vector shown in (b) in (i) to (iv).
  • A) is an enlarged view of a narrow groove and an inflow portion that can be used in the tire shown in FIG.
  • FIG. 1 is a diagram showing a first vector for the narrow groove shown in (a)
  • (c) is a figure which shows the 2nd vector about the fine groove shown to (a) with the 1st vector shown to (b).
  • FIG. 2 is an enlarged view of a narrow groove and an inflow portion that can be used in the tire illustrated in FIG. 1 when inflow portions are provided on both of the groove wall surfaces of the narrow groove. It is a figure which shows the outline of the result of the numerical analysis of the internal wind speed vector in the narrow groove and inflow part shown in FIG. It is a figure which shows the example of the shape on the tread surface of an inflow part. It is a figure which shows the example of the shape in the cross section by the surface perpendicular
  • FIG. 1A is a partial development view showing a tread surface of a pneumatic tire according to an example of the present invention.
  • a pneumatic tire 1 (hereinafter also referred to as “tire 1”) according to an example of the present invention includes a pair of central circumferential grooves 13 and 13 that extend along the tire circumferential direction across the tire equator C on the tread tread surface 2.
  • a pair of lateral circumferential grooves 14 and 14 extending along the tire circumferential direction are provided outside the central circumferential grooves 13 and 13 in the tire width direction.
  • the tread tread surface 2 extends along the tire width direction, and extends along the tire width direction with an intermediate width direction groove 15 that communicates with the central circumferential groove 13 and the lateral circumferential groove 14.
  • a lateral width direction groove 16 that communicates with the groove 14 and extends to the tread grounding end TG is provided.
  • the tread ground contact end TG refers to the tire width direction end of the tread surface.
  • the tire 1 is defined by a central circumferential groove 13 and is defined by a rib-shaped central land portion 17 including the tire equator C, a central circumferential groove 13, a lateral circumferential groove 14, and an intermediate width direction groove 15. And a block-shaped side land portion 19 defined by the side circumferential groove 14, the side width direction groove 16, and the tread ground contact end TG.
  • the tire 1 is provided with a narrow groove 3 extending at an incline in the tire circumferential direction on the rib-shaped central land portion 17 on the tread tread 2 and having both ends 3 a and 3 b terminating in the rib-shaped central land portion 17.
  • FIG. 1B shows a cross-sectional view of the tire shown in FIG. 1A when cut along the AA line extending in the tire circumferential direction.
  • the narrow groove 3 has a groove width w3 that is smaller than the groove depth d3.
  • the narrow grooves 3 are provided at a constant pitch Lp in the tire circumferential direction.
  • an inflow portion 4 extending in the tire circumferential direction is provided on the groove wall surface 3 w (3 we) of the narrow groove 3.
  • the inflow portion 4 communicates with the narrow groove 3 at one end 4a and terminates at the other end 4b.
  • “Extending in the tire circumferential direction” does not mean strictly extending in the tire circumferential direction, but means extending in a direction having a component in the tire circumferential direction.
  • FIG. 2A when the tire rolls, the wind flows in a direction opposite to the tire rotation direction. This wind flows into a groove provided on the tread surface and then flows out, so that heat of the tread is released and the tread is cooled.
  • the width of the groove is increased, the amount of wind flowing into the groove (indicated by an arrow in FIGS. 2B and 2I) increases and the effect of cooling the tread is enhanced, but the rigidity of the land portion is increased. As a result, the wear resistance and steering stability of the tire are reduced (see FIGS. 2B and 2I).
  • FIG. 3 (a), (i) to (iv) are enlarged views of the narrow groove 3 and the inflow portion 4 that can be provided in the tire 1.
  • FIG. 3B a vector from one end 3a of the narrow groove 3 toward the other end 3b of the narrow groove 3 is defined as a first vector V1.
  • an inflow portion 4 extending in the tire circumferential direction is provided on the groove wall surface 3we of the narrow groove 3 on the end point V1ce side of the tire circumferential component V1c of the first vector V1, that is, in the tire circumferential direction.
  • An inflow portion is provided in the groove wall surface 3we of the narrow groove 3 on the opposite side of the groove wall surface 3we, 3ws (3w) of the groove wall 3 opposite to the side facing the tire circumferential component V1c of the first vector V1. It has been.
  • the inflow portion 4 is provided at one end 3ap of the narrow groove 3 as shown in FIGS. 3 (a) (i) to (iv).
  • the inflow portion 4 extends from the groove wall surface 3w (3we) in a direction opposite to the direction of the tire circumferential component V1c of the first vector V1.
  • the first vector V1 starts from the midpoint X of the line segment extending in the tire circumferential direction that forms one end 3a of the narrow groove 3.
  • the first vector V1 is one of the narrow grooves 3, although the middle point Y of the line segment extending in the tire circumferential direction that forms the other end 3b of the narrow groove 3 is the end point. It is also possible to use a vector whose starting point is the outermost point in the tire width direction at the end 3ap and whose end point is the outermost point in the tire width direction at the other end 3bp of the narrow groove 3.
  • the inflow portion 4 is provided on the groove wall surface 3we of the narrow groove 3 on the end point V1ce side of the tire circumferential direction component V1c of the first vector V1.
  • the tire circumferential projection length Lx (typically shown in FIGS. 3A and 3I) of the portion of the tire 1 including the narrow groove 3 and the inflow portion 4 is a tire circumferential component of the first vector V1.
  • the position of the inflow portion 4 is a point 4 aoo closest to one end 3 a of the narrow groove 3 and the narrowest groove on the line forming one end 4 a of the inflow portion 4.
  • 3 indicates the midpoint P with the point 4aoi close to the other end 3b.
  • the position of the virtual inflow portion 4 ′ indicates the point P ′ determined in the same manner (see FIG. 3 (i)).
  • a straight line passing through the point P for the tire 1 of the present invention and the point P ′ for the pneumatic tire of the comparative example is parallel to the tire circumferential direction, that is, the position of the inflow portion 4 and the virtual inflow
  • the position in the tire width direction is the same as the position of the portion 4 ′.
  • a pneumatic tire is generally manufactured by vulcanization using a tire molding die.
  • the tread is molded by arranging a plurality of molds for molding a tread over the entire circumference of the tire (using a sector divided in the tire circumferential direction).
  • a small amount of tread rubber may leak to the outside of the mold at the joint of the mold for tread molding.
  • the tread surface of the vulcanized pneumatic tire is locally burr (excess A new rubber).
  • burrs are generated on the narrow groove and / or the inflow portion, and the narrow groove And / or a part of the inflow portion is buried.
  • the position of the seam of the tread molding die becomes smaller as the projected length in the tire circumferential direction of the portion including the narrow grooves and the inflow portions is smaller.
  • the tire 1 of the example of the present invention having a relatively small projection length Lx in the tire circumferential direction of the combined portion of the narrow groove 3 and the inflow portion 4, the tread by the narrow groove 3 and the inflow portion 4 is cooled. It is easy to obtain the effect.
  • region inside the narrow groove 3 through which air flows can be enlarged comparatively.
  • the direction opposite to the direction of the tire circumferential direction component V1c of the first vector V1 (the direction from the other end of the inflow portion toward one end of the inflow portion) is In the case of the rotational direction, the air that has flowed into the narrow groove 3 at the other end 3 bp of the narrow groove 3 flows out from the inflow portion 4 provided at the one end 3 ap of the narrow groove 3. Can do. Therefore, according to the tire 1 of the example of the present invention, it is easy to obtain the effect of cooling the tread by the narrow groove 3 and the inflow portion 4.
  • the heat dissipation of the tread can be enhanced.
  • the distance M1 along the extending direction of the narrow groove 3 from the one end 3a of the narrow groove 3 to the position of the inflow portion 4 is the extension length of the narrow groove 3. It is preferably 0 to 35% of the thickness L3.
  • the extended length L3 of the narrow groove 3 from the position where the air flowing into the narrow groove 3 from the inflow portion 4 is closer to one end 3a of the narrow groove 3 to the position closer to the other end 3b of the narrow groove 3 is provided. It flows over almost the majority of Thereby, the area
  • the distance M1 along the extending direction of the narrow groove 3 from one end 3a of the narrow groove 3 to the position of the inflow portion 4 is the narrow groove 3 between the midpoint P and the point X.
  • the distance along the extending direction of Further, the extending length L3 of the narrow groove 3 indicates a linear distance between the point X and the point Y, that is, the length of the first vector V1.
  • the inflow portion 4 is provided at one end 3a of the narrow groove 3, the inflow portion 4 is narrowed from the inflow portion 4.
  • the air flowing into the groove 3 flows from one end 3a of the narrow groove 3 to the other end 3b of the narrow groove 3 over almost the entire extending length L3 of the narrow groove 3.
  • region inside the narrow groove 3 through which air flows can be enlarged further. Therefore, it is easier to obtain the above effect of improving the heat dissipation of the tread. Further, the reduction in the distance in the tire circumferential direction between the narrow grooves 3 adjacent in the tire circumferential direction can be minimized.
  • the inflow portion 4 is provided at one end 3 a of the narrow groove 3
  • a point on the outer side in the tire width direction at one end 3ap of the narrow groove 3 coincides.
  • any point on 3a is located on the outer side in the tire width direction at one end 3ap of the narrow groove 3.
  • a vector directed from one end 4a of the inflow portion 4 provided at one end 3ap of the narrow groove 3 to the other end 4b of the inflow portion 4 is expressed as a second vector V2.
  • 3 (c) (i) to (iv) show the first vector V1 and the second vector V2 for the narrow groove 3 and the inflow portion 4 shown in FIGS. 3 (a), (i) to (iv), respectively.
  • the second vector V2 is a line between one end 4a of the inflow portion 4 and a point 4aoo closest to one end 3a of the narrow groove 3 and a point 4aoi closest to the other end 3b of the narrow groove 3.
  • the middle point P is the starting point V2s, and the line 4boo closest to one end 3a of the narrow groove 3 and the point 4boi closest to the other end 3b of the narrow groove 3 of the line forming the other end 4b of the inflow portion 4
  • a vector having the middle point Q as the end point V2e is indicated.
  • the angle ⁇ 2 formed by the first vector V1 and the second vector V2 is preferably less than 90 ° (acute angle). That is, in the tire 1, the narrow groove 3 and the inflow portion 4 shown in FIGS. 3 (a) and (iv) are compared with the narrow groove 3 and the inflow portion 4 shown in FIGS. 3 (a) (i) to (iii). It is preferable to use it.
  • the angle ⁇ 2 is an acute angle, at one end 3 ap of the narrow groove 3, the inflow portion that flows into the inflow portion 4 from the other end 4 b of the inflow portion 4 that opens to the tread surface 2 and communicates with the narrow groove 3. Rather than the air flowing into the narrow groove 3 from one end 4a of the groove 4 toward the end 3bp toward the narrow groove 3 from one end 3ap of the narrow groove 3, one end of the narrow groove 3 Concentrate on 3ap.
  • the air concentrated on one end 3ap of the narrow groove 3 flows inward in the tire radial direction at the one end 3ap of the narrow groove 3, reaches the groove bottom 3bo of the narrow groove 3, and then the air , Flows from one end 3ap of the narrow groove 3 toward the other end 3bp of the narrow groove 3, reaches the other end 3bp of the narrow groove 3, and air flows to the other end 3bp of the narrow groove 3. It flows toward the outside in the tire radial direction at the portion 3 bp. In this way, air flows through the deep part of the narrow groove 3 and then flows out to the tread surface 2.
  • the generation of heat in the tread is remarkable in the tread portion on the inner side in the tire radial direction as compared with the tread portion on the outer side in the tire radial direction, and even when air flows in the deep part of the narrow groove 3, The heat generated in the tread can be released more effectively. Therefore, if the angle ⁇ 2 is less than 90 °, the above effect of improving the heat dissipation of the tread is further easily obtained.
  • the angle ⁇ 2 is preferably 50 to 70 °.
  • the angle ⁇ 2 is in the above range, the above effect of improving the heat dissipation of the tread can be further easily obtained.
  • one end of the narrow groove 3 shown in FIG. 4A is obtained by replacing one end and the other end of the narrow groove 3 shown in FIG.
  • an inflow portion 4 extending in the tire circumferential direction can be provided.
  • FIG. 4B shows the first vector V1 in this case
  • FIG. 4C shows the second vector in this case.
  • the inflow part 4 is provided in both the groove wall surfaces 3w of the narrow groove 3 which opposes a tire circumferential direction.
  • the inflow portions 4 are provided on both the groove wall surfaces 3 w of the narrow groove 3, the air flowing into the narrow groove 3 from the inflow portion 4 provided on the one end 3 ap side of the narrow groove 3 is transferred to the other side of the narrow groove 3. It can flow out from the inflow part 4 provided in the edge part 3bp side. Therefore, the heat dissipation of the tread can be further enhanced. Moreover, if the inflow part 4 is provided, the effect of improving the heat dissipation of the tread can be obtained regardless of whether the direction of the tire circumferential direction component of the first vector V1 or the opposite direction is the rotation direction of the tire. be able to.
  • FIGS. 6A and 6B schematically show the results of numerical analysis of the wind velocity vectors inside the narrow groove 3 and the inflow portion 4 shown in FIG.
  • extended length L3 200 mm
  • groove width w3 10 mm
  • groove depth d3 100 mm
  • narrow groove 3 with ⁇ 1 30 °
  • extended length L4 50 mm
  • width w4 50 mm
  • depth 20 mm
  • ⁇ 2 60 °
  • the virtual inflow portion 4 ′ shown in FIGS. 3 (a) and (i) is provided on both the groove wall surfaces 3w of the narrow grooves 3 opposed in the tire circumferential direction.
  • the air flowing into the inflow portion 4 from the other end 4b of the inflow portion 4 opening in the tread surface 2 and flowing into the narrow groove 3 from one end 4a of the inflow portion 4 communicating with the narrow groove 3 is obtained. From the tread surface 2 side toward the groove bottom 3bo side, it reaches the groove bottom 3bo of the narrow groove 3 in the vicinity of the center portion of the narrow groove 3, and then proceeds from the groove bottom 3bo side to the tread surface 2 side.
  • FIG. 6B in the tire according to the present invention provided with the narrow groove 3 and the inflow portion 4 shown in FIG. 5, air flowing into the narrow groove 3 from one end 4 a of the inflow portion 4 is obtained.
  • the narrow grooves 3 are provided at a constant pitch Lp in the tire circumferential direction.
  • the pneumatic tire of the present invention is not limited to this, and the narrow grooves 3 are not limited thereto.
  • the grooves only need to be provided at intervals in the tire circumferential direction. If the narrow grooves are provided at intervals in the tire circumferential direction, the position of the seam of the mold for tread molding can be avoided from hitting the position of the narrow groove or the inflow portion. It is possible to prevent burrs from being generated. Therefore, the effect of improving the heat dissipation of the tread can be obtained.
  • the narrow groove 3 and the inflow portion 4 are provided anywhere on the tread surface 2, the effect of enhancing the heat dissipation of the tread can be obtained.
  • the narrow groove 3 and the inflow portion 4 are provided in the rib-shaped central land portion 17 including the tire equatorial plane CL.
  • the contact pressure at the time of tire rolling is particularly high, and the expansion and contraction of the tread rubber is particularly large. Therefore, if the narrow groove 3 and the inflow portion 4 are provided in the rib-shaped central land portion 17, the above-described effect of improving the heat dissipation of the tread by the narrow groove 3 and the inflow portion 4 can be easily obtained.
  • the smaller angle ⁇ 1 (typically shown in FIG. 1A) of the angle formed between the extending direction of the narrow groove 3 and the tire circumferential direction is 45 to 70 °.
  • the angle is preferably 55 to 65 °. If it is the said range, the inflow of the wind to the narrow groove 3 is securable.
  • the ratio (w4 / w3) of the tire circumferential direction length w4 (see FIG. 1B) of the inflow portion 4 to the groove width w3 of the narrow groove 3 is 3-7. If w4 / w3 is within the above range, it is possible to achieve both the rigidity of the land portion where the narrow groove 3 and the inflow portion 4 are provided and the improvement of the heat dissipation of the tread.
  • the ratio (d4 / d3) of the depth d4 of the inflow portion 4 (see FIG. 1B) to the groove depth d3 of the narrow groove 3 is preferably 1/7 to 1/3. If d4 / d3 is within the above range, it is possible to achieve both the rigidity of the land portion where the narrow groove 3 and the inflow portion 4 are provided and the improvement of the heat dissipation of the tread.
  • the ratio (L3 / L4) of the extending length L3 of the narrow groove to the extending length L4 of the inflow portion is preferably 2.0 or more from the viewpoint of further enhancing the cooling effect.
  • the ratio (w4 / d4) of the tire circumferential length of the inflow portion to the depth d4 of the w4 inflow portion is preferably 1.0 or more from the viewpoint of further enhancing the cooling effect.
  • the width w3 of the narrow groove 3 is preferably 10 to 20 mm. Within this range, the narrow groove 3 is closed at the time of ground contact, and the land portion is continuous, so that the rigidity of the land portion is increased and the wear performance can be improved.
  • the shape of the inflow portion 4 on the tread surface 2 is parallel including a pair of sides parallel to the extending direction of the narrow groove 3.
  • the shape is not limited to this, and may be any shape.
  • FIGS. 7A to 7E show examples of the shape of the inflow portion 4 on the tread surface 2.
  • a trapezoid in which the lower bottom is opened on the wall surface of the narrow groove 3 and the upper bottom is on the side far from the wall surface of the narrow groove 3, that is, the tire width direction length Is a trapezoid in which the upper bottom opens to the wall surface of the narrow groove 3 and the lower bottom is on the side far from the wall surface of the narrow groove 3, that is, a tire.
  • the width direction length is gradually increased from the wall surface side of the narrow groove 3 (FIG. 7B), and the two sides other than the trapezoidal upper and lower bases shown in FIG. 7B are curved (FIG. 7). (C)), semicircle (FIG. 7 (d)), triangle (FIG. 7 (e)), and the like.
  • the shape of the cross section of the inflow portion 4 in a plane perpendicular to the extending direction of the narrow groove 3 is as shown in FIG. 1B, from the other end 4b of the inflow portion 4 to one end 4a of the inflow portion 4. It is preferable that the depth gradually increases toward the end of the inflow portion 4, and the depth of the inflow portion 4 is maximized at one end 4 a of the inflow portion 4.
  • the shape of the cross section by a plane perpendicular to the extending direction of the narrow groove 3 of the inflow portion 4 is such that one end 4 a and the other end 4 b of the inflow portion 4 are Although it is a straight line that connects, in the pneumatic tire of the present invention, the shape is not limited to this, and may be any shape.
  • FIGS. 8A to 8H show examples of shapes in a cross section by a plane perpendicular to the extending direction of the narrow groove 3 of the inflow portion 4.
  • the depth of the inflow portion 4 is a staircase from the other end 4b toward the one end 4a.
  • Curve (FIG. 8D) the depth of the inflow portion 4 is constant from the other end 4b to the middle point M, and gradually increases from M toward the one end 4a.
  • Curve (FIGS. 8E and 8F) a curve (FIG.
  • the tire 1 has a tread pattern having a rib-like land portion and a block-like land portion.
  • the tread pattern of the pneumatic tire of the present invention is not limited to this and may be any pattern.
  • both ends 3a and 3b of the narrow groove terminate in the rib-shaped central land portion 17, in the pneumatic tire of the present invention, at least one end of the narrow groove has other grooves (for example, circumferential grooves). ) May be open.
  • the narrow groove 3 and the inflow portion 4 are provided in the rib-shaped central land portion 17 including the tire equator C.
  • the narrow groove 3 and the inflow portion 4 are provided on the tread surface. 2 may be provided anywhere.
  • the pneumatic tire of the present invention is particularly suitably used for construction vehicle tires and truck / bus tires having a relatively large tread.
  • FIG. 9 is a sectional view in the tire width direction of the pneumatic tire 1 according to an example of the present invention. As shown in FIG. 9, the tire 1 has a thick rubber gauge (rubber thickness) in the tread portion 500 as compared with a pneumatic tire mounted on a passenger car or the like.
  • a thick rubber gauge rubber thickness
  • the tire 1 satisfies DC / OD ⁇ 0.015 when the tire outer diameter is OD and the rubber gauge of the tread portion 500 at the position of the tire equatorial plane C is DC.
  • the tire outer diameter OD (unit: mm) is the diameter of the tire 1 at a portion where the outer diameter of the tire 1 is maximum (generally, the tread portion 500 in the vicinity of the tire equatorial plane C).
  • the rubber gauge DC (unit: mm) is the rubber thickness of the tread portion 500 at the position of the tire equatorial plane C.
  • the rubber gauge DC does not include the thickness of the belt 300.
  • channel is formed in the position containing the tire equator surface C, it is set as the rubber thickness of the tread part 500 in the position adjacent to the circumferential groove
  • the tire 1 includes a pair of bead cores 110, a carcass 200, and a belt 300 including a plurality of belt layers.
  • the half width of the tire 1 is shown, but the half width of the tire 1 (not shown) has the same structure.
  • the bead core 110 is provided in the bead unit 120.
  • the bead core 110 is configured by a bead wire (not shown).
  • the carcass 200 forms a skeleton of the tire 1.
  • the position of the carcass 200 passes from the tread portion 500 through the buttress portion 900 and the sidewall portion 700 to the bead portion 120.
  • the carcass 200 straddles between a pair of bead cores 110 and has a toroidal shape.
  • the carcass 200 wraps the bead core 110 in this embodiment.
  • the carcass 200 is in contact with the bead core 110. Both ends of the carcass 200 in the tire width direction twd are supported by a pair of bead portions 120.
  • the carcass 200 has a carcass cord extending in a predetermined direction when viewed in plan from the tread tread surface 2 side.
  • the carcass cord extends along the tire width direction twd.
  • a steel wire is used as the carcass cord.
  • the belt 300 is disposed on the tread portion 500.
  • the belt 300 is located outside the carcass 200 in the tire radial direction trd.
  • the belt 300 extends in the tire circumferential direction.
  • the belt 300 has a belt cord that is inclined with respect to a predetermined direction that is a direction in which the carcass cord extends. For example, a steel cord is used as the belt cord.
  • the belt 300 composed of a plurality of belt layers includes a first belt layer 301, a second belt layer 302, a third belt layer 303, a fourth belt layer 304, a fifth belt layer 305, and a sixth belt layer 306.
  • the first belt layer 301 is located outside the carcass 200 in the tire radial direction trd.
  • the first belt layer 301 is located on the innermost side in the belt 300 composed of a plurality of belt layers in the tire radial direction trd.
  • the second belt layer 302 is located outside the first belt layer 301 in the tire radial direction trd.
  • the third belt layer 303 is located outside the second belt layer 302 in the tire radial direction trd.
  • the fourth belt layer 304 is located outside the third belt layer 303 in the tire radial direction trd.
  • the fifth belt layer 305 is located outside the fourth belt layer 304 in the tire radial direction trd.
  • the sixth belt layer 306 is located outside the fifth belt layer 305 in the tire radial direction trd.
  • the sixth belt layer 306 is located on the outermost side in the belt 300 composed of a plurality of belt layers in the tire radial direction trd.
  • the first belt layer 301, the second belt layer 302, the third belt layer 303, the fourth belt layer 304, the fifth belt layer 305, and the sixth belt layer 306 are arranged in this order. Be placed.
  • the width of the first belt layer 301 and the second belt layer 302 (the width measured along the tire width direction twd. The same applies hereinafter) is 25% or more of the tread width TW. And it is 70% or less.
  • the widths of the third belt layer 303 and the fourth belt layer 304 are 55% or more and 90% or less of the tread width TW.
  • the widths of the fifth belt layer 305 and the sixth belt layer 306 are 60% or more and 110% or less of the tread width TW.
  • the width of the fifth belt layer 305 is larger than the width of the third belt layer 303, and the width of the third belt layer 303 is equal to or larger than the width of the sixth belt layer 306.
  • the width of the sixth belt layer 306 is larger than the width of the fourth belt layer 304, the width of the fourth belt layer 304 is larger than the width of the first belt layer 301, and the width of the first belt layer 301 is It is larger than the width of the second belt layer 302.
  • the fifth belt layer 305 has the largest width and the second belt layer 302 has the smallest width.
  • the belt 300 including a plurality of belt layers includes the shortest belt layer (that is, the second belt layer 302) having the shortest length in the tire width direction twd.
  • the second belt layer 302 which is the shortest belt layer has a belt end 300e which is an edge in the tire width direction twd.
  • the inclination angles of the belt cords of the first belt layer 301 and the second belt layer 302 with respect to the carcass cord are 70 ° or more and 85 ° or less.
  • the inclination angle of the belt cords of the third belt layer 303 and the fourth belt layer 304 with respect to the carcass cord is not less than 50 ° and not more than 75 °.
  • the inclination angle of the belt cords of the fifth belt layer 305 and the sixth belt layer 306 with respect to the carcass cord is not less than 50 ° and not more than 70 °.
  • the belt 300 composed of a plurality of belt layers includes an inner cross belt group 300A, an intermediate cross belt group 300B, and an outer cross belt group 300C.
  • the belt cords constituting the respective belt layers in the group are between belt layers adjacent to each other in the group (preferably, the tire equator) in a plan view from the tread tread surface 2 side.
  • the inner cross belt group 300A is composed of a pair of belt layers and is located outside the carcass 200 in the tire radial direction trd.
  • the inner cross belt group 300 ⁇ / b> A includes a first belt layer 301 and a second belt layer 302.
  • the intermediate cross belt group 300B includes a pair of belt layers and is located outside the inner cross belt group 300A in the tire radial direction trd.
  • the intermediate crossing belt group 300 ⁇ / b> B includes a third belt layer 303 and a fourth belt layer 304.
  • the outer cross belt group 300C includes a pair of belt layers and is located outside the intermediate cross belt group 300B in the tire radial direction trd.
  • the outer cross belt group 300 ⁇ / b> C includes a fifth belt layer 305 and a sixth belt layer 306.
  • the inner cross belt group 300A has a width of 25% or more and 70% or less of the tread width TW.
  • the width of the intermediate cross belt group 300B is 55% or more and 90% or less of the tread width TW.
  • the width of the outer cross belt group 300C is 60% or more and 110% or less of the tread width TW.
  • the inclination angle of the belt cord of the inner cross belt group 300A with respect to the carcass cord is 70 ° or more and 85 ° or less.
  • the inclination angle of the belt cord of the intermediate cross belt group 300B with respect to the carcass cord is not less than 50 ° and not more than 75 °.
  • the inclination angle of the belt cord of the outer cross belt group 300C with respect to the carcass cord is 50 ° or more and 70 ° or less.
  • the inclination angle of the belt cord with respect to the carcass cord is the largest inclination angle of the inner cross belt group 300A.
  • the inclination angle of the belt cord with respect to the carcass cord of the intermediate intersection belt group 300B is equal to or greater than the inclination angle of the belt cord with respect to the carcass cord of the outer intersection belt group 300C.
  • the central circumferential groove 13 is the innermost position in the tire width direction of the groove width center line WL passing through the center in the width direction of the central circumferential groove 13 when viewed from the belt end 300e from the tread tread surface 2 side of the tire 1.
  • the length DL along the tire width direction twd up to (that is, the bent portion inward in the tire width direction) is formed to be 200 mm or less.
  • a vulcanized tire having a narrow groove and an inflow portion and having the specifications shown in Table 1 is formed by molding a tire using a normal technique in the tire industry and then vulcanizing. Produced.
  • a vulcanizer for vulcanizing the tread using a plurality of molds was used.
  • the produced tire was mounted on an applicable rim (53 / 80R63) defined in the JATMA standard and assembled with the rim to obtain an internal pressure of 600 kPa. And the wind which flows to a tire peripheral direction was given to this tire.
  • a film heater is provided on the groove wall on the lee side of the narrow groove of the tire to heat the narrow groove, and this heat is measured at a point near the center of the groove wall on the windward side of the narrow groove.
  • the thermal conductivity inside the narrow groove was evaluated. Specifically, an index for relative evaluation with the evaluation result of Comparative Example 1 as 100 was calculated. It shows that the effect which improves the heat dissipation of a tread is so high that an index
  • Example 1 shows that if the requirements described in claim 1 and / or claim 2 are satisfied, burrs are less likely to occur on the narrow groove and / or the inflow portion. It was.
  • Example 3 shows that by comparing Example 3 with Examples 1, 2, and 4, by satisfying the requirements of Claims 1 to 5 and satisfying the requirements of Claim 6, the effect of increasing the heat dissipation of the tread is particularly significant. It was shown to be higher.
  • the heat dissipation of the tread can be enhanced while suppressing an increase in the total groove capacity.
  • the pneumatic tire of the present invention is particularly suitably used for construction vehicle tires and truck / bus tires.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 トレッド踏面に、タイヤ周方向に傾斜して延び、溝深さと比較して小さい溝幅を有する細溝が、タイヤ周方向に間隔をおいて設けられ、細溝の一方の端部において、タイヤ周方向に対向する細溝の溝壁面のうち、細溝の一方の端から細溝の他方の端に向かう第一ベクトルのタイヤ周方向成分の終点側にある溝壁面に、タイヤ周方向に延び、一方の端で細溝に連通し、他方の端で終端する、流入部が設けられる、ことを特徴とする空気入りタイヤ。

Description

空気入りタイヤ
 本発明は、特に、トレッドの放熱性を高めた空気入りタイヤに関する。
 車両に装着されたタイヤは、負荷転動に伴う伸縮の繰り返しにより発熱する。特に、この発熱は、路面に接するトレッドにおいて顕著となり、トレッドの様々な故障(例えば、ヒートセパレーション等)の原因となる。そのため、空気入りタイヤのトレッドに発生する熱を放出する工夫が必要とされている。
 この必要に応えるため、従来、トレッド踏面に溝が設けられた空気入りタイヤが用いられてきた。このタイヤによれば、溝を設けることによって、発熱源たるトレッドそのものを低減し、且つ、トレッドの表面積を増大させることができ、空気入りタイヤのトレッドの放熱性を高めることができる。
特開2003-205706号公報
 しかしながら、上記従来の空気入りタイヤでは、放熱性を高める効果をより向上させるためには溝の総容量を増加させる必要があるところ、溝の総容量を増加させると陸部の剛性の低下を招き、タイヤの摩耗性能や操縦安定性能が悪化する虞がある。
 そこで、本発明は、溝の総容量の増加を抑えつつ、トレッドの放熱性を高めた空気入りタイヤを提供することを目的とする。
 本発明の要旨は以下の通りである。
 本発明の空気入りタイヤは、トレッド踏面に、タイヤ周方向に傾斜して延び、溝深さと比較して小さい溝幅を有する細溝が、タイヤ周方向に間隔をおいて設けられ、前記細溝の一方の端部において、タイヤ周方向に対向する前記細溝の溝壁面のうち、前記細溝の一方の端から前記細溝の他方の端に向かう第一ベクトルのタイヤ周方向成分の終点側にある前記溝壁面に、タイヤ周方向に延び、一方の端で前記細溝に連通し、他方の端で終端する、流入部が設けられる、ことを特徴とする。
 上記構成とすれば、細溝及び流入部を合わせた部分のタイヤ周方向投影長さを比較的小さくすることができるため、トレッド成型用金型の継ぎ目の位置が細溝又は流入部の位置に当たることを回避しやすくなり、細溝及び/又は流入部の上にバリが生じにくくなる。そのため、本発明の空気入りタイヤによれば、溝の総容量の増加を抑えつつ、トレッドの放熱性を高めることができる。
 なお、「トレッド踏面」とは、適用リムに組み付けると共に規定内圧を充填したタイヤを、最大負荷能力に対応する負荷を加えた状態で転動させた際に、路面に接触することになる、タイヤの全周にわたる外周面を意味する。ここで、「適用リム」とは、タイヤサイズに応じて下記の規格に規定された標準リム(下記TRAのYEAR BOOKでは“Design Rim”と規定。下記ETRTOのSTANDARDS MANUALでは“Measuring Rim”と規定。)を指し、「規定内圧」とは、下記の規格において、最大負荷能力に対応して規定される空気圧をいい、「最大負荷能力」とは、下記の規格でタイヤに負荷されることが許容される最大の質量を指す。そして、その規格とは、タイヤが生産又は使用される地域に有効な産業規格によって決められたものであり、例えば、アメリカ合衆国では、“THE TIRE AND RIM ASSOCIATION INC.(TRA)”の“YEAR BOOK”であり、欧州では、“The European Tyre and Rim Technical Organization(ETRTO)”の“STANDARDS MANUAL”であり、日本では、“日本自動車タイヤ協会(JATMA)”の“JATMA YEAR BOOK”である。
 またなお、「(細溝の)溝深さ」とは、細溝のタイヤ径方向の深さのうち最も大きい深さを指し、「(細溝の)溝幅」とは、細溝のタイヤ周方向の幅を指す。
 更になお、本発明の空気入りタイヤの諸寸法は、特に断りのない限り、タイヤを適用リムに装着し、規定内圧とし、無負荷状態としたときの諸寸法を指す。
 また、本発明の空気入りタイヤは、前記細溝及び前記流入部を合わせた部分のタイヤ周方向投影長さLxが、前記流入部の位置と同じタイヤ幅方向位置において、前記第一ベクトルのタイヤ周方向成分の始点側にある前記溝壁面に、仮想流入部が設けられた場合の、前記細溝及び前記仮想流入部を合わせた部分のタイヤ周方向投影長さLx’と比較して、小さいことが好ましい。上記範囲とすれば、トレッドの放熱性を高めるという上記効果がより得られやすい。
 更に、本発明の空気入りタイヤは、前記細溝の一方の端から前記流入部の位置までの、前記細溝の延在方向に沿った距離は、前記細溝の延在長さの0~35%であることが好ましい。上記構成とすれば、トレッドの放熱性を高めるという上記効果がより得られやすい。
 更に、本発明の空気入りタイヤは、前記流入部は、前記細溝の一方の端に設けられることが好ましい。上記構成とすれば、トレッドの放熱性を高めるという上記効果が更に得られやすい。
 更に、本発明の空気入りタイヤは、前記第一ベクトルと前記流入部の一方の端から前記流入部の他方の端に向かう第二ベクトルとのなす角度θ2が、90°未満であることが好ましい。上記構成とすれば、トレッドの放熱性を高めるという上記効果が更に得られやすい。
 更に本発明の空気入りタイヤは、前記角度θ2が、50~70°であることが好ましい。上記構成とすれば、トレッドの放熱性を高めるという上記効果が更に得られやすい。
 更に、本発明の空気入りタイヤは、タイヤ周方向に対向する前記細溝の溝壁面の両方に、前記流入部が設けられることが好ましい。上記構成とすれば、トレッドの放熱性を高める効果を一層高めることができる。
 本発明の空気入りタイヤによれば、溝の総容量の増加を抑えつつ、トレッドの放熱性を高めることができる。
(a)は、本発明の一例の空気入りタイヤのトレッド踏面を表す部分展開図であり、(b)は、(a)に示すタイヤを、タイヤ周方向に延びるA-A線に沿って切断したときの断面図である。 本発明の空気入りタイヤの作用を説明するための図である。 (a)は、図1に示すタイヤに用いられ得る細溝及び流入部((i)~(iv))、並びに比較例のタイヤに用いられる細溝及び仮想流入部((i))の拡大図であり、(b)は、(a)に示す細溝の一方の端を始点とし、他方の端を終点とする第一ベクトルを示す図であり、(c)は、(a)に示す(i)~(iv)における、流入部の一方の端を始点とし、他方の端を終点とする第二ベクトルを、(b)に示す第一ベクトルと共に示す図である。 (a)は、図1に示すタイヤに用いられ得る細溝及び流入部の拡大図であり、(b)は、(a)に示す細溝についての第一ベクトルを示す図であり、(c)は、(a)に示す細溝についての第二ベクトルを、(b)に示す第一ベクトルと共に示す図である。 図1に示すタイヤに用いられ得る、細溝の溝壁面の両方に流入部が設けられた場合の細溝及び流入部の拡大図である。 図5に示す細溝及び流入部における内部の風速ベクトルの数値解析の結果の概略を示す図である。 流入部のトレッド踏面上における形状の例を示す図である。 流入部の細溝の延在方向と垂直な面による断面における形状の例を示す図である。 本発明の一例の空気入りタイヤのタイヤ幅方向断面図である。
 以下、図面を参照して、本発明の空気入りタイヤの実施形態について詳細に例示説明する。
 図1(a)に、本発明の一例の空気入りタイヤのトレッド踏面を表す部分展開図を示す。
 本発明の一例の空気入りタイヤ1(以下、「タイヤ1」ともいう)は、トレッド踏面2に、タイヤ赤道Cを挟んでタイヤ周方向に沿って延びる1対の中央周方向溝13,13と、該中央周方向溝13,13のタイヤ幅方向外側にタイヤ周方向に沿って延びる1対の側方周方向溝14,14と、が設けられている。また、トレッド踏面2には、タイヤ幅方向に沿って延び、中央周方向溝13及び側方周方向溝14に連通する中間幅方向溝15と、タイヤ幅方向に沿って延び、側方周方向溝14に連通しトレッド接地端TGに延びる側方幅方向溝16と、が設けられている。
 なお、トレッド接地端TGとは、トレッド踏面のタイヤ幅方向端を指す。
 また、タイヤ1は、中央周方向溝13により区画され、タイヤ赤道Cを含むリブ状中央陸部17と、中央周方向溝13と側方周方向溝14と中間幅方向溝15とによって区画されるブロック状中間陸部18と、側方周方向溝14と側方幅方向溝16とトレッド接地端TGとによって区画されるブロック状側方陸部19と、を有している。
 タイヤ1は、トレッド踏面2にあるリブ状中央陸部17に、タイヤ周方向に傾斜して延び、その両端3a、3bがリブ状中央陸部17内で終端する細溝3が設けられる。
 図1(b)に、図1(a)に示すタイヤを、タイヤ周方向に延びるA-A線に沿って切断したときの断面図を示す。ここで、細溝3は、図1(b)に示すように、溝深さd3と比較して小さい溝幅w3を有する。
 タイヤ1では、細溝3は、タイヤ周方向に一定のピッチLpで設けられている。
 また、タイヤ1は、細溝3の溝壁面3w(3we)に、タイヤ周方向に延びる流入部4が設けられる。流入部4は、一方の端4aで細溝3に連通し、他方の端4bで終端する。
 なお、「タイヤ周方向に延びる」とは、厳密にタイヤ周方向に延びることを意味するものでなく、タイヤ周方向の成分を有する方向に延びることを意味する。
 図2(a)に示すように、タイヤ転動時には、タイヤの回転方向とは逆の方向に、風が流れる。この風が、トレッド踏面に設けられた溝に流入し、その後流出することによって、トレッドの熱が放出され、トレッドが冷却される。
 ここで、溝の幅を大きくすると、溝に流入する風(図2(b)(i)中、矢印にて示す)の量が増加してトレッドを冷却する効果が高まるものの、陸部の剛性が低下してタイヤの耐摩耗性や操縦安定性が低下する(図2(b)(i)参照)。溝の幅を小さくすると、陸部の剛性の低下は抑制されタイヤの耐摩耗性や操縦安定性の低下は抑制されるものの、溝の内部に流入する風(図2(b)(ii)中、矢印にて示す)の量が減少してトレッドを冷却する効果が弱まる(図2(b)(ii)参照)。
 比較的小さい溝幅を有する細溝の他に、流入部が設けられた、本発明の一例のタイヤ1では、タイヤ転動時に、風が流入部4を介して容易に細溝3に取り込まれるため、細溝3に流入する風(図2(c)中、矢印にて示す)の量が増加する(図2(c))。そのため、本発明の空気入りタイヤによれば、細溝及び流入部によるトレッドを冷却する効果を得ることができる。
 図3(a)(i)~(iv)に、タイヤ1に設けられ得る細溝3及び流入部4の拡大図を示す。以下、特に断りのない限り、トレッド踏面を表す展開図における説明とする。
 ここで、図3(b)に示すように、細溝3の一方の端3aから細溝3の他方の端3bに向かうベクトルを第一ベクトルV1とする。このとき、タイヤ1では、図3(a)(ii)~(iv)に示すように、細溝3の一方の端3aにおいて、タイヤ周方向に対向する溝壁3の溝壁面3we、3ws(3w)のうち、第一ベクトルV1のタイヤ周方向成分V1cの終点V1ce側にある、細溝3の溝壁面3weに、タイヤ周方向に延びる流入部4が設けられている、すなわち、タイヤ周方向に対向する溝壁3の溝壁面3we、3ws(3w)のうち、第一ベクトルV1のタイヤ周方向成分V1cが向く側とは逆側にある、細溝3の溝壁面3weに流入部が設けられている。
 なお、本発明の空気入りタイヤでは、流入部4は、図3(a)(i)~(iv)に示すように、細溝3の一方の端部3apにおいて、設けられている。またなお、タイヤ1では、流入部4は、溝壁面3w(3we)から第一ベクトルV1のタイヤ周方向成分V1cの方向とは逆の方向に延びている。
 なお、図3(a)(i)~(iv)に示す例では、第一ベクトルV1は、細溝3の一方の端3aをなすタイヤ周方向に延びる線分の中点Xを始点とし、細溝3の他方の端3bをなすタイヤ周方向に延びる線分の中点Yを終点とするベクトルとしているが、本発明の空気入りタイヤでは、第一ベクトルV1は、細溝3の一方の端部3apにおけるタイヤ幅方向最外側の点を始点とし、細溝3の他方の端部3bpにおけるタイヤ幅方向最外側の点を終点とするベクトルとすることもできる。
 以下、本発明の一例のタイヤ1の作用効果を説明する。
 図3(a)(i)に示す細溝3及び流入部4が設けられた本発明の一例のタイヤ1の比較例となるタイヤでは、タイヤ1の流入部4の位置と同じタイヤ幅方向位置において、第一ベクトルV1のタイヤ周方向成分V1cの始点V1cs側にある、細溝3の溝壁面3wsに流入部が設けられる(図3(a)では、仮想流入部4’で示す)。
 ここで、細溝3の一方の端部3apにおいて、第一ベクトルV1のタイヤ周方向成分V1cの終点V1ce側にある、細溝3の溝壁面3weに流入部4が設けられる、本発明の一例のタイヤ1における、細溝3及び流入部4を合わせた部分のタイヤ周方向投影長さLx(代表的に図3(a)(i)に示す)は、第一ベクトルV1のタイヤ周方向成分V1cの始点V1cs側にある、細溝3の溝壁面3wsに仮想流入部4’が設けられる、比較例の空気入りタイヤにおける、細溝3及び流入部4を合わせた部分のタイヤ周方向投影長さLx’(図3(a)(i)に示す)と比較して、小さい。
 なお、流入部4の位置とは、図3(b)に示すように、流入部4の一方の端4aをなす線の、最も細溝3の一方の端3aに近い点4aoo及び最も細溝3の他方の端3bに近い点4aoiとの中点Pを指す。仮想流入部4’の位置は、同様に定めた点P’を指す(図3(i)参照)。ここで、本発明の一例のタイヤ1についての点Pと、比較例の空気入りタイヤについての点P’とを通る直線がタイヤ周方向に平行となる、すなわち、流入部4の位置と仮想流入部4’の位置とはタイヤ幅方向位置が同じとなるようにする。
 空気入りタイヤは、一般的に、タイヤ成型用金型を用いて加硫されることによって、製造される。ここで、トレッドは、タイヤ全周に亘って複数のトレッド成型用金型を並べる(タイヤ周方向に分割されたセクターを用いる)ことによって、成型される。トレッド成型用金型の継ぎ目においては、僅かな量のトレッドゴムが金型の外部に漏れ出ることがあり、この場合、加硫済みの空気入りタイヤのトレッド踏面は、局所的に、バリ(余分なゴム)が生じる。そして、トレッド成型用金型の継ぎ目の位置が、トレッド踏面に設けられる細溝及び/又は流入部の位置に対応した場合には、細溝及び/又は流入部の上にバリが生じ、細溝及び/又は流入部の一部が埋まってしまう。これにより、トレッド踏面に同じ数の流入部を有する細溝が設けられた場合、細溝及び流入部を合わせた部分のタイヤ周方向投影長さが小さいほど、トレッド成型用金型の継ぎ目の位置が、細溝又は流入部の位置に当たることを回避しやすくなり、上記のバリによる細溝及び流入部の形状の乱れが低減される。
 そのため、比較的小さな、細溝3及び流入部4を合わせた部分のタイヤ周方向投影長さLxを有する、本発明の一例のタイヤ1によれば、細溝3及び流入部4によるトレッドを冷却する効果が得られやすい。
 また、本発明の一例のタイヤ1では、第一ベクトルV1のタイヤ周方向成分V1cの方向(流入部の一方の端から流入部の他方の端に向かう方向)を、タイヤの回転方向とした場合には、以下の作用効果を奏する。細溝3の一方の端部3apにおいて、トレッド踏面2に開口する流入部4の他方の端4bから流入部4に流入し、細溝3に連通する流入部4の一方の端4aから細溝3に流入した空気は、細溝3の一方の端部3apから細溝3の他方の3bpまで、細溝3の延在長さL3の大部分に亘って、流れる。これにより、空気が流れる細溝3内部の領域を比較的大きくすることができる。
 なお、本発明の一例のタイヤ1では、第一ベクトルV1のタイヤ周方向成分V1cの方向とは逆の方向(流入部の他方の端から流入部の一方の端に向かう方向)を、タイヤの回転方向とした場合には、細溝3の他方の端部3bpにおいて、細溝3に流入した空気は、細溝3の一方の端部3apに設けられた流入部4から空気を流出することができる。
 そのため、本発明の一例のタイヤ1によれば、細溝3及び流入部4によるトレッドを冷却する効果が得られやすい。
 上記の通り、本発明の空気入りタイヤによれば、トレッドの放熱性を高めることができる。
 また、上記の通り、本発明の空気入りタイヤによれば、前述の通り、細溝及び/又は流入部の上にバリが生じにくくなるため、タイヤの製造効率を向上させることができる。
 前述の通り、本発明の空気入りタイヤでは、細溝3の一方の端3aから流入部4の位置までの、細溝3の延在方向に沿った距離M1は、細溝3の延在長さL3の0~35%であることが好ましい。
 この場合、流入部4から細溝3に流入した空気が、細溝3の一方の端3aにより近い位置から細溝3の他方の端3bにより近い位置まで、細溝3の延在長さL3のほぼ大部分に亘って、流れる。これにより、空気が流れる細溝3の内部の領域を更に大きくすることができる。そのため、トレッドの放熱性を高めるという上記効果が得られやすい。また、タイヤ周方向に隣接する細溝3間のタイヤ周方向の距離の低減を抑制することができる。
 ここで、細溝3の一方の端3aから流入部4の位置までの、細溝3の延在方向に沿った距離M1とは、上記中点Pと、上記点Xとの、細溝3の延在方向に沿った距離を指す。
 また、細溝3の延在長さL3とは、上記点Xと上記点Yとの直線距離、すなわち、第一ベクトルV1の長さを指す。
 また、前述の通り、図3(a)(ii)~(iv)に示すように、タイヤ1では、流入部4は、細溝3の一方の端3aに設けられるため、流入部4から細溝3に流入した空気が、細溝3の一方の端3aから細溝3の他方の端3bまで、細溝3の延在長さL3のほぼ全体に亘って、流れる。これにより、空気が流れる細溝3内部の領域を更に大きくすることができる。そのため、トレッドの放熱性を高めるという上記効果が更に得られやすい。また、タイヤ周方向に隣接する細溝3間のタイヤ周方向の距離の低減を最小限にすることができる。
 ここで、「流入部4が細溝3の一方の端3aに設けられる」とは、流入部4の一方の端4aをなす線の、最も細溝3の一方の端3aに近い点4aooと、細溝3の一方の端部3apにおけるタイヤ幅方向外側の点とが一致することを指す。
 なお、タイヤ1では、細溝3の一方の端3aは、タイヤ周方向に平行な直線であるため、3a上のいずれの点も、細溝3の一方の端部3apにおけるタイヤ幅方向外側の点とすることができる。
 ここで、図3(c)に示すように、細溝3の一方の端部3apに設けられる流入部4の一方の端4aから流入部4の他方の端4bに向かうベクトルを第二ベクトルV2とする。
 図3(c)(i)~(iv)は、それぞれ図3(a)(i)~(iv)に示す細溝3及び流入部4についての第一ベクトルV1及び第二ベクトルV2を示す。
 なお、第二ベクトルV2は、流入部4の一方の端4aをなす線の、最も細溝3の一方の端3aに近い点4aooと最も細溝3の他方の端3bに近い点4aoiとの中点Pを始点V2sとし、流入部4の他方の端4bをなす線の、最も細溝3の一方の端3aに近い点4booと最も細溝3の他方の端3bに近い点4boiとの中点Qを終点V2eとするベクトルを指す。
 このとき、タイヤ1では、図3(c)(iv)に示すように、第一ベクトルV1と第二ベクトルV2とのなす角度θ2が、90°未満(鋭角)であることが好ましい。すなわち、タイヤ1では、図3(a)(i)~(iii)に示す細溝3及び流入部4と比較して、図3(a)(iv)に示す細溝3及び流入部4を用いることが好ましい。
 上記角度θ2を鋭角とすれば、細溝3の一方の端部3apにおいて、トレッド踏面2に開口する流入部4の他方の端4bから流入部4に流入し、細溝3に連通する流入部4の一方の端4aから細溝3に流入した空気が、細溝3の一方の端部3apから細溝3の方の端部3bpに向かうというよりもむしろ、細溝3の一方の端部3apに集中する。細溝3の一方の端部3apに集中した空気は、細溝3の一方の端部3apにおいてタイヤ径方向内方に向かって流れて、細溝3の溝底3boに達し、次いで、空気は、細溝3の一方の端部3apから細溝3の他方の端部3bpに向かって流れて、細溝3の他方の端部3bpに達し、そして、空気は、細溝3の他方の端部3bpにおいてタイヤ径方向外方に向かって流れる。このように、空気は、細溝3の深部を流れて、その後、トレッド踏面2に流出する。ここで、トレッドにおける熱の発生は、タイヤ径方向外方のトレッド部分と比較して、タイヤ径方向内方のトレッド部分において、顕著であり、空気が細溝3の深部を流れることによっても、トレッドに発生した熱をより効果的に放出することができる。
 そのため、上記角度θ2を90°未満とすれば、トレッドの放熱性を高めるという上記効果が更に得られやすい。
 ここで、上記角度θ2は、50~70°であることが好ましい。
 角度θ2を上記範囲とすれば、トレッドの放熱性を高めるという上記効果が更に得られやすい。
 また本発明の空気入りタイヤでは、図3(a)に示す細溝3の一方の端と他方の端とを入れ換えて定めることによって、図4(a)に示すように、細溝3の一方の端3aにおいて、タイヤ周方向に対向する溝壁3の溝壁面3we、3ws(3w)のうち、第一ベクトルV1のタイヤ周方向成分V1cの終点V1ce側にある、細溝3の溝壁面3weに、タイヤ周方向に延びる流入部4を設けることもできる。なお、図4(b)に、この場合の第一ベクトルV1を示し、図4(c)に、この場合の第二ベクトルを示す。
 なお、図3における流入部4の好適な実施形態は、図2における流入部4の好適な実施形態と同様にすることができる。
 そして、本発明の空気入りタイヤでは、図5に示すように、タイヤ周方向に対向する細溝3の溝壁面3wの両方に、流入部4が設けられることが好ましい。
 細溝3の溝壁面3wの両方に流入部4を設ければ、細溝3の一方の端部3ap側に設けられた流入部4から細溝3に流入した空気が、細溝3の他方の端部3bp側に設けられた流入部4から流出することができる。そのため、トレッドの放熱性を一層高めることができる。
 また、流入部4を設ければ、第一ベクトルV1のタイヤ周方向成分の向き、及びその反対の向きのいずれを、タイヤの回転方向とした場合でも、トレッドの放熱性を高めるという効果を得ることができる。
 図6(a)、(b)に、図5に示す細溝3及び流入部4における内部の風速ベクトルの数値解析の結果の概略を示す。
 モデルとして、延在長さL3=200mm、溝幅w3=10mm、溝深さd3=100mm、θ1=30°である細溝3、及び、延在長さL4=50mm、幅w4=50mm、深さd4=20mm、θ2=60°である流入部4を用いた。
 図6(a)に示すように、図3(a)(i)に示す仮想流入部4’がタイヤ周方向に対向する細溝3の溝壁面3wの両方に設けられた本発明の比較例となるタイヤでは、トレッド踏面2に開口する流入部4の他方の端4bから流入部4に流入し、細溝3に連通する流入部4の一方の端4aから細溝3に流入した空気が、踏面2側から溝底3bo側に向かい、細溝3の中央部分付近で細溝3の溝底3boに達し、その後、溝底3bo側から踏面2側に向かう。一方、図6(b)に示すように、図5に示す細溝3及び流入部4が設けられた本発明に従うタイヤでは、流入部4の一方の端4aから細溝3に流入した空気が、踏面2側から溝底3bo側に向かい、細溝3の中央部分を通過する前に細溝3の溝底3boに達し、溝底3boを流れ続け、細溝3の中央部分を通過した後に、溝底3bo側から踏面2側に向かう。
 この結果から、本発明に従うタイヤでは、トレッドに発生した熱をより効果的に放出することができることがわかる。
 タイヤ1では、図1(a)に示すように、細溝3はタイヤ周方向に一定のピッチLpで設けられているが、本発明の空気入りタイヤでは、これに限定されることなく、細溝はタイヤ周方向に間隔をおいて設けられていればよい。細溝をタイヤ周方向に間隔をおいて設ければ、トレッド成型用金型の継ぎ目の位置が細溝又は流入部の位置に当たることを回避することができ、細溝及び/又は流入部の上にバリが生じるのを防ぐことができる。そのため、トレッドの放熱性を高めるという効果を得ることができる。
 本発明の空気入りタイヤでは、細溝3及び流入部4は、トレッド踏面2のどこかに設けられていれば、トレッドの放熱性を高めるという効果を得ることができる。
 タイヤ1では、細溝3及び流入部4は、タイヤ赤道面CLを含むリブ状中央陸部17に設けられている。ここで、リブ状中央陸部17では、タイヤ転動時の接地圧が特に高くなり、トレッドゴムの伸縮が特に大きい。そのため、リブ状中央陸部17に細溝3及び流入部4を設ければ、細溝3及び流入部4によるトレッドの放熱性を高めるという上記効果が得られやすい。
 本発明の空気入りタイヤでは、細溝3の延在方向とタイヤ周方向とのなす角度のうち小さい方の角度θ1(代表的に図1(a)に示す)は、45~70°であることが好ましく、55~65°であることが更に好ましい。上記範囲とすれば、細溝3への風の流入を確保することができる。
 タイヤ1では、流入部4のタイヤ周方向長さw4(図1(b)参照)の細溝3の溝幅w3に対する割合(w4/w3)は、3~7であることが好ましい。w4/w3を上記範囲とすれば、細溝3及び流入部4が設けられている陸部の剛性の確保とトレッドの放熱性の向上とを両立することができる。
 また、流入部4の深さd4(図1(b)参照)の細溝3の溝深さd3に対する割合(d4/d3)は、1/7~1/3であることが好ましい。d4/d3を上記範囲とすれば、細溝3及び流入部4が設けられている陸部の剛性の確保とトレッドの放熱性の向上とを両立することができる。
 タイヤ1では、細溝の延在長さL3の流入部の延在長さL4に対する割合(L3/L4)は、冷却効果を更に高める観点から、2.0以上であることが好ましい。
 タイヤ1では、流入部のタイヤ周方向長さのw4流入部の深さd4に対する割合(w4/d4)は、冷却効果を更に高める観点から、1.0以上であることが好ましい。
 細溝3の幅w3は、10~20mmであることが好ましい。この範囲とすれば、接地時に細溝3が閉口し、陸部が連続的となるため、陸部の剛性が高まり、摩耗性能を向上させることができる。
 タイヤ1では、図2(a)(i)~(iii)に示すように、流入部4のトレッド踏面2上における形状は、細溝3の延在方向に平行な1対の辺を含む平行四辺形であるが、本発明の空気入りタイヤでは、上記形状は、これに限定されることなく、いかなる形状であってもよい。
 図7(a)~(e)に、流入部4のトレッド踏面2上における形状の例を示す。
 流入部4の形状の例としては、平行四辺形以外に、下底が細溝3の壁面に開口し、上底が細溝3の壁面から遠い側にある台形、すなわち、タイヤ幅方向長さが、細溝3の壁面側から漸減するもの(図7(a))、上底が細溝3の壁面に開口し、下底が細溝3の壁面から遠い側にある台形、すなわち、タイヤ幅方向長さが、細溝3の壁面側から漸増するもの(図7(b))、図7(b)に示す台形の上底及び下底以外の2辺を曲線としたもの(図7(c))、半円(図7(d))、三角形(図7(e))等が挙げられる。
 また、流入部4の細溝3の延在方向と垂直な面による断面における形状は、図1(b)に示すように、流入部4の他方の端4bから流入部4の一方の端4aに向かうにつれて深さが漸増し、流入部4の一方の端4aにおいて流入部4の深さが最大になる形状であることが好ましい。
 タイヤ1では、図1(b)に示すように、流入部4の細溝3の延在方向と垂直な面による断面おける形状は、流入部4の一方の端4aと他方の端4bとを結ぶ直線であるが、本発明の空気入りタイヤでは、上記形状は、これに限定されることなく、いかなる形状であってもよい。
 図8(a)~(h)に、流入部4の細溝3の延在方向と垂直な面による断面における形状の例を示す。
 流入部4の形状の例としては、直線以外に、様々な曲線(図8(a)~(c))、流入部4の深さが、他方の端4bから一方の端4aに向かって階段状に増加するような曲線(図8(d))、流入部4の深さが、他方の端4bから中間にある点Mまで一定となり、Mから一方の端4aに向かって漸増するような曲線(図8(e)、(f))、流入部4の深さが、他方の端4bから中間にある点Mまで漸増し、Mから一方の端4aまで一定となるような曲線(図8(g))、流入部4の深さが、他方の端4bから一方の端4aまで一定となるような曲線(図8(h))等が挙げられる。
 なお、タイヤ1では、リブ状陸部及びブロック状陸部を有するトレッドパターンを有しているが、本発明の空気入りタイヤのトレッドパターンは、これに限定されることなく、いかなるパターンとしてもよい。
 また、細溝の両端3a、3bがリブ状中央陸部17内で終端しているが、本発明の空気入りタイヤでは、細溝の端の少なくとも1つが、他の溝(例えば、周方向溝)に開口していてもよい。
 タイヤ1では、細溝3及び流入部4は、タイヤ赤道Cを含むリブ状中央陸部17に設けられているが、本発明の空気入りタイヤでは、細溝3及び流入部4は、トレッド踏面2のどこに設けられていてもよい。
 本発明の空気入りタイヤは、特に、比較的大きなトレッドを有する、建設車両用タイヤやトラック・バス用タイヤに好適に用いられる。
 図9に、本発明の一例の空気入りタイヤ1のタイヤ幅方向断面図を示す。図9に示すように、このタイヤ1は、乗用車等に装着される空気入りタイヤと比較して、トレッド部500のゴムゲージ(ゴム厚さ)が厚い。
 具体的には、タイヤ1は、タイヤ外径をOD、タイヤ赤道面Cの位置におけるトレッド部500のゴムゲージをDCとした場合に、DC/OD≧0.015を満たす。
 タイヤ外径OD(単位:mm)とは、タイヤ1の外径が最大となる部分(一般的には、タイヤ赤道面C付近におけるトレッド部500)のタイヤ1の直径である。ゴムゲージDC(単位:mm)は、タイヤ赤道面Cの位置におけるトレッド部500のゴム厚さである。ゴムゲージDCには、ベルト300の厚さは含まれない。なお、タイヤ赤道面Cを含む位置に周方向溝が形成されている場合には、その周方向溝に隣接する位置におけるトレッド部500のゴム厚さとする。
 図9に示されるように、タイヤ1は、1対のビードコア110、カーカス200及び複数のベルト層からなるベルト300を備える。なお、図9では、タイヤ1の半幅のみを示しているが、図示していない方のタイヤ1の半幅も同じ構造を有する。
 ビードコア110は、ビード部120に設けられる。ビードコア110は、ビードワイヤー(図示せず)によって構成される。
 カーカス200は、タイヤ1の骨格をなすものである。カーカス200の位置は、トレッド部500からバットレス部900及びサイドウォール部700を通ってビード部120に渡る。
 カーカス200は、1対のビードコア110間に跨り、トロイダル形状を有する。カーカス200は、本実施形態において、ビードコア110を包む。カーカス200は、ビードコア110に接する。タイヤ幅方向twdにおけるカーカス200の両端は、一対のビード部120によって支持されている。
 カーカス200は、トレッド踏面2側から平面視したときに、所定方向に延在するカーカスコードを有する。本実施形態において、カーカスコードは、タイヤ幅方向twdに沿って延在する。カーカスコードとして、例えば、スチールワイヤが用いられる。
 ベルト300は、トレッド部500に配置される。ベルト300は、タイヤ径方向trdにおいてカーカス200の外側に位置する。ベルト300は、タイヤ周方向に延びる。ベルト300は、カーカスコードが延在する方向である所定方向に対して傾斜して延在するベルトコードを有する。ベルトコードとして、例えば、スチールコードが用いられる。
 複数のベルト層からなるベルト300は、第1ベルト層301、第2ベルト層302、第3ベルト層303、第4ベルト層304、第5ベルト層305及び第6ベルト層306を含む。
 第1ベルト層301は、タイヤ径方向trdにおいてカーカス200の外側に位置する。第1ベルト層301は、タイヤ径方向trdにおいて、複数のベルト層からなるベルト300の中で最も内側に位置する。第2ベルト層302は、タイヤ径方向trdにおいて第1ベルト層301の外側に位置する。第3ベルト層303は、タイヤ径方向trdにおいて第2ベルト層302の外側に位置する。第4ベルト層304は、タイヤ径方向trdにおいて第3ベルト層303の外側に位置する。第5ベルト層305は、タイヤ径方向trdにおいて第4ベルト層304の外側に位置する。第6ベルト層306は、タイヤ径方向trdにおいて第5ベルト層305の外側に位置する。第6ベルト層306は、タイヤ径方向trdにおいて、複数のベルト層からなるベルト300の中で最も外側に位置する。タイヤ径方向trdにおいて、内側から外側に向かって、第1ベルト層301、第2ベルト層302、第3ベルト層303、第4ベルト層304、第5ベルト層305、第6ベルト層306の順に配置される。
 本実施形態において、タイヤ幅方向twdにおいて、第1ベルト層301及び第2ベルト層302の幅(タイヤ幅方向twdに沿って測った幅。以下同じ。)は、トレッド幅TWの25%以上、かつ、70%以下である。タイヤ幅方向twdにおいて、第3ベルト層303及び第4ベルト層304の幅は、トレッド幅TWの55%以上、かつ、90%以下である。タイヤ幅方向twdにおいて、第5ベルト層305及び第6ベルト層306の幅は、トレッド幅TWの60%以上、かつ、110%以下である。
 本実施形態において、タイヤ幅方向twdにおいて、第5ベルト層305の幅は、第3ベルト層303の幅よりも大きく、第3ベルト層303の幅は、第6ベルト層306の幅以上であり、第6ベルト層306の幅は、第4ベルト層304の幅よりも大きく、第4ベルト層304の幅は、第1ベルト層301の幅よりも大きく、第1ベルト層301の幅は、第2ベルト層302の幅よりも大きい。タイヤ幅方向twdにおいて、複数のベルト層からなるベルト300のうち、第5ベルト層305の幅が最も大きく、第2ベルト層302の幅が最も小さい。従って、複数のベルト層からなるベルト300は、タイヤ幅方向twdにおける長さが最も短い最短ベルト層(すなわち、第2ベルト層302)を含む。
 最短ベルト層である第2ベルト層302は、タイヤ幅方向twdにおける端縁であるベルト端300eを有する。
 本実施形態において、トレッド踏面2側から平面視したときに、カーカスコードに対する第1ベルト層301及び第2ベルト層302のベルトコードの傾斜角度は、70°以上、かつ、85°以下である。カーカスコードに対する第3ベルト層303及び第4ベルト層304のベルトコードの傾斜角度は、50°以上、かつ、75°以下である。カーカスコードに対する第5ベルト層305及び第6ベルト層306のベルトコードの傾斜角度は、50°以上、かつ、70°以下である。
 複数のベルト層からなるベルト300は、内側交錯ベルト群300Aと、中間交錯ベルト群300Bと、外側交錯ベルト群300Cと、を含む。各交錯ベルト群300A~300Cは、該群内のそれぞれのベルト層を構成するベルトコードが、トレッド踏面2側からの平面視で、該群内において互いに隣接するベルト層間で(好ましくは、タイヤ赤道面をはさんで)互いに交錯する、複数のベルト層の群をいう。
 内側交錯ベルト群300Aは、1組のベルト層からなりタイヤ径方向trdにおいてカーカス200の外側に位置する。内側交錯ベルト群300Aは、第1ベルト層301と第2ベルト層302とによって、構成される。中間交錯ベルト群300Bは、1組のベルト層からなりタイヤ径方向trdにおいて内側交錯ベルト群300Aの外側に位置する。中間交錯ベルト群300Bは、第3ベルト層303と第4ベルト層304とによって、構成される。外側交錯ベルト群300Cは、1組のベルト層からなりタイヤ径方向trdにおいて中間交錯ベルト群300Bの外側に位置する。外側交錯ベルト群300Cは、第5ベルト層305と第6ベルト層306とによって、構成される。
 タイヤ幅方向twdにおいて、内側交錯ベルト群300Aの幅は、トレッド幅TWの25%以上、かつ、70%以下である。タイヤ幅方向twdにおいて、中間交錯ベルト群300Bの幅は、トレッド幅TWの55%以上、かつ、90%以下である。タイヤ幅方向twdにおいて、外側交錯ベルト群300Cの幅は、トレッド幅TWの60%以上、かつ、110%以下である。
 トレッド踏面2側から平面視したときに、カーカスコードに対する内側交錯ベルト群300Aのベルトコードの傾斜角度は、70°以上、かつ、85°以下である。トレッド踏面2側から平面視したときに、カーカスコードに対する中間交錯ベルト群300Bのベルトコードの傾斜角度は、50°以上、かつ、75°以下である。トレッド踏面2側から平面視したときに、カーカスコードに対する外側交錯ベルト群300Cのベルトコードの傾斜角度は、50°以上、かつ、70°以下である。
 トレッド踏面2側から平面視したときに、カーカスコードに対するベルトコードの傾斜角度は、内側交錯ベルト群300Aの傾斜角度が最も大きい。中間交錯ベルト群300Bのカーカスコードに対するベルトコードの傾斜角度は、外側交錯ベルト群300Cのカーカスコードに対するベルトコードの傾斜角度以上である。
 中央周方向溝13は、ベルト端300eから、タイヤ1のトレッド踏面2側から平面視したときの、中央周方向溝13の幅方向における中心を通る溝幅中心線WLのタイヤ幅方向最内位置(すなわちタイヤ幅方向内側への折れ曲がり箇所)までの、タイヤ幅方向twdに沿った長さDLが、200mm以下であるように、形成されている。
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。
 本実施例では、タイヤ業界における通常の手法を用いて、タイヤを成形し、その後加硫することによって、細溝及び流入部を有し、且つ表1に示す諸元を有する加硫済みタイヤを作製した。加硫には、トレッドを複数個の金型を用いて加硫する加硫器を用いた。
 作製したタイヤを、JATMA規格に定める適用リム(53/80R63)に装着してリム組みして、内圧600kPaの条件とした。そして、該タイヤにタイヤ周方向に流れる風を与えた。ここで、該タイヤの細溝の風下側の溝壁面にフィルムヒータを設けて細溝内に熱を与えつつ、この熱を細溝の風上側の溝壁面の中央付近の一点で測定することによって、細溝の内部の熱の伝導率を評価した。具体的には、比較例1の評価結果を100とした相対評価となる指数を算出した。指数が大きいほど、トレッドの放熱性を高める効果が高いことを示す。詳細な条件及び結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1と比較例1とを比較することによって、請求項1及び/又は請求項2に記載の要件を満たせば、細溝及び/又は流入部の上にバリが生じにくくなることが示された。実施例3と実施例1、2、4とを比較することによって、請求項1~5の要件を満たした上で請求項6に記載の要件を満たせば、トレッドの放熱性を高める効果が特に高くなることが示された。
 本発明の空気入りタイヤによれば、溝の総容量の増加を抑えつつ、トレッドの放熱性を高めることができる。本発明の空気入りタイヤは、特に、建設車両用タイヤやトラック・バス用タイヤに好適に用いられる。
 1;空気入りタイヤ、 2;トレッド踏面、 3;細溝、 3a(3e);細溝の一方の端、 3b(3e);細溝の他方の端、 3ap(3ep);細溝の一方の端部、 3bp(3ep);細溝の他方の端部、 3bo;細溝の溝底、 3w;細溝の溝壁面、 3we(3w);第一ベクトルのタイヤ周方向成分の終点側にある、細溝の溝壁面、 3ws(3w);第一ベクトルのタイヤ周方向成分の始点側にある、細溝の溝壁面、 4;流入部、 4’;仮想流入部、 4a(4e);流入部の一方の端、 4b(4e);流入部の他方の端、 4aoo;流入部の一方の端をなす線の、最も細溝の一方の端に近い点、 4aoi;流入部の一方の端をなす線の、最も細溝の他方の端に近い点、 4boo;流入部の他方の端をなす線の、最も細溝の一方の端に近い点、 4boi;流入部の他方の端をなす線の、最も細溝の他方の端に近い点、 13;中央周方向溝、 14;側方周方向溝、 15;中間幅方向溝、 16;側方幅方向溝、 17;リブ状中央陸部、 18;ブロック状中間陸部、 19;ブロック状側方陸部、 120:ビード部、 200:カーカス、 300:ベルト、 301:第1ベルト層、 302:第2ベルト層、 303:第3ベルト層、 304:第4ベルト層、 305:第5ベルト層、 306:第6ベルト層、 300A:内側交錯ベルト群、 300B:中間交錯ベルト群、 300C:外側交錯ベルト群、 300e:ベルト端、 500:トレッド部、 700:サイドウォール部、 900:バットレス部、 d3;細溝の溝深さ、 d4;流入部の深さ、 w3;細溝のタイヤ周方向の溝幅、 w4;流入部のタイヤ周方向長さ、 C;タイヤ赤道(面)、 CL;タイヤ赤道面、 M1;細溝の一方の端から流入部の位置までの、細溝の延在方向に沿った距離、 L3;細溝の延在長さ、 L4;流入部の延在長さ、 Lx;細溝及び流入部を合わせた部分のタイヤ周方向投影長さ、 Lx’;細溝及び仮想流入部を合わせた部分のタイヤ周方向投影長さ、 P;点4aooと点4aoiとの中点、 Q;点4booと点4boiとの中点、 Tw;トレッド接地幅、 TG;トレッド接地端、 V1;第一ベクトル、 V1c;V1のタイヤ周方向成分、 V1ce;V1cの終点、 V1cs;V1cの始点、 V2;第二ベクトル、 V2e;V2の終点、 V2s;V2の始点、 θ1;細溝の延在方向とタイヤ周方向とのなす角度、 θ2;V1とV2とのなす角度

Claims (7)

  1.  トレッド踏面に、タイヤ周方向に傾斜して延び、溝深さと比較して小さい溝幅を有する細溝が、タイヤ周方向に間隔をおいて設けられ、
     前記細溝の一方の端部において、
     タイヤ周方向に対向する前記細溝の溝壁面のうち、前記細溝の一方の端から前記細溝の他方の端に向かう第一ベクトルのタイヤ周方向成分の終点側にある前記溝壁面に、タイヤ周方向に延び、一方の端で前記細溝に連通し、他方の端で終端する、流入部が設けられる、
    ことを特徴とする空気入りタイヤ。
  2.  前記細溝及び前記流入部を合わせた部分のタイヤ周方向投影長さLxが、前記流入部の位置と同じタイヤ幅方向位置において、前記第一ベクトルのタイヤ周方向成分の始点側にある前記溝壁面に、仮想流入部が設けられた場合の、前記細溝及び前記仮想流入部を合わせた部分のタイヤ周方向投影長さLx’と比較して、小さいことを特徴とする、請求項1に記載の空気入りタイヤ。
  3.  前記細溝の一方の端から前記流入部の位置までの、前記細溝の延在方向に沿った距離は、前記細溝の延在長さの0~35%であることを特徴とする、請求項1又は2に記載の空気入りタイヤ。
  4.  前記流入部は、前記細溝の一方の端に設けられることを特徴とする、請求項1~3のいずれか一項に記載の空気入りタイヤ。
  5.  前記第一ベクトルと前記流入部の一方の端から前記流入部の他方の端に向かう第二ベクトルとのなす角度θ2が、90°未満であることを特徴とする、請求項1~4のいずれか一項に記載の空気入りタイヤ。
  6.  前記角度θ2が、50~70°であることを特徴とする、請求項5に記載の空気入りタイヤ。
  7.  タイヤ周方向に対向する前記細溝の溝壁面の両方に、前記流入部が設けられることを特徴とする、請求項1~6のいずれか一項に記載の空気入りタイヤ。
PCT/JP2014/001451 2013-03-13 2014-03-13 空気入りタイヤ WO2014141715A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2015143613/11A RU2602619C1 (ru) 2013-03-13 2014-03-13 Пневматическая шина
BR112015022869A BR112015022869A8 (pt) 2013-03-13 2014-03-13 pneumático
CA2903360A CA2903360C (en) 2013-03-13 2014-03-13 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-050879 2013-03-13
JP2013050879A JP5785577B2 (ja) 2013-03-13 2013-03-13 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2014141715A1 true WO2014141715A1 (ja) 2014-09-18

Family

ID=51536393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001451 WO2014141715A1 (ja) 2013-03-13 2014-03-13 空気入りタイヤ

Country Status (6)

Country Link
JP (1) JP5785577B2 (ja)
BR (1) BR112015022869A8 (ja)
CA (1) CA2903360C (ja)
CL (1) CL2015002573A1 (ja)
RU (1) RU2602619C1 (ja)
WO (1) WO2014141715A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217873A (ja) * 2018-06-19 2019-12-26 株式会社ブリヂストン 重荷重用タイヤ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191093A (ja) * 2006-01-20 2007-08-02 Bridgestone Corp 建設車両用タイヤ
JP2007230399A (ja) * 2006-03-01 2007-09-13 Bridgestone Corp 空気入りタイヤ
JP2009227264A (ja) * 2008-02-27 2009-10-08 Bridgestone Corp 空気入りタイヤ
WO2013035889A1 (ja) * 2011-09-09 2013-03-14 株式会社ブリヂストン 空気入りタイヤ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3200506B2 (ja) * 1993-08-12 2001-08-20 横浜ゴム株式会社 重荷重用空気入りラジアルタイヤ
JP4227239B2 (ja) * 1999-03-18 2009-02-18 株式会社ブリヂストン 空気入りタイヤ
JP4950491B2 (ja) * 2005-12-29 2012-06-13 住友ゴム工業株式会社 重荷重用タイヤ
JP5052317B2 (ja) * 2007-12-10 2012-10-17 株式会社ブリヂストン 空気入りタイヤ
JP5427560B2 (ja) * 2009-11-10 2014-02-26 株式会社ブリヂストン タイヤ
JP5603670B2 (ja) * 2010-06-18 2014-10-08 株式会社ブリヂストン タイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191093A (ja) * 2006-01-20 2007-08-02 Bridgestone Corp 建設車両用タイヤ
JP2007230399A (ja) * 2006-03-01 2007-09-13 Bridgestone Corp 空気入りタイヤ
JP2009227264A (ja) * 2008-02-27 2009-10-08 Bridgestone Corp 空気入りタイヤ
WO2013035889A1 (ja) * 2011-09-09 2013-03-14 株式会社ブリヂストン 空気入りタイヤ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217873A (ja) * 2018-06-19 2019-12-26 株式会社ブリヂストン 重荷重用タイヤ
WO2019244476A1 (ja) * 2018-06-19 2019-12-26 株式会社ブリヂストン 重荷重用タイヤ
US11827060B2 (en) 2018-06-19 2023-11-28 Bridgestone Corporation Heavy load tire

Also Published As

Publication number Publication date
BR112015022869A2 (pt) 2017-07-18
JP2014177150A (ja) 2014-09-25
BR112015022869A8 (pt) 2019-11-26
JP5785577B2 (ja) 2015-09-30
RU2602619C1 (ru) 2016-11-20
CL2015002573A1 (es) 2016-04-01
CA2903360C (en) 2017-07-11
CA2903360A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP5849572B2 (ja) 空気入りタイヤ
WO2014142349A1 (ja) 空気入りタイヤ
AU2014230430B2 (en) Pneumatic tire
EP2871075A1 (en) Tire
WO2014007320A1 (ja) タイヤ
WO2014142348A1 (ja) 空気入りタイヤ
WO2014007316A1 (ja) タイヤ
WO2014007317A1 (ja) タイヤ
JP6317295B2 (ja) 空気入りタイヤ
WO2014141715A1 (ja) 空気入りタイヤ
AU2013285901B2 (en) Tyre
JP5966348B2 (ja) 空気入りタイヤ
WO2020008699A1 (ja) 空気入りタイヤ
WO2020170537A1 (ja) 空気入りタイヤ
JP6122259B2 (ja) タイヤ
JPWO2017090136A1 (ja) 空気入りタイヤ
JP6603470B2 (ja) タイヤ
JP7315839B2 (ja) 空気入りタイヤ
JPWO2017170208A1 (ja) タイヤ
JP7119655B2 (ja) 空気入りタイヤ
WO2014167859A1 (ja) 空気入りタイヤ
JP2016199156A (ja) タイヤ
JP2021030891A (ja) タイヤ
JP2019073068A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2903360

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015143613

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015022869

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14762329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015022869

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150911