WO2014119325A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014119325A1
WO2014119325A1 PCT/JP2014/000501 JP2014000501W WO2014119325A1 WO 2014119325 A1 WO2014119325 A1 WO 2014119325A1 JP 2014000501 W JP2014000501 W JP 2014000501W WO 2014119325 A1 WO2014119325 A1 WO 2014119325A1
Authority
WO
WIPO (PCT)
Prior art keywords
tread
groove
width direction
circumferential
tire
Prior art date
Application number
PCT/JP2014/000501
Other languages
English (en)
French (fr)
Inventor
努 野村
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to BR112015017561A priority Critical patent/BR112015017561A2/ja
Priority to EP14746680.9A priority patent/EP2952364B1/en
Priority to US14/759,036 priority patent/US9931893B2/en
Priority to AU2014212937A priority patent/AU2014212937B2/en
Priority to CN201480006577.1A priority patent/CN104981363B/zh
Priority to CA2898181A priority patent/CA2898181C/en
Publication of WO2014119325A1 publication Critical patent/WO2014119325A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • B60C11/0316Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • B60C11/1263Depth of the sipe different within the same sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1369Tie bars for linking block elements and bridging the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • B60C2011/0313Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation directional type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0344Circumferential grooves provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/036Narrow grooves, i.e. having a width of less than 3 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0367Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
    • B60C2011/0369Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth with varying depth of the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • B60C2200/065Tyres specially adapted for particular applications for heavy duty vehicles for construction vehicles

Definitions

  • the present invention includes a lug groove that opens at a tread tread surface end and extends toward the tire equatorial plane side of the tread tread, and terminates before reaching the tire equatorial plane, and each of the above-described lugs located on both sides of the tire equatorial plane.
  • the present invention relates to a pneumatic tire including a communication groove that allows the lug grooves to communicate with each other.
  • the volume of tread rubber is increased or the area of the groove portion provided on the tread surface is reduced.
  • a further increase in the tread rubber volume and a decrease in the groove area of the tread tread cause an increase in the internal temperature of the tread portion, which in turn causes thermal degradation of the rubber. Etc., which may cause a failure.
  • An object of the present invention is to solve the above-described problem in a pneumatic tire in which the internal temperature of the tread portion easily rises due to the large volume of the tread rubber by improving the tread pattern formed on the tread surface.
  • the pneumatic tire according to the present invention is open on the tread tread edge and extends toward the tire equatorial plane side of the tread tread, and is positioned on both sides of the tire equatorial plane with lug grooves that terminate before reaching the tire equatorial plane.
  • the tread surface region defined between the communicating grooves is provided with at least one width direction groove extending in the tread width direction and having an outer end portion in the tread width direction terminating in the tread region. It is.
  • the outer end portion in the tread width direction ends in the tread surface area means that the outer end portion in the tread width direction of the width direction groove opens to any of the lug groove, the communication groove, and the tread tread end. It means not.
  • the “tread surface” means that the tire that is assembled to the applicable rim and filled with the specified internal pressure is brought into contact with the road surface when rolled with a load corresponding to the maximum load capacity applied.
  • the outer peripheral surface over the entire circumference of the tire is referred to, and “tread tread surface end” refers to the outermost position of the tread tread surface in the tire width direction.
  • the “applicable rim” mentioned above refers to the rim specified in the following standards according to the tire size, and the “specified internal pressure” refers to the air pressure specified in accordance with the maximum load capacity in the following standards.
  • Maximum load capacity refers to the maximum mass allowed to be applied to a tire according to the following standards. The standard is determined by an industrial standard effective in the region where the tire is produced or used. For example, in the United States, “THE TIRE AND RIM ASSOCIATION INC. Is YEAR BOOK (TRA)”. In Europe, “The European Tire and Rim Technical Organization is STANDARDDS MANUAL”, and in Japan is “JATMA YEAR BOOK” of the Japan Automobile Tire Association.
  • the pneumatic tire further includes a center circumferential groove that continuously extends in the tread circumferential direction on the tread tread surface on the tire equatorial plane, and communicates with the communication groove.
  • tread width 3 At the inner end of the width direction groove in the tread width direction, and the center circumferential groove, and the tread width direction outer end of the width direction groove is tread width 3 from the tire equatorial plane to the tread width direction outer side. / 8 It is preferable to be located on the inner side in the tread width direction from a position away from it.
  • the “tread width” means the length along the tread width direction between the tread tread edges when the tire is assembled to the applicable rim and the specified internal pressure is filled.
  • each of the both sides across the tire equatorial plane is provided with each of the shoulder circumferential grooves extending across the lug groove and continuously extending in the tread circumferential direction, and the width direction groove is, It is preferable that the shoulder circumferential groove extends.
  • the communication groove and the width direction groove are inclined and extend with respect to the tread width direction, and intersect the lug groove on both sides of the tire equatorial plane.
  • Each of the shoulder circumferential grooves continuously extending in the tread circumferential direction is provided, and the width direction groove is opened to the shoulder circumferential groove at an outer end portion in the tread width direction of the width direction groove.
  • the opening position of the communication groove and the width direction groove provided in the one half of the tread half to the center circumferential groove is defined as the communication groove and the width direction provided in the other side of the tread half. It is preferable that the groove is provided with a distance in the tread circumferential direction from each opening position to the center circumferential groove.
  • the widthwise groove has a groove width that is closed at a tire contact portion
  • the center circumferential groove has a groove width that is closed at a tire contact portion
  • the communication groove preferably has a groove width that is closed at a tire contact portion
  • the shoulder circumferential groove preferably has a groove width that is closed at a tire contact portion.
  • the ⁇ tire contact part '' here refers to the road surface when the tire is placed in a vertical posture on the road surface and a load corresponding to the maximum load capacity is applied in a state where it is assembled to the applicable rim and filled with the specified internal pressure. This means the tread part that comes into contact.
  • the position of the width direction groove in the tread circumferential direction in the tread surface region is a tire equatorial plane position with respect to the tread circumferential center position of the tread region. It is preferable to be within a range of ⁇ 30% with respect to the tread circumferential length of the tread area at the equator position.
  • the tread circumferential position of the widthwise groove in the tread area is defined from the tire equatorial plane as a reference with respect to the tread circumferential center position of the tread area.
  • To the outside in the width direction at a position that is 1/8 of the tread width, at a position that is ⁇ 25% of the tread circumferential length of the tread area at the position that is 1/8, and at a position that is 1/4 of the tread width.
  • the tread circumferential length of the tread area at the 1/4 apart position is ⁇ 20%, and the tread width is 3/8 away from the tread width at the 3/8 distant position of the tread area. It is preferable to be within the respective ranges of ⁇ 20% with respect to the length in the tread circumferential direction.
  • a portion sandwiched between the tire equator surface and a position 1/8 of the tread width outward from the tire equator surface in the tread width direction is centered.
  • the side portion is a portion sandwiched between a position that is 1/8 of the tread width and a position that is 1/4 of the tread width, and is an intermediate portion.
  • the groove depth at the center side portion of the width direction groove is 40 to 110% of the groove depth of the lug groove.
  • the groove depth at the intermediate portion of the width direction groove is 40 to 110% of the groove depth of the lug groove, and the groove depth at the shoulder side portion of the width direction groove is 40 to 90% of the groove depth of the lug groove is preferable.
  • the “groove depth” of each of the center side portion, the intermediate portion and the shoulder side portion is measured at the center position in the tread width direction of each portion. Further, “the groove depth of the lug groove” refers to the maximum depth of the lug groove of the new tire.
  • the tread surface adjacent to the tread circumferential direction and defined between the lug groove and the communication groove communicating with the lug groove is provided.
  • the width direction groove is opened to the center circumferential groove at the inner end portion in the tread width direction of the width direction groove, and the tread width direction outer end portion of the width direction groove is tread width from the tire equator surface.
  • the tire is located on the inner side in the tread width direction than the position that is 3/8 of the tread width outward in the direction, air flowing in the center circumferential groove is opened in the center circumferential groove when the tire rolls. Therefore, the heat dissipation effect in the width direction groove can be greatly enhanced, and the width direction groove extends from the tire equatorial plane to the outside of the tread width to the position where it reaches 3/8 of the tread width.
  • each of the both sides across the tire equatorial plane is provided with each of the shoulder circumferential grooves that cross the lug groove and extend continuously in the tread circumferential direction, and the width direction groove intersects the shoulder circumferential groove.
  • the air flowing in the shoulder circumferential groove flows into the width direction groove, and the heat dissipation effect in the width direction groove can be further improved.
  • the communication groove and the width direction groove are opened in the center circumferential groove, the communication groove and the width direction groove are extended to be inclined with respect to the tread width direction, and both sides of the tire equatorial plane are sandwiched.
  • Each of the shoulder circumferential grooves that extend across the lug groove and extend continuously in the tread circumferential direction is provided, and the width direction groove is opened to the shoulder circumferential groove at the outer end portion in the tread width direction of the width direction groove.
  • the block When the tire rolls, the block is inclined with respect to the tread width direction, so that each of the groove wall surfaces facing each other of the communication grooves or the width direction grooves that define the block is on one side in the tread width direction.
  • the block is grounded while abutting and supporting each other from one side to the other side. Therefore, the rigidity in the width direction of the block is maintained high from one side to the other side in the tread width direction where the block contacts the ground.
  • the amount of slip on the surface of the land portion when the tread portion is bent and deformed, which will be described later can be kept small, and the decrease in wear resistance can be more effectively minimized.
  • the communication groove or the width direction groove is a mode of grounding from the outer side of the tread width direction toward the inner side of the tread width when the tire rolls, that is,
  • the communication groove or the width direction groove is preferably inclined with respect to the tread width direction in a direction in which the tread surface comes into contact with the ground when the tire rolls.
  • the blocks are formed as described above, air is more likely to flow into the grooves defining the blocks, so that the heat dissipation effect of the grooves can be improved.
  • the opening positions of the communication groove and the width direction groove provided in the one half of the tread half with respect to the center circumferential groove to the center circumferential groove are provided in the other half of the tread. Further, when the communication groove and the width direction groove are provided at a distance in the tread circumferential direction from the respective opening positions to the center circumferential groove, the communication groove and the width opened to the center circumferential groove.
  • the opening position of the direction groove is shifted in the tread circumferential direction, compared with the case where the opening position of the communication groove and the width direction groove opened to the center circumferential groove is the same position, the width direction of the block The rigidity can be maintained, and the deterioration of wear resistance can be more effectively suppressed.
  • the central region of the tread portion of the contact portion is pushed inward in the tire radial direction and deformed, so-called curved deformation, so that the bending of the central region of the tread portion is performed.
  • the two side areas dragged by the deformation are displaced inward in the tire width direction when stepped on, the deformation behavior of returning to the original position outside in the tire width direction is repeated when kicking out.
  • the sliding of the surface of the land on the shoulder side with the behavior with respect to the road surface may cause wear on the tread surface.
  • the width direction groove has a groove width that closes at the tire ground contact portion
  • the width direction grooves are opposite to each other in the width direction groove at the time of ground contact.
  • the abutting and supporting each other so that the rigidity of the land portion in the tread area provided with the width direction groove is kept high, and the tread portion In the above-described curved deformation, the amount of slip on the surface of the land portion can be suppressed to be small, and thereby the deterioration of the wear resistance performance due to the arrangement of the widthwise grooves can be minimized.
  • the opposing groove wall surfaces of the center circumferential groove also support each other at the ground contact portion.
  • the communication groove and the shoulder circumferential groove also have a groove width that is closed at the tire ground contact portion.
  • the tread circumferential position of the widthwise groove in the tread area in the tread area is determined with respect to the tread circumferential length of the tread area with respect to the tread circumferential center position of the tread area. ⁇ 30% at the equatorial plane position, ⁇ 25% at a position 1/8 of the tread width outward from the tire equatorial plane in the tread width direction, ⁇ 20% at a position 1/4 of the tread width, and tread width
  • ⁇ 20% at a position 1/4 of the tread width
  • tread width direction groove in the tread circumferential direction at an appropriate position where the rate of temperature rise in the tread area increases. The heat radiation effect by the width direction groove can be exhibited more effectively.
  • width direction grooves are disposed out of the respective ranges at the above positions, there is no width direction groove in the tread circumferential direction, particularly at a position where the temperature is likely to rise. Even with this arrangement, there is a possibility that the temperature rise of the tread portion cannot be suppressed sufficiently small.
  • the groove depth at the center side portion of the width direction groove is 40 to 110% of the groove depth of the lug groove
  • the groove depth at the intermediate portion of the width direction groove is:
  • FIG. 2 is a partial development view of a tread pattern of the pneumatic tire shown in FIG. 1.
  • FIG. 3 is an enlarged development view of a main part of the tread pattern shown in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2.
  • It is the partial expanded view of the tread pattern which shows the other example of arrangement
  • FIG. 1 is a diagram illustrating a half of a cross section in the tire width direction of an embodiment of the pneumatic tire of the present invention.
  • the illustrated pneumatic tire 1 is, for example, a heavy duty tire for a construction vehicle.
  • the pneumatic tire 1 shown in FIG. 1 includes a tread portion 13, a pair of sidewall portions 14 (shown only on one side) connected to both sides of the tread portion 13, and a bead portion 15 (shown only on one side) connected to each sidewall portion 14. ). Further, the pneumatic tire 1 has a carcass 2 extending in a toroid shape between a tread portion 13, a sidewall portion 14, and a bead portion 15 between bead cores 15 a (only one side is shown) embedded in each bead portion 15. is doing.
  • a belt 3 extending in the tire circumferential direction is disposed on the outer side in the tire radial direction of the carcass 2, and a tread rubber 4 a is disposed on the outer side in the tire radial direction of the belt 3.
  • a center circumferential groove, a lug groove, a communication groove and the like which will be described later are omitted, but each groove is provided on the tread surface.
  • the carcass 2 forms a skeleton part of the tire 1 and extends in a toroidal shape in each part as described above, and from the inner side in the tire radial direction to the outer side in the tire radial direction so as to cover the bead core 15a. Is folded.
  • the carcass 2 is composed of a carcass cord that is formed of, for example, a steel wire and extends in a predetermined direction. In the present embodiment, the carcass cord extends along the tread width direction. In other words, the carcass 2 is a radial arc.
  • the carcass 2 shown in FIG. 1 is composed of one ply, in the tire 1 of the present invention, the number of plies can be changed to two or more if necessary.
  • the belt 3 is formed of a belt cord made of, for example, a steel wire, and the belt cord extends with an inclination with respect to a predetermined direction that is a direction in which the carcass cord of the carcass 2 extends.
  • the belt 3 can be composed of a plurality of belt layers.
  • the first belt layer 3a and the second belt layer 3b constitute an inner intersection belt group 3g
  • the third belt layer 3c and the fourth belt layer 3d constitute an intermediate intersection belt group 3h
  • a fifth belt layer 3e constitutes an outer cross belt group 3i.
  • the width of the inner cross belt group 3g is 25 to 70% of the tread width
  • the width of the intermediate cross belt group 3h is 55 to 90% of the tread width
  • the width of the outer cross belt group 3i is 60 to 110% of the tread width.
  • the widths of the belt layers included in each cross belt group may be the same or different from each other within the above range.
  • the fifth belt layer has the largest width of the belt layer.
  • the width of each belt layer refers to the length measured along the tire width direction.
  • the inclination angle of the belt cord of each belt layer with respect to the carcass cord is 70 to 85 degrees in the inner cross belt group 3g, and 50 to 75 degrees in the intermediate cross belt group 3h. In the outer cross belt group 3i, the angle is 50 to 70 degrees.
  • the inclination angle of the belt cord of each crossing belt group with respect to the carcass cord is the largest in the inner crossing belt group 3g, and the intermediate crossing belt group 3h is larger than the outer crossing belt group 3i. ing.
  • the belt cord angles of the belt layers included in each cross belt group may be the same or different from each other as long as they are within the above range.
  • Each belt layer in each cross belt group is inclined to the opposite side with respect to the carcass cord.
  • the tire 1 has a thick rubber gauge (rubber thickness) in the tread portion 13 as compared with a pneumatic tire mounted on a passenger car or the like.
  • other embodiments of the pneumatic tire of the present invention which will be described later, also have the same tire structure as the tire 1 illustrated in FIG.
  • annular center circumferential groove 5 is provided on the tread tread surface 4 so as to extend linearly continuously in the tread circumferential direction on the tire equator plane C as shown in the partial development view of the tread pattern in FIG. 2.
  • each lug groove 6 that opens toward one of the tread tread edges E on both sides of the tire equatorial plane C and extends toward the tire equatorial plane C in a manner slightly inclined with respect to the tread width direction.
  • the lug groove 6 is terminated before reaching the center circumferential groove 5.
  • the center circumferential groove 5 is provided on the tire equatorial plane C as shown in the drawing, the arrangement of the center circumferential groove 5 is not an essential configuration of the present invention.
  • the lug grooves 6 located on both sides of the tire equatorial plane C are respectively opened at the tip end portion where the groove width gradually decreases toward the tire equatorial plane C side and the center circumferential groove 5.
  • the lug grooves 6 communicate with each other on the tire equatorial plane C.
  • the communication grooves 7 that communicate with the center circumferential groove 5 are slightly inclined with respect to the tread width direction and bend in the vicinity of the center circumferential groove 5 and extend.
  • the communication groove is not limited to the illustrated form as long as the lug groove 6 extends so as to directly or indirectly communicate with each other on the tire equatorial plane C.
  • the lug groove 6 May be indirectly communicated with each other via the center circumferential groove 5 as shown in FIGS.
  • the tread tread surface 4 provided with the center circumferential groove 5, the lug groove 6 and the communication groove 7 is adjacent to the tread tread surface end E and the tire equatorial plane C, the center circumferential groove 5 in the drawing in the tread circumferential direction.
  • the tread surface region 8 sandwiched between the lug groove 6 and the communication groove 7 is partitioned and formed on both sides of the center circumferential groove 5.
  • annular shoulder circumferential grooves 9 that intersect with the lug grooves 6 and extend linearly in the tread circumferential direction are respectively formed on both sides of the tire equatorial plane C.
  • the tread surface region 8 described above includes the two blocks 10 and 11 that are partitioned by the shoulder circumferential groove 9 and are adjacent to both sides of the shoulder circumferential groove 9.
  • the arrangement of the shoulder circumferential grooves 9 is not an essential configuration of the present invention.
  • each of the tread surface regions 8 is provided with one or more width direction grooves 12 extending in the tread width direction, in the figure, one in the tread width direction.
  • the portion 12a is terminated in the tread area 8. According to this, when the tire 1 is used, the temperature increase in the central region where the tire failure due to heat generation of the tread portion may occur is caused by the tread surface based on the arrangement of the widthwise grooves 12. 4 can be effectively suppressed by increasing the heat radiation area.
  • the tread width direction outer side end portion 12a of the width direction groove 12 is terminated in the tread surface region 8, so that the tread width direction outer end portion is opened to the tread tread surface end E or the like.
  • the land portion rigidity in the tread width direction can be maintained high.
  • annular center circumferential groove 5 extending linearly continuously in the tread circumferential direction on the tire equatorial plane C
  • a tire failure caused by heat generation in the tread portion when the tire 1 is used. It is possible to more effectively suppress the temperature rise in the central region where there is a possibility of the occurrence of heat generation by increasing the heat radiation area on the tread surface 4 based on the arrangement of the center circumferential groove 5.
  • the tread surface region 8 is elastically deformed inward and outward in the tread width direction.
  • the widthwise groove 12 has a groove width enough to close at the ground contact portion of the tire 1 as shown in FIG. Is preferred.
  • the opposing groove wall surfaces forming the widthwise grooves 12 abut against and support each other at the tire ground contact portion, so that a decrease in rigidity of the land portion is suppressed and early wear in the tread area 8 occurs.
  • the heat dissipation effect of the tread portion by the width direction groove 12 can be obtained while preventing the above.
  • each of the center circumferential groove 5, the shoulder circumferential groove 9 and the communication groove 7 is also closed to the tire ground contact portion as shown in FIG. It is preferable to have a groove width, but these width direction grooves, center circumferential grooves, shoulder circumferential grooves and communication grooves can all be larger than the groove width closed at the tire ground contact portion. It is.
  • each of the center circumferential groove 5, the shoulder circumferential groove 9, the communication groove 7, and the width direction groove 12 closed at the tire contact portion is, for example, 0.5 of the tread width Wt. % To about 2%.
  • the groove depths of the center circumferential groove 5, the shoulder circumferential groove 9 and the communication groove 7 are measured in the tire radial direction in a state where the tire is assembled to the applied rim and filled with the prescribed internal pressure, for example, lug grooves
  • the maximum groove depth of 6 can be 60% to 110%.
  • the groove depth of the width direction groove 12 is measured in the tire radial direction in a state in which the tire is assembled to the applicable rim and filled with the specified internal pressure, for example, 40% to 110% of the maximum groove depth of the lug groove 6 %.
  • the width direction groove 12 does not necessarily need to extend along the tread width direction, as long as it is inclined with respect to the tread circumferential direction and extends in the tread width direction as shown in the figure. Good.
  • the width direction groove 12 has a portion extending obliquely with respect to the tread width direction as shown in FIG. 2, the land portion rigidity in the tread width direction is reduced due to the arrangement of the width direction groove 12.
  • the inclination angle of the inclined portion of the width direction groove 12 with respect to the tread width direction is a relatively small angle of, for example, 50 ° or less. Is preferred.
  • the entire width direction groove can extend along the tread width direction.
  • region 8 can also provide the width direction groove
  • the width direction groove 12 as described above is disposed at an appropriate location in the tread surface region 8 so that the heat dissipation effect of the tread portion and the wear suppression effect of the tread tread surface 4 are compatible at a high level.
  • the tread region 8 is treaded from the tire equatorial plane C to the outer side in the tread width direction as shown in an enlarged view in FIG. Virtually at 1/8 position 1/8 of the width Wt, similarly 1/4 position 1/4 of the tread width Wt, and 3/8 position 3/8 of the tread width Wt.
  • the portion of the tread region 8 between the tire equatorial plane C and the 1/8 position is a center side portion Pc (0 ⁇ Pc ⁇ 1/8), and the 1/8 position
  • a portion between the 1/4 positions is defined as an intermediate portion Pm (1/8 And Pm ⁇ 1/4), also a portion between the 3/8 position and the 1/4 position and the shoulder portion Ps (1/4 ⁇ Pm ⁇ 3/8).
  • the groove depth of the widthwise groove 12 can be changed in the middle of its extension as illustrated in the cross-sectional view of FIG. 4.
  • the center side portion of the widthwise groove 12 is changed.
  • the groove depth at Pc is 40% to 110% of the groove depth of the lug groove
  • the groove depth at the intermediate portion Pm of the widthwise groove 12 is 40% of the groove depth of the lug groove.
  • the groove depth at the shoulder side portion Ps of the width direction groove 12 is 40% to 90% of the groove depth of the lug groove.
  • channel 12 shall be measured in the center position of the tread width direction of each of the center side part Pc, the intermediate part Pm, and the shoulder side part Ps.
  • the heat accumulated in the vicinity of the belt 3 that often serves as a heat generation source, in the center portion Pc and the intermediate portion Pm close to the tire equator plane C where the temperature increase rate is particularly large Effectively dissipating by increasing the groove depth, and at the shoulder side portion Ps where the rate of temperature rise is not so large, the groove depth of the widthwise groove 12 is made shallow to minimize the decrease in land rigidity. Can be suppressed.
  • the position of the width direction groove 12 in the tread circumferential direction in the tread area 8 is the circumference of the tread area 8 at the 1/8 position as shown in FIG.
  • the range of ⁇ 25% of the tread circumferential direction length L1 of the tread surface region 8 at the 1/8 position with respect to the direction center position C1 that is, a position 25% away from each other on the upper side and the lower side in the figure
  • the temperature rise in the tread region 8 in the tread circumferential direction is caused by the width direction groove 12 to be within a range of ⁇ 20% of the tread circumferential length L3 with respect to the tread circumferential center position C3. Effectively dissipates heat in areas with a high rate From the viewpoint of that.
  • the rate of temperature increase is particularly large on the inner side in the tread width direction than the 1 ⁇ 4 position, and there is a possibility that the rubber may be thermally deteriorated.
  • Twelve tread width direction outer end portions 12a are arranged on the outer side in the tread width direction than the 1 ⁇ 4 position.
  • the widthwise groove 12 is too long, the rigidity of the land portion may be lowered. Therefore, the tread width direction outer end portion 12a of the width direction groove 12 is located on the tread width direction inner side than the 3/8 position. It is preferable to make it.
  • the inner end of the width direction groove 12 in the tread width direction is not opened in the center circumferential groove 5, but a width direction groove opened in the center circumferential groove 5 is provided as described later.
  • the arrangement position of the width direction groove at the position of the tire equatorial plane C is determined with respect to the center position in the circumferential direction of the tread area 8 at that position as the reference in the tread circumferential length of the tread area 8 at that position. A range of ⁇ 30% is preferable.
  • the shoulder circumferential groove 9 as described above is provided, but the width direction groove 12 is divided by the shoulder circumferential groove 9 and intersects with the shoulder circumferential groove 9 as shown in the figure.
  • the shoulder circumferential groove 9 is provided, not only the heat dissipation area is increased by the provision of the shoulder circumferential groove 9 but also the air passing through the shoulder circumferential groove 9 intersects the shoulder circumferential groove 9 when the tire 1 is loaded and rolled. Since the air cooling effect by flowing into the width direction groove 12 is exhibited, the heat dissipation in the width direction groove 12 can be greatly improved.
  • the inner end of the width direction groove 22 in the tread width direction as shown in FIG. 5 is opened.
  • channel 22 was made constant throughout as shown in FIG.5 (b).
  • the center circumferential groove 5 and the shoulder circumferential groove 9 described above are not illustrated, they may be configured to extend in a zigzag shape toward the tread circumferential direction.
  • FIG. 6 shows a tread pattern of another embodiment.
  • This tire 31 shown in FIG. 6 has a tread tread surface 34, a center circumferential groove 35 extending continuously in the tread circumferential direction on the tire equatorial plane C, and a tread tread tread surface end E and extending toward the center circumferential groove 35.
  • the lug groove 36 has a bent portion that is bent upward on the way to the center circumferential groove 35, terminates just before reaching the center circumferential groove 35, and is inclined with respect to the tread circumferential direction.
  • FIG. 7 shows a tread pattern of still another embodiment.
  • This tire 51 shown in FIG. 7 has a tread tread surface 54, a center circumferential groove 55 that extends continuously in the tread circumferential direction on the tire equatorial plane C, and a tread tread surface end E that opens toward the center circumferential groove 55.
  • the lug groove 56 that terminates before reaching the center circumferential groove 55 and extends linearly in a manner inclined with respect to the circumferential direction of the tread, and bends in the vicinity of the central circumferential groove 55 and extends along the tread width direction.
  • a communication groove 57 that opens to the circumferential groove 55 and communicates the lug groove 56 with the center circumferential groove 55 is provided.
  • the communication groove 57 is open to the center circumferential groove 5 at the inner end in the tread width direction of the communication groove 57.
  • the lug groove 56 has a gradually decreasing portion in which the groove width is gradually reduced and a bent portion that is bent upward in the drawing in the middle of the lug groove 56 extending toward the center circumferential groove 55 and toward the center circumferential groove 55. ing.
  • the communication groove 57 extends substantially in parallel with the bent portion of the lug groove 56 from the tip of the lug groove 56.
  • the tire 51 is provided with a width direction groove 62 that extends substantially parallel to the communication groove 57 and opens to the center circumferential groove 55 at a substantially central portion in the tread circumferential direction. ing.
  • the tire 51 intersects with the vicinity of the tip of the lug groove 56 and continuously extends in the tread circumferential direction.
  • a shoulder circumferential groove 59 is provided, and the width direction groove 62 is open to the shoulder circumferential groove 59 at the tread width direction outer end 62 a of the width direction groove 62. Since the width direction groove 62 opens into the center circumferential groove 55 and the shoulder circumferential groove 59, the communication groove 57 and the width direction groove 62 have substantially the same extension length.
  • the shoulder circumferential groove 59 has a groove width that is closed at the tire contact portion, but may be a groove width that is not closed.
  • the width direction groove 62 can also extend outward in the tread width direction across the shoulder circumferential groove 59.
  • Inclined blocks 60 and 61 are formed in a substantially parallelogram shape.
  • the blocks 60 and 61 are configured such that each of the groove wall surfaces facing each other of the communication groove 57 or the width direction groove 62 partitioning the blocks 60 and 61 is from one side in the tread width direction. Since the tread tread surface 54 is grounded while abutting and supporting each other toward the other side, the rigidity of the blocks 60 and 61 is maintained high from one side to the other side in the tread width direction.
  • each opening position of the communication groove 57 and the width direction groove 62 provided in the half of the tread on one side with respect to the center circumferential groove 55 to the center circumferential groove 55. are provided at a distance in the tread circumferential direction from the respective opening positions of the communication groove 57 and the width direction groove 62 provided in the other half of the tread half to the center circumferential groove 55.
  • the lug grooves 56 are arranged by slightly shifting the circumferential positions of the lug grooves 56 located on both sides of the center circumferential groove 55 in the tread circumferential direction.
  • the negative rate which is the ratio of the groove area to the entire surface area of the tread surface, be 30% or less in order to maintain high wear resistance.
  • Example tire 1 has a tread pattern shown in FIGS. 2 and 3 having a tread width of 980 mm.
  • Example tires 2 to 13 have the same configuration as that of Example tire 1 except that each configuration was changed according to the specifications shown in Table 1.
  • channel, an intermediate part, and a shoulder side part represents the ratio with respect to the groove depth of a lug groove in percentage.
  • “tread width direction inner end” and “tread width direction outer end” of the width direction groove shown in the specifications of Table 1 are the position and tread width of the tread width direction inner end of the width direction groove. This indicates the position of the outer end in the direction, and each numerical value of the specification indicates the distance from the tire equatorial plane to the outer side in the tread width direction as a percentage of the tread width.
  • the numerical value “0” shown in Table 1 indicates that the end of the widthwise groove is located on the tire equator plane, and “4/8” indicates that the end of the widthwise groove is located on the tread tread edge. (That is, the width direction groove is opened from the tread grounding end outward in the tread width direction).
  • “closed” in Table 1 means that each groove has a groove width that closes at the tire contact portion, and “does not close” means a groove width that does not close each groove at the tire contact portion. Refers to that.
  • “Groove tire equatorial plane position out of range * 1” refers to the tread circumferential position within the tread area of the width direction groove and the tread circumferential center position of the tread area.
  • Each test tire mentioned above is assembled to the applicable rim defined by TRA and mounted on the front wheel of the vehicle with the specified internal pressure filled, and after traveling a distance of 48000 km (30000 miles), it is replaced with the rear wheel. In addition, I traveled 48,000 km (30000 miles). The amount of wear of each tire was measured, and the wear resistance when the front wheels were mounted, the wear resistance when the rear wheels were mounted, and the total wear life were evaluated in percentage. The results are shown in Table 2. In addition, the numerical value shown in Table 2 represents that it is excellent in abrasion resistance, so that a numerical value is large.
  • the temperature of the tread portion after each test tire was mounted on the front wheel of the vehicle and allowed to run for 24 hours was measured.
  • the measurement of the temperature is performed by measuring the tire equatorial plane position and the radial direction of 3.5 mm outward from the belt in the radial direction of the tire at each of the five points of the 1/8 position and the 1/4 position on both sides of the tire equatorial plane. At the position, it was carried out with a thermometer.
  • the tread circumferential position of each temperature measurement is the position of the center of the land portion sandwiched between the widthwise grooves adjacent to each other.
  • the average value of the measured values at the above five points is shown as an index value in Table 2.
  • the index values shown in Table 2 indicate that the smaller the numerical value, the lower the temperature and the better the heat dissipation.
  • the tires 1 to 13 in which the width direction grooves are provided in the tread area have lower tread temperature than the comparative tires 1 and 2 in which the width direction grooves are not provided.
  • the tires 1, 2, 6 to 9, 12, 13 of the tread portion were not significantly reduced in wear resistance as compared with the tires 1 and 2 of the comparative example in which the grooves in the width direction were not provided. It can be seen that the temperature is low. Therefore, according to the pneumatic tire of the present invention, it has been found that the temperature rise in the central region of the tread portion where the calorific value is large due to the use of the tire can be suppressed to be small over the entire central region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

トレッド部の、発熱量の多い中央領域の温度上昇を、その中央領域の全体にわたって小さく抑えることのできる空気入りタイヤ(1)を提供する。本発明の空気入りタイヤ(1)は、トレッド踏面端(E)に開口するとともにタイヤ赤道面(C)側に向けて延びて、タイヤ赤道面(C)に達する手前で終端するラグ溝(6)と、タイヤ赤道面(C)を挟んで両側に位置するそれぞれの前記ラグ溝(6)を相互に連通させる連通溝(7)とを具える空気入りタイヤ(1)であって、トレッド踏面端(E)とタイヤ赤道面(C)との間で、トレッド周方向に隣接する前記ラグ溝(6)および前記連通溝(7)の相互間に区画される各踏面領域(8)に、トレッド幅方向に向けて延びて、トレッド幅方向外側端部(12a)が該踏面領域(8)内で終端する少なくとも一本の幅方向溝(12)を設けてなる。

Description

空気入りタイヤ
 この発明は、トレッド踏面端に開口するとともにトレッド踏面のタイヤ赤道面側に向けて延びて、タイヤ赤道面に達する手前で終端するラグ溝と、タイヤ赤道面を挟んで両側に位置するそれぞれの前記ラグ溝を相互に連通させる連通溝とを具える空気入りタイヤに関するものである。
 たとえば、建設現場や鉱山で使用されるダンプトラックその他の建設車両等に装着される建設車両用の空気入りタイヤでは、トレッドゴムの体積を増加させたり、トレッド踏面に設ける溝部分の面積を小さくしたりすることにより、タイヤの摩耗寿命の向上を図ることが一般に行われている。この一方で、トレッドゴムの体積がそもそも大きいこの種のタイヤは、トレッドゴム体積のさらなる増加や、トレッド踏面の溝面積の減少が、トレッド部の内部温度の上昇、ひいては、それによるゴムの熱劣化等を招き、それが原因となって故障を生じることがある。
 そのため、このようなタイヤに対しては、たとえば特許文献1に記載されているように、トレッド踏面の耐摩耗性を高く維持しつつも、トレッド部での温度上昇を抑える技術の開発が行われているも、近年は、かかるタイヤを、より高速で走行される車両に使用する傾向にあることから、トレッド部の温度上昇を一層抑制することが望まれている。
特開2008-13037号公報
 ところで、トレッド部の内部の温度上昇率は、トレッド幅方向で、トレッドショルダー側からタイヤ赤道面に向かうに従い漸増し、とくに、トレッド部の、両側領域を除く中央領域で大きくなることが知られており、トレッド部での温度上昇に起因するタイヤの故障を防止するためには、トレッド部の中央領域での温度上昇を抑えることが有効である。
 このような知見に基き、トレッド踏面に、タイヤ赤道面上でトレッド周方向に連続して延びるセンター周溝を設けた場合は、トレッド幅方向で最も温度が上昇し易いタイヤ赤道面近傍での、トレッド踏面の放熱面積を確保して、そこでの温度上昇を効果的に抑制することができるが、そのようなセンター周溝だけでは、トレッド部の中央領域に蓄積される熱を、該中央領域の全体にわたって十分に放散させることができなかった。
 この発明は、トレッドゴム体積が大きいことに起因して、トレッド部の内部温度が上昇し易い空気入りタイヤにおける上記の問題を、トレッド踏面に形成するトレッドパターンの改良をもって解決することを課題とするものであり、とくには、トレッド部の、発熱量の多い中央領域の温度上昇を、その中央領域の全体にわたって小さく抑えることのできる空気入りタイヤを提供することを目的とする。
 この発明の空気入りタイヤは、トレッド踏面端に開口するとともにトレッド踏面のタイヤ赤道面側に向けて延びて、タイヤ赤道面に達する手前で終端するラグ溝と、タイヤ赤道面を挟んで両側に位置するそれぞれの前記ラグ溝を相互に連通させる連通溝とを具えるものであって、トレッド踏面端とタイヤ赤道面との間で、トレッド周方向に隣接する、前記ラグ溝および該ラグ溝に連通する前記連通溝の相互間に区画される踏面領域に、トレッド幅方向に向けて延びて、トレッド幅方向外側端部が該踏面領域内で終端する少なくとも一本の幅方向溝を設けてなるものである。
 ここにおいて、「トレッド幅方向外側端部が該踏面領域内で終端する」とは、幅方向溝のトレッド幅方向外側端部が、前記ラグ溝、前記連通溝およびトレッド踏面端のいずれにも開口しないことを意味する。
 なおここで、「トレッド踏面」とは、適用リムに組み付けるとともに規定内圧を充填したタイヤを、最大負荷能力に対応する負荷を加えた状態で転動させた際に、路面に接触することになる、タイヤの全周にわたる外周面をいい、また、「トレッド踏面端」は、前記トレッド踏面の、タイヤ幅方向の最外位置をいうものとする。
 上記の「適用リム」とは、タイヤサイズに応じて下記の規格に規定されたリムをいい、「規定内圧」とは、下記の規格において、最大負荷能力に対応して規定される空気圧をいい、「最大負荷能力」とは、下記の規格でタイヤに負荷されることが許容される最大の質量をいう。
 そして、その規格とは、タイヤが生産または使用される地域に有効な産業規格によって決められたものであり、例えば、アメリカ合衆国では、“THE TIRE AND RIM ASSOCIATION INC.のYEAR BOOK(TRA)”であり、欧州では、“The European Tyre and Rim Technical OrganizationのSTANDARDS MANUAL”であり、日本では日本自動車タイヤ協会の“JATMA YEAR BOOK”である。
 この発明の空気入りタイヤでは、前記空気入りタイヤが、トレッド踏面に、タイヤ赤道面上でトレッド周方向に連続して延びるとともに、前記連通溝と連通するセンター周溝をさらに具え、前記幅方向溝を、該幅方向溝のトレッド幅方向内側端部で、前記センター周溝に開口させるとともに、該幅方向溝のトレッド幅方向外側端部を、タイヤ赤道面からトレッド幅方向外側へトレッド幅の3/8離れた位置より、トレッド幅方向内側に位置させてなることが好ましい。この「トレッド幅」は、タイヤを適用リムに組み付けるとともに規定内圧を充填した状態での、それぞれのトレッド踏面端の相互間の、トレッド幅方向に沿う長さを意味する。
 また、この発明の空気入りタイヤでは、タイヤ赤道面を挟んだ両側のそれぞれに、前記ラグ溝に交差してトレッド周方向に連続して延びるショルダー周溝のそれぞれを設け、前記幅方向溝が、前記ショルダー周溝に交わって延びるものとしてなることが好ましい。
 さらに、この発明の空気入りタイヤでは、前記連通溝および前記幅方向溝を、トレッド幅方向に対して傾斜して延びるものとし、タイヤ赤道面を挟んだ両側のそれぞれに、前記ラグ溝に交差してトレッド周方向に連続して延びるショルダー周溝のそれぞれを設け、前記幅方向溝を、該幅方向溝のトレッド幅方向外端部で、前記ショルダー周溝に開口させ、前記センター周溝に対して一方側のトレッド半部に設けられた前記連通溝および前記幅方向溝の、前記センター周溝へのそれぞれの開口位置を、他方側のトレッド半部に設けられた前記連通溝および前記幅方向溝の、前記センター周溝へのそれぞれの開口位置とはトレッド周方向に距離をおいて設けることが好ましい。
 また、この発明の空気入りタイヤでは、前記幅方向溝が、タイヤ接地部分で閉塞する溝幅を有することが好ましく、また、前記センター周溝が、タイヤ接地部分で閉塞する溝幅を有することが好ましく、さらに、前記連通溝が、タイヤ接地部分で閉塞する溝幅を有することが好ましく、また、前記ショルダー周溝が、タイヤ接地部分で閉塞する溝幅を有することが好ましい。
 ここでいう「タイヤ接地部分」は、適用リムに組み付けるとともに規定内圧を充填した状態で、タイヤを、路面に垂直姿勢で静止配置し、最大負荷能力に対応する負荷を加えたときに、路面に接触するトレッド部分を意味する。
 この発明の空気入りタイヤでは、前記幅方向溝の、前記踏面領域内でのトレッド周方向の配設位置を、該踏面領域のトレッド周方向中心位置を基準として、タイヤ赤道面位置で、該タイヤ赤道面位置における該踏面領域のトレッド周方向長さに対して±30%の範囲内とすることが好ましい。
 そしてまた、この発明の空気入りタイヤでは、前記幅方向溝の、前記踏面領域内でのトレッド周方向の配設位置を、該踏面領域のトレッド周方向中心位置を基準として、タイヤ赤道面からトレッド幅方向外側へ、トレッド幅の1/8離れた位置で、該1/8離れた位置における該踏面領域のトレッド周方向長さに対して±25%、トレッド幅の1/4離れた位置で、該1/4離れた位置における該踏面領域のトレッド周方向長さに対して±20%、および、トレッド幅の3/8離れた位置で、該3/8離れた位置における該踏面領域のトレッド周方向長さに対して±20%のそれぞれの範囲内とすることが好ましい。
 またここで、この発明の空気入りタイヤでは、前記踏面領域において、タイヤ赤道面と、タイヤ赤道面からトレッド幅方向外側へ、トレッド幅の1/8離れた位置との間に挟まれる部分をセンター側部分とし、トレッド幅の1/8離れた位置と、トレッド幅の1/4離れた位置との間に挟まれる部分を中間部分とし、トレッド幅の1/4離れた位置と、トレッド幅の3/8離れた位置との間に挟まれる部分をショルダー側部分としたとき、前記幅方向溝の、前記センター側部分での溝深さを、前記ラグ溝の溝深さの40~110%とし、前記幅方向溝の、前記中間部分での溝深さを、前記ラグ溝の溝深さの40~110%とし、前記幅方向溝の、前記ショルダー側部分での溝深さを、前記ラグ溝の溝深さの40~90%とすることが好ましい。
 なお、センター側部分、中間部分およびショルダー側部分のそれぞれの「溝深さ」は、それぞれの部分の、トレッド幅方向中心位置で測定するものとする。また、「ラグ溝の溝深さ」とは、新品タイヤのラグ溝の最大深さを指す。
 この発明の空気入りタイヤによれば、トレッド踏面端とタイヤ赤道面との間で、トレッド周方向に隣接する、前記ラグ溝および該ラグ溝に連通する前記連通溝の相互間に区画される踏面領域に、トレッド幅方向に向けて延びて、トレッド幅方向外側端部が該踏面領域内で終端する少なくとも一本の幅方向溝を設けることにより、トレッド部の、発熱量の多い中央領域の温度上昇を、その中央領域の全体にわたって有効に抑制することができる。
 ここにおいて、前記幅方向溝を、該幅方向溝のトレッド幅方向内側端部で、前記センター周溝に開口させるとともに、該幅方向溝のトレッド幅方向外側端部を、タイヤ赤道面からトレッド幅方向外側へトレッド幅の3/8離れた位置より、トレッド幅方向内側に位置させたときは、タイヤの転動時に、センター周溝を流動する空気等が、センター周溝に開口する幅方向溝に流れ込むことになるので、幅方向溝における放熱効果を大きく高めることができるとともに、幅方向溝が、タイヤ赤道面からトレッド幅方向外側へトレッド幅の3/8離れた位置に達する手前まで延在するものとして、幅方向溝の延在長さを長くすることによる、陸部剛性の低下および、それに起因する耐摩耗性能の低下を効果的に抑制することができる。
 なお、トレッド踏面に、タイヤ赤道面上でトレッド周方向に連続して延びるとともに、連通溝と連通するセンター周溝をさらに具えることにより、トレッド部の、発熱量の多い中央領域の温度上昇を、その中央領域の全体にわたってより有効に抑制することができる。
 そしてまた、タイヤ赤道面を挟んだ両側のそれぞれに、前記ラグ溝に交差してトレッド周方向に連続して延びるショルダー周溝のそれぞれを設け、前記幅方向溝を、前記ショルダー周溝に交わって延びるものとしたときは、前記ショルダー周溝を流動する空気が幅方向溝に流れ込んで、幅方向溝における放熱効果を一層向上させることができる。
 また、連通溝および幅方向溝がセンター周溝に開口する場合において、前記連通溝および前記幅方向溝を、トレッド幅方向に対して傾斜して延びるものとし、タイヤ赤道面を挟んだ両側のそれぞれに、前記ラグ溝に交差してトレッド周方向に連続して延びるショルダー周溝のそれぞれを設け、前記幅方向溝を、該幅方向溝のトレッド幅方向外端部で、前記ショルダー周溝に開口させるものとしたときは、タイヤ赤道面とショルダー周溝との間で、トレッド周方向に隣接する連通溝と幅方向溝との相互間に区画される、トレッド幅方向に対して傾斜するブロックが形成される。そして、タイヤが転動する際、ブロックがトレッド幅方向に対して傾斜することにより、ブロックを区画する連通溝または幅方向溝の、相互に対向する両溝壁面のそれぞれが、トレッド幅方向一方側から他方側へ向かって互いに当接して支持し合いながら、ブロックが接地する。したがって、ブロックが接地するトレッド幅方向一方側から他方側に向かってブロックの幅方向の剛性が高く維持されることとなる。その結果、トレッド部の後述する湾曲変形に際する、陸部表面の滑り量を小さく抑えることができ、耐摩耗性能の低下をより効果的に最小限に抑えることができる。
 なお、トレッド部中央領域で湾曲変形が大きくなる傾向があることから、連通溝または幅方向溝は、タイヤが転動する際、トレッド幅方向外側からトレッド幅方向内側に向かって接地する態様、すなわち、連通溝または幅方向溝が、タイヤが転動する際にトレッド踏面が接地する方向に向かって、トレッド幅方向に対して傾斜することが好ましい。
 また、タイヤ赤道面を挟んだ両側のそれぞれに、前記ラグ溝に交差してトレッド周方向に連続して延びるショルダー周溝のそれぞれを設けることにより、ショルダー周溝を流動する空気が幅方向溝に流れ込んで、幅方向溝における放熱効果を向上させることができる。さらに、上述のようにブロックを形成することにより、ブロックを区画する各溝に、さらに空気が流れ込みやすくなるので、各溝の放熱効果を向上させることができる。
 また、前記センター周溝に対して一方側のトレッド半部に設けられた前記連通溝および前記幅方向溝の、前記センター周溝へのそれぞれの開口位置を、他方側のトレッド半部に設けられた前記連通溝および前記幅方向溝の、前記センター周溝へのそれぞれの開口位置とはトレッド周方向に距離をおいて設けるものとしたときは、センター周溝に対して開口する連通溝および幅方向溝の開口位置をトレッド周方向にずらして設けているので、センター周溝に対して開口する連通溝および幅方向溝の開口位置を同じ位置にする場合に比して、ブロックの幅方向の剛性を維持し、耐摩耗性能の低下をさらに効果的に抑えることができる。
 ところで、タイヤの負荷転動に際しては、タイヤ幅方向断面で、接地部分のトレッド部の中央領域が、タイヤ半径方向内側に押し込まれて変形する、いわゆる湾曲変形により、トレッド部の中央領域の前記湾曲変形に引き摺られる両側領域が、踏込み時には、タイヤ幅方向内側に変位する一方で、蹴出し時には、タイヤ幅方向外側の元の位置に戻る変形挙動を繰り返すことになり、両側領域のこのような変形挙動に伴う、ショルダー側の陸部表面の、路面に対する滑りが、トレッド踏面の摩耗の要因となり得る。
 ここで、上述したような、トレッド踏面への前記幅方向溝の配設によって、その陸部の、トレッド幅方向の剛性が大きく低下した場合は、トレッド部中央領域の上記の湾曲変形が大きくなって、ショルダー側の陸部表面の、路面に対する滑り量が増大し、トレッドゴムの早期摩滅を引き起こすおそれがある。
 このことに対し、前記幅方向溝が、タイヤ接地部分で閉塞する溝幅を有するものとしたときは、接地時に、幅方向溝の、相互に対向する両溝壁面のそれぞれが、該幅方向溝の溝幅が狭くなる向きへの膨出変形の下で、互いに当接して支持し合うことになるので、その幅方向溝を設けた踏面領域内の陸部剛性を高く維持して、トレッド部の先述した湾曲変形に際する、陸部表面の滑り量を小さく抑えることができ、それにより、幅方向溝の配設による耐摩耗性能の低下を最小限に抑えることができる。
 なおここで、前記センター周溝が、タイヤ接地部分で閉塞する溝幅を有するものとしたときは、このセンター周溝でもまた、該センター周溝の対向溝壁面が、接地部分で互いに支持し合って、陸部表面の上述した滑り量の増加を効果的に抑えることができるので、耐摩耗性能の低下のおそれを有効に取り除くことができる。
 同様の観点から、前記連通溝および前記ショルダー周溝もまた、タイヤ接地部分で閉塞する溝幅を有することが好ましい。
 ここで、前記幅方向溝の、前記踏面領域内でのトレッド周方向の配設位置を、該踏面領域のトレッド周方向中心位置を基準として、該踏面領域のトレッド周方向長さに対し、タイヤ赤道面位置で±30%、タイヤ赤道面からトレッド幅方向外側へトレッド幅の1/8離れた位置で±25%、トレッド幅の1/4離れた位置で±20%、および、トレッド幅の3/8離れた位置で±20%のそれぞれの範囲内としたときは、幅方向溝を、トレッド周方向で、その踏面領域内の温度上昇率が高くなる適切な位置に配設することにより、幅方向溝による放熱効果をより有効に発揮させることができる。
 言い換えれば、幅方向溝を、上記の各位置でそれぞれの範囲から外れて配設した場合は、トレッド周方向で、とくに温度上昇し易い位置に、幅方向溝が存在しないことから、幅方向溝の配設によっても、トレッド部の温度上昇を十分小さく抑えることができないおそれがある。
 またここで、前記幅方向溝の、前記センター側部分での溝深さを、ラグ溝の溝深さの40~110%とし、前記幅方向溝の、前記中間部分での溝深さを、ラグ溝の溝深さの40~110%とし、前記幅方向溝の、前記ショルダー側部分での溝深さを、ラグ溝の溝深さの40~90%としたときは、温度上昇率の高い前記センター側部分および中間部分での、幅方向溝の溝深さを深くして、トレッドゴムの内周側の、一般に発熱量の多いベルト近傍で発生する熱を効果的に放散する一方で、温度上昇率がそれほど高くない前記ショルダー側部分では、幅方向溝の溝深さを、前記センター側部分および前記中間部分のそれに比して浅くして、幅方向溝の溝深さを深くすることに起因する、耐摩耗性能への影響を小さくすることができる。
 すなわち、幅方向溝の、ショルダー側部分での溝深さを、ラグ溝の溝深さの90%を超えるものとした場合は、タイヤの負荷転動に際して、内部温度がそれほど高くならないショルダー側部分での、幅方向溝の深い溝深さが、他の部分の温度上昇の抑制にあまり寄与しないのみならず、ショルダー側部分での深い溝深さの故に、陸部剛性が低下してトレッドゴムの摩滅を早める懸念がある。
この発明の空気入りタイヤの一実施形態のタイヤ幅方向断面の半部を示す図である。 図1に示す空気入りタイヤのトレッドパターンの部分展開図である。 図2に示すトレッドパターンの要部拡大展開図である。 図2のIV―IV線に沿う断面図である。 踏面領域に設ける幅方向溝の他の配設例を示す、トレッドパターンの部分展開図および、それのb―b線に沿う断面図である。 この発明の空気入りタイヤの他の実施形態を示す、トレッドパターンの部分展開図である。 この発明の空気入りタイヤのさらに他の実施形態を示す、トレッドパターンの部分展開図である。 比較例タイヤ1,2のそれぞれのトレッドパターンの部分展開図である。
 以下に図面を参照しつつ、この発明の実施の形態について説明する。
 図1は、この発明の空気入りタイヤの一実施形態のタイヤ幅方向断面の半部を例示する図であって、図示の空気入りタイヤ1は、例えば、建設車両用の重荷重用タイヤである。
 ここで、図1に示す空気入りタイヤ1は、トレッド部13、トレッド部13の両側に連なる一対のサイドウォール部14(片側のみ図示)および各サイドウォール部14に連なるビード部15(片側のみ図示)を備えている。さらに、空気入りタイヤ1は、各ビード部15内に埋設されたビードコア15a(片側のみ図示)の間をトレッド部13、サイドウォール部14およびビード部15にわたってトロイド状に延在するカーカス2を有している。
 また、トレッド部13には、カーカス2のタイヤ径方向外側に、タイヤ周方向に延在するベルト3が配設され、当該ベルト3のタイヤ径方向外側にはトレッドゴム4aが配設されている。なお、図1では、後述するセンター周溝、ラグ溝および連通溝等を省略しているがトレッド踏面には各溝が設けられている。
 カーカス2は、タイヤ1の骨格部分を形成するものであり、上述のように各部内をトロイド状に延在するとともに、ビードコア15aの周りを覆うようにタイヤ径方向内側からタイヤ径方向外側へ向かって折り返されている。
 カーカス2は、例えばスチールワイヤで形成される、所定方向に延在するカーカスコードから構成される。なお、本実施形態において、カーカスコードは、トレッド幅方向に沿って延在しており、換言すれば、カーカス2はラジアルカースである。
 なお、図1に示すカーカス2は1枚のプライからなっているが、本発明のタイヤ1では、必要に応じて2枚以上のプライ数に変えることができる。
 ベルト3は、例えばスチールワイヤからなるベルトコードで形成されており、ベルトコードは、カーカス2のカーカスコードが延在する方向である所定方向に対して傾斜して延在する。
 ベルト3は、複数のベルト層で構成することができ、図示の例のタイヤ1では、タイヤ径方向内側から外側に向かって第1ベルト層3a、第2ベルト層3b、・・・、および第6ベルト層3fの順で配置される6層のベルト層で構成されている。
 ここで、第1ベルト層3aおよび第2ベルト層3bは内側交錯ベルト群3gを構成し、第3ベルト層3cおよび第4ベルト層3dは中間交錯ベルト群3hを構成し、第5ベルト層3eおよび第6ベルト層3fは外側交錯ベルト群3iを構成している。
 図示の実施形態では、内側交錯ベルト群3gの幅は、トレッド幅の25~70%であり、中間交錯ベルト群3hの幅は、トレッド幅の55~90%であり、外側交錯ベルト群3iの幅は、トレッド幅の60~110%である。なお、各交錯ベルト群に含まれるベルト層の幅は、上記の範囲内であれば、相互に同じまたは異なっていてもよく、この実施形態では、第2ベルト層3b、第1ベルト層3a、第4ベルト層3d、第6ベルト層3f、第3ベルト層3c、第5ベルト層3eの順で、それぞれのベルト層の幅が広くなっており、第2ベルト層3bが最もベルト層の幅が小さく、第5ベルト層が最もベルト層の幅が大きい。なお、各ベルト層の幅は、タイヤ幅方向に沿って測った長さをいう。
 本実施形態において、トレッド面視において、カーカスコードに対する各ベルト層のベルトコードの傾斜角度は、内側交錯ベルト群3gでは70~85度であり、中間交錯ベルト群3hでは50~75度であり、外側交錯ベルト群3iでは50~70度である。
 また、トレッド面視において、カーカスコードに対する各交錯ベルト群のベルトコードの傾斜角度は、内側交錯ベルト群3gが最も大きく、中間交錯ベルト群3hが、外側交錯ベルト群3i以上の大きさを有している。
 なお、各交錯ベルト群に含まれるベルト層のベルトコードの角度は、上記の範囲内であれば、相互に同じまたは異なっていてもよい。また、各交錯ベルト群内の各ベルト層は、カーカスコードに対して相互に逆側に傾斜している。
 ここで、図1に示されるように、このタイヤ1は、乗用車などに装着される空気入りタイヤと比して、トレッド部13のゴムゲージ(ゴム厚さ)が厚い。なお、後述する本発明の空気入りタイヤの他の実施形態もまた、図1に例示するタイヤ1と同様のタイヤ構造を有する。
 具体的には、タイヤ1は、タイヤ外径をODとし、タイヤ赤道面Cの位置におけるトレッド部13のゴムゲージをDCとした場合に、DC/OD≧0.015を満たす。
 なお、タイヤ外径OD(単位:mm)とは、タイヤ1の外径が最大となる部分(一般的には、タイヤ赤道面C付近におけるトレッド部13)のタイヤ1の直径である。ゴムゲージDC(単位:mm)は、タイヤ赤道面Cの位置におけるトレッド部13のゴム厚さである。ゴムゲージDCには、ベルト3の厚さは含まれない。なお、タイヤ赤道面Cを含む位置に周方向溝が形成されている場合には、その周方向溝に隣接する位置におけるトレッド部13のゴム厚さとする。
 次に、図2に示すトレッドパターンの要部拡大展開図を用いて以下に説明する。
 このタイヤ1では、トレッド踏面4に、図2に、トレッドパターンの部分展開図で示すように、タイヤ赤道面C上でトレッド周方向に連続して直線状に延びる環状のセンター周溝5を設けるとともに、タイヤ赤道面Cの両側のそれぞれで、いずれかのトレッド踏面端Eに開口して、トレッド幅方向に対して幾分傾斜する態様でタイヤ赤道面C側に向けて延びるそれぞれのラグ溝6を設け、そして、かかるラグ溝6を、センター周溝5に達する手前で終端させる。なお、図示するところでは、タイヤ赤道面Cにセンター周溝5を設けているが、センター周溝5の配設は、この発明の必須の構成ではない。
 またここでは、タイヤ赤道面Cを挟んで両側に位置する各ラグ溝6の、タイヤ赤道面C側に向けて溝幅が漸減する先端部および、センター周溝5のそれぞれに開口して、該ラグ溝6をタイヤ赤道面Cで相互に連通させる、図示ではセンター周溝5に連通させる連通溝7を、トレッド幅方向に対して若干傾斜するとともにセンター周溝5の近傍で折れ曲がって延在する形態で設ける。なお、かかる連通溝は、ラグ溝6をタイヤ赤道面Cで相互に直接的にまたは間接的に連通させるべく延在するものであれば、図示の形態に限定されるものではなく、ラグ溝6を、図2および6等のようにセンター周溝5を介して相互に間接的に連通させてもよい。
 このようにセンター周溝5、ラグ溝6および連通溝7を設けたトレッド踏面4には、トレッド踏面端Eとタイヤ赤道面C、図示ではセンター周溝5との間で、トレッド周方向に隣接するラグ溝6および連通溝7の相互間に挟まれる踏面領域8が、センター周溝5の両側のそれぞれに区画形成されることになる。
 なお、図2に示すところでは、タイヤ赤道面Cを挟んだ両側のそれぞれに、ラグ溝6に交差してトレッド周方向に連続して直線状に延びる環状のショルダー周溝9を、タイヤ赤道面Cからトレッド幅方向外側へ、トレッド幅の1/4超3/8未満の距離で離れた位置の範囲に設けている。また、図示のこの実施形態では、前記ショルダー周溝9により区画されてショルダー周溝9の両側に隣接する二個のブロック10,11を含んで、上述した踏面領域8とする。但し、各ショルダー周溝9の配設は、この発明の必須の構成ではない。
 そして、この実施形態では、前記踏面領域8のそれぞれに、トレッド幅方向に向けて延びる幅方向溝12を一本以上、図では一本設けることとし、かかる幅方向溝12のトレッド幅方向外側端部12aを、その踏面領域8内で終端させる。このことによれば、タイヤ1の使用に際する、トレッド部の、発熱に起因するタイヤ故障が発生するおそれのある中央領域での温度上昇を、幅方向溝12の配設に基く、トレッド踏面4での放熱面積の増加によって有効に抑制することができる。
 しかもここでは、幅方向溝12のトレッド幅方向外側端部12aを、その踏面領域8内で終端させたことにより、該トレッド幅方向外側端部をトレッド踏面端E等に開口させた場合に比して、トレッド幅方向の陸部剛性を高く維持することができる。
 さらに、タイヤ赤道面C上でトレッド周方向に連続して直線状に延びる環状のセンター周溝5を設けた場合には、タイヤ1の使用に際する、トレッド部の、発熱に起因するタイヤ故障が発生するおそれのある中央領域での温度上昇を、センター周溝5の配設に基く、トレッド踏面4での放熱面積の増加によってより有効に抑制することができる。
 ここで、踏面領域8への幅方向溝12の配設によって、その踏面領域8の、トレッド幅方向の陸部剛性が大きく低下した場合は、踏面領域8がトレッド幅方向の内外側に弾性変形し易くなることにより、タイヤ1の負荷転動時に、トレッド部中央領域の先述の湾曲変形に起因して、接地の度にトレッド幅方向内外側へ弾性変形する踏面領域8の陸部表面の滑り量が大きくなって、そこでの摩耗が促進されるおそれがあることから、幅方向溝12は、図2に示すように、タイヤ1の接地部分で閉塞する程度の溝幅を有するものとすることが好ましい。
 それにより、幅方向溝12を形成する対向溝壁面が、タイヤ接地部分で互いに当接して支持し合うことになるので、陸部剛性の低下が抑制されて、踏面領域8での早期摩耗の発生を防止しつつ、幅方向溝12によるトレッド部の放熱効果を得ることができる。
 また、踏面領域8の摩耗を抑制するとの同様の観点から、センター周溝5およびショルダー周溝9ならびに、連通溝7のそれぞれもまた、図2に示すように、タイヤ接地部分で閉塞する程度の溝幅を有するものとすることが好ましいが、これらの幅方向溝、センター周溝、ショルダー周溝および連通溝はいずれも、タイヤ接地部分で閉塞する溝幅よりも大きな溝幅とすることも可能である。
 なおここで、上述したような、タイヤ接地部分で閉塞する、センター周溝5およびショルダー周溝9、連通溝7ならびに幅方向溝12のそれぞれの溝幅は、たとえば、トレッド幅Wtの0.5%~2%程度とすることができる。また、センター周溝5、ショルダー周溝9および連通溝7のそれぞれの溝深さは、タイヤを適用リムに組み付けるとともに規定内圧を充填した状態で、タイヤ半径方向に測定して、たとえば、ラグ溝6の最大溝深さの60%~110%とすることができる。また、幅方向溝12の溝深さは、タイヤを適用リムに組み付けるとともに規定内圧を充填した状態で、タイヤ半径方向に測定して、たとえば、ラグ溝6の最大溝深さの40%~110%とすることができる。
 またここで、幅方向溝12は、必ずしもトレッド幅方向に沿って延びることを要せず、図示のように、トレッド周方向に対して傾斜して、トレッド幅方向に向けて延びるものであればよい。かかる幅方向溝12が、図2に示すような、トレッド幅方向に対して傾斜して延びる部分を有する場合は、幅方向溝12の配設に起因する、トレッド幅方向の陸部剛性の低下を抑制して、トレッドゴム4aの早期摩滅を有効に防止するとの観点から、幅方向溝12の、トレッド幅方向に対する傾斜部分の傾斜角度は、たとえば50°以下の、比較的小さい角度とすることが好ましい。一方、幅方向溝は、図示は省略するが、全体がトレッド幅方向に沿って延びるものとすることができる。
 なお、踏面領域8には、図2に示すような、一箇所以上の屈曲箇所を有する幅方向溝12の他、少なくとも一部の、図示しない湾曲箇所を有する幅方向溝を設けることもできる。
 ところで、上述したような幅方向溝12を、踏面領域8内の適切な箇所に配置して、トレッド部の放熱効果と、トレッド踏面4の摩耗抑制効果とを高い次元で両立させるため、トレッド部の、タイヤ赤道面Cに向けて漸増する、トレッド幅方向の温度上昇率の分布に従い、前記踏面領域8を、図3に拡大図で示すように、タイヤ赤道面Cからトレッド幅方向外側へトレッド幅Wtの1/8離れた1/8位置と、同様にトレッド幅Wtの1/4離れた1/4位置と、同様にトレッド幅Wtの3/8離れた3/8位置とに仮想的に分割し、そして、踏面領域8の、タイヤ赤道面Cと前記1/8位置との間の部分をセンター側部分Pc(0≦Pc≦1/8)とするとともに、前記1/8位置と前記1/4位置との間の部分を中間部分Pm(1/8<Pm≦1/4)とし、また、前記1/4位置と前記3/8位置との間の部分をショルダー側部分Ps(1/4<Pm≦3/8)とする。
 ここにおいて、幅方向溝12の溝深さは、図4に断面図で例示するように、その延在途中で変化させることができ、この場合においては、幅方向溝12の、前記センター側部分Pcでの溝深さを、ラグ溝の溝深さの40%~110%とするとともに、幅方向溝12の、前記中間部分Pmでの溝深さを、ラグ溝の溝深さの40%~110%とし、幅方向溝12の、前記ショルダー側部分Psでの溝深さを、ラグ溝の溝深さの40%~90%とすることが好ましい。なお、幅方向溝12の各溝深さは、センター側部分Pc、中間部分Pmおよびショルダー側部分Psのそれぞれの、トレッド幅方向の中心位置で測定するものとする。
 これによれば、発熱源となることが多いベルト3近傍に蓄積される熱を、とくに温度上昇率の大きいタイヤ赤道面Cに近接するセンター側部分Pcおよび中間部分Pmで、幅方向溝12の溝深さを深くすることによって効果的に放散させるとともに、それほど温度上昇率の大きくないショルダー側部分Psでは、幅方向溝12の溝深さを浅くして、陸部剛性の低下を最小限に抑えることができる。
 またここで、幅方向溝12の、踏面領域8内でのトレッド周方向の配設位置は、図3に示すように、前記1/8位置では、該1/8位置における踏面領域8の周方向中央位置C1を基準として、該1/8位置での踏面領域8のトレッド周方向長さL1の±25%の範囲内、すなわち、図の上方側および下方側のそれぞれへ25%離れた位置の間の範囲内とし、また、前記1/4位置では、同様に、トレッド周方向中心位置C2を基準としてトレッド周方向長さL2の±20%の範囲内とし、そしてまた、前記3/8位置では、同様に、トレッド周方向中心位置C3を基準としてトレッド周方向長さL3の±20%の範囲内とすることが、幅方向溝12によって、トレッド周方向で踏面領域8内の温度上昇率の大きい箇所の放熱を効果的に行わせるとの観点から好ましい。
 そしてまた、温度上昇率は、前記1/4位置よりトレッド幅方向内側でとくに大きくなって、そこでゴムが熱劣化等する可能性があることから、これを防止するため、好ましくは、幅方向溝12のトレッド幅方向外側端部12aを、前記1/4位置よりトレッド幅方向外側に配置する。一方、幅方向溝12を長くし過ぎると陸部剛性の低下を招くおそれがあることから、幅方向溝12のトレッド幅方向外側端部12aは、前記3/8位置よりトレッド幅方向内側に位置させることが好ましい。
 図3に示すところでは、幅方向溝12のトレッド幅方向内側端部が、センター周溝5に開口しないものとしたが、後述するような、センター周溝5に開口する幅方向溝を設けた場合は、該幅方向溝の、タイヤ赤道面C位置での配設位置を、その位置における踏面領域8の周方向中央位置を基準として、その位置での踏面領域8のトレッド周方向長さの±30%の範囲内とすることが好ましい。
 ところで、図2に示すパターンでは、先に述べたようなショルダー周溝9を設けているが、幅方向溝12が、図示の如く、かかるショルダー周溝9によって分断されてショルダー周溝9に交わって延びるものとしたときは、ショルダー周溝9の配設による放熱面積の増大のみならず、タイヤ1の負荷転動に際し、ショルダー周溝9内を通過する空気が、そのショルダー周溝9に交わる幅方向溝12に流れ込むことによる空冷効果が発揮されるので、幅方向溝12での放熱性を大きく向上させることができる。
 このような空冷効果をさらに高めるため、図5に示す他の配設例の幅方向溝22では、幅方向溝22のトレッド幅方向内側端部を、図5(a)に示すように、センター周溝5に開口させている。なお、この幅方向溝22の溝深さは、図5(b)に示すように、全体にわたって一定とした。
 なおここで、上述したセンター周溝5およびショルダー周溝9のそれぞれは、図示は省略するが、トレッド周方向に向けてジグザグ状に延びる形態等とするもできる。
 図6に、他の実施形態のトレッドパターンを示す。
 図6に示すこのタイヤ31は、トレッド踏面34に、タイヤ赤道面C上でトレッド周方向に連続して延びるセンター周溝35と、トレッド踏面端Eに開口するとともにセンター周溝35に向けて延びてセンター周溝35に向かう途中で図の上方側へ折れ曲がってなる折れ曲がり部分を有し、センター周溝35に達する手前で終端するラグ溝36と、トレッド周方向に対して傾斜する態様で、ラグ溝36の先端部から該ラグ溝36の前記折れ曲がり部分と略平行に直線状に延びるとともに、センター周溝35の近傍で屈曲してトレッド幅方向に沿って延びてセンター周溝35に開口し、ラグ溝36をセンター周溝35に連通させる連通溝37とを具えてなる。
 なおここでは、センター周溝35を挟んで両側に位置するラグ溝36のそれぞれの周方向位置の相互を、トレッド周方向に僅かにずらして、ラグ溝36を配置するとともに、センター周溝35の両側の各連通溝37を、それぞれのセンター周溝35への開口位置が相互に、トレッド周方向に若干の距離をおく態様で設けている。
 それにより、このトレッド踏面34には、トレッド踏面端Eとセンター周溝35との間で、トレッド周方向に隣接する前記ラグ溝36および連通溝37の相互間に、踏面領域38が、センター周溝35の両側のそれぞれでトレッド周方向に幾分ずれた形態で区画形成されることになり、ここでは、かかる踏面領域38の、トレッド周方向の略中央部に、前述した連通溝37に実質的に平行に延びてセンター周溝35に開口する幅方向溝42を設け、該幅方向溝42のトレッド幅方向外側端部42aを、トレッド踏面端Eに到る手前の踏面領域38内で終端させる。
 また図示の実施形態では、ラグ溝36の折れ曲がり箇所の幅方向位置で、該折れ曲がり箇所に図の下方側から開口して、トレッド周方向に沿って断続的に延びる、タイヤ接地部分で閉塞する溝幅の周方向断続溝39を設けており、上述した幅方向溝42のトレッド幅方向外側端部42aは、周方向断続溝39よりもトレッド幅方向内側で終端している。但し、図示は省略するが、幅方向溝のトレッド幅方向外側端部は、前記周方向断続溝39に到達させることができ、また、幅方向溝は、前記周方向断続溝39に交差して延在させることも可能である。
 そして、これもまた図示は省略するが、踏面領域38内には、二本以上の幅方向溝を、たとえば相互に平行に延びる形態で設けることもできる。
 図7に、さらに他の実施形態のトレッドパターンを示す。
 図7に示すこのタイヤ51は、トレッド踏面54に、タイヤ赤道面C上でトレッド周方向に連続して延びるセンター周溝55と、トレッド踏面端Eに開口するとともにセンター周溝55に向けて、センター周溝55に達する手前で終端するラグ溝56と、トレッド周方向に対して傾斜する態様で直線状に延びるとともに、センター周溝55の近傍で屈曲してトレッド幅方向に沿って延びてセンター周溝55に開口し、ラグ溝56をセンター周溝55に連通させる連通溝57とを具えてなる。なお、連通溝57は、連通溝57のトレッド幅方向内側端部で、センター周溝5に開口している。
 また、ラグ溝56は、センター周溝55に向けて延びてセンター周溝55に向かう途中で、その溝幅を漸減させた漸減部分と、図の上方側へ折れ曲がってなる折れ曲がり部分とを有している。また、連通溝57は、ラグ溝56の先端部から該ラグ溝56の前記折れ曲がり部分と略平行に延びている。
 また、このタイヤ51には、図7に示すように、トレッド周方向の略中央部に、前述した連通溝57と実質的に平行に延びてセンター周溝55に開口する幅方向溝62を設けている。
 さらに、このタイヤ51では、図7に示すように、タイヤ赤道面Cを挟んだ両側のそれぞれに、ラグ溝56の先端部付近に交差してトレッド周方向に連続して直線状に延びる環状のショルダー周溝59を設け、幅方向溝62が、該幅方向溝62のトレッド幅方向外端部62aで、ショルダー周溝59に開口している。幅方向溝62がセンター周溝55とショルダー周溝59とに開口することで、連通溝57と幅方向溝62とが略同じ延在長さになっている。また、図示では、ショルダー周溝59は、タイヤ接地部分で閉塞する溝幅を有しているが、閉塞しない溝幅にすることもできる。
 なお、幅方向溝62は、ショルダー周溝59に交わってトレッド幅方向外側に延びることも可能である。
 したがって、このタイヤ51では、タイヤ赤道面Cとショルダー周溝59との間で、トレッド周方向に隣接する連通溝57と幅方向溝62との相互間に区画される、トレッド幅方向に対して傾斜するブロック60、61が略平行四辺形状に形成される。そして、該ブロック60、61は、タイヤ51が転動する際、ブロック60、61を区画する連通溝57または幅方向溝62の、相互に対向する両溝壁面のそれぞれがトレッド幅方向一方側から他方側へ向かって互いに当接して支持し合いながら、トレッド踏面54が接地するので、ブロック60、61の剛性がトレッド幅方向一方側から他方側へ向かって高く維持されることとなる。その結果、トレッド部の先述した湾曲変形に際する、陸部表面の滑り量を小さく抑えることができ、耐摩耗性能の低下をより効果的に最小限に抑えることができる。
 なお、トレッド部中央領域の湾曲変形が大きくなる傾向があることから、連通溝57または幅方向溝62は、タイヤ51が転動する際、トレッド幅方向外側からトレッド幅方向内側に向かって接地する態様、すなわち、連通溝57または幅方向溝62が、トレッド幅方向に対して、タイヤ51が転動する際にトレッド踏面54が接地する方向に(図7では、下から上に)向かって、傾斜することが好ましい。
 さらに、幅方向溝62が、踏面領域のトレッド周方向中心位置に設けられることにより、ブロック60、61のトレッド周方向に沿って測定した長さがそれぞれ等しくなっている。そして、これによれば、上記のブロック60、61がトレッド周方向の長さがそれぞれ等しいので、ブロック60、61からの発熱が周方向で均一化して、トレッド部の、発熱量の多い中央領域の温度上昇を、その中央領域の全体にわたって効率良く抑制することができる。
 また、タイヤ51では、図7に示すように、センター周溝55に対して一方側のトレッド半部に設けられた連通溝57および幅方向溝62の、センター周溝55へのそれぞれの開口位置を、他方側のトレッド半部に設けられた連通溝57および幅方向溝62の、センター周溝55へのそれぞれの開口位置とはトレッド周方向に距離をおいて設けている。さらに、センター周溝55を挟んで両側に位置するラグ溝56のそれぞれの周方向位置の相互を、トレッド周方向に僅かにずらして、ラグ溝56を配置している。換言すれば、タイヤ51では、タイヤ赤道面Cに対してトレッド幅方向に隣接するブロック60、61のそれぞれは、トレッド周方向にずれて設けられている。
 したがって、タイヤ51では、連通溝57および幅方向溝62を配設することによってブロック60、61の幅方向の剛性が低下する場合があるが、センター周溝55に対して開口する連通溝57および幅方向溝62の開口位置をずらして設けているので、センター周溝55に対して開口する連通溝57および幅方向溝62の開口位置を同じ位置にする場合に比して、ブロック60、61の幅方向の剛性を維持し、耐摩耗性能の低下をさらに効果的に抑えることができる。
 以上に述べたいずれのタイヤにおいても、トレッド踏面の表面積全体に占める溝面積の割合であるネガティブ率を、30%以下とすることが、耐摩耗性能を高く維持する上で好ましい。
 次に、この発明の空気入りタイヤを試作し、その性能を評価したので、以下に説明する。供試タイヤのサイズはいずれも、46/90R57とした。
 実施例タイヤ1は、トレッド幅が980mmの、図2,3に示すトレッドパターンを有するものとした。
 実施例タイヤ2~13は、表1に示す諸元で各構成を変化させた以外、実施例タイヤ1と同様の構成を有するものとした。
 比較例タイヤ1は、図8(a)に示すように、幅方向溝およびセンター周溝を有しないことを除いて、実施例タイヤ1と同様の構成としたものであり、また、比較例タイヤ2は、図8(b)に示すように、幅方向溝を有しないことを除いて、実施例タイヤ1と同様の構成とした。
 なお、いずれも供試タイヤにおいても、ラグ溝の溝深さを97mm、センター周溝の溝深さを90mm、連通溝の溝深さを90mmとした。また、センター周溝、連通溝、幅方向溝、およびショルダー周溝について、溝幅が、10mmである場合には、各溝はタイヤ接地部分で閉塞する。
Figure JPOXMLDOC01-appb-T000001
 なお、表1に示すところにおいて、幅方向溝の、センター側部分、中間部分およびショルダー側部分での溝深さは、ラグ溝の溝深さに対する割合を百分率で表したものである。
 また、表1の諸元で示す、幅方向溝の「トレッド幅方向内側端部」および「トレッド幅方向外側端部」とは、幅方向溝の、トレッド幅方向内側端部の位置およびトレッド幅方向外側端部の位置を指し、またその諸元の各数値は、タイヤ赤道面からトレッド幅方向外側への距離を、トレッド幅に対する割合で示している。なお、表1で示す数値の「0」は、幅方向溝の端部がタイヤ赤道面に位置していること、また「4/8」は、幅方向溝の端部がトレッド踏面端に位置すること(すなわち幅方向溝がトレッド接地端からトレッド幅方向外側に開口していること)を指す。
 また、表1中の「閉塞する」とは、各溝がタイヤ接地部分で閉塞する溝幅を有することを指し、「閉塞しない」とは、各溝がタイヤ接地部分で閉塞しない溝幅を有することを指す。
 また、表1中の「溝のタイヤ赤道面位置が範囲外*1」とは、幅方向溝の踏面領域内でのトレッド周方向の配設位置を、踏面領域のトレッド周方向中心位置を基準として、タイヤ赤道面位置で、タイヤ赤道面位置における踏面領域のトレッド周方向長さに対して±30%の範囲から外れていることを指し、表1中の「溝の幅方向1/8~3/8の位置が範囲外*2」とは、タイヤ赤道面からトレッド幅方向外側へ、トレッド幅の1/8離れた位置で、1/8離れた位置における踏面領域のトレッド周方向長さに対して±25%の範囲から外れ、トレッド幅の1/4離れた位置で、該1/4離れた位置における該踏面領域のトレッド周方向長さに対して±20%の範囲から外れ、およびトレッド幅の3/8離れた位置で、3/8離れた位置における該踏面領域のトレッド周方向長さに対して±20%の範囲から外れていることを指す。
 さらに、表1中の「sho周溝の位置*3」とは、幅方向溝が、幅方向溝のトレッド幅方向外側端部で、ショルダー周溝に開口することを指し、また、「sho周溝よりも幅方向内側*4」とは、幅方向溝のトレッド幅方向外側端部を、ショルダー周溝よりもトレッド幅方向内側に位置させたことを指す。
 上述した各供試タイヤを、TRAで定められた適用リムに組み付けるとともに、規定内圧を充填した状態で、車両の前輪に装着させて距離48000km(30000マイル)を走行させた後に、後輪に付け替えて、さらに距離48000km(30000マイル)を走行させた。そして各タイヤの摩耗量を測定して、前輪装着時の耐摩耗性および、後輪装着時の耐摩耗性、ならびに、トータルの摩耗寿命を百分率で評価した。その結果を表2に示す。
 なお、表2に示す数値は、数値が大きいほど耐摩耗性にすぐれることを表す。
 また、各供試タイヤを車両の前輪に装着して、24時間走行させた後のトレッド部の温度を測定した。かかる温度の測定は、タイヤ赤道面位置、ならびに、タイヤ赤道面の両側の、1/8位置および、1/4位置の5点のそれぞれにおける、ベルトのタイヤ半径方向外側に3.5mmの径方向位置で、温測針にて実施した。なお、それぞれの温度の測定のトレッド周方向位置は、相互に隣り合う幅方向溝で挟まれる陸部の中心の位置である。上記5点での測定値の平均値を、表2に指数値で示す。表2に示す指数値は、数値が小さいほど温度が低く、放熱性にすぐれることを表す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、踏面領域に幅方向溝を設けた実施例タイヤ1~13は、幅方向溝を設けなかった比較例タイヤ1、2と比較して、トレッド部の温度が低くなっていることが解かる。また、実施例タイヤ1、2、6~9、12、13は、幅方向溝を設けなかった比較例タイヤ1、2と比較して、耐摩耗性がそれほど低下することなしに、トレッド部の温度が低くなっていることが解かる。
 従って、この発明の空気入りタイヤによれば、タイヤの使用に伴う、トレッド部の、発熱量の多い中央領域の温度上昇を、その中央領域の全体にわたって小さく抑えることができることが解かった。
 1,31,51:空気入りタイヤ
 2:カーカス
 3:ベルト
 3a、3b、、、3f:第1ベルト層、第2ベルト層、、、第6ベルト層
 3g、3h、3i:内側交錯ベルト群、中間交錯ベルト群、外側交錯ベルト群
 4,34,54:トレッド踏面
 4a:トレッドゴム
 5,35,55:センター周溝
 6,36,56:ラグ溝
 7,37,57:連通溝
 8,38:踏面領域
 9,59:ショルダー周溝
 39a:周方向断続溝
 10,11,60,61:ブロック
 12,22,42,62:幅方向溝
 12a,42a,62a:幅方向溝のトレッド幅方向外側端部
 13:トレッド部
 14:サイドウォール部
 15:ビード部
 15a:ビードコア
 C:タイヤ赤道面
 E:トレッド踏面端
 Wt:トレッド幅
 L1,L2,L3:各トレッド幅方向位置での踏面領域のトレッド周方向長さ
 C1,C2,C3:各トレッド幅方向位置での踏面領域のトレッド周方向中央位置
 Pc:センター側部分
 Pm:中間部分
 Ps:ショルダー側部分
 OD:タイヤ外径
 DC:ゴムゲージ

Claims (11)

  1.  トレッド踏面端に開口するとともにトレッド踏面のタイヤ赤道面側に向けて延びて、タイヤ赤道面に達する手前で終端するラグ溝と、タイヤ赤道面を挟んで両側に位置するそれぞれの前記ラグ溝を相互に連通させる連通溝とを具える空気入りタイヤであって、
     トレッド踏面端とタイヤ赤道面との間で、トレッド周方向に隣接する、前記ラグ溝および該ラグ溝に連通する前記連通溝の相互間に区画される踏面領域に、トレッド幅方向に向けて延びて、トレッド幅方向外側端部が該踏面領域内で終端する少なくとも一本の幅方向溝を設けてなる空気入りタイヤ。
  2.  前記空気入りタイヤが、トレッド踏面に、タイヤ赤道面上でトレッド周方向に連続して延びるとともに、前記連通溝と連通するセンター周溝をさらに具え、前記幅方向溝を、該幅方向溝のトレッド幅方向内側端部で、前記センター周溝に開口させるとともに、該幅方向溝のトレッド幅方向外側端部を、タイヤ赤道面からトレッド幅方向外側へトレッド幅の3/8離れた位置より、トレッド幅方向内側に位置させてなる、請求項1に記載の空気入りタイヤ。
  3.  タイヤ赤道面を挟んだ両側のそれぞれに、前記ラグ溝に交差してトレッド周方向に連続して延びるショルダー周溝のそれぞれを設け、前記幅方向溝が、前記ショルダー周溝に交わって延びるものとしてなる、請求項1または2に記載の空気入りタイヤ。
  4.  前記連通溝および前記幅方向溝を、トレッド幅方向に対して傾斜して延びるものとし、
     タイヤ赤道面を挟んだ両側のそれぞれに、前記ラグ溝に交差してトレッド周方向に連続して延びるショルダー周溝のそれぞれを設け、前記幅方向溝を、該幅方向溝のトレッド幅方向外端部で、前記ショルダー周溝に開口させ、
     前記センター周溝に対して一方側のトレッド半部に設けられた前記連通溝および前記幅方向溝の、前記センター周溝へのそれぞれの開口位置を、他方側のトレッド半部に設けられた前記連通溝および前記幅方向溝の、前記センター周溝へのそれぞれの開口位置とはトレッド周方向に距離をおいて設ける、請求項2に記載の空気入りタイヤ。
  5.  前記幅方向溝が、タイヤ接地部分で閉塞する溝幅を有してなる、請求項1~4のいずれかに記載の空気入りタイヤ。
  6.  前記センター周溝が、タイヤ接地部分で閉塞する溝幅を有してなる、請求項2または4に記載の空気入りタイヤ。
  7.  前記連通溝が、タイヤ接地部分で閉塞する溝幅を有してなる、請求項1~6のいずれかに記載の空気入りタイヤ。
  8.  前記ショルダー周溝が、タイヤ接地部分で閉塞する溝幅を有してなる、請求項3または4に記載の空気入りタイヤ。
  9.  前記幅方向溝の、前記踏面領域内でのトレッド周方向の配設位置を、該踏面領域のトレッド周方向中心位置を基準として、タイヤ赤道面位置で、該タイヤ赤道面位置における該踏面領域のトレッド周方向長さに対して±30%の範囲内としてなる、請求項1~8のいずれかに記載の空気入りタイヤ。
  10.  前記幅方向溝の、前記踏面領域内でのトレッド周方向の配設位置を、該踏面領域のトレッド周方向中心位置を基準として、
     タイヤ赤道面からトレッド幅方向外側へ、トレッド幅の1/8離れた位置で、該1/8離れた位置における該踏面領域のトレッド周方向長さに対して±25%、
     トレッド幅の1/4離れた位置で、該1/4離れた位置における該踏面領域のトレッド周方向長さに対して±20%、および、
     トレッド幅の3/8離れた位置で、該3/8離れた位置における該踏面領域のトレッド周方向長さに対して±20%
    のそれぞれの範囲内としてなる、請求項1~9のいずれかに記載の空気入りタイヤ。
  11.  前記踏面領域において、タイヤ赤道面と、タイヤ赤道面からトレッド幅方向外側へ、トレッド幅の1/8離れた位置との間に挟まれる部分をセンター側部分とし、トレッド幅の1/8離れた位置と、トレッド幅の1/4離れた位置との間に挟まれる部分を中間部分とし、トレッド幅の1/4離れた位置と、トレッド幅の3/8離れた位置との間に挟まれる部分をショルダー側部分としたとき、
     前記幅方向溝の、前記センター側部分での溝深さを、前記ラグ溝の溝深さの40~110%とし、
     前記幅方向溝の、前記中間部分での溝深さを、前記ラグ溝の溝深さの40~110%とし、
     前記幅方向溝の、前記ショルダー側部分での溝深さを、前記ラグ溝の溝深さの40~90%としてなる、請求項1~10のいずれかに記載の空気入りタイヤ。
PCT/JP2014/000501 2013-01-30 2014-01-30 空気入りタイヤ WO2014119325A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112015017561A BR112015017561A2 (ja) 2013-01-30 2014-01-30 Pneumatic tire
EP14746680.9A EP2952364B1 (en) 2013-01-30 2014-01-30 Pneumatic tire
US14/759,036 US9931893B2 (en) 2013-01-30 2014-01-30 Pneumatic tire
AU2014212937A AU2014212937B2 (en) 2013-01-30 2014-01-30 Pneumatic tire
CN201480006577.1A CN104981363B (zh) 2013-01-30 2014-01-30 充气轮胎
CA2898181A CA2898181C (en) 2013-01-30 2014-01-30 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-016198 2013-01-30
JP2013016198A JP5695099B2 (ja) 2013-01-30 2013-01-30 建設車両用空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2014119325A1 true WO2014119325A1 (ja) 2014-08-07

Family

ID=51262039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000501 WO2014119325A1 (ja) 2013-01-30 2014-01-30 空気入りタイヤ

Country Status (8)

Country Link
US (1) US9931893B2 (ja)
EP (1) EP2952364B1 (ja)
JP (1) JP5695099B2 (ja)
CN (1) CN104981363B (ja)
AU (1) AU2014212937B2 (ja)
BR (1) BR112015017561A2 (ja)
CA (1) CA2898181C (ja)
WO (1) WO2014119325A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9931893B2 (en) 2013-01-30 2018-04-03 Bridgestone Corporation Pneumatic tire
US11312187B2 (en) 2016-03-31 2022-04-26 The Yokohama Rubber Co., Ltd. Heavy-duty pneumatic tire

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243233B2 (ja) * 2014-01-17 2017-12-06 株式会社ブリヂストン タイヤ
JP6396856B2 (ja) * 2015-06-17 2018-09-26 株式会社ブリヂストン 建設車両用タイヤ
FR3049218A1 (fr) * 2016-03-25 2017-09-29 Michelin & Cie Bande de roulement incisee pour pneu hors la route
WO2017204352A1 (ja) * 2016-05-27 2017-11-30 株式会社ブリヂストン 重荷重用タイヤ
WO2018044292A1 (en) * 2016-08-31 2018-03-08 Compagnie Generale Des Establissements Michelin Heavy truck tire tread and heavy truck tire
JP6847695B2 (ja) * 2017-02-13 2021-03-24 株式会社ブリヂストン 建設車両用タイヤ
JP6872923B2 (ja) * 2017-02-13 2021-05-19 株式会社ブリヂストン 建設車両用タイヤ
US20190118592A1 (en) * 2017-10-19 2019-04-25 Infineon Technologies Ag Method, Tire-Mounted TPMS Component, and Machine Readable Storage or Computer Program for Determining a Duration of at Least one Contact Patch Event of a Rolling Tire
US10549587B2 (en) 2017-10-19 2020-02-04 Infineon Technologies Ag Method, component, tire-mounted TPMS module, TPMS system, and machine readable storage or computer program for determining time information of at least one contact patch event of a rolling tire, method for locating a tire
JP2020001449A (ja) * 2018-06-25 2020-01-09 株式会社ブリヂストン タイヤ
JP6702361B2 (ja) * 2018-07-02 2020-06-03 横浜ゴム株式会社 空気入りタイヤ
US11206144B2 (en) * 2019-09-11 2021-12-21 International Business Machines Corporation Establishing a security association and authentication to secure communication between an initiator and a responder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253410A (ja) * 1990-03-01 1991-11-12 Toyo Tire & Rubber Co Ltd 空気入り偏平ラジアルタイヤ
JPH06199110A (ja) * 1993-03-01 1994-07-19 Ohtsu Tire & Rubber Co Ltd :The 自動車用タイヤ
JP2008013037A (ja) 2006-07-05 2008-01-24 Bridgestone Corp 建設車両用空気入りタイヤ
JP2008062706A (ja) * 2006-09-05 2008-03-21 Bridgestone Corp 建設車両用タイヤ
JP2008126943A (ja) * 2006-11-24 2008-06-05 Bridgestone Corp 空気入りタイヤ
JP2012179948A (ja) * 2011-02-28 2012-09-20 Bridgestone Corp 建設車両用ラジアルタイヤ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069922B2 (ja) * 1983-05-12 1994-02-09 住友ゴム工業株式会社 良路高速走行重荷重用ラジアルタイヤ
JPS62122804A (ja) * 1985-11-25 1987-06-04 Yokohama Rubber Co Ltd:The 乗用車用空気入りラジアルタイヤ
JP3718021B2 (ja) * 1997-02-21 2005-11-16 株式会社ブリヂストン オール・シーズン乗用車用空気入りラジアル・タイヤ
JP4938316B2 (ja) * 2006-01-20 2012-05-23 株式会社ブリヂストン 建設車両用タイヤ
JP4919674B2 (ja) * 2006-02-21 2012-04-18 株式会社ブリヂストン 空気入りタイヤ
FR2904790B1 (fr) * 2006-08-08 2008-10-10 Michelin Soc Tech Sculpture de bande de roulement pour vehicules de transport de charges lourdes.
JP5435877B2 (ja) 2008-01-31 2014-03-05 株式会社ブリヂストン 空気入りタイヤ
JP5265212B2 (ja) * 2008-02-12 2013-08-14 株式会社ブリヂストン 重荷重用空気入りラジアルタイヤ
US20110136973A1 (en) 2008-08-11 2011-06-09 Basf Se Polybenzothiophene polymers and process for their preparation
WO2011013357A1 (ja) * 2009-07-27 2011-02-03 株式会社ブリヂストン 建設車両用タイヤ
JP2011152836A (ja) 2010-01-26 2011-08-11 Bridgestone Corp 建設車両用空気入りタイヤ
WO2012018081A1 (ja) * 2010-08-05 2012-02-09 株式会社ブリヂストン タイヤ
RU2577439C1 (ru) * 2012-02-24 2016-03-20 Бриджстоун Корпорейшн Пневматическая шина
CN102887039A (zh) 2012-10-23 2013-01-23 厦门正新橡胶工业有限公司 一种防夹石轮胎
JP5695099B2 (ja) 2013-01-30 2015-04-01 株式会社ブリヂストン 建設車両用空気入りタイヤ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253410A (ja) * 1990-03-01 1991-11-12 Toyo Tire & Rubber Co Ltd 空気入り偏平ラジアルタイヤ
JPH06199110A (ja) * 1993-03-01 1994-07-19 Ohtsu Tire & Rubber Co Ltd :The 自動車用タイヤ
JP2008013037A (ja) 2006-07-05 2008-01-24 Bridgestone Corp 建設車両用空気入りタイヤ
JP2008062706A (ja) * 2006-09-05 2008-03-21 Bridgestone Corp 建設車両用タイヤ
JP2008126943A (ja) * 2006-11-24 2008-06-05 Bridgestone Corp 空気入りタイヤ
JP2012179948A (ja) * 2011-02-28 2012-09-20 Bridgestone Corp 建設車両用ラジアルタイヤ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9931893B2 (en) 2013-01-30 2018-04-03 Bridgestone Corporation Pneumatic tire
US11312187B2 (en) 2016-03-31 2022-04-26 The Yokohama Rubber Co., Ltd. Heavy-duty pneumatic tire

Also Published As

Publication number Publication date
EP2952364B1 (en) 2018-08-08
JP5695099B2 (ja) 2015-04-01
AU2014212937A1 (en) 2015-07-23
CA2898181C (en) 2017-06-06
CA2898181A1 (en) 2014-08-07
EP2952364A1 (en) 2015-12-09
JP2014144763A (ja) 2014-08-14
AU2014212937B2 (en) 2016-06-23
US9931893B2 (en) 2018-04-03
CN104981363A (zh) 2015-10-14
CN104981363B (zh) 2017-03-22
US20150352906A1 (en) 2015-12-10
EP2952364A4 (en) 2016-09-28
BR112015017561A2 (ja) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2014119325A1 (ja) 空気入りタイヤ
JP6234891B2 (ja) 空気入りタイヤ
JP6138663B2 (ja) タイヤ
EP2974888B1 (en) Pneumatic tire
JP6433760B2 (ja) 空気入りタイヤ
JP6450224B2 (ja) 空気入りタイヤ
JP4618385B2 (ja) 空気入りタイヤ
WO2016017543A1 (ja) 空気入りタイヤ
JP5635170B1 (ja) 空気入りタイヤ
JP4742759B2 (ja) 空気入りタイヤ
JP6421652B2 (ja) 空気入りタイヤ
JP6237970B1 (ja) 重荷重用空気入りタイヤ
US9505270B2 (en) Pneumatic radial tire
JP2007076594A (ja) 空気入りタイヤ
JP2007069665A (ja) 空気入りタイヤ
JP6872923B2 (ja) 建設車両用タイヤ
JP6237810B2 (ja) 重荷重用空気入りタイヤ
JP4608111B2 (ja) 建設車両用空気入りタイヤ
JP6443376B2 (ja) 重荷重用空気入りタイヤ
JP2013216184A (ja) 空気入りタイヤ
JP4388309B2 (ja) 重荷重用タイヤ
JP2024049907A (ja) 空気入りタイヤ
JP2019073247A (ja) 空気入りタイヤ
JP2019073248A (ja) 空気入りタイヤ
JP2016094197A (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14759036

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2898181

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014212937

Country of ref document: AU

Date of ref document: 20140130

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014746680

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015017561

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015017561

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150723

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112015017561

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2427 DE 11/07/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015017561

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2013-016198 DE 30/01/2013 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: 112015017561

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150723