WO2014141467A1 - 積層構造を持つミッドソール - Google Patents

積層構造を持つミッドソール Download PDF

Info

Publication number
WO2014141467A1
WO2014141467A1 PCT/JP2013/057398 JP2013057398W WO2014141467A1 WO 2014141467 A1 WO2014141467 A1 WO 2014141467A1 JP 2013057398 W JP2013057398 W JP 2013057398W WO 2014141467 A1 WO2014141467 A1 WO 2014141467A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
foot
hardness
midsole
layer
Prior art date
Application number
PCT/JP2013/057398
Other languages
English (en)
French (fr)
Inventor
西脇 剛史
真志 礒部
Original Assignee
株式会社アシックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アシックス filed Critical 株式会社アシックス
Priority to PCT/JP2013/057398 priority Critical patent/WO2014141467A1/ja
Priority to AU2013293073A priority patent/AU2013293073B2/en
Priority to EP13877615.8A priority patent/EP2974614B1/en
Priority to JP2015505195A priority patent/JP5887463B2/ja
Priority to US14/774,610 priority patent/US9763493B2/en
Publication of WO2014141467A1 publication Critical patent/WO2014141467A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/125Soles with several layers of different materials characterised by the midsole or middle layer
    • A43B13/127Soles with several layers of different materials characterised by the midsole or middle layer the midsole being multilayer
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/122Soles with several layers of different materials characterised by the outsole or external layer
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/125Soles with several layers of different materials characterised by the midsole or middle layer
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/16Pieced soles
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/22Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer
    • A43B13/223Profiled soles
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/42Filling materials located between the insole and outer sole; Stiffening materials

Definitions

  • the present invention relates to a midsole having a laminated structure.
  • the forefoot is generally thin.
  • the forefoot is large and repeatedly bent at the MP joint and the like. In the portion where this bending is repeated, the midsole eventually exhibits permanent deformation. In particular, the permanent deformation tends to occur in the upper layer of the forefoot part.
  • the midfoot supports the arch of the foot. This arch varies greatly between individuals. A wearer with a low arch tends to feel the arch being pushed up, while a wearer with a high arch may sag.
  • a layered midsole is more likely to perform different functions than a single layered structure.
  • JP58-190401A drawsing JP05-69521A (Column 13) JP07-125107A (Summary) JP08-168402A (summary) JP11-266905A (Summary) JP2003-79402A (summary) JP2009-178594A (Summary) JP2010-525917W (summary) JP2010-94480A (Summary)
  • the midsole is often formed from a foam with a rich repulsive force.
  • the foams having different hardnesses are used.
  • an object of the present invention is to improve the function of the midsole by disposing a low-rebound foam in a wide area.
  • the midsole of the present invention in the first aspect, A midsole disposed on an outsole having a ground plane,
  • the midsole has an upper layer and a lower layer,
  • One of the upper layer or the lower layer includes a layer of a first foam containing a thermoplastic resin component,
  • One or more of the most of the planar area of the front foot, the majority of the planar area of the middle foot, or the majority of the planar area of the hind foot in the other of the upper layer and the lower layer is a thermoplastic resin component.
  • Including a second foam layer comprising The second foam has a specific gravity greater than that of the first foam, and is formed of a low resilience material that has a low speed of being restored to its original shape after being deformed.
  • the relationship between the Asker C hardness Lc of the second foam S and the Asker C hardness Nc of the first foam N is set in the following formula (1): Lc ⁇ Nc + 10 (1).
  • a midsole disposed on an outsole having a ground plane The midsole has an upper layer and a lower layer, The lower layer includes a first foam layer comprising a thermoplastic resin component; In the second foam, one or more of the most of the flat region of the front foot, the most of the flat region of the middle foot, or the most of the flat region of the hind foot in the upper layer contains a thermoplastic resin component. Including layers, The second foam has a specific gravity greater than that of the first foam, and is formed of a low resilience material that has a low speed of being restored to its original shape after being deformed.
  • the relationship between the Asker C hardness Lc of the second foam and the Asker C hardness Nc of the first foam N is set in the following formula (1): Lc ⁇ Nc + 10 (1).
  • the low-repulsion second foam having a large specific gravity has a larger distance between the bubbles than the distance between the bubbles in the first foam. Therefore, buckling is unlikely to occur, and the increase in load and the increase in strain are likely to be proportional. That is, the second foam has a large specific gravity but a strong linearity of deformation. Accordingly, the second foam can be a foam having a relatively low hardness.
  • the first foam having a small specific gravity has a smaller distance between the bubbles than that of the second foam. Therefore, although it exhibits linearity under a small load below a predetermined load, if the load above a predetermined load is applied, it is considered that the resin structure will buckle, and the stress at which the strain increases rapidly with a small load increase. Area exists. That is, the first foam has a small specific gravity but a strong nonlinearity. Therefore, it is preferable to use a foam having a relatively high hardness as the first foam.
  • stacked both up and down becomes close to the property which piled up the mechanical (physical) property which both have. Therefore, the laminate has a load region exhibiting linearity larger than that of the first foam, and the weight does not increase so much.
  • the second foam having low resilience has a low speed of restoring to its original shape after being deformed, and therefore generally has a low deformation speed when an external force is applied. Therefore, it is easy to absorb energy and an improvement in cushioning properties can be expected.
  • the hardness of the second foam is smaller than that of the first foam
  • the second foam that causes a delay in deformation is directly above the outsole, a part of the outsole is locally When a large frictional force is applied in the horizontal direction, the second foam undergoes large shear deformation (slip). Therefore, if the second foam is too thick, the road surface and the first foam are greatly displaced. Stability may be reduced.
  • the lower layer is the first foam, such a decrease in stability will hardly occur even if the hardness of the second foam is small.
  • the stability is unlikely to decrease, the thickness of the first foam can be sufficiently increased, and the cushioning property can be further increased.
  • the relationship between the Asker C hardness Lc of the second foam and the Asker C hardness Nc of the first foam is Lc ⁇ Nc + 10 (1) set in the following equation (1).
  • the reason for setting is that when the Asker C hardness Lc of the second foam, which is a low-rebound material, is 10 ° or more larger than the Asker C hardness Nc of the first foam N, the deformation of the low-resilience material is reduced. This is because it is considered that the impact cannot be sufficiently absorbed or the hardness Nc of the first foam becomes too small and the deformation of the first foam becomes too large, and the stability and buffering properties are lowered.
  • the low repulsion material constituting the second foam is defined by the specific gravity and the restoration speed.
  • the low resilience material is often defined by the storage elastic modulus G ⁇ .
  • the storage elastic modulus G ⁇ it is difficult to cut out a test piece from an actual product and measure the storage elastic modulus G ⁇ .
  • the low resilience material has a higher specific gravity and a lower recovery speed than a general midsole foam. These physical quantities are much easier to measure than the storage modulus G ⁇ .
  • the low repulsion material is defined by the specific gravity and the restoration speed.
  • the storage elastic modulus G ⁇ of the low repulsion material before foaming at a frequency of 10 Hz and 23 ° C. is smaller than that of the first foam, generally 0.01 to 15 MPa, preferably 0.5 to 13 MPa, Preferably, it is 0.5 to 10 MPa.
  • the low repulsion material obtained by foaming the forming material having such a storage elastic modulus G ⁇ is excellent in flexibility.
  • the lower limit value of the storage elastic modulus G ⁇ is theoretically 0 (zero). However, in reality, the storage elastic modulus G ⁇ exceeds zero.
  • a forming material that is actually available on the market has a storage elastic modulus G ⁇ of, for example, 0.01 MPa or more.
  • the storage elastic modulus G ⁇ of the forming material before foaming of the first foam at a frequency of 10 Hz and 23 ° C. is larger than that of the second foam, generally 20 MPa or more, preferably 30 to 300 MPa, more preferably 40 to 200 MPa.
  • the first foam obtained by foaming the forming material having such storage elastic modulus G ⁇ is excellent in resilience, stability and cushioning properties.
  • the expansion ratio of the low resilience material is not particularly limited, but is preferably 1.2 times to 10 times, and more preferably 1.5 times to 7 times.
  • the expansion ratio is obtained by dividing the density before foaming by the density after foaming.
  • the specific gravity of the second foam (low repulsion material) is preferably 0.7 or less, more preferably 0.6 or less, and further preferably 0.55 or less.
  • the lower limit of the specific gravity of the second foam is preferably as small as possible.
  • the specific gravity of the second foam is preferably 0.1 or more, more preferably 0.2 or more.
  • the expansion ratio of the first foam is not particularly limited, but is preferably 1.2 times to 200 times, and more preferably 10 times to 100 times.
  • the specific gravity of the first foam is preferably 0.6 or less, more preferably 0.5 or less, and still more preferably 0.4 or less.
  • the minimum of the specific gravity of a 1st foam is as small as possible.
  • the specific gravity of the first foam is preferably 0.05 or more, more preferably 0.15 or more.
  • the first and second foams include a thermoplastic resin component and any appropriate other component.
  • thermoplastic resin component include thermoplastic elastomers and thermoplastic resins.
  • thermoplastic elastomer for example, a styrene elastomer such as styrene ethylene butylene styrene block copolymer (SEBS); an ethylene-vinyl acetate copolymer elastomer or the like can be used.
  • SEBS styrene ethylene butylene styrene block copolymer
  • SEBS styrene ethylene-vinyl acetate copolymer elastomer
  • thermoplastic resin examples include vinyl acetate resins such as ethylene-vinyl acetate copolymer (EVA), polystyrene, styrene butadiene resin, and the like.
  • EVA ethylene-vinyl acetate copolymer
  • polystyrene polystyrene
  • styrene butadiene resin polystyrene butadiene resin
  • the above resin components can be used alone or in combination of two or more.
  • the outsole is a grounded bottom that has higher wear resistance than the midsole, and generally has a higher hardness than the first foam of the midsole, and also has a higher speed of restoration.
  • the outsole is generally formed of a rubber foam or a rubber or urethane non-foam.
  • the low-resilience second foam may be provided in most of any one or more of the front foot, the middle foot, and the rear foot. This is because if it is not local, it is presumed that a lamination effect is obtained. The majority means more than half of each planar area.
  • FIG. 1A and 1B are a plan view and an inner side view showing a foot skeleton, respectively.
  • 2A, 2B and 2C are compressive stress-strain diagrams of the foam or laminated foam, respectively.
  • FIG. 3A is a schematic perspective view showing a midsole according to an embodiment of the present invention
  • FIG. 3B is a plan view of a second foam.
  • 4A, FIG. 4B, FIG. 4C, FIG. 4D, and FIG. 4E are cross-sectional views of the sole taken along lines AA, BB, CC, DD, and EE of FIG. 3B, respectively.
  • It is. 5A and 5B show ex.
  • FIG. 5C is a chart showing the results of the cushioning test for AD and the normal sample (comparative example), and FIG.
  • FIG. 4 is a chart showing a configuration of a laminated body of AD and normal samples.
  • 6A and 6B are charts showing the peak value and the peak angle at the time of the first strike, respectively.
  • FIG. 7A is a conceptual diagram modeling a cross section of the midsole
  • FIG. 7B is a chart showing a load curve that will be applied to the midsole.
  • FIG. 8A, FIG. 8B, and FIG. 8C are tables showing changes in the structure of the laminate and the compression strain curve.
  • 9A is a cross-sectional view showing the structure of the case 1 laminate
  • FIG. 9B is a chart showing the evaluation results
  • FIG. 9C is a chart showing the evaluation criteria.
  • FIG. 10D are conceptual diagrams showing the structures of the stacked bodies of Cases 11 to 15 and 21 to 25.
  • FIG. 11A is a conceptual diagram modeling the cross section of the midsole
  • FIG. 11B is a conceptual diagram showing the amount of deformation that occurs in the midsole in the 1st strike.
  • 12A, FIG. 12B, FIG. 12C, FIG. 12D, FIG. 12E, and FIG. 12F are charts showing the structures and evaluation results of the stacks of Cases 11, 12, 13, 21, 22, and 23, respectively.
  • 13A, FIG. 13B, FIG. 13C, and FIG. 13D are charts showing the structures and evaluation results of the laminates of Cases 14, 15, 24, and 25, respectively.
  • 14A and 14B are schematic enlarged sectional views showing the first and second foams in an enlarged manner, respectively.
  • each of the first and second foams is provided at least in the majority of the planar area of the hind foot, In the hind foot portion, the second foam layer has an outer average thickness greater than an inner average thickness of the foot, and In the rear foot portion, the first foam layer has an inner average thickness larger than an outer average thickness of the foot.
  • the first foam is disposed in the lower layer in most of the planar region of the rear foot part
  • the second foam is disposed in the upper layer in most of the planar region of the rear foot part.
  • the upper foam layer of the upper layer has an outer average thickness larger than an inner average thickness of the foot
  • the lower layer of the first foam has an inner average thickness larger than an outer average thickness of the foot.
  • the low repulsion material can thicken the outer hind leg portion having a large 1st strike, while making the inner hind foot portion having a small 1st strike thinner. Therefore, high buffering property and stability against the 1st strike can be expected. The above effects can be expected regardless of whether the first and second foams are arranged above and below.
  • the dynamic shearing force that is forwardly applied to the outside of the rear foot portion of the outsole during the first strike is the first foam.
  • One foam will absorb and dissipate. Therefore, it is considered that the dynamic shear force applied to the upper flexible second foam is reduced, and as a result, not only the cushioning property but also the stability can be improved.
  • the thick outer portion of the second foam that supports the lower surface outside the sole at the rear foot portion and the thin foam of the second foam that supports the lower surface inside the sole at the rear foot portion are provided between the inner part. Between the inner part is provided a taper part in which the thickness of the second foam changes thinly as the second foam extends inward, The degree of change in the thickness of the tapered portion in the rear half of the rear foot is greater than the degree of change in the thickness of the outer portion, and the degree of change in the thickness of the tapered portion in the inner portion. Greater than thickness change.
  • the outer portion and the inner portion each support the sole, and therefore do not include the upper and lower winding portions.
  • the first and second foams having different mechanical properties are stacked one above the other, and a tapered portion whose thickness gradually changes as it extends from the inside to the outside is provided. . Therefore, it is possible to form a midsole having different characteristics inside and outside without feeling uncomfortable. Further, since the two foams can be joined not only at the tapered portion but also at the inside and outside, the reliability of adhesion or welding is also improved.
  • the tapered portion is disposed closer to the inner side than the inner and outer centers.
  • the load center of the 1st strike is located slightly outside the center of the inside and outside in the latter half of the rear foot. Therefore, the impact of the first strike is large on the outside. Therefore, since the taper portion is arranged closer to the inside than the center, the impact of the first strike can be buffered with a thick low repulsion material.
  • the average thickness of the central portion including the center between the inner side and the outer side of the upper layer of the second foam in the rear foot portion is the lower surface on the inner side of the sole in the rear foot portion. It is larger than the average thickness of the thin inner portion of the second foam to be supported.
  • the low-rebound material on the upper layer of the rear foot is thick not only on the outside of the foot but also on the inside and outside of the center. Therefore, the impact of the first strike closer to the outside than the center can be buffered by the thick low-rebound material.
  • first and second foams are each further provided in the midfoot part,
  • the average thickness of the second foam layer in the middle foot portion is greater than the minimum thickness of the second foam layer in the inner portion of the rear foot portion, and the outer thickness of the outer foot portion of the rear foot portion. It is smaller than the maximum thickness of the second foam.
  • the second foam layer that is thicker than the inner part of the rear foot is provided on the middle foot, so that when the hardness of the low resilience material is small, it is possible to prevent the middle foot from being pressed or pushed up. Can do.
  • the middle foot portion is thinner than the outer portion of the rear foot portion, it will be useful for suppressing overpronation even when the hardness of the low repulsion material is small.
  • the Asker C hardness of the first foam is set to 50 ° to 65 °
  • the Asker C hardness of the second foam is set to 35 ° to 60 °.
  • the midsole is greatly deformed due to a large load during walking or running. Too much.
  • the hardness of the first foam exceeds 65 ° in Asker C hardness or the hardness of the second foam exceeds 60 ° in Asker C hardness, the deformation becomes too small and the cushioning property is lowered.
  • FIG. 2A shows a stress-strain curve for a low resilience material (LR foam: second foam) having a hardness of 40 ° and a normal foam (first foam) used as a general midsole material.
  • LR foam low resilience material
  • first foam normal foam
  • FIG. 2A shows a stress-strain curve for a low resilience material (LR foam: second foam) having a hardness of 40 ° and a normal foam (first foam) used as a general midsole material.
  • the low resilience material indicated by the solid line is more linear than the first foam indicated by the alternate long and short dash line (Normal foam). Therefore, the low resilience material does not buckle even at low hardness or high hardness, and there is no possibility of suddenly large deformation.
  • the hardness of the first foam is set to 50 ° to 60 ° in Asker C hardness
  • the hardness of the second foam is set to 40 ° to 50 ° in Asker C hardness.
  • the hardness of the second foam is smaller than the hardness of the first foam.
  • the second foam having low resilience has a low deformation speed.
  • the second foam has a strong linearity in the stress-strain curve as described above. Therefore, it is easy to use for a part of the midsole even if the hardness is relatively low.
  • the second foam having low hardness and low resilience plays a role of improving cushioning properties.
  • the first foam since the first foam has a hardness higher than that of the second foam, it helps prevent excessive deformation and reduce the weight.
  • the value of the Asker C hardness of the first foam is 5 ° to 15 ° larger than the value of the Asker C hardness of the second foam.
  • the difference in hardness between the two foams is less than 5 °, the range of hardness that can actually be used will be extremely limited, and it will often be difficult to obtain the desired properties.
  • the hardness difference between the two foams is greater than 15 °, the difference between the stress-strain curves of the two foams will increase, and the deformation behavior will likely be unstable when a load is applied. .
  • the hardness of the first and second foams is equal to each other, and the Asker C hardness is set to 50 ° to 55 °.
  • a hardness range of 50 ° to 55 ° is easy to use for a midsole, and since both have the same hardness, the difference in stress-strain curve between the two foams is small, so that the deformation behavior will be stable.
  • the hardness is equal to each other includes the case where the difference in hardness between the two foams is within 2 °. An error of about 2 ° occurs in the manufacturing process, and if the hardness difference is about this level, the effect will not be lost.
  • the hardness of the first foam is set to 50 ° to 65 ° in Asker C hardness
  • the hardness of the second foam is set to 35 ° -50 ° in Asker C hardness
  • the Asker C hardness value of the first foam is 8 ° to 15 ° larger than the Asker C hardness value of the second foam.
  • both the shock resistance and stability against the first strike are the conventional normal. It will be improved compared to the midsole of foam.
  • the hardness of the first foam is set to 53 ° to 57 ° in Asker C hardness
  • the hardness of the second foam is set to 43 ° to 57 ° as Asker C hardness
  • the hardness of the second foam is smaller than the hardness of the first foam or is equal to the hardness of the first foam.
  • both the buffering property and the stability will be improved as compared with the conventional normal foam midsole.
  • the stability and buffering properties are easily exhibited.
  • the second foam in the upper layer supports an inner portion for supporting the inner back surface of the foot, an outer portion for supporting the outer back surface of the foot, and an inner side surface of the foot.
  • the inner winding upper portion Integrated with the inner volume upper part for As the inner winding upper portion extends from the inner portion toward the inner edge, the inner winding upper portion has a larger thickness in the normal direction perpendicular to the upper surface of the first foam.
  • the upper part of the inner volume supports the inner surface of the foot and stabilizes the support of the foot against the inward movement (blur) of the foot.
  • the inner winding upper part with a large thickness of low repulsion has a low deformation speed, and it is easy to suppress the foot from swinging inward.
  • the hardness of the low-resilience second foam is small, the second foam is more easily damaged than the normal first foam. Therefore, if the second foam is thin, the second foam deteriorates with use, There is a risk of cracks and cracks.
  • the upper part of the inner winding is thick, and the occurrence of cracks and cracks can be prevented.
  • the second foam of the upper layer supports an inner portion for supporting the inner back surface of the foot, an outer portion for supporting the outer back surface of the foot, and an outer side surface of the foot.
  • the outer winding upper portion With an outer winding upper part for As the outer winding upper portion extends from the outer portion toward the outer edge, the outer winding upper portion has a greater thickness in the normal direction perpendicular to the upper surface of the first foam.
  • the upper part of the outer winding supports the outer side surface of the foot, stabilizes the support of the foot against the outward deflection (blur), and easily suppresses the foot from shaking outward. Further, the upper part of the outer winding is thick, and cracks and cracks can be prevented from occurring.
  • the present invention provides a midsole disposed on an outsole having a ground plane
  • the midsole has an upper layer and a lower layer,
  • One or more of the planar area of the front foot, the majority of the planar area of the middle foot, or the majority of the planar area of the rear foot in one of the upper layer and the lower layer is a thermoplastic resin component.
  • the first foam and the second foam have different mechanical properties from each other, In any one of the three regions, the thickness of the first foam is different between the inner side and the outer side of the foot, and the thickness is different in the first foam. 2
  • the thickness of the foam is different between the inner part and the outer part that support the sole of the foot, Between the inner part and the outer part in the upper layer 2, a taper part whose thickness changes as it extends from the inner side to the outer side is provided, The degree of change in thickness of the tapered portion is greater than the degree of change in thickness of the inner portion or the degree of change in thickness of the outer portion.
  • the structure of the foot is significantly different between the inside and the outside.
  • the rear foot 5R is loaded with a large first strike.
  • the middle foot 5M forms a foot arch, but there is a great individual difference in the height of the arch.
  • the front foot 5F is greatly different in how to apply force between the toe-off and the small toe. Accordingly, it may be preferable to use materials having different mechanical properties inside and outside the sole.
  • first and second foams having two mechanical properties are stacked one above the other, and a tapered portion whose thickness changes as it extends from the inside to the outside is provided. Therefore, it is possible to form a midsole having different characteristics inside and outside without feeling uncomfortable.
  • the two foams can be joined not only at the tapered portion but also at the inside and outside, the reliability of adhesion or welding is also improved.
  • the layers of the first and second foams are preferably disposed at least in the majority of the planar area of the hind foot, In the hind foot portion, the second foam layer has an outer average thickness greater than an inner average thickness of the foot, and The layer of the first foam in the rear foot part has an inner average thickness larger than an outer average thickness of the foot, The first foam has an Asker C hardness greater than that of the second foam.
  • the load center G of the first strike is located slightly outside the center of the inside and outside. Therefore, the impact of the first strike is large on the outside. Therefore, the impact of the first strike can be buffered at the outer side of the second foam having a low hardness and a thick thickness.
  • the tapered portion is disposed closer to the inner side than the inner and outer centers.
  • the taper portion is arranged closer to the inside than the center, the possibility that the impact of the first strike can be buffered by the outer portion of the second foam having a small hardness and a large thickness is increased.
  • the layers of the first and second foams are disposed at least in the majority of the planar area of the midfoot, In the middle foot portion, the second foam layer has an outer average thickness larger than an inner average thickness of the foot, and In the middle foot portion, the first foam layer has an inner average thickness larger than an outer average thickness of the foot, The first foam has an Asker C hardness greater than that of the second foam.
  • the second foam in the upper layer is an inner portion for supporting the inner back surface of the foot, an outer portion for supporting the outer back surface of the foot, and an inner side surface of the foot.
  • the inner winding upper portion As the inner winding upper portion extends from the inner portion toward the inner edge, the inner winding upper portion has a thickness in the normal direction perpendicular to the upper surface of the second foam. In this case, the inner upper part supports the inner side surface of the foot and stabilizes the foot support.
  • the second foam in the upper layer is an inner portion for supporting the inner back surface of the foot, an outer portion for supporting the outer back surface of the foot, and an outer side surface of the foot.
  • the outer winding upper part Integrated with the outer winding upper part, As the outer winding upper portion extends from the outer portion toward the outer edge, the outer winding upper portion has a greater thickness in the normal direction perpendicular to the upper surface of the second foam. In this case, the outer winding upper part supports the outer surface of the foot and stabilizes the foot support.
  • the midsole 1 shown in FIG. 3A is disposed on the outsole 4 as shown in FIGS. 4A to 4E. 3A, FIG. 4A to FIG. 4E, FIG. 9A, FIG. 12A to FIG. 12F, and FIG. 13A to FIG. 13D, a low-rebound material, that is, a portion of the second foam S is given a halftone dot.
  • the part is hatched with thick and thin lines.
  • the outsole 4 in FIGS. 4A to 4E has a ground contact surface 4s.
  • the midsole 1 has an upper layer 2 and a lower layer 3.
  • the lower layer 3 includes a first foam N layer having a thermoplastic resin component.
  • the upper layer 2 is composed of a layer of the second foam S having a thermoplastic resin component.
  • the second foam S is continuously arranged in most of the planar area of the front foot 1 ⁇ / b> F, most of the planar area of the middle foot 1 ⁇ / b> M and most or all of the planar area of the rear foot 1 ⁇ / b> R. .
  • the first foam N is arranged in a row in most of the planar area of the front foot portion 1F, most of the planar area of the middle foot portion 1M and most or all of the planar region of the rear foot portion 1R in the lower layer 3. .
  • the forefoot portion 1F, the middle foot portion 1M, and the rear foot portion 1R mean portions that cover the forefoot 5F middle foot 5M and the rear foot 5R of the foot in FIG. 1A, respectively.
  • the forefoot 5F includes five metatarsals and 14 ribs.
  • the middle foot 5M is composed of a scaphoid bone, a cubic bone, and three wedge bones.
  • the rear foot 5R is composed of a talus and a rib.
  • the low resilience material forming the second foam S has a higher viscosity and a lower storage elastic modulus G ⁇ than the first foam N.
  • the low-resilience material is defined as a foam having a specific gravity greater than that of the first foam N and a speed at which the material is restored to its original shape after being deformed.
  • FIG. 14A shows an enlarged conceptual cross section of the second foam S
  • FIG. 14B shows an enlarged conceptual cross section of the first foam N.
  • the ratio of the bubble diameters Ds and Dn to the distances ⁇ s and ⁇ n between the bubbles As is expressed by the following equation (2), and the first foam N is more than the second foam S. Is bigger. Ds / ⁇ s ⁇ Dn / ⁇ n (2)
  • the value corresponding to the micro slenderness ratio R (slenderness ratio) is larger in the first foam N than in the second foam S.
  • the slenderness ratio R is equal to or greater than a certain value, the structure is buckled even by a stress below the elastic limit. Therefore, the second foam S and the first foam N of the present invention can also be defined by the size of the diameter of the bubble As with respect to the distance between the bubbles As, as in the equation (2).
  • the second foam S of the upper layer 2 integrally includes an inner winding upper part 2M, an outer winding upper part 2L, an inner part SM, an outer part SL, and a central part SC. That is, the upper layer 2 is integrally connected from the inner winding upper part 2M to the outer winding upper part 2L.
  • the second foam S of the upper layer 2 supports the inner back surface of the foot.
  • the second foam S of the outer portion SL supports the back surface outside the foot.
  • the inner volume upper part 2M supports the side surface of the inner side M of the foot. As the inner winding upper part 2M extends from the inner side part SM toward the edge of the inner side M, the inner winding upper part 2M has a larger thickness in the normal direction perpendicular to the upper surface of the first foam N.
  • the outer winding upper part 2L supports the side surface of the outer side L of the foot. As the outer winding upper part 2L extends from the outer side SL toward the edge of the outer side L, the outer winding upper part 2L is thicker in the normal direction perpendicular to the upper surface of the first foam N.
  • the upper layer 2 formed of the second foam S has an average thickness of the outer side L larger than an average thickness of the inner side M of the foot.
  • the lower layer 3 formed of the first foam N has an average thickness of the inner side M larger than an average thickness of the outer side L of the foot.
  • the “average thickness of the inner side M” refers to the average thickness of the inner portion of the foot inside and outside the center line
  • the “average thickness of the outside L” refers to the portion outside the foot inner and outer center line.
  • the “average thickness” can be calculated, for example, by dividing the projected area from the upper surface from the volume of the cut out portion in addition to the method of directly measuring the cross section.
  • the central portion SC includes a center between the inner side M and the outer side L of the upper layer 2 of the second foam S, and is disposed between the inner side portion SM and the outer side portion SL.
  • the central portion SC forms a tapered portion ST.
  • the tapered portion ST is formed between the thick outer portion SL of the second foam S and the thin inner portion SM of the second foam S as the second foam S extends to the inner side M.
  • the thickness of the body S changes thinly.
  • the degree of change in the thickness of the tapered portion ST is greater than the degree of change in the thickness of the outer portion SL, and the thickness of the tapered portion ST.
  • the degree of change is greater than the degree of change in the thickness of the inner part SM.
  • the taper portion ST is disposed closer to the inside than the centers of the inner side M and the outer side L in at least a part of the cross section of the rear half portion 1Rr of the rear foot portion 1R. Therefore, the thick part of the second foam S extends inward from the center of the inner side M and the outer side L.
  • the average thickness of the central portion SC including the tapered portion ST is larger than the average thickness of the thin inner portion SM of the second foam S in the rear foot portion 1R.
  • the average thickness of the central portion SC is smaller than the average thickness of the outer portion SL where the second foam S is thick in the rear foot portion 1R.
  • the average thickness of the layer of the second foam S in the middle foot portion 1M in FIG. 4C is larger than the minimum thickness of the layer of the second foam S in the inner portion SM of the rear foot portion 1R in FIG. 4A. And it is smaller than the maximum thickness of the 2nd foam S of the said outside part SL of the said back leg part 1R.
  • the average thickness of the second foam S is smaller in the midfoot part 1M in FIG. 4C than in the rear leg part 1R in FIGS. 4A and 4B, and in the forefoot in FIGS. 4D and 4E than in the midfoot part 1M. Part 1F is even smaller.
  • the thickness ratio of the second foam S to the midsole 1 is larger in the forefoot portion 1F in FIGS. 4D and 4E than in the rear foot portion 1R and the middle foot portion 1M in FIGS. 4A to 4C.
  • Such a distribution of the thickness of the second foam S enhances the cushioning in the rear foot portion 1R. Moreover, when kicking out the forefoot 5F (FIG. 1), it will be possible to suppress the permanent deformation of the forefoot part 1F caused by the large bending of the midsole 1 repeatedly. Moreover, the increase in the weight of the midsole 1 by the 2nd foam S with large specific gravity is made small.
  • the upper layer 2, the lower layer 3 and the outsole 4 are laminated by being bonded or welded together.
  • the upper layer 2 and the lower layer 3 may be bonded to each other in the secondary molded product, or may be welded together when the primary molded product is secondarily molded.
  • An insole (not shown) (not shown) is bonded on the midsole 1.
  • a sock liner (insole) is mounted on the upper of the insole.
  • FIG. 2A shows a compressive stress-strain curve of a foam (hereinafter referred to as “normal foam”) as a general midsole material.
  • normal foam a foam
  • LR foam low repulsion material
  • the normal foam exhibits linearity in which compressive stress and strain are easily proportional to each other at the initial stage of deformation.
  • the stress is about 0.1 MPa
  • the strain increases remarkably with respect to a slight increase in compressive stress.
  • each distance ⁇ n between the adjacent bubbles An with respect to the average diameter Dn of the bubbles An that is, the value of the diameter Dn (Dn / ⁇ n) with respect to the thickness ⁇ n of the micro resin structure Rn is shown in FIG. It is larger than that of the low repulsion material S (Ds / ⁇ s). Therefore, although it exhibits linearity under a small load below a predetermined value, it is considered that buckling occurs in the resin structure Rn when a load above a predetermined value is applied.
  • FIG. There is a stress region where the strain increases rapidly. That is, normal form N has a small specific gravity and a strong non-linearity. Therefore, in order to make the buckling less likely to occur, the normal foam N is preferably a foam having a relatively high hardness.
  • Each of the diameters Dn and Ds is an average value of a large number of bubbles An and As, and each of the distances ⁇ n and ⁇ s is an average value of the shortest distance between adjacent bubbles. It is.
  • the low repulsion material S having a large specific gravity in FIG. 14A the distance ⁇ s between the bubbles As with respect to the diameter of the bubbles As, that is, the value (Ds / ⁇ s) of the average diameter Ds with respect to the minimum thickness ⁇ s of the micro resin structure Rs is normal. Smaller than that of the foam (Dn / ⁇ n). For this reason, the buckling is unlikely to occur, and when the load increases, the strain is likely to increase in proportion thereto. That is, the low repulsion material S has a large specific gravity and a strong linearity. For example, in the case of 40 ° in FIG.
  • the low-rebound material exhibits linearity up to a stress range approximately twice that of normal foam N. Even if the compressive stress is larger than expected, there is no possibility that the strain increases rapidly. Therefore, even if the second foam is a foam having a relatively low hardness, the desired cushioning property is easily obtained.
  • the low repulsion material has a large specific gravity. Therefore, if the entire midsole is formed of a low repulsion material, the sole becomes too heavy. Therefore, the present inventor has invented a midsole that is lightweight and excellent in cushioning properties and the like by laminating the normal foam and the low repulsion material.
  • FIGS. 2B and 2C show compressive stress-strain diagrams of a laminate in which normal foams having different hardnesses (40 ° and 53 °) are laminated with each other.
  • the solid lines in FIGS. 2B and 2C show compressive stress-strain diagrams of a laminate in which normal foams (53 °) and low repulsion materials (40 °) having different hardnesses are laminated.
  • the homogenous laminate of normal foams indicated by the alternate long and short dash line in FIGS. 2B and 2C has a slightly improved linearity of compressive stress and strain compared to the normal foam of single hardness in FIG. 2A.
  • the low-rebound material and the normal foam heterogeneous laminate shown by the solid lines in FIGS. 2B and 2C have greatly improved linearity compared to the homogeneous laminate.
  • the linearity is improved even when the thickness ratio between the low-rebound material and the normal foam in FIG. 2B is 25%: 75%, but the linearity is improved when the thickness ratio is 75%: 25%. It can be seen that the linearity is significantly improved, the linearity is maintained until the stress value is about 0.3 MPa, and the linearity is remarkably improved as compared with a single low repulsion material.
  • the part include a forefoot part including an MP joint that is repeatedly bent greatly during walking and running, and an outer part of a rear foot part to which a large 1st strike is applied.
  • FIG. 5C shows Asker C hardness of the normal foam (first foam N) and the low resilience material (second foam S) of the five types of midsole 1.
  • the test ex. A to D have a laminated structure, but Normal as a comparative example has a normal foam single layer structure like a general midsole.
  • a plurality of subjects sequentially wear each shoe equipped with one of the five types of midsole 1, and with the accelerometer attached to each subject's lower leg, perform a drop drop test,
  • the cushioning property of the forefoot in FIG. 5A and the cushioning property of the rear foot in FIG. 5B were measured by known frequency analysis.
  • the amount of change ⁇ in the varus direction with respect to the leg of the lower leg was measured, and the peak value of the first strike in FIG. 6A was calculated.
  • the amount of change ⁇ in the external rotation direction with respect to the leg of the lower leg was measured, and the peak value was calculated.
  • the evaluation values are shown in each figure.
  • the numerical value on the vertical axis in FIG. 6A indicates the peak value of the change amount ⁇ .
  • the amount of change ⁇ is small, it can be evaluated that the impact of the first strike applied to the soles of the rear legs is small.
  • the 1st peak of the amount of change ⁇ does not appear, and it is estimated that the impact of the 1st strike can be greatly buffered.
  • test ex. In A and B, the same peak value is larger than that of the comparative example of normal foam.
  • a low repulsion material S having an Asker C hardness of 35 ° is disposed on the upper layer 2 (FIG. 4A) of the rear foot 1R.
  • the rate of deformation of the low repulsion material S decreases as the compressive stress increases. Therefore, when the hardness of the low repulsion material S is too small compared to the load, the buffer function of the low repulsion material S is not exhibited, and therefore, it is estimated that the peak value of the variation ⁇ is larger than that of the normal foam comparative example. Is done.
  • the numerical value on the vertical axis in FIG. 6B indicates the peak value of the change amount ⁇ .
  • the peak value of the change amount ⁇ is small, it can be evaluated that the foot is not easily warped or warped, and the stability is high.
  • Test ex. C has a smaller peak value of the change amount ⁇ than the comparative example of the normal form. The reason for this is considered to be that the low repulsion material S of the upper layer 2 has a delay in deformation, and therefore it is difficult for internal warping and external warping to occur. Therefore, test ex. C is considered to be excellent in stability.
  • test ex. D is the test ex. Despite using the same 45 ° low repulsion material as C, the peak value of the amount of change ⁇ is larger than that of the normal foam comparative example. Consider the reason.
  • test ex While the normal form of the lower layer 3 of C is normally used at 55 °, the test ex. That of D is 65 °, which is harder than usual. Therefore, it is considered that the entire sole is felt hard for each subject, and the peak value of the amount of change ⁇ is increased. Therefore, if the wearer is a large athlete and has strong leg strength, test ex. Also in D, it is estimated that the peak value of the change amount ⁇ is small and the stability can be increased.
  • the hardness of the low repulsion material 2 is preferably about 50 ° to 55 °.
  • test ex. B is the test ex. Compared to D, the peak value of the amount of change ⁇ is slightly smaller. This is because test ex. B is test ex. It is presumed that the hardness of the low resilience material S of the upper layer 2 is smaller than that of D and the rigidity of the entire midsole is lowered, and therefore the hardness of the entire sole is close to that of a comparative example of normal foam.
  • test ex. A is the test ex.
  • the peak value of the change amount ⁇ is larger than B and D.
  • the reason is that the test ex. This is probably because the hardness of the lower layer 3 of A is 55 °, which is normally used, and the hardness of the upper layer 2 is 35 °, and the rigidity of the entire midsole is too small for the subject.
  • the peak value of the amount of change ⁇ may be small and stability may be improved.
  • FIG. 8A to FIG. 8C show the deformation state of each virtual laminate when the boundary surface has different inclination states.
  • the displacement of the maximum distortion generation position is small inward and outward, but when the tapered portion ST is provided in the stepped shape of FIG. 8B, the maximum distortion generation position. Large inward and outward displacement.
  • the low resilience material S having a low initial stiffness and the high hardness normal foam N are laminated as shown in FIGS. Was confirmed.
  • FIG. 11B shows an example of the deformation amount and the centroid (center of the drawing) O of the deformation amount.
  • the stability evaluation shown in the actual shoe of FIG. 6B that is, the actual test ex.
  • the test ex In the stability evaluation using AD, the test ex.
  • C In contrast to C, the position of the centroid O is the test ex.
  • the relationship between the digital value of the evaluation standard and the symbol is shown in FIG. 9C.
  • Each digital value in FIG. 9C indicates the distance P from S0 in FIG. 11B.
  • the double circle is the best
  • the single circle is the beta
  • the triangle is the same as the conventional
  • X is determined to be inferior to the conventional.
  • the low resilience material S of the upper layer 2 is laminated on the normal foam N of the lower layer 3.
  • the thickness of the normal foam N of the lower layer 3 is set to 15 mm, and the thickness of the low resilience material S of the upper layer 2 is set to 5 mm.
  • the foams N and S have the same hardness (hereinafter referred to as “the same degree of hardness”) and the Asker C hardness.
  • the angle is set to 50 ° to 55 °, not only cushioning but also stability can be expected.
  • Case 21 of FIG. 12D stability cannot be expected with the same hardness.
  • the midsole having the following relationship can be expected to improve the function. That is, in the midsole 1, the hardness of the normal foam N is set to 50 ° to 65 ° in Asker C hardness, The hardness of the low rebound material S is set to 35 ° -50 ° in Asker C hardness, When the value of the Asker C hardness of the normal foam N is 10 ° to 15 ° larger than the value of the Asker C hardness of the low rebound material S, the improvement of the function can be expected.
  • the hardness of the normal foam N is set to 55 ° in Asker C hardness
  • the hardness of the low repulsion material S is set to 45 ° to 55 ° in Asker C hardness, the improvement of the function can be expected.
  • the hardness of normal foam N is set to 53 ° to 57 ° in Asker C hardness in the midsole 1 of the same Case 11,
  • the hardness of the low rebound material S is set to 43 ° to 57 ° in Asker C hardness, Even if the hardness Lc of the low repulsion material S is smaller than the hardness Nc of the normal foam N or equal to the hardness Nc of the normal foam N, the improvement in the function can be expected.
  • the hardness of the normal foam N is set to 50 ° to 60 ° in Asker C hardness
  • the hardness of the low rebound material S is set to 40 ° -50 ° in Asker C hardness
  • the value of the Asker C hardness of the normal foam N is 5 ° to 15 ° larger than the value of the Asker C hardness of the low repulsion material S, further improvement of the function can be expected.
  • the lower repulsion material S in the forefoot portion 1F can be expected to be more stable with respect to left and right shakes (blurs).
  • the low repulsion material S when the low repulsion material S is disposed in the lower layer 3 of the hind foot part, it is desirable that at least the thickness of the low repulsion material S of the inner part SM is thinner than that of the normal foam N.
  • the thickness of the low repulsion material S will be examined. If the thickness of the low repulsion material S is 13 mm to 17 mm in FIGS. 10A and 10B as in Case 12 of FIG. 12B and Case 13 of FIG.
  • the thickness of the low repulsion material S is 3 mm to 15 mm as shown in FIG. 10A, FIG. 10B and FIG. 10C, as in Case 1 in FIG. 9A, Case 11 in FIG. 12A, Case 21 and Case 23 in FIG.
  • the low rebound material S having a hardness smaller than that of the normal foam N can be used.
  • the low repulsion material S having a thick outer side portion of the rear foot portion and a hardness smaller than that of the normal foam N can be used.
  • the preferable thickness range is estimated to be about 5 mm from the thickness of Case 1 in FIGS. 9A and 9B to about 15 mm from Case 21 in FIG. 12D.
  • the present invention does not particularly limit the thickness of the layer of the low repulsion material S, but it is considered that the thickness of the layer of about 2 mm to 15 mm can be sufficiently adopted.
  • the low resilience material S does not need to be provided over the entire region in each of the regions 1F, 1M, and 1R, and may be provided in the majority of the planar region, that is, in more than half of the planar region.
  • the first strike buffering function will be exhibited even when it is provided at least in the rear half portion 1Rr or at least in the outer portion SL and the central portion SC. .
  • the low repulsion material S may be provided only in the inner portion SM for preventing the push-up, and conversely, the low repulsion material S having a low hardness is used to prevent the pronation. It may be provided only in SL.
  • the low repulsion material S is disposed on the most part including at least a part of the middle foot phalanx joint (MP joint) that is largely bent and on the most part including the part of the main ball that exerts a large stepping force. Also good.
  • MP joint middle foot phalanx joint
  • the low resilience material S may be disposed in two regions of the front foot portion 1F, the middle foot portion 1M, and the rear foot portion 1R.
  • the low resilience material S may be disposed at least on the forefoot portion 1F and the midfoot portion 1M.
  • the low resilience material S may be disposed at least on the front foot portion 1F and the rear foot portion 1R.
  • the low resilience material S may be disposed at least on the middle foot portion 1M and the rear foot portion 1R.
  • the hardness of the foam of the upper layer and / or the lower layer may be different from each other inside and outside.
  • the upper layer and / or the lower layer may contain a cushioning element other than foam, for example, a sheath-like pod filled with non-foamed gel or air.
  • channel may be formed in the lower surface of an upper layer, and / or the upper surface of a lower layer, and the groove
  • the present invention can be applied to a midsole of a shoe sole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

接地面を有するアウトソールの上に配置されるミッドソールであって、ミッドソールは上層と下層とを有し、上層又は下層のうちの一方が熱可塑性の樹脂成分を含む第1発泡体の層を包含し、上層又は下層のうちの他方における前足部の平面領域の大半、中足部の平面領域の大半または後足部の平面領域の大半のうちの1又は2以上の部位が熱可塑性の樹脂成分を含む第2発泡体の層を包含し、第2発泡体は前記第1発泡体よりも比重が大きく、かつ、変形した後に元の形状に復元する速度が小さい低反発材で形成されている。

Description

積層構造を持つミッドソール
 本発明は積層構造を持つミッドソールに関する。
 前足部は一般に厚さが小さい。一方、前足部はMP関節等において大きく、かつ、繰り返し屈曲される。この屈曲が繰り返される部分において、ミッドソールはやがて永久変形を呈する。特に、前足部の上層において前記永久変形が生じ易い。
中足部は足のアーチを支える。このアーチは個人差が大きい。アーチの低い着用者はアーチに突き上げを感じ易く、一方、アーチの高い着用者はアーチが落ち込むことがある。
靴が着地する際、後足部の外側に最も大きな衝撃荷重がソールを介して足裏に負荷される。これを1stストライクというが、この1stストライクの衝撃を緩衝することは重要である。
積層構造のミッドソールは単層構造のそれに比べ別の機能を発揮し易い。
JP58-190401A(図面) JP05-69521A(コラム13) JP07-125107A(要約) JP08-168402A(要約) JP11-266905A(要約) JP2003-79402A(要約) JP2009-178594A(要約) JP2010-525917W(要約) JP2010-94480A(要約)
 ミッドソールは反発力の豊かな発泡体で形成される場合が多い。前記各文献においては硬度が互いに異なる前記発泡体等が用いられている。しかし、一般的なミッドソールに用いる発泡体と、この発泡体よりも低反発の発泡体とを広い領域にわたって積層したミッドソールは知られていない。
 したがって、本発明の目的は低反発の発泡体を広い領域に配置してミッドソールの機能を向上させることである。
 本発明のミッドソールは第1の局面において、
 接地面を有するアウトソールの上に配置されるミッドソールであって、
 前記ミッドソールは上層と下層とを有し、 
 前記上層又は下層のうちの一方が熱可塑性の樹脂成分を含む第1発泡体の層を包含し、
 前記上層又は下層のうちの他方における前足部の平面領域の大半、中足部の平面領域の大半または後足部の平面領域の大半のうちの1又は2以上の部位が熱可塑性の樹脂成分を含む第2発泡体の層を包含し、
 前記第2発泡体は前記第1発泡体よりも比重が大きく、かつ、変形した後に元の形状に復元する速度が小さい低反発材で形成され、
前記第2発泡体SのアスカーC硬度Lcと前記第1発泡体NのアスカーC硬度Ncとの関係が下記の(1)式に設定されている
Lc≦Nc+10…(1)。
本発明のミッドソールは別の局面において、
接地面を有するアウトソールの上に配置されるミッドソールであって、 
 前記ミッドソールは上層と下層とを有し、
 前記下層が熱可塑性の樹脂成分を含む第1発泡体の層を包含し、
 前記上層における前足部の平面領域の大半、中足部の平面領域の大半または後足部の平面領域の大半のうちの1又は2以上の部位が熱可塑性の樹脂成分を含む第2発泡体の層を包含し、
 前記第2発泡体は前記第1発泡体よりも比重が大きく、かつ、変形した後に元の形状に復元する速度が小さい低反発材で形成され、
前記第2発泡体のアスカーC硬度Lcと前記第1発泡体NのアスカーC硬度Ncとの関係が下記の(1)式に設定されている
Lc≦Nc+10…(1)。
比重の大きい低反発の第2発泡体は、気泡間の距離が第1発泡体の気泡間の距離に比べ大きい。そのため、座屈が生じにくく、荷重の増大と歪みの増大とが比例し易い。つまり、第2発泡体は比重は大きいが、変形の線形性(linearity)が強い。したがって、第2発泡体は比較的低硬度の発泡体でも採用することができる。
一方、比重の小さい第1発泡体は気泡間の距離が第2発泡体のそれに比べ小さい。そのため、小さな所定以下の荷重下では、線形性を呈するものの、所定以上の荷重が負荷されると、前記樹脂組織に座屈が生じると考えられ、小さな荷重の増加で歪みが急激に増大する応力域が存在する。つまり、第1発泡体は比重は小さいが非線形性が強い。したがって、第1発泡体は比較的高硬度の発泡体を用いるのが好ましい。
ここで、両者を上下に積層した積層体は、両者の持つ機械的(物理的)性質を重ね合わせた性質に近くなる。そのため、前記積層体は線形性を呈する荷重の領域が第1発泡体よりも大きくなり、かつ、重量も然程増大しない。
したがって、上下層の硬度や厚さを適宜に設定することにより、これまでには得られなかった新しい衝撃緩衝性(クッション性)と安定性を発揮する可能性がある。
低反発の第2発泡体は、変形した後に元の形状に復元する速度が小さく、したがって、一般に、外力が負荷された場合の変形速度も小さい。そのため、エネルギーを吸収し易く、クッション性の向上が期待できる。
一方、負荷が大きい場合にも、走行や歩行のように、負荷の加わる時間が短い動荷重の場合、低反発の第2発泡体は変形の遅れにより、然程大きな変形が生じにくく、安定性の向上が期待できる。
特に、第1発泡体との積層により、低反発の第2発泡体が厚くなりすぎるのを抑制でき、低反発の第2発泡体の過大な変形を抑制できる。そのため、クッション性および安定性の双方の向上が期待できる。
以上の効果は、第1および第2発泡体を上下のいずれに配置しても期待できる。
たとえば、第2発泡体の前記硬度が第1発泡体のそれよりも小さい場合は、変形の遅れが生じる第2発泡体がアウトソールの直ぐ上にあると、アウトソールの一部に局所的に水平方向に大きな摩擦力が働いた際に、第2発泡体が大きく剪断変形(スベリ)を生じ、そのため、第2発泡体が厚すぎると、路面と第1発泡体との間が大きくズレ、安定性が低下するかもしれない。これに対し、下層が第1発泡体であれば、第2発泡体の硬度が小さくても、このような安定性の低下は生じにくいだろう。
したがって、前記第2の局面においては、前記安定性が低下しにくく、第1発泡体の厚さを十分に大きくすることができ、クッション性の更なる増大を図り得るだろう。
本発明において、前記第2発泡体のアスカーC硬度Lcと前記第1発泡体のアスカーC硬度Ncとの関係は下記の(1)式に設定されている
Lc≦Nc+10…(1)。
このように、設定した理由は、低反発材である第2発泡体のアスカーC硬度Lcが第1発泡体NのアスカーC硬度Ncよりも10°以上大きいと、低反発材の変形が小さくなりすぎて衝撃を十分に吸収できなかったり、あるいは、第1発泡体の硬度Ncが小さくなりすぎて、第1発泡体の変形が大きくなりすぎ、安定性や緩衝性が低下すると考えられるからである。
ここで、本発明において、第2発泡体を構成する低反発材は、比重および復元速度で定義されている。
一般に、低反発材は貯蔵弾性率Gωで定義される場合が多い。しかし、実際の製品から試験片を切り出し、前記貯蔵弾性率Gωを測定することは困難を伴う。
一方、低反発材は一般のミッドソールの発泡体に比べ比重が大きく、かつ、復元速度が小さい。これらの物理量は貯蔵弾性率Gωに比べ測定が超かに容易である。
そこで、本発明においては、低反発材を比重と復元速度で定義した。
周波数10Hz、23℃における低反発材の発泡前の形成材料の貯蔵弾性率Gωは第1発泡体のそれよりも小さく、一般に0.01~15MPaで、好ましくは0.5~13MPaであり、より好ましくは0.5~10MPaである。このような貯蔵弾性率Gωを有する形成材料を発泡させて得た低反発材は、柔軟性に優れる。前記貯蔵弾性率Gωの下限値は、理論上、0(零)である。もっとも、現実的には、その貯蔵弾性率Gωは0を超えている。実際に市場で入手できる形成材料は、その貯蔵弾性率Gωが、例えば0.01MPa以上である。
周波数10Hz、23℃における第1発泡体の発泡前の形成材料の貯蔵弾性率Gωは、第2発泡体のそれよりも大きく、一般に20MPa以上で好ましくは30~300MPaであり、より好ましくは40~200MPaである。このような貯蔵弾性率Gωを有する形成材料を発泡させて得た第1発泡体は反発性、安定性、クッション性に優れる。
低反発材の発泡倍率は、特に限定されないが、好ましくは、1.2倍~10倍であり、より好ましくは、1.5倍~7倍である。前記発泡倍率は、発泡前の密度を発泡後の密度により除算して求められる。
軽量化の観点から、前記第2発泡体(低反発材)の比重は、好ましくは0.7以下であり、より好ましくは0.6以下であり、更に好ましくは0.55以下である。また、第2発泡体の比重の下限は、出来るだけ小さいことが好ましい。たとえば、第2発泡体の比重は、0.1以上が好ましく、より好ましくは0.2以上である。
第1発泡体の発泡倍率は、特に限定されないが、好ましくは、1.2倍~200倍であり、より好ましくは、10倍~100倍である。
軽量化の観点から、前記第1発泡体の比重は、好ましくは0.6以下であり、より好ましくは0.5以下であり、更に好ましくは0.4以下である。また、第1発泡体の比重の下限は、出来るだけ小さいことが好ましい。たとえば、第1発泡体の比重は、0.05以上が好ましく、より好ましくは0.15以上である。
第1および第2発泡体は、熱可塑性の樹脂成分と任意の適宜の他の成分とを含む。前記熱可塑性の樹脂成分としては、例えば、熱可塑性エラストマーおよび熱可塑性樹脂が挙げられる。
前記熱可塑性エラストマーの種類としては、例えば、スチレンエチレンブチレンスチレンブロック共重合体(SEBS)などのスチレン系エラストマー;エチレン-酢酸ビニル共重合体系エラストマーなどを用いることができる。
前記熱可塑性樹脂の種類としては、例えば、エチレン-酢酸ビニル共重合体(EVA)などの酢酸ビニル系樹脂やポリスチレン、スチレンブタジエン樹脂などを用いることができる。
以上の樹脂成分は、1種単独で又は2種以上を併用できる。
アウトソールはミッドソールよりも耐摩耗性の大きい接地底で、一般に、ミッドソールの第1発泡体より硬度が大きく、かつ、前記復元する速度も大きい。また、アウトソールは一般にゴムの発泡体やゴム又はウレタンの非発泡体で形成される。
本発明において、低反発の第2発泡体は、前足部、中足部、または後足部のうちのいずれか1以上の部位の大半に設けられていればよい。局部的でなければ、積層効果が得られると推測されるからである。
なお、大半とは各平面領域の半分以上という意味である。
図1Aおよび図1Bは、それぞれ、足の骨格を示す平面図および内側面図である。 図2A、図2Bおよび図2Cは、それぞれ、発泡体または積層発泡体の圧縮応力-歪線図である。 図3Aは本発明の実施例にかかるミッドソールを示す概略斜視図、図3Bは第2発泡体の平面図である。 図4A、図4B、図4C、図4Dおよび図4Eは、それぞれ、図3BのA-A線、B-B線、C-C線、D-D線およびE-E線におけるソールの断面図である。 図5Aおよび図5Bはex.A~Dおよびノーマルサンプル(比較例)のクッショニングテストの結果を示す図表、図5Cは前記テストex.A~Dおよびノーマルサンプルの積層体の構成を示す図表である。 図6Aおよび図6Bは、それぞれ、1stストライク時のピーク値およびピーク角度を示す図表である。 図7Aはミッドソールの横断面をモデル化した概念図、図7Bはミッドソールに負荷されるであろう荷重曲線を示す図表である。 図8A、図8Bおよび図8Cは、積層体の構造および圧縮歪曲線の変化を示す図表である。 図9AはCase1の積層体の構造を示す断面図、図9Bは評価結果を示す図表、図9Cは評価基準を示す図表である。 図10A、図10B、図10Cおよび図10Dは、Case11~15および21~25の積層体の構造を示す概念図である。 図11Aはミッドソールの横断面をモデル化した概念図、図11Bは1stストライクにおいてミッドソールに生じる変形量を示す概念図である。 図12A、図12B、図12C、図12D、図12Eおよび図12Fは、それぞれ、Case11,12,13,21,22および23の積層体の構造および評価結果を示す図表である。 図13A、図13B、図13Cおよび図13Dは、それぞれ、Case14,15,24および25の積層体の構造および評価結果を示す図表である。 図14Aおよび図14Bは、それぞれ、第1および第2発泡体を拡大して示す模式的な拡大断面図である。
 好ましくは、前記第1および第2発泡体が、それぞれ、少なくとも後足部の平面領域の大半に設けられ、
 前記後足部において前記第2発泡体の層は、足の内側の平均厚さよりも外側の平均厚さが大きく、かつ、
 前記後足部において前記第1発泡体の層は、足の外側の平均厚さよりも内側の平均厚さが大きい。
より好ましくは、前記後足部の前記平面領域の大半には前記第1発泡体が下層に配置され、かつ、前記後足部の前記平面領域の大半には前記第2発泡体が上層に配置され、かつ、
前記後足部において前記上層の前記第2発泡体の層は、足の内側の平均厚さよりも外側の平均厚さが大きく、かつ、
前記後足部において前記下層の前記第1発泡体の層は、足の外側の平均厚さよりも内側の平均厚さが大きい。
 靴が着地する際、後足部の外側に最も大きな衝撃荷重がソールを介して足裏に負荷される。これを1stストライクというが、この1stストライクが低反発の第2発泡体に負荷されることで、衝撃を緩衝することができる。
 しかも、1stストライクの大きな荷重は短時間に負荷される故、第2発泡体が低硬度でも変形の遅い第2発泡体の変形が大きくなりすぎるのを抑制して、足の支持の安定性が向上することが期待できる。
 すなわち、この場合、低反発材は1stストライクが大きい外側の後足部が厚く、一方、1stストライクが小さい内側の後足部を薄くすることができる。そのため、1stストライクに対する高い緩衝性と安定性が期待できる。
 以上の効果は、第1および第2発泡体を上下のいずれに配置しても期待できる。
特に、比較的硬度の大きい第1発泡体を下層に配置している場合、1stストライク時に、アウトソールの後足部の外側に負荷されるであろう前方への動的な剪断力が前記第1発泡体で吸収および散逸されるだろう。そのため、上層の柔軟な第2発泡体に負荷される動的な剪断力が小さくなると考えられ、その結果、クッション性だけでなく、安定性も向上し得る。
より好ましくは、前記後足部において足裏の外側の下面を支持する前記第2発泡体の厚い外側部と、前記後足部において足裏の内側の下面を支持する前記第2発泡体の薄い内側部との間には、前記第2発泡体が内側に延びるに従い前記第2発泡体の厚さが薄く変化するテーパ部が設けられ、
 前記後足部の後半部において前記テーパ部の厚さの変化の度合が前記外側部の厚さの変化の度合よりも大きく、かつ、前記テーパ部の厚さの変化の度合が前記内側部の厚さの変化の度合よりも大きい。
ここで、内側部又は外側部に局所的な凹凸による厚さの大きな変化があっても、安定性およびクッション性の機能を大きく損なわない限り本態様に含まれる。また、外側部および内側部は、それぞれ、足裏を支持するものであるから内外縁の巻上部を含まない。
足の内外で機械的性質の異なる素材の厚さが急激に変化すると、境界部分に違和感が生じ易い。
 これに対し、本態様では、互いに異なる機械的性質を持つ第1および第2発泡体を上下に積層し、かつ、内側から外側に延びるに従い徐々に厚さの変化するテーパ部が設けられている。そのため、前記違和感を感じることなく、内外で互いに特性の異なるミッドソールを形成することができる。
 また、2つの発泡体はテーパ部だけではなく、内側および外側においても面で接合され得るから、接着ないし溶着の確実性も向上する。
 更に好ましくは、前記後足部の後半部の少なくとも一部の横断面において、前記テーパ部が内側と外側の中心よりも内側寄りに配置されている。
 1stストライクの荷重中心は後足部の後半部において内外の中心よりも若干外側寄りに位置する。そのため、前記1stストライクの衝撃は外側が大きい。
 したがって、前記テーパ部が中心よりも内側寄りに配置されていることで、前記1stストライクの衝撃を厚い低反発材で緩衝することができる。
 別の更に好ましい例において、前記後足部における前記第2発泡体の上層の前記内側と前記外側の間の中心を含む中央部の平均厚さが前記後足部において足裏の内側の下面を支持する前記第2発泡体の薄い内側部の平均厚さよりも大きい。
 この場合、後足部の上層の低反発材は足の外側だけでなく、内外の中央部においても厚い。したがって、中心よりも外側寄りの1stストライクの衝撃を厚い低反発材で緩衝することができる。
 更に別の好ましい例では、前記第1および第2発泡体がそれぞれ中足部に更に設けられ、
 前記中足部における前記第2発泡体の層の平均厚さは、前記後足部の内側部の第2発泡体の層の最小厚さよりも大きく、かつ、前記後足部の前記外側部の第2発泡体の最大厚さよりも小さい。
 中足部の足のアーチの高さは、個人差が大きい。したがって、後足部の内側部よりも厚い第2発泡体の層は中足部に設けられていることで、低反発材の硬度が小さい場合、中足部において圧迫や突き上げを感じるのを防止し得る。
 特に、中足部が後足部の外側部よりも薄いことで、低反発材の硬度が小さい場合でも、オーバープロネーションの抑制にも役立つだろう。
好ましくは、前記第1発泡体のアスカーC硬度が50°~65°に設定され、 
前記第2発泡体のアスカーC硬度が35°~60°に設定されている。
第1発泡体の硬度がアスカーC硬度で50°未満であったり、第2発泡体の硬度がアスカーC硬度で35°未満であると、歩行や走行の大きい荷重により、ミッドソールの変形が大きくなりすぎる。
一方、第1発泡体の硬度がアスカーC硬度で65°を超えたり、第2発泡体の硬度がアスカーC硬度で60°を超えると、変形が小さくなりすぎて、クッション性が低下する。
 図2Aは硬度が40°の低反発材(L.R.foam:第2発泡体)と一般的なミッドソール材として用いられるノーマルフォーム(第1発泡体)についての応力-歪曲線を示す。
 図2Aにおいて、実線で示す低反発材は一点鎖線で示す第1発泡体(Normal foam)に比べ線形性が強い。したがって、低反発材は低硬度でも高硬度でも座屈することなく、急激に大きく変形するおそれがない。
 より好ましくは、前記第1発泡体の硬度がアスカーC硬度で50°~60°に設定され、前記第2発泡体の硬度がアスカーC硬度で40°~50°に設定され、
 前記第2発泡体の硬度が前記第1発泡体の硬度よりも小さい。
低反発の第2発泡体は変形の速度が小さい。また、第2発泡体は前述のように応力―歪曲線における線形性が強い。そのため、比較的低硬度であってもミッドソールの一部に用い易い。この低硬度・低反発の第2発泡体はクッション性を向上させる役割を果たす。
一方、第1発泡体は硬度が第2発泡体のそれよりも大きいことで、過度の変形防止や軽量化に役立つ。
 更に好ましくは、前記第1発泡体の前記アスカーC硬度の値が、第2発泡体の前記アスカーC硬度の値に比べ、5°~15°大きい。
両発泡体の硬度差が5°よりも小さいと、実際に用いることのできる硬度の範囲が極めて限られたものとなり、所期の特性を得るのが難しい場合が多くなるだろう。
一方、両発泡体の硬度差が15°よりも大きいと、両発泡体の応力―歪曲線の相違が多きくなり、荷重が負荷された際の、変形の挙動が不安定になり易いだろう。
別の好ましい例では、前記第1および第2発泡体の硬度が互いに同等で、かつ、アスカーC硬度で50°~55°に設定されている。
50°~55°の硬度範囲はミッドソールに用い易く、両者の硬度が同等であることにより、両発泡体の応力-歪曲線の相違が小さく、そのため、変形の挙動が安定し易いだろう。
ここで、「硬度が互いに同等」とは、両発泡体の硬度差が2°以内の場合を含む。製造上2°程度の誤差が生じるし、この程度の硬度差であれば、前記効果が損なわれないだろう。
後足部における上層の第2発泡体の外側が内側に比べ厚いミッドソールにおいて、好ましくは前記第1発泡体の硬度がアスカーC硬度で50°~65°に設定され、
前記第2発泡体の硬度がアスカーC硬度で35°~50°に設定され、
前記第1発泡体の前記アスカーC硬度の値が、第2発泡体の前記アスカーC硬度の値に比べ、8°~15°大きい。
かかる硬度範囲および硬度差で、低反発の第1発泡体を上層の外側で厚く、かつ、内側で薄く配置した場合、後述するように、1stストライクに対する緩衝性と安定性の双方が従来のノーマルフォーム(Normal foam)のミッドソールに比べ向上するだろう。
後足部における上層の第2発泡体の外側が内側に比べ厚いミッドソールにおいて、前記第1発泡体の硬度がアスカーC硬度で53°~57°に設定され、
前記第2発泡体の硬度がアスカーC硬度で43°~57°に設定され、
前記第2発泡体の硬度が前記第1発泡体の硬度よりも小さいか、あるいは、前記第1発泡体の硬度と同等である。
この場合も、後述するように、前記緩衝性と安定性の双方が従来のノーマルフォームのミッドソールに比べ向上するだろう。
本ミッドソールにおいて、前記第1および第2発泡体の層が少なくとも前記後足部の大半に配置されている場合、前記安定性と緩衝性を発揮し易い。
別の好ましい例では、前記上層の第2発泡体は足の内側の裏面を支持するための内側部と、足の外側の裏面を支持するための外側部と、足の内側の側面を支持するための内巻上部とを一体に備え、
 前記内巻上部が前記内側部から内側の縁に向かって延びるに従い前記内巻上部は前記第1発泡体の上面に直交する法線方向の厚さが大きい。
 内巻上部は足の内側面を支え、足の内側への振れ(ブレ)に対し、足の支持を安定させる。特に、低反発の厚さの大きい内巻上部は変形速度が小さく、足が内側へ振れ(ブレ)るのを抑制し易い。
 低反発の第2発泡体の硬度が小さい場合、第2発泡体は通常の第1発泡体よりも傷付き易く、そのため、第2発泡体が薄いと第2発泡体が使用に伴い劣化し、ひび割れや亀裂の生じるおそれがある。これに対し、これらの態様では前記内巻上部が厚く、ひび割れや亀裂の発生を防止し得る。
 更に別の好ましい例では、前記上層の第2発泡体は足の内側の裏面を支持するための内側部と、足の外側の裏面を支持するための外側部と、足の外側の側面を支持するための外巻上部とを一体に備え、
 前記外巻上部が前記外側部から外側の縁に向かって延びるに従い前記外巻上部は前記第1発泡体の上面に直交する法線方向の厚さが大きい。
 同様に、外巻上部は足の外側面を支え、足の外側への振れ(ブレ)に対し、足の支持を安定させ、足が外側へブレるのを抑制し易い。また、外巻上部が厚く、ひび割れや亀裂の発生を防止し得る。
本発明は更に別の局面において、接地面を有するアウトソールの上に配置されるミッドソールであって、
 前記ミッドソールは上層と下層とを有し、
 前記上層又は下層のうちの一方における前足部の平面領域の大半、中足部の平面領域の大半または後足部の平面領域の大半のうちの1又は2以上の部位が熱可塑性の樹脂成分を有する第発泡体の層を包含し、
 前記上層又は下層のうちの他方における前記第1発泡体の層が配置された前足部の平面領域の大半、中足部の平面領域の大半または後足部の平面領域の大半のうちの1又は2以上の部位が熱可塑性の樹脂成分を有する第2発泡体の層を包含し、
 前記第1発泡体と前記第2発泡体とは互いに機械的性質が異なり、
 前記3つの領域のうちいずれか1つにおいて、前記第1発泡体の厚さが足の内側と外側とで異なっており、かつ、前記第1発泡体の厚さの異なっている前記領域において第2発泡体の厚さが足の裏側を支える内側部と外側部で異なっており、
 前記上層2における内側部と外側部との間には、内側から外側に延びるに従い厚さの変化するテーパ部が設けられ、
 前記テーパ部の厚さの変化の度合が前記内側部の厚さの変化の度合、あるいは、前記外側部の厚さの変化の度合いよりも大きい。
図1Aに示すように、足は内側と外側とで構造が著しく異なる。
 たとえば、後足5Rは外側に大きな1stストライクが負荷される。中足5Mは足のアーチを形成するが、アーチの高さの個人差が大きい。前足5Fはトウオフの際の母趾と小趾とで力の加え方が大きく異なる。
 したがって、ソールも内外で互いに機械的性質の互いに異なる素材を採用するのが好ましい場合がある。
しかし、足の内外で機械的性質の異なる素材を突き合わせ接合すると、接合部分に素材の相違による違和感が生じ易い。
これに対し、本局面では、2つの機械的性質を持つ第1および第2発泡体を上下に積層し、かつ、内側から外側に延びるに従い厚さの変化するテーパ部が設けられている。そのため、前記違和感を感じることなく、内外で互いに特性の異なるミッドソールを形成することができる。
また、2つの発泡体はテーパ部だけでなく、内側および外側においても面で接合され得るから、接着ないし溶着の確実性も向上する。
かかる局面において、好ましくは少なくとも前記後足部の平面領域の大半に前記第1および第2発泡体の層が配置され、
前記後足部において前記第2発泡体の層は、足の内側の平均厚さよりも外側の平均厚さが大きく、かつ、
 前記後足部において前記第1発泡体の層は、足の外側の平均厚さよりも内側の平均厚さが大きく、
前記第1発泡体は前記第2発泡体よりもアスカーC硬度が大きい。
1stストライクの荷重中心Gは内外の中心よりも若干外側寄りに位置する。そのため、前記1stストライクの衝撃は外側が大きい。したがって、前記1stストライクの衝撃を硬度が小さく、かつ、厚い第2発泡体の外側部で緩衝することができる、
より好ましくは、前記後足部の後半部の少なくとも一部の横断面において、前記テーパ部が内側と外側の中心よりも内側寄りに配置されている。
前記テーパ部が中心よりも内側寄りに配置されていることで、前記1stストライクの衝撃を硬度の小さい、かつ、厚い第2発泡体の外側部で緩衝できる可能性が高まる。
 好ましくは、少なくとも前記中足部の平面領域の大半に前記第1および第2発泡体の層が配置され、
 前記中足部において前記第2発泡体の層は、足の内側の平均厚さよりも外側の平均厚さが大きく、かつ、
 前記中足部において前記第1発泡体の層は、足の外側の平均厚さよりも内側の平均厚さが大きく、
 前記第1発泡体は前記第2発泡体よりもアスカーC硬度が大きい。
 この場合、プロネーションの抑制を図り得る。
 好ましくは、前記上層における前記第2発泡体は足の内側の裏面を支持するための内側部と、足の外側の裏面を支持するための外側部と、足の内側の側面を支持するための内巻上部とを一体に備え、
 前記内巻上部が前記内側部から内側の縁に向かって延びるに従い前記内巻上部は前記第2発泡体の上面に直交する法線方向の厚さが大きい。
 この場合、内巻上部は足の内側面を支え、足の支持を安定させる。
 好ましくは、前記上層における前記第2発泡体は足の内側の裏面を支持するための内側部と、足の外側の裏面を支持するための外側部と、足の外側の側面を支持するための外巻上部とを一体に備え、
 前記外巻上部が前記外側部から外側の縁に向かって延びるに従い前記外巻上部は前記第2発泡体の上面に直交する法線方向の厚さが大きい。
 この場合、外巻上部は足の外側面を支え、足の支持を安定させる。
本発明は、添付の書類を参考にした以下の好適な実施例の説明からより明瞭に理解されるであろう。しかしながら、実施例および図面は単なる図示および説明のためのものであり、本発明の範囲を定めるために利用されるべきものではない。本発明の範囲は請求の範囲のみによって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
 以下、本発明の実施例が図面にしたがって説明される。
図3Aに示すミッドソール1は、図4A~図4Eのように、アウトソール4の上に配置される。図3A、図4A~図4E、図9A、図12A~図12Fおよび図13A~図13Dにおいて、低反発材つまり第2発泡体Sの部位には網点が施され、第1発泡体Nの部位には太線と細線でハッチングが施されている。
なお、図4A~図4Eのアウトソール4は接地面4sを有する。
 図3Aにおいて、前記ミッドソール1は上層2と下層3とを有する。
 前記下層3は熱可塑性の樹脂成分を有する第1発泡体Nの層からなる。上層2は熱可塑性の樹脂成分を有する第2発泡体Sの層からなる。
 前記上層2における前足部1Fの平面領域の大半、中足部1Mの平面領域の大半および後足部1Rの平面領域の大半又は全部の部位において、第2発泡体Sが連なって配置されている。
 前記下層3における前足部1Fの平面領域の大半、中足部1Mの平面領域の大半および後足部1Rの平面領域の大半又は全部の部位において、第1発泡体Nが連なって配置されている。
 前記前足部1F、中足部1Mおよび後足部1Rとは、それぞれ、図1Aの足の前足5F中足5Mおよび後足5Rを覆う部位を意味する。
前記前足5Fは5本の中足骨と14個の趾骨からなる。前記中足5Mは舟状骨、立方骨および3個の楔状骨からなる。前記後足5Rは距骨および踵骨からなる。
前記第2発泡体Sを形成する低反発材は、第1発泡体Nよりも粘性が大きく、貯蔵弾性率Gωが小さい。本発明においては、低反発材は前記第1発泡体Nよりも比重が大きく、かつ、変形した後に元の形状に復元する速度が小さい発泡体と定義されている。
 図14Aは第2発泡体Sの拡大された概念的な断面を示し、一方、図14Bは第1発泡体Nの拡大された概念的な断面を示す。
 図14Aおよび図14Bにおいて気泡As間の距離Δs,Δnに対する気泡の径Ds,Dnの比は、下記の(2)式で表されるように、第2発泡体Sよりも第1発泡体Nの方が大きい。
         Ds/Δs<Dn/Δn…(2)
つまり、ミクロの細長比R(slenderness ratio)に対応する値が、第2発泡体Sよりも第1発泡体Nの方が大きい。ここで、前記細長比Rが一定以上になると構造物には弾性限界以下の応力でも座屈が生じる。したがって、本発明の第2発泡体Sおよび第1発泡体Nは、前記(2)式のように、気泡As間の距離に対する気泡Asの径の大小によって定義することも可能である。
図4A~図4Eに示すように、上層2の第2発泡体Sは、内巻上部2M、外巻上部2L、内側部SM、外側部SLおよび中央部SCとを一体に有する。すなわち、上層2は内巻上部2Mから外巻上部2Lまで一体に連なっている。
 前記内側部SMにおいて、前記上層2の第2発泡体Sは足の内側の裏面を支持する。前記外側部SLの第2発泡体Sは足の外側の裏面を支持する。
 前記内巻上部2Mは、足の内側Mの側面を支持する。前記内巻上部2Mは前記内側部SMから内側Mの縁に向かって延びるに従い、前記内巻上部2Mは前記第1発泡体Nの上面に直交する法線方向の厚さが大きい。
 前記外巻上部2Lは、足の外側Lの側面を支持する。前記外巻上部2Lは前記外側部SLから外側Lの縁に向かって延びるに従い前記外巻上部2Lは前記第1発泡体Nの上面に直交する法線方向の厚さが大きい。
図4Aおよび図4Bの前記後足部1Rにおいて、前記第2発泡体Sで形成される上層2は、足の内側Mの平均厚さよりも外側Lの平均厚さが大きい。一方、前記後足部1Rにおいて、前記第1発泡体Nで形成される下層3は、足の外側Lの平均厚さよりも内側Mの平均厚さが大きい。ここで、「内側Mの平均厚さ」とは、足の内外中心線よりも内側部分の平均厚さをいい、「外側Lの平均厚さ」とは、足の内外中心線よりも外側部分の平均厚さをいう。なお、本発明において、「平均厚さ」は、例えば、断面を直接測定する方法に加え、切り出した部位の体積から上面からの投影面積を除することで算出することができる。
前記中央部SCは第2発泡体Sの上層2の内側Mと外側Lの間の中心を含み、前記内側部SMと外側部SLとの間に配置されている。前記後足部1Rにおいて中央部SCはテーパ部STを形成する。
前記テーパ部STは前記第2発泡体Sの厚い外側部SLと、前記第2発泡体Sの薄い内側部SMとの間において、前記第2発泡体Sが内側Mに延びるに従い前記第2発泡体Sの厚さが薄く変化する。
図4Aの前記後足部1Rの後半部1Rrにおいて、前記テーパ部STの厚さの変化の度合は前記外側部SLの厚さの変化の度合よりも大きく、かつ、前記テーパ部STの厚さの変化の度合は前記内側部SMの厚さの変化の度合よりも大きい。
 図4Aにおいて、前記後足部1Rの後半部1Rrの少なくとも一部の横断面において、前記テーパ部STは内側Mと外側Lの中心よりも内側寄りに配置されている。したがって、第2発泡体Sの厚い部分は前記内側Mと外側Lの中心よりも内側に向かって延びている。
 図4Aおよび図4Bに示すように、前記テーパ部STを含む中央部SCの平均厚さは、前記後足部1Rにおいて、第2発泡体Sの薄い内側部SMの平均厚さよりも大きい。また、前記中央部SCの平均厚さは、後足部1Rにおいて、第2発泡体Sの厚い外側部SLの平均厚さよりも小さい。
 図4Cの前記中足部1Mにおける前記第2発泡体Sの層の平均厚さは、図4Aの前記後足部1Rの内側部SMの第2発泡体Sの層の最小厚さよりも大きく、かつ、前記後足部1Rの前記外側部SLの第2発泡体Sの最大厚さよりも小さい。
 前記第2発泡体Sの平均厚さは、図4Aおよび図4Bの後足部1Rよりも図4Cの中足部1Mの方が小さく、前記中足部1Mよりも図4Dおよび図4Eの前足部1Fの方が更に小さい。
 一方、前記第2発泡体Sのミッドソール1に対する厚さの比は、図4Dおよび図4Eの前足部1Fが、図4A~図4Cの後足部1Rおよび中足部1Mに比べ大きい。
このような第2発泡体Sの厚さの分布は、後足部1Rにおける緩衝性を高める。
また、前足5F(図1)を蹴り出す際にミッドソール1が繰り返し大きく屈曲することによる前足部1Fの永久変形の生じるのを抑制し得るだろう。また、比重の大きい第2発泡体Sによるミッドソール1の重量の増大を小さくする。
前記上層2、下層3およびアウトソール4は互いに接着ないし溶着されて積層される。たとえば、上層2と下層3とは、二次成型品が互いに接着されてもよいし、あるいは、一次成型品を二次成型する際に互いに溶着されてもよい。
前記ミッドソール1の上には、図示しないインソール(中底)が接着される。なお、前記インソールの更に上にはソックライナー(中敷き)がアッパー内に装着される。
 つぎに、本発明の積層体の機械的性質、作用および効果について説明される。
 図2Aの一点鎖線は、一般的なミッドソール材としての発泡体(以下、「ノーマルフォーム」という。)の圧縮応力-歪曲線を示す。一方、同図の実線は、本発明に用いられる低反発材(L.R.foam)の圧縮応力-歪曲線を示す。なお、両者のアスカーC硬度はいずれも40°である。
図2Aの一点鎖線で示すように、ノーマルフォームにおいては、変形の初期に圧縮応力と歪みが比例し易い線形性を呈する。しかし、応力が0.1MPa程度になると、わずかな圧縮応力の増加に対し歪みが著しく増大する。
このような現象を呈する理由について以下に説明する。
図14Bの前記ノーマルフォームNは気泡Anの平均径Dnに対する隣接する気泡An間の各距離Δnつまり、ミクロの樹脂組織Rnの肉厚Δnに対する前記径Dnの値(Dn/Δn)が、図14Aの低反発材Sのそれ(Ds/Δs)に比べ大きい。そのため、小さな所定以下の荷重下では、線形性を呈するものの、所定以上の荷重が負荷されると、前記樹脂組織Rnに座屈が生じると考えられ、図2Aのように、小さな荷重の増加で歪みが急激に増大する応力域が存在する。つまり、ノーマルフォームNは比重は小さく非線形性が強い。したがって、前記座屈を生じにくくするために、ノーマルフォームNは比較的高硬度の発泡体を用いるのが好ましい。
なお、前記各径Dn,Dsは、それぞれ、多数の気泡An,Asの平均値が採用され、また、各距離Δn,Δsは、それぞれ、隣接する気泡間の最短距離の平均値が用いられるべきである。
一方、図14Aの比重の大きい低反発材Sは、気泡Asの径に対する気泡As間の距離Δsつまりミクロの樹脂組織Rsの最小肉厚Δsに対する前記平均径Dsの値(Ds/Δs)がノーマルフォームのそれ(Dn/Δn)に比べ小さい。そのため、前記座屈が生じにくく、荷重が増大すると、それに比例して歪も増大し易い。つまり、低反発材Sは比重が大きく線形性が強い。たとえば、図2Aの40°(以下、硬度表示「°」はアスカーC硬度の値を示す)の例の場合、低反発材はノーマルフォームNに比べ2倍程度の応力域まで線形性を呈する上、圧縮応力が想定よりも大きくなっても歪みが急激に増大するおそれがない。したがって、第2発泡体は比較的低硬度の発泡体でも、所期のクッション性が得られ易い。
しかし、低反発材は比重が大きい。そのため、ミッドソール全体が低反発材で形成されると、ソールが重くなりすぎる。そこで、本発明者は、前記ノーマルフォームと低反発材とを積層することで、軽量で、かつ、クッション性等に優れたミッドソールを発明した。
以下、積層体の機械的性質について、コンピュータによるシミュレーションで計算した結果について説明する。
なお、計算には単純な重ね合わせの原理を用いた。
図2Bおよび図2Cの一点鎖線は、硬度が互いに異なる(40°と53°)ノーマルフォーム同士が積層された積層体の圧縮応力-歪線図を示す。一方、図2Bおよび図2Cの実線は、硬度が互いに異なるノーマルフォーム(53°)と低反発材(40°)とが積層された積層体の圧縮応力-歪線図を示す。
図2Bおよび図2Cの一点鎖線で示すノーマルフォーム同士の同種積層体は、図2Aの単一硬度のノーマルフォームに比べ、圧縮応力と歪みの線形性が若干改善されている。
一方、図2Bおよび図2Cの実線で示す低反発材とノーマルフォームの異種積層体は、前記同種積層体に比べ、前記線形性が大きく改善されている。また、図2Bの低反発材とノーマルフォームとの厚さ比が25%:75%の場合でも線形性が改善されているが、前記厚さ比が75%:25%の場合には、線形性が著しく大きく改善されており、応力値が約0.3MPa程度まで線形性を保ち、単一の低反発材に比べ著しく前記線形性が向上していることが分かる。
したがって、大きな荷重が負荷される部位においては、ノーマルフォームNに対する低反発材Sの厚さの割合が1/3以上3倍以下であれば用い易いと推測される。同部位としてはたとえば、歩行および走行の際に繰り返し大きく屈曲されるMP関節を含む前足部や、大きな1stストライクが負荷される後足部の外側部が挙げられる。
つぎに、本発明の効果を明瞭にするために、試験例および比較例について説明する。
図3A、図4A~図4Eの構造を有するミッドソール1を5種類用意した。
図5Cは前記5種類のミッドソール1のノーマルフォーム(第1発泡体N)と低反発材(第2発泡体S)のアスカーC硬度を示す。図5Cのテストex.A~Dについては積層構造であるが、比較例としてのNormalについては一般的なミッドソールのようなノーマルフォームの単層構造である。
つぎに、テスト方法について簡単に説明する。
前記5種類のミッドソール1のうちの1つを備えた各靴を複数の被験者(成人)が順次着用し、前記各被験者の下腿に加速度計を装着した状態で、落垂落下テストを行い、公知の周波数解析により、図5Aの前足のクッション性、図5Bの後足のクッション性を測定した。また、下腿の足に対する内反方向への角度の変化量βを測定し、図6Aの1stストライクのピーク値を算出した。更に、同テストにおいて下腿の足に対する外旋方向への角度の変化量γを測定し、そのピーク値を算出した。その評価値を各図に示す。
図5A~図5Cから分かるように、ノーマルフォームのサンプル(比較例)に比べ、35°~45°の低反発材と55°~65°のノーマルフォームを積層したテストex.A~Dのミッドソールは、前足および後足の双方においてクッション性が向上することが分かる。
図6Aの縦軸の数値は前記変化量βのピーク値を示す。前記変化量βが小さい場合、後足の足裏に負荷される1stストライクの衝撃が小さいと評価し得る。
図6Aに示されているように、テストex.CおよびDでは変化量βの1stピークが表れておらず、1stストライクの衝撃を大きく緩衝し得ると推定される。一方、テストex.AおよびBでは同ピーク値がノーマルフォームの比較例のそれよりも大きい。
以下、その理由について考察する。
テストex.CおよびDは後足部1Rの上層2(図4A)にアスカーC硬度が45°の低反発材が配置されており、圧縮応力が増加しても線形性を保ちながら変形すると考えられる。かかる線形性を保った変形は低反発材Sの緩衝機能を発揮させる。そのため、テストex.CおよびDにおいては変化量βの明確な1stピークが表れなかったと推測される。
一方、テストex.AおよびBは後足部1Rの上層2(図4A)にアスカーC硬度が35°の低反発材Sが配置されている。図2Aから分かるように低反発材Sは圧縮応力の増大に伴って変形の割合が小さくなる。したがって、低反発材Sの硬度が負荷に比べ小さすぎる場合、低反発材Sの緩衝機能が発揮されず、そのため、ノーマルフォームの比較例よりも変化量βのピーク値が大きくなったものと推測される。
 本テストは成人を被験者としたため、ソールに大きな負荷が加えられたであろう。しかし、子供、女性、中高年者が着用する場合、前記負荷は小さくなるであろう。その場合、低反発材Sの硬度が35°であっても、ノーマルフォームの比較例に比べ1stストライク(変化量β)のピーク値が小さくなることが十分に期待できる。
つぎに、前記安定性の評価について説明する。
図6Bの縦軸の数値は前記変化量γのピーク値を示す。前記変化量γのピーク値が小さい場合、足の内反りや外反りが生じにくく、安定性が高いと評価し得る。
 図6Bのテストex.Cはノーマルフォームの比較例に比べ前記変化量γのピーク値が小さい。その理由は上層2の低反発材Sには変形の遅れが生じ、そのため、内反りや外反りが生じにくいためであると考えられる。したがって、テストex.Cは安定性においても優れていると考えられる。
 一方、図6Bのテストex.Dは前記テストex.Cと同じ45°の低反発材を用いているにもかかわらず、変化量γのピーク値がノーマルフォームの比較例に比べ大きい。その理由について考察する。
前記テストex.Cの下層3のノーマルフォームが通常用いられる55°であるのに対し、前記テストex.Dのそれが通常よりも硬い65°である。そのため、各被験者にとってソール全体が硬く感じられ、前記変化量γのピーク値が大きくなったものと考えられる。したがって、大型選手で、かつ、脚力が強い着用者の場合、テストex.Dにおいても前記変化量γのピーク値が小さく、安定性が高くなり得ると推測される。
但し、大型選手で体重が重い着用者の場合、前記1stストライクにおける前記変化量βのピーク値が増大すると考えられ、したがって、下層3のノーマルフォームの硬度が65°の場合、それに合わせて、上層2の低反発材の硬度も50°~55°程度とするのが好ましいと考えられる。
他方、図6Bのテストex.Bは前記テストex.Dに比べ、前記変化量γのピーク値が若干小さい。これは図5Cのテストex.Bがテストex.Dに比べ上層2の低反発材Sの硬度が小さく、ミッドソール全体の剛性が低下し、そのため、ソール全体の硬さがノーマルフォームの比較例に近くなったためと推測される。
図6Bのテストex.Aは前記テストex.BおよびDよりも更に変化量γのピーク値が大きい。その理由は、図5Cのテストex.Aの下層3の硬度が通常用いられる55°で、かつ、上層2の硬度が35°であり、被検者にとってミッドソール全体の剛性が小さすぎるためであると考えられる。
しかし、前述の子供、女性、中高年者などの体重が軽い着用者の場合、前記変化量γのピーク値が小さく、安定性が向上するかもしれない。また、前記テストex.Cと前記テストex.Aとの結果から、下層3にノーマルフォームの55°程度を配置し、上層2に低反発材の40°以上ないし41°以上45°以下を配置すれば前記安定性の向上する可能性が高まるものと考えられる。
つぎに、図4Aのテーパ部STに関し行った、コンピュータによるシミュレーションについて説明する。
積層体の変形状態の推測を行うため、図7Bに示すように内外が均等で中央部が大きい分布荷重に対する変形状態の算出を行った。荷重は図7Aに示す10本の各弾性要素6に対して与え、算出されたひずみ値を用い、変形状態を推測した。
図8A~図8Cに境界面の傾斜状態の異なる場合の各仮想の積層体の変形状態を示す。図8Aに示す直線状の傾斜の場合は、歪みの最大値の発生位置の内外への変位は少ないが、図8Bの階段状にテーパ部STを設けた場合は、歪みの最大値の発生位置の内外への変位が大きい。また、図8Cのように傾斜がない場合には、歪みの最大値の発生位置に変化は生じない。このように同硬度でも初期剛性の低い低反発材Sと高硬度のノーマルフォームNを図8Aおよび図8Bに示すように積層することにより、変形モードが変化するなど、特性の変化が発現することが確認できた。特に、図8Bのテーパ部STをシューズの幅方向に適用した場合には、グラフ右側を外側Lat.とすれば、低荷重では外側の変形が大きく足の動きを妨げることがなく、足当たりが良い。一方、高荷重が作用した場合には、内側の変形が小さくなり、踵の倒れこみが少なく、したがって、安定性が高くなると推測される。
つぎに、本発明において、各発泡体の硬度、厚さおよびテーパ部の有無に関して行ったコンピュータによるシミュレーションについて説明する。
まず、用意した仮想の積層体1Vについて説明する。
前記積層体1Vとして、図9AのCase1,図12A~図12FのCase11~13,Case21~23および図13A~図13DのCase14,15,24,25を想定した。
各Caseにおける上層および下層の厚さT(単位:mm)は、図9Aおよび図10A~図10Dに示すとおりである。
つぎに、前記各種積層体1Vを図11AのS0-S10に対応する位置に非線形の各弾性要素6を配置した仮想のモデルに置き換えた。かかる仮想のモデルに前記1stストライクにおいて想定される仮想の偏心荷重を負荷し、各弾性要素6の変位量から各積層体1Vの上面の変形量を算出した。
図11Bは前記変形量と当該変形量の図心(図の中心)Oの一例を示す。前記図6Bの実際のシューズにおいて示した安定性の評価において、つまり、前記実際テストex.A~Dを用いた安定性の評価において、高評価を得たテストex.Cと対比し、前記図心Oの位置がテストex.Cに比べ小さい程、安定性が高いと評価することとした。その評価基準のデジタル値とシンボルとの関係を図9Cに示す。
図9Cの各デジタル値は図11BのS0からの距離Pを示し、図9Cにおいて、二重丸はbest、一重丸はbetter、三角は従来と同等、Xは従来よりも劣ると判断した。
つぎに、各Caseの発泡体の機械的性質および形状と各Caseについて得られた評価結果について説明する。
図9BのCase1、図12A~図12FのCase11~13および21~23については、各図表に示すとおり、低反発材Sについて35°~60°まで5°ごとに想定し、一方、ノーマルフォームNについては50°~65°まで想定した。
図9AのCase1は下層3のノーマルフォームNに上層2の低反発材Sが積層されている。下層3のノーマルフォームNの厚さは15mmで、上層2の低反発材Sの厚さは5mmに設定されている。
図12Aおよび図12DのCase11およびCase21では下層3のノーマルフォームNに上層2の低反発材Sが積層されている。これらのCase11,21においては上層2の中央部にテーパ部STが設けられている。
前記図9BのCase1および図12AのCase11の結果から、ミッドソール1において、前記両発泡体N,Sの硬度が互いに同等(以下、「同程度の硬度」という)で、かつ、アスカーC硬度で50°~55°に設定されている場合には、クッション性だけでなく安定性の向上が期待できる。
一方、図12DのCase21においては、互いに同硬度では安定性が期待できない。その理由はCase21は図10Cに示すとおり上層2の低反発材Sの厚さが大きいためであると推測される。したがって、前記50°~55°で同程度の硬度の場合には、下層3のノーマルフォームNに比べ上層2の低反発材Sの厚さが小さいのが好ましいことが分かる。
他方、図12EのCase22においては、下層3の低反発材Sの上に上層2のノーマルフォームNが積層されている。このCase22では、50°~55°で同程度の硬度の場合、やはり、クッション性だけでなく、安定性の向上が期待できる。
また、図12BのCase12においては、下層3の厚い低反発材Sの上に上層2の薄いノーマルフォームNが積層されている。このCase12では、ノーマルフォームNの硬度よりも低反発材Sの硬度が5°~10°大きくてもクッション性だけでなく、安定性の向上が期待できることが分かる。
また、前記12AのCase11においても、55°で同程度の硬度の場合には前記機能の向上が期待できることが分かる。
更に、同Case11においても、ノーマルフォームNの硬度が55°で低反発材Sの硬度が55°よりも5°大きい60°であっても機能の向上が期待できることが分かる。
また、図12Aの同Case11において、下記の関係を有するミッドソールは前記機能の向上が期待できることが分かる。すなわち、ミッドソール1において、前記ノーマルフォームNの硬度がアスカーC硬度で50°~65°に設定され、
前記低反発材Sの硬度がアスカーC硬度で35°~50°に設定され、 
前記ノーマルフォームNの前記アスカーC硬度の値が、低反発材Sの前記アスカーC硬度の値に比べ、10°~15°大きい場合、前記機能の向上が期待できる。
ここで、発泡体の測定上や製造上の誤差を考慮すると、前記硬度差10°~15°は8°~15°であっても機能向上が期待できる。
また、図12Aの同Case11について詳しく検討すると、前記ノーマルフォームNの硬度がアスカーC硬度で55°に設定され、
前記低反発材Sの硬度がアスカーC硬度で45°~55°に設定されている場合、前記機能の向上が期待できることが分かる。
更に、発泡体の製造上の誤差を考慮すると、同Case11のミッドソール1において、ノーマルフォームNの硬度がアスカーC硬度で53°~57°に設定され、
前記低反発材Sの硬度がアスカーC硬度で43°~57°に設定され、
前記低反発材Sの硬度Lcが前記ノーマルフォームNの硬度Ncよりも小さいか、あるいは、前記ノーマルフォームNの硬度Ncと同等である場合であっても前記機能向上が期待できる。
また、図12Aの同Case11においては、つまり、外側Latが内側Medに比べ上層2の低反発材Sが厚く、かつ、テーパ部STを有している場合には、下記の条件においても、前記機能の向上が期待できる。すなわち、ミッドソール1において、
前記ノーマルフォームNのアスカーC硬度で50°~65°に設定され、
 前記低反発材SのアスカーC硬度で35°~50°に設定され、
 前記ノーマルフォームNの前記アスカーC硬度の値が、低反発材Sの前記アスカーC硬度に比べ、5°~15°大きい場合にも前記機能の向上が期待できる。
更に、前述の図5Aの実際のシューズを用いたテストにおいて、図5Cのテストex.Cの結果が最も優れていることに照らして考えれば、ミッドソール1において、
前記ノーマルフォームNの硬度がアスカーC硬度で50°~60°に設定され、
 前記低反発材Sの硬度がアスカーC硬度で40°~50°に設定され、
 前記ノーマルフォームNの前記アスカーC硬度の値が低反発材Sの前記アスカーC硬度の値に比べ、5°~15°大きい場合には前記機能の更に大きな向上が期待できる。
つぎに、上層2および下層3にそれぞれノーマルフォームNおよび低反発材Sを配置しても、前記機能の向上が期待できることについて説明する。
図12DのCase21と図12FのCase23とを比較すると、図表中の評価から分かるように、上層2にノーマルフォームNを配置し、下層3に低反発材Sを配置した図12FのCase23と、これとは逆の配置である図12DのCase21とで、同等の評価が得られた。
但し、Case23のように、下層3に低反発材Sを配置した場合、柔軟な低反発材Sの直下にアウトソール4が配置される。そのため、低反発材Sの変形の遅れにより、激しい左右の動作には不向きかもしれない。
したがって、下層3に低反発材Sを配置する場合、特に前足部1Fにおいては低反発材Sの厚さが薄い方が左右の振れ(ブレ)に対する安定性が期待できる。
また、図12CのCase13から分かるように、下層3の低反発材Sが内外にわたって著しく厚い場合、良い評価は得られていない。更に、図12BのCase12から分かるように、下層3の低反発材Sが内外にわたって著しく厚いミッドソールでは、良い評価を得るには低反発材Sの硬度がノーマルフォームNよりも大きいことが条件となっている。
こうした考察から、後足部の下層3に低反発材Sを配置する場合、少なくとも内側部SMの低反発材Sの厚さをノーマルフォームNよりも薄くするのが望ましいと思われる。
つぎに、低反発材Sの厚さについて検討する。
図12BのCase12および図12CのCase13のように、低反発材Sの厚さが図10Aおよび図10Bの13mm~17mmであると、硬度の小さい低反発材Sは採用しにくいだろう。
一方、図9AのCase1、図12AのCase11、図12Dおよび図12FのCase21およびCase23のように、低反発材Sの厚さが図10A、図10Bおよび図10Cのように、3mm~15mmの場合には、ノーマルフォームNの硬度よりも小さい硬度の低反発材Sを用いることができる。
これらの結果から、後足部の外側部が厚く、かつ、ノーマルフォームNの硬度よりも硬度が小さい低反発材Sは用いることができると推測される。
その場合、厚さの好ましい範囲は、図9A、図9BのCase1の厚さ5mm~図12DのCase21の厚さ15mm程度と推測される。
しかし、5mmより薄い場合でも製造の可能な2mm以上であれば機能の向上の度合い小さいものの、ある程度の機能向上が期待できるだろう。したがって、本発明は低反発材Sの層の厚さを特に限定するものではないが、2mm~15mm程度の範囲であれば、十分に採用し得ると思われる。
つぎに、低反発材Sを含まずノーマルフォームNを積層した図13A~図13DのCase14,15,24および25について言及する。
これらのCaseでは殆ど良い評価が得られなかった。しかし、図13AのCase14のように、上層2のノーマルフォームNの硬度が下層3のノーマルフォームNの硬度よりも小さい場合、たとえば、上層が45°で、下層が55°および60°の場合には若干ながら機能の改善される可能性がある。
つぎに、低反発材Sの配置領域について考察する。
図5Aの前足、図5Bの後足および図6Bの中足についての結果から、本低反発材Sは前記図3Aの前足部1F、中足部1M、後足部1Rのいずれか1以上に配置されていれば、当該部位における機能の向上が期待できることが分かる。
また、低反発材Sは各領域1F,1M,1Rにおいて、全域にわたって設けられている必要はなく、平面領域の大半つまり、平面領域の半分以上に設けられていればよい。
たとえば、後足部1Rの場合、少なくとも後半部1Rrに設けられている場合や、あるいは、少なくとも外側部SLおよび中央部SCに設けられている場合も、前記1stストライクの緩衝機能を発揮するだろう。
また、中足部1Mにおいては、突き上げ防止用に低反発材Sが内側部SMのみに設けられてもよいし、逆に、プロネーションの抑制のために硬度の小さい低反発材Sが外側部SLのみに設けられてもよい。
前足部1Fについては、低反発材Sは大きく屈曲する少なくとも中足趾節関節(MP関節)の部位を含む大半部分や大きな踏み出し力を発揮する母趾球の部位を含む大半部分に配置されてもよい。
前記低反発材Sは前足部1F、中足部1M、後足部1Rのうちの2つの領域に配置されてもよい。たとえば、低反発材Sは少なくとも前足部1Fおよび中足部1Mに配置されてもよい。また、低反発材Sは少なくとも前足部1Fおよび後足部1Rに配置されてもよい。また、低反発材Sは少なくとも中足部1Mおよび後足部1Rに配置されてもよい。
以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば本明細書を見て、自明な範囲で種々の変更および修正を容易に想定するであろう。
たとえば、上層及び/又は下層の発泡体の硬度は内外で互いに異なっていてもよい。
また、上層及び/又は下層に発泡体以外の緩衝要素、たとえば非発泡体のゲルやエアが充填された鞘様のポッズが含まれていてもよい。
また、上層の下面及び/又は下層の上面に溝が形成されてもよいし、ミッドソールの側面に上下に延びる溝が形成されていてもよい。
したがって、そのような変更および修正は、本発明の範囲のものと解釈される。
本発明は靴底のミッドソールに適用できる。
 1:ミッドソール 1F:前足部 1M:中足部 1R:後足部
 1Rr:後半部            
 2:上層 21:上面 2M:内巻上部 2L:外巻上部
3:下層
 4:アウトソール 4s:接地面
 5F:前足 5M:中足 5R:後足
6:弾性要素
N:第1発泡体(ノーマルフォーム) S:第2発泡体(低反発材)
SM:内側部 SL:外側部 ST:テーパ部 SC:中央部
M:足の内側 L:足の外側
 O:図心
 β:内反方向への角度の変化量 γ:外旋方向への角度の変化量
 

Claims (23)

  1.  接地面を有するアウトソール4の上に配置されるミッドソール1であって、
     前記ミッドソール1は上層2と下層3とを有し、
     前記上層2又は下層3のうちの一方が熱可塑性の樹脂成分を有する第1発泡体Nの層を包含し、
     前記上層2又は下層3のうちの他方における前足部1Fの平面領域の大半、中足部1Mの平面領域の大半または後足部1Rの平面領域の大半のうちの1又は2以上の部位が熱可塑性の樹脂成分を有する第2発泡体Sの層を包含し、
     前記第2発泡体Sは前記第1発泡体Nよりも比重が大きく、かつ、変形した後に元の形状に復元する速度が小さい低反発材で形成され、
    前記第2発泡体SのアスカーC硬度Lcと前記第1発泡体NのアスカーC硬度Ncとの関係が下記の(1)式に設定されている
    Lc≦Nc+10…(1)。
  2. 接地面を有するアウトソール4の上に配置されるミッドソール1であって、
     前記ミッドソール1は上層2と下層3とを有し、
     前記下層3が熱可塑性の樹脂成分を有する第1発泡体Nの層を包含し、
     前記上層2における前足部1Fの平面領域の大半、中足部1Mの平面領域の大半または後足部1Rの平面領域の大半のうちの1又は2以上の部位が熱可塑性の樹脂成分を有する第2発泡体Sの層を包含し、
     前記第2発泡体Sは前記第1発泡体Nよりも比重が大きく、かつ、変形した後に元の形状に復元する速度が小さい低反発材で形成され、
    前記第2発泡体SのアスカーC硬度Lcと前記第1発泡体NのアスカーC硬度Ncとの関係が下記の(1)式に設定されている
    Lc≦Nc+10…(1)。
  3.  請求項1もしくは2のミッドソール1において、前記第1および第2発泡体N,Sが、それぞれ、少なくとも後足部1Rの平面領域の大半に設けられ、
     前記後足部1Rにおいて前記第2発泡体Sの層は、足の内側Mの平均厚さよりも外側Lの平均厚さが大きく、かつ、
     前記後足部1Rにおいて前記第1発泡体Nの層は、足の外側Lの平均厚さよりも内側Mの平均厚さが大きい。
  4.        請求項2のミッドソール1において、前記後足部1Rの前記平面領域の大半には前記第1発泡体Nが下層3に配置され、かつ、前記後足部1Rの前記平面領域の大半には前記第2発泡体Sが上層2に配置され、かつ、
    前記後足部1Rにおいて前記上層2の前記第2発泡体Sの層は、足の内側Mの平均厚さよりも外側Lの平均厚さが大きく、かつ、
    前記後足部1Rにおいて前記下層3の前記第1発泡体Nの層は、足の外側Lの平均厚さよりも内側Mの平均厚さが大きい。
  5.  請求項4のミッドソールにおいて、前記後足部1Rにおいて足裏の外側Lの下面を支持する前記第2発泡体Sの厚い外側部SLと、前記後足部1Rにおいて足裏の内側Mの下面を支持する前記第2発泡体Sの薄い内側部SMとの間には、前記第2発泡体Sが内側Mに延びるに従い前記第2発泡体Sの厚さが薄く変化するテーパ部STが設けられ、
     前記後足部1Rの後半部1Rrにおいて前記テーパ部STの厚さの変化の度合が前記外側部SLの厚さの変化の度合よりも大きく、かつ、前記テーパ部STの厚さの変化の度合が前記内側部SMの厚さの変化の度合よりも大きい。
  6.  請求項5のミッドソール1において、前記後足部1Rの後半部1Rrの少なくとも一部の横断面において、前記テーパ部STが内側Mと外側Lの中心よりも内側寄りに配置されている。
  7.  請求項4のミッドソール1において、前記後足部1Rにおける前記第2発泡体Sの上層2の前記内側Mと前記外側Lの間の中心を含む中央部SCの平均厚さが前記後足部1Rにおいて足裏の内側Mの下面を支持する前記第2発泡体Sの薄い内側部SMの平均厚さよりも大きい。
  8.  請求項4もしくは5のミッドソール1において、前記第1および第2発泡体N,Sがそれぞれ中足部1Mに更に設けられ、
     前記中足部1Mにおける前記第2発泡体Sの層の平均厚さは、前記後足部1Rの内側部SMの第2発泡体Sの層の最小厚さよりも大きく、かつ、前記後足部1Rの前記外側部SLの第2発泡体Sの最大厚さよりも小さい。
  9. 請求項1もしくは2のミッドソール1において、
    前記第1発泡体NのアスカーC硬度が50°~65°に設定され、      
    前記第2発泡体SのアスカーC硬度が35°~60°に設定されている。      
  10. 請求項9のミッドソール1において、前記第1発泡体Nの硬度がアスカーC硬度で50°~60°に設定され、
    前記第2発泡体Sの硬度がアスカーC硬度で40°~50°に設定され、
    前記第2発泡体Sの前記硬度が前記第1発泡体Nの前記硬度よりも小さい。
  11. 請求項9もしくは10のミッドソール1において、前記第1発泡体Nの前記アスカーC硬度の値が、第2発泡体Sの前記アスカーC硬度の値に比べ、5°~15°大きい。
  12. 請求項1もしくは2のミッドソール1において、前記第1および第2発泡体N,Sの前記硬度が互いに同等で、かつ、アスカーC硬度で50°~55°に設定されている。
  13. 請求項4~8のいずれか1項のミッドソール1において、前記第1発泡体Nの硬度がアスカーC硬度で50°~65°に設定され、
    前記第2発泡体Sの硬度がアスカーC硬度で35°~50°に設定され、
    前記第1発泡体Nの前記アスカーC硬度の値が、第2発泡体Sの前記アスカーC硬度の値に比べ、8°~15°大きい。
  14. 請求項4~8のいずれか1項のミッドソール1において、前記第1発泡体Nの硬度がアスカーC硬度で53°~57°に設定され、
    前記第2発泡体Sの硬度がアスカーC硬度で43°~57°に設定され、
    前記第2発泡体Sの前記硬度Lcが前記第1発泡体Nの前記硬度Ncよりも小さいか、あるいは、前記第1発泡体Nの前記硬度Ncと同等である。
  15. 請求項1~14のいずれか1項のミッドソール1において、前記第1および第2発泡体N,Sの層が少なくとも前記後足部1Rの大半に配置されている。
  16.  請求項2において、前記上層2の第2発泡体Sは足の内側Mの裏面を支持するための内側部SMと、足の外側Lの裏面を支持するための外側部SLと、足の内側Mの側面を支持するための内巻上部2Mとを一体に備え、
     前記内巻上部2Mが前記内側部SMから内側の縁に向かって延びるに従い前記内巻上部2Mは前記第1発泡体Nの上面に直交する法線方向の厚さが大きい。
  17. 請求項2において、前記上層2の第2発泡体Sは足の内側Mの裏面を支持するための内側部SMと、足の外側Lの裏面を支持するための外側部SLと、足の外側Lの側面を支持するための外巻上部2Lとを一体に備え、
     前記外巻上部2Lが前記外側部SLから外側の縁に向かって延びるに従い前記外巻上部2Lは前記第1発泡体Nの上面に直交する法線方向の厚さが大きい。
  18. 接地面を有するアウトソール4の上に配置されるミッドソール1であって、
     前記ミッドソール1は上層2と下層3とを有し、
     前記上層2又は下層3のうちの一方における前足部1Fの平面領域の大半、中足部1Mの平面領域の大半または後足部1Rの平面領域の大半のうちの1又は2以上の部位が熱可塑性の樹脂成分を有する第1発泡体Nの層を包含し、
     前記上層2又は下層3のうちの他方における前記第1発泡体Nの層が配置された前足部1Fの平面領域の大半、中足部1Mの平面領域の大半または後足部1Rの平面領域の大半のうちの1又は2以上の部位が熱可塑性の樹脂成分を有する第2発泡体Sの層を包含し、
     前記第1発泡体Nと前記第2発泡体Sとは互いに機械的性質が異なり、
     前記3つの領域のうちいずれか1つにおいて、前記第1発泡体Nの厚さが足の内側Mと外側Lとで異なっており、かつ、前記第1発泡体Nの厚さの異なっている前記領域において第2発泡体Sの厚さが足の裏側を支える内側部SMと外側部SLで異なっており、
     前記上層2における内側部SMと外側部SLとの間には、内側Mから外側Lに延びるに従い厚さの変化するテーパ部STが設けられ、
     前記テーパ部STの厚さの変化の度合が前記内側部SMの厚さの変化の度合、あるいは、前記外側部SLの厚さの変化の度合いよりも大きい。
  19. 請求項18のミッドソール1において、少なくとも前記後足部1Rの平面領域の大半に前記第1および第2発泡体N,Sの層が配置され、
    前記後足部1Rにおいて前記第2発泡体Sの層は、足の内側Mの平均厚さよりも外側Lの平均厚さが大きく、かつ、
     前記後足部1Rにおいて前記第1発泡体Nの層は、足の外側Lの平均厚さよりも内側Mの平均厚さが大きく、
    前記第1発泡体Nは前記第2発泡体SよりもアスカーC硬度が大きい。  
  20.  請求項19のミッドソール1において、前記後足部1Rの後半部の少なくとも一部の横断面において、前記テーパ部STが内側Mと外側Lの中心よりも内側寄りに配置されている。
  21.  請求項18のミッドソール1において、少なくとも前記中足部1Mの平面領域の大半に前記第1および第2発泡体N,Sの層が配置され、
     前記中足部1Mにおいて前記第2発泡体Sの層は、足の内側Mの平均厚さよりも外側Lの平均厚さが大きく、かつ、
     前記中足部1Mにおいて前記第1発泡体Nの層は、足の外側Lの平均厚さよりも内側Mの平均厚さが大きく、
     前記第1発泡体Nは前記第2発泡体SよりもアスカーC硬度が大きい。
  22.  請求項18のミッドソール1において、前記上層2における前記第2発泡体Sは足の内側Mの裏面を支持するための内側部SMと、足の外側Lの裏面を支持するための外側部SLと、足の内側Mの側面を支持するための内巻上部2Mとを一体に備え、
     前記内巻上部2Mが前記内側部SMから内側の縁に向かって延びるに従い前記内巻上部2Mは前記第2発泡体Sの上面に直交する法線方向の厚さが大きい。
  23.  請求項18のミッドソール1において、前記上層2における前記第2発泡体Sは足の内側Mの裏面を支持するための内側部SMと、足の外側Lの裏面を支持するための外側部SLと、足の外側Lの側面を支持するための外巻上部2Lとを一体に備え、
     前記外巻上部2Lが前記外側部SLから外側の縁に向かって延びるに従い前記外巻上部2Lは前記第2発泡体Sの上面に直交する法線方向の厚さが大きい。
PCT/JP2013/057398 2013-03-15 2013-03-15 積層構造を持つミッドソール WO2014141467A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/057398 WO2014141467A1 (ja) 2013-03-15 2013-03-15 積層構造を持つミッドソール
AU2013293073A AU2013293073B2 (en) 2013-03-15 2013-03-15 Mid sole having layered structure
EP13877615.8A EP2974614B1 (en) 2013-03-15 2013-03-15 Midsole having a laminated structure
JP2015505195A JP5887463B2 (ja) 2013-03-15 2013-03-15 積層構造を持つミッドソール
US14/774,610 US9763493B2 (en) 2013-03-15 2013-03-15 Mid sole having layered structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057398 WO2014141467A1 (ja) 2013-03-15 2013-03-15 積層構造を持つミッドソール

Publications (1)

Publication Number Publication Date
WO2014141467A1 true WO2014141467A1 (ja) 2014-09-18

Family

ID=51536161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057398 WO2014141467A1 (ja) 2013-03-15 2013-03-15 積層構造を持つミッドソール

Country Status (5)

Country Link
US (1) US9763493B2 (ja)
EP (1) EP2974614B1 (ja)
JP (1) JP5887463B2 (ja)
AU (1) AU2013293073B2 (ja)
WO (1) WO2014141467A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122972A1 (ja) * 2016-12-27 2018-07-05 株式会社アシックス シューソール
JPWO2019220621A1 (ja) * 2018-05-18 2021-02-12 株式会社アシックス 積層構造のミッドソールを有するシューソール
CN114190651A (zh) * 2015-04-17 2022-03-18 耐克创新有限合伙公司 可独立移动的鞋底结构

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10238168B2 (en) * 2013-03-15 2019-03-26 Laurence James Shoe construction
EP2992772B1 (en) 2013-05-01 2020-07-22 ASICS Corporation Member for shoe sole
EP3056104B1 (en) 2013-10-10 2020-04-15 ASICS Corporation Shoe sole
JP5972476B2 (ja) 2013-10-10 2016-08-17 株式会社アシックス 靴底
EP3170419B1 (en) 2015-10-08 2019-05-15 ASICS Corporation Shoe having upper and sole
ITUB20160823A1 (it) * 2016-02-17 2017-08-17 Marco Calzolai Struttura perfezionata di suola per calzature e calzatura che adotta tale suola
US10786035B2 (en) * 2016-10-13 2020-09-29 Under Armour, Inc. Article of footwear with cooling features
WO2018070045A1 (ja) 2016-10-14 2018-04-19 株式会社アシックス
US11039659B2 (en) * 2017-09-07 2021-06-22 Nike, Inc. Sole structure for article of footwear
CN112888336B (zh) * 2018-11-19 2022-07-26 株式会社爱世克私 鞋底用部件、鞋以及鞋底用部件的制造方法
US20210137216A1 (en) * 2019-11-07 2021-05-13 Arthur Robert Taylor Shoe sole or insert of a unitary material having a gradual change in hardnesses and/or density characteristics and a method of making the same
CN115175582A (zh) 2020-01-10 2022-10-11 耐克创新有限合伙公司 具有多个硬度和/或弯曲促进结构的鞋底结构
CN114947305B (zh) * 2022-04-14 2023-12-22 安踏(中国)有限公司 中底加工方法、中底及鞋

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190401A (ja) 1982-04-21 1983-11-07 ウルヴリン・ワ−ルド・ワイド・インコ−ポレイテツド ランニング靴
JPH0569521A (ja) 1991-06-26 1993-03-23 Dainippon Ink & Chem Inc 多層フイルム及び包装袋
JPH07125107A (ja) 1993-10-29 1995-05-16 Achilles Corp
JPH08168402A (ja) 1994-12-19 1996-07-02 Midori Anzen Co Ltd 多層靴底
JPH11266905A (ja) 1998-03-25 1999-10-05 Asics Corp アウターソール
JP2003079402A (ja) 2001-05-11 2003-03-18 Asics Corp 緩衝構造を備えたミッドソール
JP2008132008A (ja) * 2006-11-27 2008-06-12 Sri Sports Ltd
JP2009178594A (ja) 2006-05-26 2009-08-13 Nike Inc 軽量ソールアセンブリを有する履物物品
JP2010094480A (ja) 2008-10-16 2010-04-30 Hiroshima Kasei Ltd
JP2010525917A (ja) 2007-05-07 2010-07-29 アイ−マスティ カンパニー,リミテッド 多弾性の靴の中底の構造
JP2011177206A (ja) * 2010-02-26 2011-09-15 Taika:Kk 緩衝部材を備えたシューズ

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990341U (ja) * 1972-11-29 1974-08-06
DE3037108A1 (de) * 1980-10-01 1982-05-13 Herbert Dr.-Ing. 8032 Lochham Funck Polstersohle mit orthopaedischen eigenschaften
FR2522482B1 (fr) * 1982-01-15 1985-11-15 Adidas Chaussures Semelle intermediaire et chaussure comportant une telle semelle intermediaire
US5014449A (en) * 1989-09-22 1991-05-14 Avia Group International, Inc. Shoe sole construction
US5155927A (en) 1991-02-20 1992-10-20 Asics Corporation Shoe comprising liquid cushioning element
US5718063A (en) 1995-07-17 1998-02-17 Asics Corporation Midsole cushioning system
JP3258628B2 (ja) 1998-09-08 2002-02-18 株式会社アシックス 運動靴
US6438870B2 (en) 1998-11-05 2002-08-27 Asics Corporation Shoe sole with shock absorber structure
JP3396637B2 (ja) 1998-11-05 2003-04-14 株式会社アシックス 靴底におけるシャンクの支持構造
USD416381S (en) 1998-12-14 1999-11-16 Asics Corporation Shoe cushioning system
JP3979765B2 (ja) 2000-05-15 2007-09-19 株式会社アシックス 靴底の緩衝装置
JP3886322B2 (ja) 2000-06-23 2007-02-28 株式会社アシックス 靴底の通気構造
JP3921453B2 (ja) 2003-04-04 2007-05-30 株式会社アシックス 足の傾角測定方法、靴または靴用中敷選択方法、靴または靴用中敷製造方法、および、足の傾角測定装置
USD501713S1 (en) 2003-07-18 2005-02-15 As/Cs Corporation Shoe midsole
USD496148S1 (en) 2003-07-18 2004-09-21 Asics Corporation Pair of shoe outsoles
USD495859S1 (en) 2003-08-20 2004-09-14 Asics Corporation Pair of shoe outsoles
AU2004281112C1 (en) 2003-10-17 2009-01-08 Asics Corporation Sole with reinforcement structure
US7322131B2 (en) 2003-11-27 2008-01-29 Asics Corp. Shoe with slip preventive member
USD512819S1 (en) 2004-05-27 2005-12-20 Asics Corporation Pair of shoe outsoles
USD512818S1 (en) 2004-05-27 2005-12-20 Asics Corp. Pair of shoe outsoles
USD512827S1 (en) 2004-05-27 2005-12-20 Asics Corporation Pair of shoe midsoles
USD512208S1 (en) 2004-05-27 2005-12-06 Asics Corporation Pair of shoe outsoles
USD512828S1 (en) 2004-05-27 2005-12-20 Asics Corporation Pair of shoe midsoles
USD520732S1 (en) 2004-05-27 2006-05-16 Asics Corporation Pair of shoe midsoles
DE112005002327B4 (de) 2004-09-30 2017-10-26 Asics Corp. Stoßabsorbierende Vorrichtung für eine Schuhsohle in einem Rückfußteil
WO2006038357A1 (ja) 2004-09-30 2006-04-13 Asics Corporation 靴底の緩衝装置
USD514286S1 (en) 2004-11-15 2006-02-07 Asics Corporation Pair of shoe outsoles
USD509351S1 (en) 2004-11-15 2005-09-13 Asics Corporation Shoe midsole
USD513115S1 (en) 2004-11-15 2005-12-27 Asics Corporation Pair of shoe midsoles
USD553846S1 (en) 2005-04-26 2007-10-30 Asics Corporation Shoe outsole and midsole
KR101229688B1 (ko) 2005-05-10 2013-02-05 갸부시끼가이샤아식스 구두창용 부재
DE112005003570B4 (de) 2005-05-13 2017-11-09 Asics Corp. Stoßabsorptionsvorrichtung für Schuhsohle
USD542522S1 (en) 2005-10-11 2007-05-15 Asics Corporation Shoe midsole
US8074377B2 (en) 2005-10-20 2011-12-13 Asics Corporation Shoe sole with reinforcement structure
DE112006003852B4 (de) 2006-04-21 2018-01-18 Asics Corp. Schuhsohlen mit einer Stoßdämpfungsstruktur
USD552833S1 (en) 2006-05-05 2007-10-16 Asics Corp. Shoe
USD561442S1 (en) 2006-08-01 2008-02-12 Asics Corp. Pair of shoe outsoles
USD561434S1 (en) 2006-08-01 2008-02-12 Asics Corp. Pair of shoe outsoles
CN101953537B (zh) 2006-10-20 2012-07-18 株式会社爱世克私 鞋底
USD582658S1 (en) 2007-04-06 2008-12-16 Asics Corporation Shoe
USD575486S1 (en) 2007-05-11 2008-08-26 Asics Corporation Pair of shoe outsoles
USD571086S1 (en) 2007-07-17 2008-06-17 Asics Corporation Pair of shoe outsoles
USD614855S1 (en) 2008-02-13 2010-05-04 Asics Corporation Shoe lace system
HUP0800101A2 (en) * 2008-02-18 2011-11-28 Laszlo Solymosi Shoes with unstable sole construction
WO2009106076A1 (en) * 2008-02-27 2009-09-03 Ecco Sko A/S Sole for a shoe, in particular for a running shoe
US8196316B2 (en) * 2009-01-26 2012-06-12 Nike, Inc. Article of footwear with two part midsole assembly
CN201557624U (zh) * 2009-11-02 2010-08-25 安德里亚·百兹 矫正拖鞋
US20120216422A1 (en) 2009-11-16 2012-08-30 Asics Corporation Shoe with improved heel fit performance
US20110179669A1 (en) * 2010-01-28 2011-07-28 Brown Shoe Company, Inc. Cushioning and shock absorbing midsole
EP2559352B1 (en) 2010-04-16 2017-02-08 ASICS Corporation Structure for forefoot section of shoe upper part
USD650566S1 (en) 2010-05-07 2011-12-20 Asics Corporation Shoe
US9003678B2 (en) 2011-09-07 2015-04-14 Nike, Inc. Article of footwear with support members and connecting members
EP2805637B1 (en) 2012-01-18 2019-09-18 ASICS Corporation Foam sole, and shoes
WO2013168259A1 (ja) 2012-05-10 2013-11-14 株式会社アシックス 斜溝を持つ靴底
JP5465814B1 (ja) 2012-05-10 2014-04-09 株式会社アシックス アウトソールおよびミッドソールを備えた靴底
JP5685343B2 (ja) * 2012-05-31 2015-03-18 株式会社アシックス 発泡成形品、発泡ソール、及びシューズ
JP5350566B1 (ja) 2012-10-29 2013-11-27 株式会社アシックス ウィンドラスメカニズムに着目した靴底
USD734927S1 (en) 2013-03-28 2015-07-28 Asics Corporation Footwear sole
USD734928S1 (en) 2013-03-28 2015-07-28 Asics Corporation Footwear sole
US9931803B2 (en) * 2015-03-12 2018-04-03 Nike, Inc. Method of manufacturing sole assembly with camouflage appearance

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190401A (ja) 1982-04-21 1983-11-07 ウルヴリン・ワ−ルド・ワイド・インコ−ポレイテツド ランニング靴
JPH0569521A (ja) 1991-06-26 1993-03-23 Dainippon Ink & Chem Inc 多層フイルム及び包装袋
JPH07125107A (ja) 1993-10-29 1995-05-16 Achilles Corp
JPH08168402A (ja) 1994-12-19 1996-07-02 Midori Anzen Co Ltd 多層靴底
JPH11266905A (ja) 1998-03-25 1999-10-05 Asics Corp アウターソール
JP2003079402A (ja) 2001-05-11 2003-03-18 Asics Corp 緩衝構造を備えたミッドソール
JP2009178594A (ja) 2006-05-26 2009-08-13 Nike Inc 軽量ソールアセンブリを有する履物物品
JP2009538191A (ja) * 2006-05-26 2009-11-05 ナイキ インコーポレーティッド 軽量ソールアセンブリを有する履物物品
JP2008132008A (ja) * 2006-11-27 2008-06-12 Sri Sports Ltd
JP2010525917A (ja) 2007-05-07 2010-07-29 アイ−マスティ カンパニー,リミテッド 多弾性の靴の中底の構造
JP2010094480A (ja) 2008-10-16 2010-04-30 Hiroshima Kasei Ltd
JP2011177206A (ja) * 2010-02-26 2011-09-15 Taika:Kk 緩衝部材を備えたシューズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2974614A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114190651A (zh) * 2015-04-17 2022-03-18 耐克创新有限合伙公司 可独立移动的鞋底结构
WO2018122972A1 (ja) * 2016-12-27 2018-07-05 株式会社アシックス シューソール
WO2018123509A1 (ja) 2016-12-27 2018-07-05 株式会社アシックス シューソール
JPWO2018123509A1 (ja) * 2016-12-27 2019-10-31 株式会社アシックス シューソール
US11122858B2 (en) 2016-12-27 2021-09-21 Asics Corporation Shoe sole
JPWO2019220621A1 (ja) * 2018-05-18 2021-02-12 株式会社アシックス 積層構造のミッドソールを有するシューソール

Also Published As

Publication number Publication date
US20160015122A1 (en) 2016-01-21
EP2974614B1 (en) 2022-05-04
EP2974614A4 (en) 2016-11-09
EP2974614A1 (en) 2016-01-20
JPWO2014141467A1 (ja) 2017-02-16
AU2013293073B2 (en) 2015-06-18
US9763493B2 (en) 2017-09-19
AU2013293073A1 (en) 2014-10-02
JP5887463B2 (ja) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5887463B2 (ja) 積層構造を持つミッドソール
JP6824469B2 (ja) 積層構造のミッドソールを有するシューソール
JP6541290B2 (ja)
US6487796B1 (en) Footwear with lateral stabilizing sole
JP5465814B1 (ja) アウトソールおよびミッドソールを備えた靴底
JP4914838B2 (ja) 強化構造を備えた靴底
US6964120B2 (en) Footwear midsole with compressible element in lateral heel area
CN104717897A (zh) 具有交替弹簧层和阻尼层的鞋底结构
US20180084864A1 (en) Shoe having stabilizer
WO2017056513A1 (ja) シューズ
JP2009142705A (ja) 強化構造を備えた靴底および緩衝構造を備えた靴底
JP6639078B2 (ja) O脚の人に適した靴および靴底
JP5976915B2 (ja) 積層構造を持つミッドソール
JP7419502B2 (ja) 履物
JPWO2020121407A1 (ja)
JPS598568Y2 (ja) スポ−ツシユ−ズ用靴底
JP6982292B2 (ja) インソール
JP5102458B2 (ja) シューズのソール構造体
JPS6041122Y2 (ja) 履物底

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013293073

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505195

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013877615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14774610

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE